]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/exp_ch6.adb
exp_util.ads, [...]: Minor code reorganization.
[gcc.git] / gcc / ada / exp_ch6.adb
CommitLineData
01aef5ad 1------------------------------------------------------------------------------
70482933
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- E X P _ C H 6 --
6-- --
7-- B o d y --
8-- --
e7ba564f 9-- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
70482933
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Errout; use Errout;
31with Elists; use Elists;
4a1bfefb 32with Exp_Aggr; use Exp_Aggr;
f937473f 33with Exp_Atag; use Exp_Atag;
70482933
RK
34with Exp_Ch2; use Exp_Ch2;
35with Exp_Ch3; use Exp_Ch3;
36with Exp_Ch7; use Exp_Ch7;
37with Exp_Ch9; use Exp_Ch9;
70482933
RK
38with Exp_Dbug; use Exp_Dbug;
39with Exp_Disp; use Exp_Disp;
40with Exp_Dist; use Exp_Dist;
41with Exp_Intr; use Exp_Intr;
42with Exp_Pakd; use Exp_Pakd;
a767d69b 43with Exp_Prag; use Exp_Prag;
70482933
RK
44with Exp_Tss; use Exp_Tss;
45with Exp_Util; use Exp_Util;
fbf5a39b 46with Fname; use Fname;
70482933 47with Freeze; use Freeze;
70482933
RK
48with Inline; use Inline;
49with Lib; use Lib;
7888a6ae 50with Namet; use Namet;
70482933
RK
51with Nlists; use Nlists;
52with Nmake; use Nmake;
53with Opt; use Opt;
54with Restrict; use Restrict;
6e937c1c 55with Rident; use Rident;
70482933
RK
56with Rtsfind; use Rtsfind;
57with Sem; use Sem;
a4100e55 58with Sem_Aux; use Sem_Aux;
70482933
RK
59with Sem_Ch6; use Sem_Ch6;
60with Sem_Ch8; use Sem_Ch8;
70482933 61with Sem_Ch13; use Sem_Ch13;
dec6faf1 62with Sem_Dim; use Sem_Dim;
70482933
RK
63with Sem_Disp; use Sem_Disp;
64with Sem_Dist; use Sem_Dist;
dec6faf1 65with Sem_Eval; use Sem_Eval;
758c442c 66with Sem_Mech; use Sem_Mech;
70482933 67with Sem_Res; use Sem_Res;
d06b3b1d 68with Sem_SCIL; use Sem_SCIL;
70482933
RK
69with Sem_Util; use Sem_Util;
70with Sinfo; use Sinfo;
71with Snames; use Snames;
72with Stand; use Stand;
8b404dac 73with Stringt; use Stringt;
2b3d67a5 74with Targparm; use Targparm;
70482933
RK
75with Tbuild; use Tbuild;
76with Uintp; use Uintp;
77with Validsw; use Validsw;
78
79package body Exp_Ch6 is
80
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
84
02822a92
RD
85 procedure Add_Access_Actual_To_Build_In_Place_Call
86 (Function_Call : Node_Id;
87 Function_Id : Entity_Id;
f937473f
RD
88 Return_Object : Node_Id;
89 Is_Access : Boolean := False);
02822a92
RD
90 -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
91 -- object name given by Return_Object and add the attribute to the end of
92 -- the actual parameter list associated with the build-in-place function
f937473f
RD
93 -- call denoted by Function_Call. However, if Is_Access is True, then
94 -- Return_Object is already an access expression, in which case it's passed
95 -- along directly to the build-in-place function. Finally, if Return_Object
96 -- is empty, then pass a null literal as the actual.
97
200b7162 98 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
f937473f
RD
99 (Function_Call : Node_Id;
100 Function_Id : Entity_Id;
101 Alloc_Form : BIP_Allocation_Form := Unspecified;
200b7162
BD
102 Alloc_Form_Exp : Node_Id := Empty;
103 Pool_Actual : Node_Id := Make_Null (No_Location));
104 -- Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
105 -- function call that returns a caller-unknown-size result (BIP_Alloc_Form
106 -- and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
107 -- otherwise pass a literal corresponding to the Alloc_Form parameter
108 -- (which must not be Unspecified in that case). Pool_Actual is the
109 -- parameter to pass to BIP_Storage_Pool.
f937473f 110
d3f70b35 111 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
2c17ca0a
AC
112 (Func_Call : Node_Id;
113 Func_Id : Entity_Id;
114 Ptr_Typ : Entity_Id := Empty;
115 Master_Exp : Node_Id := Empty);
df3e68b1
HK
116 -- Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
117 -- finalization actions, add an actual parameter which is a pointer to the
2c17ca0a
AC
118 -- finalization master of the caller. If Master_Exp is not Empty, then that
119 -- will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
120 -- will result in an automatic "null" value for the actual.
f937473f
RD
121
122 procedure Add_Task_Actuals_To_Build_In_Place_Call
123 (Function_Call : Node_Id;
124 Function_Id : Entity_Id;
1399d355
AC
125 Master_Actual : Node_Id;
126 Chain : Node_Id := Empty);
f937473f
RD
127 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
128 -- contains tasks, add two actual parameters: the master, and a pointer to
129 -- the caller's activation chain. Master_Actual is the actual parameter
130 -- expression to pass for the master. In most cases, this is the current
131 -- master (_master). The two exceptions are: If the function call is the
132 -- initialization expression for an allocator, we pass the master of the
6dfc5592 133 -- access type. If the function call is the initialization expression for a
1399d355
AC
134 -- return object, we pass along the master passed in by the caller. In most
135 -- contexts, the activation chain to pass is the local one, which is
136 -- indicated by No (Chain). However, in an allocator, the caller passes in
137 -- the activation Chain. Note: Master_Actual can be Empty, but only if
138 -- there are no tasks.
02822a92 139
70482933
RK
140 procedure Check_Overriding_Operation (Subp : Entity_Id);
141 -- Subp is a dispatching operation. Check whether it may override an
142 -- inherited private operation, in which case its DT entry is that of
143 -- the hidden operation, not the one it may have received earlier.
144 -- This must be done before emitting the code to set the corresponding
145 -- DT to the address of the subprogram. The actual placement of Subp in
146 -- the proper place in the list of primitive operations is done in
147 -- Declare_Inherited_Private_Subprograms, which also has to deal with
148 -- implicit operations. This duplication is unavoidable for now???
149
150 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
151 -- This procedure is called only if the subprogram body N, whose spec
152 -- has the given entity Spec, contains a parameterless recursive call.
153 -- It attempts to generate runtime code to detect if this a case of
154 -- infinite recursion.
155 --
156 -- The body is scanned to determine dependencies. If the only external
157 -- dependencies are on a small set of scalar variables, then the values
158 -- of these variables are captured on entry to the subprogram, and if
159 -- the values are not changed for the call, we know immediately that
160 -- we have an infinite recursion.
161
da574a86
AC
162 procedure Expand_Actuals (N : in out Node_Id; Subp : Entity_Id);
163 -- For each actual of an in-out or out parameter which is a numeric
164 -- (view) conversion of the form T (A), where A denotes a variable,
165 -- we insert the declaration:
166 --
167 -- Temp : T[ := T (A)];
168 --
169 -- prior to the call. Then we replace the actual with a reference to Temp,
170 -- and append the assignment:
171 --
172 -- A := TypeA (Temp);
173 --
174 -- after the call. Here TypeA is the actual type of variable A. For out
175 -- parameters, the initial declaration has no expression. If A is not an
176 -- entity name, we generate instead:
177 --
178 -- Var : TypeA renames A;
179 -- Temp : T := Var; -- omitting expression for out parameter.
180 -- ...
181 -- Var := TypeA (Temp);
182 --
183 -- For other in-out parameters, we emit the required constraint checks
184 -- before and/or after the call.
185 --
186 -- For all parameter modes, actuals that denote components and slices of
187 -- packed arrays are expanded into suitable temporaries.
188 --
189 -- For non-scalar objects that are possibly unaligned, add call by copy
190 -- code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
191 --
5f6fb720
AC
192 -- For OUT and IN OUT parameters, add predicate checks after the call
193 -- based on the predicates of the actual type.
194 --
da574a86
AC
195 -- The parameter N is IN OUT because in some cases, the expansion code
196 -- rewrites the call as an expression actions with the call inside. In
197 -- this case N is reset to point to the inside call so that the caller
198 -- can continue processing of this call.
199
df3e68b1
HK
200 procedure Expand_Ctrl_Function_Call (N : Node_Id);
201 -- N is a function call which returns a controlled object. Transform the
202 -- call into a temporary which retrieves the returned object from the
203 -- secondary stack using 'reference.
204
2b3d67a5
AC
205 procedure Expand_Non_Function_Return (N : Node_Id);
206 -- Called by Expand_N_Simple_Return_Statement in case we're returning from
207 -- a procedure body, entry body, accept statement, or extended return
aeae67ed 208 -- statement. Note that all non-function returns are simple return
2b3d67a5
AC
209 -- statements.
210
70482933
RK
211 function Expand_Protected_Object_Reference
212 (N : Node_Id;
02822a92 213 Scop : Entity_Id) return Node_Id;
70482933
RK
214
215 procedure Expand_Protected_Subprogram_Call
216 (N : Node_Id;
217 Subp : Entity_Id;
218 Scop : Entity_Id);
219 -- A call to a protected subprogram within the protected object may appear
220 -- as a regular call. The list of actuals must be expanded to contain a
221 -- reference to the object itself, and the call becomes a call to the
222 -- corresponding protected subprogram.
223
63585f75
SB
224 function Has_Unconstrained_Access_Discriminants
225 (Subtyp : Entity_Id) return Boolean;
226 -- Returns True if the given subtype is unconstrained and has one
227 -- or more access discriminants.
228
2b3d67a5
AC
229 procedure Expand_Simple_Function_Return (N : Node_Id);
230 -- Expand simple return from function. In the case where we are returning
231 -- from a function body this is called by Expand_N_Simple_Return_Statement.
232
02822a92
RD
233 ----------------------------------------------
234 -- Add_Access_Actual_To_Build_In_Place_Call --
235 ----------------------------------------------
236
237 procedure Add_Access_Actual_To_Build_In_Place_Call
238 (Function_Call : Node_Id;
239 Function_Id : Entity_Id;
f937473f
RD
240 Return_Object : Node_Id;
241 Is_Access : Boolean := False)
02822a92
RD
242 is
243 Loc : constant Source_Ptr := Sloc (Function_Call);
244 Obj_Address : Node_Id;
f937473f 245 Obj_Acc_Formal : Entity_Id;
02822a92
RD
246
247 begin
f937473f 248 -- Locate the implicit access parameter in the called function
02822a92 249
f937473f 250 Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
02822a92 251
f937473f
RD
252 -- If no return object is provided, then pass null
253
254 if not Present (Return_Object) then
255 Obj_Address := Make_Null (Loc);
7888a6ae 256 Set_Parent (Obj_Address, Function_Call);
02822a92 257
f937473f
RD
258 -- If Return_Object is already an expression of an access type, then use
259 -- it directly, since it must be an access value denoting the return
260 -- object, and couldn't possibly be the return object itself.
261
262 elsif Is_Access then
263 Obj_Address := Return_Object;
7888a6ae 264 Set_Parent (Obj_Address, Function_Call);
02822a92
RD
265
266 -- Apply Unrestricted_Access to caller's return object
267
f937473f
RD
268 else
269 Obj_Address :=
270 Make_Attribute_Reference (Loc,
271 Prefix => Return_Object,
272 Attribute_Name => Name_Unrestricted_Access);
7888a6ae
GD
273
274 Set_Parent (Return_Object, Obj_Address);
275 Set_Parent (Obj_Address, Function_Call);
f937473f 276 end if;
02822a92
RD
277
278 Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
279
280 -- Build the parameter association for the new actual and add it to the
281 -- end of the function's actuals.
282
f937473f
RD
283 Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
284 end Add_Access_Actual_To_Build_In_Place_Call;
285
3e7302c3 286 ------------------------------------------------------
200b7162 287 -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
3e7302c3 288 ------------------------------------------------------
f937473f 289
200b7162 290 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
f937473f
RD
291 (Function_Call : Node_Id;
292 Function_Id : Entity_Id;
293 Alloc_Form : BIP_Allocation_Form := Unspecified;
200b7162
BD
294 Alloc_Form_Exp : Node_Id := Empty;
295 Pool_Actual : Node_Id := Make_Null (No_Location))
f937473f
RD
296 is
297 Loc : constant Source_Ptr := Sloc (Function_Call);
298 Alloc_Form_Actual : Node_Id;
299 Alloc_Form_Formal : Node_Id;
200b7162 300 Pool_Formal : Node_Id;
f937473f
RD
301
302 begin
7888a6ae
GD
303 -- The allocation form generally doesn't need to be passed in the case
304 -- of a constrained result subtype, since normally the caller performs
305 -- the allocation in that case. However this formal is still needed in
306 -- the case where the function has a tagged result, because generally
307 -- such functions can be called in a dispatching context and such calls
308 -- must be handled like calls to class-wide functions.
309
310 if Is_Constrained (Underlying_Type (Etype (Function_Id)))
311 and then not Is_Tagged_Type (Underlying_Type (Etype (Function_Id)))
312 then
313 return;
314 end if;
315
f937473f
RD
316 -- Locate the implicit allocation form parameter in the called function.
317 -- Maybe it would be better for each implicit formal of a build-in-place
318 -- function to have a flag or a Uint attribute to identify it. ???
319
320 Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
321
322 if Present (Alloc_Form_Exp) then
323 pragma Assert (Alloc_Form = Unspecified);
324
325 Alloc_Form_Actual := Alloc_Form_Exp;
326
327 else
328 pragma Assert (Alloc_Form /= Unspecified);
329
330 Alloc_Form_Actual :=
331 Make_Integer_Literal (Loc,
332 Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
333 end if;
334
335 Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
336
337 -- Build the parameter association for the new actual and add it to the
338 -- end of the function's actuals.
339
340 Add_Extra_Actual_To_Call
341 (Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
200b7162 342
ea10ca9c 343 -- Pass the Storage_Pool parameter. This parameter is omitted on
3e452820 344 -- .NET/JVM/ZFP as those targets do not support pools.
200b7162 345
ea10ca9c
AC
346 if VM_Target = No_VM
347 and then RTE_Available (RE_Root_Storage_Pool_Ptr)
3e452820 348 then
8417f4b2
AC
349 Pool_Formal := Build_In_Place_Formal (Function_Id, BIP_Storage_Pool);
350 Analyze_And_Resolve (Pool_Actual, Etype (Pool_Formal));
351 Add_Extra_Actual_To_Call
352 (Function_Call, Pool_Formal, Pool_Actual);
353 end if;
200b7162 354 end Add_Unconstrained_Actuals_To_Build_In_Place_Call;
f937473f 355
d3f70b35
AC
356 -----------------------------------------------------------
357 -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
358 -----------------------------------------------------------
df3e68b1 359
d3f70b35 360 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
2c17ca0a
AC
361 (Func_Call : Node_Id;
362 Func_Id : Entity_Id;
363 Ptr_Typ : Entity_Id := Empty;
364 Master_Exp : Node_Id := Empty)
df3e68b1
HK
365 is
366 begin
d3f70b35 367 if not Needs_BIP_Finalization_Master (Func_Id) then
df3e68b1
HK
368 return;
369 end if;
370
371 declare
372 Formal : constant Entity_Id :=
d3f70b35 373 Build_In_Place_Formal (Func_Id, BIP_Finalization_Master);
df3e68b1
HK
374 Loc : constant Source_Ptr := Sloc (Func_Call);
375
376 Actual : Node_Id;
377 Desig_Typ : Entity_Id;
378
379 begin
2c17ca0a
AC
380 -- If there is a finalization master actual, such as the implicit
381 -- finalization master of an enclosing build-in-place function,
382 -- then this must be added as an extra actual of the call.
383
384 if Present (Master_Exp) then
385 Actual := Master_Exp;
386
d3f70b35 387 -- Case where the context does not require an actual master
df3e68b1 388
2c17ca0a 389 elsif No (Ptr_Typ) then
df3e68b1
HK
390 Actual := Make_Null (Loc);
391
392 else
393 Desig_Typ := Directly_Designated_Type (Ptr_Typ);
394
395 -- Check for a library-level access type whose designated type has
d3f70b35 396 -- supressed finalization. Such an access types lack a master.
df3e68b1 397 -- Pass a null actual to the callee in order to signal a missing
d3f70b35 398 -- master.
df3e68b1
HK
399
400 if Is_Library_Level_Entity (Ptr_Typ)
401 and then Finalize_Storage_Only (Desig_Typ)
402 then
403 Actual := Make_Null (Loc);
404
405 -- Types in need of finalization actions
406
407 elsif Needs_Finalization (Desig_Typ) then
408
d3f70b35
AC
409 -- The general mechanism of creating finalization masters for
410 -- anonymous access types is disabled by default, otherwise
411 -- finalization masters will pop all over the place. Such types
412 -- use context-specific masters.
df3e68b1
HK
413
414 if Ekind (Ptr_Typ) = E_Anonymous_Access_Type
d3f70b35 415 and then No (Finalization_Master (Ptr_Typ))
df3e68b1 416 then
d3f70b35 417 Build_Finalization_Master
df3e68b1
HK
418 (Typ => Ptr_Typ,
419 Ins_Node => Associated_Node_For_Itype (Ptr_Typ),
420 Encl_Scope => Scope (Ptr_Typ));
421 end if;
422
d3f70b35 423 -- Access-to-controlled types should always have a master
df3e68b1 424
d3f70b35 425 pragma Assert (Present (Finalization_Master (Ptr_Typ)));
df3e68b1
HK
426
427 Actual :=
428 Make_Attribute_Reference (Loc,
429 Prefix =>
e4494292 430 New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
df3e68b1
HK
431 Attribute_Name => Name_Unrestricted_Access);
432
433 -- Tagged types
434
435 else
436 Actual := Make_Null (Loc);
437 end if;
438 end if;
439
440 Analyze_And_Resolve (Actual, Etype (Formal));
441
442 -- Build the parameter association for the new actual and add it to
443 -- the end of the function's actuals.
444
445 Add_Extra_Actual_To_Call (Func_Call, Formal, Actual);
446 end;
d3f70b35 447 end Add_Finalization_Master_Actual_To_Build_In_Place_Call;
df3e68b1 448
f937473f
RD
449 ------------------------------
450 -- Add_Extra_Actual_To_Call --
451 ------------------------------
452
453 procedure Add_Extra_Actual_To_Call
454 (Subprogram_Call : Node_Id;
455 Extra_Formal : Entity_Id;
456 Extra_Actual : Node_Id)
457 is
458 Loc : constant Source_Ptr := Sloc (Subprogram_Call);
459 Param_Assoc : Node_Id;
460
461 begin
02822a92
RD
462 Param_Assoc :=
463 Make_Parameter_Association (Loc,
f937473f
RD
464 Selector_Name => New_Occurrence_Of (Extra_Formal, Loc),
465 Explicit_Actual_Parameter => Extra_Actual);
02822a92 466
f937473f
RD
467 Set_Parent (Param_Assoc, Subprogram_Call);
468 Set_Parent (Extra_Actual, Param_Assoc);
02822a92 469
f937473f
RD
470 if Present (Parameter_Associations (Subprogram_Call)) then
471 if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
02822a92
RD
472 N_Parameter_Association
473 then
f937473f
RD
474
475 -- Find last named actual, and append
476
477 declare
478 L : Node_Id;
479 begin
480 L := First_Actual (Subprogram_Call);
481 while Present (L) loop
482 if No (Next_Actual (L)) then
483 Set_Next_Named_Actual (Parent (L), Extra_Actual);
484 exit;
485 end if;
486 Next_Actual (L);
487 end loop;
488 end;
489
02822a92 490 else
f937473f 491 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
02822a92
RD
492 end if;
493
f937473f 494 Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
02822a92
RD
495
496 else
f937473f
RD
497 Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
498 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
02822a92 499 end if;
f937473f
RD
500 end Add_Extra_Actual_To_Call;
501
f937473f
RD
502 ---------------------------------------------
503 -- Add_Task_Actuals_To_Build_In_Place_Call --
504 ---------------------------------------------
505
506 procedure Add_Task_Actuals_To_Build_In_Place_Call
507 (Function_Call : Node_Id;
508 Function_Id : Entity_Id;
1399d355
AC
509 Master_Actual : Node_Id;
510 Chain : Node_Id := Empty)
f937473f 511 is
af89615f
AC
512 Loc : constant Source_Ptr := Sloc (Function_Call);
513 Result_Subt : constant Entity_Id :=
514 Available_View (Etype (Function_Id));
515 Actual : Node_Id;
516 Chain_Actual : Node_Id;
517 Chain_Formal : Node_Id;
518 Master_Formal : Node_Id;
6dfc5592 519
f937473f
RD
520 begin
521 -- No such extra parameters are needed if there are no tasks
522
1a36a0cd 523 if not Has_Task (Result_Subt) then
f937473f
RD
524 return;
525 end if;
526
af89615f
AC
527 Actual := Master_Actual;
528
44bf8eb0
AC
529 -- Use a dummy _master actual in case of No_Task_Hierarchy
530
531 if Restriction_Active (No_Task_Hierarchy) then
532 Actual := New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc);
94bbf008
AC
533
534 -- In the case where we use the master associated with an access type,
535 -- the actual is an entity and requires an explicit reference.
536
537 elsif Nkind (Actual) = N_Defining_Identifier then
e4494292 538 Actual := New_Occurrence_Of (Actual, Loc);
44bf8eb0
AC
539 end if;
540
af89615f 541 -- Locate the implicit master parameter in the called function
f937473f 542
af89615f
AC
543 Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Task_Master);
544 Analyze_And_Resolve (Actual, Etype (Master_Formal));
f937473f 545
af89615f
AC
546 -- Build the parameter association for the new actual and add it to the
547 -- end of the function's actuals.
f937473f 548
af89615f 549 Add_Extra_Actual_To_Call (Function_Call, Master_Formal, Actual);
75a64833 550
af89615f 551 -- Locate the implicit activation chain parameter in the called function
f937473f 552
af89615f
AC
553 Chain_Formal :=
554 Build_In_Place_Formal (Function_Id, BIP_Activation_Chain);
f937473f 555
af89615f 556 -- Create the actual which is a pointer to the current activation chain
f937473f 557
1399d355
AC
558 if No (Chain) then
559 Chain_Actual :=
560 Make_Attribute_Reference (Loc,
561 Prefix => Make_Identifier (Loc, Name_uChain),
562 Attribute_Name => Name_Unrestricted_Access);
563
564 -- Allocator case; make a reference to the Chain passed in by the caller
565
566 else
567 Chain_Actual :=
568 Make_Attribute_Reference (Loc,
569 Prefix => New_Occurrence_Of (Chain, Loc),
570 Attribute_Name => Name_Unrestricted_Access);
571 end if;
f937473f 572
af89615f 573 Analyze_And_Resolve (Chain_Actual, Etype (Chain_Formal));
f937473f 574
af89615f
AC
575 -- Build the parameter association for the new actual and add it to the
576 -- end of the function's actuals.
f937473f 577
af89615f 578 Add_Extra_Actual_To_Call (Function_Call, Chain_Formal, Chain_Actual);
f937473f
RD
579 end Add_Task_Actuals_To_Build_In_Place_Call;
580
581 -----------------------
582 -- BIP_Formal_Suffix --
583 -----------------------
584
585 function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
586 begin
587 case Kind is
d3f70b35 588 when BIP_Alloc_Form =>
f937473f 589 return "BIPalloc";
af89615f 590 when BIP_Storage_Pool =>
200b7162 591 return "BIPstoragepool";
d3f70b35
AC
592 when BIP_Finalization_Master =>
593 return "BIPfinalizationmaster";
af89615f
AC
594 when BIP_Task_Master =>
595 return "BIPtaskmaster";
d3f70b35 596 when BIP_Activation_Chain =>
f937473f 597 return "BIPactivationchain";
d3f70b35 598 when BIP_Object_Access =>
f937473f
RD
599 return "BIPaccess";
600 end case;
601 end BIP_Formal_Suffix;
602
603 ---------------------------
604 -- Build_In_Place_Formal --
605 ---------------------------
606
607 function Build_In_Place_Formal
608 (Func : Entity_Id;
609 Kind : BIP_Formal_Kind) return Entity_Id
610 is
af89615f
AC
611 Formal_Name : constant Name_Id :=
612 New_External_Name
613 (Chars (Func), BIP_Formal_Suffix (Kind));
f937473f
RD
614 Extra_Formal : Entity_Id := Extra_Formals (Func);
615
616 begin
617 -- Maybe it would be better for each implicit formal of a build-in-place
618 -- function to have a flag or a Uint attribute to identify it. ???
619
0d566e01
ES
620 -- The return type in the function declaration may have been a limited
621 -- view, and the extra formals for the function were not generated at
aeae67ed 622 -- that point. At the point of call the full view must be available and
0d566e01
ES
623 -- the extra formals can be created.
624
625 if No (Extra_Formal) then
626 Create_Extra_Formals (Func);
627 Extra_Formal := Extra_Formals (Func);
628 end if;
629
f937473f 630 loop
19590d70 631 pragma Assert (Present (Extra_Formal));
af89615f
AC
632 exit when Chars (Extra_Formal) = Formal_Name;
633
f937473f
RD
634 Next_Formal_With_Extras (Extra_Formal);
635 end loop;
636
f937473f
RD
637 return Extra_Formal;
638 end Build_In_Place_Formal;
02822a92 639
c9a4817d
RD
640 --------------------------------
641 -- Check_Overriding_Operation --
642 --------------------------------
70482933
RK
643
644 procedure Check_Overriding_Operation (Subp : Entity_Id) is
645 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
646 Op_List : constant Elist_Id := Primitive_Operations (Typ);
647 Op_Elmt : Elmt_Id;
648 Prim_Op : Entity_Id;
649 Par_Op : Entity_Id;
650
651 begin
652 if Is_Derived_Type (Typ)
653 and then not Is_Private_Type (Typ)
654 and then In_Open_Scopes (Scope (Etype (Typ)))
d347f572 655 and then Is_Base_Type (Typ)
70482933 656 then
2f1b20a9
ES
657 -- Subp overrides an inherited private operation if there is an
658 -- inherited operation with a different name than Subp (see
659 -- Derive_Subprogram) whose Alias is a hidden subprogram with the
660 -- same name as Subp.
70482933
RK
661
662 Op_Elmt := First_Elmt (Op_List);
663 while Present (Op_Elmt) loop
664 Prim_Op := Node (Op_Elmt);
665 Par_Op := Alias (Prim_Op);
666
667 if Present (Par_Op)
668 and then not Comes_From_Source (Prim_Op)
669 and then Chars (Prim_Op) /= Chars (Par_Op)
670 and then Chars (Par_Op) = Chars (Subp)
671 and then Is_Hidden (Par_Op)
672 and then Type_Conformant (Prim_Op, Subp)
673 then
674 Set_DT_Position (Subp, DT_Position (Prim_Op));
675 end if;
676
677 Next_Elmt (Op_Elmt);
678 end loop;
679 end if;
680 end Check_Overriding_Operation;
681
682 -------------------------------
683 -- Detect_Infinite_Recursion --
684 -------------------------------
685
686 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
687 Loc : constant Source_Ptr := Sloc (N);
688
fbf5a39b 689 Var_List : constant Elist_Id := New_Elmt_List;
70482933
RK
690 -- List of globals referenced by body of procedure
691
fbf5a39b 692 Call_List : constant Elist_Id := New_Elmt_List;
70482933
RK
693 -- List of recursive calls in body of procedure
694
fbf5a39b 695 Shad_List : constant Elist_Id := New_Elmt_List;
2f1b20a9
ES
696 -- List of entity id's for entities created to capture the value of
697 -- referenced globals on entry to the procedure.
70482933
RK
698
699 Scop : constant Uint := Scope_Depth (Spec);
2f1b20a9
ES
700 -- This is used to record the scope depth of the current procedure, so
701 -- that we can identify global references.
70482933
RK
702
703 Max_Vars : constant := 4;
704 -- Do not test more than four global variables
705
706 Count_Vars : Natural := 0;
707 -- Count variables found so far
708
709 Var : Entity_Id;
710 Elm : Elmt_Id;
711 Ent : Entity_Id;
712 Call : Elmt_Id;
713 Decl : Node_Id;
714 Test : Node_Id;
715 Elm1 : Elmt_Id;
716 Elm2 : Elmt_Id;
717 Last : Node_Id;
718
719 function Process (Nod : Node_Id) return Traverse_Result;
720 -- Function to traverse the subprogram body (using Traverse_Func)
721
722 -------------
723 -- Process --
724 -------------
725
726 function Process (Nod : Node_Id) return Traverse_Result is
727 begin
728 -- Procedure call
729
730 if Nkind (Nod) = N_Procedure_Call_Statement then
731
732 -- Case of one of the detected recursive calls
733
734 if Is_Entity_Name (Name (Nod))
735 and then Has_Recursive_Call (Entity (Name (Nod)))
736 and then Entity (Name (Nod)) = Spec
737 then
738 Append_Elmt (Nod, Call_List);
739 return Skip;
740
741 -- Any other procedure call may have side effects
742
743 else
744 return Abandon;
745 end if;
746
747 -- A call to a pure function can always be ignored
748
749 elsif Nkind (Nod) = N_Function_Call
750 and then Is_Entity_Name (Name (Nod))
751 and then Is_Pure (Entity (Name (Nod)))
752 then
753 return Skip;
754
755 -- Case of an identifier reference
756
757 elsif Nkind (Nod) = N_Identifier then
758 Ent := Entity (Nod);
759
760 -- If no entity, then ignore the reference
761
762 -- Not clear why this can happen. To investigate, remove this
763 -- test and look at the crash that occurs here in 3401-004 ???
764
765 if No (Ent) then
766 return Skip;
767
768 -- Ignore entities with no Scope, again not clear how this
769 -- can happen, to investigate, look at 4108-008 ???
770
771 elsif No (Scope (Ent)) then
772 return Skip;
773
774 -- Ignore the reference if not to a more global object
775
776 elsif Scope_Depth (Scope (Ent)) >= Scop then
777 return Skip;
778
779 -- References to types, exceptions and constants are always OK
780
781 elsif Is_Type (Ent)
782 or else Ekind (Ent) = E_Exception
783 or else Ekind (Ent) = E_Constant
784 then
785 return Skip;
786
787 -- If other than a non-volatile scalar variable, we have some
788 -- kind of global reference (e.g. to a function) that we cannot
789 -- deal with so we forget the attempt.
790
791 elsif Ekind (Ent) /= E_Variable
792 or else not Is_Scalar_Type (Etype (Ent))
fbf5a39b 793 or else Treat_As_Volatile (Ent)
70482933
RK
794 then
795 return Abandon;
796
797 -- Otherwise we have a reference to a global scalar
798
799 else
800 -- Loop through global entities already detected
801
802 Elm := First_Elmt (Var_List);
803 loop
804 -- If not detected before, record this new global reference
805
806 if No (Elm) then
807 Count_Vars := Count_Vars + 1;
808
809 if Count_Vars <= Max_Vars then
810 Append_Elmt (Entity (Nod), Var_List);
811 else
812 return Abandon;
813 end if;
814
815 exit;
816
817 -- If recorded before, ignore
818
819 elsif Node (Elm) = Entity (Nod) then
820 return Skip;
821
822 -- Otherwise keep looking
823
824 else
825 Next_Elmt (Elm);
826 end if;
827 end loop;
828
829 return Skip;
830 end if;
831
832 -- For all other node kinds, recursively visit syntactic children
833
834 else
835 return OK;
836 end if;
837 end Process;
838
02822a92 839 function Traverse_Body is new Traverse_Func (Process);
70482933
RK
840
841 -- Start of processing for Detect_Infinite_Recursion
842
843 begin
2f1b20a9
ES
844 -- Do not attempt detection in No_Implicit_Conditional mode, since we
845 -- won't be able to generate the code to handle the recursion in any
846 -- case.
70482933 847
6e937c1c 848 if Restriction_Active (No_Implicit_Conditionals) then
70482933
RK
849 return;
850 end if;
851
852 -- Otherwise do traversal and quit if we get abandon signal
853
854 if Traverse_Body (N) = Abandon then
855 return;
856
2f1b20a9
ES
857 -- We must have a call, since Has_Recursive_Call was set. If not just
858 -- ignore (this is only an error check, so if we have a funny situation,
a90bd866 859 -- due to bugs or errors, we do not want to bomb).
70482933
RK
860
861 elsif Is_Empty_Elmt_List (Call_List) then
862 return;
863 end if;
864
865 -- Here is the case where we detect recursion at compile time
866
2f1b20a9
ES
867 -- Push our current scope for analyzing the declarations and code that
868 -- we will insert for the checking.
70482933 869
7888a6ae 870 Push_Scope (Spec);
70482933 871
2f1b20a9
ES
872 -- This loop builds temporary variables for each of the referenced
873 -- globals, so that at the end of the loop the list Shad_List contains
874 -- these temporaries in one-to-one correspondence with the elements in
875 -- Var_List.
70482933
RK
876
877 Last := Empty;
878 Elm := First_Elmt (Var_List);
879 while Present (Elm) loop
880 Var := Node (Elm);
c12beea0 881 Ent := Make_Temporary (Loc, 'S');
70482933
RK
882 Append_Elmt (Ent, Shad_List);
883
2f1b20a9
ES
884 -- Insert a declaration for this temporary at the start of the
885 -- declarations for the procedure. The temporaries are declared as
886 -- constant objects initialized to the current values of the
887 -- corresponding temporaries.
70482933
RK
888
889 Decl :=
890 Make_Object_Declaration (Loc,
891 Defining_Identifier => Ent,
892 Object_Definition => New_Occurrence_Of (Etype (Var), Loc),
893 Constant_Present => True,
894 Expression => New_Occurrence_Of (Var, Loc));
895
896 if No (Last) then
897 Prepend (Decl, Declarations (N));
898 else
899 Insert_After (Last, Decl);
900 end if;
901
902 Last := Decl;
903 Analyze (Decl);
904 Next_Elmt (Elm);
905 end loop;
906
907 -- Loop through calls
908
909 Call := First_Elmt (Call_List);
910 while Present (Call) loop
911
912 -- Build a predicate expression of the form
913
914 -- True
915 -- and then global1 = temp1
916 -- and then global2 = temp2
917 -- ...
918
919 -- This predicate determines if any of the global values
920 -- referenced by the procedure have changed since the
921 -- current call, if not an infinite recursion is assured.
922
923 Test := New_Occurrence_Of (Standard_True, Loc);
924
925 Elm1 := First_Elmt (Var_List);
926 Elm2 := First_Elmt (Shad_List);
927 while Present (Elm1) loop
928 Test :=
929 Make_And_Then (Loc,
930 Left_Opnd => Test,
931 Right_Opnd =>
932 Make_Op_Eq (Loc,
933 Left_Opnd => New_Occurrence_Of (Node (Elm1), Loc),
934 Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
935
936 Next_Elmt (Elm1);
937 Next_Elmt (Elm2);
938 end loop;
939
940 -- Now we replace the call with the sequence
941
942 -- if no-changes (see above) then
943 -- raise Storage_Error;
944 -- else
945 -- original-call
946 -- end if;
947
948 Rewrite (Node (Call),
949 Make_If_Statement (Loc,
950 Condition => Test,
951 Then_Statements => New_List (
07fc65c4
GB
952 Make_Raise_Storage_Error (Loc,
953 Reason => SE_Infinite_Recursion)),
70482933
RK
954
955 Else_Statements => New_List (
956 Relocate_Node (Node (Call)))));
957
958 Analyze (Node (Call));
959
960 Next_Elmt (Call);
961 end loop;
962
963 -- Remove temporary scope stack entry used for analysis
964
965 Pop_Scope;
966 end Detect_Infinite_Recursion;
967
968 --------------------
969 -- Expand_Actuals --
970 --------------------
971
da574a86 972 procedure Expand_Actuals (N : in out Node_Id; Subp : Entity_Id) is
70482933
RK
973 Loc : constant Source_Ptr := Sloc (N);
974 Actual : Node_Id;
975 Formal : Entity_Id;
976 N_Node : Node_Id;
977 Post_Call : List_Id;
f6820c2d 978 E_Actual : Entity_Id;
70482933
RK
979 E_Formal : Entity_Id;
980
981 procedure Add_Call_By_Copy_Code;
fbf5a39b
AC
982 -- For cases where the parameter must be passed by copy, this routine
983 -- generates a temporary variable into which the actual is copied and
984 -- then passes this as the parameter. For an OUT or IN OUT parameter,
985 -- an assignment is also generated to copy the result back. The call
986 -- also takes care of any constraint checks required for the type
987 -- conversion case (on both the way in and the way out).
70482933 988
f44fe430
RD
989 procedure Add_Simple_Call_By_Copy_Code;
990 -- This is similar to the above, but is used in cases where we know
991 -- that all that is needed is to simply create a temporary and copy
992 -- the value in and out of the temporary.
70482933
RK
993
994 procedure Check_Fortran_Logical;
995 -- A value of type Logical that is passed through a formal parameter
996 -- must be normalized because .TRUE. usually does not have the same
997 -- representation as True. We assume that .FALSE. = False = 0.
998 -- What about functions that return a logical type ???
999
758c442c
GD
1000 function Is_Legal_Copy return Boolean;
1001 -- Check that an actual can be copied before generating the temporary
1002 -- to be used in the call. If the actual is of a by_reference type then
1003 -- the program is illegal (this can only happen in the presence of
1004 -- rep. clauses that force an incorrect alignment). If the formal is
1005 -- a by_reference parameter imposed by a DEC pragma, emit a warning to
1006 -- the effect that this might lead to unaligned arguments.
1007
70482933 1008 function Make_Var (Actual : Node_Id) return Entity_Id;
da574a86
AC
1009 -- Returns an entity that refers to the given actual parameter, Actual
1010 -- (not including any type conversion). If Actual is an entity name,
1011 -- then this entity is returned unchanged, otherwise a renaming is
1012 -- created to provide an entity for the actual.
70482933
RK
1013
1014 procedure Reset_Packed_Prefix;
1015 -- The expansion of a packed array component reference is delayed in
1016 -- the context of a call. Now we need to complete the expansion, so we
1017 -- unmark the analyzed bits in all prefixes.
1018
1019 ---------------------------
1020 -- Add_Call_By_Copy_Code --
1021 ---------------------------
1022
1023 procedure Add_Call_By_Copy_Code is
cc335f43
AC
1024 Expr : Node_Id;
1025 Init : Node_Id;
1026 Temp : Entity_Id;
f44fe430 1027 Indic : Node_Id;
cc335f43 1028 Var : Entity_Id;
0da2c8ac 1029 F_Typ : constant Entity_Id := Etype (Formal);
cc335f43
AC
1030 V_Typ : Entity_Id;
1031 Crep : Boolean;
70482933
RK
1032
1033 begin
758c442c
GD
1034 if not Is_Legal_Copy then
1035 return;
1036 end if;
1037
b086849e 1038 Temp := Make_Temporary (Loc, 'T', Actual);
70482933 1039
f44fe430
RD
1040 -- Use formal type for temp, unless formal type is an unconstrained
1041 -- array, in which case we don't have to worry about bounds checks,
758c442c 1042 -- and we use the actual type, since that has appropriate bounds.
f44fe430
RD
1043
1044 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1045 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1046 else
1047 Indic := New_Occurrence_Of (Etype (Formal), Loc);
1048 end if;
1049
70482933
RK
1050 if Nkind (Actual) = N_Type_Conversion then
1051 V_Typ := Etype (Expression (Actual));
19f0526a
AC
1052
1053 -- If the formal is an (in-)out parameter, capture the name
1054 -- of the variable in order to build the post-call assignment.
81a5b587
AC
1055
1056 Var := Make_Var (Expression (Actual));
19f0526a 1057
08aa9a4a 1058 Crep := not Same_Representation
0da2c8ac 1059 (F_Typ, Etype (Expression (Actual)));
08aa9a4a 1060
70482933
RK
1061 else
1062 V_Typ := Etype (Actual);
1063 Var := Make_Var (Actual);
1064 Crep := False;
1065 end if;
1066
1067 -- Setup initialization for case of in out parameter, or an out
1068 -- parameter where the formal is an unconstrained array (in the
1069 -- latter case, we have to pass in an object with bounds).
1070
cc335f43
AC
1071 -- If this is an out parameter, the initial copy is wasteful, so as
1072 -- an optimization for the one-dimensional case we extract the
1073 -- bounds of the actual and build an uninitialized temporary of the
1074 -- right size.
1075
70482933 1076 if Ekind (Formal) = E_In_Out_Parameter
0da2c8ac 1077 or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
70482933
RK
1078 then
1079 if Nkind (Actual) = N_Type_Conversion then
1080 if Conversion_OK (Actual) then
0da2c8ac 1081 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
70482933 1082 else
0da2c8ac 1083 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
70482933 1084 end if;
cc335f43
AC
1085
1086 elsif Ekind (Formal) = E_Out_Parameter
0da2c8ac
AC
1087 and then Is_Array_Type (F_Typ)
1088 and then Number_Dimensions (F_Typ) = 1
1089 and then not Has_Non_Null_Base_Init_Proc (F_Typ)
cc335f43
AC
1090 then
1091 -- Actual is a one-dimensional array or slice, and the type
1092 -- requires no initialization. Create a temporary of the
f44fe430 1093 -- right size, but do not copy actual into it (optimization).
cc335f43
AC
1094
1095 Init := Empty;
1096 Indic :=
1097 Make_Subtype_Indication (Loc,
5f6fb720 1098 Subtype_Mark => New_Occurrence_Of (F_Typ, Loc),
cc335f43
AC
1099 Constraint =>
1100 Make_Index_Or_Discriminant_Constraint (Loc,
1101 Constraints => New_List (
1102 Make_Range (Loc,
1103 Low_Bound =>
1104 Make_Attribute_Reference (Loc,
5f6fb720 1105 Prefix => New_Occurrence_Of (Var, Loc),
70f91180 1106 Attribute_Name => Name_First),
cc335f43
AC
1107 High_Bound =>
1108 Make_Attribute_Reference (Loc,
5f6fb720 1109 Prefix => New_Occurrence_Of (Var, Loc),
cc335f43
AC
1110 Attribute_Name => Name_Last)))));
1111
70482933
RK
1112 else
1113 Init := New_Occurrence_Of (Var, Loc);
1114 end if;
1115
1116 -- An initialization is created for packed conversions as
1117 -- actuals for out parameters to enable Make_Object_Declaration
1118 -- to determine the proper subtype for N_Node. Note that this
1119 -- is wasteful because the extra copying on the call side is
1120 -- not required for such out parameters. ???
1121
1122 elsif Ekind (Formal) = E_Out_Parameter
1123 and then Nkind (Actual) = N_Type_Conversion
0da2c8ac 1124 and then (Is_Bit_Packed_Array (F_Typ)
70482933
RK
1125 or else
1126 Is_Bit_Packed_Array (Etype (Expression (Actual))))
1127 then
1128 if Conversion_OK (Actual) then
f44fe430 1129 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
70482933 1130 else
f44fe430 1131 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
70482933 1132 end if;
2e071734
AC
1133
1134 elsif Ekind (Formal) = E_In_Parameter then
02822a92
RD
1135
1136 -- Handle the case in which the actual is a type conversion
1137
1138 if Nkind (Actual) = N_Type_Conversion then
1139 if Conversion_OK (Actual) then
1140 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1141 else
1142 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1143 end if;
1144 else
1145 Init := New_Occurrence_Of (Var, Loc);
1146 end if;
2e071734 1147
70482933
RK
1148 else
1149 Init := Empty;
1150 end if;
1151
1152 N_Node :=
1153 Make_Object_Declaration (Loc,
1154 Defining_Identifier => Temp,
cc335f43 1155 Object_Definition => Indic,
f44fe430 1156 Expression => Init);
70482933
RK
1157 Set_Assignment_OK (N_Node);
1158 Insert_Action (N, N_Node);
1159
1160 -- Now, normally the deal here is that we use the defining
1161 -- identifier created by that object declaration. There is
1162 -- one exception to this. In the change of representation case
1163 -- the above declaration will end up looking like:
1164
1165 -- temp : type := identifier;
1166
1167 -- And in this case we might as well use the identifier directly
1168 -- and eliminate the temporary. Note that the analysis of the
1169 -- declaration was not a waste of time in that case, since it is
1170 -- what generated the necessary change of representation code. If
1171 -- the change of representation introduced additional code, as in
1172 -- a fixed-integer conversion, the expression is not an identifier
1173 -- and must be kept.
1174
1175 if Crep
1176 and then Present (Expression (N_Node))
1177 and then Is_Entity_Name (Expression (N_Node))
1178 then
1179 Temp := Entity (Expression (N_Node));
1180 Rewrite (N_Node, Make_Null_Statement (Loc));
1181 end if;
1182
fbf5a39b 1183 -- For IN parameter, all we do is to replace the actual
70482933 1184
fbf5a39b 1185 if Ekind (Formal) = E_In_Parameter then
e4494292 1186 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
fbf5a39b
AC
1187 Analyze (Actual);
1188
1189 -- Processing for OUT or IN OUT parameter
1190
1191 else
c8ef728f
ES
1192 -- Kill current value indications for the temporary variable we
1193 -- created, since we just passed it as an OUT parameter.
1194
1195 Kill_Current_Values (Temp);
75ba322d 1196 Set_Is_Known_Valid (Temp, False);
c8ef728f 1197
fbf5a39b
AC
1198 -- If type conversion, use reverse conversion on exit
1199
1200 if Nkind (Actual) = N_Type_Conversion then
1201 if Conversion_OK (Actual) then
1202 Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1203 else
1204 Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1205 end if;
70482933 1206 else
fbf5a39b 1207 Expr := New_Occurrence_Of (Temp, Loc);
70482933 1208 end if;
70482933 1209
e4494292 1210 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
fbf5a39b 1211 Analyze (Actual);
70482933 1212
d766cee3
RD
1213 -- If the actual is a conversion of a packed reference, it may
1214 -- already have been expanded by Remove_Side_Effects, and the
1215 -- resulting variable is a temporary which does not designate
1216 -- the proper out-parameter, which may not be addressable. In
1217 -- that case, generate an assignment to the original expression
b0159fbe 1218 -- (before expansion of the packed reference) so that the proper
d766cee3 1219 -- expansion of assignment to a packed component can take place.
70482933 1220
d766cee3
RD
1221 declare
1222 Obj : Node_Id;
1223 Lhs : Node_Id;
1224
1225 begin
1226 if Is_Renaming_Of_Object (Var)
1227 and then Nkind (Renamed_Object (Var)) = N_Selected_Component
1228 and then Is_Entity_Name (Prefix (Renamed_Object (Var)))
1229 and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
1230 = N_Indexed_Component
1231 and then
1232 Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
1233 then
1234 Obj := Renamed_Object (Var);
1235 Lhs :=
1236 Make_Selected_Component (Loc,
1237 Prefix =>
1238 New_Copy_Tree (Original_Node (Prefix (Obj))),
1239 Selector_Name => New_Copy (Selector_Name (Obj)));
1240 Reset_Analyzed_Flags (Lhs);
1241
1242 else
1243 Lhs := New_Occurrence_Of (Var, Loc);
1244 end if;
1245
1246 Set_Assignment_OK (Lhs);
1247
d15f9422
AC
1248 if Is_Access_Type (E_Formal)
1249 and then Is_Entity_Name (Lhs)
996c8821
RD
1250 and then
1251 Present (Effective_Extra_Accessibility (Entity (Lhs)))
d15f9422 1252 then
4bb43ffb
AC
1253 -- Copyback target is an Ada 2012 stand-alone object of an
1254 -- anonymous access type.
d15f9422
AC
1255
1256 pragma Assert (Ada_Version >= Ada_2012);
1257
1258 if Type_Access_Level (E_Formal) >
996c8821
RD
1259 Object_Access_Level (Lhs)
1260 then
1261 Append_To (Post_Call,
1262 Make_Raise_Program_Error (Loc,
1263 Reason => PE_Accessibility_Check_Failed));
d15f9422
AC
1264 end if;
1265
1266 Append_To (Post_Call,
1267 Make_Assignment_Statement (Loc,
1268 Name => Lhs,
1269 Expression => Expr));
1270
996c8821
RD
1271 -- We would like to somehow suppress generation of the
1272 -- extra_accessibility assignment generated by the expansion
1273 -- of the above assignment statement. It's not a correctness
1274 -- issue because the following assignment renders it dead,
1275 -- but generating back-to-back assignments to the same
1276 -- target is undesirable. ???
d15f9422
AC
1277
1278 Append_To (Post_Call,
1279 Make_Assignment_Statement (Loc,
1280 Name => New_Occurrence_Of (
1281 Effective_Extra_Accessibility (Entity (Lhs)), Loc),
1282 Expression => Make_Integer_Literal (Loc,
1283 Type_Access_Level (E_Formal))));
996c8821 1284
d15f9422
AC
1285 else
1286 Append_To (Post_Call,
1287 Make_Assignment_Statement (Loc,
1288 Name => Lhs,
1289 Expression => Expr));
1290 end if;
d766cee3 1291 end;
fbf5a39b 1292 end if;
70482933
RK
1293 end Add_Call_By_Copy_Code;
1294
1295 ----------------------------------
f44fe430 1296 -- Add_Simple_Call_By_Copy_Code --
70482933
RK
1297 ----------------------------------
1298
f44fe430 1299 procedure Add_Simple_Call_By_Copy_Code is
70482933 1300 Temp : Entity_Id;
758c442c 1301 Decl : Node_Id;
70482933
RK
1302 Incod : Node_Id;
1303 Outcod : Node_Id;
1304 Lhs : Node_Id;
1305 Rhs : Node_Id;
f44fe430
RD
1306 Indic : Node_Id;
1307 F_Typ : constant Entity_Id := Etype (Formal);
70482933
RK
1308
1309 begin
758c442c
GD
1310 if not Is_Legal_Copy then
1311 return;
1312 end if;
1313
f44fe430
RD
1314 -- Use formal type for temp, unless formal type is an unconstrained
1315 -- array, in which case we don't have to worry about bounds checks,
758c442c 1316 -- and we use the actual type, since that has appropriate bounds.
f44fe430
RD
1317
1318 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1319 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1320 else
1321 Indic := New_Occurrence_Of (Etype (Formal), Loc);
1322 end if;
70482933
RK
1323
1324 -- Prepare to generate code
1325
f44fe430
RD
1326 Reset_Packed_Prefix;
1327
b086849e 1328 Temp := Make_Temporary (Loc, 'T', Actual);
70482933
RK
1329 Incod := Relocate_Node (Actual);
1330 Outcod := New_Copy_Tree (Incod);
1331
1332 -- Generate declaration of temporary variable, initializing it
c73ae90f 1333 -- with the input parameter unless we have an OUT formal or
758c442c 1334 -- this is an initialization call.
70482933 1335
c73ae90f
GD
1336 -- If the formal is an out parameter with discriminants, the
1337 -- discriminants must be captured even if the rest of the object
1338 -- is in principle uninitialized, because the discriminants may
1339 -- be read by the called subprogram.
1340
70482933
RK
1341 if Ekind (Formal) = E_Out_Parameter then
1342 Incod := Empty;
758c442c 1343
c73ae90f
GD
1344 if Has_Discriminants (Etype (Formal)) then
1345 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1346 end if;
1347
758c442c 1348 elsif Inside_Init_Proc then
c73ae90f
GD
1349
1350 -- Could use a comment here to match comment below ???
1351
758c442c
GD
1352 if Nkind (Actual) /= N_Selected_Component
1353 or else
1354 not Has_Discriminant_Dependent_Constraint
1355 (Entity (Selector_Name (Actual)))
1356 then
1357 Incod := Empty;
1358
c73ae90f
GD
1359 -- Otherwise, keep the component in order to generate the proper
1360 -- actual subtype, that depends on enclosing discriminants.
758c442c 1361
c73ae90f 1362 else
758c442c
GD
1363 null;
1364 end if;
70482933
RK
1365 end if;
1366
758c442c 1367 Decl :=
70482933
RK
1368 Make_Object_Declaration (Loc,
1369 Defining_Identifier => Temp,
f44fe430 1370 Object_Definition => Indic,
758c442c
GD
1371 Expression => Incod);
1372
1373 if Inside_Init_Proc
1374 and then No (Incod)
1375 then
1376 -- If the call is to initialize a component of a composite type,
1377 -- and the component does not depend on discriminants, use the
1378 -- actual type of the component. This is required in case the
1379 -- component is constrained, because in general the formal of the
1380 -- initialization procedure will be unconstrained. Note that if
1381 -- the component being initialized is constrained by an enclosing
1382 -- discriminant, the presence of the initialization in the
1383 -- declaration will generate an expression for the actual subtype.
1384
1385 Set_No_Initialization (Decl);
1386 Set_Object_Definition (Decl,
1387 New_Occurrence_Of (Etype (Actual), Loc));
1388 end if;
1389
1390 Insert_Action (N, Decl);
70482933
RK
1391
1392 -- The actual is simply a reference to the temporary
1393
1394 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1395
1396 -- Generate copy out if OUT or IN OUT parameter
1397
1398 if Ekind (Formal) /= E_In_Parameter then
1399 Lhs := Outcod;
1400 Rhs := New_Occurrence_Of (Temp, Loc);
1401
1402 -- Deal with conversion
1403
1404 if Nkind (Lhs) = N_Type_Conversion then
1405 Lhs := Expression (Lhs);
1406 Rhs := Convert_To (Etype (Actual), Rhs);
1407 end if;
1408
1409 Append_To (Post_Call,
1410 Make_Assignment_Statement (Loc,
1411 Name => Lhs,
1412 Expression => Rhs));
f44fe430 1413 Set_Assignment_OK (Name (Last (Post_Call)));
70482933 1414 end if;
f44fe430 1415 end Add_Simple_Call_By_Copy_Code;
70482933
RK
1416
1417 ---------------------------
1418 -- Check_Fortran_Logical --
1419 ---------------------------
1420
1421 procedure Check_Fortran_Logical is
fbf5a39b 1422 Logical : constant Entity_Id := Etype (Formal);
70482933
RK
1423 Var : Entity_Id;
1424
1425 -- Note: this is very incomplete, e.g. it does not handle arrays
1426 -- of logical values. This is really not the right approach at all???)
1427
1428 begin
1429 if Convention (Subp) = Convention_Fortran
1430 and then Root_Type (Etype (Formal)) = Standard_Boolean
1431 and then Ekind (Formal) /= E_In_Parameter
1432 then
1433 Var := Make_Var (Actual);
1434 Append_To (Post_Call,
1435 Make_Assignment_Statement (Loc,
1436 Name => New_Occurrence_Of (Var, Loc),
1437 Expression =>
1438 Unchecked_Convert_To (
1439 Logical,
1440 Make_Op_Ne (Loc,
1441 Left_Opnd => New_Occurrence_Of (Var, Loc),
1442 Right_Opnd =>
1443 Unchecked_Convert_To (
1444 Logical,
1445 New_Occurrence_Of (Standard_False, Loc))))));
1446 end if;
1447 end Check_Fortran_Logical;
1448
758c442c
GD
1449 -------------------
1450 -- Is_Legal_Copy --
1451 -------------------
1452
1453 function Is_Legal_Copy return Boolean is
1454 begin
1455 -- An attempt to copy a value of such a type can only occur if
1456 -- representation clauses give the actual a misaligned address.
1457
1458 if Is_By_Reference_Type (Etype (Formal)) then
f45ccc7c 1459
aaf1cd90
RD
1460 -- If the front-end does not perform full type layout, the actual
1461 -- may in fact be properly aligned but there is not enough front-
1462 -- end information to determine this. In that case gigi will emit
1463 -- an error if a copy is not legal, or generate the proper code.
1464 -- For other backends we report the error now.
1465
1466 -- Seems wrong to be issuing an error in the expander, since it
1467 -- will be missed in -gnatc mode ???
f45ccc7c
AC
1468
1469 if Frontend_Layout_On_Target then
1470 Error_Msg_N
1471 ("misaligned actual cannot be passed by reference", Actual);
1472 end if;
1473
758c442c
GD
1474 return False;
1475
1476 -- For users of Starlet, we assume that the specification of by-
7888a6ae 1477 -- reference mechanism is mandatory. This may lead to unaligned
758c442c
GD
1478 -- objects but at least for DEC legacy code it is known to work.
1479 -- The warning will alert users of this code that a problem may
1480 -- be lurking.
1481
1482 elsif Mechanism (Formal) = By_Reference
1483 and then Is_Valued_Procedure (Scope (Formal))
1484 then
1485 Error_Msg_N
685bc70f 1486 ("by_reference actual may be misaligned??", Actual);
758c442c
GD
1487 return False;
1488
1489 else
1490 return True;
1491 end if;
1492 end Is_Legal_Copy;
1493
70482933
RK
1494 --------------
1495 -- Make_Var --
1496 --------------
1497
1498 function Make_Var (Actual : Node_Id) return Entity_Id is
1499 Var : Entity_Id;
1500
1501 begin
1502 if Is_Entity_Name (Actual) then
1503 return Entity (Actual);
1504
1505 else
b086849e 1506 Var := Make_Temporary (Loc, 'T', Actual);
70482933
RK
1507
1508 N_Node :=
1509 Make_Object_Renaming_Declaration (Loc,
1510 Defining_Identifier => Var,
1511 Subtype_Mark =>
1512 New_Occurrence_Of (Etype (Actual), Loc),
1513 Name => Relocate_Node (Actual));
1514
1515 Insert_Action (N, N_Node);
1516 return Var;
1517 end if;
1518 end Make_Var;
1519
1520 -------------------------
1521 -- Reset_Packed_Prefix --
1522 -------------------------
1523
1524 procedure Reset_Packed_Prefix is
1525 Pfx : Node_Id := Actual;
70482933
RK
1526 begin
1527 loop
1528 Set_Analyzed (Pfx, False);
ac4d6407
RD
1529 exit when
1530 not Nkind_In (Pfx, N_Selected_Component, N_Indexed_Component);
70482933
RK
1531 Pfx := Prefix (Pfx);
1532 end loop;
1533 end Reset_Packed_Prefix;
1534
1535 -- Start of processing for Expand_Actuals
1536
1537 begin
70482933
RK
1538 Post_Call := New_List;
1539
2f1b20a9
ES
1540 Formal := First_Formal (Subp);
1541 Actual := First_Actual (N);
70482933
RK
1542 while Present (Formal) loop
1543 E_Formal := Etype (Formal);
f6820c2d 1544 E_Actual := Etype (Actual);
70482933
RK
1545
1546 if Is_Scalar_Type (E_Formal)
1547 or else Nkind (Actual) = N_Slice
1548 then
1549 Check_Fortran_Logical;
1550
1551 -- RM 6.4.1 (11)
1552
1553 elsif Ekind (Formal) /= E_Out_Parameter then
1554
1555 -- The unusual case of the current instance of a protected type
1556 -- requires special handling. This can only occur in the context
1557 -- of a call within the body of a protected operation.
1558
1559 if Is_Entity_Name (Actual)
1560 and then Ekind (Entity (Actual)) = E_Protected_Type
1561 and then In_Open_Scopes (Entity (Actual))
1562 then
1563 if Scope (Subp) /= Entity (Actual) then
685bc70f
AC
1564 Error_Msg_N
1565 ("operation outside protected type may not "
1566 & "call back its protected operations??", Actual);
70482933
RK
1567 end if;
1568
1569 Rewrite (Actual,
1570 Expand_Protected_Object_Reference (N, Entity (Actual)));
1571 end if;
1572
02822a92
RD
1573 -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
1574 -- build-in-place function, then a temporary return object needs
1575 -- to be created and access to it must be passed to the function.
f937473f
RD
1576 -- Currently we limit such functions to those with inherently
1577 -- limited result subtypes, but eventually we plan to expand the
1578 -- functions that are treated as build-in-place to include other
1579 -- composite result types.
02822a92 1580
95eb8b69 1581 if Is_Build_In_Place_Function_Call (Actual) then
02822a92
RD
1582 Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
1583 end if;
1584
70482933
RK
1585 Apply_Constraint_Check (Actual, E_Formal);
1586
1587 -- Out parameter case. No constraint checks on access type
1588 -- RM 6.4.1 (13)
1589
1590 elsif Is_Access_Type (E_Formal) then
1591 null;
1592
1593 -- RM 6.4.1 (14)
1594
1595 elsif Has_Discriminants (Base_Type (E_Formal))
1596 or else Has_Non_Null_Base_Init_Proc (E_Formal)
1597 then
1598 Apply_Constraint_Check (Actual, E_Formal);
1599
1600 -- RM 6.4.1 (15)
1601
1602 else
1603 Apply_Constraint_Check (Actual, Base_Type (E_Formal));
1604 end if;
1605
1606 -- Processing for IN-OUT and OUT parameters
1607
1608 if Ekind (Formal) /= E_In_Parameter then
1609
1610 -- For type conversions of arrays, apply length/range checks
1611
1612 if Is_Array_Type (E_Formal)
1613 and then Nkind (Actual) = N_Type_Conversion
1614 then
1615 if Is_Constrained (E_Formal) then
1616 Apply_Length_Check (Expression (Actual), E_Formal);
1617 else
1618 Apply_Range_Check (Expression (Actual), E_Formal);
1619 end if;
1620 end if;
1621
1622 -- If argument is a type conversion for a type that is passed
1623 -- by copy, then we must pass the parameter by copy.
1624
1625 if Nkind (Actual) = N_Type_Conversion
1626 and then
1627 (Is_Numeric_Type (E_Formal)
1628 or else Is_Access_Type (E_Formal)
1629 or else Is_Enumeration_Type (E_Formal)
1630 or else Is_Bit_Packed_Array (Etype (Formal))
1631 or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
1632
1633 -- Also pass by copy if change of representation
1634
1635 or else not Same_Representation
da574a86
AC
1636 (Etype (Formal),
1637 Etype (Expression (Actual))))
70482933
RK
1638 then
1639 Add_Call_By_Copy_Code;
1640
1641 -- References to components of bit packed arrays are expanded
1642 -- at this point, rather than at the point of analysis of the
1643 -- actuals, to handle the expansion of the assignment to
1644 -- [in] out parameters.
1645
1646 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
f44fe430
RD
1647 Add_Simple_Call_By_Copy_Code;
1648
02822a92
RD
1649 -- If a non-scalar actual is possibly bit-aligned, we need a copy
1650 -- because the back-end cannot cope with such objects. In other
1651 -- cases where alignment forces a copy, the back-end generates
1652 -- it properly. It should not be generated unconditionally in the
1653 -- front-end because it does not know precisely the alignment
1654 -- requirements of the target, and makes too conservative an
1655 -- estimate, leading to superfluous copies or spurious errors
1656 -- on by-reference parameters.
f44fe430 1657
02822a92
RD
1658 elsif Nkind (Actual) = N_Selected_Component
1659 and then
1660 Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
f44fe430
RD
1661 and then not Represented_As_Scalar (Etype (Formal))
1662 then
1663 Add_Simple_Call_By_Copy_Code;
70482933
RK
1664
1665 -- References to slices of bit packed arrays are expanded
1666
1667 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
1668 Add_Call_By_Copy_Code;
1669
fbf5a39b
AC
1670 -- References to possibly unaligned slices of arrays are expanded
1671
1672 elsif Is_Possibly_Unaligned_Slice (Actual) then
1673 Add_Call_By_Copy_Code;
1674
7888a6ae 1675 -- Deal with access types where the actual subtype and the
70482933
RK
1676 -- formal subtype are not the same, requiring a check.
1677
638e383e 1678 -- It is necessary to exclude tagged types because of "downward
70f91180 1679 -- conversion" errors.
70482933
RK
1680
1681 elsif Is_Access_Type (E_Formal)
f6820c2d 1682 and then not Same_Type (E_Formal, E_Actual)
70482933
RK
1683 and then not Is_Tagged_Type (Designated_Type (E_Formal))
1684 then
1685 Add_Call_By_Copy_Code;
1686
faf3cf91
ES
1687 -- If the actual is not a scalar and is marked for volatile
1688 -- treatment, whereas the formal is not volatile, then pass
1689 -- by copy unless it is a by-reference type.
1690
0386aad1
AC
1691 -- Note: we use Is_Volatile here rather than Treat_As_Volatile,
1692 -- because this is the enforcement of a language rule that applies
1693 -- only to "real" volatile variables, not e.g. to the address
1694 -- clause overlay case.
1695
70482933 1696 elsif Is_Entity_Name (Actual)
0386aad1 1697 and then Is_Volatile (Entity (Actual))
f6820c2d 1698 and then not Is_By_Reference_Type (E_Actual)
70482933 1699 and then not Is_Scalar_Type (Etype (Entity (Actual)))
0386aad1 1700 and then not Is_Volatile (E_Formal)
70482933
RK
1701 then
1702 Add_Call_By_Copy_Code;
1703
1704 elsif Nkind (Actual) = N_Indexed_Component
1705 and then Is_Entity_Name (Prefix (Actual))
1706 and then Has_Volatile_Components (Entity (Prefix (Actual)))
1707 then
1708 Add_Call_By_Copy_Code;
d79e621a
GD
1709
1710 -- Add call-by-copy code for the case of scalar out parameters
1711 -- when it is not known at compile time that the subtype of the
c2369146
AC
1712 -- formal is a subrange of the subtype of the actual (or vice
1713 -- versa for in out parameters), in order to get range checks
1714 -- on such actuals. (Maybe this case should be handled earlier
1715 -- in the if statement???)
d79e621a
GD
1716
1717 elsif Is_Scalar_Type (E_Formal)
c2369146 1718 and then
f6820c2d 1719 (not In_Subrange_Of (E_Formal, E_Actual)
c2369146
AC
1720 or else
1721 (Ekind (Formal) = E_In_Out_Parameter
f6820c2d 1722 and then not In_Subrange_Of (E_Actual, E_Formal)))
d79e621a
GD
1723 then
1724 -- Perhaps the setting back to False should be done within
1725 -- Add_Call_By_Copy_Code, since it could get set on other
1726 -- cases occurring above???
1727
1728 if Do_Range_Check (Actual) then
1729 Set_Do_Range_Check (Actual, False);
1730 end if;
1731
1732 Add_Call_By_Copy_Code;
70482933
RK
1733 end if;
1734
5f6fb720 1735 -- RM 3.2.4 (23/3): A predicate is checked on in-out and out
f6820c2d
AC
1736 -- by-reference parameters on exit from the call. If the actual
1737 -- is a derived type and the operation is inherited, the body
1738 -- of the operation will not contain a call to the predicate
1739 -- function, so it must be done explicitly after the call. Ditto
1740 -- if the actual is an entity of a predicated subtype.
1741
cae64f11
AC
1742 -- The rule refers to by-reference types, but a check is needed
1743 -- for by-copy types as well. That check is subsumed by the rule
1744 -- for subtype conversion on assignment, but we can generate the
1745 -- required check now.
1746
dd4e47ab 1747 -- Note also that Subp may be either a subprogram entity for
e93f4e12
AC
1748 -- direct calls, or a type entity for indirect calls, which must
1749 -- be handled separately because the name does not denote an
1750 -- overloadable entity.
dd4e47ab 1751
5f6fb720
AC
1752 declare
1753 Aund : constant Entity_Id := Underlying_Type (E_Actual);
1754 Atyp : Entity_Id;
1755
1756 begin
1757 if No (Aund) then
1758 Atyp := E_Actual;
1759 else
1760 Atyp := Aund;
1761 end if;
1762
1763 if Has_Predicates (Atyp)
1764 and then Present (Predicate_Function (Atyp))
1765
1766 -- Skip predicate checks for special cases
1767
b8e6830b 1768 and then Predicate_Tests_On_Arguments (Subp)
5f6fb720
AC
1769 then
1770 Append_To (Post_Call,
1771 Make_Predicate_Check (Atyp, Actual));
1772 end if;
1773 end;
f6820c2d 1774
fbf5a39b 1775 -- Processing for IN parameters
70482933
RK
1776
1777 else
fbf5a39b
AC
1778 -- For IN parameters is in the packed array case, we expand an
1779 -- indexed component (the circuit in Exp_Ch4 deliberately left
1780 -- indexed components appearing as actuals untouched, so that
1781 -- the special processing above for the OUT and IN OUT cases
1782 -- could be performed. We could make the test in Exp_Ch4 more
1783 -- complex and have it detect the parameter mode, but it is
f44fe430 1784 -- easier simply to handle all cases here.)
fbf5a39b 1785
70482933
RK
1786 if Nkind (Actual) = N_Indexed_Component
1787 and then Is_Packed (Etype (Prefix (Actual)))
1788 then
1789 Reset_Packed_Prefix;
1790 Expand_Packed_Element_Reference (Actual);
1791
0386aad1
AC
1792 -- If we have a reference to a bit packed array, we copy it, since
1793 -- the actual must be byte aligned.
70482933 1794
fbf5a39b 1795 -- Is this really necessary in all cases???
70482933 1796
fbf5a39b 1797 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
f44fe430
RD
1798 Add_Simple_Call_By_Copy_Code;
1799
1800 -- If a non-scalar actual is possibly unaligned, we need a copy
1801
1802 elsif Is_Possibly_Unaligned_Object (Actual)
1803 and then not Represented_As_Scalar (Etype (Formal))
1804 then
1805 Add_Simple_Call_By_Copy_Code;
70482933 1806
fbf5a39b
AC
1807 -- Similarly, we have to expand slices of packed arrays here
1808 -- because the result must be byte aligned.
70482933 1809
fbf5a39b
AC
1810 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
1811 Add_Call_By_Copy_Code;
70482933 1812
fbf5a39b
AC
1813 -- Only processing remaining is to pass by copy if this is a
1814 -- reference to a possibly unaligned slice, since the caller
1815 -- expects an appropriately aligned argument.
70482933 1816
fbf5a39b
AC
1817 elsif Is_Possibly_Unaligned_Slice (Actual) then
1818 Add_Call_By_Copy_Code;
fb468a94
AC
1819
1820 -- An unusual case: a current instance of an enclosing task can be
1821 -- an actual, and must be replaced by a reference to self.
1822
1823 elsif Is_Entity_Name (Actual)
1824 and then Is_Task_Type (Entity (Actual))
1825 then
1826 if In_Open_Scopes (Entity (Actual)) then
1827 Rewrite (Actual,
1828 (Make_Function_Call (Loc,
da574a86 1829 Name => New_Occurrence_Of (RTE (RE_Self), Loc))));
fb468a94
AC
1830 Analyze (Actual);
1831
1832 -- A task type cannot otherwise appear as an actual
1833
1834 else
1835 raise Program_Error;
1836 end if;
70482933
RK
1837 end if;
1838 end if;
1839
1840 Next_Formal (Formal);
1841 Next_Actual (Actual);
1842 end loop;
1843
1844 -- Find right place to put post call stuff if it is present
1845
1846 if not Is_Empty_List (Post_Call) then
1847
bdf69d33 1848 -- Cases where the call is not a member of a statement list
70482933
RK
1849
1850 if not Is_List_Member (N) then
70482933 1851
da574a86
AC
1852 -- In Ada 2012 the call may be a function call in an expression
1853 -- (since OUT and IN OUT parameters are now allowed for such
1854 -- calls). The write-back of (in)-out parameters is handled
1855 -- by the back-end, but the constraint checks generated when
1856 -- subtypes of formal and actual don't match must be inserted
1857 -- in the form of assignments.
bdf69d33 1858
da574a86
AC
1859 if Ada_Version >= Ada_2012
1860 and then Nkind (N) = N_Function_Call
1861 then
1862 -- We used to just do handle this by climbing up parents to
1863 -- a non-statement/declaration and then simply making a call
1864 -- to Insert_Actions_After (P, Post_Call), but that doesn't
1865 -- work. If we are in the middle of an expression, e.g. the
1866 -- condition of an IF, this call would insert after the IF
1867 -- statement, which is much too late to be doing the write
1868 -- back. For example:
1869
1870 -- if Clobber (X) then
1871 -- Put_Line (X'Img);
1872 -- else
1873 -- goto Junk
1874 -- end if;
1875
1876 -- Now assume Clobber changes X, if we put the write back
1877 -- after the IF, the Put_Line gets the wrong value and the
1878 -- goto causes the write back to be skipped completely.
1879
1880 -- To deal with this, we replace the call by
1881
1882 -- do
1883 -- Tnnn : function-result-type renames function-call;
1884 -- Post_Call actions
1885 -- in
1886 -- Tnnn;
1887 -- end;
1888
1889 -- Note: this won't do in Modify_Tree_For_C mode, but we
1890 -- will deal with that later (it will require creating a
1891 -- declaration for Temp, using Insert_Declaration) ???
1892
1893 declare
1894 Tnnn : constant Entity_Id := Make_Temporary (Loc, 'T');
1895 FRTyp : constant Entity_Id := Etype (N);
1896 Name : constant Node_Id := Relocate_Node (N);
1897
1898 begin
1899 Prepend_To (Post_Call,
1900 Make_Object_Renaming_Declaration (Loc,
1901 Defining_Identifier => Tnnn,
1902 Subtype_Mark => New_Occurrence_Of (FRTyp, Loc),
1903 Name => Name));
1904
1905 Rewrite (N,
1906 Make_Expression_With_Actions (Loc,
1907 Actions => Post_Call,
1908 Expression => New_Occurrence_Of (Tnnn, Loc)));
1909
1910 -- We don't want to just blindly call Analyze_And_Resolve
1911 -- because that would cause unwanted recursion on the call.
1912 -- So for a moment set the call as analyzed to prevent that
1913 -- recursion, and get the rest analyzed properly, then reset
1914 -- the analyzed flag, so our caller can continue.
1915
1916 Set_Analyzed (Name, True);
1917 Analyze_And_Resolve (N, FRTyp);
1918 Set_Analyzed (Name, False);
1919
1920 -- Reset calling argument to point to function call inside
1921 -- the expression with actions so the caller can continue
1922 -- to process the call.
1923
1924 N := Name;
1925 end;
1926
1927 -- If not the special Ada 2012 case of a function call, then
1928 -- we must have the triggering statement of a triggering
1929 -- alternative or an entry call alternative, and we can add
1930 -- the post call stuff to the corresponding statement list.
bdf69d33 1931
da574a86
AC
1932 else
1933 declare
1934 P : Node_Id;
70482933 1935
da574a86
AC
1936 begin
1937 P := Parent (N);
bdf69d33
AC
1938 pragma Assert (Nkind_In (P, N_Triggering_Alternative,
1939 N_Entry_Call_Alternative));
1940
1941 if Is_Non_Empty_List (Statements (P)) then
1942 Insert_List_Before_And_Analyze
1943 (First (Statements (P)), Post_Call);
1944 else
1945 Set_Statements (P, Post_Call);
1946 end if;
bdf69d33 1947
da574a86
AC
1948 return;
1949 end;
1950 end if;
70482933
RK
1951
1952 -- Otherwise, normal case where N is in a statement sequence,
1953 -- just put the post-call stuff after the call statement.
1954
1955 else
1956 Insert_Actions_After (N, Post_Call);
da574a86 1957 return;
70482933
RK
1958 end if;
1959 end if;
1960
98f01d53 1961 -- The call node itself is re-analyzed in Expand_Call
70482933
RK
1962
1963 end Expand_Actuals;
1964
1965 -----------------
1966 -- Expand_Call --
1967 -----------------
1968
1969 -- This procedure handles expansion of function calls and procedure call
1970 -- statements (i.e. it serves as the body for Expand_N_Function_Call and
70f91180 1971 -- Expand_N_Procedure_Call_Statement). Processing for calls includes:
70482933 1972
70f91180 1973 -- Replace call to Raise_Exception by Raise_Exception_Always if possible
70482933
RK
1974 -- Provide values of actuals for all formals in Extra_Formals list
1975 -- Replace "call" to enumeration literal function by literal itself
1976 -- Rewrite call to predefined operator as operator
1977 -- Replace actuals to in-out parameters that are numeric conversions,
1978 -- with explicit assignment to temporaries before and after the call.
70482933
RK
1979
1980 -- Note that the list of actuals has been filled with default expressions
1981 -- during semantic analysis of the call. Only the extra actuals required
1982 -- for the 'Constrained attribute and for accessibility checks are added
1983 -- at this point.
1984
1985 procedure Expand_Call (N : Node_Id) is
1986 Loc : constant Source_Ptr := Sloc (N);
6dfc5592 1987 Call_Node : Node_Id := N;
70482933 1988 Extra_Actuals : List_Id := No_List;
fdce4bb7 1989 Prev : Node_Id := Empty;
758c442c 1990
70482933
RK
1991 procedure Add_Actual_Parameter (Insert_Param : Node_Id);
1992 -- Adds one entry to the end of the actual parameter list. Used for
2f1b20a9
ES
1993 -- default parameters and for extra actuals (for Extra_Formals). The
1994 -- argument is an N_Parameter_Association node.
70482933
RK
1995
1996 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
2f1b20a9
ES
1997 -- Adds an extra actual to the list of extra actuals. Expr is the
1998 -- expression for the value of the actual, EF is the entity for the
1999 -- extra formal.
70482933 2000
84f4072a
JM
2001 procedure Do_Inline (Subp : Entity_Id; Orig_Subp : Entity_Id);
2002 -- Check and inline the body of Subp. Invoked when compiling with
2003 -- optimizations enabled and Subp has pragma inline or inline always.
2004 -- If the subprogram is a renaming, or if it is inherited, then Subp
2005 -- references the renamed entity and Orig_Subp is the entity of the
2006 -- call node N.
2007
2008 procedure Do_Inline_Always (Subp : Entity_Id; Orig_Subp : Entity_Id);
2009 -- Check and inline the body of Subp. Invoked when compiling without
2010 -- optimizations and Subp has pragma inline always. If the subprogram is
2011 -- a renaming, or if it is inherited, then Subp references the renamed
2012 -- entity and Orig_Subp is the entity of the call node N.
2013
70482933 2014 function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
1fb63e89 2015 -- Within an instance, a type derived from an untagged formal derived
70f91180
RD
2016 -- type inherits from the original parent, not from the actual. The
2017 -- current derivation mechanism has the derived type inherit from the
2018 -- actual, which is only correct outside of the instance. If the
2019 -- subprogram is inherited, we test for this particular case through a
2020 -- convoluted tree traversal before setting the proper subprogram to be
2021 -- called.
70482933 2022
84f4072a
JM
2023 function In_Unfrozen_Instance (E : Entity_Id) return Boolean;
2024 -- Return true if E comes from an instance that is not yet frozen
2025
df3e68b1 2026 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean;
2c1b72d7 2027 -- Determine if Subp denotes a non-dispatching call to a Deep routine
df3e68b1 2028
dd386db0
AC
2029 function New_Value (From : Node_Id) return Node_Id;
2030 -- From is the original Expression. New_Value is equivalent to a call
2031 -- to Duplicate_Subexpr with an explicit dereference when From is an
2032 -- access parameter.
2033
70482933
RK
2034 --------------------------
2035 -- Add_Actual_Parameter --
2036 --------------------------
2037
2038 procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
2039 Actual_Expr : constant Node_Id :=
2040 Explicit_Actual_Parameter (Insert_Param);
2041
2042 begin
2043 -- Case of insertion is first named actual
2044
2045 if No (Prev) or else
2046 Nkind (Parent (Prev)) /= N_Parameter_Association
2047 then
6dfc5592
RD
2048 Set_Next_Named_Actual
2049 (Insert_Param, First_Named_Actual (Call_Node));
2050 Set_First_Named_Actual (Call_Node, Actual_Expr);
70482933
RK
2051
2052 if No (Prev) then
6dfc5592
RD
2053 if No (Parameter_Associations (Call_Node)) then
2054 Set_Parameter_Associations (Call_Node, New_List);
70482933 2055 end if;
57a3fca9
AC
2056
2057 Append (Insert_Param, Parameter_Associations (Call_Node));
2058
70482933
RK
2059 else
2060 Insert_After (Prev, Insert_Param);
2061 end if;
2062
2063 -- Case of insertion is not first named actual
2064
2065 else
2066 Set_Next_Named_Actual
2067 (Insert_Param, Next_Named_Actual (Parent (Prev)));
2068 Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
6dfc5592 2069 Append (Insert_Param, Parameter_Associations (Call_Node));
70482933
RK
2070 end if;
2071
2072 Prev := Actual_Expr;
2073 end Add_Actual_Parameter;
2074
2075 ----------------------
2076 -- Add_Extra_Actual --
2077 ----------------------
2078
2079 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
2080 Loc : constant Source_Ptr := Sloc (Expr);
2081
2082 begin
2083 if Extra_Actuals = No_List then
2084 Extra_Actuals := New_List;
6dfc5592 2085 Set_Parent (Extra_Actuals, Call_Node);
70482933
RK
2086 end if;
2087
2088 Append_To (Extra_Actuals,
2089 Make_Parameter_Association (Loc,
7a2c2277 2090 Selector_Name => New_Occurrence_Of (EF, Loc),
9d983bbf 2091 Explicit_Actual_Parameter => Expr));
70482933
RK
2092
2093 Analyze_And_Resolve (Expr, Etype (EF));
75a64833 2094
6dfc5592 2095 if Nkind (Call_Node) = N_Function_Call then
75a64833
AC
2096 Set_Is_Accessibility_Actual (Parent (Expr));
2097 end if;
70482933
RK
2098 end Add_Extra_Actual;
2099
84f4072a
JM
2100 ----------------
2101 -- Do_Inline --
2102 ----------------
2103
2104 procedure Do_Inline (Subp : Entity_Id; Orig_Subp : Entity_Id) is
2105 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
2106
2107 procedure Do_Backend_Inline;
2108 -- Check that the call can be safely passed to the backend. If true
2109 -- then register the enclosing unit of Subp to Inlined_Bodies so that
2110 -- the body of Subp can be retrieved and analyzed by the backend.
2111
84f4072a
JM
2112 -----------------------
2113 -- Do_Backend_Inline --
2114 -----------------------
2115
2116 procedure Do_Backend_Inline is
2117 begin
2118 -- No extra test needed for init subprograms since we know they
a90bd866 2119 -- are available to the backend.
84f4072a
JM
2120
2121 if Is_Init_Proc (Subp) then
2122 Add_Inlined_Body (Subp);
2123 Register_Backend_Call (Call_Node);
2124
2125 -- Verify that if the body to inline is located in the current
2126 -- unit the inlining does not occur earlier. This avoids
2127 -- order-of-elaboration problems in the back end.
2128
2129 elsif In_Same_Extended_Unit (Call_Node, Subp)
2130 and then Nkind (Spec) = N_Subprogram_Declaration
2131 and then Earlier_In_Extended_Unit
2132 (Loc, Sloc (Body_To_Inline (Spec)))
2133 then
2134 Error_Msg_NE
685bc70f 2135 ("cannot inline& (body not seen yet)??", Call_Node, Subp);
84f4072a
JM
2136
2137 else
2138 declare
2139 Backend_Inline : Boolean := True;
2140
2141 begin
2142 -- If we are compiling a package body that is not the
2143 -- main unit, it must be for inlining/instantiation
2144 -- purposes, in which case we inline the call to insure
2145 -- that the same temporaries are generated when compiling
2146 -- the body by itself. Otherwise link errors can occur.
2147
2148 -- If the function being called is itself in the main
2149 -- unit, we cannot inline, because there is a risk of
2150 -- double elaboration and/or circularity: the inlining
2151 -- can make visible a private entity in the body of the
2152 -- main unit, that gigi will see before its sees its
2153 -- proper definition.
2154
2155 if not (In_Extended_Main_Code_Unit (Call_Node))
2156 and then In_Package_Body
2157 then
2158 Backend_Inline :=
2159 not In_Extended_Main_Source_Unit (Subp);
2160 end if;
2161
2162 if Backend_Inline then
2163 Add_Inlined_Body (Subp);
2164 Register_Backend_Call (Call_Node);
2165 end if;
2166 end;
2167 end if;
2168 end Do_Backend_Inline;
2169
84f4072a
JM
2170 -- Start of processing for Do_Inline
2171
2172 begin
2173 -- Verify that the body to inline has already been seen
2174
2175 if No (Spec)
2176 or else Nkind (Spec) /= N_Subprogram_Declaration
2177 or else No (Body_To_Inline (Spec))
2178 then
2179 if Comes_From_Source (Subp)
2180 and then Must_Inline (Subp)
2181 then
2182 Cannot_Inline
2183 ("cannot inline& (body not seen yet)?", Call_Node, Subp);
2184
2185 -- Let the back end handle it
2186
2187 else
2188 Do_Backend_Inline;
2189 return;
2190 end if;
2191
2192 -- If this an inherited function that returns a private type, do not
2193 -- inline if the full view is an unconstrained array, because such
2194 -- calls cannot be inlined.
2195
2196 elsif Present (Orig_Subp)
2197 and then Is_Array_Type (Etype (Orig_Subp))
2198 and then not Is_Constrained (Etype (Orig_Subp))
2199 then
2200 Cannot_Inline
2201 ("cannot inline& (unconstrained array)?", Call_Node, Subp);
2202
2203 else
2204 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
2205 end if;
2206 end Do_Inline;
2207
2208 ----------------------
2209 -- Do_Inline_Always --
2210 ----------------------
2211
2212 procedure Do_Inline_Always (Subp : Entity_Id; Orig_Subp : Entity_Id) is
2213 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
2214 Body_Id : Entity_Id;
2215
2216 begin
2217 if No (Spec)
2218 or else Nkind (Spec) /= N_Subprogram_Declaration
2219 or else No (Body_To_Inline (Spec))
2220 or else Serious_Errors_Detected /= 0
2221 then
2222 return;
2223 end if;
2224
2225 Body_Id := Corresponding_Body (Spec);
2226
2227 -- Verify that the body to inline has already been seen
2228
2229 if No (Body_Id)
2230 or else not Analyzed (Body_Id)
2231 then
2232 Set_Is_Inlined (Subp, False);
2233
2234 if Comes_From_Source (Subp) then
2235
2236 -- Report a warning only if the call is located in the unit of
2237 -- the called subprogram; otherwise it is an error.
2238
2239 if not In_Same_Extended_Unit (Call_Node, Subp) then
2240 Cannot_Inline
685bc70f 2241 ("cannot inline& (body not seen yet)?", Call_Node, Subp,
84f4072a
JM
2242 Is_Serious => True);
2243
2244 elsif In_Open_Scopes (Subp) then
2245
2246 -- For backward compatibility we generate the same error
2247 -- or warning of the previous implementation. This will
2248 -- be changed when we definitely incorporate the new
2249 -- support ???
2250
2251 if Front_End_Inlining
2252 and then Optimization_Level = 0
2253 then
2254 Error_Msg_N
685bc70f 2255 ("call to recursive subprogram cannot be inlined?p?",
84f4072a
JM
2256 N);
2257
2258 -- Do not emit error compiling runtime packages
2259
2260 elsif Is_Predefined_File_Name
2261 (Unit_File_Name (Get_Source_Unit (Subp)))
2262 then
2263 Error_Msg_N
685bc70f 2264 ("call to recursive subprogram cannot be inlined??",
84f4072a
JM
2265 N);
2266
2267 else
2268 Error_Msg_N
2269 ("call to recursive subprogram cannot be inlined",
2270 N);
2271 end if;
2272
2273 else
2274 Cannot_Inline
2275 ("cannot inline& (body not seen yet)?", Call_Node, Subp);
2276 end if;
2277 end if;
2278
2279 return;
2280
2281 -- If this an inherited function that returns a private type, do not
2282 -- inline if the full view is an unconstrained array, because such
2283 -- calls cannot be inlined.
2284
2285 elsif Present (Orig_Subp)
2286 and then Is_Array_Type (Etype (Orig_Subp))
2287 and then not Is_Constrained (Etype (Orig_Subp))
2288 then
2289 Cannot_Inline
2290 ("cannot inline& (unconstrained array)?", Call_Node, Subp);
2291
2292 -- If the called subprogram comes from an instance in the same
2293 -- unit, and the instance is not yet frozen, inlining might
2294 -- trigger order-of-elaboration problems.
2295
2296 elsif In_Unfrozen_Instance (Scope (Subp)) then
2297 Cannot_Inline
2298 ("cannot inline& (unfrozen instance)?", Call_Node, Subp);
2299
2300 else
2301 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
2302 end if;
2303 end Do_Inline_Always;
2304
70482933
RK
2305 ---------------------------
2306 -- Inherited_From_Formal --
2307 ---------------------------
2308
2309 function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
2310 Par : Entity_Id;
2311 Gen_Par : Entity_Id;
2312 Gen_Prim : Elist_Id;
2313 Elmt : Elmt_Id;
2314 Indic : Node_Id;
2315
2316 begin
2317 -- If the operation is inherited, it is attached to the corresponding
2318 -- type derivation. If the parent in the derivation is a generic
2319 -- actual, it is a subtype of the actual, and we have to recover the
2320 -- original derived type declaration to find the proper parent.
2321
2322 if Nkind (Parent (S)) /= N_Full_Type_Declaration
fbf5a39b 2323 or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
2f1b20a9
ES
2324 or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
2325 N_Derived_Type_Definition
fbf5a39b 2326 or else not In_Instance
70482933
RK
2327 then
2328 return Empty;
2329
2330 else
2331 Indic :=
e27b834b
AC
2332 Subtype_Indication
2333 (Type_Definition (Original_Node (Parent (S))));
70482933
RK
2334
2335 if Nkind (Indic) = N_Subtype_Indication then
2336 Par := Entity (Subtype_Mark (Indic));
2337 else
2338 Par := Entity (Indic);
2339 end if;
2340 end if;
2341
2342 if not Is_Generic_Actual_Type (Par)
2343 or else Is_Tagged_Type (Par)
2344 or else Nkind (Parent (Par)) /= N_Subtype_Declaration
2345 or else not In_Open_Scopes (Scope (Par))
70482933
RK
2346 then
2347 return Empty;
70482933
RK
2348 else
2349 Gen_Par := Generic_Parent_Type (Parent (Par));
2350 end if;
2351
7888a6ae
GD
2352 -- If the actual has no generic parent type, the formal is not
2353 -- a formal derived type, so nothing to inherit.
2354
2355 if No (Gen_Par) then
2356 return Empty;
2357 end if;
2358
2f1b20a9
ES
2359 -- If the generic parent type is still the generic type, this is a
2360 -- private formal, not a derived formal, and there are no operations
2361 -- inherited from the formal.
fbf5a39b
AC
2362
2363 if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
2364 return Empty;
2365 end if;
2366
70482933 2367 Gen_Prim := Collect_Primitive_Operations (Gen_Par);
70482933 2368
2f1b20a9 2369 Elmt := First_Elmt (Gen_Prim);
70482933
RK
2370 while Present (Elmt) loop
2371 if Chars (Node (Elmt)) = Chars (S) then
2372 declare
2373 F1 : Entity_Id;
2374 F2 : Entity_Id;
70482933 2375
2f1b20a9 2376 begin
70482933
RK
2377 F1 := First_Formal (S);
2378 F2 := First_Formal (Node (Elmt));
70482933
RK
2379 while Present (F1)
2380 and then Present (F2)
2381 loop
70482933
RK
2382 if Etype (F1) = Etype (F2)
2383 or else Etype (F2) = Gen_Par
2384 then
2385 Next_Formal (F1);
2386 Next_Formal (F2);
2387 else
2388 Next_Elmt (Elmt);
2389 exit; -- not the right subprogram
2390 end if;
2391
2392 return Node (Elmt);
2393 end loop;
2394 end;
2395
2396 else
2397 Next_Elmt (Elmt);
2398 end if;
2399 end loop;
2400
2401 raise Program_Error;
2402 end Inherited_From_Formal;
2403
84f4072a
JM
2404 --------------------------
2405 -- In_Unfrozen_Instance --
2406 --------------------------
2407
2408 function In_Unfrozen_Instance (E : Entity_Id) return Boolean is
bde73c6b 2409 S : Entity_Id;
84f4072a
JM
2410
2411 begin
bde73c6b
AC
2412 S := E;
2413 while Present (S) and then S /= Standard_Standard loop
84f4072a
JM
2414 if Is_Generic_Instance (S)
2415 and then Present (Freeze_Node (S))
2416 and then not Analyzed (Freeze_Node (S))
2417 then
2418 return True;
2419 end if;
2420
2421 S := Scope (S);
2422 end loop;
2423
2424 return False;
2425 end In_Unfrozen_Instance;
2426
df3e68b1
HK
2427 -------------------------
2428 -- Is_Direct_Deep_Call --
2429 -------------------------
2430
2431 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean is
2432 begin
2433 if Is_TSS (Subp, TSS_Deep_Adjust)
2434 or else Is_TSS (Subp, TSS_Deep_Finalize)
2435 or else Is_TSS (Subp, TSS_Deep_Initialize)
2436 then
2437 declare
2438 Actual : Node_Id;
2439 Formal : Node_Id;
2440
2441 begin
2442 Actual := First (Parameter_Associations (N));
2443 Formal := First_Formal (Subp);
2444 while Present (Actual)
2445 and then Present (Formal)
2446 loop
2447 if Nkind (Actual) = N_Identifier
2448 and then Is_Controlling_Actual (Actual)
2449 and then Etype (Actual) = Etype (Formal)
2450 then
2451 return True;
2452 end if;
2453
2454 Next (Actual);
2455 Next_Formal (Formal);
2456 end loop;
2457 end;
2458 end if;
2459
2460 return False;
2461 end Is_Direct_Deep_Call;
2462
dd386db0
AC
2463 ---------------
2464 -- New_Value --
2465 ---------------
2466
2467 function New_Value (From : Node_Id) return Node_Id is
2468 Res : constant Node_Id := Duplicate_Subexpr (From);
2469 begin
2470 if Is_Access_Type (Etype (From)) then
bde73c6b 2471 return Make_Explicit_Dereference (Sloc (From), Prefix => Res);
dd386db0
AC
2472 else
2473 return Res;
2474 end if;
2475 end New_Value;
2476
fdce4bb7
JM
2477 -- Local variables
2478
deb8dacc
HK
2479 Curr_S : constant Entity_Id := Current_Scope;
2480 Remote : constant Boolean := Is_Remote_Call (Call_Node);
fdce4bb7
JM
2481 Actual : Node_Id;
2482 Formal : Entity_Id;
2483 Orig_Subp : Entity_Id := Empty;
2484 Param_Count : Natural := 0;
2485 Parent_Formal : Entity_Id;
2486 Parent_Subp : Entity_Id;
2487 Scop : Entity_Id;
2488 Subp : Entity_Id;
2489
e27b834b 2490 Prev_Orig : Node_Id;
fdce4bb7
JM
2491 -- Original node for an actual, which may have been rewritten. If the
2492 -- actual is a function call that has been transformed from a selected
2493 -- component, the original node is unanalyzed. Otherwise, it carries
2494 -- semantic information used to generate additional actuals.
2495
2496 CW_Interface_Formals_Present : Boolean := False;
2497
70482933
RK
2498 -- Start of processing for Expand_Call
2499
2500 begin
dec6faf1
AC
2501 -- Expand the procedure call if the first actual has a dimension and if
2502 -- the procedure is Put (Ada 2012).
2503
2504 if Ada_Version >= Ada_2012
2505 and then Nkind (Call_Node) = N_Procedure_Call_Statement
2506 and then Present (Parameter_Associations (Call_Node))
2507 then
df378148 2508 Expand_Put_Call_With_Symbol (Call_Node);
dec6faf1
AC
2509 end if;
2510
07fc65c4
GB
2511 -- Ignore if previous error
2512
6dfc5592
RD
2513 if Nkind (Call_Node) in N_Has_Etype
2514 and then Etype (Call_Node) = Any_Type
2515 then
07fc65c4
GB
2516 return;
2517 end if;
2518
70482933
RK
2519 -- Call using access to subprogram with explicit dereference
2520
6dfc5592
RD
2521 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
2522 Subp := Etype (Name (Call_Node));
70482933
RK
2523 Parent_Subp := Empty;
2524
2525 -- Case of call to simple entry, where the Name is a selected component
2526 -- whose prefix is the task, and whose selector name is the entry name
2527
6dfc5592
RD
2528 elsif Nkind (Name (Call_Node)) = N_Selected_Component then
2529 Subp := Entity (Selector_Name (Name (Call_Node)));
70482933
RK
2530 Parent_Subp := Empty;
2531
2532 -- Case of call to member of entry family, where Name is an indexed
2533 -- component, with the prefix being a selected component giving the
2534 -- task and entry family name, and the index being the entry index.
2535
6dfc5592
RD
2536 elsif Nkind (Name (Call_Node)) = N_Indexed_Component then
2537 Subp := Entity (Selector_Name (Prefix (Name (Call_Node))));
70482933
RK
2538 Parent_Subp := Empty;
2539
2540 -- Normal case
2541
2542 else
6dfc5592 2543 Subp := Entity (Name (Call_Node));
70482933
RK
2544 Parent_Subp := Alias (Subp);
2545
2546 -- Replace call to Raise_Exception by call to Raise_Exception_Always
2547 -- if we can tell that the first parameter cannot possibly be null.
70f91180 2548 -- This improves efficiency by avoiding a run-time test.
70482933 2549
7888a6ae
GD
2550 -- We do not do this if Raise_Exception_Always does not exist, which
2551 -- can happen in configurable run time profiles which provide only a
70f91180 2552 -- Raise_Exception.
7888a6ae
GD
2553
2554 if Is_RTE (Subp, RE_Raise_Exception)
2555 and then RTE_Available (RE_Raise_Exception_Always)
70482933
RK
2556 then
2557 declare
3cae7f14
RD
2558 FA : constant Node_Id :=
2559 Original_Node (First_Actual (Call_Node));
2560
70482933
RK
2561 begin
2562 -- The case we catch is where the first argument is obtained
2f1b20a9
ES
2563 -- using the Identity attribute (which must always be
2564 -- non-null).
70482933
RK
2565
2566 if Nkind (FA) = N_Attribute_Reference
2567 and then Attribute_Name (FA) = Name_Identity
2568 then
2569 Subp := RTE (RE_Raise_Exception_Always);
6dfc5592 2570 Set_Name (Call_Node, New_Occurrence_Of (Subp, Loc));
70482933
RK
2571 end if;
2572 end;
2573 end if;
2574
2575 if Ekind (Subp) = E_Entry then
2576 Parent_Subp := Empty;
2577 end if;
2578 end if;
2579
d3f70b35
AC
2580 -- Detect the following code in System.Finalization_Masters only on
2581 -- .NET/JVM targets:
e80f0cb0 2582
d3f70b35 2583 -- procedure Finalize (Master : in out Finalization_Master) is
deb8dacc
HK
2584 -- begin
2585 -- . . .
2586 -- begin
2587 -- Finalize (Curr_Ptr.all);
e80f0cb0 2588
deb8dacc 2589 -- Since .NET/JVM compilers lack address arithmetic and Deep_Finalize
e80f0cb0
RD
2590 -- cannot be named in library or user code, the compiler has to deal
2591 -- with this by transforming the call to Finalize into Deep_Finalize.
deb8dacc
HK
2592
2593 if VM_Target /= No_VM
2594 and then Chars (Subp) = Name_Finalize
2595 and then Ekind (Curr_S) = E_Block
2596 and then Ekind (Scope (Curr_S)) = E_Procedure
2597 and then Chars (Scope (Curr_S)) = Name_Finalize
2598 and then Etype (First_Formal (Scope (Curr_S))) =
d3f70b35 2599 RTE (RE_Finalization_Master)
deb8dacc
HK
2600 then
2601 declare
2602 Deep_Fin : constant Entity_Id :=
2603 Find_Prim_Op (RTE (RE_Root_Controlled),
2604 TSS_Deep_Finalize);
2605 begin
2606 -- Since Root_Controlled is a tagged type, the compiler should
2607 -- always generate Deep_Finalize for it.
2608
2609 pragma Assert (Present (Deep_Fin));
2610
2611 -- Generate:
2612 -- Deep_Finalize (Curr_Ptr.all);
2613
2614 Rewrite (N,
2615 Make_Procedure_Call_Statement (Loc,
2616 Name =>
e4494292 2617 New_Occurrence_Of (Deep_Fin, Loc),
deb8dacc
HK
2618 Parameter_Associations =>
2619 New_Copy_List_Tree (Parameter_Associations (N))));
2620
2621 Analyze (N);
2622 return;
2623 end;
2624 end if;
2625
f4d379b8
HK
2626 -- Ada 2005 (AI-345): We have a procedure call as a triggering
2627 -- alternative in an asynchronous select or as an entry call in
2628 -- a conditional or timed select. Check whether the procedure call
2629 -- is a renaming of an entry and rewrite it as an entry call.
2630
0791fbe9 2631 if Ada_Version >= Ada_2005
6dfc5592 2632 and then Nkind (Call_Node) = N_Procedure_Call_Statement
f4d379b8 2633 and then
6dfc5592 2634 ((Nkind (Parent (Call_Node)) = N_Triggering_Alternative
3cae7f14 2635 and then Triggering_Statement (Parent (Call_Node)) = Call_Node)
f4d379b8 2636 or else
6dfc5592 2637 (Nkind (Parent (Call_Node)) = N_Entry_Call_Alternative
3cae7f14 2638 and then Entry_Call_Statement (Parent (Call_Node)) = Call_Node))
f4d379b8
HK
2639 then
2640 declare
2641 Ren_Decl : Node_Id;
2642 Ren_Root : Entity_Id := Subp;
2643
2644 begin
2645 -- This may be a chain of renamings, find the root
2646
2647 if Present (Alias (Ren_Root)) then
2648 Ren_Root := Alias (Ren_Root);
2649 end if;
2650
2651 if Present (Original_Node (Parent (Parent (Ren_Root)))) then
2652 Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
2653
2654 if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
6dfc5592 2655 Rewrite (Call_Node,
f4d379b8
HK
2656 Make_Entry_Call_Statement (Loc,
2657 Name =>
2658 New_Copy_Tree (Name (Ren_Decl)),
2659 Parameter_Associations =>
6dfc5592
RD
2660 New_Copy_List_Tree
2661 (Parameter_Associations (Call_Node))));
f4d379b8
HK
2662
2663 return;
2664 end if;
2665 end if;
2666 end;
2667 end if;
2668
e27b834b
AC
2669 -- First step, compute extra actuals, corresponding to any Extra_Formals
2670 -- present. Note that we do not access Extra_Formals directly, instead
2671 -- we simply note the presence of the extra formals as we process the
2672 -- regular formals collecting corresponding actuals in Extra_Actuals.
70482933 2673
c2369146
AC
2674 -- We also generate any required range checks for actuals for in formals
2675 -- as we go through the loop, since this is a convenient place to do it.
2676 -- (Though it seems that this would be better done in Expand_Actuals???)
fbf5a39b 2677
e2441021
AC
2678 -- Special case: Thunks must not compute the extra actuals; they must
2679 -- just propagate to the target primitive their extra actuals.
2680
2681 if Is_Thunk (Current_Scope)
2682 and then Thunk_Entity (Current_Scope) = Subp
2683 and then Present (Extra_Formals (Subp))
2684 then
2685 pragma Assert (Present (Extra_Formals (Current_Scope)));
2686
2687 declare
2688 Target_Formal : Entity_Id;
2689 Thunk_Formal : Entity_Id;
2690
2691 begin
2692 Target_Formal := Extra_Formals (Subp);
2693 Thunk_Formal := Extra_Formals (Current_Scope);
2694 while Present (Target_Formal) loop
2695 Add_Extra_Actual
2696 (New_Occurrence_Of (Thunk_Formal, Loc), Thunk_Formal);
2697
2698 Target_Formal := Extra_Formal (Target_Formal);
2699 Thunk_Formal := Extra_Formal (Thunk_Formal);
2700 end loop;
2701
2702 while Is_Non_Empty_List (Extra_Actuals) loop
2703 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
2704 end loop;
2705
2706 Expand_Actuals (Call_Node, Subp);
2707 return;
2708 end;
2709 end if;
2710
8c5b03a0
AC
2711 Formal := First_Formal (Subp);
2712 Actual := First_Actual (Call_Node);
fdce4bb7 2713 Param_Count := 1;
70482933 2714 while Present (Formal) loop
fbf5a39b 2715
d79e621a 2716 -- Generate range check if required
fbf5a39b 2717
d79e621a 2718 if Do_Range_Check (Actual)
c2369146 2719 and then Ekind (Formal) = E_In_Parameter
d79e621a 2720 then
d79e621a
GD
2721 Generate_Range_Check
2722 (Actual, Etype (Formal), CE_Range_Check_Failed);
2723 end if;
fbf5a39b
AC
2724
2725 -- Prepare to examine current entry
2726
70482933
RK
2727 Prev := Actual;
2728 Prev_Orig := Original_Node (Prev);
2729
758c442c 2730 -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
2f1b20a9 2731 -- to expand it in a further round.
758c442c
GD
2732
2733 CW_Interface_Formals_Present :=
2734 CW_Interface_Formals_Present
2735 or else
2736 (Ekind (Etype (Formal)) = E_Class_Wide_Type
8c5b03a0 2737 and then Is_Interface (Etype (Etype (Formal))))
758c442c
GD
2738 or else
2739 (Ekind (Etype (Formal)) = E_Anonymous_Access_Type
2740 and then Is_Interface (Directly_Designated_Type
2741 (Etype (Etype (Formal)))));
2742
2743 -- Create possible extra actual for constrained case. Usually, the
2744 -- extra actual is of the form actual'constrained, but since this
2745 -- attribute is only available for unconstrained records, TRUE is
2746 -- expanded if the type of the formal happens to be constrained (for
2747 -- instance when this procedure is inherited from an unconstrained
2748 -- record to a constrained one) or if the actual has no discriminant
2749 -- (its type is constrained). An exception to this is the case of a
2750 -- private type without discriminants. In this case we pass FALSE
2751 -- because the object has underlying discriminants with defaults.
70482933
RK
2752
2753 if Present (Extra_Constrained (Formal)) then
2754 if Ekind (Etype (Prev)) in Private_Kind
2755 and then not Has_Discriminants (Base_Type (Etype (Prev)))
2756 then
01aef5ad
GD
2757 Add_Extra_Actual
2758 (New_Occurrence_Of (Standard_False, Loc),
2759 Extra_Constrained (Formal));
70482933
RK
2760
2761 elsif Is_Constrained (Etype (Formal))
2762 or else not Has_Discriminants (Etype (Prev))
2763 then
01aef5ad
GD
2764 Add_Extra_Actual
2765 (New_Occurrence_Of (Standard_True, Loc),
2766 Extra_Constrained (Formal));
70482933 2767
5d09245e
AC
2768 -- Do not produce extra actuals for Unchecked_Union parameters.
2769 -- Jump directly to the end of the loop.
2770
2771 elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
2772 goto Skip_Extra_Actual_Generation;
2773
70482933
RK
2774 else
2775 -- If the actual is a type conversion, then the constrained
2776 -- test applies to the actual, not the target type.
2777
2778 declare
2f1b20a9 2779 Act_Prev : Node_Id;
70482933
RK
2780
2781 begin
2f1b20a9
ES
2782 -- Test for unchecked conversions as well, which can occur
2783 -- as out parameter actuals on calls to stream procedures.
70482933 2784
2f1b20a9 2785 Act_Prev := Prev;
ac4d6407
RD
2786 while Nkind_In (Act_Prev, N_Type_Conversion,
2787 N_Unchecked_Type_Conversion)
fbf5a39b 2788 loop
70482933 2789 Act_Prev := Expression (Act_Prev);
fbf5a39b 2790 end loop;
70482933 2791
3563739b
AC
2792 -- If the expression is a conversion of a dereference, this
2793 -- is internally generated code that manipulates addresses,
2794 -- e.g. when building interface tables. No check should
2795 -- occur in this case, and the discriminated object is not
2796 -- directly a hand.
f4d379b8
HK
2797
2798 if not Comes_From_Source (Actual)
2799 and then Nkind (Actual) = N_Unchecked_Type_Conversion
2800 and then Nkind (Act_Prev) = N_Explicit_Dereference
2801 then
2802 Add_Extra_Actual
2803 (New_Occurrence_Of (Standard_False, Loc),
2804 Extra_Constrained (Formal));
2805
2806 else
2807 Add_Extra_Actual
2808 (Make_Attribute_Reference (Sloc (Prev),
2809 Prefix =>
2810 Duplicate_Subexpr_No_Checks
2811 (Act_Prev, Name_Req => True),
2812 Attribute_Name => Name_Constrained),
2813 Extra_Constrained (Formal));
2814 end if;
70482933
RK
2815 end;
2816 end if;
2817 end if;
2818
2819 -- Create possible extra actual for accessibility level
2820
2821 if Present (Extra_Accessibility (Formal)) then
7888a6ae
GD
2822
2823 -- Ada 2005 (AI-252): If the actual was rewritten as an Access
2824 -- attribute, then the original actual may be an aliased object
2825 -- occurring as the prefix in a call using "Object.Operation"
2826 -- notation. In that case we must pass the level of the object,
2827 -- so Prev_Orig is reset to Prev and the attribute will be
2828 -- processed by the code for Access attributes further below.
2829
2830 if Prev_Orig /= Prev
2831 and then Nkind (Prev) = N_Attribute_Reference
2832 and then
2833 Get_Attribute_Id (Attribute_Name (Prev)) = Attribute_Access
2834 and then Is_Aliased_View (Prev_Orig)
2835 then
2836 Prev_Orig := Prev;
2837 end if;
2838
9d983bbf
AC
2839 -- Ada 2005 (AI-251): Thunks must propagate the extra actuals of
2840 -- accessibility levels.
fdce4bb7 2841
da1c23dd 2842 if Is_Thunk (Current_Scope) then
fdce4bb7
JM
2843 declare
2844 Parm_Ent : Entity_Id;
2845
2846 begin
2847 if Is_Controlling_Actual (Actual) then
2848
2849 -- Find the corresponding actual of the thunk
2850
2851 Parm_Ent := First_Entity (Current_Scope);
2852 for J in 2 .. Param_Count loop
2853 Next_Entity (Parm_Ent);
2854 end loop;
2855
8a49a499 2856 -- Handle unchecked conversion of access types generated
5b5b27ad 2857 -- in thunks (cf. Expand_Interface_Thunk).
8a49a499
AC
2858
2859 elsif Is_Access_Type (Etype (Actual))
2860 and then Nkind (Actual) = N_Unchecked_Type_Conversion
2861 then
2862 Parm_Ent := Entity (Expression (Actual));
2863
fdce4bb7
JM
2864 else pragma Assert (Is_Entity_Name (Actual));
2865 Parm_Ent := Entity (Actual);
2866 end if;
2867
2868 Add_Extra_Actual
2869 (New_Occurrence_Of (Extra_Accessibility (Parm_Ent), Loc),
2870 Extra_Accessibility (Formal));
2871 end;
2872
2873 elsif Is_Entity_Name (Prev_Orig) then
70482933 2874
d766cee3
RD
2875 -- When passing an access parameter, or a renaming of an access
2876 -- parameter, as the actual to another access parameter we need
2877 -- to pass along the actual's own access level parameter. This
2878 -- is done if we are within the scope of the formal access
2879 -- parameter (if this is an inlined body the extra formal is
2880 -- irrelevant).
2881
2882 if (Is_Formal (Entity (Prev_Orig))
2883 or else
2884 (Present (Renamed_Object (Entity (Prev_Orig)))
2885 and then
2886 Is_Entity_Name (Renamed_Object (Entity (Prev_Orig)))
2887 and then
2888 Is_Formal
2889 (Entity (Renamed_Object (Entity (Prev_Orig))))))
70482933
RK
2890 and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
2891 and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
2892 then
2893 declare
2894 Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
2895
2896 begin
2897 pragma Assert (Present (Parm_Ent));
2898
2899 if Present (Extra_Accessibility (Parm_Ent)) then
f4d379b8
HK
2900 Add_Extra_Actual
2901 (New_Occurrence_Of
2902 (Extra_Accessibility (Parm_Ent), Loc),
2903 Extra_Accessibility (Formal));
70482933
RK
2904
2905 -- If the actual access parameter does not have an
2906 -- associated extra formal providing its scope level,
2907 -- then treat the actual as having library-level
2908 -- accessibility.
2909
2910 else
f4d379b8
HK
2911 Add_Extra_Actual
2912 (Make_Integer_Literal (Loc,
01aef5ad 2913 Intval => Scope_Depth (Standard_Standard)),
f4d379b8 2914 Extra_Accessibility (Formal));
70482933
RK
2915 end if;
2916 end;
2917
7888a6ae
GD
2918 -- The actual is a normal access value, so just pass the level
2919 -- of the actual's access type.
70482933
RK
2920
2921 else
f4d379b8 2922 Add_Extra_Actual
d15f9422 2923 (Dynamic_Accessibility_Level (Prev_Orig),
f4d379b8 2924 Extra_Accessibility (Formal));
70482933
RK
2925 end if;
2926
01aef5ad
GD
2927 -- If the actual is an access discriminant, then pass the level
2928 -- of the enclosing object (RM05-3.10.2(12.4/2)).
2929
2930 elsif Nkind (Prev_Orig) = N_Selected_Component
2931 and then Ekind (Entity (Selector_Name (Prev_Orig))) =
2932 E_Discriminant
2933 and then Ekind (Etype (Entity (Selector_Name (Prev_Orig)))) =
2934 E_Anonymous_Access_Type
2935 then
2936 Add_Extra_Actual
2937 (Make_Integer_Literal (Loc,
2938 Intval => Object_Access_Level (Prefix (Prev_Orig))),
2939 Extra_Accessibility (Formal));
2940
2941 -- All other cases
fdce4bb7 2942
70482933
RK
2943 else
2944 case Nkind (Prev_Orig) is
2945
2946 when N_Attribute_Reference =>
70482933
RK
2947 case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
2948
75a64833 2949 -- For X'Access, pass on the level of the prefix X
70482933
RK
2950
2951 when Attribute_Access =>
996c8821 2952
6cce2156
GD
2953 -- If this is an Access attribute applied to the
2954 -- the current instance object passed to a type
2955 -- initialization procedure, then use the level
2956 -- of the type itself. This is not really correct,
2957 -- as there should be an extra level parameter
2958 -- passed in with _init formals (only in the case
2959 -- where the type is immutably limited), but we
2960 -- don't have an easy way currently to create such
2961 -- an extra formal (init procs aren't ever frozen).
2962 -- For now we just use the level of the type,
2963 -- which may be too shallow, but that works better
2964 -- than passing Object_Access_Level of the type,
2965 -- which can be one level too deep in some cases.
2966 -- ???
2967
2968 if Is_Entity_Name (Prefix (Prev_Orig))
2969 and then Is_Type (Entity (Prefix (Prev_Orig)))
2970 then
2971 Add_Extra_Actual
2972 (Make_Integer_Literal (Loc,
2973 Intval =>
2974 Type_Access_Level
2975 (Entity (Prefix (Prev_Orig)))),
2976 Extra_Accessibility (Formal));
2977
2978 else
2979 Add_Extra_Actual
2980 (Make_Integer_Literal (Loc,
2981 Intval =>
2982 Object_Access_Level
2983 (Prefix (Prev_Orig))),
2984 Extra_Accessibility (Formal));
2985 end if;
70482933
RK
2986
2987 -- Treat the unchecked attributes as library-level
2988
2989 when Attribute_Unchecked_Access |
2990 Attribute_Unrestricted_Access =>
01aef5ad
GD
2991 Add_Extra_Actual
2992 (Make_Integer_Literal (Loc,
2993 Intval => Scope_Depth (Standard_Standard)),
2994 Extra_Accessibility (Formal));
70482933
RK
2995
2996 -- No other cases of attributes returning access
9d983bbf 2997 -- values that can be passed to access parameters.
70482933
RK
2998
2999 when others =>
3000 raise Program_Error;
3001
3002 end case;
3003
92a745f3
TQ
3004 -- For allocators we pass the level of the execution of the
3005 -- called subprogram, which is one greater than the current
3006 -- scope level.
70482933
RK
3007
3008 when N_Allocator =>
01aef5ad
GD
3009 Add_Extra_Actual
3010 (Make_Integer_Literal (Loc,
3011 Intval => Scope_Depth (Current_Scope) + 1),
3012 Extra_Accessibility (Formal));
70482933 3013
d15f9422
AC
3014 -- For most other cases we simply pass the level of the
3015 -- actual's access type. The type is retrieved from
3016 -- Prev rather than Prev_Orig, because in some cases
3017 -- Prev_Orig denotes an original expression that has
3018 -- not been analyzed.
70482933
RK
3019
3020 when others =>
01aef5ad 3021 Add_Extra_Actual
d15f9422 3022 (Dynamic_Accessibility_Level (Prev),
01aef5ad 3023 Extra_Accessibility (Formal));
70482933
RK
3024 end case;
3025 end if;
3026 end if;
3027
2f1b20a9 3028 -- Perform the check of 4.6(49) that prevents a null value from being
b3f48fd4
AC
3029 -- passed as an actual to an access parameter. Note that the check
3030 -- is elided in the common cases of passing an access attribute or
2f1b20a9
ES
3031 -- access parameter as an actual. Also, we currently don't enforce
3032 -- this check for expander-generated actuals and when -gnatdj is set.
70482933 3033
0791fbe9 3034 if Ada_Version >= Ada_2005 then
70482933 3035
b3f48fd4
AC
3036 -- Ada 2005 (AI-231): Check null-excluding access types. Note that
3037 -- the intent of 6.4.1(13) is that null-exclusion checks should
3038 -- not be done for 'out' parameters, even though it refers only
308e6f3a 3039 -- to constraint checks, and a null_exclusion is not a constraint.
b3f48fd4 3040 -- Note that AI05-0196-1 corrects this mistake in the RM.
70482933 3041
2f1b20a9
ES
3042 if Is_Access_Type (Etype (Formal))
3043 and then Can_Never_Be_Null (Etype (Formal))
b3f48fd4 3044 and then Ekind (Formal) /= E_Out_Parameter
2f1b20a9 3045 and then Nkind (Prev) /= N_Raise_Constraint_Error
d766cee3 3046 and then (Known_Null (Prev)
996c8821 3047 or else not Can_Never_Be_Null (Etype (Prev)))
2f1b20a9
ES
3048 then
3049 Install_Null_Excluding_Check (Prev);
3050 end if;
70482933 3051
0791fbe9 3052 -- Ada_Version < Ada_2005
70482933 3053
2f1b20a9
ES
3054 else
3055 if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
3056 or else Access_Checks_Suppressed (Subp)
3057 then
3058 null;
70482933 3059
2f1b20a9
ES
3060 elsif Debug_Flag_J then
3061 null;
70482933 3062
2f1b20a9
ES
3063 elsif not Comes_From_Source (Prev) then
3064 null;
70482933 3065
2f1b20a9
ES
3066 elsif Is_Entity_Name (Prev)
3067 and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
3068 then
3069 null;
2820d220 3070
ac4d6407 3071 elsif Nkind_In (Prev, N_Allocator, N_Attribute_Reference) then
2f1b20a9
ES
3072 null;
3073
3074 -- Suppress null checks when passing to access parameters of Java
7888a6ae
GD
3075 -- and CIL subprograms. (Should this be done for other foreign
3076 -- conventions as well ???)
2f1b20a9 3077
7888a6ae
GD
3078 elsif Convention (Subp) = Convention_Java
3079 or else Convention (Subp) = Convention_CIL
3080 then
2f1b20a9
ES
3081 null;
3082
3083 else
3084 Install_Null_Excluding_Check (Prev);
3085 end if;
70482933
RK
3086 end if;
3087
fbf5a39b
AC
3088 -- Perform appropriate validity checks on parameters that
3089 -- are entities.
70482933
RK
3090
3091 if Validity_Checks_On then
6cdb2c6e 3092 if (Ekind (Formal) = E_In_Parameter
996c8821 3093 and then Validity_Check_In_Params)
6cdb2c6e
AC
3094 or else
3095 (Ekind (Formal) = E_In_Out_Parameter
996c8821 3096 and then Validity_Check_In_Out_Params)
70482933 3097 then
7888a6ae
GD
3098 -- If the actual is an indexed component of a packed type (or
3099 -- is an indexed or selected component whose prefix recursively
3100 -- meets this condition), it has not been expanded yet. It will
3101 -- be copied in the validity code that follows, and has to be
3102 -- expanded appropriately, so reanalyze it.
08aa9a4a 3103
7888a6ae
GD
3104 -- What we do is just to unset analyzed bits on prefixes till
3105 -- we reach something that does not have a prefix.
3106
3107 declare
3108 Nod : Node_Id;
3109
3110 begin
3111 Nod := Actual;
ac4d6407
RD
3112 while Nkind_In (Nod, N_Indexed_Component,
3113 N_Selected_Component)
7888a6ae
GD
3114 loop
3115 Set_Analyzed (Nod, False);
3116 Nod := Prefix (Nod);
3117 end loop;
3118 end;
08aa9a4a 3119
70482933 3120 Ensure_Valid (Actual);
70482933
RK
3121 end if;
3122 end if;
3123
3124 -- For IN OUT and OUT parameters, ensure that subscripts are valid
3125 -- since this is a left side reference. We only do this for calls
3126 -- from the source program since we assume that compiler generated
3127 -- calls explicitly generate any required checks. We also need it
b3f48fd4
AC
3128 -- only if we are doing standard validity checks, since clearly it is
3129 -- not needed if validity checks are off, and in subscript validity
3130 -- checking mode, all indexed components are checked with a call
3131 -- directly from Expand_N_Indexed_Component.
70482933 3132
6dfc5592 3133 if Comes_From_Source (Call_Node)
70482933
RK
3134 and then Ekind (Formal) /= E_In_Parameter
3135 and then Validity_Checks_On
3136 and then Validity_Check_Default
3137 and then not Validity_Check_Subscripts
3138 then
3139 Check_Valid_Lvalue_Subscripts (Actual);
3140 end if;
3141
c8ef728f
ES
3142 -- Mark any scalar OUT parameter that is a simple variable as no
3143 -- longer known to be valid (unless the type is always valid). This
3144 -- reflects the fact that if an OUT parameter is never set in a
3145 -- procedure, then it can become invalid on the procedure return.
fbf5a39b
AC
3146
3147 if Ekind (Formal) = E_Out_Parameter
3148 and then Is_Entity_Name (Actual)
3149 and then Ekind (Entity (Actual)) = E_Variable
3150 and then not Is_Known_Valid (Etype (Actual))
3151 then
3152 Set_Is_Known_Valid (Entity (Actual), False);
3153 end if;
3154
c8ef728f
ES
3155 -- For an OUT or IN OUT parameter, if the actual is an entity, then
3156 -- clear current values, since they can be clobbered. We are probably
3157 -- doing this in more places than we need to, but better safe than
a90bd866 3158 -- sorry when it comes to retaining bad current values.
fbf5a39b
AC
3159
3160 if Ekind (Formal) /= E_In_Parameter
3161 and then Is_Entity_Name (Actual)
67ce0d7e 3162 and then Present (Entity (Actual))
fbf5a39b 3163 then
67ce0d7e
RD
3164 declare
3165 Ent : constant Entity_Id := Entity (Actual);
3166 Sav : Node_Id;
3167
3168 begin
ac4d6407
RD
3169 -- For an OUT or IN OUT parameter that is an assignable entity,
3170 -- we do not want to clobber the Last_Assignment field, since
3171 -- if it is set, it was precisely because it is indeed an OUT
a90bd866 3172 -- or IN OUT parameter. We do reset the Is_Known_Valid flag
75ba322d 3173 -- since the subprogram could have returned in invalid value.
ac4d6407 3174
8c5b03a0 3175 if Ekind_In (Formal, E_Out_Parameter, E_In_Out_Parameter)
67ce0d7e
RD
3176 and then Is_Assignable (Ent)
3177 then
3178 Sav := Last_Assignment (Ent);
3179 Kill_Current_Values (Ent);
3180 Set_Last_Assignment (Ent, Sav);
75ba322d 3181 Set_Is_Known_Valid (Ent, False);
67ce0d7e 3182
4bb43ffb 3183 -- For all other cases, just kill the current values
67ce0d7e
RD
3184
3185 else
3186 Kill_Current_Values (Ent);
3187 end if;
3188 end;
fbf5a39b
AC
3189 end if;
3190
70482933
RK
3191 -- If the formal is class wide and the actual is an aggregate, force
3192 -- evaluation so that the back end who does not know about class-wide
3193 -- type, does not generate a temporary of the wrong size.
3194
3195 if not Is_Class_Wide_Type (Etype (Formal)) then
3196 null;
3197
3198 elsif Nkind (Actual) = N_Aggregate
3199 or else (Nkind (Actual) = N_Qualified_Expression
3200 and then Nkind (Expression (Actual)) = N_Aggregate)
3201 then
3202 Force_Evaluation (Actual);
3203 end if;
3204
3205 -- In a remote call, if the formal is of a class-wide type, check
3206 -- that the actual meets the requirements described in E.4(18).
3207
7888a6ae 3208 if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
70482933 3209 Insert_Action (Actual,
7888a6ae
GD
3210 Make_Transportable_Check (Loc,
3211 Duplicate_Subexpr_Move_Checks (Actual)));
70482933
RK
3212 end if;
3213
5d09245e
AC
3214 -- This label is required when skipping extra actual generation for
3215 -- Unchecked_Union parameters.
3216
3217 <<Skip_Extra_Actual_Generation>>
3218
fdce4bb7 3219 Param_Count := Param_Count + 1;
70482933
RK
3220 Next_Actual (Actual);
3221 Next_Formal (Formal);
3222 end loop;
3223
bdf69d33 3224 -- If we are calling an Ada 2012 function which needs to have the
63585f75
SB
3225 -- "accessibility level determined by the point of call" (AI05-0234)
3226 -- passed in to it, then pass it in.
3227
b8a93198 3228 if Ekind_In (Subp, E_Function, E_Operator, E_Subprogram_Type)
57a3fca9
AC
3229 and then
3230 Present (Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)))
63585f75
SB
3231 then
3232 declare
3233 Ancestor : Node_Id := Parent (Call_Node);
3234 Level : Node_Id := Empty;
3235 Defer : Boolean := False;
3236
3237 begin
3238 -- Unimplemented: if Subp returns an anonymous access type, then
57a3fca9 3239
63585f75
SB
3240 -- a) if the call is the operand of an explict conversion, then
3241 -- the target type of the conversion (a named access type)
3242 -- determines the accessibility level pass in;
57a3fca9 3243
63585f75
SB
3244 -- b) if the call defines an access discriminant of an object
3245 -- (e.g., the discriminant of an object being created by an
3246 -- allocator, or the discriminant of a function result),
3247 -- then the accessibility level to pass in is that of the
3248 -- discriminated object being initialized).
3249
57a3fca9
AC
3250 -- ???
3251
63585f75
SB
3252 while Nkind (Ancestor) = N_Qualified_Expression
3253 loop
3254 Ancestor := Parent (Ancestor);
3255 end loop;
3256
3257 case Nkind (Ancestor) is
3258 when N_Allocator =>
ebf494ec 3259
63585f75 3260 -- At this point, we'd like to assign
ebf494ec 3261
63585f75 3262 -- Level := Dynamic_Accessibility_Level (Ancestor);
ebf494ec 3263
63585f75
SB
3264 -- but Etype of Ancestor may not have been set yet,
3265 -- so that doesn't work.
ebf494ec 3266
63585f75
SB
3267 -- Handle this later in Expand_Allocator_Expression.
3268
3269 Defer := True;
3270
3271 when N_Object_Declaration | N_Object_Renaming_Declaration =>
3272 declare
3273 Def_Id : constant Entity_Id :=
3274 Defining_Identifier (Ancestor);
ebf494ec 3275
63585f75
SB
3276 begin
3277 if Is_Return_Object (Def_Id) then
3278 if Present (Extra_Accessibility_Of_Result
3279 (Return_Applies_To (Scope (Def_Id))))
3280 then
3281 -- Pass along value that was passed in if the
3282 -- routine we are returning from also has an
3283 -- Accessibility_Of_Result formal.
3284
3285 Level :=
3286 New_Occurrence_Of
3287 (Extra_Accessibility_Of_Result
ebf494ec 3288 (Return_Applies_To (Scope (Def_Id))), Loc);
63585f75
SB
3289 end if;
3290 else
ebf494ec
RD
3291 Level :=
3292 Make_Integer_Literal (Loc,
3293 Intval => Object_Access_Level (Def_Id));
63585f75
SB
3294 end if;
3295 end;
3296
3297 when N_Simple_Return_Statement =>
3298 if Present (Extra_Accessibility_Of_Result
ebf494ec
RD
3299 (Return_Applies_To
3300 (Return_Statement_Entity (Ancestor))))
63585f75 3301 then
fb12497d
AC
3302 -- Pass along value that was passed in if the returned
3303 -- routine also has an Accessibility_Of_Result formal.
63585f75
SB
3304
3305 Level :=
3306 New_Occurrence_Of
3307 (Extra_Accessibility_Of_Result
3308 (Return_Applies_To
3309 (Return_Statement_Entity (Ancestor))), Loc);
3310 end if;
3311
3312 when others =>
3313 null;
3314 end case;
3315
3316 if not Defer then
3317 if not Present (Level) then
ebf494ec 3318
63585f75 3319 -- The "innermost master that evaluates the function call".
ebf494ec 3320
886b5a18
AC
3321 -- ??? - Should we use Integer'Last here instead in order
3322 -- to deal with (some of) the problems associated with
3323 -- calls to subps whose enclosing scope is unknown (e.g.,
3324 -- Anon_Access_To_Subp_Param.all)?
63585f75
SB
3325
3326 Level := Make_Integer_Literal (Loc,
3327 Scope_Depth (Current_Scope) + 1);
3328 end if;
3329
57a3fca9
AC
3330 Add_Extra_Actual
3331 (Level,
3332 Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)));
63585f75
SB
3333 end if;
3334 end;
3335 end if;
3336
4bb43ffb 3337 -- If we are expanding the RHS of an assignment we need to check if tag
c8ef728f
ES
3338 -- propagation is needed. You might expect this processing to be in
3339 -- Analyze_Assignment but has to be done earlier (bottom-up) because the
3340 -- assignment might be transformed to a declaration for an unconstrained
3341 -- value if the expression is classwide.
70482933 3342
6dfc5592
RD
3343 if Nkind (Call_Node) = N_Function_Call
3344 and then Is_Tag_Indeterminate (Call_Node)
3345 and then Is_Entity_Name (Name (Call_Node))
70482933
RK
3346 then
3347 declare
3348 Ass : Node_Id := Empty;
3349
3350 begin
6dfc5592
RD
3351 if Nkind (Parent (Call_Node)) = N_Assignment_Statement then
3352 Ass := Parent (Call_Node);
70482933 3353
6dfc5592 3354 elsif Nkind (Parent (Call_Node)) = N_Qualified_Expression
3cae7f14
RD
3355 and then Nkind (Parent (Parent (Call_Node))) =
3356 N_Assignment_Statement
70482933 3357 then
6dfc5592 3358 Ass := Parent (Parent (Call_Node));
02822a92 3359
6dfc5592 3360 elsif Nkind (Parent (Call_Node)) = N_Explicit_Dereference
3cae7f14
RD
3361 and then Nkind (Parent (Parent (Call_Node))) =
3362 N_Assignment_Statement
02822a92 3363 then
6dfc5592 3364 Ass := Parent (Parent (Call_Node));
70482933
RK
3365 end if;
3366
3367 if Present (Ass)
3368 and then Is_Class_Wide_Type (Etype (Name (Ass)))
3369 then
6dfc5592
RD
3370 if Is_Access_Type (Etype (Call_Node)) then
3371 if Designated_Type (Etype (Call_Node)) /=
02822a92
RD
3372 Root_Type (Etype (Name (Ass)))
3373 then
3374 Error_Msg_NE
3375 ("tag-indeterminate expression "
d766cee3 3376 & " must have designated type& (RM 5.2 (6))",
3cae7f14 3377 Call_Node, Root_Type (Etype (Name (Ass))));
02822a92 3378 else
6dfc5592 3379 Propagate_Tag (Name (Ass), Call_Node);
02822a92
RD
3380 end if;
3381
6dfc5592 3382 elsif Etype (Call_Node) /= Root_Type (Etype (Name (Ass))) then
fbf5a39b
AC
3383 Error_Msg_NE
3384 ("tag-indeterminate expression must have type&"
6dfc5592
RD
3385 & "(RM 5.2 (6))",
3386 Call_Node, Root_Type (Etype (Name (Ass))));
02822a92 3387
fbf5a39b 3388 else
6dfc5592 3389 Propagate_Tag (Name (Ass), Call_Node);
fbf5a39b
AC
3390 end if;
3391
3392 -- The call will be rewritten as a dispatching call, and
3393 -- expanded as such.
3394
70482933
RK
3395 return;
3396 end if;
3397 end;
3398 end if;
3399
758c442c
GD
3400 -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
3401 -- it to point to the correct secondary virtual table
3402
d3b00ce3 3403 if Nkind (Call_Node) in N_Subprogram_Call
758c442c
GD
3404 and then CW_Interface_Formals_Present
3405 then
6dfc5592 3406 Expand_Interface_Actuals (Call_Node);
758c442c
GD
3407 end if;
3408
70482933
RK
3409 -- Deals with Dispatch_Call if we still have a call, before expanding
3410 -- extra actuals since this will be done on the re-analysis of the
b3f48fd4
AC
3411 -- dispatching call. Note that we do not try to shorten the actual list
3412 -- for a dispatching call, it would not make sense to do so. Expansion
3413 -- of dispatching calls is suppressed when VM_Target, because the VM
3414 -- back-ends directly handle the generation of dispatching calls and
3415 -- would have to undo any expansion to an indirect call.
70482933 3416
d3b00ce3 3417 if Nkind (Call_Node) in N_Subprogram_Call
6dfc5592 3418 and then Present (Controlling_Argument (Call_Node))
70482933 3419 then
6dfc5592 3420 declare
dd386db0 3421 Call_Typ : constant Entity_Id := Etype (Call_Node);
6dfc5592
RD
3422 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
3423 Eq_Prim_Op : Entity_Id := Empty;
dd386db0
AC
3424 New_Call : Node_Id;
3425 Param : Node_Id;
3426 Prev_Call : Node_Id;
fbf5a39b 3427
6dfc5592
RD
3428 begin
3429 if not Is_Limited_Type (Typ) then
3430 Eq_Prim_Op := Find_Prim_Op (Typ, Name_Op_Eq);
3431 end if;
fbf5a39b 3432
6dfc5592
RD
3433 if Tagged_Type_Expansion then
3434 Expand_Dispatching_Call (Call_Node);
70f91180 3435
6dfc5592
RD
3436 -- The following return is worrisome. Is it really OK to skip
3437 -- all remaining processing in this procedure ???
5a1ccfb1 3438
6dfc5592 3439 return;
5a1ccfb1 3440
6dfc5592
RD
3441 -- VM targets
3442
3443 else
3444 Apply_Tag_Checks (Call_Node);
3445
dd386db0
AC
3446 -- If this is a dispatching "=", we must first compare the
3447 -- tags so we generate: x.tag = y.tag and then x = y
3448
3449 if Subp = Eq_Prim_Op then
3450
3451 -- Mark the node as analyzed to avoid reanalizing this
3452 -- dispatching call (which would cause a never-ending loop)
3453
3454 Prev_Call := Relocate_Node (Call_Node);
3455 Set_Analyzed (Prev_Call);
3456
3457 Param := First_Actual (Call_Node);
3458 New_Call :=
3459 Make_And_Then (Loc,
3460 Left_Opnd =>
3461 Make_Op_Eq (Loc,
3462 Left_Opnd =>
3463 Make_Selected_Component (Loc,
3464 Prefix => New_Value (Param),
3465 Selector_Name =>
e4494292
RD
3466 New_Occurrence_Of
3467 (First_Tag_Component (Typ), Loc)),
dd386db0
AC
3468
3469 Right_Opnd =>
3470 Make_Selected_Component (Loc,
3471 Prefix =>
3472 Unchecked_Convert_To (Typ,
3473 New_Value (Next_Actual (Param))),
3474 Selector_Name =>
e4494292 3475 New_Occurrence_Of
dd386db0
AC
3476 (First_Tag_Component (Typ), Loc))),
3477 Right_Opnd => Prev_Call);
3478
3479 Rewrite (Call_Node, New_Call);
3480
3481 Analyze_And_Resolve
3482 (Call_Node, Call_Typ, Suppress => All_Checks);
3483 end if;
3484
6dfc5592
RD
3485 -- Expansion of a dispatching call results in an indirect call,
3486 -- which in turn causes current values to be killed (see
3487 -- Resolve_Call), so on VM targets we do the call here to
3488 -- ensure consistent warnings between VM and non-VM targets.
3489
3490 Kill_Current_Values;
3491 end if;
3492
3493 -- If this is a dispatching "=" then we must update the reference
3494 -- to the call node because we generated:
3495 -- x.tag = y.tag and then x = y
3496
dd386db0 3497 if Subp = Eq_Prim_Op then
6dfc5592
RD
3498 Call_Node := Right_Opnd (Call_Node);
3499 end if;
3500 end;
70f91180 3501 end if;
70482933
RK
3502
3503 -- Similarly, expand calls to RCI subprograms on which pragma
3504 -- All_Calls_Remote applies. The rewriting will be reanalyzed
b3f48fd4
AC
3505 -- later. Do this only when the call comes from source since we
3506 -- do not want such a rewriting to occur in expanded code.
70482933 3507
6dfc5592
RD
3508 if Is_All_Remote_Call (Call_Node) then
3509 Expand_All_Calls_Remote_Subprogram_Call (Call_Node);
70482933
RK
3510
3511 -- Similarly, do not add extra actuals for an entry call whose entity
3512 -- is a protected procedure, or for an internal protected subprogram
3513 -- call, because it will be rewritten as a protected subprogram call
3514 -- and reanalyzed (see Expand_Protected_Subprogram_Call).
3515
3516 elsif Is_Protected_Type (Scope (Subp))
3517 and then (Ekind (Subp) = E_Procedure
3518 or else Ekind (Subp) = E_Function)
3519 then
3520 null;
3521
3522 -- During that loop we gathered the extra actuals (the ones that
3523 -- correspond to Extra_Formals), so now they can be appended.
3524
3525 else
3526 while Is_Non_Empty_List (Extra_Actuals) loop
3527 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
3528 end loop;
3529 end if;
3530
b3f48fd4
AC
3531 -- At this point we have all the actuals, so this is the point at which
3532 -- the various expansion activities for actuals is carried out.
f44fe430 3533
6dfc5592 3534 Expand_Actuals (Call_Node, Subp);
70482933 3535
5f49133f
AC
3536 -- Verify that the actuals do not share storage. This check must be done
3537 -- on the caller side rather that inside the subprogram to avoid issues
3538 -- of parameter passing.
3539
3540 if Check_Aliasing_Of_Parameters then
3541 Apply_Parameter_Aliasing_Checks (Call_Node, Subp);
3542 end if;
3543
b3f48fd4
AC
3544 -- If the subprogram is a renaming, or if it is inherited, replace it in
3545 -- the call with the name of the actual subprogram being called. If this
3546 -- is a dispatching call, the run-time decides what to call. The Alias
3547 -- attribute does not apply to entries.
70482933 3548
6dfc5592
RD
3549 if Nkind (Call_Node) /= N_Entry_Call_Statement
3550 and then No (Controlling_Argument (Call_Node))
70482933 3551 and then Present (Parent_Subp)
df3e68b1 3552 and then not Is_Direct_Deep_Call (Subp)
70482933
RK
3553 then
3554 if Present (Inherited_From_Formal (Subp)) then
3555 Parent_Subp := Inherited_From_Formal (Subp);
3556 else
b81a5940 3557 Parent_Subp := Ultimate_Alias (Parent_Subp);
70482933
RK
3558 end if;
3559
c8ef728f
ES
3560 -- The below setting of Entity is suspect, see F109-018 discussion???
3561
6dfc5592 3562 Set_Entity (Name (Call_Node), Parent_Subp);
70482933 3563
f937473f 3564 if Is_Abstract_Subprogram (Parent_Subp)
70482933
RK
3565 and then not In_Instance
3566 then
3567 Error_Msg_NE
6dfc5592
RD
3568 ("cannot call abstract subprogram &!",
3569 Name (Call_Node), Parent_Subp);
70482933
RK
3570 end if;
3571
d4817e3f
HK
3572 -- Inspect all formals of derived subprogram Subp. Compare parameter
3573 -- types with the parent subprogram and check whether an actual may
3574 -- need a type conversion to the corresponding formal of the parent
3575 -- subprogram.
70482933 3576
d4817e3f 3577 -- Not clear whether intrinsic subprograms need such conversions. ???
70482933
RK
3578
3579 if not Is_Intrinsic_Subprogram (Parent_Subp)
3580 or else Is_Generic_Instance (Parent_Subp)
3581 then
d4817e3f
HK
3582 declare
3583 procedure Convert (Act : Node_Id; Typ : Entity_Id);
3584 -- Rewrite node Act as a type conversion of Act to Typ. Analyze
3585 -- and resolve the newly generated construct.
70482933 3586
d4817e3f
HK
3587 -------------
3588 -- Convert --
3589 -------------
70482933 3590
d4817e3f
HK
3591 procedure Convert (Act : Node_Id; Typ : Entity_Id) is
3592 begin
3593 Rewrite (Act, OK_Convert_To (Typ, Relocate_Node (Act)));
3594 Analyze (Act);
3595 Resolve (Act, Typ);
3596 end Convert;
3597
3598 -- Local variables
3599
3600 Actual_Typ : Entity_Id;
3601 Formal_Typ : Entity_Id;
3602 Parent_Typ : Entity_Id;
3603
3604 begin
6dfc5592 3605 Actual := First_Actual (Call_Node);
d4817e3f
HK
3606 Formal := First_Formal (Subp);
3607 Parent_Formal := First_Formal (Parent_Subp);
3608 while Present (Formal) loop
3609 Actual_Typ := Etype (Actual);
3610 Formal_Typ := Etype (Formal);
3611 Parent_Typ := Etype (Parent_Formal);
3612
3613 -- For an IN parameter of a scalar type, the parent formal
3614 -- type and derived formal type differ or the parent formal
3615 -- type and actual type do not match statically.
3616
3617 if Is_Scalar_Type (Formal_Typ)
3618 and then Ekind (Formal) = E_In_Parameter
3619 and then Formal_Typ /= Parent_Typ
3620 and then
3621 not Subtypes_Statically_Match (Parent_Typ, Actual_Typ)
3622 and then not Raises_Constraint_Error (Actual)
3623 then
3624 Convert (Actual, Parent_Typ);
3625 Enable_Range_Check (Actual);
3626
d79e621a
GD
3627 -- If the actual has been marked as requiring a range
3628 -- check, then generate it here.
3629
3630 if Do_Range_Check (Actual) then
d79e621a
GD
3631 Generate_Range_Check
3632 (Actual, Etype (Formal), CE_Range_Check_Failed);
3633 end if;
3634
d4817e3f
HK
3635 -- For access types, the parent formal type and actual type
3636 -- differ.
3637
3638 elsif Is_Access_Type (Formal_Typ)
3639 and then Base_Type (Parent_Typ) /= Base_Type (Actual_Typ)
70482933 3640 then
d4817e3f
HK
3641 if Ekind (Formal) /= E_In_Parameter then
3642 Convert (Actual, Parent_Typ);
3643
3644 elsif Ekind (Parent_Typ) = E_Anonymous_Access_Type
3645 and then Designated_Type (Parent_Typ) /=
3646 Designated_Type (Actual_Typ)
3647 and then not Is_Controlling_Formal (Formal)
3648 then
3649 -- This unchecked conversion is not necessary unless
3650 -- inlining is enabled, because in that case the type
3651 -- mismatch may become visible in the body about to be
3652 -- inlined.
3653
3654 Rewrite (Actual,
3655 Unchecked_Convert_To (Parent_Typ,
3656 Relocate_Node (Actual)));
d4817e3f
HK
3657 Analyze (Actual);
3658 Resolve (Actual, Parent_Typ);
3659 end if;
70482933 3660
ab01e614
AC
3661 -- If there is a change of representation, then generate a
3662 -- warning, and do the change of representation.
3663
3664 elsif not Same_Representation (Formal_Typ, Parent_Typ) then
3665 Error_Msg_N
3666 ("??change of representation required", Actual);
3667 Convert (Actual, Parent_Typ);
3668
d4817e3f
HK
3669 -- For array and record types, the parent formal type and
3670 -- derived formal type have different sizes or pragma Pack
3671 -- status.
70482933 3672
d4817e3f 3673 elsif ((Is_Array_Type (Formal_Typ)
ab01e614 3674 and then Is_Array_Type (Parent_Typ))
d4817e3f
HK
3675 or else
3676 (Is_Record_Type (Formal_Typ)
ab01e614 3677 and then Is_Record_Type (Parent_Typ)))
d4817e3f
HK
3678 and then
3679 (Esize (Formal_Typ) /= Esize (Parent_Typ)
ab01e614
AC
3680 or else Has_Pragma_Pack (Formal_Typ) /=
3681 Has_Pragma_Pack (Parent_Typ))
d4817e3f
HK
3682 then
3683 Convert (Actual, Parent_Typ);
70482933 3684 end if;
70482933 3685
d4817e3f
HK
3686 Next_Actual (Actual);
3687 Next_Formal (Formal);
3688 Next_Formal (Parent_Formal);
3689 end loop;
3690 end;
70482933
RK
3691 end if;
3692
3693 Orig_Subp := Subp;
3694 Subp := Parent_Subp;
3695 end if;
3696
8a36a0cc
AC
3697 -- Deal with case where call is an explicit dereference
3698
6dfc5592 3699 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
70482933
RK
3700
3701 -- Handle case of access to protected subprogram type
3702
f937473f 3703 if Is_Access_Protected_Subprogram_Type
6dfc5592 3704 (Base_Type (Etype (Prefix (Name (Call_Node)))))
70482933 3705 then
b3f48fd4
AC
3706 -- If this is a call through an access to protected operation, the
3707 -- prefix has the form (object'address, operation'access). Rewrite
3708 -- as a for other protected calls: the object is the 1st parameter
3709 -- of the list of actuals.
70482933
RK
3710
3711 declare
3712 Call : Node_Id;
3713 Parm : List_Id;
3714 Nam : Node_Id;
3715 Obj : Node_Id;
6dfc5592 3716 Ptr : constant Node_Id := Prefix (Name (Call_Node));
fbf5a39b
AC
3717
3718 T : constant Entity_Id :=
3719 Equivalent_Type (Base_Type (Etype (Ptr)));
3720
3721 D_T : constant Entity_Id :=
3722 Designated_Type (Base_Type (Etype (Ptr)));
70482933
RK
3723
3724 begin
f44fe430
RD
3725 Obj :=
3726 Make_Selected_Component (Loc,
3727 Prefix => Unchecked_Convert_To (T, Ptr),
3728 Selector_Name =>
3729 New_Occurrence_Of (First_Entity (T), Loc));
3730
3731 Nam :=
3732 Make_Selected_Component (Loc,
3733 Prefix => Unchecked_Convert_To (T, Ptr),
3734 Selector_Name =>
3735 New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
70482933 3736
02822a92
RD
3737 Nam :=
3738 Make_Explicit_Dereference (Loc,
3739 Prefix => Nam);
70482933 3740
6dfc5592
RD
3741 if Present (Parameter_Associations (Call_Node)) then
3742 Parm := Parameter_Associations (Call_Node);
70482933
RK
3743 else
3744 Parm := New_List;
3745 end if;
3746
3747 Prepend (Obj, Parm);
3748
3749 if Etype (D_T) = Standard_Void_Type then
02822a92
RD
3750 Call :=
3751 Make_Procedure_Call_Statement (Loc,
3752 Name => Nam,
3753 Parameter_Associations => Parm);
70482933 3754 else
02822a92
RD
3755 Call :=
3756 Make_Function_Call (Loc,
3757 Name => Nam,
3758 Parameter_Associations => Parm);
70482933
RK
3759 end if;
3760
6dfc5592 3761 Set_First_Named_Actual (Call, First_Named_Actual (Call_Node));
70482933
RK
3762 Set_Etype (Call, Etype (D_T));
3763
3764 -- We do not re-analyze the call to avoid infinite recursion.
3765 -- We analyze separately the prefix and the object, and set
3766 -- the checks on the prefix that would otherwise be emitted
3767 -- when resolving a call.
3768
6dfc5592 3769 Rewrite (Call_Node, Call);
70482933
RK
3770 Analyze (Nam);
3771 Apply_Access_Check (Nam);
3772 Analyze (Obj);
3773 return;
3774 end;
3775 end if;
3776 end if;
3777
3778 -- If this is a call to an intrinsic subprogram, then perform the
3779 -- appropriate expansion to the corresponding tree node and we
a90bd866 3780 -- are all done (since after that the call is gone).
70482933 3781
98f01d53
AC
3782 -- In the case where the intrinsic is to be processed by the back end,
3783 -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
b3f48fd4
AC
3784 -- since the idea in this case is to pass the call unchanged. If the
3785 -- intrinsic is an inherited unchecked conversion, and the derived type
3786 -- is the target type of the conversion, we must retain it as the return
3787 -- type of the expression. Otherwise the expansion below, which uses the
3788 -- parent operation, will yield the wrong type.
98f01d53 3789
70482933 3790 if Is_Intrinsic_Subprogram (Subp) then
6dfc5592 3791 Expand_Intrinsic_Call (Call_Node, Subp);
d766cee3 3792
6dfc5592 3793 if Nkind (Call_Node) = N_Unchecked_Type_Conversion
d766cee3
RD
3794 and then Parent_Subp /= Orig_Subp
3795 and then Etype (Parent_Subp) /= Etype (Orig_Subp)
3796 then
6dfc5592 3797 Set_Etype (Call_Node, Etype (Orig_Subp));
d766cee3
RD
3798 end if;
3799
70482933
RK
3800 return;
3801 end if;
3802
b29def53
AC
3803 if Ekind_In (Subp, E_Function, E_Procedure) then
3804
26a43556 3805 -- We perform two simple optimization on calls:
8dbf3473 3806
3563739b 3807 -- a) replace calls to null procedures unconditionally;
26a43556 3808
3563739b 3809 -- b) for To_Address, just do an unchecked conversion. Not only is
26a43556
AC
3810 -- this efficient, but it also avoids order of elaboration problems
3811 -- when address clauses are inlined (address expression elaborated
3812 -- at the wrong point).
3813
3814 -- We perform these optimization regardless of whether we are in the
3815 -- main unit or in a unit in the context of the main unit, to ensure
2cbac6c6 3816 -- that tree generated is the same in both cases, for CodePeer use.
26a43556
AC
3817
3818 if Is_RTE (Subp, RE_To_Address) then
6dfc5592 3819 Rewrite (Call_Node,
26a43556 3820 Unchecked_Convert_To
6dfc5592 3821 (RTE (RE_Address), Relocate_Node (First_Actual (Call_Node))));
26a43556
AC
3822 return;
3823
3824 elsif Is_Null_Procedure (Subp) then
6dfc5592 3825 Rewrite (Call_Node, Make_Null_Statement (Loc));
8dbf3473
AC
3826 return;
3827 end if;
3828
6c26bac2 3829 -- Handle inlining. No action needed if the subprogram is not inlined
f087ea44 3830
6c26bac2
AC
3831 if not Is_Inlined (Subp) then
3832 null;
f087ea44 3833
6c26bac2 3834 -- Handle frontend inlining
84f4072a 3835
6c26bac2 3836 elsif not Back_End_Inlining then
a41ea816 3837 Inlined_Subprogram : declare
fbf5a39b
AC
3838 Bod : Node_Id;
3839 Must_Inline : Boolean := False;
3840 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
a41ea816 3841
70482933 3842 begin
2f1b20a9
ES
3843 -- Verify that the body to inline has already been seen, and
3844 -- that if the body is in the current unit the inlining does
3845 -- not occur earlier. This avoids order-of-elaboration problems
3846 -- in the back end.
3847
3848 -- This should be documented in sinfo/einfo ???
70482933 3849
fbf5a39b
AC
3850 if No (Spec)
3851 or else Nkind (Spec) /= N_Subprogram_Declaration
3852 or else No (Body_To_Inline (Spec))
70482933 3853 then
fbf5a39b
AC
3854 Must_Inline := False;
3855
26a43556
AC
3856 -- If this an inherited function that returns a private type,
3857 -- do not inline if the full view is an unconstrained array,
3858 -- because such calls cannot be inlined.
5b4994bc
AC
3859
3860 elsif Present (Orig_Subp)
3861 and then Is_Array_Type (Etype (Orig_Subp))
3862 and then not Is_Constrained (Etype (Orig_Subp))
3863 then
3864 Must_Inline := False;
3865
84f4072a 3866 elsif In_Unfrozen_Instance (Scope (Subp)) then
5b4994bc
AC
3867 Must_Inline := False;
3868
fbf5a39b
AC
3869 else
3870 Bod := Body_To_Inline (Spec);
3871
6dfc5592
RD
3872 if (In_Extended_Main_Code_Unit (Call_Node)
3873 or else In_Extended_Main_Code_Unit (Parent (Call_Node))
ac4d6407 3874 or else Has_Pragma_Inline_Always (Subp))
fbf5a39b
AC
3875 and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
3876 or else
3877 Earlier_In_Extended_Unit (Sloc (Bod), Loc))
3878 then
3879 Must_Inline := True;
3880
3881 -- If we are compiling a package body that is not the main
3882 -- unit, it must be for inlining/instantiation purposes,
3883 -- in which case we inline the call to insure that the same
3884 -- temporaries are generated when compiling the body by
3885 -- itself. Otherwise link errors can occur.
3886
2820d220
AC
3887 -- If the function being called is itself in the main unit,
3888 -- we cannot inline, because there is a risk of double
3889 -- elaboration and/or circularity: the inlining can make
3890 -- visible a private entity in the body of the main unit,
3891 -- that gigi will see before its sees its proper definition.
3892
6dfc5592 3893 elsif not (In_Extended_Main_Code_Unit (Call_Node))
fbf5a39b
AC
3894 and then In_Package_Body
3895 then
2820d220 3896 Must_Inline := not In_Extended_Main_Source_Unit (Subp);
fbf5a39b
AC
3897 end if;
3898 end if;
3899
3900 if Must_Inline then
6dfc5592 3901 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
70482933
RK
3902
3903 else
fbf5a39b 3904 -- Let the back end handle it
70482933
RK
3905
3906 Add_Inlined_Body (Subp);
3907
3908 if Front_End_Inlining
3909 and then Nkind (Spec) = N_Subprogram_Declaration
6dfc5592 3910 and then (In_Extended_Main_Code_Unit (Call_Node))
70482933
RK
3911 and then No (Body_To_Inline (Spec))
3912 and then not Has_Completion (Subp)
3913 and then In_Same_Extended_Unit (Sloc (Spec), Loc)
70482933 3914 then
fbf5a39b 3915 Cannot_Inline
685bc70f
AC
3916 ("cannot inline& (body not seen yet)?",
3917 Call_Node, Subp);
70482933
RK
3918 end if;
3919 end if;
a41ea816 3920 end Inlined_Subprogram;
84f4072a 3921
6c26bac2
AC
3922 -- Back end inlining: let the back end handle it
3923
3924 elsif No (Unit_Declaration_Node (Subp))
ea0c8cfb
RD
3925 or else Nkind (Unit_Declaration_Node (Subp)) /=
3926 N_Subprogram_Declaration
3927 or else No (Body_To_Inline (Unit_Declaration_Node (Subp)))
6c26bac2
AC
3928 then
3929 Add_Inlined_Body (Subp);
3930 Register_Backend_Call (Call_Node);
3931
536a2daf
AC
3932 -- If the call is to a function in a run-time unit that is marked
3933 -- Inline_Always, we must suppress debugging information on it,
3934 -- so that the code that is eventually inlined will not affect
3935 -- debugging of the user program.
3936
3937 if Is_Predefined_File_Name
3938 (Unit_File_Name (Get_Source_Unit (Sloc (Subp))))
3939 and then In_Extended_Main_Source_Unit (N)
3940 then
3941 Set_Needs_Debug_Info (Subp, False);
3942 end if;
3943
0f345950
JM
3944 -- Frontend expansion of supported functions returning unconstrained
3945 -- types and simple renamings inlined by the frontend (see Freeze.
3946 -- Build_Renamed_Entity).
ea0c8cfb
RD
3947
3948 else
84f4072a
JM
3949 declare
3950 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
3951
3952 begin
ea3a4ad0 3953 if Must_Inline (Subp) then
84f4072a
JM
3954 if In_Extended_Main_Code_Unit (Call_Node)
3955 and then In_Same_Extended_Unit (Sloc (Spec), Loc)
3956 and then not Has_Completion (Subp)
3957 then
3958 Cannot_Inline
3959 ("cannot inline& (body not seen yet)?",
3960 Call_Node, Subp);
3961
3962 else
3963 Do_Inline_Always (Subp, Orig_Subp);
3964 end if;
ea3a4ad0
JM
3965
3966 elsif Optimization_Level > 0 then
3967 Do_Inline (Subp, Orig_Subp);
84f4072a
JM
3968 end if;
3969
3970 -- The call may have been inlined or may have been passed to
3971 -- the backend. No further action needed if it was inlined.
3972
3973 if Nkind (N) /= N_Function_Call then
3974 return;
3975 end if;
3976 end;
70482933
RK
3977 end if;
3978 end if;
3979
26a43556
AC
3980 -- Check for protected subprogram. This is either an intra-object call,
3981 -- or a protected function call. Protected procedure calls are rewritten
3982 -- as entry calls and handled accordingly.
70482933 3983
26a43556
AC
3984 -- In Ada 2005, this may be an indirect call to an access parameter that
3985 -- is an access_to_subprogram. In that case the anonymous type has a
3986 -- scope that is a protected operation, but the call is a regular one.
6f76a257 3987 -- In either case do not expand call if subprogram is eliminated.
c8ef728f 3988
70482933
RK
3989 Scop := Scope (Subp);
3990
6dfc5592 3991 if Nkind (Call_Node) /= N_Entry_Call_Statement
70482933 3992 and then Is_Protected_Type (Scop)
c8ef728f 3993 and then Ekind (Subp) /= E_Subprogram_Type
6f76a257 3994 and then not Is_Eliminated (Subp)
70482933 3995 then
26a43556
AC
3996 -- If the call is an internal one, it is rewritten as a call to the
3997 -- corresponding unprotected subprogram.
70482933 3998
6dfc5592 3999 Expand_Protected_Subprogram_Call (Call_Node, Subp, Scop);
70482933
RK
4000 end if;
4001
df3e68b1
HK
4002 -- Functions returning controlled objects need special attention. If
4003 -- the return type is limited, then the context is initialization and
4004 -- different processing applies. If the call is to a protected function,
4005 -- the expansion above will call Expand_Call recursively. Otherwise the
4006 -- function call is transformed into a temporary which obtains the
4007 -- result from the secondary stack.
70482933 4008
c768e988 4009 if Needs_Finalization (Etype (Subp)) then
51245e2d 4010 if not Is_Limited_View (Etype (Subp))
c768e988
AC
4011 and then
4012 (No (First_Formal (Subp))
4013 or else
4014 not Is_Concurrent_Record_Type (Etype (First_Formal (Subp))))
4015 then
6dfc5592 4016 Expand_Ctrl_Function_Call (Call_Node);
c768e988
AC
4017
4018 -- Build-in-place function calls which appear in anonymous contexts
4019 -- need a transient scope to ensure the proper finalization of the
4020 -- intermediate result after its use.
4021
6dfc5592 4022 elsif Is_Build_In_Place_Function_Call (Call_Node)
d3b00ce3
AC
4023 and then
4024 Nkind_In (Parent (Call_Node), N_Attribute_Reference,
4025 N_Function_Call,
4026 N_Indexed_Component,
4027 N_Object_Renaming_Declaration,
4028 N_Procedure_Call_Statement,
4029 N_Selected_Component,
4030 N_Slice)
c768e988 4031 then
6dfc5592 4032 Establish_Transient_Scope (Call_Node, Sec_Stack => True);
c768e988 4033 end if;
70482933 4034 end if;
70482933
RK
4035 end Expand_Call;
4036
df3e68b1
HK
4037 -------------------------------
4038 -- Expand_Ctrl_Function_Call --
4039 -------------------------------
4040
4041 procedure Expand_Ctrl_Function_Call (N : Node_Id) is
bf561f2b
AC
4042 function Is_Element_Reference (N : Node_Id) return Boolean;
4043 -- Determine whether node N denotes a reference to an Ada 2012 container
4044 -- element.
4045
4046 --------------------------
4047 -- Is_Element_Reference --
4048 --------------------------
4049
4050 function Is_Element_Reference (N : Node_Id) return Boolean is
4051 Ref : constant Node_Id := Original_Node (N);
4052
4053 begin
4054 -- Analysis marks an element reference by setting the generalized
4055 -- indexing attribute of an indexed component before the component
4056 -- is rewritten into a function call.
4057
4058 return
4059 Nkind (Ref) = N_Indexed_Component
4060 and then Present (Generalized_Indexing (Ref));
4061 end Is_Element_Reference;
4062
4063 -- Local variables
4064
4065 Is_Elem_Ref : constant Boolean := Is_Element_Reference (N);
4066
4067 -- Start of processing for Expand_Ctrl_Function_Call
4068
df3e68b1
HK
4069 begin
4070 -- Optimization, if the returned value (which is on the sec-stack) is
4071 -- returned again, no need to copy/readjust/finalize, we can just pass
4072 -- the value thru (see Expand_N_Simple_Return_Statement), and thus no
4073 -- attachment is needed
4074
4075 if Nkind (Parent (N)) = N_Simple_Return_Statement then
4076 return;
4077 end if;
4078
4079 -- Resolution is now finished, make sure we don't start analysis again
4080 -- because of the duplication.
4081
4082 Set_Analyzed (N);
4083
4084 -- A function which returns a controlled object uses the secondary
4085 -- stack. Rewrite the call into a temporary which obtains the result of
4086 -- the function using 'reference.
4087
4088 Remove_Side_Effects (N);
3cebd1c0 4089
bf561f2b
AC
4090 -- When the temporary function result appears inside a case expression
4091 -- or an if expression, its lifetime must be extended to match that of
4092 -- the context. If not, the function result will be finalized too early
4093 -- and the evaluation of the expression could yield incorrect result. An
4094 -- exception to this rule are references to Ada 2012 container elements.
4095 -- Such references must be finalized at the end of each iteration of the
4096 -- related quantified expression, otherwise the container will remain
4097 -- busy.
4098
4099 if not Is_Elem_Ref
4100 and then Within_Case_Or_If_Expression (N)
3cebd1c0
AC
4101 and then Nkind (N) = N_Explicit_Dereference
4102 then
4103 Set_Is_Processed_Transient (Entity (Prefix (N)));
4104 end if;
df3e68b1
HK
4105 end Expand_Ctrl_Function_Call;
4106
2b3d67a5
AC
4107 ----------------------------------------
4108 -- Expand_N_Extended_Return_Statement --
4109 ----------------------------------------
4110
4111 -- If there is a Handled_Statement_Sequence, we rewrite this:
4112
4113 -- return Result : T := <expression> do
4114 -- <handled_seq_of_stms>
4115 -- end return;
4116
4117 -- to be:
4118
4119 -- declare
4120 -- Result : T := <expression>;
4121 -- begin
4122 -- <handled_seq_of_stms>
4123 -- return Result;
4124 -- end;
4125
4126 -- Otherwise (no Handled_Statement_Sequence), we rewrite this:
4127
4128 -- return Result : T := <expression>;
4129
4130 -- to be:
4131
4132 -- return <expression>;
4133
4134 -- unless it's build-in-place or there's no <expression>, in which case
4135 -- we generate:
4136
4137 -- declare
4138 -- Result : T := <expression>;
4139 -- begin
4140 -- return Result;
4141 -- end;
4142
4143 -- Note that this case could have been written by the user as an extended
4144 -- return statement, or could have been transformed to this from a simple
4145 -- return statement.
4146
4147 -- That is, we need to have a reified return object if there are statements
4148 -- (which might refer to it) or if we're doing build-in-place (so we can
4149 -- set its address to the final resting place or if there is no expression
4150 -- (in which case default initial values might need to be set).
4151
4152 procedure Expand_N_Extended_Return_Statement (N : Node_Id) is
4153 Loc : constant Source_Ptr := Sloc (N);
4154
df3e68b1
HK
4155 Par_Func : constant Entity_Id :=
4156 Return_Applies_To (Return_Statement_Entity (N));
1a36a0cd 4157 Result_Subt : constant Entity_Id := Etype (Par_Func);
df3e68b1
HK
4158 Ret_Obj_Id : constant Entity_Id :=
4159 First_Entity (Return_Statement_Entity (N));
4160 Ret_Obj_Decl : constant Node_Id := Parent (Ret_Obj_Id);
4161
4162 Is_Build_In_Place : constant Boolean :=
4163 Is_Build_In_Place_Function (Par_Func);
4164
4165 Exp : Node_Id;
4166 HSS : Node_Id;
4167 Result : Node_Id;
4168 Return_Stmt : Node_Id;
4169 Stmts : List_Id;
4170
4171 function Build_Heap_Allocator
4172 (Temp_Id : Entity_Id;
4173 Temp_Typ : Entity_Id;
4174 Func_Id : Entity_Id;
4175 Ret_Typ : Entity_Id;
4176 Alloc_Expr : Node_Id) return Node_Id;
4177 -- Create the statements necessary to allocate a return object on the
d3f70b35
AC
4178 -- caller's master. The master is available through implicit parameter
4179 -- BIPfinalizationmaster.
df3e68b1 4180 --
d3f70b35 4181 -- if BIPfinalizationmaster /= null then
df3e68b1
HK
4182 -- declare
4183 -- type Ptr_Typ is access Ret_Typ;
4184 -- for Ptr_Typ'Storage_Pool use
d3f70b35 4185 -- Base_Pool (BIPfinalizationmaster.all).all;
df3e68b1
HK
4186 -- Local : Ptr_Typ;
4187 --
4188 -- begin
4189 -- procedure Allocate (...) is
4190 -- begin
d3f70b35 4191 -- System.Storage_Pools.Subpools.Allocate_Any (...);
df3e68b1
HK
4192 -- end Allocate;
4193 --
4194 -- Local := <Alloc_Expr>;
4195 -- Temp_Id := Temp_Typ (Local);
4196 -- end;
4197 -- end if;
4198 --
4199 -- Temp_Id is the temporary which is used to reference the internally
4200 -- created object in all allocation forms. Temp_Typ is the type of the
4201 -- temporary. Func_Id is the enclosing function. Ret_Typ is the return
4202 -- type of Func_Id. Alloc_Expr is the actual allocator.
2b3d67a5 4203
2b3d67a5
AC
4204 function Move_Activation_Chain return Node_Id;
4205 -- Construct a call to System.Tasking.Stages.Move_Activation_Chain
4206 -- with parameters:
4207 -- From current activation chain
4208 -- To activation chain passed in by the caller
4209 -- New_Master master passed in by the caller
4210
df3e68b1
HK
4211 --------------------------
4212 -- Build_Heap_Allocator --
4213 --------------------------
4214
4215 function Build_Heap_Allocator
4216 (Temp_Id : Entity_Id;
4217 Temp_Typ : Entity_Id;
4218 Func_Id : Entity_Id;
4219 Ret_Typ : Entity_Id;
4220 Alloc_Expr : Node_Id) return Node_Id
4221 is
4222 begin
200b7162
BD
4223 pragma Assert (Is_Build_In_Place_Function (Func_Id));
4224
df3e68b1 4225 -- Processing for build-in-place object allocation. This is disabled
d3f70b35 4226 -- on .NET/JVM because the targets do not support pools.
df3e68b1
HK
4227
4228 if VM_Target = No_VM
df3e68b1
HK
4229 and then Needs_Finalization (Ret_Typ)
4230 then
4231 declare
d3f70b35
AC
4232 Decls : constant List_Id := New_List;
4233 Fin_Mas_Id : constant Entity_Id :=
4234 Build_In_Place_Formal
4235 (Func_Id, BIP_Finalization_Master);
4236 Stmts : constant List_Id := New_List;
ba759acd
AC
4237 Desig_Typ : Entity_Id;
4238 Local_Id : Entity_Id;
4239 Pool_Id : Entity_Id;
4240 Ptr_Typ : Entity_Id;
df3e68b1
HK
4241
4242 begin
4243 -- Generate:
d3f70b35 4244 -- Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
df3e68b1
HK
4245
4246 Pool_Id := Make_Temporary (Loc, 'P');
4247
4248 Append_To (Decls,
4249 Make_Object_Renaming_Declaration (Loc,
4250 Defining_Identifier => Pool_Id,
2c1b72d7 4251 Subtype_Mark =>
e4494292 4252 New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc),
2c1b72d7 4253 Name =>
df3e68b1
HK
4254 Make_Explicit_Dereference (Loc,
4255 Prefix =>
4256 Make_Function_Call (Loc,
2c1b72d7 4257 Name =>
e4494292 4258 New_Occurrence_Of (RTE (RE_Base_Pool), Loc),
df3e68b1
HK
4259 Parameter_Associations => New_List (
4260 Make_Explicit_Dereference (Loc,
d3f70b35 4261 Prefix =>
e4494292 4262 New_Occurrence_Of (Fin_Mas_Id, Loc)))))));
df3e68b1
HK
4263
4264 -- Create an access type which uses the storage pool of the
d3f70b35
AC
4265 -- caller's master. This additional type is necessary because
4266 -- the finalization master cannot be associated with the type
df3e68b1
HK
4267 -- of the temporary. Otherwise the secondary stack allocation
4268 -- will fail.
4269
ba759acd
AC
4270 Desig_Typ := Ret_Typ;
4271
4272 -- Ensure that the build-in-place machinery uses a fat pointer
4273 -- when allocating an unconstrained array on the heap. In this
4274 -- case the result object type is a constrained array type even
4275 -- though the function type is unconstrained.
4276
4277 if Ekind (Desig_Typ) = E_Array_Subtype then
4278 Desig_Typ := Base_Type (Desig_Typ);
4279 end if;
4280
df3e68b1 4281 -- Generate:
ba759acd 4282 -- type Ptr_Typ is access Desig_Typ;
df3e68b1
HK
4283
4284 Ptr_Typ := Make_Temporary (Loc, 'P');
4285
4286 Append_To (Decls,
4287 Make_Full_Type_Declaration (Loc,
4288 Defining_Identifier => Ptr_Typ,
2c1b72d7 4289 Type_Definition =>
df3e68b1
HK
4290 Make_Access_To_Object_Definition (Loc,
4291 Subtype_Indication =>
e4494292 4292 New_Occurrence_Of (Desig_Typ, Loc))));
df3e68b1 4293
d3f70b35
AC
4294 -- Perform minor decoration in order to set the master and the
4295 -- storage pool attributes.
df3e68b1
HK
4296
4297 Set_Ekind (Ptr_Typ, E_Access_Type);
d3f70b35 4298 Set_Finalization_Master (Ptr_Typ, Fin_Mas_Id);
df3e68b1
HK
4299 Set_Associated_Storage_Pool (Ptr_Typ, Pool_Id);
4300
4301 -- Create the temporary, generate:
df3e68b1
HK
4302 -- Local_Id : Ptr_Typ;
4303
4304 Local_Id := Make_Temporary (Loc, 'T');
4305
4306 Append_To (Decls,
4307 Make_Object_Declaration (Loc,
4308 Defining_Identifier => Local_Id,
2c1b72d7 4309 Object_Definition =>
e4494292 4310 New_Occurrence_Of (Ptr_Typ, Loc)));
df3e68b1
HK
4311
4312 -- Allocate the object, generate:
df3e68b1
HK
4313 -- Local_Id := <Alloc_Expr>;
4314
4315 Append_To (Stmts,
4316 Make_Assignment_Statement (Loc,
e4494292 4317 Name => New_Occurrence_Of (Local_Id, Loc),
df3e68b1
HK
4318 Expression => Alloc_Expr));
4319
4320 -- Generate:
4321 -- Temp_Id := Temp_Typ (Local_Id);
4322
4323 Append_To (Stmts,
4324 Make_Assignment_Statement (Loc,
e4494292 4325 Name => New_Occurrence_Of (Temp_Id, Loc),
df3e68b1
HK
4326 Expression =>
4327 Unchecked_Convert_To (Temp_Typ,
e4494292 4328 New_Occurrence_Of (Local_Id, Loc))));
df3e68b1
HK
4329
4330 -- Wrap the allocation in a block. This is further conditioned
d3f70b35
AC
4331 -- by checking the caller finalization master at runtime. A
4332 -- null value indicates a non-existent master, most likely due
4333 -- to a Finalize_Storage_Only allocation.
df3e68b1
HK
4334
4335 -- Generate:
d3f70b35 4336 -- if BIPfinalizationmaster /= null then
df3e68b1
HK
4337 -- declare
4338 -- <Decls>
4339 -- begin
4340 -- <Stmts>
4341 -- end;
4342 -- end if;
4343
4344 return
4345 Make_If_Statement (Loc,
2c1b72d7 4346 Condition =>
df3e68b1 4347 Make_Op_Ne (Loc,
e4494292 4348 Left_Opnd => New_Occurrence_Of (Fin_Mas_Id, Loc),
2c1b72d7 4349 Right_Opnd => Make_Null (Loc)),
df3e68b1
HK
4350
4351 Then_Statements => New_List (
4352 Make_Block_Statement (Loc,
2c1b72d7 4353 Declarations => Decls,
df3e68b1
HK
4354 Handled_Statement_Sequence =>
4355 Make_Handled_Sequence_Of_Statements (Loc,
4356 Statements => Stmts))));
4357 end;
4358
4359 -- For all other cases, generate:
df3e68b1
HK
4360 -- Temp_Id := <Alloc_Expr>;
4361
4362 else
4363 return
4364 Make_Assignment_Statement (Loc,
e4494292 4365 Name => New_Occurrence_Of (Temp_Id, Loc),
df3e68b1
HK
4366 Expression => Alloc_Expr);
4367 end if;
4368 end Build_Heap_Allocator;
2b3d67a5 4369
2b3d67a5
AC
4370 ---------------------------
4371 -- Move_Activation_Chain --
4372 ---------------------------
4373
4374 function Move_Activation_Chain return Node_Id is
2b3d67a5 4375 begin
2b3d67a5
AC
4376 return
4377 Make_Procedure_Call_Statement (Loc,
2c1b72d7 4378 Name =>
e4494292 4379 New_Occurrence_Of (RTE (RE_Move_Activation_Chain), Loc),
0613fb33
AC
4380
4381 Parameter_Associations => New_List (
4382
4383 -- Source chain
4384
4385 Make_Attribute_Reference (Loc,
4386 Prefix => Make_Identifier (Loc, Name_uChain),
4387 Attribute_Name => Name_Unrestricted_Access),
4388
4389 -- Destination chain
4390
e4494292 4391 New_Occurrence_Of
0613fb33
AC
4392 (Build_In_Place_Formal (Par_Func, BIP_Activation_Chain), Loc),
4393
4394 -- New master
4395
e4494292 4396 New_Occurrence_Of
af89615f 4397 (Build_In_Place_Formal (Par_Func, BIP_Task_Master), Loc)));
2b3d67a5
AC
4398 end Move_Activation_Chain;
4399
df3e68b1 4400 -- Start of processing for Expand_N_Extended_Return_Statement
2b3d67a5 4401
df3e68b1 4402 begin
f6f4d8d4
JM
4403 -- Given that functionality of interface thunks is simple (just displace
4404 -- the pointer to the object) they are always handled by means of
4405 -- simple return statements.
4406
da1c23dd 4407 pragma Assert (not Is_Thunk (Current_Scope));
f6f4d8d4 4408
df3e68b1
HK
4409 if Nkind (Ret_Obj_Decl) = N_Object_Declaration then
4410 Exp := Expression (Ret_Obj_Decl);
4411 else
4412 Exp := Empty;
4413 end if;
2b3d67a5 4414
df3e68b1 4415 HSS := Handled_Statement_Sequence (N);
2b3d67a5 4416
df3e68b1
HK
4417 -- If the returned object needs finalization actions, the function must
4418 -- perform the appropriate cleanup should it fail to return. The state
4419 -- of the function itself is tracked through a flag which is coupled
4420 -- with the scope finalizer. There is one flag per each return object
4421 -- in case of multiple returns.
2b3d67a5 4422
df3e68b1
HK
4423 if Is_Build_In_Place
4424 and then Needs_Finalization (Etype (Ret_Obj_Id))
4425 then
4426 declare
4427 Flag_Decl : Node_Id;
4428 Flag_Id : Entity_Id;
4429 Func_Bod : Node_Id;
2b3d67a5 4430
df3e68b1
HK
4431 begin
4432 -- Recover the function body
2b3d67a5 4433
df3e68b1 4434 Func_Bod := Unit_Declaration_Node (Par_Func);
0613fb33 4435
df3e68b1
HK
4436 if Nkind (Func_Bod) = N_Subprogram_Declaration then
4437 Func_Bod := Parent (Parent (Corresponding_Body (Func_Bod)));
4438 end if;
2b3d67a5 4439
df3e68b1 4440 -- Create a flag to track the function state
2b3d67a5 4441
df3e68b1 4442 Flag_Id := Make_Temporary (Loc, 'F');
3cebd1c0 4443 Set_Status_Flag_Or_Transient_Decl (Ret_Obj_Id, Flag_Id);
2b3d67a5 4444
df3e68b1
HK
4445 -- Insert the flag at the beginning of the function declarations,
4446 -- generate:
4447 -- Fnn : Boolean := False;
2b3d67a5 4448
df3e68b1
HK
4449 Flag_Decl :=
4450 Make_Object_Declaration (Loc,
4451 Defining_Identifier => Flag_Id,
2c1b72d7 4452 Object_Definition =>
e4494292
RD
4453 New_Occurrence_Of (Standard_Boolean, Loc),
4454 Expression =>
4455 New_Occurrence_Of (Standard_False, Loc));
2b3d67a5 4456
df3e68b1
HK
4457 Prepend_To (Declarations (Func_Bod), Flag_Decl);
4458 Analyze (Flag_Decl);
4459 end;
4460 end if;
2b3d67a5
AC
4461
4462 -- Build a simple_return_statement that returns the return object when
4463 -- there is a statement sequence, or no expression, or the result will
4464 -- be built in place. Note however that we currently do this for all
4465 -- composite cases, even though nonlimited composite results are not yet
4466 -- built in place (though we plan to do so eventually).
4467
df3e68b1 4468 if Present (HSS)
1a36a0cd 4469 or else Is_Composite_Type (Result_Subt)
2b3d67a5
AC
4470 or else No (Exp)
4471 then
df3e68b1
HK
4472 if No (HSS) then
4473 Stmts := New_List;
2b3d67a5
AC
4474
4475 -- If the extended return has a handled statement sequence, then wrap
4476 -- it in a block and use the block as the first statement.
4477
4478 else
df3e68b1
HK
4479 Stmts := New_List (
4480 Make_Block_Statement (Loc,
2c1b72d7 4481 Declarations => New_List,
df3e68b1 4482 Handled_Statement_Sequence => HSS));
2b3d67a5
AC
4483 end if;
4484
df3e68b1
HK
4485 -- If the result type contains tasks, we call Move_Activation_Chain.
4486 -- Later, the cleanup code will call Complete_Master, which will
4487 -- terminate any unactivated tasks belonging to the return statement
4488 -- master. But Move_Activation_Chain updates their master to be that
4489 -- of the caller, so they will not be terminated unless the return
4490 -- statement completes unsuccessfully due to exception, abort, goto,
4491 -- or exit. As a formality, we test whether the function requires the
4492 -- result to be built in place, though that's necessarily true for
4493 -- the case of result types with task parts.
2b3d67a5
AC
4494
4495 if Is_Build_In_Place
1a36a0cd 4496 and then Has_Task (Result_Subt)
2b3d67a5 4497 then
4a1bfefb
AC
4498 -- The return expression is an aggregate for a complex type which
4499 -- contains tasks. This particular case is left unexpanded since
4500 -- the regular expansion would insert all temporaries and
4501 -- initialization code in the wrong block.
4502
4503 if Nkind (Exp) = N_Aggregate then
4504 Expand_N_Aggregate (Exp);
4505 end if;
4506
1a36a0cd
AC
4507 -- Do not move the activation chain if the return object does not
4508 -- contain tasks.
4509
4510 if Has_Task (Etype (Ret_Obj_Id)) then
4511 Append_To (Stmts, Move_Activation_Chain);
4512 end if;
2b3d67a5
AC
4513 end if;
4514
df3e68b1
HK
4515 -- Update the state of the function right before the object is
4516 -- returned.
4517
4518 if Is_Build_In_Place
4519 and then Needs_Finalization (Etype (Ret_Obj_Id))
4520 then
4521 declare
35a1c212 4522 Flag_Id : constant Entity_Id :=
3cebd1c0 4523 Status_Flag_Or_Transient_Decl (Ret_Obj_Id);
4fdebd93 4524
df3e68b1
HK
4525 begin
4526 -- Generate:
4527 -- Fnn := True;
4528
4529 Append_To (Stmts,
4530 Make_Assignment_Statement (Loc,
e4494292
RD
4531 Name => New_Occurrence_Of (Flag_Id, Loc),
4532 Expression => New_Occurrence_Of (Standard_True, Loc)));
df3e68b1 4533 end;
2b3d67a5
AC
4534 end if;
4535
4536 -- Build a simple_return_statement that returns the return object
4537
df3e68b1 4538 Return_Stmt :=
2b3d67a5 4539 Make_Simple_Return_Statement (Loc,
2c1b72d7 4540 Expression => New_Occurrence_Of (Ret_Obj_Id, Loc));
df3e68b1 4541 Append_To (Stmts, Return_Stmt);
2b3d67a5 4542
df3e68b1 4543 HSS := Make_Handled_Sequence_Of_Statements (Loc, Stmts);
2b3d67a5
AC
4544 end if;
4545
df3e68b1 4546 -- Case where we build a return statement block
2b3d67a5 4547
df3e68b1 4548 if Present (HSS) then
2b3d67a5
AC
4549 Result :=
4550 Make_Block_Statement (Loc,
2c1b72d7 4551 Declarations => Return_Object_Declarations (N),
df3e68b1 4552 Handled_Statement_Sequence => HSS);
2b3d67a5
AC
4553
4554 -- We set the entity of the new block statement to be that of the
4555 -- return statement. This is necessary so that various fields, such
4556 -- as Finalization_Chain_Entity carry over from the return statement
4557 -- to the block. Note that this block is unusual, in that its entity
4558 -- is an E_Return_Statement rather than an E_Block.
4559
4560 Set_Identifier
4561 (Result, New_Occurrence_Of (Return_Statement_Entity (N), Loc));
4562
54bf19e4
AC
4563 -- If the object decl was already rewritten as a renaming, then we
4564 -- don't want to do the object allocation and transformation of of
4565 -- the return object declaration to a renaming. This case occurs
2b3d67a5 4566 -- when the return object is initialized by a call to another
54bf19e4
AC
4567 -- build-in-place function, and that function is responsible for
4568 -- the allocation of the return object.
2b3d67a5
AC
4569
4570 if Is_Build_In_Place
df3e68b1 4571 and then Nkind (Ret_Obj_Decl) = N_Object_Renaming_Declaration
2b3d67a5 4572 then
df3e68b1
HK
4573 pragma Assert
4574 (Nkind (Original_Node (Ret_Obj_Decl)) = N_Object_Declaration
2c1b72d7
AC
4575 and then Is_Build_In_Place_Function_Call
4576 (Expression (Original_Node (Ret_Obj_Decl))));
df3e68b1
HK
4577
4578 -- Return the build-in-place result by reference
2b3d67a5 4579
df3e68b1 4580 Set_By_Ref (Return_Stmt);
2b3d67a5
AC
4581
4582 elsif Is_Build_In_Place then
4583
4584 -- Locate the implicit access parameter associated with the
4585 -- caller-supplied return object and convert the return
4586 -- statement's return object declaration to a renaming of a
4587 -- dereference of the access parameter. If the return object's
4588 -- declaration includes an expression that has not already been
4589 -- expanded as separate assignments, then add an assignment
4590 -- statement to ensure the return object gets initialized.
4591
df3e68b1
HK
4592 -- declare
4593 -- Result : T [:= <expression>];
4594 -- begin
4595 -- ...
2b3d67a5
AC
4596
4597 -- is converted to
4598
df3e68b1
HK
4599 -- declare
4600 -- Result : T renames FuncRA.all;
4601 -- [Result := <expression;]
4602 -- begin
4603 -- ...
2b3d67a5
AC
4604
4605 declare
4606 Return_Obj_Id : constant Entity_Id :=
df3e68b1 4607 Defining_Identifier (Ret_Obj_Decl);
2b3d67a5
AC
4608 Return_Obj_Typ : constant Entity_Id := Etype (Return_Obj_Id);
4609 Return_Obj_Expr : constant Node_Id :=
df3e68b1 4610 Expression (Ret_Obj_Decl);
2b3d67a5
AC
4611 Constr_Result : constant Boolean :=
4612 Is_Constrained (Result_Subt);
4613 Obj_Alloc_Formal : Entity_Id;
4614 Object_Access : Entity_Id;
4615 Obj_Acc_Deref : Node_Id;
4616 Init_Assignment : Node_Id := Empty;
4617
4618 begin
4619 -- Build-in-place results must be returned by reference
4620
df3e68b1 4621 Set_By_Ref (Return_Stmt);
2b3d67a5
AC
4622
4623 -- Retrieve the implicit access parameter passed by the caller
4624
4625 Object_Access :=
df3e68b1 4626 Build_In_Place_Formal (Par_Func, BIP_Object_Access);
2b3d67a5
AC
4627
4628 -- If the return object's declaration includes an expression
4629 -- and the declaration isn't marked as No_Initialization, then
4630 -- we need to generate an assignment to the object and insert
4631 -- it after the declaration before rewriting it as a renaming
4632 -- (otherwise we'll lose the initialization). The case where
4633 -- the result type is an interface (or class-wide interface)
4634 -- is also excluded because the context of the function call
4635 -- must be unconstrained, so the initialization will always
4636 -- be done as part of an allocator evaluation (storage pool
4637 -- or secondary stack), never to a constrained target object
4638 -- passed in by the caller. Besides the assignment being
4639 -- unneeded in this case, it avoids problems with trying to
4640 -- generate a dispatching assignment when the return expression
4641 -- is a nonlimited descendant of a limited interface (the
4642 -- interface has no assignment operation).
4643
4644 if Present (Return_Obj_Expr)
df3e68b1 4645 and then not No_Initialization (Ret_Obj_Decl)
2b3d67a5
AC
4646 and then not Is_Interface (Return_Obj_Typ)
4647 then
4648 Init_Assignment :=
4649 Make_Assignment_Statement (Loc,
e4494292 4650 Name => New_Occurrence_Of (Return_Obj_Id, Loc),
2c1b72d7 4651 Expression => Relocate_Node (Return_Obj_Expr));
df3e68b1 4652
2b3d67a5
AC
4653 Set_Etype (Name (Init_Assignment), Etype (Return_Obj_Id));
4654 Set_Assignment_OK (Name (Init_Assignment));
4655 Set_No_Ctrl_Actions (Init_Assignment);
4656
4657 Set_Parent (Name (Init_Assignment), Init_Assignment);
4658 Set_Parent (Expression (Init_Assignment), Init_Assignment);
4659
df3e68b1 4660 Set_Expression (Ret_Obj_Decl, Empty);
2b3d67a5
AC
4661
4662 if Is_Class_Wide_Type (Etype (Return_Obj_Id))
4663 and then not Is_Class_Wide_Type
4664 (Etype (Expression (Init_Assignment)))
4665 then
4666 Rewrite (Expression (Init_Assignment),
4667 Make_Type_Conversion (Loc,
4668 Subtype_Mark =>
df3e68b1 4669 New_Occurrence_Of (Etype (Return_Obj_Id), Loc),
2c1b72d7 4670 Expression =>
2b3d67a5
AC
4671 Relocate_Node (Expression (Init_Assignment))));
4672 end if;
4673
4674 -- In the case of functions where the calling context can
4675 -- determine the form of allocation needed, initialization
4676 -- is done with each part of the if statement that handles
4677 -- the different forms of allocation (this is true for
4678 -- unconstrained and tagged result subtypes).
4679
4680 if Constr_Result
4681 and then not Is_Tagged_Type (Underlying_Type (Result_Subt))
4682 then
df3e68b1 4683 Insert_After (Ret_Obj_Decl, Init_Assignment);
2b3d67a5
AC
4684 end if;
4685 end if;
4686
4687 -- When the function's subtype is unconstrained, a run-time
4688 -- test is needed to determine the form of allocation to use
4689 -- for the return object. The function has an implicit formal
4690 -- parameter indicating this. If the BIP_Alloc_Form formal has
4691 -- the value one, then the caller has passed access to an
4692 -- existing object for use as the return object. If the value
4693 -- is two, then the return object must be allocated on the
4694 -- secondary stack. Otherwise, the object must be allocated in
4695 -- a storage pool (currently only supported for the global
4696 -- heap, user-defined storage pools TBD ???). We generate an
4697 -- if statement to test the implicit allocation formal and
4698 -- initialize a local access value appropriately, creating
4699 -- allocators in the secondary stack and global heap cases.
4700 -- The special formal also exists and must be tested when the
4701 -- function has a tagged result, even when the result subtype
4702 -- is constrained, because in general such functions can be
4703 -- called in dispatching contexts and must be handled similarly
4704 -- to functions with a class-wide result.
4705
4706 if not Constr_Result
4707 or else Is_Tagged_Type (Underlying_Type (Result_Subt))
4708 then
4709 Obj_Alloc_Formal :=
df3e68b1 4710 Build_In_Place_Formal (Par_Func, BIP_Alloc_Form);
2b3d67a5
AC
4711
4712 declare
8417f4b2
AC
4713 Pool_Id : constant Entity_Id :=
4714 Make_Temporary (Loc, 'P');
2b3d67a5
AC
4715 Alloc_Obj_Id : Entity_Id;
4716 Alloc_Obj_Decl : Node_Id;
4717 Alloc_If_Stmt : Node_Id;
200b7162 4718 Heap_Allocator : Node_Id;
200b7162
BD
4719 Pool_Decl : Node_Id;
4720 Pool_Allocator : Node_Id;
8417f4b2
AC
4721 Ptr_Type_Decl : Node_Id;
4722 Ref_Type : Entity_Id;
4723 SS_Allocator : Node_Id;
2b3d67a5
AC
4724
4725 begin
4726 -- Reuse the itype created for the function's implicit
4727 -- access formal. This avoids the need to create a new
4728 -- access type here, plus it allows assigning the access
4729 -- formal directly without applying a conversion.
4730
df3e68b1 4731 -- Ref_Type := Etype (Object_Access);
2b3d67a5
AC
4732
4733 -- Create an access type designating the function's
4734 -- result subtype.
4735
4736 Ref_Type := Make_Temporary (Loc, 'A');
4737
4738 Ptr_Type_Decl :=
4739 Make_Full_Type_Declaration (Loc,
4740 Defining_Identifier => Ref_Type,
2c1b72d7 4741 Type_Definition =>
2b3d67a5 4742 Make_Access_To_Object_Definition (Loc,
2c1b72d7 4743 All_Present => True,
2b3d67a5 4744 Subtype_Indication =>
e4494292 4745 New_Occurrence_Of (Return_Obj_Typ, Loc)));
2b3d67a5 4746
df3e68b1 4747 Insert_Before (Ret_Obj_Decl, Ptr_Type_Decl);
2b3d67a5
AC
4748
4749 -- Create an access object that will be initialized to an
4750 -- access value denoting the return object, either coming
4751 -- from an implicit access value passed in by the caller
4752 -- or from the result of an allocator.
4753
4754 Alloc_Obj_Id := Make_Temporary (Loc, 'R');
4755 Set_Etype (Alloc_Obj_Id, Ref_Type);
4756
4757 Alloc_Obj_Decl :=
4758 Make_Object_Declaration (Loc,
4759 Defining_Identifier => Alloc_Obj_Id,
2c1b72d7 4760 Object_Definition =>
e4494292 4761 New_Occurrence_Of (Ref_Type, Loc));
2b3d67a5 4762
df3e68b1 4763 Insert_Before (Ret_Obj_Decl, Alloc_Obj_Decl);
2b3d67a5
AC
4764
4765 -- Create allocators for both the secondary stack and
4766 -- global heap. If there's an initialization expression,
4767 -- then create these as initialized allocators.
4768
4769 if Present (Return_Obj_Expr)
df3e68b1 4770 and then not No_Initialization (Ret_Obj_Decl)
2b3d67a5
AC
4771 then
4772 -- Always use the type of the expression for the
4773 -- qualified expression, rather than the result type.
4774 -- In general we cannot always use the result type
4775 -- for the allocator, because the expression might be
4776 -- of a specific type, such as in the case of an
4777 -- aggregate or even a nonlimited object when the
4778 -- result type is a limited class-wide interface type.
4779
4780 Heap_Allocator :=
4781 Make_Allocator (Loc,
4782 Expression =>
4783 Make_Qualified_Expression (Loc,
4784 Subtype_Mark =>
e4494292 4785 New_Occurrence_Of
2b3d67a5 4786 (Etype (Return_Obj_Expr), Loc),
2c1b72d7 4787 Expression =>
2b3d67a5
AC
4788 New_Copy_Tree (Return_Obj_Expr)));
4789
4790 else
4791 -- If the function returns a class-wide type we cannot
4792 -- use the return type for the allocator. Instead we
4793 -- use the type of the expression, which must be an
4794 -- aggregate of a definite type.
4795
4796 if Is_Class_Wide_Type (Return_Obj_Typ) then
4797 Heap_Allocator :=
4798 Make_Allocator (Loc,
4799 Expression =>
e4494292 4800 New_Occurrence_Of
2b3d67a5
AC
4801 (Etype (Return_Obj_Expr), Loc));
4802 else
4803 Heap_Allocator :=
4804 Make_Allocator (Loc,
4805 Expression =>
e4494292 4806 New_Occurrence_Of (Return_Obj_Typ, Loc));
2b3d67a5
AC
4807 end if;
4808
4809 -- If the object requires default initialization then
4810 -- that will happen later following the elaboration of
4811 -- the object renaming. If we don't turn it off here
4812 -- then the object will be default initialized twice.
4813
4814 Set_No_Initialization (Heap_Allocator);
4815 end if;
4816
200b7162 4817 -- The Pool_Allocator is just like the Heap_Allocator,
8417f4b2
AC
4818 -- except we set Storage_Pool and Procedure_To_Call so
4819 -- it will use the user-defined storage pool.
200b7162
BD
4820
4821 Pool_Allocator := New_Copy_Tree (Heap_Allocator);
8417f4b2
AC
4822
4823 -- Do not generate the renaming of the build-in-place
3e452820
AC
4824 -- pool parameter on .NET/JVM/ZFP because the parameter
4825 -- is not created in the first place.
8417f4b2 4826
ea10ca9c
AC
4827 if VM_Target = No_VM
4828 and then RTE_Available (RE_Root_Storage_Pool_Ptr)
3e452820 4829 then
8417f4b2
AC
4830 Pool_Decl :=
4831 Make_Object_Renaming_Declaration (Loc,
4832 Defining_Identifier => Pool_Id,
4833 Subtype_Mark =>
e4494292 4834 New_Occurrence_Of
8417f4b2
AC
4835 (RTE (RE_Root_Storage_Pool), Loc),
4836 Name =>
4837 Make_Explicit_Dereference (Loc,
e4494292 4838 New_Occurrence_Of
8417f4b2
AC
4839 (Build_In_Place_Formal
4840 (Par_Func, BIP_Storage_Pool), Loc)));
4841 Set_Storage_Pool (Pool_Allocator, Pool_Id);
4842 Set_Procedure_To_Call
4843 (Pool_Allocator, RTE (RE_Allocate_Any));
4844 else
4845 Pool_Decl := Make_Null_Statement (Loc);
4846 end if;
200b7162 4847
2b3d67a5
AC
4848 -- If the No_Allocators restriction is active, then only
4849 -- an allocator for secondary stack allocation is needed.
4850 -- It's OK for such allocators to have Comes_From_Source
4851 -- set to False, because gigi knows not to flag them as
4852 -- being a violation of No_Implicit_Heap_Allocations.
4853
4854 if Restriction_Active (No_Allocators) then
4855 SS_Allocator := Heap_Allocator;
4856 Heap_Allocator := Make_Null (Loc);
200b7162 4857 Pool_Allocator := Make_Null (Loc);
2b3d67a5 4858
200b7162
BD
4859 -- Otherwise the heap and pool allocators may be needed,
4860 -- so we make another allocator for secondary stack
4861 -- allocation.
2b3d67a5
AC
4862
4863 else
4864 SS_Allocator := New_Copy_Tree (Heap_Allocator);
4865
3e7302c3 4866 -- The heap and pool allocators are marked as
200b7162
BD
4867 -- Comes_From_Source since they correspond to an
4868 -- explicit user-written allocator (that is, it will
4869 -- only be executed on behalf of callers that call the
3e7302c3
AC
4870 -- function as initialization for such an allocator).
4871 -- Prevents errors when No_Implicit_Heap_Allocations
4872 -- is in force.
2b3d67a5
AC
4873
4874 Set_Comes_From_Source (Heap_Allocator, True);
200b7162 4875 Set_Comes_From_Source (Pool_Allocator, True);
2b3d67a5
AC
4876 end if;
4877
4878 -- The allocator is returned on the secondary stack. We
4879 -- don't do this on VM targets, since the SS is not used.
4880
4881 if VM_Target = No_VM then
4882 Set_Storage_Pool (SS_Allocator, RTE (RE_SS_Pool));
4883 Set_Procedure_To_Call
4884 (SS_Allocator, RTE (RE_SS_Allocate));
4885
4886 -- The allocator is returned on the secondary stack,
4887 -- so indicate that the function return, as well as
4888 -- the block that encloses the allocator, must not
54bf19e4
AC
4889 -- release it. The flags must be set now because
4890 -- the decision to use the secondary stack is done
4891 -- very late in the course of expanding the return
2b3d67a5
AC
4892 -- statement, past the point where these flags are
4893 -- normally set.
4894
df3e68b1 4895 Set_Sec_Stack_Needed_For_Return (Par_Func);
2b3d67a5
AC
4896 Set_Sec_Stack_Needed_For_Return
4897 (Return_Statement_Entity (N));
df3e68b1 4898 Set_Uses_Sec_Stack (Par_Func);
2b3d67a5
AC
4899 Set_Uses_Sec_Stack (Return_Statement_Entity (N));
4900 end if;
4901
4902 -- Create an if statement to test the BIP_Alloc_Form
4903 -- formal and initialize the access object to either the
200b7162
BD
4904 -- BIP_Object_Access formal (BIP_Alloc_Form =
4905 -- Caller_Allocation), the result of allocating the
4906 -- object in the secondary stack (BIP_Alloc_Form =
4907 -- Secondary_Stack), or else an allocator to create the
4908 -- return object in the heap or user-defined pool
4909 -- (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
2b3d67a5
AC
4910
4911 -- ??? An unchecked type conversion must be made in the
4912 -- case of assigning the access object formal to the
4913 -- local access object, because a normal conversion would
4914 -- be illegal in some cases (such as converting access-
4915 -- to-unconstrained to access-to-constrained), but the
4916 -- the unchecked conversion will presumably fail to work
4917 -- right in just such cases. It's not clear at all how to
4918 -- handle this. ???
4919
4920 Alloc_If_Stmt :=
4921 Make_If_Statement (Loc,
df3e68b1 4922 Condition =>
2b3d67a5 4923 Make_Op_Eq (Loc,
2c1b72d7 4924 Left_Opnd =>
e4494292 4925 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
2b3d67a5
AC
4926 Right_Opnd =>
4927 Make_Integer_Literal (Loc,
4928 UI_From_Int (BIP_Allocation_Form'Pos
4929 (Caller_Allocation)))),
df3e68b1
HK
4930
4931 Then_Statements => New_List (
4932 Make_Assignment_Statement (Loc,
2c1b72d7 4933 Name =>
e4494292 4934 New_Occurrence_Of (Alloc_Obj_Id, Loc),
df3e68b1
HK
4935 Expression =>
4936 Make_Unchecked_Type_Conversion (Loc,
4937 Subtype_Mark =>
e4494292 4938 New_Occurrence_Of (Ref_Type, Loc),
2c1b72d7 4939 Expression =>
e4494292 4940 New_Occurrence_Of (Object_Access, Loc)))),
df3e68b1
HK
4941
4942 Elsif_Parts => New_List (
4943 Make_Elsif_Part (Loc,
4944 Condition =>
4945 Make_Op_Eq (Loc,
2c1b72d7 4946 Left_Opnd =>
e4494292 4947 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
df3e68b1
HK
4948 Right_Opnd =>
4949 Make_Integer_Literal (Loc,
4950 UI_From_Int (BIP_Allocation_Form'Pos
2b3d67a5 4951 (Secondary_Stack)))),
df3e68b1
HK
4952
4953 Then_Statements => New_List (
4954 Make_Assignment_Statement (Loc,
2c1b72d7 4955 Name =>
e4494292 4956 New_Occurrence_Of (Alloc_Obj_Id, Loc),
200b7162
BD
4957 Expression => SS_Allocator))),
4958
4959 Make_Elsif_Part (Loc,
4960 Condition =>
4961 Make_Op_Eq (Loc,
4962 Left_Opnd =>
e4494292 4963 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
200b7162
BD
4964 Right_Opnd =>
4965 Make_Integer_Literal (Loc,
4966 UI_From_Int (BIP_Allocation_Form'Pos
4967 (Global_Heap)))),
4968
4969 Then_Statements => New_List (
4970 Build_Heap_Allocator
4971 (Temp_Id => Alloc_Obj_Id,
4972 Temp_Typ => Ref_Type,
4973 Func_Id => Par_Func,
4974 Ret_Typ => Return_Obj_Typ,
4975 Alloc_Expr => Heap_Allocator)))),
df3e68b1
HK
4976
4977 Else_Statements => New_List (
200b7162 4978 Pool_Decl,
df3e68b1
HK
4979 Build_Heap_Allocator
4980 (Temp_Id => Alloc_Obj_Id,
4981 Temp_Typ => Ref_Type,
4982 Func_Id => Par_Func,
4983 Ret_Typ => Return_Obj_Typ,
200b7162 4984 Alloc_Expr => Pool_Allocator)));
2b3d67a5
AC
4985
4986 -- If a separate initialization assignment was created
4987 -- earlier, append that following the assignment of the
4988 -- implicit access formal to the access object, to ensure
54bf19e4
AC
4989 -- that the return object is initialized in that case. In
4990 -- this situation, the target of the assignment must be
4991 -- rewritten to denote a dereference of the access to the
4992 -- return object passed in by the caller.
2b3d67a5
AC
4993
4994 if Present (Init_Assignment) then
4995 Rewrite (Name (Init_Assignment),
4996 Make_Explicit_Dereference (Loc,
e4494292 4997 Prefix => New_Occurrence_Of (Alloc_Obj_Id, Loc)));
df3e68b1 4998
2b3d67a5
AC
4999 Set_Etype
5000 (Name (Init_Assignment), Etype (Return_Obj_Id));
5001
5002 Append_To
2c1b72d7 5003 (Then_Statements (Alloc_If_Stmt), Init_Assignment);
2b3d67a5
AC
5004 end if;
5005
df3e68b1 5006 Insert_Before (Ret_Obj_Decl, Alloc_If_Stmt);
2b3d67a5
AC
5007
5008 -- Remember the local access object for use in the
5009 -- dereference of the renaming created below.
5010
5011 Object_Access := Alloc_Obj_Id;
5012 end;
5013 end if;
5014
5015 -- Replace the return object declaration with a renaming of a
5016 -- dereference of the access value designating the return
5017 -- object.
5018
5019 Obj_Acc_Deref :=
5020 Make_Explicit_Dereference (Loc,
e4494292 5021 Prefix => New_Occurrence_Of (Object_Access, Loc));
2b3d67a5 5022
df3e68b1 5023 Rewrite (Ret_Obj_Decl,
2b3d67a5
AC
5024 Make_Object_Renaming_Declaration (Loc,
5025 Defining_Identifier => Return_Obj_Id,
2c1b72d7
AC
5026 Access_Definition => Empty,
5027 Subtype_Mark =>
df3e68b1 5028 New_Occurrence_Of (Return_Obj_Typ, Loc),
2c1b72d7 5029 Name => Obj_Acc_Deref));
2b3d67a5
AC
5030
5031 Set_Renamed_Object (Return_Obj_Id, Obj_Acc_Deref);
5032 end;
5033 end if;
5034
5035 -- Case where we do not build a block
5036
5037 else
df3e68b1
HK
5038 -- We're about to drop Return_Object_Declarations on the floor, so
5039 -- we need to insert it, in case it got expanded into useful code.
2b3d67a5
AC
5040 -- Remove side effects from expression, which may be duplicated in
5041 -- subsequent checks (see Expand_Simple_Function_Return).
5042
df3e68b1 5043 Insert_List_Before (N, Return_Object_Declarations (N));
2b3d67a5
AC
5044 Remove_Side_Effects (Exp);
5045
5046 -- Build simple_return_statement that returns the expression directly
5047
df3e68b1
HK
5048 Return_Stmt := Make_Simple_Return_Statement (Loc, Expression => Exp);
5049 Result := Return_Stmt;
2b3d67a5
AC
5050 end if;
5051
5052 -- Set the flag to prevent infinite recursion
5053
df3e68b1 5054 Set_Comes_From_Extended_Return_Statement (Return_Stmt);
2b3d67a5
AC
5055
5056 Rewrite (N, Result);
5057 Analyze (N);
5058 end Expand_N_Extended_Return_Statement;
5059
70482933
RK
5060 ----------------------------
5061 -- Expand_N_Function_Call --
5062 ----------------------------
5063
5064 procedure Expand_N_Function_Call (N : Node_Id) is
70482933 5065 begin
ac4d6407 5066 Expand_Call (N);
70482933
RK
5067 end Expand_N_Function_Call;
5068
5069 ---------------------------------------
5070 -- Expand_N_Procedure_Call_Statement --
5071 ---------------------------------------
5072
5073 procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
5074 begin
5075 Expand_Call (N);
5076 end Expand_N_Procedure_Call_Statement;
5077
2b3d67a5
AC
5078 --------------------------------------
5079 -- Expand_N_Simple_Return_Statement --
5080 --------------------------------------
5081
5082 procedure Expand_N_Simple_Return_Statement (N : Node_Id) is
5083 begin
5084 -- Defend against previous errors (i.e. the return statement calls a
5085 -- function that is not available in configurable runtime).
5086
5087 if Present (Expression (N))
5088 and then Nkind (Expression (N)) = N_Empty
5089 then
ee2ba856 5090 Check_Error_Detected;
2b3d67a5
AC
5091 return;
5092 end if;
5093
5094 -- Distinguish the function and non-function cases:
5095
5096 case Ekind (Return_Applies_To (Return_Statement_Entity (N))) is
5097
5098 when E_Function |
5099 E_Generic_Function =>
5100 Expand_Simple_Function_Return (N);
5101
5102 when E_Procedure |
5103 E_Generic_Procedure |
5104 E_Entry |
5105 E_Entry_Family |
5106 E_Return_Statement =>
5107 Expand_Non_Function_Return (N);
5108
5109 when others =>
5110 raise Program_Error;
5111 end case;
5112
5113 exception
5114 when RE_Not_Available =>
5115 return;
5116 end Expand_N_Simple_Return_Statement;
5117
70482933
RK
5118 ------------------------------
5119 -- Expand_N_Subprogram_Body --
5120 ------------------------------
5121
4a3b249c
RD
5122 -- Add poll call if ATC polling is enabled, unless the body will be inlined
5123 -- by the back-end.
70482933 5124
7888a6ae 5125 -- Add dummy push/pop label nodes at start and end to clear any local
4a3b249c 5126 -- exception indications if local-exception-to-goto optimization is active.
7888a6ae 5127
f44fe430
RD
5128 -- Add return statement if last statement in body is not a return statement
5129 -- (this makes things easier on Gigi which does not want to have to handle
5130 -- a missing return).
70482933
RK
5131
5132 -- Add call to Activate_Tasks if body is a task activator
5133
5134 -- Deal with possible detection of infinite recursion
5135
5136 -- Eliminate body completely if convention stubbed
5137
5138 -- Encode entity names within body, since we will not need to reference
5139 -- these entities any longer in the front end.
5140
5141 -- Initialize scalar out parameters if Initialize/Normalize_Scalars
5142
c9a4817d 5143 -- Reset Pure indication if any parameter has root type System.Address
199c6a10
AC
5144 -- or has any parameters of limited types, where limited means that the
5145 -- run-time view is limited (i.e. the full type is limited).
c9a4817d 5146
12e0c41c
AC
5147 -- Wrap thread body
5148
70482933
RK
5149 procedure Expand_N_Subprogram_Body (N : Node_Id) is
5150 Loc : constant Source_Ptr := Sloc (N);
5151 H : constant Node_Id := Handled_Statement_Sequence (N);
c9a4817d 5152 Body_Id : Entity_Id;
70482933 5153 Except_H : Node_Id;
70482933 5154 L : List_Id;
70f91180 5155 Spec_Id : Entity_Id;
70482933
RK
5156
5157 procedure Add_Return (S : List_Id);
5158 -- Append a return statement to the statement sequence S if the last
5159 -- statement is not already a return or a goto statement. Note that
4a3b249c
RD
5160 -- the latter test is not critical, it does not matter if we add a few
5161 -- extra returns, since they get eliminated anyway later on.
70482933
RK
5162
5163 ----------------
5164 -- Add_Return --
5165 ----------------
5166
5167 procedure Add_Return (S : List_Id) is
7888a6ae
GD
5168 Last_Stm : Node_Id;
5169 Loc : Source_Ptr;
12e0c41c
AC
5170
5171 begin
7888a6ae
GD
5172 -- Get last statement, ignoring any Pop_xxx_Label nodes, which are
5173 -- not relevant in this context since they are not executable.
12e0c41c 5174
7888a6ae
GD
5175 Last_Stm := Last (S);
5176 while Nkind (Last_Stm) in N_Pop_xxx_Label loop
5177 Prev (Last_Stm);
5178 end loop;
12e0c41c 5179
7888a6ae 5180 -- Now insert return unless last statement is a transfer
12e0c41c 5181
7888a6ae 5182 if not Is_Transfer (Last_Stm) then
12e0c41c 5183
7888a6ae
GD
5184 -- The source location for the return is the end label of the
5185 -- procedure if present. Otherwise use the sloc of the last
5186 -- statement in the list. If the list comes from a generated
5187 -- exception handler and we are not debugging generated code,
5188 -- all the statements within the handler are made invisible
5189 -- to the debugger.
12e0c41c 5190
7888a6ae
GD
5191 if Nkind (Parent (S)) = N_Exception_Handler
5192 and then not Comes_From_Source (Parent (S))
5193 then
5194 Loc := Sloc (Last_Stm);
7888a6ae
GD
5195 elsif Present (End_Label (H)) then
5196 Loc := Sloc (End_Label (H));
7888a6ae
GD
5197 else
5198 Loc := Sloc (Last_Stm);
5199 end if;
12e0c41c 5200
5334d18f
BD
5201 declare
5202 Rtn : constant Node_Id := Make_Simple_Return_Statement (Loc);
5203
5204 begin
4a3b249c
RD
5205 -- Append return statement, and set analyzed manually. We can't
5206 -- call Analyze on this return since the scope is wrong.
5334d18f
BD
5207
5208 -- Note: it almost works to push the scope and then do the
4a3b249c 5209 -- Analyze call, but something goes wrong in some weird cases
5334d18f
BD
5210 -- and it is not worth worrying about ???
5211
135da41f
RD
5212 -- The return statement is handled properly, and the call
5213 -- to the postcondition, inserted below, does not require
6a74a7b0
AC
5214 -- information from the body either. However, that call is
5215 -- analyzed in the enclosing scope, and an elaboration check
135da41f 5216 -- might improperly be added to it. A guard in Sem_Elab is
6a74a7b0
AC
5217 -- needed to prevent that spurious check, see Check_Elab_Call.
5218
5334d18f
BD
5219 Append_To (S, Rtn);
5220 Set_Analyzed (Rtn);
5221
5222 -- Call _Postconditions procedure if appropriate. We need to
5223 -- do this explicitly because we did not analyze the generated
5224 -- return statement above, so the call did not get inserted.
5225
5226 if Ekind (Spec_Id) = E_Procedure
5227 and then Has_Postconditions (Spec_Id)
5228 then
5229 pragma Assert (Present (Postcondition_Proc (Spec_Id)));
5230 Insert_Action (Rtn,
5231 Make_Procedure_Call_Statement (Loc,
5232 Name =>
e4494292
RD
5233 New_Occurrence_Of
5234 (Postcondition_Proc (Spec_Id), Loc)));
5334d18f
BD
5235 end if;
5236 end;
12e0c41c 5237 end if;
7888a6ae 5238 end Add_Return;
12e0c41c 5239
70482933
RK
5240 -- Start of processing for Expand_N_Subprogram_Body
5241
5242 begin
4a3b249c
RD
5243 -- Set L to either the list of declarations if present, or to the list
5244 -- of statements if no declarations are present. This is used to insert
5245 -- new stuff at the start.
70482933
RK
5246
5247 if Is_Non_Empty_List (Declarations (N)) then
5248 L := Declarations (N);
5249 else
7888a6ae
GD
5250 L := Statements (H);
5251 end if;
5252
5253 -- If local-exception-to-goto optimization active, insert dummy push
1adaea16
AC
5254 -- statements at start, and dummy pop statements at end, but inhibit
5255 -- this if we have No_Exception_Handlers, since they are useless and
5256 -- intefere with analysis, e.g. by codepeer.
7888a6ae
GD
5257
5258 if (Debug_Flag_Dot_G
5259 or else Restriction_Active (No_Exception_Propagation))
1adaea16
AC
5260 and then not Restriction_Active (No_Exception_Handlers)
5261 and then not CodePeer_Mode
7888a6ae
GD
5262 and then Is_Non_Empty_List (L)
5263 then
5264 declare
5265 FS : constant Node_Id := First (L);
5266 FL : constant Source_Ptr := Sloc (FS);
5267 LS : Node_Id;
5268 LL : Source_Ptr;
5269
5270 begin
5271 -- LS points to either last statement, if statements are present
5272 -- or to the last declaration if there are no statements present.
5273 -- It is the node after which the pop's are generated.
5274
5275 if Is_Non_Empty_List (Statements (H)) then
5276 LS := Last (Statements (H));
5277 else
5278 LS := Last (L);
5279 end if;
5280
5281 LL := Sloc (LS);
5282
5283 Insert_List_Before_And_Analyze (FS, New_List (
5284 Make_Push_Constraint_Error_Label (FL),
5285 Make_Push_Program_Error_Label (FL),
5286 Make_Push_Storage_Error_Label (FL)));
5287
5288 Insert_List_After_And_Analyze (LS, New_List (
5289 Make_Pop_Constraint_Error_Label (LL),
5290 Make_Pop_Program_Error_Label (LL),
5291 Make_Pop_Storage_Error_Label (LL)));
5292 end;
70482933
RK
5293 end if;
5294
70482933
RK
5295 -- Find entity for subprogram
5296
c9a4817d
RD
5297 Body_Id := Defining_Entity (N);
5298
70482933
RK
5299 if Present (Corresponding_Spec (N)) then
5300 Spec_Id := Corresponding_Spec (N);
5301 else
c9a4817d
RD
5302 Spec_Id := Body_Id;
5303 end if;
5304
7888a6ae
GD
5305 -- Need poll on entry to subprogram if polling enabled. We only do this
5306 -- for non-empty subprograms, since it does not seem necessary to poll
4a3b249c 5307 -- for a dummy null subprogram.
c885d7a1
AC
5308
5309 if Is_Non_Empty_List (L) then
4a3b249c
RD
5310
5311 -- Do not add a polling call if the subprogram is to be inlined by
5312 -- the back-end, to avoid repeated calls with multiple inlinings.
5313
c885d7a1
AC
5314 if Is_Inlined (Spec_Id)
5315 and then Front_End_Inlining
5316 and then Optimization_Level > 1
5317 then
5318 null;
5319 else
5320 Generate_Poll_Call (First (L));
5321 end if;
5322 end if;
5323
4a3b249c
RD
5324 -- If this is a Pure function which has any parameters whose root type
5325 -- is System.Address, reset the Pure indication, since it will likely
5326 -- cause incorrect code to be generated as the parameter is probably
5327 -- a pointer, and the fact that the same pointer is passed does not mean
5328 -- that the same value is being referenced.
91b1417d
AC
5329
5330 -- Note that if the programmer gave an explicit Pure_Function pragma,
5331 -- then we believe the programmer, and leave the subprogram Pure.
5332
4a3b249c
RD
5333 -- This code should probably be at the freeze point, so that it happens
5334 -- even on a -gnatc (or more importantly -gnatt) compile, so that the
5335 -- semantic tree has Is_Pure set properly ???
c9a4817d
RD
5336
5337 if Is_Pure (Spec_Id)
5338 and then Is_Subprogram (Spec_Id)
5339 and then not Has_Pragma_Pure_Function (Spec_Id)
5340 then
5341 declare
2f1b20a9 5342 F : Entity_Id;
c9a4817d
RD
5343
5344 begin
2f1b20a9 5345 F := First_Formal (Spec_Id);
c9a4817d 5346 while Present (F) loop
e5dc610e 5347 if Is_Descendent_Of_Address (Etype (F))
199c6a10
AC
5348
5349 -- Note that this test is being made in the body of the
5350 -- subprogram, not the spec, so we are testing the full
5351 -- type for being limited here, as required.
5352
e5dc610e
AC
5353 or else Is_Limited_Type (Etype (F))
5354 then
c9a4817d
RD
5355 Set_Is_Pure (Spec_Id, False);
5356
5357 if Spec_Id /= Body_Id then
5358 Set_Is_Pure (Body_Id, False);
5359 end if;
5360
5361 exit;
5362 end if;
5363
5364 Next_Formal (F);
5365 end loop;
5366 end;
70482933
RK
5367 end if;
5368
5369 -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
5370
5371 if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
5372 declare
2f1b20a9 5373 F : Entity_Id;
05c064c1 5374 A : Node_Id;
70482933
RK
5375
5376 begin
70482933
RK
5377 -- Loop through formals
5378
2f1b20a9 5379 F := First_Formal (Spec_Id);
70482933
RK
5380 while Present (F) loop
5381 if Is_Scalar_Type (Etype (F))
5382 and then Ekind (F) = E_Out_Parameter
5383 then
70f91180
RD
5384 Check_Restriction (No_Default_Initialization, F);
5385
02822a92
RD
5386 -- Insert the initialization. We turn off validity checks
5387 -- for this assignment, since we do not want any check on
5388 -- the initial value itself (which may well be invalid).
05c064c1 5389 -- Predicate checks are disabled as well (RM 6.4.1 (13/3))
02822a92 5390
05c064c1 5391 A := Make_Assignment_Statement (Loc,
02822a92 5392 Name => New_Occurrence_Of (F, Loc),
05c064c1
AC
5393 Expression => Get_Simple_Init_Val (Etype (F), N));
5394 Set_Suppress_Assignment_Checks (A);
5395
5396 Insert_Before_And_Analyze (First (L),
5397 A, Suppress => Validity_Check);
70482933
RK
5398 end if;
5399
5400 Next_Formal (F);
5401 end loop;
70482933
RK
5402 end;
5403 end if;
5404
5405 -- Clear out statement list for stubbed procedure
5406
5407 if Present (Corresponding_Spec (N)) then
5408 Set_Elaboration_Flag (N, Spec_Id);
5409
5410 if Convention (Spec_Id) = Convention_Stubbed
5411 or else Is_Eliminated (Spec_Id)
5412 then
5413 Set_Declarations (N, Empty_List);
5414 Set_Handled_Statement_Sequence (N,
5415 Make_Handled_Sequence_Of_Statements (Loc,
2c1b72d7 5416 Statements => New_List (Make_Null_Statement (Loc))));
70482933
RK
5417 return;
5418 end if;
5419 end if;
5420
70f91180
RD
5421 -- Create a set of discriminals for the next protected subprogram body
5422
5423 if Is_List_Member (N)
5424 and then Present (Parent (List_Containing (N)))
5425 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5426 and then Present (Next_Protected_Operation (N))
5427 then
5428 Set_Discriminals (Parent (Base_Type (Scope (Spec_Id))));
5429 end if;
5430
4a3b249c
RD
5431 -- Returns_By_Ref flag is normally set when the subprogram is frozen but
5432 -- subprograms with no specs are not frozen.
70482933
RK
5433
5434 declare
5435 Typ : constant Entity_Id := Etype (Spec_Id);
5436 Utyp : constant Entity_Id := Underlying_Type (Typ);
5437
5438 begin
5439 if not Acts_As_Spec (N)
5440 and then Nkind (Parent (Parent (Spec_Id))) /=
5441 N_Subprogram_Body_Stub
5442 then
5443 null;
5444
51245e2d 5445 elsif Is_Limited_View (Typ) then
70482933
RK
5446 Set_Returns_By_Ref (Spec_Id);
5447
048e5cef 5448 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
70482933
RK
5449 Set_Returns_By_Ref (Spec_Id);
5450 end if;
5451 end;
5452
4a3b249c
RD
5453 -- For a procedure, we add a return for all possible syntactic ends of
5454 -- the subprogram.
70482933 5455
b29def53 5456 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure) then
70482933
RK
5457 Add_Return (Statements (H));
5458
5459 if Present (Exception_Handlers (H)) then
5460 Except_H := First_Non_Pragma (Exception_Handlers (H));
70482933
RK
5461 while Present (Except_H) loop
5462 Add_Return (Statements (Except_H));
5463 Next_Non_Pragma (Except_H);
5464 end loop;
5465 end if;
5466
98f01d53
AC
5467 -- For a function, we must deal with the case where there is at least
5468 -- one missing return. What we do is to wrap the entire body of the
5469 -- function in a block:
70482933
RK
5470
5471 -- begin
5472 -- ...
5473 -- end;
5474
5475 -- becomes
5476
5477 -- begin
5478 -- begin
5479 -- ...
5480 -- end;
5481
5482 -- raise Program_Error;
5483 -- end;
5484
4a3b249c
RD
5485 -- This approach is necessary because the raise must be signalled to the
5486 -- caller, not handled by any local handler (RM 6.4(11)).
70482933 5487
4a3b249c
RD
5488 -- Note: we do not need to analyze the constructed sequence here, since
5489 -- it has no handler, and an attempt to analyze the handled statement
5490 -- sequence twice is risky in various ways (e.g. the issue of expanding
5491 -- cleanup actions twice).
70482933
RK
5492
5493 elsif Has_Missing_Return (Spec_Id) then
5494 declare
5495 Hloc : constant Source_Ptr := Sloc (H);
5496 Blok : constant Node_Id :=
5497 Make_Block_Statement (Hloc,
5498 Handled_Statement_Sequence => H);
5499 Rais : constant Node_Id :=
07fc65c4
GB
5500 Make_Raise_Program_Error (Hloc,
5501 Reason => PE_Missing_Return);
70482933
RK
5502
5503 begin
5504 Set_Handled_Statement_Sequence (N,
5505 Make_Handled_Sequence_Of_Statements (Hloc,
5506 Statements => New_List (Blok, Rais)));
5507
7888a6ae 5508 Push_Scope (Spec_Id);
70482933
RK
5509 Analyze (Blok);
5510 Analyze (Rais);
5511 Pop_Scope;
5512 end;
5513 end if;
5514
70482933
RK
5515 -- If subprogram contains a parameterless recursive call, then we may
5516 -- have an infinite recursion, so see if we can generate code to check
5517 -- for this possibility if storage checks are not suppressed.
5518
5519 if Ekind (Spec_Id) = E_Procedure
5520 and then Has_Recursive_Call (Spec_Id)
5521 and then not Storage_Checks_Suppressed (Spec_Id)
5522 then
5523 Detect_Infinite_Recursion (N, Spec_Id);
5524 end if;
5525
70482933
RK
5526 -- Set to encode entity names in package body before gigi is called
5527
5528 Qualify_Entity_Names (N);
5529 end Expand_N_Subprogram_Body;
5530
5531 -----------------------------------
5532 -- Expand_N_Subprogram_Body_Stub --
5533 -----------------------------------
5534
5535 procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
5536 begin
5537 if Present (Corresponding_Body (N)) then
5538 Expand_N_Subprogram_Body (
5539 Unit_Declaration_Node (Corresponding_Body (N)));
5540 end if;
70482933
RK
5541 end Expand_N_Subprogram_Body_Stub;
5542
5543 -------------------------------------
5544 -- Expand_N_Subprogram_Declaration --
5545 -------------------------------------
5546
70482933
RK
5547 -- If the declaration appears within a protected body, it is a private
5548 -- operation of the protected type. We must create the corresponding
5549 -- protected subprogram an associated formals. For a normal protected
5550 -- operation, this is done when expanding the protected type declaration.
5551
758c442c
GD
5552 -- If the declaration is for a null procedure, emit null body
5553
70482933 5554 procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
fbf5a39b
AC
5555 Loc : constant Source_Ptr := Sloc (N);
5556 Subp : constant Entity_Id := Defining_Entity (N);
5557 Scop : constant Entity_Id := Scope (Subp);
5558 Prot_Decl : Node_Id;
5559 Prot_Bod : Node_Id;
5560 Prot_Id : Entity_Id;
70482933
RK
5561
5562 begin
2ba431e5
YM
5563 -- In SPARK, subprogram declarations are only allowed in package
5564 -- specifications.
7ff2d234 5565
fe5d3068
YM
5566 if Nkind (Parent (N)) /= N_Package_Specification then
5567 if Nkind (Parent (N)) = N_Compilation_Unit then
ce5ba43a 5568 Check_SPARK_05_Restriction
fe5d3068
YM
5569 ("subprogram declaration is not a library item", N);
5570
5571 elsif Present (Next (N))
7ff2d234
AC
5572 and then Nkind (Next (N)) = N_Pragma
5573 and then Get_Pragma_Id (Pragma_Name (Next (N))) = Pragma_Import
5574 then
2ba431e5 5575 -- In SPARK, subprogram declarations are also permitted in
7ff2d234
AC
5576 -- declarative parts when immediately followed by a corresponding
5577 -- pragma Import. We only check here that there is some pragma
5578 -- Import.
5579
5580 null;
5581 else
ce5ba43a 5582 Check_SPARK_05_Restriction
fe5d3068 5583 ("subprogram declaration is not allowed here", N);
7ff2d234
AC
5584 end if;
5585 end if;
5586
2f1b20a9
ES
5587 -- Deal with case of protected subprogram. Do not generate protected
5588 -- operation if operation is flagged as eliminated.
70482933
RK
5589
5590 if Is_List_Member (N)
5591 and then Present (Parent (List_Containing (N)))
5592 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5593 and then Is_Protected_Type (Scop)
5594 then
6871ba5f
AC
5595 if No (Protected_Body_Subprogram (Subp))
5596 and then not Is_Eliminated (Subp)
5597 then
fbf5a39b 5598 Prot_Decl :=
70482933
RK
5599 Make_Subprogram_Declaration (Loc,
5600 Specification =>
5601 Build_Protected_Sub_Specification
2f1b20a9 5602 (N, Scop, Unprotected_Mode));
70482933
RK
5603
5604 -- The protected subprogram is declared outside of the protected
5605 -- body. Given that the body has frozen all entities so far, we
fbf5a39b 5606 -- analyze the subprogram and perform freezing actions explicitly.
19590d70
GD
5607 -- including the generation of an explicit freeze node, to ensure
5608 -- that gigi has the proper order of elaboration.
fbf5a39b
AC
5609 -- If the body is a subunit, the insertion point is before the
5610 -- stub in the parent.
70482933
RK
5611
5612 Prot_Bod := Parent (List_Containing (N));
5613
5614 if Nkind (Parent (Prot_Bod)) = N_Subunit then
5615 Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
5616 end if;
5617
fbf5a39b
AC
5618 Insert_Before (Prot_Bod, Prot_Decl);
5619 Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
19590d70 5620 Set_Has_Delayed_Freeze (Prot_Id);
70482933 5621
7888a6ae 5622 Push_Scope (Scope (Scop));
fbf5a39b 5623 Analyze (Prot_Decl);
6b958cec 5624 Freeze_Before (N, Prot_Id);
fbf5a39b 5625 Set_Protected_Body_Subprogram (Subp, Prot_Id);
47bfea3a
AC
5626
5627 -- Create protected operation as well. Even though the operation
5628 -- is only accessible within the body, it is possible to make it
5629 -- available outside of the protected object by using 'Access to
3d923671 5630 -- provide a callback, so build protected version in all cases.
47bfea3a
AC
5631
5632 Prot_Decl :=
3d923671
AC
5633 Make_Subprogram_Declaration (Loc,
5634 Specification =>
5635 Build_Protected_Sub_Specification (N, Scop, Protected_Mode));
47bfea3a
AC
5636 Insert_Before (Prot_Bod, Prot_Decl);
5637 Analyze (Prot_Decl);
5638
70482933
RK
5639 Pop_Scope;
5640 end if;
758c442c 5641
54bf19e4
AC
5642 -- Ada 2005 (AI-348): Generate body for a null procedure. In most
5643 -- cases this is superfluous because calls to it will be automatically
5644 -- inlined, but we definitely need the body if preconditions for the
5645 -- procedure are present.
02822a92 5646
758c442c
GD
5647 elsif Nkind (Specification (N)) = N_Procedure_Specification
5648 and then Null_Present (Specification (N))
5649 then
5650 declare
e1f3cb58 5651 Bod : constant Node_Id := Body_To_Inline (N);
d6533e74 5652
758c442c 5653 begin
e1f3cb58
AC
5654 Set_Has_Completion (Subp, False);
5655 Append_Freeze_Action (Subp, Bod);
c73ae90f 5656
e1f3cb58
AC
5657 -- The body now contains raise statements, so calls to it will
5658 -- not be inlined.
c73ae90f 5659
e1f3cb58 5660 Set_Is_Inlined (Subp, False);
758c442c 5661 end;
70482933
RK
5662 end if;
5663 end Expand_N_Subprogram_Declaration;
5664
2b3d67a5
AC
5665 --------------------------------
5666 -- Expand_Non_Function_Return --
5667 --------------------------------
5668
5669 procedure Expand_Non_Function_Return (N : Node_Id) is
5670 pragma Assert (No (Expression (N)));
5671
5672 Loc : constant Source_Ptr := Sloc (N);
5673 Scope_Id : Entity_Id :=
5674 Return_Applies_To (Return_Statement_Entity (N));
5675 Kind : constant Entity_Kind := Ekind (Scope_Id);
5676 Call : Node_Id;
5677 Acc_Stat : Node_Id;
5678 Goto_Stat : Node_Id;
5679 Lab_Node : Node_Id;
5680
5681 begin
5682 -- Call _Postconditions procedure if procedure with active
54bf19e4
AC
5683 -- postconditions. Here, we use the Postcondition_Proc attribute,
5684 -- which is needed for implicitly-generated returns. Functions
5685 -- never have implicitly-generated returns, and there's no
5686 -- room for Postcondition_Proc in E_Function, so we look up the
5687 -- identifier Name_uPostconditions for function returns (see
2b3d67a5
AC
5688 -- Expand_Simple_Function_Return).
5689
5690 if Ekind (Scope_Id) = E_Procedure
5691 and then Has_Postconditions (Scope_Id)
5692 then
5693 pragma Assert (Present (Postcondition_Proc (Scope_Id)));
5694 Insert_Action (N,
5695 Make_Procedure_Call_Statement (Loc,
e4494292 5696 Name => New_Occurrence_Of (Postcondition_Proc (Scope_Id), Loc)));
2b3d67a5
AC
5697 end if;
5698
5699 -- If it is a return from a procedure do no extra steps
5700
5701 if Kind = E_Procedure or else Kind = E_Generic_Procedure then
5702 return;
5703
5704 -- If it is a nested return within an extended one, replace it with a
5705 -- return of the previously declared return object.
5706
5707 elsif Kind = E_Return_Statement then
5708 Rewrite (N,
5709 Make_Simple_Return_Statement (Loc,
5710 Expression =>
5711 New_Occurrence_Of (First_Entity (Scope_Id), Loc)));
5712 Set_Comes_From_Extended_Return_Statement (N);
5713 Set_Return_Statement_Entity (N, Scope_Id);
5714 Expand_Simple_Function_Return (N);
5715 return;
5716 end if;
5717
5718 pragma Assert (Is_Entry (Scope_Id));
5719
5720 -- Look at the enclosing block to see whether the return is from an
5721 -- accept statement or an entry body.
5722
5723 for J in reverse 0 .. Scope_Stack.Last loop
5724 Scope_Id := Scope_Stack.Table (J).Entity;
5725 exit when Is_Concurrent_Type (Scope_Id);
5726 end loop;
5727
5728 -- If it is a return from accept statement it is expanded as call to
5729 -- RTS Complete_Rendezvous and a goto to the end of the accept body.
5730
5731 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
5732 -- Expand_N_Accept_Alternative in exp_ch9.adb)
5733
5734 if Is_Task_Type (Scope_Id) then
5735
5736 Call :=
5737 Make_Procedure_Call_Statement (Loc,
e4494292 5738 Name => New_Occurrence_Of (RTE (RE_Complete_Rendezvous), Loc));
2b3d67a5
AC
5739 Insert_Before (N, Call);
5740 -- why not insert actions here???
5741 Analyze (Call);
5742
5743 Acc_Stat := Parent (N);
5744 while Nkind (Acc_Stat) /= N_Accept_Statement loop
5745 Acc_Stat := Parent (Acc_Stat);
5746 end loop;
5747
5748 Lab_Node := Last (Statements
5749 (Handled_Statement_Sequence (Acc_Stat)));
5750
5751 Goto_Stat := Make_Goto_Statement (Loc,
5752 Name => New_Occurrence_Of
5753 (Entity (Identifier (Lab_Node)), Loc));
5754
5755 Set_Analyzed (Goto_Stat);
5756
5757 Rewrite (N, Goto_Stat);
5758 Analyze (N);
5759
5760 -- If it is a return from an entry body, put a Complete_Entry_Body call
5761 -- in front of the return.
5762
5763 elsif Is_Protected_Type (Scope_Id) then
5764 Call :=
5765 Make_Procedure_Call_Statement (Loc,
5766 Name =>
e4494292 5767 New_Occurrence_Of (RTE (RE_Complete_Entry_Body), Loc),
2b3d67a5
AC
5768 Parameter_Associations => New_List (
5769 Make_Attribute_Reference (Loc,
2c1b72d7 5770 Prefix =>
e4494292 5771 New_Occurrence_Of
2b3d67a5 5772 (Find_Protection_Object (Current_Scope), Loc),
2c1b72d7 5773 Attribute_Name => Name_Unchecked_Access)));
2b3d67a5
AC
5774
5775 Insert_Before (N, Call);
5776 Analyze (Call);
5777 end if;
5778 end Expand_Non_Function_Return;
5779
70482933
RK
5780 ---------------------------------------
5781 -- Expand_Protected_Object_Reference --
5782 ---------------------------------------
5783
5784 function Expand_Protected_Object_Reference
5785 (N : Node_Id;
02822a92 5786 Scop : Entity_Id) return Node_Id
70482933
RK
5787 is
5788 Loc : constant Source_Ptr := Sloc (N);
5789 Corr : Entity_Id;
5790 Rec : Node_Id;
5791 Param : Entity_Id;
5792 Proc : Entity_Id;
5793
5794 begin
7675ad4f 5795 Rec := Make_Identifier (Loc, Name_uObject);
70482933
RK
5796 Set_Etype (Rec, Corresponding_Record_Type (Scop));
5797
2f1b20a9
ES
5798 -- Find enclosing protected operation, and retrieve its first parameter,
5799 -- which denotes the enclosing protected object. If the enclosing
5800 -- operation is an entry, we are immediately within the protected body,
5801 -- and we can retrieve the object from the service entries procedure. A
16b05213 5802 -- barrier function has the same signature as an entry. A barrier
2f1b20a9
ES
5803 -- function is compiled within the protected object, but unlike
5804 -- protected operations its never needs locks, so that its protected
5805 -- body subprogram points to itself.
70482933
RK
5806
5807 Proc := Current_Scope;
70482933
RK
5808 while Present (Proc)
5809 and then Scope (Proc) /= Scop
5810 loop
5811 Proc := Scope (Proc);
5812 end loop;
5813
5814 Corr := Protected_Body_Subprogram (Proc);
5815
5816 if No (Corr) then
5817
5818 -- Previous error left expansion incomplete.
5819 -- Nothing to do on this call.
5820
5821 return Empty;
5822 end if;
5823
5824 Param :=
5825 Defining_Identifier
5826 (First (Parameter_Specifications (Parent (Corr))));
5827
5828 if Is_Subprogram (Proc)
5829 and then Proc /= Corr
5830 then
98f01d53 5831 -- Protected function or procedure
70482933
RK
5832
5833 Set_Entity (Rec, Param);
5834
2f1b20a9
ES
5835 -- Rec is a reference to an entity which will not be in scope when
5836 -- the call is reanalyzed, and needs no further analysis.
70482933
RK
5837
5838 Set_Analyzed (Rec);
5839
5840 else
2f1b20a9
ES
5841 -- Entry or barrier function for entry body. The first parameter of
5842 -- the entry body procedure is pointer to the object. We create a
5843 -- local variable of the proper type, duplicating what is done to
5844 -- define _object later on.
70482933
RK
5845
5846 declare
c12beea0
RD
5847 Decls : List_Id;
5848 Obj_Ptr : constant Entity_Id := Make_Temporary (Loc, 'T');
fbf5a39b 5849
70482933
RK
5850 begin
5851 Decls := New_List (
5852 Make_Full_Type_Declaration (Loc,
5853 Defining_Identifier => Obj_Ptr,
2c1b72d7 5854 Type_Definition =>
70482933
RK
5855 Make_Access_To_Object_Definition (Loc,
5856 Subtype_Indication =>
e4494292 5857 New_Occurrence_Of
c12beea0 5858 (Corresponding_Record_Type (Scop), Loc))));
70482933
RK
5859
5860 Insert_Actions (N, Decls);
6b958cec 5861 Freeze_Before (N, Obj_Ptr);
70482933
RK
5862
5863 Rec :=
5864 Make_Explicit_Dereference (Loc,
2c1b72d7
AC
5865 Prefix =>
5866 Unchecked_Convert_To (Obj_Ptr,
5867 New_Occurrence_Of (Param, Loc)));
70482933 5868
2f1b20a9 5869 -- Analyze new actual. Other actuals in calls are already analyzed
7888a6ae 5870 -- and the list of actuals is not reanalyzed after rewriting.
70482933
RK
5871
5872 Set_Parent (Rec, N);
5873 Analyze (Rec);
5874 end;
5875 end if;
5876
5877 return Rec;
5878 end Expand_Protected_Object_Reference;
5879
5880 --------------------------------------
5881 -- Expand_Protected_Subprogram_Call --
5882 --------------------------------------
5883
5884 procedure Expand_Protected_Subprogram_Call
5885 (N : Node_Id;
5886 Subp : Entity_Id;
5887 Scop : Entity_Id)
5888 is
5889 Rec : Node_Id;
5890
36295779
AC
5891 procedure Freeze_Called_Function;
5892 -- If it is a function call it can appear in elaboration code and
5893 -- the called entity must be frozen before the call. This must be
5894 -- done before the call is expanded, as the expansion may rewrite it
5895 -- to something other than a call (e.g. a temporary initialized in a
5896 -- transient block).
5897
5898 ----------------------------
5899 -- Freeze_Called_Function --
5900 ----------------------------
5901
5902 procedure Freeze_Called_Function is
5903 begin
5904 if Ekind (Subp) = E_Function then
5905 Freeze_Expression (Name (N));
5906 end if;
5907 end Freeze_Called_Function;
5908
5909 -- Start of processing for Expand_Protected_Subprogram_Call
5910
70482933 5911 begin
54bf19e4
AC
5912 -- If the protected object is not an enclosing scope, this is an inter-
5913 -- object function call. Inter-object procedure calls are expanded by
5914 -- Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
5915 -- subprogram being called is in the protected body being compiled, and
5916 -- if the protected object in the call is statically the enclosing type.
5917 -- The object may be an component of some other data structure, in which
5918 -- case this must be handled as an inter-object call.
70482933
RK
5919
5920 if not In_Open_Scopes (Scop)
5921 or else not Is_Entity_Name (Name (N))
5922 then
5923 if Nkind (Name (N)) = N_Selected_Component then
5924 Rec := Prefix (Name (N));
5925
5926 else
5927 pragma Assert (Nkind (Name (N)) = N_Indexed_Component);
5928 Rec := Prefix (Prefix (Name (N)));
5929 end if;
5930
36295779 5931 Freeze_Called_Function;
70482933 5932 Build_Protected_Subprogram_Call (N,
2c1b72d7 5933 Name => New_Occurrence_Of (Subp, Sloc (N)),
2ba1a7c7 5934 Rec => Convert_Concurrent (Rec, Etype (Rec)),
70482933
RK
5935 External => True);
5936
5937 else
5938 Rec := Expand_Protected_Object_Reference (N, Scop);
5939
5940 if No (Rec) then
5941 return;
5942 end if;
5943
36295779 5944 Freeze_Called_Function;
70482933
RK
5945 Build_Protected_Subprogram_Call (N,
5946 Name => Name (N),
5947 Rec => Rec,
5948 External => False);
5949
5950 end if;
5951
811c6a85 5952 -- Analyze and resolve the new call. The actuals have already been
b0159fbe 5953 -- resolved, but expansion of a function call will add extra actuals
811c6a85
AC
5954 -- if needed. Analysis of a procedure call already includes resolution.
5955
5956 Analyze (N);
5957
5958 if Ekind (Subp) = E_Function then
5959 Resolve (N, Etype (Subp));
5960 end if;
70482933
RK
5961 end Expand_Protected_Subprogram_Call;
5962
63585f75
SB
5963 --------------------------------------------
5964 -- Has_Unconstrained_Access_Discriminants --
5965 --------------------------------------------
5966
5967 function Has_Unconstrained_Access_Discriminants
5968 (Subtyp : Entity_Id) return Boolean
5969 is
5970 Discr : Entity_Id;
5971
5972 begin
5973 if Has_Discriminants (Subtyp)
5974 and then not Is_Constrained (Subtyp)
5975 then
5976 Discr := First_Discriminant (Subtyp);
5977 while Present (Discr) loop
5978 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
5979 return True;
5980 end if;
5981
5982 Next_Discriminant (Discr);
5983 end loop;
5984 end if;
ebf494ec 5985
63585f75
SB
5986 return False;
5987 end Has_Unconstrained_Access_Discriminants;
5988
2b3d67a5
AC
5989 -----------------------------------
5990 -- Expand_Simple_Function_Return --
5991 -----------------------------------
5992
54bf19e4 5993 -- The "simple" comes from the syntax rule simple_return_statement. The
a90bd866 5994 -- semantics are not at all simple.
2b3d67a5
AC
5995
5996 procedure Expand_Simple_Function_Return (N : Node_Id) is
5997 Loc : constant Source_Ptr := Sloc (N);
5998
5999 Scope_Id : constant Entity_Id :=
6000 Return_Applies_To (Return_Statement_Entity (N));
6001 -- The function we are returning from
6002
6003 R_Type : constant Entity_Id := Etype (Scope_Id);
6004 -- The result type of the function
6005
6006 Utyp : constant Entity_Id := Underlying_Type (R_Type);
6007
6008 Exp : constant Node_Id := Expression (N);
6009 pragma Assert (Present (Exp));
6010
6011 Exptyp : constant Entity_Id := Etype (Exp);
6012 -- The type of the expression (not necessarily the same as R_Type)
6013
6014 Subtype_Ind : Node_Id;
54bf19e4
AC
6015 -- If the result type of the function is class-wide and the expression
6016 -- has a specific type, then we use the expression's type as the type of
6017 -- the return object. In cases where the expression is an aggregate that
6018 -- is built in place, this avoids the need for an expensive conversion
6019 -- of the return object to the specific type on assignments to the
6020 -- individual components.
2b3d67a5
AC
6021
6022 begin
6023 if Is_Class_Wide_Type (R_Type)
6024 and then not Is_Class_Wide_Type (Etype (Exp))
6025 then
6026 Subtype_Ind := New_Occurrence_Of (Etype (Exp), Loc);
6027 else
6028 Subtype_Ind := New_Occurrence_Of (R_Type, Loc);
6029 end if;
6030
6031 -- For the case of a simple return that does not come from an extended
6032 -- return, in the case of Ada 2005 where we are returning a limited
6033 -- type, we rewrite "return <expression>;" to be:
6034
6035 -- return _anon_ : <return_subtype> := <expression>
6036
6037 -- The expansion produced by Expand_N_Extended_Return_Statement will
6038 -- contain simple return statements (for example, a block containing
6039 -- simple return of the return object), which brings us back here with
6040 -- Comes_From_Extended_Return_Statement set. The reason for the barrier
6041 -- checking for a simple return that does not come from an extended
6042 -- return is to avoid this infinite recursion.
6043
6044 -- The reason for this design is that for Ada 2005 limited returns, we
6045 -- need to reify the return object, so we can build it "in place", and
6046 -- we need a block statement to hang finalization and tasking stuff.
6047
6048 -- ??? In order to avoid disruption, we avoid translating to extended
6049 -- return except in the cases where we really need to (Ada 2005 for
6050 -- inherently limited). We might prefer to do this translation in all
6051 -- cases (except perhaps for the case of Ada 95 inherently limited),
6052 -- in order to fully exercise the Expand_N_Extended_Return_Statement
6053 -- code. This would also allow us to do the build-in-place optimization
6054 -- for efficiency even in cases where it is semantically not required.
6055
6056 -- As before, we check the type of the return expression rather than the
6057 -- return type of the function, because the latter may be a limited
6058 -- class-wide interface type, which is not a limited type, even though
6059 -- the type of the expression may be.
6060
6061 if not Comes_From_Extended_Return_Statement (N)
51245e2d 6062 and then Is_Limited_View (Etype (Expression (N)))
0791fbe9 6063 and then Ada_Version >= Ada_2005
2b3d67a5 6064 and then not Debug_Flag_Dot_L
f6f4d8d4
JM
6065
6066 -- The functionality of interface thunks is simple and it is always
6067 -- handled by means of simple return statements. This leaves their
6068 -- expansion simple and clean.
6069
da1c23dd 6070 and then not Is_Thunk (Current_Scope)
2b3d67a5
AC
6071 then
6072 declare
6073 Return_Object_Entity : constant Entity_Id :=
6074 Make_Temporary (Loc, 'R', Exp);
f6f4d8d4 6075
2b3d67a5
AC
6076 Obj_Decl : constant Node_Id :=
6077 Make_Object_Declaration (Loc,
6078 Defining_Identifier => Return_Object_Entity,
6079 Object_Definition => Subtype_Ind,
6080 Expression => Exp);
6081
f6f4d8d4
JM
6082 Ext : constant Node_Id :=
6083 Make_Extended_Return_Statement (Loc,
6084 Return_Object_Declarations => New_List (Obj_Decl));
2b3d67a5
AC
6085 -- Do not perform this high-level optimization if the result type
6086 -- is an interface because the "this" pointer must be displaced.
6087
6088 begin
6089 Rewrite (N, Ext);
6090 Analyze (N);
6091 return;
6092 end;
6093 end if;
6094
6095 -- Here we have a simple return statement that is part of the expansion
6096 -- of an extended return statement (either written by the user, or
6097 -- generated by the above code).
6098
6099 -- Always normalize C/Fortran boolean result. This is not always needed,
6100 -- but it seems a good idea to minimize the passing around of non-
6101 -- normalized values, and in any case this handles the processing of
6102 -- barrier functions for protected types, which turn the condition into
6103 -- a return statement.
6104
6105 if Is_Boolean_Type (Exptyp)
6106 and then Nonzero_Is_True (Exptyp)
6107 then
6108 Adjust_Condition (Exp);
6109 Adjust_Result_Type (Exp, Exptyp);
6110 end if;
6111
6112 -- Do validity check if enabled for returns
6113
6114 if Validity_Checks_On
6115 and then Validity_Check_Returns
6116 then
6117 Ensure_Valid (Exp);
6118 end if;
6119
6120 -- Check the result expression of a scalar function against the subtype
6121 -- of the function by inserting a conversion. This conversion must
6122 -- eventually be performed for other classes of types, but for now it's
6123 -- only done for scalars.
6124 -- ???
6125
6126 if Is_Scalar_Type (Exptyp) then
6127 Rewrite (Exp, Convert_To (R_Type, Exp));
6128
6129 -- The expression is resolved to ensure that the conversion gets
6130 -- expanded to generate a possible constraint check.
6131
6132 Analyze_And_Resolve (Exp, R_Type);
6133 end if;
6134
6135 -- Deal with returning variable length objects and controlled types
6136
6137 -- Nothing to do if we are returning by reference, or this is not a
6138 -- type that requires special processing (indicated by the fact that
6139 -- it requires a cleanup scope for the secondary stack case).
6140
51245e2d 6141 if Is_Limited_View (Exptyp)
2b3d67a5
AC
6142 or else Is_Limited_Interface (Exptyp)
6143 then
6144 null;
6145
f6f4d8d4
JM
6146 -- No copy needed for thunks returning interface type objects since
6147 -- the object is returned by reference and the maximum functionality
6148 -- required is just to displace the pointer.
6149
4b342b91 6150 elsif Is_Thunk (Current_Scope) and then Is_Interface (Exptyp) then
f6f4d8d4
JM
6151 null;
6152
2b3d67a5
AC
6153 elsif not Requires_Transient_Scope (R_Type) then
6154
6155 -- Mutable records with no variable length components are not
6156 -- returned on the sec-stack, so we need to make sure that the
6157 -- backend will only copy back the size of the actual value, and not
6158 -- the maximum size. We create an actual subtype for this purpose.
6159
6160 declare
6161 Ubt : constant Entity_Id := Underlying_Type (Base_Type (Exptyp));
6162 Decl : Node_Id;
6163 Ent : Entity_Id;
6164 begin
6165 if Has_Discriminants (Ubt)
6166 and then not Is_Constrained (Ubt)
6167 and then not Has_Unchecked_Union (Ubt)
6168 then
6169 Decl := Build_Actual_Subtype (Ubt, Exp);
6170 Ent := Defining_Identifier (Decl);
6171 Insert_Action (Exp, Decl);
6172 Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
6173 Analyze_And_Resolve (Exp);
6174 end if;
6175 end;
6176
6177 -- Here if secondary stack is used
6178
6179 else
c624298a
AC
6180 -- Prevent the reclamation of the secondary stack by all enclosing
6181 -- blocks and loops as well as the related function, otherwise the
6182 -- result will be reclaimed too early or even clobbered. Due to a
6183 -- possible mix of internally generated blocks, source blocks and
6184 -- loops, the scope stack may not be contiguous as all labels are
6185 -- inserted at the top level within the related function. Instead,
6186 -- perform a parent-based traversal and mark all appropriate
6187 -- constructs.
2b3d67a5
AC
6188
6189 declare
c624298a
AC
6190 P : Node_Id;
6191
2b3d67a5 6192 begin
c624298a
AC
6193 P := N;
6194 while Present (P) loop
adb252d8 6195
c624298a
AC
6196 -- Mark the label of a source or internally generated block or
6197 -- loop.
adb252d8 6198
c624298a
AC
6199 if Nkind_In (P, N_Block_Statement, N_Loop_Statement) then
6200 Set_Sec_Stack_Needed_For_Return (Entity (Identifier (P)));
6201
6202 -- Mark the enclosing function
6203
6204 elsif Nkind (P) = N_Subprogram_Body then
6205 if Present (Corresponding_Spec (P)) then
6206 Set_Sec_Stack_Needed_For_Return (Corresponding_Spec (P));
6207 else
6208 Set_Sec_Stack_Needed_For_Return (Defining_Entity (P));
6209 end if;
6210
6211 -- Do not go beyond the enclosing function
6212
6213 exit;
6214 end if;
6215
6216 P := Parent (P);
6217 end loop;
2b3d67a5
AC
6218 end;
6219
6220 -- Optimize the case where the result is a function call. In this
6221 -- case either the result is already on the secondary stack, or is
6222 -- already being returned with the stack pointer depressed and no
54bf19e4
AC
6223 -- further processing is required except to set the By_Ref flag
6224 -- to ensure that gigi does not attempt an extra unnecessary copy.
2b3d67a5
AC
6225 -- (actually not just unnecessary but harmfully wrong in the case
6226 -- of a controlled type, where gigi does not know how to do a copy).
54bf19e4
AC
6227 -- To make up for a gcc 2.8.1 deficiency (???), we perform the copy
6228 -- for array types if the constrained status of the target type is
6229 -- different from that of the expression.
2b3d67a5
AC
6230
6231 if Requires_Transient_Scope (Exptyp)
6232 and then
6233 (not Is_Array_Type (Exptyp)
6234 or else Is_Constrained (Exptyp) = Is_Constrained (R_Type)
6235 or else CW_Or_Has_Controlled_Part (Utyp))
6236 and then Nkind (Exp) = N_Function_Call
6237 then
6238 Set_By_Ref (N);
6239
6240 -- Remove side effects from the expression now so that other parts
6241 -- of the expander do not have to reanalyze this node without this
6242 -- optimization
6243
6244 Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
6245
6246 -- For controlled types, do the allocation on the secondary stack
6247 -- manually in order to call adjust at the right time:
6248
6249 -- type Anon1 is access R_Type;
6250 -- for Anon1'Storage_pool use ss_pool;
6251 -- Anon2 : anon1 := new R_Type'(expr);
6252 -- return Anon2.all;
6253
6254 -- We do the same for classwide types that are not potentially
6255 -- controlled (by the virtue of restriction No_Finalization) because
6256 -- gigi is not able to properly allocate class-wide types.
6257
6258 elsif CW_Or_Has_Controlled_Part (Utyp) then
6259 declare
6260 Loc : constant Source_Ptr := Sloc (N);
6261 Acc_Typ : constant Entity_Id := Make_Temporary (Loc, 'A');
6262 Alloc_Node : Node_Id;
6263 Temp : Entity_Id;
6264
6265 begin
6266 Set_Ekind (Acc_Typ, E_Access_Type);
6267
6268 Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
6269
6270 -- This is an allocator for the secondary stack, and it's fine
6271 -- to have Comes_From_Source set False on it, as gigi knows not
6272 -- to flag it as a violation of No_Implicit_Heap_Allocations.
6273
6274 Alloc_Node :=
6275 Make_Allocator (Loc,
6276 Expression =>
6277 Make_Qualified_Expression (Loc,
e4494292 6278 Subtype_Mark => New_Occurrence_Of (Etype (Exp), Loc),
2b3d67a5
AC
6279 Expression => Relocate_Node (Exp)));
6280
6281 -- We do not want discriminant checks on the declaration,
6282 -- given that it gets its value from the allocator.
6283
6284 Set_No_Initialization (Alloc_Node);
6285
6286 Temp := Make_Temporary (Loc, 'R', Alloc_Node);
6287
6288 Insert_List_Before_And_Analyze (N, New_List (
6289 Make_Full_Type_Declaration (Loc,
6290 Defining_Identifier => Acc_Typ,
6291 Type_Definition =>
6292 Make_Access_To_Object_Definition (Loc,
6293 Subtype_Indication => Subtype_Ind)),
6294
6295 Make_Object_Declaration (Loc,
6296 Defining_Identifier => Temp,
e4494292 6297 Object_Definition => New_Occurrence_Of (Acc_Typ, Loc),
2b3d67a5
AC
6298 Expression => Alloc_Node)));
6299
6300 Rewrite (Exp,
6301 Make_Explicit_Dereference (Loc,
e4494292 6302 Prefix => New_Occurrence_Of (Temp, Loc)));
2b3d67a5 6303
a1092b48
AC
6304 -- Ada 2005 (AI-251): If the type of the returned object is
6305 -- an interface then add an implicit type conversion to force
6306 -- displacement of the "this" pointer.
6307
6308 if Is_Interface (R_Type) then
6309 Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
6310 end if;
6311
2b3d67a5
AC
6312 Analyze_And_Resolve (Exp, R_Type);
6313 end;
6314
6315 -- Otherwise use the gigi mechanism to allocate result on the
6316 -- secondary stack.
6317
6318 else
6319 Check_Restriction (No_Secondary_Stack, N);
6320 Set_Storage_Pool (N, RTE (RE_SS_Pool));
6321
6322 -- If we are generating code for the VM do not use
6323 -- SS_Allocate since everything is heap-allocated anyway.
6324
6325 if VM_Target = No_VM then
6326 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
6327 end if;
6328 end if;
6329 end if;
6330
54bf19e4
AC
6331 -- Implement the rules of 6.5(8-10), which require a tag check in
6332 -- the case of a limited tagged return type, and tag reassignment for
2b3d67a5
AC
6333 -- nonlimited tagged results. These actions are needed when the return
6334 -- type is a specific tagged type and the result expression is a
54bf19e4
AC
6335 -- conversion or a formal parameter, because in that case the tag of
6336 -- the expression might differ from the tag of the specific result type.
2b3d67a5
AC
6337
6338 if Is_Tagged_Type (Utyp)
6339 and then not Is_Class_Wide_Type (Utyp)
6340 and then (Nkind_In (Exp, N_Type_Conversion,
6341 N_Unchecked_Type_Conversion)
6342 or else (Is_Entity_Name (Exp)
6343 and then Ekind (Entity (Exp)) in Formal_Kind))
6344 then
54bf19e4
AC
6345 -- When the return type is limited, perform a check that the tag of
6346 -- the result is the same as the tag of the return type.
2b3d67a5
AC
6347
6348 if Is_Limited_Type (R_Type) then
6349 Insert_Action (Exp,
6350 Make_Raise_Constraint_Error (Loc,
6351 Condition =>
6352 Make_Op_Ne (Loc,
2c1b72d7 6353 Left_Opnd =>
2b3d67a5 6354 Make_Selected_Component (Loc,
7675ad4f
AC
6355 Prefix => Duplicate_Subexpr (Exp),
6356 Selector_Name => Make_Identifier (Loc, Name_uTag)),
2b3d67a5
AC
6357 Right_Opnd =>
6358 Make_Attribute_Reference (Loc,
2c1b72d7
AC
6359 Prefix =>
6360 New_Occurrence_Of (Base_Type (Utyp), Loc),
2b3d67a5 6361 Attribute_Name => Name_Tag)),
2c1b72d7 6362 Reason => CE_Tag_Check_Failed));
2b3d67a5
AC
6363
6364 -- If the result type is a specific nonlimited tagged type, then we
6365 -- have to ensure that the tag of the result is that of the result
54bf19e4
AC
6366 -- type. This is handled by making a copy of the expression in
6367 -- the case where it might have a different tag, namely when the
2b3d67a5
AC
6368 -- expression is a conversion or a formal parameter. We create a new
6369 -- object of the result type and initialize it from the expression,
6370 -- which will implicitly force the tag to be set appropriately.
6371
6372 else
6373 declare
6374 ExpR : constant Node_Id := Relocate_Node (Exp);
6375 Result_Id : constant Entity_Id :=
6376 Make_Temporary (Loc, 'R', ExpR);
6377 Result_Exp : constant Node_Id :=
e4494292 6378 New_Occurrence_Of (Result_Id, Loc);
2b3d67a5
AC
6379 Result_Obj : constant Node_Id :=
6380 Make_Object_Declaration (Loc,
6381 Defining_Identifier => Result_Id,
6382 Object_Definition =>
e4494292 6383 New_Occurrence_Of (R_Type, Loc),
2b3d67a5
AC
6384 Constant_Present => True,
6385 Expression => ExpR);
6386
6387 begin
6388 Set_Assignment_OK (Result_Obj);
6389 Insert_Action (Exp, Result_Obj);
6390
6391 Rewrite (Exp, Result_Exp);
6392 Analyze_And_Resolve (Exp, R_Type);
6393 end;
6394 end if;
6395
6396 -- Ada 2005 (AI-344): If the result type is class-wide, then insert
6397 -- a check that the level of the return expression's underlying type
6398 -- is not deeper than the level of the master enclosing the function.
6399 -- Always generate the check when the type of the return expression
6400 -- is class-wide, when it's a type conversion, or when it's a formal
6401 -- parameter. Otherwise, suppress the check in the case where the
6402 -- return expression has a specific type whose level is known not to
6403 -- be statically deeper than the function's result type.
6404
0a376301
JM
6405 -- No runtime check needed in interface thunks since it is performed
6406 -- by the target primitive associated with the thunk.
6407
2b3d67a5
AC
6408 -- Note: accessibility check is skipped in the VM case, since there
6409 -- does not seem to be any practical way to implement this check.
6410
0791fbe9 6411 elsif Ada_Version >= Ada_2005
2b3d67a5
AC
6412 and then Tagged_Type_Expansion
6413 and then Is_Class_Wide_Type (R_Type)
0a376301 6414 and then not Is_Thunk (Current_Scope)
3217f71e 6415 and then not Scope_Suppress.Suppress (Accessibility_Check)
2b3d67a5
AC
6416 and then
6417 (Is_Class_Wide_Type (Etype (Exp))
6418 or else Nkind_In (Exp, N_Type_Conversion,
6419 N_Unchecked_Type_Conversion)
6420 or else (Is_Entity_Name (Exp)
2c1b72d7 6421 and then Ekind (Entity (Exp)) in Formal_Kind)
2b3d67a5
AC
6422 or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
6423 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))
6424 then
6425 declare
6426 Tag_Node : Node_Id;
6427
6428 begin
6429 -- Ada 2005 (AI-251): In class-wide interface objects we displace
c5f5123f
AC
6430 -- "this" to reference the base of the object. This is required to
6431 -- get access to the TSD of the object.
2b3d67a5
AC
6432
6433 if Is_Class_Wide_Type (Etype (Exp))
6434 and then Is_Interface (Etype (Exp))
6435 and then Nkind (Exp) = N_Explicit_Dereference
6436 then
6437 Tag_Node :=
6438 Make_Explicit_Dereference (Loc,
2c1b72d7
AC
6439 Prefix =>
6440 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6441 Make_Function_Call (Loc,
6442 Name =>
e4494292 6443 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
2c1b72d7
AC
6444 Parameter_Associations => New_List (
6445 Unchecked_Convert_To (RTE (RE_Address),
6446 Duplicate_Subexpr (Prefix (Exp)))))));
2b3d67a5
AC
6447 else
6448 Tag_Node :=
6449 Make_Attribute_Reference (Loc,
2c1b72d7 6450 Prefix => Duplicate_Subexpr (Exp),
2b3d67a5
AC
6451 Attribute_Name => Name_Tag);
6452 end if;
6453
6454 Insert_Action (Exp,
6455 Make_Raise_Program_Error (Loc,
6456 Condition =>
6457 Make_Op_Gt (Loc,
2c1b72d7 6458 Left_Opnd => Build_Get_Access_Level (Loc, Tag_Node),
2b3d67a5
AC
6459 Right_Opnd =>
6460 Make_Integer_Literal (Loc,
6461 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))),
6462 Reason => PE_Accessibility_Check_Failed));
6463 end;
6464
6465 -- AI05-0073: If function has a controlling access result, check that
6466 -- the tag of the return value, if it is not null, matches designated
6467 -- type of return type.
f7ea2603
RD
6468
6469 -- The return expression is referenced twice in the code below, so it
6470 -- must be made free of side effects. Given that different compilers
2b3d67a5
AC
6471 -- may evaluate these parameters in different order, both occurrences
6472 -- perform a copy.
6473
6474 elsif Ekind (R_Type) = E_Anonymous_Access_Type
6475 and then Has_Controlling_Result (Scope_Id)
6476 then
6477 Insert_Action (N,
6478 Make_Raise_Constraint_Error (Loc,
6479 Condition =>
6480 Make_And_Then (Loc,
6481 Left_Opnd =>
6482 Make_Op_Ne (Loc,
6483 Left_Opnd => Duplicate_Subexpr (Exp),
6484 Right_Opnd => Make_Null (Loc)),
ebf494ec 6485
2b3d67a5
AC
6486 Right_Opnd => Make_Op_Ne (Loc,
6487 Left_Opnd =>
6488 Make_Selected_Component (Loc,
6489 Prefix => Duplicate_Subexpr (Exp),
7675ad4f 6490 Selector_Name => Make_Identifier (Loc, Name_uTag)),
ebf494ec 6491
2b3d67a5
AC
6492 Right_Opnd =>
6493 Make_Attribute_Reference (Loc,
6494 Prefix =>
6495 New_Occurrence_Of (Designated_Type (R_Type), Loc),
6496 Attribute_Name => Name_Tag))),
ebf494ec 6497
2b3d67a5
AC
6498 Reason => CE_Tag_Check_Failed),
6499 Suppress => All_Checks);
6500 end if;
6501
63585f75
SB
6502 -- AI05-0234: RM 6.5(21/3). Check access discriminants to
6503 -- ensure that the function result does not outlive an
6504 -- object designated by one of it discriminants.
6505
57a3fca9 6506 if Present (Extra_Accessibility_Of_Result (Scope_Id))
63585f75
SB
6507 and then Has_Unconstrained_Access_Discriminants (R_Type)
6508 then
6509 declare
ebf494ec 6510 Discrim_Source : Node_Id;
63585f75
SB
6511
6512 procedure Check_Against_Result_Level (Level : Node_Id);
ebf494ec
RD
6513 -- Check the given accessibility level against the level
6514 -- determined by the point of call. (AI05-0234).
63585f75
SB
6515
6516 --------------------------------
6517 -- Check_Against_Result_Level --
6518 --------------------------------
6519
6520 procedure Check_Against_Result_Level (Level : Node_Id) is
6521 begin
6522 Insert_Action (N,
6523 Make_Raise_Program_Error (Loc,
6524 Condition =>
6525 Make_Op_Gt (Loc,
6526 Left_Opnd => Level,
6527 Right_Opnd =>
6528 New_Occurrence_Of
6529 (Extra_Accessibility_Of_Result (Scope_Id), Loc)),
6530 Reason => PE_Accessibility_Check_Failed));
6531 end Check_Against_Result_Level;
ebf494ec 6532
63585f75 6533 begin
ebf494ec 6534 Discrim_Source := Exp;
63585f75
SB
6535 while Nkind (Discrim_Source) = N_Qualified_Expression loop
6536 Discrim_Source := Expression (Discrim_Source);
6537 end loop;
6538
6539 if Nkind (Discrim_Source) = N_Identifier
6540 and then Is_Return_Object (Entity (Discrim_Source))
6541 then
63585f75
SB
6542 Discrim_Source := Entity (Discrim_Source);
6543
6544 if Is_Constrained (Etype (Discrim_Source)) then
6545 Discrim_Source := Etype (Discrim_Source);
6546 else
6547 Discrim_Source := Expression (Parent (Discrim_Source));
6548 end if;
6549
6550 elsif Nkind (Discrim_Source) = N_Identifier
6551 and then Nkind_In (Original_Node (Discrim_Source),
6552 N_Aggregate, N_Extension_Aggregate)
6553 then
63585f75
SB
6554 Discrim_Source := Original_Node (Discrim_Source);
6555
6556 elsif Nkind (Discrim_Source) = N_Explicit_Dereference and then
6557 Nkind (Original_Node (Discrim_Source)) = N_Function_Call
6558 then
63585f75 6559 Discrim_Source := Original_Node (Discrim_Source);
63585f75
SB
6560 end if;
6561
6562 while Nkind_In (Discrim_Source, N_Qualified_Expression,
6563 N_Type_Conversion,
6564 N_Unchecked_Type_Conversion)
6565 loop
63585f75
SB
6566 Discrim_Source := Expression (Discrim_Source);
6567 end loop;
6568
6569 case Nkind (Discrim_Source) is
6570 when N_Defining_Identifier =>
6571
54bf19e4
AC
6572 pragma Assert (Is_Composite_Type (Discrim_Source)
6573 and then Has_Discriminants (Discrim_Source)
6574 and then Is_Constrained (Discrim_Source));
63585f75
SB
6575
6576 declare
6577 Discrim : Entity_Id :=
6578 First_Discriminant (Base_Type (R_Type));
6579 Disc_Elmt : Elmt_Id :=
6580 First_Elmt (Discriminant_Constraint
6581 (Discrim_Source));
6582 begin
6583 loop
6584 if Ekind (Etype (Discrim)) =
54bf19e4
AC
6585 E_Anonymous_Access_Type
6586 then
63585f75
SB
6587 Check_Against_Result_Level
6588 (Dynamic_Accessibility_Level (Node (Disc_Elmt)));
6589 end if;
6590
6591 Next_Elmt (Disc_Elmt);
6592 Next_Discriminant (Discrim);
6593 exit when not Present (Discrim);
6594 end loop;
6595 end;
6596
6597 when N_Aggregate | N_Extension_Aggregate =>
6598
54bf19e4
AC
6599 -- Unimplemented: extension aggregate case where discrims
6600 -- come from ancestor part, not extension part.
63585f75
SB
6601
6602 declare
6603 Discrim : Entity_Id :=
6604 First_Discriminant (Base_Type (R_Type));
6605
6606 Disc_Exp : Node_Id := Empty;
6607
6608 Positionals_Exhausted
6609 : Boolean := not Present (Expressions
6610 (Discrim_Source));
6611
6612 function Associated_Expr
6613 (Comp_Id : Entity_Id;
6614 Associations : List_Id) return Node_Id;
6615
6616 -- Given a component and a component associations list,
6617 -- locate the expression for that component; returns
6618 -- Empty if no such expression is found.
6619
6620 ---------------------
6621 -- Associated_Expr --
6622 ---------------------
6623
6624 function Associated_Expr
6625 (Comp_Id : Entity_Id;
6626 Associations : List_Id) return Node_Id
6627 is
54bf19e4 6628 Assoc : Node_Id;
63585f75 6629 Choice : Node_Id;
54bf19e4 6630
63585f75
SB
6631 begin
6632 -- Simple linear search seems ok here
6633
54bf19e4 6634 Assoc := First (Associations);
63585f75
SB
6635 while Present (Assoc) loop
6636 Choice := First (Choices (Assoc));
63585f75
SB
6637 while Present (Choice) loop
6638 if (Nkind (Choice) = N_Identifier
54bf19e4
AC
6639 and then Chars (Choice) = Chars (Comp_Id))
6640 or else (Nkind (Choice) = N_Others_Choice)
63585f75
SB
6641 then
6642 return Expression (Assoc);
6643 end if;
6644
6645 Next (Choice);
6646 end loop;
6647
6648 Next (Assoc);
6649 end loop;
6650
6651 return Empty;
6652 end Associated_Expr;
6653
6654 -- Start of processing for Expand_Simple_Function_Return
6655
6656 begin
6657 if not Positionals_Exhausted then
6658 Disc_Exp := First (Expressions (Discrim_Source));
6659 end if;
6660
6661 loop
6662 if Positionals_Exhausted then
54bf19e4
AC
6663 Disc_Exp :=
6664 Associated_Expr
6665 (Discrim,
6666 Component_Associations (Discrim_Source));
63585f75
SB
6667 end if;
6668
6669 if Ekind (Etype (Discrim)) =
54bf19e4
AC
6670 E_Anonymous_Access_Type
6671 then
63585f75
SB
6672 Check_Against_Result_Level
6673 (Dynamic_Accessibility_Level (Disc_Exp));
6674 end if;
6675
6676 Next_Discriminant (Discrim);
6677 exit when not Present (Discrim);
6678
6679 if not Positionals_Exhausted then
6680 Next (Disc_Exp);
6681 Positionals_Exhausted := not Present (Disc_Exp);
6682 end if;
6683 end loop;
6684 end;
6685
6686 when N_Function_Call =>
54bf19e4
AC
6687
6688 -- No check needed (check performed by callee)
6689
63585f75
SB
6690 null;
6691
6692 when others =>
6693
6694 declare
6695 Level : constant Node_Id :=
54bf19e4
AC
6696 Make_Integer_Literal (Loc,
6697 Object_Access_Level (Discrim_Source));
6698
63585f75
SB
6699 begin
6700 -- Unimplemented: check for name prefix that includes
6701 -- a dereference of an access value with a dynamic
6702 -- accessibility level (e.g., an access param or a
6703 -- saooaaat) and use dynamic level in that case. For
6704 -- example:
6705 -- return Access_Param.all(Some_Index).Some_Component;
54bf19e4 6706 -- ???
63585f75
SB
6707
6708 Set_Etype (Level, Standard_Natural);
6709 Check_Against_Result_Level (Level);
6710 end;
6711
6712 end case;
6713 end;
6714 end if;
6715
2b3d67a5
AC
6716 -- If we are returning an object that may not be bit-aligned, then copy
6717 -- the value into a temporary first. This copy may need to expand to a
6718 -- loop of component operations.
6719
6720 if Is_Possibly_Unaligned_Slice (Exp)
6721 or else Is_Possibly_Unaligned_Object (Exp)
6722 then
6723 declare
6724 ExpR : constant Node_Id := Relocate_Node (Exp);
6725 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
6726 begin
6727 Insert_Action (Exp,
6728 Make_Object_Declaration (Loc,
6729 Defining_Identifier => Tnn,
6730 Constant_Present => True,
6731 Object_Definition => New_Occurrence_Of (R_Type, Loc),
6732 Expression => ExpR),
2c1b72d7 6733 Suppress => All_Checks);
2b3d67a5
AC
6734 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6735 end;
6736 end if;
6737
6738 -- Generate call to postcondition checks if they are present
6739
6740 if Ekind (Scope_Id) = E_Function
6741 and then Has_Postconditions (Scope_Id)
6742 then
6743 -- We are going to reference the returned value twice in this case,
6744 -- once in the call to _Postconditions, and once in the actual return
6745 -- statement, but we can't have side effects happening twice, and in
6746 -- any case for efficiency we don't want to do the computation twice.
6747
6748 -- If the returned expression is an entity name, we don't need to
6749 -- worry since it is efficient and safe to reference it twice, that's
6750 -- also true for literals other than string literals, and for the
6751 -- case of X.all where X is an entity name.
6752
6753 if Is_Entity_Name (Exp)
6754 or else Nkind_In (Exp, N_Character_Literal,
6755 N_Integer_Literal,
6756 N_Real_Literal)
6757 or else (Nkind (Exp) = N_Explicit_Dereference
2c1b72d7 6758 and then Is_Entity_Name (Prefix (Exp)))
2b3d67a5
AC
6759 then
6760 null;
6761
6762 -- Otherwise we are going to need a temporary to capture the value
6763
6764 else
6765 declare
ca3e17b0 6766 ExpR : Node_Id := Relocate_Node (Exp);
2b3d67a5
AC
6767 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
6768
6769 begin
ca3e17b0
AC
6770 -- In the case of discriminated objects, we have created a
6771 -- constrained subtype above, and used the underlying type.
6772 -- This transformation is post-analysis and harmless, except
6773 -- that now the call to the post-condition will be analyzed and
6774 -- type kinds have to match.
6775
6776 if Nkind (ExpR) = N_Unchecked_Type_Conversion
6777 and then
6778 Is_Private_Type (R_Type) /= Is_Private_Type (Etype (ExpR))
6779 then
6780 ExpR := Expression (ExpR);
6781 end if;
6782
2b3d67a5
AC
6783 -- For a complex expression of an elementary type, capture
6784 -- value in the temporary and use it as the reference.
6785
6786 if Is_Elementary_Type (R_Type) then
6787 Insert_Action (Exp,
6788 Make_Object_Declaration (Loc,
6789 Defining_Identifier => Tnn,
6790 Constant_Present => True,
6791 Object_Definition => New_Occurrence_Of (R_Type, Loc),
6792 Expression => ExpR),
6793 Suppress => All_Checks);
6794
6795 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6796
6797 -- If we have something we can rename, generate a renaming of
6798 -- the object and replace the expression with a reference
6799
6800 elsif Is_Object_Reference (Exp) then
6801 Insert_Action (Exp,
6802 Make_Object_Renaming_Declaration (Loc,
6803 Defining_Identifier => Tnn,
6804 Subtype_Mark => New_Occurrence_Of (R_Type, Loc),
6805 Name => ExpR),
6806 Suppress => All_Checks);
6807
6808 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6809
6810 -- Otherwise we have something like a string literal or an
6811 -- aggregate. We could copy the value, but that would be
6812 -- inefficient. Instead we make a reference to the value and
6813 -- capture this reference with a renaming, the expression is
6814 -- then replaced by a dereference of this renaming.
6815
6816 else
6817 -- For now, copy the value, since the code below does not
6818 -- seem to work correctly ???
6819
6820 Insert_Action (Exp,
6821 Make_Object_Declaration (Loc,
6822 Defining_Identifier => Tnn,
6823 Constant_Present => True,
6824 Object_Definition => New_Occurrence_Of (R_Type, Loc),
6825 Expression => Relocate_Node (Exp)),
6826 Suppress => All_Checks);
6827
6828 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6829
6830 -- Insert_Action (Exp,
6831 -- Make_Object_Renaming_Declaration (Loc,
6832 -- Defining_Identifier => Tnn,
6833 -- Access_Definition =>
6834 -- Make_Access_Definition (Loc,
6835 -- All_Present => True,
6836 -- Subtype_Mark => New_Occurrence_Of (R_Type, Loc)),
6837 -- Name =>
6838 -- Make_Reference (Loc,
6839 -- Prefix => Relocate_Node (Exp))),
6840 -- Suppress => All_Checks);
6841
6842 -- Rewrite (Exp,
6843 -- Make_Explicit_Dereference (Loc,
6844 -- Prefix => New_Occurrence_Of (Tnn, Loc)));
6845 end if;
6846 end;
6847 end if;
6848
6849 -- Generate call to _postconditions
6850
6851 Insert_Action (Exp,
6852 Make_Procedure_Call_Statement (Loc,
6853 Name => Make_Identifier (Loc, Name_uPostconditions),
6854 Parameter_Associations => New_List (Duplicate_Subexpr (Exp))));
6855 end if;
6856
6857 -- Ada 2005 (AI-251): If this return statement corresponds with an
6858 -- simple return statement associated with an extended return statement
6859 -- and the type of the returned object is an interface then generate an
6860 -- implicit conversion to force displacement of the "this" pointer.
6861
0791fbe9 6862 if Ada_Version >= Ada_2005
2b3d67a5
AC
6863 and then Comes_From_Extended_Return_Statement (N)
6864 and then Nkind (Expression (N)) = N_Identifier
6865 and then Is_Interface (Utyp)
6866 and then Utyp /= Underlying_Type (Exptyp)
6867 then
6868 Rewrite (Exp, Convert_To (Utyp, Relocate_Node (Exp)));
6869 Analyze_And_Resolve (Exp);
6870 end if;
6871 end Expand_Simple_Function_Return;
6872
ea3c0651
AC
6873 --------------------------------
6874 -- Expand_Subprogram_Contract --
6875 --------------------------------
6876
6877 procedure Expand_Subprogram_Contract
6878 (N : Node_Id;
6879 Spec_Id : Entity_Id;
6880 Body_Id : Entity_Id)
6881 is
6882 procedure Add_Invariant_And_Predicate_Checks
6883 (Subp_Id : Entity_Id;
6884 Stmts : in out List_Id;
6885 Result : out Node_Id);
6886 -- Process the result of function Subp_Id (if applicable) and all its
6887 -- formals. Add invariant and predicate checks where applicable. The
6888 -- routine appends all the checks to list Stmts. If Subp_Id denotes a
6889 -- function, Result contains the entity of parameter _Result, to be
6890 -- used in the creation of procedure _Postconditions.
6891
6892 procedure Append_Enabled_Item (Item : Node_Id; List : in out List_Id);
6893 -- Append a node to a list. If there is no list, create a new one. When
6894 -- the item denotes a pragma, it is added to the list only when it is
6895 -- enabled.
6896
6897 procedure Build_Postconditions_Procedure
6898 (Subp_Id : Entity_Id;
6899 Stmts : List_Id;
6900 Result : Entity_Id);
6901 -- Create the body of procedure _Postconditions which handles various
6902 -- assertion actions on exit from subprogram Subp_Id. Stmts is the list
6903 -- of statements to be checked on exit. Parameter Result is the entity
6904 -- of parameter _Result when Subp_Id denotes a function.
6905
6906 function Build_Pragma_Check_Equivalent
6907 (Prag : Node_Id;
6908 Subp_Id : Entity_Id := Empty;
6909 Inher_Id : Entity_Id := Empty) return Node_Id;
6910 -- Transform a [refined] pre- or postcondition denoted by Prag into an
6911 -- equivalent pragma Check. When the pre- or postcondition is inherited,
6912 -- the routine corrects the references of all formals of Inher_Id to
6913 -- point to the formals of Subp_Id.
6914
6915 procedure Collect_Body_Postconditions (Stmts : in out List_Id);
6916 -- Process all postconditions found in the declarations of the body. The
6917 -- routine appends the pragma Check equivalents to list Stmts.
6918
6919 procedure Collect_Spec_Postconditions
6920 (Subp_Id : Entity_Id;
6921 Stmts : in out List_Id);
6922 -- Process all [inherited] postconditions of subprogram spec Subp_Id.
6923 -- The routine appends the pragma Check equivalents to list Stmts.
6924
6925 procedure Collect_Spec_Preconditions (Subp_Id : Entity_Id);
6926 -- Process all [inherited] preconditions of subprogram spec Subp_Id. The
6927 -- routine prepends the pragma Check equivalents to the declarations of
6928 -- the body.
6929
6930 procedure Prepend_To_Declarations (Item : Node_Id);
6931 -- Prepend a single item to the declarations of the subprogram body
6932
6933 procedure Process_Contract_Cases
6934 (Subp_Id : Entity_Id;
6935 Stmts : in out List_Id);
6936 -- Process pragma Contract_Cases of subprogram spec Subp_Id. The routine
6937 -- appends the expanded code to list Stmts.
6938
6939 ----------------------------------------
6940 -- Add_Invariant_And_Predicate_Checks --
6941 ----------------------------------------
6942
6943 procedure Add_Invariant_And_Predicate_Checks
6944 (Subp_Id : Entity_Id;
6945 Stmts : in out List_Id;
6946 Result : out Node_Id)
6947 is
6948 procedure Add_Invariant_Access_Checks (Id : Entity_Id);
6949 -- Id denotes the return value of a function or a formal parameter.
6950 -- Add an invariant check if the type of Id is access to a type with
6951 -- invariants. The routine appends the generated code to Stmts.
6952
6953 function Invariant_Checks_OK (Typ : Entity_Id) return Boolean;
6954 -- Determine whether type Typ can benefit from invariant checks. To
6955 -- qualify, the type must have a non-null invariant procedure and
6956 -- subprogram Subp_Id must appear visible from the point of view of
6957 -- the type.
6958
ea3c0651
AC
6959 ---------------------------------
6960 -- Add_Invariant_Access_Checks --
6961 ---------------------------------
6962
6963 procedure Add_Invariant_Access_Checks (Id : Entity_Id) is
6964 Loc : constant Source_Ptr := Sloc (N);
6965 Ref : Node_Id;
6966 Typ : Entity_Id;
6967
6968 begin
6969 Typ := Etype (Id);
6970
6971 if Is_Access_Type (Typ) and then not Is_Access_Constant (Typ) then
6972 Typ := Designated_Type (Typ);
6973
6974 if Invariant_Checks_OK (Typ) then
6975 Ref :=
6976 Make_Explicit_Dereference (Loc,
6977 Prefix => New_Occurrence_Of (Id, Loc));
6978 Set_Etype (Ref, Typ);
6979
6980 -- Generate:
6981 -- if <Id> /= null then
6982 -- <invariant_call (<Ref>)>
6983 -- end if;
6984
6985 Append_Enabled_Item
6986 (Item =>
6987 Make_If_Statement (Loc,
6988 Condition =>
6989 Make_Op_Ne (Loc,
6990 Left_Opnd => New_Occurrence_Of (Id, Loc),
6991 Right_Opnd => Make_Null (Loc)),
6992 Then_Statements => New_List (
6993 Make_Invariant_Call (Ref))),
6994 List => Stmts);
6995 end if;
6996 end if;
6997 end Add_Invariant_Access_Checks;
6998
6999 -------------------------
7000 -- Invariant_Checks_OK --
7001 -------------------------
7002
7003 function Invariant_Checks_OK (Typ : Entity_Id) return Boolean is
7004 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
7005 -- Determine whether the body of procedure Proc_Id contains a sole
7006 -- null statement, possibly followed by an optional return.
7007
7008 function Has_Public_Visibility_Of_Subprogram return Boolean;
7009 -- Determine whether type Typ has public visibility of subprogram
7010 -- Subp_Id.
7011
7012 -------------------
7013 -- Has_Null_Body --
7014 -------------------
7015
7016 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean is
7017 Body_Id : Entity_Id;
7018 Decl : Node_Id;
7019 Spec : Node_Id;
7020 Stmt1 : Node_Id;
7021 Stmt2 : Node_Id;
7022
7023 begin
7024 Spec := Parent (Proc_Id);
7025 Decl := Parent (Spec);
7026
7027 -- Retrieve the entity of the invariant procedure body
7028
7029 if Nkind (Spec) = N_Procedure_Specification
7030 and then Nkind (Decl) = N_Subprogram_Declaration
7031 then
7032 Body_Id := Corresponding_Body (Decl);
7033
7034 -- The body acts as a spec
7035
7036 else
7037 Body_Id := Proc_Id;
7038 end if;
7039
7040 -- The body will be generated later
7041
7042 if No (Body_Id) then
7043 return False;
7044 end if;
7045
7046 Spec := Parent (Body_Id);
7047 Decl := Parent (Spec);
7048
7049 pragma Assert
7050 (Nkind (Spec) = N_Procedure_Specification
7051 and then Nkind (Decl) = N_Subprogram_Body);
7052
7053 Stmt1 := First (Statements (Handled_Statement_Sequence (Decl)));
7054
7055 -- Look for a null statement followed by an optional return
7056 -- statement.
7057
7058 if Nkind (Stmt1) = N_Null_Statement then
7059 Stmt2 := Next (Stmt1);
7060
7061 if Present (Stmt2) then
7062 return Nkind (Stmt2) = N_Simple_Return_Statement;
7063 else
7064 return True;
7065 end if;
7066 end if;
7067
7068 return False;
7069 end Has_Null_Body;
7070
7071 -----------------------------------------
7072 -- Has_Public_Visibility_Of_Subprogram --
7073 -----------------------------------------
7074
7075 function Has_Public_Visibility_Of_Subprogram return Boolean is
7076 Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
d950f051 7077
ea3c0651
AC
7078 begin
7079 -- An Initialization procedure must be considered visible even
7080 -- though it is internally generated.
7081
7082 if Is_Init_Proc (Defining_Entity (Subp_Decl)) then
7083 return True;
7084
d950f051
AC
7085 elsif Ekind (Scope (Typ)) /= E_Package then
7086 return False;
7087
ea3c0651
AC
7088 -- Internally generated code is never publicly visible except
7089 -- for a subprogram that is the implementation of an expression
7090 -- function. In that case the visibility is determined by the
7091 -- last check.
7092
7093 elsif not Comes_From_Source (Subp_Decl)
7094 and then
7095 (Nkind (Original_Node (Subp_Decl)) /= N_Expression_Function
7096 or else not
7097 Comes_From_Source (Defining_Entity (Subp_Decl)))
7098 then
7099 return False;
7100
7101 -- Determine whether the subprogram is declared in the visible
7102 -- declarations of the package containing the type.
7103
7104 else
d950f051
AC
7105 return List_Containing (Subp_Decl) =
7106 Visible_Declarations
7107 (Specification (Unit_Declaration_Node (Scope (Typ))));
ea3c0651
AC
7108 end if;
7109 end Has_Public_Visibility_Of_Subprogram;
7110
7111 -- Start of processing for Invariant_Checks_OK
7112
7113 begin
7114 return
7115 Has_Invariants (Typ)
7116 and then Present (Invariant_Procedure (Typ))
7117 and then not Has_Null_Body (Invariant_Procedure (Typ))
7118 and then Has_Public_Visibility_Of_Subprogram;
7119 end Invariant_Checks_OK;
7120
ea3c0651
AC
7121 -- Local variables
7122
ff1f1705
AC
7123 Loc : constant Source_Ptr := Sloc (N);
7124 -- Source location of subprogram contract
7125
ea3c0651
AC
7126 Formal : Entity_Id;
7127 Typ : Entity_Id;
7128
7129 -- Start of processing for Add_Invariant_And_Predicate_Checks
7130
7131 begin
7132 Result := Empty;
7133
7134 -- Do not generate any checks if no code is being generated
7135
7136 if not Expander_Active then
7137 return;
7138 end if;
7139
7140 -- Process the result of a function
7141
7142 if Ekind_In (Subp_Id, E_Function, E_Generic_Function) then
7143 Typ := Etype (Subp_Id);
7144
7145 -- Generate _Result which is used in procedure _Postconditions to
7146 -- verify the return value.
7147
7148 Result := Make_Defining_Identifier (Loc, Name_uResult);
7149 Set_Etype (Result, Typ);
7150
7151 -- Add an invariant check when the return type has invariants and
7152 -- the related function is visible to the outside.
7153
7154 if Invariant_Checks_OK (Typ) then
7155 Append_Enabled_Item
7156 (Item =>
7157 Make_Invariant_Call (New_Occurrence_Of (Result, Loc)),
7158 List => Stmts);
7159 end if;
7160
7161 -- Add an invariant check when the return type is an access to a
7162 -- type with invariants.
7163
7164 Add_Invariant_Access_Checks (Result);
7165 end if;
7166
7167 -- Add invariant and predicates for all formals that qualify
7168
7169 Formal := First_Formal (Subp_Id);
7170 while Present (Formal) loop
7171 Typ := Etype (Formal);
7172
7173 if Ekind (Formal) /= E_In_Parameter
7174 or else Is_Access_Type (Typ)
7175 then
7176 if Invariant_Checks_OK (Typ) then
7177 Append_Enabled_Item
7178 (Item =>
7179 Make_Invariant_Call (New_Occurrence_Of (Formal, Loc)),
7180 List => Stmts);
7181 end if;
7182
7183 Add_Invariant_Access_Checks (Formal);
7184
28e18b4f
AC
7185 -- Note: we used to add predicate checks for OUT and IN OUT
7186 -- formals here, but that was misguided, since such checks are
7187 -- performed on the caller side, based on the predicate of the
7188 -- actual, rather than the predicate of the formal.
7189
ea3c0651
AC
7190 end if;
7191
7192 Next_Formal (Formal);
7193 end loop;
7194 end Add_Invariant_And_Predicate_Checks;
7195
7196 -------------------------
7197 -- Append_Enabled_Item --
7198 -------------------------
7199
7200 procedure Append_Enabled_Item (Item : Node_Id; List : in out List_Id) is
7201 begin
7202 -- Do not chain ignored or disabled pragmas
7203
7204 if Nkind (Item) = N_Pragma
7205 and then (Is_Ignored (Item) or else Is_Disabled (Item))
7206 then
7207 null;
7208
5b6f12c7 7209 -- Otherwise, add the item
ea3c0651
AC
7210
7211 else
7212 if No (List) then
7213 List := New_List;
7214 end if;
7215
cbee4f74
AC
7216 -- If the pragma is a conjunct in a composite postcondition, it
7217 -- has been processed in reverse order. In the postcondition body
7218 -- if must appear before the others.
7219
7220 if Nkind (Item) = N_Pragma
7221 and then From_Aspect_Specification (Item)
7222 and then Split_PPC (Item)
7223 then
7224 Prepend (Item, List);
7225 else
7226 Append (Item, List);
7227 end if;
ea3c0651
AC
7228 end if;
7229 end Append_Enabled_Item;
7230
7231 ------------------------------------
7232 -- Build_Postconditions_Procedure --
7233 ------------------------------------
7234
7235 procedure Build_Postconditions_Procedure
7236 (Subp_Id : Entity_Id;
7237 Stmts : List_Id;
7238 Result : Entity_Id)
7239 is
8e1e62e3
AC
7240 procedure Insert_Before_First_Source_Declaration (Stmt : Node_Id);
7241 -- Insert node Stmt before the first source declaration of the
7242 -- related subprogram's body. If no such declaration exists, Stmt
7243 -- becomes the last declaration.
ea3c0651 7244
8e1e62e3
AC
7245 --------------------------------------------
7246 -- Insert_Before_First_Source_Declaration --
7247 --------------------------------------------
ea3c0651 7248
8e1e62e3
AC
7249 procedure Insert_Before_First_Source_Declaration (Stmt : Node_Id) is
7250 Decls : constant List_Id := Declarations (N);
7251 Decl : Node_Id;
ea3c0651
AC
7252
7253 begin
8e1e62e3
AC
7254 -- Inspect the declarations of the related subprogram body looking
7255 -- for the first source declaration.
7256
7257 if Present (Decls) then
7258 Decl := First (Decls);
7259 while Present (Decl) loop
7260 if Comes_From_Source (Decl) then
7261 Insert_Before (Decl, Stmt);
7262 return;
7263 end if;
7264
7265 Next (Decl);
7266 end loop;
7267
7268 -- If we get there, then the subprogram body lacks any source
7269 -- declarations. The body of _Postconditions now acts as the
7270 -- last declaration.
7271
7272 Append (Stmt, Decls);
7273
ea3c0651
AC
7274 -- Ensure that the body has a declaration list
7275
8e1e62e3
AC
7276 else
7277 Set_Declarations (N, New_List (Stmt));
ea3c0651 7278 end if;
8e1e62e3 7279 end Insert_Before_First_Source_Declaration;
ea3c0651
AC
7280
7281 -- Local variables
7282
7283 Loc : constant Source_Ptr := Sloc (N);
7284 Params : List_Id := No_List;
7285 Proc_Id : Entity_Id;
7286
7287 -- Start of processing for Build_Postconditions_Procedure
7288
7289 begin
7290 -- Do not create the routine if no code is being generated
7291
7292 if not Expander_Active then
7293 return;
7294
7295 -- Nothing to do if there are no actions to check on exit
7296
7297 elsif No (Stmts) then
7298 return;
7299 end if;
7300
7301 Proc_Id := Make_Defining_Identifier (Loc, Name_uPostconditions);
7302
7303 -- The related subprogram is a function, create the specification of
7304 -- parameter _Result.
7305
7306 if Present (Result) then
7307 Params := New_List (
7308 Make_Parameter_Specification (Loc,
7309 Defining_Identifier => Result,
7310 Parameter_Type =>
e4494292 7311 New_Occurrence_Of (Etype (Result), Loc)));
ea3c0651
AC
7312 end if;
7313
8e1e62e3
AC
7314 -- Insert _Postconditions before the first source declaration of the
7315 -- body. This ensures that the body will not cause any premature
7316 -- freezing as it may mention types:
ea3c0651
AC
7317
7318 -- procedure Proc (Obj : Array_Typ) is
7319 -- procedure _postconditions is
7320 -- begin
7321 -- ... Obj ...
7322 -- end _postconditions;
7323
7324 -- subtype T is Array_Typ (Obj'First (1) .. Obj'Last (1));
7325 -- begin
7326
7327 -- In the example above, Obj is of type T but the incorrect placement
7328 -- of _Postconditions will cause a crash in gigi due to an out of
7329 -- order reference. The body of _Postconditions must be placed after
7330 -- the declaration of Temp to preserve correct visibility.
7331
ff1f1705
AC
7332 -- Note that we set an explicit End_Label in order to override the
7333 -- sloc of the implicit RETURN statement, and prevent it from
7334 -- inheriting the sloc of one of the postconditions: this would cause
7335 -- confusing debug info to be produced, interfering with coverage
7336 -- analysis tools.
7337
8e1e62e3 7338 Insert_Before_First_Source_Declaration (
ea3c0651
AC
7339 Make_Subprogram_Body (Loc,
7340 Specification =>
7341 Make_Procedure_Specification (Loc,
7342 Defining_Unit_Name => Proc_Id,
7343 Parameter_Specifications => Params),
7344
7345 Declarations => Empty_List,
7346 Handled_Statement_Sequence =>
ff1f1705
AC
7347 Make_Handled_Sequence_Of_Statements (Loc,
7348 Statements => Stmts,
7349 End_Label => Make_Identifier (Loc, Chars (Proc_Id)))));
ea3c0651
AC
7350
7351 -- Set the attributes of the related subprogram to capture the
7352 -- generated procedure.
7353
7354 if Ekind_In (Subp_Id, E_Generic_Procedure, E_Procedure) then
7355 Set_Postcondition_Proc (Subp_Id, Proc_Id);
7356 end if;
7357
7358 Set_Has_Postconditions (Subp_Id);
7359 end Build_Postconditions_Procedure;
7360
7361 -----------------------------------
7362 -- Build_Pragma_Check_Equivalent --
7363 -----------------------------------
7364
7365 function Build_Pragma_Check_Equivalent
7366 (Prag : Node_Id;
7367 Subp_Id : Entity_Id := Empty;
7368 Inher_Id : Entity_Id := Empty) return Node_Id
7369 is
7370 Loc : constant Source_Ptr := Sloc (Prag);
7371 Prag_Nam : constant Name_Id := Pragma_Name (Prag);
7372 Check_Prag : Node_Id;
7373 Formals_Map : Elist_Id;
7374 Inher_Formal : Entity_Id;
7375 Msg_Arg : Node_Id;
7376 Nam : Name_Id;
7377 Subp_Formal : Entity_Id;
7378
7379 begin
7380 Formals_Map := No_Elist;
7381
7382 -- When the pre- or postcondition is inherited, map the formals of
7383 -- the inherited subprogram to those of the current subprogram.
7384
7385 if Present (Inher_Id) then
7386 pragma Assert (Present (Subp_Id));
7387
7388 Formals_Map := New_Elmt_List;
7389
7390 -- Create a relation <inherited formal> => <subprogram formal>
7391
7392 Inher_Formal := First_Formal (Inher_Id);
7393 Subp_Formal := First_Formal (Subp_Id);
7394 while Present (Inher_Formal) and then Present (Subp_Formal) loop
7395 Append_Elmt (Inher_Formal, Formals_Map);
7396 Append_Elmt (Subp_Formal, Formals_Map);
7397
7398 Next_Formal (Inher_Formal);
7399 Next_Formal (Subp_Formal);
7400 end loop;
7401 end if;
7402
7403 -- Copy the original pragma while performing substitutions (if
7404 -- applicable).
7405
7406 Check_Prag :=
7407 New_Copy_Tree
7408 (Source => Prag,
7409 Map => Formals_Map,
7410 New_Scope => Current_Scope);
7411
7412 -- Mark the pragma as being internally generated and reset the
7413 -- Analyzed flag.
7414
7415 Set_Comes_From_Source (Check_Prag, False);
7416 Set_Analyzed (Check_Prag, False);
7417
7418 -- For a postcondition pragma within a generic, preserve the pragma
7419 -- for later expansion. This is also used when an error was detected,
7420 -- thus setting Expander_Active to False.
7421
7422 if Prag_Nam = Name_Postcondition and then not Expander_Active then
7423 return Check_Prag;
7424 end if;
7425
7426 if Present (Corresponding_Aspect (Prag)) then
7427 Nam := Chars (Identifier (Corresponding_Aspect (Prag)));
7428 else
7429 Nam := Prag_Nam;
7430 end if;
7431
7432 -- Convert the copy into pragma Check by correcting the name and
7433 -- adding a check_kind argument.
7434
7435 Set_Pragma_Identifier
7436 (Check_Prag, Make_Identifier (Loc, Name_Check));
7437
7438 Prepend_To (Pragma_Argument_Associations (Check_Prag),
7439 Make_Pragma_Argument_Association (Loc,
7440 Expression => Make_Identifier (Loc, Nam)));
7441
7442 -- Update the error message when the pragma is inherited
7443
7444 if Present (Inher_Id) then
7445 Msg_Arg := Last (Pragma_Argument_Associations (Check_Prag));
7446
7447 if Chars (Msg_Arg) = Name_Message then
7448 String_To_Name_Buffer (Strval (Expression (Msg_Arg)));
7449
7450 -- Insert "inherited" to improve the error message
7451
7452 if Name_Buffer (1 .. 8) = "failed p" then
7453 Insert_Str_In_Name_Buffer ("inherited ", 8);
7454 Set_Strval (Expression (Msg_Arg), String_From_Name_Buffer);
7455 end if;
7456 end if;
7457 end if;
7458
7459 return Check_Prag;
7460 end Build_Pragma_Check_Equivalent;
7461
7462 ---------------------------------
7463 -- Collect_Body_Postconditions --
7464 ---------------------------------
7465
7466 procedure Collect_Body_Postconditions (Stmts : in out List_Id) is
7467 procedure Collect_Body_Postconditions_Of_Kind (Post_Nam : Name_Id);
e917e3b8 7468 -- Process all postconditions of the kind denoted by Post_Nam
ea3c0651
AC
7469
7470 -----------------------------------------
7471 -- Collect_Body_Postconditions_Of_Kind --
7472 -----------------------------------------
7473
7474 procedure Collect_Body_Postconditions_Of_Kind (Post_Nam : Name_Id) is
5f24a82a
HK
7475 procedure Collect_Body_Postconditions_In_Decls
7476 (First_Decl : Node_Id);
7477 -- Process all postconditions found in a declarative list starting
7478 -- with declaration First_Decl.
ea3c0651 7479
5f24a82a
HK
7480 ------------------------------------------
7481 -- Collect_Body_Postconditions_In_Decls --
7482 ------------------------------------------
ea3c0651 7483
5f24a82a
HK
7484 procedure Collect_Body_Postconditions_In_Decls
7485 (First_Decl : Node_Id)
7486 is
7487 Check_Prag : Node_Id;
7488 Decl : Node_Id;
ea3c0651 7489
5f24a82a
HK
7490 begin
7491 -- Inspect the declarative list looking for a pragma that
7492 -- matches the desired name.
ea3c0651 7493
5f24a82a
HK
7494 Decl := First_Decl;
7495 while Present (Decl) loop
ea3c0651 7496
5f24a82a 7497 -- Note that non-matching pragmas are skipped
ea3c0651 7498
5f24a82a
HK
7499 if Nkind (Decl) = N_Pragma then
7500 if Pragma_Name (Decl) = Post_Nam then
7501 if not Analyzed (Decl) then
7502 Analyze (Decl);
7503 end if;
7504
7505 Check_Prag := Build_Pragma_Check_Equivalent (Decl);
7506
7507 if Expander_Active then
7508 Append_Enabled_Item
7509 (Item => Check_Prag,
7510 List => Stmts);
7511
e917e3b8 7512 -- If analyzing a generic unit, save pragma for later
5f24a82a
HK
7513
7514 else
7515 Prepend_To_Declarations (Check_Prag);
7516 end if;
ea3c0651 7517 end if;
5f24a82a
HK
7518
7519 -- Skip internally generated code
7520
7521 elsif not Comes_From_Source (Decl) then
7522 null;
7523
7524 -- Postcondition pragmas are usually grouped together. There
7525 -- is no need to inspect the whole declarative list.
7526
7527 else
7528 exit;
ea3c0651
AC
7529 end if;
7530
5f24a82a
HK
7531 Next (Decl);
7532 end loop;
7533 end Collect_Body_Postconditions_In_Decls;
ea3c0651 7534
5f24a82a 7535 -- Local variables
ea3c0651 7536
5f24a82a 7537 Unit_Decl : constant Node_Id := Parent (N);
ea3c0651 7538
5f24a82a 7539 -- Start of processing for Collect_Body_Postconditions_Of_Kind
ea3c0651 7540
5f24a82a
HK
7541 begin
7542 pragma Assert (Nam_In (Post_Nam, Name_Postcondition,
7543 Name_Refined_Post));
7544
7545 -- Inspect the declarations of the subprogram body looking for a
7546 -- pragma that matches the desired name.
7547
7548 Collect_Body_Postconditions_In_Decls
7549 (First_Decl => First (Declarations (N)));
7550
7551 -- The subprogram body being processed is actually the proper body
7552 -- of a stub with a corresponding spec. The subprogram stub may
7553 -- carry a postcondition pragma in which case it must be taken
7554 -- into account. The pragma appears after the stub.
7555
7556 if Present (Spec_Id) and then Nkind (Unit_Decl) = N_Subunit then
7557 Collect_Body_Postconditions_In_Decls
7558 (First_Decl => Next (Corresponding_Stub (Unit_Decl)));
7559 end if;
ea3c0651
AC
7560 end Collect_Body_Postconditions_Of_Kind;
7561
7562 -- Start of processing for Collect_Body_Postconditions
7563
7564 begin
7565 Collect_Body_Postconditions_Of_Kind (Name_Refined_Post);
7566 Collect_Body_Postconditions_Of_Kind (Name_Postcondition);
7567 end Collect_Body_Postconditions;
7568
7569 ---------------------------------
7570 -- Collect_Spec_Postconditions --
7571 ---------------------------------
7572
7573 procedure Collect_Spec_Postconditions
7574 (Subp_Id : Entity_Id;
7575 Stmts : in out List_Id)
7576 is
7577 Inher_Subps : constant Subprogram_List :=
7578 Inherited_Subprograms (Subp_Id);
7579 Check_Prag : Node_Id;
7580 Prag : Node_Id;
7581 Inher_Subp_Id : Entity_Id;
7582
7583 begin
7584 -- Process the contract of the spec
7585
7586 Prag := Pre_Post_Conditions (Contract (Subp_Id));
7587 while Present (Prag) loop
7588 if Pragma_Name (Prag) = Name_Postcondition then
7589 Check_Prag := Build_Pragma_Check_Equivalent (Prag);
7590
7591 if Expander_Active then
7592 Append_Enabled_Item
7593 (Item => Check_Prag,
7594 List => Stmts);
7595
7596 -- When analyzing a generic unit, save the pragma for later
7597
7598 else
7599 Prepend_To_Declarations (Check_Prag);
7600 end if;
7601 end if;
7602
7603 Prag := Next_Pragma (Prag);
7604 end loop;
7605
7606 -- Process the contracts of all inherited subprograms, looking for
7607 -- class-wide postconditions.
7608
7609 for Index in Inher_Subps'Range loop
7610 Inher_Subp_Id := Inher_Subps (Index);
7611
7612 Prag := Pre_Post_Conditions (Contract (Inher_Subp_Id));
7613 while Present (Prag) loop
7614 if Pragma_Name (Prag) = Name_Postcondition
7615 and then Class_Present (Prag)
7616 then
7617 Check_Prag :=
7618 Build_Pragma_Check_Equivalent
7619 (Prag => Prag,
7620 Subp_Id => Subp_Id,
7621 Inher_Id => Inher_Subp_Id);
7622
7623 if Expander_Active then
7624 Append_Enabled_Item
7625 (Item => Check_Prag,
7626 List => Stmts);
7627
7628 -- When analyzing a generic unit, save the pragma for later
7629
7630 else
7631 Prepend_To_Declarations (Check_Prag);
7632 end if;
7633 end if;
7634
7635 Prag := Next_Pragma (Prag);
7636 end loop;
7637 end loop;
7638 end Collect_Spec_Postconditions;
7639
7640 --------------------------------
7641 -- Collect_Spec_Preconditions --
7642 --------------------------------
7643
7644 procedure Collect_Spec_Preconditions (Subp_Id : Entity_Id) is
5f24a82a
HK
7645 Class_Pre : Node_Id := Empty;
7646 -- The sole class-wide precondition pragma that applies to the
7647 -- subprogram.
7648
7649 procedure Add_Or_Save_Precondition (Prag : Node_Id);
7650 -- Save a class-wide precondition or add a regulat precondition to
7651 -- the declarative list of the body.
7652
ea3c0651
AC
7653 procedure Merge_Preconditions (From : Node_Id; Into : Node_Id);
7654 -- Merge two class-wide preconditions by "or else"-ing them. The
7655 -- changes are accumulated in parameter Into. Update the error
7656 -- message of Into.
7657
5f24a82a
HK
7658 ------------------------------
7659 -- Add_Or_Save_Precondition --
7660 ------------------------------
7661
7662 procedure Add_Or_Save_Precondition (Prag : Node_Id) is
7663 Check_Prag : Node_Id;
7664
7665 begin
7666 Check_Prag := Build_Pragma_Check_Equivalent (Prag);
7667
7668 -- Save the sole class-wide precondition (if any) for the next
7669 -- step where it will be merged with inherited preconditions.
7670
7671 if Class_Present (Prag) then
7672 pragma Assert (No (Class_Pre));
7673 Class_Pre := Check_Prag;
7674
7675 -- Accumulate the corresponding Check pragmas to the top of the
7676 -- declarations. Prepending the items ensures that they will be
7677 -- evaluated in their original order.
7678
7679 else
7680 Prepend_To_Declarations (Check_Prag);
7681 end if;
7682 end Add_Or_Save_Precondition;
7683
ea3c0651
AC
7684 -------------------------
7685 -- Merge_Preconditions --
7686 -------------------------
7687
7688 procedure Merge_Preconditions (From : Node_Id; Into : Node_Id) is
7689 function Expression_Arg (Prag : Node_Id) return Node_Id;
7690 -- Return the boolean expression argument of a precondition while
7691 -- updating its parenteses count for the subsequent merge.
7692
7693 function Message_Arg (Prag : Node_Id) return Node_Id;
7694 -- Return the message argument of a precondition
7695
7696 --------------------
7697 -- Expression_Arg --
7698 --------------------
7699
7700 function Expression_Arg (Prag : Node_Id) return Node_Id is
7701 Args : constant List_Id := Pragma_Argument_Associations (Prag);
7702 Arg : constant Node_Id := Get_Pragma_Arg (Next (First (Args)));
7703
7704 begin
7705 if Paren_Count (Arg) = 0 then
7706 Set_Paren_Count (Arg, 1);
7707 end if;
7708
7709 return Arg;
7710 end Expression_Arg;
7711
7712 -----------------
7713 -- Message_Arg --
7714 -----------------
7715
7716 function Message_Arg (Prag : Node_Id) return Node_Id is
7717 Args : constant List_Id := Pragma_Argument_Associations (Prag);
7718 begin
7719 return Get_Pragma_Arg (Last (Args));
7720 end Message_Arg;
7721
7722 -- Local variables
7723
7724 From_Expr : constant Node_Id := Expression_Arg (From);
7725 From_Msg : constant Node_Id := Message_Arg (From);
7726 Into_Expr : constant Node_Id := Expression_Arg (Into);
7727 Into_Msg : constant Node_Id := Message_Arg (Into);
7728 Loc : constant Source_Ptr := Sloc (Into);
7729
7730 -- Start of processing for Merge_Preconditions
7731
7732 begin
7733 -- Merge the two preconditions by "or else"-ing them
7734
7735 Rewrite (Into_Expr,
7736 Make_Or_Else (Loc,
7737 Right_Opnd => Relocate_Node (Into_Expr),
7738 Left_Opnd => From_Expr));
7739
7740 -- Merge the two error messages to produce a single message of the
7741 -- form:
7742
7743 -- failed precondition from ...
7744 -- also failed inherited precondition from ...
7745
7746 if not Exception_Locations_Suppressed then
7747 Start_String (Strval (Into_Msg));
7748 Store_String_Char (ASCII.LF);
7749 Store_String_Chars (" also ");
7750 Store_String_Chars (Strval (From_Msg));
7751
7752 Set_Strval (Into_Msg, End_String);
7753 end if;
7754 end Merge_Preconditions;
7755
7756 -- Local variables
7757
7758 Inher_Subps : constant Subprogram_List :=
7759 Inherited_Subprograms (Subp_Id);
5f24a82a 7760 Subp_Decl : constant Node_Id := Parent (Parent (Subp_Id));
ea3c0651 7761 Check_Prag : Node_Id;
5f24a82a 7762 Decl : Node_Id;
ea3c0651
AC
7763 Inher_Subp_Id : Entity_Id;
7764 Prag : Node_Id;
7765
7766 -- Start of processing for Collect_Spec_Preconditions
7767
7768 begin
7769 -- Process the contract of the spec
7770
7771 Prag := Pre_Post_Conditions (Contract (Subp_Id));
7772 while Present (Prag) loop
7773 if Pragma_Name (Prag) = Name_Precondition then
5f24a82a
HK
7774 Add_Or_Save_Precondition (Prag);
7775 end if;
ea3c0651 7776
5f24a82a
HK
7777 Prag := Next_Pragma (Prag);
7778 end loop;
ea3c0651 7779
5f24a82a
HK
7780 -- The subprogram declaration being processed is actually a body
7781 -- stub. The stub may carry a precondition pragma in which case it
7782 -- must be taken into account. The pragma appears after the stub.
ea3c0651 7783
5f24a82a
HK
7784 if Nkind (Subp_Decl) = N_Subprogram_Body_Stub then
7785
7786 -- Inspect the declarations following the body stub
7787
7788 Decl := Next (Subp_Decl);
7789 while Present (Decl) loop
7790
7791 -- Note that non-matching pragmas are skipped
7792
7793 if Nkind (Decl) = N_Pragma then
7794 if Pragma_Name (Decl) = Name_Precondition then
7795 if not Analyzed (Decl) then
7796 Analyze (Decl);
7797 end if;
7798
7799 Add_Or_Save_Precondition (Decl);
7800 end if;
7801
7802 -- Skip internally generated code
7803
7804 elsif not Comes_From_Source (Decl) then
7805 null;
7806
7807 -- Preconditions are usually grouped together. There is no need
7808 -- to inspect the whole declarative list.
ea3c0651
AC
7809
7810 else
5f24a82a 7811 exit;
ea3c0651 7812 end if;
ea3c0651 7813
5f24a82a
HK
7814 Next (Decl);
7815 end loop;
7816 end if;
ea3c0651
AC
7817
7818 -- Process the contracts of all inherited subprograms, looking for
7819 -- class-wide preconditions.
7820
7821 for Index in Inher_Subps'Range loop
7822 Inher_Subp_Id := Inher_Subps (Index);
7823
7824 Prag := Pre_Post_Conditions (Contract (Inher_Subp_Id));
7825 while Present (Prag) loop
7826 if Pragma_Name (Prag) = Name_Precondition
7827 and then Class_Present (Prag)
7828 then
7829 Check_Prag :=
7830 Build_Pragma_Check_Equivalent
7831 (Prag => Prag,
7832 Subp_Id => Subp_Id,
7833 Inher_Id => Inher_Subp_Id);
7834
7835 -- The spec or an inherited subprogram already yielded a
7836 -- class-wide precondition. Merge the existing precondition
7837 -- with the current one using "or else".
7838
7839 if Present (Class_Pre) then
7840 Merge_Preconditions (Check_Prag, Class_Pre);
7841 else
7842 Class_Pre := Check_Prag;
7843 end if;
7844 end if;
7845
7846 Prag := Next_Pragma (Prag);
7847 end loop;
7848 end loop;
7849
7850 -- Add the merged class-wide preconditions (if any)
7851
7852 if Present (Class_Pre) then
7853 Prepend_To_Declarations (Class_Pre);
7854 end if;
7855 end Collect_Spec_Preconditions;
7856
7857 -----------------------------
7858 -- Prepend_To_Declarations --
7859 -----------------------------
7860
7861 procedure Prepend_To_Declarations (Item : Node_Id) is
7862 Decls : List_Id := Declarations (N);
7863
7864 begin
7865 -- Ensure that the body has a declarative list
7866
7867 if No (Decls) then
7868 Decls := New_List;
7869 Set_Declarations (N, Decls);
7870 end if;
7871
7872 Prepend_To (Decls, Item);
7873 end Prepend_To_Declarations;
7874
7875 ----------------------------
7876 -- Process_Contract_Cases --
7877 ----------------------------
7878
7879 procedure Process_Contract_Cases
7880 (Subp_Id : Entity_Id;
7881 Stmts : in out List_Id)
7882 is
7883 Prag : Node_Id;
7884
7885 begin
7886 -- Do not build the Contract_Cases circuitry if no code is being
7887 -- generated.
7888
7889 if not Expander_Active then
3cd4a210 7890 return;
ea3c0651
AC
7891 end if;
7892
7893 Prag := Contract_Test_Cases (Contract (Subp_Id));
7894 while Present (Prag) loop
7895 if Pragma_Name (Prag) = Name_Contract_Cases then
7896 Expand_Contract_Cases
7897 (CCs => Prag,
7898 Subp_Id => Subp_Id,
7899 Decls => Declarations (N),
7900 Stmts => Stmts);
7901 end if;
7902
7903 Prag := Next_Pragma (Prag);
7904 end loop;
7905 end Process_Contract_Cases;
7906
7907 -- Local variables
7908
7909 Post_Stmts : List_Id := No_List;
7910 Result : Entity_Id;
7911 Subp_Id : Entity_Id;
7912
7913 -- Start of processing for Expand_Subprogram_Contract
7914
7915 begin
7916 if Present (Spec_Id) then
7917 Subp_Id := Spec_Id;
7918 else
7919 Subp_Id := Body_Id;
7920 end if;
7921
7922 -- Do not process a predicate function as its body will end up with a
7923 -- recursive call to itself and blow up the stack.
7924
7925 if Ekind (Subp_Id) = E_Function
7926 and then Is_Predicate_Function (Subp_Id)
7927 then
7928 return;
7929
7930 -- Do not process TSS subprograms
7931
7932 elsif Get_TSS_Name (Subp_Id) /= TSS_Null then
7933 return;
7934 end if;
7935
7936 -- The expansion of a subprogram contract involves the relocation of
7937 -- various contract assertions to the declarations of the body in a
7938 -- particular order. The order is as follows:
7939
7940 -- function Example (...) return ... is
7941 -- procedure _Postconditions (...) is
7942 -- begin
7943 -- <refined postconditions from body>
7944 -- <postconditions from body>
7945 -- <postconditions from spec>
7946 -- <inherited postconditions>
f1bd0415 7947 -- <contract case consequences>
ea3c0651
AC
7948 -- <invariant check of function result (if applicable)>
7949 -- <invariant and predicate checks of parameters>
7950 -- end _Postconditions;
7951
7952 -- <inherited preconditions>
7953 -- <preconditions from spec>
7954 -- <preconditions from body>
7955 -- <refined preconditions from body>
f1bd0415 7956 -- <contract case conditions>
ea3c0651
AC
7957
7958 -- <source declarations>
7959 -- begin
7960 -- <source statements>
7961
7962 -- _Preconditions (Result);
7963 -- return Result;
7964 -- end Example;
7965
7966 -- Routine _Postconditions holds all contract assertions that must be
7967 -- verified on exit from the related routine.
7968
7969 -- Collect all [inherited] preconditions from the spec, transform them
7970 -- into Check pragmas and add them to the declarations of the body in
7971 -- the order outlined above.
7972
7973 if Present (Spec_Id) then
7974 Collect_Spec_Preconditions (Spec_Id);
7975 end if;
7976
7977 -- Transform all [refined] postconditions of the body into Check
7978 -- pragmas. The resulting pragmas are accumulated in list Post_Stmts.
7979
7980 Collect_Body_Postconditions (Post_Stmts);
7981
7982 -- Transform all [inherited] postconditions from the spec into Check
7983 -- pragmas. The resulting pragmas are accumulated in list Post_Stmts.
7984
7985 if Present (Spec_Id) then
7986 Collect_Spec_Postconditions (Spec_Id, Post_Stmts);
7987
7988 -- Transform pragma Contract_Cases from the spec into its circuitry
7989
7990 Process_Contract_Cases (Spec_Id, Post_Stmts);
7991 end if;
7992
7993 -- Apply invariant and predicate checks on the result of a function (if
7994 -- applicable) and all formals. The resulting checks are accumulated in
7995 -- list Post_Stmts.
7996
7997 Add_Invariant_And_Predicate_Checks (Subp_Id, Post_Stmts, Result);
7998
7999 -- Construct procedure _Postconditions
8000
8001 Build_Postconditions_Procedure (Subp_Id, Post_Stmts, Result);
8002 end Expand_Subprogram_Contract;
8003
02822a92
RD
8004 --------------------------------
8005 -- Is_Build_In_Place_Function --
8006 --------------------------------
70482933 8007
02822a92
RD
8008 function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
8009 begin
5087048c
AC
8010 -- This function is called from Expand_Subtype_From_Expr during
8011 -- semantic analysis, even when expansion is off. In those cases
8012 -- the build_in_place expansion will not take place.
b0256cb6
AC
8013
8014 if not Expander_Active then
8015 return False;
8016 end if;
8017
02822a92 8018 -- For now we test whether E denotes a function or access-to-function
5b6f12c7
AC
8019 -- type whose result subtype is inherently limited. Later this test
8020 -- may be revised to allow composite nonlimited types. Functions with
8021 -- a foreign convention or whose result type has a foreign convention
02822a92
RD
8022 -- never qualify.
8023
b29def53 8024 if Ekind_In (E, E_Function, E_Generic_Function)
02822a92
RD
8025 or else (Ekind (E) = E_Subprogram_Type
8026 and then Etype (E) /= Standard_Void_Type)
8027 then
4446a13f
AC
8028 -- Note: If the function has a foreign convention, it cannot build
8029 -- its result in place, so you're on your own. On the other hand,
8030 -- if only the return type has a foreign convention, its layout is
8031 -- intended to be compatible with the other language, but the build-
8032 -- in place machinery can ensure that the object is not copied.
f937473f 8033
4446a13f 8034 if Has_Foreign_Convention (E) then
02822a92 8035 return False;
c8ef728f 8036
2a31c32b
AC
8037 -- In Ada 2005 all functions with an inherently limited return type
8038 -- must be handled using a build-in-place profile, including the case
8039 -- of a function with a limited interface result, where the function
8040 -- may return objects of nonlimited descendants.
7888a6ae 8041
02822a92 8042 else
51245e2d 8043 return Is_Limited_View (Etype (E))
0791fbe9 8044 and then Ada_Version >= Ada_2005
f937473f 8045 and then not Debug_Flag_Dot_L;
c8ef728f
ES
8046 end if;
8047
02822a92
RD
8048 else
8049 return False;
8050 end if;
8051 end Is_Build_In_Place_Function;
f4d379b8 8052
02822a92
RD
8053 -------------------------------------
8054 -- Is_Build_In_Place_Function_Call --
8055 -------------------------------------
f4d379b8 8056
02822a92
RD
8057 function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
8058 Exp_Node : Node_Id := N;
8059 Function_Id : Entity_Id;
f4d379b8 8060
02822a92 8061 begin
5b6f12c7
AC
8062 -- Return False if the expander is currently inactive, since awareness
8063 -- of build-in-place treatment is only relevant during expansion. Note
8064 -- that Is_Build_In_Place_Function, which is called as part of this
8065 -- function, is also conditioned this way, but we need to check here as
8066 -- well to avoid blowing up on processing protected calls when expansion
8067 -- is disabled (such as with -gnatc) since those would trip over the
8068 -- raise of Program_Error below.
c6d5d1ac 8069
5114f3ff
AC
8070 -- In SPARK mode, build-in-place calls are not expanded, so that we
8071 -- may end up with a call that is neither resolved to an entity, nor
8072 -- an indirect call.
8073
4460a9bc 8074 if not Expander_Active then
c6d5d1ac
AC
8075 return False;
8076 end if;
8077
19590d70
GD
8078 -- Step past qualification or unchecked conversion (the latter can occur
8079 -- in cases of calls to 'Input).
8080
94bbf008
AC
8081 if Nkind_In (Exp_Node, N_Qualified_Expression,
8082 N_Unchecked_Type_Conversion)
19590d70 8083 then
02822a92
RD
8084 Exp_Node := Expression (N);
8085 end if;
758c442c 8086
02822a92
RD
8087 if Nkind (Exp_Node) /= N_Function_Call then
8088 return False;
3ca505dc 8089
02822a92 8090 else
5114f3ff 8091 if Is_Entity_Name (Name (Exp_Node)) then
02822a92 8092 Function_Id := Entity (Name (Exp_Node));
758c442c 8093
94bbf008
AC
8094 -- In the case of an explicitly dereferenced call, use the subprogram
8095 -- type generated for the dereference.
8096
02822a92
RD
8097 elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
8098 Function_Id := Etype (Name (Exp_Node));
2ba1a7c7 8099
0812b84e
AC
8100 -- This may be a call to a protected function.
8101
8102 elsif Nkind (Name (Exp_Node)) = N_Selected_Component then
8103 Function_Id := Etype (Entity (Selector_Name (Name (Exp_Node))));
8104
2ba1a7c7
AC
8105 else
8106 raise Program_Error;
02822a92 8107 end if;
758c442c 8108
02822a92
RD
8109 return Is_Build_In_Place_Function (Function_Id);
8110 end if;
8111 end Is_Build_In_Place_Function_Call;
758c442c 8112
02822a92
RD
8113 -----------------------
8114 -- Freeze_Subprogram --
8115 -----------------------
758c442c 8116
02822a92
RD
8117 procedure Freeze_Subprogram (N : Node_Id) is
8118 Loc : constant Source_Ptr := Sloc (N);
3ca505dc 8119
02822a92
RD
8120 procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
8121 -- (Ada 2005): Register a predefined primitive in all the secondary
8122 -- dispatch tables of its primitive type.
3ca505dc 8123
f4d379b8
HK
8124 ----------------------------------
8125 -- Register_Predefined_DT_Entry --
8126 ----------------------------------
8127
8128 procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
8129 Iface_DT_Ptr : Elmt_Id;
02822a92 8130 Tagged_Typ : Entity_Id;
f4d379b8 8131 Thunk_Id : Entity_Id;
7888a6ae 8132 Thunk_Code : Node_Id;
f4d379b8
HK
8133
8134 begin
02822a92 8135 Tagged_Typ := Find_Dispatching_Type (Prim);
f4d379b8 8136
02822a92 8137 if No (Access_Disp_Table (Tagged_Typ))
ce2b6ba5 8138 or else not Has_Interfaces (Tagged_Typ)
c8ef728f 8139 or else not RTE_Available (RE_Interface_Tag)
f937473f 8140 or else Restriction_Active (No_Dispatching_Calls)
f4d379b8
HK
8141 then
8142 return;
8143 end if;
8144
1923d2d6
JM
8145 -- Skip the first two access-to-dispatch-table pointers since they
8146 -- leads to the primary dispatch table (predefined DT and user
8147 -- defined DT). We are only concerned with the secondary dispatch
8148 -- table pointers. Note that the access-to- dispatch-table pointer
8149 -- corresponds to the first implemented interface retrieved below.
f4d379b8 8150
02822a92 8151 Iface_DT_Ptr :=
1923d2d6 8152 Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Tagged_Typ))));
f937473f 8153
7888a6ae 8154 while Present (Iface_DT_Ptr)
df3e68b1 8155 and then Ekind (Node (Iface_DT_Ptr)) = E_Constant
7888a6ae 8156 loop
ac4d6407 8157 pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
d766cee3 8158 Expand_Interface_Thunk (Prim, Thunk_Id, Thunk_Code);
7888a6ae
GD
8159
8160 if Present (Thunk_Code) then
ac4d6407 8161 Insert_Actions_After (N, New_List (
7888a6ae
GD
8162 Thunk_Code,
8163
8164 Build_Set_Predefined_Prim_Op_Address (Loc,
54bf19e4 8165 Tag_Node =>
e4494292 8166 New_Occurrence_Of (Node (Next_Elmt (Iface_DT_Ptr)), Loc),
54bf19e4 8167 Position => DT_Position (Prim),
7888a6ae 8168 Address_Node =>
70f91180 8169 Unchecked_Convert_To (RTE (RE_Prim_Ptr),
1923d2d6 8170 Make_Attribute_Reference (Loc,
e4494292 8171 Prefix => New_Occurrence_Of (Thunk_Id, Loc),
1923d2d6 8172 Attribute_Name => Name_Unrestricted_Access))),
ac4d6407
RD
8173
8174 Build_Set_Predefined_Prim_Op_Address (Loc,
54bf19e4 8175 Tag_Node =>
e4494292 8176 New_Occurrence_Of
1923d2d6
JM
8177 (Node (Next_Elmt (Next_Elmt (Next_Elmt (Iface_DT_Ptr)))),
8178 Loc),
54bf19e4 8179 Position => DT_Position (Prim),
ac4d6407 8180 Address_Node =>
70f91180 8181 Unchecked_Convert_To (RTE (RE_Prim_Ptr),
1923d2d6 8182 Make_Attribute_Reference (Loc,
e4494292 8183 Prefix => New_Occurrence_Of (Prim, Loc),
1923d2d6 8184 Attribute_Name => Name_Unrestricted_Access)))));
7888a6ae 8185 end if;
f4d379b8 8186
1923d2d6
JM
8187 -- Skip the tag of the predefined primitives dispatch table
8188
8189 Next_Elmt (Iface_DT_Ptr);
8190 pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
8191
54bf19e4 8192 -- Skip tag of the no-thunks dispatch table
1923d2d6
JM
8193
8194 Next_Elmt (Iface_DT_Ptr);
8195 pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
8196
54bf19e4 8197 -- Skip tag of predefined primitives no-thunks dispatch table
1923d2d6 8198
ac4d6407
RD
8199 Next_Elmt (Iface_DT_Ptr);
8200 pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
8201
f4d379b8 8202 Next_Elmt (Iface_DT_Ptr);
f4d379b8
HK
8203 end loop;
8204 end Register_Predefined_DT_Entry;
8205
7888a6ae 8206 -- Local variables
3ca505dc 8207
df3e68b1 8208 Subp : constant Entity_Id := Entity (N);
3ca505dc 8209
ac4d6407
RD
8210 -- Start of processing for Freeze_Subprogram
8211
7888a6ae 8212 begin
d766cee3
RD
8213 -- We suppress the initialization of the dispatch table entry when
8214 -- VM_Target because the dispatching mechanism is handled internally
8215 -- by the VM.
8216
8217 if Is_Dispatching_Operation (Subp)
8218 and then not Is_Abstract_Subprogram (Subp)
8219 and then Present (DTC_Entity (Subp))
8220 and then Present (Scope (DTC_Entity (Subp)))
1f110335 8221 and then Tagged_Type_Expansion
d766cee3
RD
8222 and then not Restriction_Active (No_Dispatching_Calls)
8223 and then RTE_Available (RE_Tag)
8224 then
7888a6ae 8225 declare
d766cee3 8226 Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
c8ef728f 8227
7888a6ae 8228 begin
8fc789c8 8229 -- Handle private overridden primitives
c8ef728f 8230
d766cee3
RD
8231 if not Is_CPP_Class (Typ) then
8232 Check_Overriding_Operation (Subp);
7888a6ae 8233 end if;
c8ef728f 8234
d766cee3
RD
8235 -- We assume that imported CPP primitives correspond with objects
8236 -- whose constructor is in the CPP side; therefore we don't need
8237 -- to generate code to register them in the dispatch table.
c8ef728f 8238
d766cee3
RD
8239 if Is_CPP_Class (Typ) then
8240 null;
3ca505dc 8241
d766cee3
RD
8242 -- Handle CPP primitives found in derivations of CPP_Class types.
8243 -- These primitives must have been inherited from some parent, and
8244 -- there is no need to register them in the dispatch table because
5b6f12c7 8245 -- Build_Inherit_Prims takes care of initializing these slots.
3ca505dc 8246
d766cee3 8247 elsif Is_Imported (Subp)
54bf19e4
AC
8248 and then (Convention (Subp) = Convention_CPP
8249 or else Convention (Subp) = Convention_C)
d766cee3
RD
8250 then
8251 null;
8252
8253 -- Generate code to register the primitive in non statically
8254 -- allocated dispatch tables
8255
bfae1846
AC
8256 elsif not Building_Static_DT (Scope (DTC_Entity (Subp))) then
8257
d766cee3
RD
8258 -- When a primitive is frozen, enter its name in its dispatch
8259 -- table slot.
f4d379b8 8260
d766cee3 8261 if not Is_Interface (Typ)
ce2b6ba5 8262 or else Present (Interface_Alias (Subp))
d766cee3
RD
8263 then
8264 if Is_Predefined_Dispatching_Operation (Subp) then
8265 Register_Predefined_DT_Entry (Subp);
7888a6ae 8266 end if;
d766cee3 8267
991395ab
AC
8268 Insert_Actions_After (N,
8269 Register_Primitive (Loc, Prim => Subp));
7888a6ae
GD
8270 end if;
8271 end if;
8272 end;
70482933
RK
8273 end if;
8274
7888a6ae
GD
8275 -- Mark functions that return by reference. Note that it cannot be part
8276 -- of the normal semantic analysis of the spec since the underlying
8277 -- returned type may not be known yet (for private types).
70482933 8278
d766cee3
RD
8279 declare
8280 Typ : constant Entity_Id := Etype (Subp);
8281 Utyp : constant Entity_Id := Underlying_Type (Typ);
8282 begin
51245e2d 8283 if Is_Limited_View (Typ) then
d766cee3 8284 Set_Returns_By_Ref (Subp);
048e5cef 8285 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
d766cee3
RD
8286 Set_Returns_By_Ref (Subp);
8287 end if;
8288 end;
b546e2a7
AC
8289
8290 -- Wnen freezing a null procedure, analyze its delayed aspects now
8291 -- because we may not have reached the end of the declarative list when
8292 -- delayed aspects are normally analyzed. This ensures that dispatching
8293 -- calls are properly rewritten when the generated _Postcondition
8294 -- procedure is analyzed in the null procedure body.
8295
8296 if Nkind (Parent (Subp)) = N_Procedure_Specification
8297 and then Null_Present (Parent (Subp))
8298 then
5afe5d2d 8299 Analyze_Subprogram_Contract (Subp);
b546e2a7 8300 end if;
70482933
RK
8301 end Freeze_Subprogram;
8302
8dbf3473
AC
8303 -----------------------
8304 -- Is_Null_Procedure --
8305 -----------------------
8306
8307 function Is_Null_Procedure (Subp : Entity_Id) return Boolean is
8308 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
8309
8310 begin
8311 if Ekind (Subp) /= E_Procedure then
8312 return False;
8313
8314 -- Check if this is a declared null procedure
8315
8316 elsif Nkind (Decl) = N_Subprogram_Declaration then
e1f3cb58
AC
8317 if not Null_Present (Specification (Decl)) then
8318 return False;
8dbf3473
AC
8319
8320 elsif No (Body_To_Inline (Decl)) then
8321 return False;
8322
8323 -- Check if the body contains only a null statement, followed by
8324 -- the return statement added during expansion.
8325
8326 else
8327 declare
8328 Orig_Bod : constant Node_Id := Body_To_Inline (Decl);
8329
8330 Stat : Node_Id;
8331 Stat2 : Node_Id;
8332
8333 begin
8334 if Nkind (Orig_Bod) /= N_Subprogram_Body then
8335 return False;
8336 else
327503f1
JM
8337 -- We must skip SCIL nodes because they are currently
8338 -- implemented as special N_Null_Statement nodes.
8339
8dbf3473 8340 Stat :=
327503f1 8341 First_Non_SCIL_Node
8dbf3473 8342 (Statements (Handled_Statement_Sequence (Orig_Bod)));
327503f1 8343 Stat2 := Next_Non_SCIL_Node (Stat);
8dbf3473
AC
8344
8345 return
e1f3cb58
AC
8346 Is_Empty_List (Declarations (Orig_Bod))
8347 and then Nkind (Stat) = N_Null_Statement
8348 and then
8dbf3473
AC
8349 (No (Stat2)
8350 or else
8351 (Nkind (Stat2) = N_Simple_Return_Statement
8352 and then No (Next (Stat2))));
8353 end if;
8354 end;
8355 end if;
8356
8357 else
8358 return False;
8359 end if;
8360 end Is_Null_Procedure;
8361
02822a92
RD
8362 -------------------------------------------
8363 -- Make_Build_In_Place_Call_In_Allocator --
8364 -------------------------------------------
8365
8366 procedure Make_Build_In_Place_Call_In_Allocator
8367 (Allocator : Node_Id;
8368 Function_Call : Node_Id)
8369 is
94bbf008 8370 Acc_Type : constant Entity_Id := Etype (Allocator);
02822a92
RD
8371 Loc : Source_Ptr;
8372 Func_Call : Node_Id := Function_Call;
1399d355 8373 Ref_Func_Call : Node_Id;
02822a92
RD
8374 Function_Id : Entity_Id;
8375 Result_Subt : Entity_Id;
02822a92 8376 New_Allocator : Node_Id;
1399d355
AC
8377 Return_Obj_Access : Entity_Id; -- temp for function result
8378 Temp_Init : Node_Id; -- initial value of Return_Obj_Access
8379 Alloc_Form : BIP_Allocation_Form;
8380 Pool : Node_Id; -- nonnull if Alloc_Form = User_Storage_Pool
8381 Return_Obj_Actual : Node_Id; -- the temp.all, in caller-allocates case
8382 Chain : Entity_Id; -- activation chain, in case of tasks
02822a92
RD
8383
8384 begin
19590d70
GD
8385 -- Step past qualification or unchecked conversion (the latter can occur
8386 -- in cases of calls to 'Input).
8387
ac4d6407
RD
8388 if Nkind_In (Func_Call,
8389 N_Qualified_Expression,
8390 N_Unchecked_Type_Conversion)
19590d70 8391 then
02822a92
RD
8392 Func_Call := Expression (Func_Call);
8393 end if;
8394
fdce4bb7
JM
8395 -- If the call has already been processed to add build-in-place actuals
8396 -- then return. This should not normally occur in an allocator context,
8397 -- but we add the protection as a defensive measure.
8398
8399 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8400 return;
8401 end if;
8402
8403 -- Mark the call as processed as a build-in-place call
8404
8405 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8406
02822a92
RD
8407 Loc := Sloc (Function_Call);
8408
8409 if Is_Entity_Name (Name (Func_Call)) then
8410 Function_Id := Entity (Name (Func_Call));
8411
8412 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8413 Function_Id := Etype (Name (Func_Call));
8414
8415 else
8416 raise Program_Error;
8417 end if;
8418
94bbf008 8419 Result_Subt := Available_View (Etype (Function_Id));
02822a92 8420
1399d355
AC
8421 -- Create a temp for the function result. In the caller-allocates case,
8422 -- this will be initialized to the result of a new uninitialized
8423 -- allocator. Note: we do not use Allocator as the Related_Node of
8424 -- Return_Obj_Access in call to Make_Temporary below as this would
8425 -- create a sort of infinite "recursion".
0d566e01 8426
1399d355
AC
8427 Return_Obj_Access := Make_Temporary (Loc, 'R');
8428 Set_Etype (Return_Obj_Access, Acc_Type);
0d566e01 8429
1399d355 8430 -- When the result subtype is constrained, the return object is
f937473f
RD
8431 -- allocated on the caller side, and access to it is passed to the
8432 -- function.
02822a92 8433
7888a6ae
GD
8434 -- Here and in related routines, we must examine the full view of the
8435 -- type, because the view at the point of call may differ from that
8436 -- that in the function body, and the expansion mechanism depends on
8437 -- the characteristics of the full view.
8438
8439 if Is_Constrained (Underlying_Type (Result_Subt)) then
02822a92 8440
f937473f
RD
8441 -- Replace the initialized allocator of form "new T'(Func (...))"
8442 -- with an uninitialized allocator of form "new T", where T is the
8443 -- result subtype of the called function. The call to the function
8444 -- is handled separately further below.
02822a92 8445
f937473f 8446 New_Allocator :=
fad0600d 8447 Make_Allocator (Loc,
e4494292 8448 Expression => New_Occurrence_Of (Result_Subt, Loc));
fad0600d
AC
8449 Set_No_Initialization (New_Allocator);
8450
8451 -- Copy attributes to new allocator. Note that the new allocator
8452 -- logically comes from source if the original one did, so copy the
8453 -- relevant flag. This ensures proper treatment of the restriction
8454 -- No_Implicit_Heap_Allocations in this case.
02822a92 8455
fad0600d 8456 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
f937473f 8457 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
fad0600d 8458 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
02822a92 8459
f937473f 8460 Rewrite (Allocator, New_Allocator);
02822a92 8461
1399d355
AC
8462 -- Initial value of the temp is the result of the uninitialized
8463 -- allocator
02822a92 8464
1399d355 8465 Temp_Init := Relocate_Node (Allocator);
f937473f 8466
1399d355
AC
8467 -- Indicate that caller allocates, and pass in the return object
8468
8469 Alloc_Form := Caller_Allocation;
8470 Pool := Make_Null (No_Location);
8471 Return_Obj_Actual :=
8472 Make_Unchecked_Type_Conversion (Loc,
8473 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8474 Expression =>
8475 Make_Explicit_Dereference (Loc,
8476 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)));
f937473f
RD
8477
8478 -- When the result subtype is unconstrained, the function itself must
8479 -- perform the allocation of the return object, so we pass parameters
1399d355 8480 -- indicating that.
f937473f
RD
8481
8482 else
1399d355
AC
8483 Temp_Init := Empty;
8484
8417f4b2
AC
8485 -- Case of a user-defined storage pool. Pass an allocation parameter
8486 -- indicating that the function should allocate its result in the
8487 -- pool, and pass the pool. Use 'Unrestricted_Access because the
8488 -- pool may not be aliased.
200b7162 8489
8417f4b2
AC
8490 if VM_Target = No_VM
8491 and then Present (Associated_Storage_Pool (Acc_Type))
8492 then
1399d355
AC
8493 Alloc_Form := User_Storage_Pool;
8494 Pool :=
8495 Make_Attribute_Reference (Loc,
8496 Prefix =>
8497 New_Occurrence_Of
8498 (Associated_Storage_Pool (Acc_Type), Loc),
8499 Attribute_Name => Name_Unrestricted_Access);
8417f4b2
AC
8500
8501 -- No user-defined pool; pass an allocation parameter indicating that
8502 -- the function should allocate its result on the heap.
8503
8504 else
1399d355
AC
8505 Alloc_Form := Global_Heap;
8506 Pool := Make_Null (No_Location);
200b7162 8507 end if;
f937473f 8508
7888a6ae
GD
8509 -- The caller does not provide the return object in this case, so we
8510 -- have to pass null for the object access actual.
8511
1399d355
AC
8512 Return_Obj_Actual := Empty;
8513 end if;
8514
8515 -- Declare the temp object
8516
8517 Insert_Action (Allocator,
8518 Make_Object_Declaration (Loc,
8519 Defining_Identifier => Return_Obj_Access,
8520 Object_Definition => New_Occurrence_Of (Acc_Type, Loc),
8521 Expression => Temp_Init));
8522
8523 Ref_Func_Call := Make_Reference (Loc, Func_Call);
8524
8525 -- Ada 2005 (AI-251): If the type of the allocator is an interface
8526 -- then generate an implicit conversion to force displacement of the
8527 -- "this" pointer.
8528
8529 if Is_Interface (Designated_Type (Acc_Type)) then
8530 Rewrite
8531 (Ref_Func_Call,
8532 OK_Convert_To (Acc_Type, Ref_Func_Call));
f937473f 8533 end if;
02822a92 8534
1399d355
AC
8535 declare
8536 Assign : constant Node_Id :=
8537 Make_Assignment_Statement (Loc,
8538 Name => New_Occurrence_Of (Return_Obj_Access, Loc),
8539 Expression => Ref_Func_Call);
8540 -- Assign the result of the function call into the temp. In the
8541 -- caller-allocates case, this is overwriting the temp with its
8542 -- initial value, which has no effect. In the callee-allocates case,
8543 -- this is setting the temp to point to the object allocated by the
8544 -- callee.
8545
8546 Actions : List_Id;
8547 -- Actions to be inserted. If there are no tasks, this is just the
8548 -- assignment statement. If the allocated object has tasks, we need
8549 -- to wrap the assignment in a block that activates them. The
8550 -- activation chain of that block must be passed to the function,
8551 -- rather than some outer chain.
8552 begin
8553 if Has_Task (Result_Subt) then
8554 Actions := New_List;
8555 Build_Task_Allocate_Block_With_Init_Stmts
8556 (Actions, Allocator, Init_Stmts => New_List (Assign));
8557 Chain := Activation_Chain_Entity (Last (Actions));
8558 else
8559 Actions := New_List (Assign);
8560 Chain := Empty;
8561 end if;
8562
8563 Insert_Actions (Allocator, Actions);
8564 end;
8565
8566 -- When the function has a controlling result, an allocation-form
8567 -- parameter must be passed indicating that the caller is allocating
8568 -- the result object. This is needed because such a function can be
8569 -- called as a dispatching operation and must be treated similarly
8570 -- to functions with unconstrained result subtypes.
8571
8572 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8573 (Func_Call, Function_Id, Alloc_Form, Pool_Actual => Pool);
8574
8575 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8576 (Func_Call, Function_Id, Acc_Type);
8577
8578 Add_Task_Actuals_To_Build_In_Place_Call
8579 (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type),
8580 Chain => Chain);
8581
8582 -- Add an implicit actual to the function call that provides access
8583 -- to the allocated object. An unchecked conversion to the (specific)
8584 -- result subtype of the function is inserted to handle cases where
8585 -- the access type of the allocator has a class-wide designated type.
8586
8587 Add_Access_Actual_To_Build_In_Place_Call
8588 (Func_Call, Function_Id, Return_Obj_Actual);
8589
b254da66
AC
8590 -- If the build-in-place function call returns a controlled object,
8591 -- the finalization master will require a reference to routine
8592 -- Finalize_Address of the designated type. Setting this attribute
8593 -- is done in the same manner to expansion of allocators.
8594
8595 if Needs_Finalization (Result_Subt) then
8596
8597 -- Controlled types with supressed finalization do not need to
8598 -- associate the address of their Finalize_Address primitives with
8599 -- a master since they do not need a master to begin with.
8600
8601 if Is_Library_Level_Entity (Acc_Type)
8602 and then Finalize_Storage_Only (Result_Subt)
8603 then
8604 null;
8605
5114f3ff
AC
8606 -- Do not generate the call to Set_Finalize_Address in CodePeer mode
8607 -- because Finalize_Address is never built.
b254da66 8608
5114f3ff 8609 elsif not CodePeer_Mode then
b254da66
AC
8610 Insert_Action (Allocator,
8611 Make_Set_Finalize_Address_Call (Loc,
8612 Typ => Etype (Function_Id),
8613 Ptr_Typ => Acc_Type));
8614 end if;
8615 end if;
8616
1399d355 8617 -- Finally, replace the allocator node with a reference to the temp
02822a92 8618
1399d355 8619 Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
d2d4b355 8620
02822a92
RD
8621 Analyze_And_Resolve (Allocator, Acc_Type);
8622 end Make_Build_In_Place_Call_In_Allocator;
8623
8624 ---------------------------------------------------
8625 -- Make_Build_In_Place_Call_In_Anonymous_Context --
8626 ---------------------------------------------------
8627
8628 procedure Make_Build_In_Place_Call_In_Anonymous_Context
8629 (Function_Call : Node_Id)
8630 is
8631 Loc : Source_Ptr;
8632 Func_Call : Node_Id := Function_Call;
8633 Function_Id : Entity_Id;
8634 Result_Subt : Entity_Id;
8635 Return_Obj_Id : Entity_Id;
8636 Return_Obj_Decl : Entity_Id;
8637
8638 begin
19590d70
GD
8639 -- Step past qualification or unchecked conversion (the latter can occur
8640 -- in cases of calls to 'Input).
8641
ac4d6407
RD
8642 if Nkind_In (Func_Call, N_Qualified_Expression,
8643 N_Unchecked_Type_Conversion)
19590d70 8644 then
02822a92
RD
8645 Func_Call := Expression (Func_Call);
8646 end if;
8647
fdce4bb7
JM
8648 -- If the call has already been processed to add build-in-place actuals
8649 -- then return. One place this can occur is for calls to build-in-place
8650 -- functions that occur within a call to a protected operation, where
8651 -- due to rewriting and expansion of the protected call there can be
8652 -- more than one call to Expand_Actuals for the same set of actuals.
8653
8654 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8655 return;
8656 end if;
8657
8658 -- Mark the call as processed as a build-in-place call
8659
8660 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8661
02822a92
RD
8662 Loc := Sloc (Function_Call);
8663
8664 if Is_Entity_Name (Name (Func_Call)) then
8665 Function_Id := Entity (Name (Func_Call));
8666
8667 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8668 Function_Id := Etype (Name (Func_Call));
8669
8670 else
8671 raise Program_Error;
8672 end if;
8673
8674 Result_Subt := Etype (Function_Id);
8675
df3e68b1
HK
8676 -- If the build-in-place function returns a controlled object, then the
8677 -- object needs to be finalized immediately after the context. Since
8678 -- this case produces a transient scope, the servicing finalizer needs
8679 -- to name the returned object. Create a temporary which is initialized
8680 -- with the function call:
8681 --
8682 -- Temp_Id : Func_Type := BIP_Func_Call;
8683 --
8684 -- The initialization expression of the temporary will be rewritten by
8685 -- the expander using the appropriate mechanism in Make_Build_In_Place_
8686 -- Call_In_Object_Declaration.
8687
8688 if Needs_Finalization (Result_Subt) then
8689 declare
8690 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'R');
8691 Temp_Decl : Node_Id;
8692
8693 begin
8694 -- Reset the guard on the function call since the following does
8695 -- not perform actual call expansion.
8696
8697 Set_Is_Expanded_Build_In_Place_Call (Func_Call, False);
8698
8699 Temp_Decl :=
8700 Make_Object_Declaration (Loc,
8701 Defining_Identifier => Temp_Id,
8702 Object_Definition =>
e4494292 8703 New_Occurrence_Of (Result_Subt, Loc),
df3e68b1
HK
8704 Expression =>
8705 New_Copy_Tree (Function_Call));
8706
8707 Insert_Action (Function_Call, Temp_Decl);
8708
e4494292 8709 Rewrite (Function_Call, New_Occurrence_Of (Temp_Id, Loc));
df3e68b1
HK
8710 Analyze (Function_Call);
8711 end;
8712
f937473f
RD
8713 -- When the result subtype is constrained, an object of the subtype is
8714 -- declared and an access value designating it is passed as an actual.
02822a92 8715
df3e68b1 8716 elsif Is_Constrained (Underlying_Type (Result_Subt)) then
02822a92 8717
f937473f
RD
8718 -- Create a temporary object to hold the function result
8719
c12beea0 8720 Return_Obj_Id := Make_Temporary (Loc, 'R');
f937473f 8721 Set_Etype (Return_Obj_Id, Result_Subt);
02822a92 8722
f937473f
RD
8723 Return_Obj_Decl :=
8724 Make_Object_Declaration (Loc,
8725 Defining_Identifier => Return_Obj_Id,
8726 Aliased_Present => True,
e4494292 8727 Object_Definition => New_Occurrence_Of (Result_Subt, Loc));
02822a92 8728
f937473f 8729 Set_No_Initialization (Return_Obj_Decl);
02822a92 8730
f937473f 8731 Insert_Action (Func_Call, Return_Obj_Decl);
02822a92 8732
7888a6ae
GD
8733 -- When the function has a controlling result, an allocation-form
8734 -- parameter must be passed indicating that the caller is allocating
8735 -- the result object. This is needed because such a function can be
8736 -- called as a dispatching operation and must be treated similarly
8737 -- to functions with unconstrained result subtypes.
8738
200b7162 8739 Add_Unconstrained_Actuals_To_Build_In_Place_Call
7888a6ae
GD
8740 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8741
d3f70b35 8742 Add_Finalization_Master_Actual_To_Build_In_Place_Call
df3e68b1 8743 (Func_Call, Function_Id);
f937473f 8744
f937473f
RD
8745 Add_Task_Actuals_To_Build_In_Place_Call
8746 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
7888a6ae
GD
8747
8748 -- Add an implicit actual to the function call that provides access
8749 -- to the caller's return object.
8750
f937473f 8751 Add_Access_Actual_To_Build_In_Place_Call
e4494292 8752 (Func_Call, Function_Id, New_Occurrence_Of (Return_Obj_Id, Loc));
f937473f
RD
8753
8754 -- When the result subtype is unconstrained, the function must allocate
8755 -- the return object in the secondary stack, so appropriate implicit
8756 -- parameters are added to the call to indicate that. A transient
8757 -- scope is established to ensure eventual cleanup of the result.
8758
8759 else
8760 -- Pass an allocation parameter indicating that the function should
8761 -- allocate its result on the secondary stack.
8762
200b7162 8763 Add_Unconstrained_Actuals_To_Build_In_Place_Call
f937473f
RD
8764 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
8765
d3f70b35 8766 Add_Finalization_Master_Actual_To_Build_In_Place_Call
df3e68b1 8767 (Func_Call, Function_Id);
f937473f 8768
f937473f
RD
8769 Add_Task_Actuals_To_Build_In_Place_Call
8770 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
7888a6ae
GD
8771
8772 -- Pass a null value to the function since no return object is
8773 -- available on the caller side.
8774
f937473f
RD
8775 Add_Access_Actual_To_Build_In_Place_Call
8776 (Func_Call, Function_Id, Empty);
f937473f 8777 end if;
02822a92
RD
8778 end Make_Build_In_Place_Call_In_Anonymous_Context;
8779
ce2798e8 8780 --------------------------------------------
02822a92 8781 -- Make_Build_In_Place_Call_In_Assignment --
ce2798e8 8782 --------------------------------------------
02822a92
RD
8783
8784 procedure Make_Build_In_Place_Call_In_Assignment
8785 (Assign : Node_Id;
8786 Function_Call : Node_Id)
8787 is
3a69b5ff
AC
8788 Lhs : constant Node_Id := Name (Assign);
8789 Func_Call : Node_Id := Function_Call;
8790 Func_Id : Entity_Id;
8791 Loc : Source_Ptr;
8792 Obj_Decl : Node_Id;
8793 Obj_Id : Entity_Id;
8794 Ptr_Typ : Entity_Id;
8795 Ptr_Typ_Decl : Node_Id;
74cab21a 8796 New_Expr : Node_Id;
3a69b5ff
AC
8797 Result_Subt : Entity_Id;
8798 Target : Node_Id;
02822a92
RD
8799
8800 begin
19590d70
GD
8801 -- Step past qualification or unchecked conversion (the latter can occur
8802 -- in cases of calls to 'Input).
8803
ac4d6407
RD
8804 if Nkind_In (Func_Call, N_Qualified_Expression,
8805 N_Unchecked_Type_Conversion)
19590d70 8806 then
02822a92
RD
8807 Func_Call := Expression (Func_Call);
8808 end if;
8809
fdce4bb7
JM
8810 -- If the call has already been processed to add build-in-place actuals
8811 -- then return. This should not normally occur in an assignment context,
8812 -- but we add the protection as a defensive measure.
8813
8814 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8815 return;
8816 end if;
8817
8818 -- Mark the call as processed as a build-in-place call
8819
8820 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8821
02822a92
RD
8822 Loc := Sloc (Function_Call);
8823
8824 if Is_Entity_Name (Name (Func_Call)) then
3a69b5ff 8825 Func_Id := Entity (Name (Func_Call));
02822a92
RD
8826
8827 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
3a69b5ff 8828 Func_Id := Etype (Name (Func_Call));
02822a92
RD
8829
8830 else
8831 raise Program_Error;
8832 end if;
8833
3a69b5ff 8834 Result_Subt := Etype (Func_Id);
02822a92 8835
f937473f
RD
8836 -- When the result subtype is unconstrained, an additional actual must
8837 -- be passed to indicate that the caller is providing the return object.
7888a6ae
GD
8838 -- This parameter must also be passed when the called function has a
8839 -- controlling result, because dispatching calls to the function needs
8840 -- to be treated effectively the same as calls to class-wide functions.
f937473f 8841
200b7162 8842 Add_Unconstrained_Actuals_To_Build_In_Place_Call
3a69b5ff 8843 (Func_Call, Func_Id, Alloc_Form => Caller_Allocation);
f937473f 8844
d3f70b35 8845 Add_Finalization_Master_Actual_To_Build_In_Place_Call
df3e68b1 8846 (Func_Call, Func_Id);
02822a92 8847
f937473f 8848 Add_Task_Actuals_To_Build_In_Place_Call
3a69b5ff 8849 (Func_Call, Func_Id, Make_Identifier (Loc, Name_uMaster));
7888a6ae
GD
8850
8851 -- Add an implicit actual to the function call that provides access to
8852 -- the caller's return object.
8853
02822a92
RD
8854 Add_Access_Actual_To_Build_In_Place_Call
8855 (Func_Call,
3a69b5ff 8856 Func_Id,
02822a92 8857 Make_Unchecked_Type_Conversion (Loc,
e4494292 8858 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
02822a92
RD
8859 Expression => Relocate_Node (Lhs)));
8860
8861 -- Create an access type designating the function's result subtype
8862
c12beea0 8863 Ptr_Typ := Make_Temporary (Loc, 'A');
02822a92
RD
8864
8865 Ptr_Typ_Decl :=
8866 Make_Full_Type_Declaration (Loc,
3a69b5ff 8867 Defining_Identifier => Ptr_Typ,
2c1b72d7 8868 Type_Definition =>
02822a92 8869 Make_Access_To_Object_Definition (Loc,
2c1b72d7 8870 All_Present => True,
02822a92 8871 Subtype_Indication =>
e4494292 8872 New_Occurrence_Of (Result_Subt, Loc)));
02822a92
RD
8873 Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
8874
8875 -- Finally, create an access object initialized to a reference to the
03e1048e
AC
8876 -- function call. We know this access value is non-null, so mark the
8877 -- entity accordingly to suppress junk access checks.
02822a92 8878
74cab21a
EB
8879 New_Expr := Make_Reference (Loc, Relocate_Node (Func_Call));
8880
8881 Obj_Id := Make_Temporary (Loc, 'R', New_Expr);
3a69b5ff 8882 Set_Etype (Obj_Id, Ptr_Typ);
74cab21a 8883 Set_Is_Known_Non_Null (Obj_Id);
02822a92 8884
3a69b5ff 8885 Obj_Decl :=
02822a92 8886 Make_Object_Declaration (Loc,
3a69b5ff 8887 Defining_Identifier => Obj_Id,
e4494292 8888 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
74cab21a 8889 Expression => New_Expr);
3a69b5ff 8890 Insert_After_And_Analyze (Ptr_Typ_Decl, Obj_Decl);
02822a92
RD
8891
8892 Rewrite (Assign, Make_Null_Statement (Loc));
3a69b5ff
AC
8893
8894 -- Retrieve the target of the assignment
8895
8896 if Nkind (Lhs) = N_Selected_Component then
8897 Target := Selector_Name (Lhs);
8898 elsif Nkind (Lhs) = N_Type_Conversion then
8899 Target := Expression (Lhs);
8900 else
8901 Target := Lhs;
8902 end if;
8903
8904 -- If we are assigning to a return object or this is an expression of
8905 -- an extension aggregate, the target should either be an identifier
8906 -- or a simple expression. All other cases imply a different scenario.
8907
8908 if Nkind (Target) in N_Has_Entity then
8909 Target := Entity (Target);
8910 else
8911 return;
8912 end if;
02822a92
RD
8913 end Make_Build_In_Place_Call_In_Assignment;
8914
8915 ----------------------------------------------------
8916 -- Make_Build_In_Place_Call_In_Object_Declaration --
8917 ----------------------------------------------------
8918
8919 procedure Make_Build_In_Place_Call_In_Object_Declaration
8920 (Object_Decl : Node_Id;
8921 Function_Call : Node_Id)
8922 is
f937473f
RD
8923 Loc : Source_Ptr;
8924 Obj_Def_Id : constant Entity_Id :=
8925 Defining_Identifier (Object_Decl);
2c17ca0a
AC
8926 Enclosing_Func : constant Entity_Id :=
8927 Enclosing_Subprogram (Obj_Def_Id);
8417f4b2
AC
8928 Call_Deref : Node_Id;
8929 Caller_Object : Node_Id;
8930 Def_Id : Entity_Id;
2c17ca0a 8931 Fmaster_Actual : Node_Id := Empty;
8417f4b2
AC
8932 Func_Call : Node_Id := Function_Call;
8933 Function_Id : Entity_Id;
8934 Pool_Actual : Node_Id;
f65c67d3 8935 Ptr_Typ : Entity_Id;
8417f4b2 8936 Ptr_Typ_Decl : Node_Id;
f937473f 8937 Pass_Caller_Acc : Boolean := False;
8c7ff9a0 8938 Res_Decl : Node_Id;
8417f4b2 8939 Result_Subt : Entity_Id;
02822a92
RD
8940
8941 begin
19590d70
GD
8942 -- Step past qualification or unchecked conversion (the latter can occur
8943 -- in cases of calls to 'Input).
8944
ac4d6407
RD
8945 if Nkind_In (Func_Call, N_Qualified_Expression,
8946 N_Unchecked_Type_Conversion)
19590d70 8947 then
02822a92
RD
8948 Func_Call := Expression (Func_Call);
8949 end if;
8950
fdce4bb7
JM
8951 -- If the call has already been processed to add build-in-place actuals
8952 -- then return. This should not normally occur in an object declaration,
8953 -- but we add the protection as a defensive measure.
8954
8955 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8956 return;
8957 end if;
8958
8959 -- Mark the call as processed as a build-in-place call
8960
8961 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8962
02822a92
RD
8963 Loc := Sloc (Function_Call);
8964
8965 if Is_Entity_Name (Name (Func_Call)) then
8966 Function_Id := Entity (Name (Func_Call));
8967
8968 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8969 Function_Id := Etype (Name (Func_Call));
8970
8971 else
8972 raise Program_Error;
8973 end if;
8974
8975 Result_Subt := Etype (Function_Id);
8976
f65c67d3
TQ
8977 -- Create an access type designating the function's result subtype. We
8978 -- use the type of the original call because it may be a call to an
8979 -- inherited operation, which the expansion has replaced with the parent
8980 -- operation that yields the parent type. Note that this access type
8981 -- must be declared before we establish a transient scope, so that it
8982 -- receives the proper accessibility level.
8983
8984 Ptr_Typ := Make_Temporary (Loc, 'A');
8985 Ptr_Typ_Decl :=
8986 Make_Full_Type_Declaration (Loc,
8987 Defining_Identifier => Ptr_Typ,
8988 Type_Definition =>
8989 Make_Access_To_Object_Definition (Loc,
8990 All_Present => True,
8991 Subtype_Indication =>
8992 New_Occurrence_Of (Etype (Function_Call), Loc)));
8993
8994 -- The access type and its accompanying object must be inserted after
8995 -- the object declaration in the constrained case, so that the function
8996 -- call can be passed access to the object. In the unconstrained case,
8997 -- or if the object declaration is for a return object, the access type
8998 -- and object must be inserted before the object, since the object
8999 -- declaration is rewritten to be a renaming of a dereference of the
9000 -- access object. Note: we need to freeze Ptr_Typ explicitly, because
9001 -- the result object is in a different (transient) scope, so won't
9002 -- cause freezing.
9003
9004 if Is_Constrained (Underlying_Type (Result_Subt))
9005 and then not Is_Return_Object (Defining_Identifier (Object_Decl))
9006 then
9007 Insert_After_And_Analyze (Object_Decl, Ptr_Typ_Decl);
9008 else
9009 Insert_Action (Object_Decl, Ptr_Typ_Decl);
9010 end if;
9011
9012 -- Force immediate freezing of Ptr_Typ because Res_Decl will be
9013 -- elaborated in an inner (transient) scope and thus won't cause
9014 -- freezing by itself.
9015
9016 declare
9017 Ptr_Typ_Freeze_Ref : constant Node_Id :=
9018 New_Occurrence_Of (Ptr_Typ, Loc);
9019 begin
9020 Set_Parent (Ptr_Typ_Freeze_Ref, Ptr_Typ_Decl);
9021 Freeze_Expression (Ptr_Typ_Freeze_Ref);
9022 end;
9023
1bb6e262
AC
9024 -- If the the object is a return object of an enclosing build-in-place
9025 -- function, then the implicit build-in-place parameters of the
9026 -- enclosing function are simply passed along to the called function.
9027 -- (Unfortunately, this won't cover the case of extension aggregates
9028 -- where the ancestor part is a build-in-place unconstrained function
9029 -- call that should be passed along the caller's parameters. Currently
9030 -- those get mishandled by reassigning the result of the call to the
9031 -- aggregate return object, when the call result should really be
9032 -- directly built in place in the aggregate and not in a temporary. ???)
9033
9034 if Is_Return_Object (Defining_Identifier (Object_Decl)) then
f937473f
RD
9035 Pass_Caller_Acc := True;
9036
1bb6e262
AC
9037 -- When the enclosing function has a BIP_Alloc_Form formal then we
9038 -- pass it along to the callee (such as when the enclosing function
9039 -- has an unconstrained or tagged result type).
f937473f 9040
1bb6e262 9041 if Needs_BIP_Alloc_Form (Enclosing_Func) then
3e452820
AC
9042 if VM_Target = No_VM and then
9043 RTE_Available (RE_Root_Storage_Pool_Ptr)
9044 then
8417f4b2 9045 Pool_Actual :=
e4494292 9046 New_Occurrence_Of (Build_In_Place_Formal
8417f4b2
AC
9047 (Enclosing_Func, BIP_Storage_Pool), Loc);
9048
9049 -- The build-in-place pool formal is not built on .NET/JVM
9050
9051 else
9052 Pool_Actual := Empty;
9053 end if;
9054
200b7162 9055 Add_Unconstrained_Actuals_To_Build_In_Place_Call
f937473f
RD
9056 (Func_Call,
9057 Function_Id,
9058 Alloc_Form_Exp =>
e4494292 9059 New_Occurrence_Of
f937473f 9060 (Build_In_Place_Formal (Enclosing_Func, BIP_Alloc_Form),
200b7162 9061 Loc),
8417f4b2 9062 Pool_Actual => Pool_Actual);
1bb6e262
AC
9063
9064 -- Otherwise, if enclosing function has a constrained result subtype,
9065 -- then caller allocation will be used.
9066
9067 else
200b7162 9068 Add_Unconstrained_Actuals_To_Build_In_Place_Call
1bb6e262 9069 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
f937473f
RD
9070 end if;
9071
2c17ca0a
AC
9072 if Needs_BIP_Finalization_Master (Enclosing_Func) then
9073 Fmaster_Actual :=
e4494292 9074 New_Occurrence_Of
2c17ca0a
AC
9075 (Build_In_Place_Formal
9076 (Enclosing_Func, BIP_Finalization_Master), Loc);
9077 end if;
9078
f937473f
RD
9079 -- Retrieve the BIPacc formal from the enclosing function and convert
9080 -- it to the access type of the callee's BIP_Object_Access formal.
9081
9082 Caller_Object :=
9083 Make_Unchecked_Type_Conversion (Loc,
9084 Subtype_Mark =>
e4494292 9085 New_Occurrence_Of
f937473f
RD
9086 (Etype
9087 (Build_In_Place_Formal (Function_Id, BIP_Object_Access)),
9088 Loc),
9089 Expression =>
e4494292 9090 New_Occurrence_Of
f937473f
RD
9091 (Build_In_Place_Formal (Enclosing_Func, BIP_Object_Access),
9092 Loc));
9093
1bb6e262
AC
9094 -- In the constrained case, add an implicit actual to the function call
9095 -- that provides access to the declared object. An unchecked conversion
9096 -- to the (specific) result type of the function is inserted to handle
9097 -- the case where the object is declared with a class-wide type.
9098
9099 elsif Is_Constrained (Underlying_Type (Result_Subt)) then
9100 Caller_Object :=
9101 Make_Unchecked_Type_Conversion (Loc,
e4494292
RD
9102 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
9103 Expression => New_Occurrence_Of (Obj_Def_Id, Loc));
1bb6e262
AC
9104
9105 -- When the function has a controlling result, an allocation-form
9106 -- parameter must be passed indicating that the caller is allocating
9107 -- the result object. This is needed because such a function can be
9108 -- called as a dispatching operation and must be treated similarly
9109 -- to functions with unconstrained result subtypes.
9110
200b7162 9111 Add_Unconstrained_Actuals_To_Build_In_Place_Call
1bb6e262
AC
9112 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
9113
f937473f
RD
9114 -- In other unconstrained cases, pass an indication to do the allocation
9115 -- on the secondary stack and set Caller_Object to Empty so that a null
9116 -- value will be passed for the caller's object address. A transient
9117 -- scope is established to ensure eventual cleanup of the result.
9118
9119 else
200b7162 9120 Add_Unconstrained_Actuals_To_Build_In_Place_Call
3e7302c3 9121 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
f937473f
RD
9122 Caller_Object := Empty;
9123
9124 Establish_Transient_Scope (Object_Decl, Sec_Stack => True);
9125 end if;
9126
2c17ca0a
AC
9127 -- Pass along any finalization master actual, which is needed in the
9128 -- case where the called function initializes a return object of an
9129 -- enclosing build-in-place function.
9130
d3f70b35 9131 Add_Finalization_Master_Actual_To_Build_In_Place_Call
2c17ca0a
AC
9132 (Func_Call => Func_Call,
9133 Func_Id => Function_Id,
9134 Master_Exp => Fmaster_Actual);
7888a6ae 9135
f937473f
RD
9136 if Nkind (Parent (Object_Decl)) = N_Extended_Return_Statement
9137 and then Has_Task (Result_Subt)
9138 then
7888a6ae
GD
9139 -- Here we're passing along the master that was passed in to this
9140 -- function.
9141
f937473f
RD
9142 Add_Task_Actuals_To_Build_In_Place_Call
9143 (Func_Call, Function_Id,
9144 Master_Actual =>
e4494292 9145 New_Occurrence_Of (Build_In_Place_Formal
af89615f 9146 (Enclosing_Func, BIP_Task_Master), Loc));
7888a6ae 9147
f937473f
RD
9148 else
9149 Add_Task_Actuals_To_Build_In_Place_Call
9150 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
9151 end if;
7888a6ae 9152
02822a92 9153 Add_Access_Actual_To_Build_In_Place_Call
f937473f 9154 (Func_Call, Function_Id, Caller_Object, Is_Access => Pass_Caller_Acc);
02822a92 9155
02822a92 9156 -- Finally, create an access object initialized to a reference to the
03e1048e
AC
9157 -- function call. We know this access value cannot be null, so mark the
9158 -- entity accordingly to suppress the access check.
02822a92 9159
f65c67d3
TQ
9160 Def_Id := Make_Temporary (Loc, 'R', Func_Call);
9161 Set_Etype (Def_Id, Ptr_Typ);
74cab21a 9162 Set_Is_Known_Non_Null (Def_Id);
c12beea0 9163
8c7ff9a0 9164 Res_Decl :=
02822a92
RD
9165 Make_Object_Declaration (Loc,
9166 Defining_Identifier => Def_Id,
f65c67d3
TQ
9167 Constant_Present => True,
9168 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
9169 Expression =>
9170 Make_Reference (Loc, Relocate_Node (Func_Call)));
9171
8c7ff9a0 9172 Insert_After_And_Analyze (Ptr_Typ_Decl, Res_Decl);
02822a92 9173
1bb6e262
AC
9174 -- If the result subtype of the called function is constrained and
9175 -- is not itself the return expression of an enclosing BIP function,
9176 -- then mark the object as having no initialization.
9177
9178 if Is_Constrained (Underlying_Type (Result_Subt))
9179 and then not Is_Return_Object (Defining_Identifier (Object_Decl))
9180 then
8c7ff9a0
AC
9181 -- The related object declaration is encased in a transient block
9182 -- because the build-in-place function call contains at least one
9183 -- nested function call that produces a controlled transient
9184 -- temporary:
9185
9186 -- Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
9187
9188 -- Since the build-in-place expansion decouples the call from the
9189 -- object declaration, the finalization machinery lacks the context
9190 -- which prompted the generation of the transient block. To resolve
9191 -- this scenario, store the build-in-place call.
9192
9193 if Scope_Is_Transient
9194 and then Node_To_Be_Wrapped = Object_Decl
9195 then
9196 Set_BIP_Initialization_Call (Obj_Def_Id, Res_Decl);
9197 end if;
9198
f937473f
RD
9199 Set_Expression (Object_Decl, Empty);
9200 Set_No_Initialization (Object_Decl);
9201
1bb6e262
AC
9202 -- In case of an unconstrained result subtype, or if the call is the
9203 -- return expression of an enclosing BIP function, rewrite the object
f937473f
RD
9204 -- declaration as an object renaming where the renamed object is a
9205 -- dereference of <function_Call>'reference:
9206 --
9207 -- Obj : Subt renames <function_call>'Ref.all;
9208
9209 else
9210 Call_Deref :=
9211 Make_Explicit_Dereference (Loc,
e4494292 9212 Prefix => New_Occurrence_Of (Def_Id, Loc));
f937473f 9213
f00c5f52 9214 Loc := Sloc (Object_Decl);
f937473f
RD
9215 Rewrite (Object_Decl,
9216 Make_Object_Renaming_Declaration (Loc,
c12beea0 9217 Defining_Identifier => Make_Temporary (Loc, 'D'),
f937473f
RD
9218 Access_Definition => Empty,
9219 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
9220 Name => Call_Deref));
9221
9222 Set_Renamed_Object (Defining_Identifier (Object_Decl), Call_Deref);
9223
9224 Analyze (Object_Decl);
9225
9226 -- Replace the internal identifier of the renaming declaration's
9227 -- entity with identifier of the original object entity. We also have
9228 -- to exchange the entities containing their defining identifiers to
9229 -- ensure the correct replacement of the object declaration by the
9230 -- object renaming declaration to avoid homograph conflicts (since
9231 -- the object declaration's defining identifier was already entered
67ce0d7e
RD
9232 -- in current scope). The Next_Entity links of the two entities also
9233 -- have to be swapped since the entities are part of the return
9234 -- scope's entity list and the list structure would otherwise be
7e8ed0a6 9235 -- corrupted. Finally, the homonym chain must be preserved as well.
67ce0d7e
RD
9236
9237 declare
9238 Renaming_Def_Id : constant Entity_Id :=
9239 Defining_Identifier (Object_Decl);
9240 Next_Entity_Temp : constant Entity_Id :=
9241 Next_Entity (Renaming_Def_Id);
9242 begin
9243 Set_Chars (Renaming_Def_Id, Chars (Obj_Def_Id));
9244
9245 -- Swap next entity links in preparation for exchanging entities
f937473f 9246
67ce0d7e
RD
9247 Set_Next_Entity (Renaming_Def_Id, Next_Entity (Obj_Def_Id));
9248 Set_Next_Entity (Obj_Def_Id, Next_Entity_Temp);
7e8ed0a6 9249 Set_Homonym (Renaming_Def_Id, Homonym (Obj_Def_Id));
67ce0d7e
RD
9250
9251 Exchange_Entities (Renaming_Def_Id, Obj_Def_Id);
f00c5f52
AC
9252
9253 -- Preserve source indication of original declaration, so that
9254 -- xref information is properly generated for the right entity.
9255
9256 Preserve_Comes_From_Source
9257 (Object_Decl, Original_Node (Object_Decl));
e4982b64
AC
9258
9259 Preserve_Comes_From_Source
9260 (Obj_Def_Id, Original_Node (Object_Decl));
9261
f00c5f52 9262 Set_Comes_From_Source (Renaming_Def_Id, False);
67ce0d7e 9263 end;
f937473f 9264 end if;
02822a92
RD
9265
9266 -- If the object entity has a class-wide Etype, then we need to change
9267 -- it to the result subtype of the function call, because otherwise the
53b308f6
AC
9268 -- object will be class-wide without an explicit initialization and
9269 -- won't be allocated properly by the back end. It seems unclean to make
9270 -- such a revision to the type at this point, and we should try to
9271 -- improve this treatment when build-in-place functions with class-wide
9272 -- results are implemented. ???
02822a92
RD
9273
9274 if Is_Class_Wide_Type (Etype (Defining_Identifier (Object_Decl))) then
9275 Set_Etype (Defining_Identifier (Object_Decl), Result_Subt);
9276 end if;
9277 end Make_Build_In_Place_Call_In_Object_Declaration;
9278
3bfb3c03
JM
9279 --------------------------------------------
9280 -- Make_CPP_Constructor_Call_In_Allocator --
9281 --------------------------------------------
9282
9283 procedure Make_CPP_Constructor_Call_In_Allocator
9284 (Allocator : Node_Id;
9285 Function_Call : Node_Id)
9286 is
9287 Loc : constant Source_Ptr := Sloc (Function_Call);
9288 Acc_Type : constant Entity_Id := Etype (Allocator);
9289 Function_Id : constant Entity_Id := Entity (Name (Function_Call));
9290 Result_Subt : constant Entity_Id := Available_View (Etype (Function_Id));
9291
9292 New_Allocator : Node_Id;
9293 Return_Obj_Access : Entity_Id;
9294 Tmp_Obj : Node_Id;
9295
9296 begin
9297 pragma Assert (Nkind (Allocator) = N_Allocator
8c7ff9a0 9298 and then Nkind (Function_Call) = N_Function_Call);
3bfb3c03 9299 pragma Assert (Convention (Function_Id) = Convention_CPP
8c7ff9a0 9300 and then Is_Constructor (Function_Id));
3bfb3c03
JM
9301 pragma Assert (Is_Constrained (Underlying_Type (Result_Subt)));
9302
9303 -- Replace the initialized allocator of form "new T'(Func (...))" with
9304 -- an uninitialized allocator of form "new T", where T is the result
9305 -- subtype of the called function. The call to the function is handled
9306 -- separately further below.
9307
9308 New_Allocator :=
9309 Make_Allocator (Loc,
e4494292 9310 Expression => New_Occurrence_Of (Result_Subt, Loc));
3bfb3c03
JM
9311 Set_No_Initialization (New_Allocator);
9312
9313 -- Copy attributes to new allocator. Note that the new allocator
9314 -- logically comes from source if the original one did, so copy the
9315 -- relevant flag. This ensures proper treatment of the restriction
9316 -- No_Implicit_Heap_Allocations in this case.
9317
9318 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
9319 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
9320 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
9321
9322 Rewrite (Allocator, New_Allocator);
9323
9324 -- Create a new access object and initialize it to the result of the
9325 -- new uninitialized allocator. Note: we do not use Allocator as the
9326 -- Related_Node of Return_Obj_Access in call to Make_Temporary below
9327 -- as this would create a sort of infinite "recursion".
9328
9329 Return_Obj_Access := Make_Temporary (Loc, 'R');
9330 Set_Etype (Return_Obj_Access, Acc_Type);
9331
9332 -- Generate:
9333 -- Rnnn : constant ptr_T := new (T);
9334 -- Init (Rnn.all,...);
9335
9336 Tmp_Obj :=
9337 Make_Object_Declaration (Loc,
9338 Defining_Identifier => Return_Obj_Access,
9339 Constant_Present => True,
e4494292 9340 Object_Definition => New_Occurrence_Of (Acc_Type, Loc),
3bfb3c03
JM
9341 Expression => Relocate_Node (Allocator));
9342 Insert_Action (Allocator, Tmp_Obj);
9343
9344 Insert_List_After_And_Analyze (Tmp_Obj,
9345 Build_Initialization_Call (Loc,
9346 Id_Ref =>
9347 Make_Explicit_Dereference (Loc,
e4494292 9348 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)),
3bfb3c03
JM
9349 Typ => Etype (Function_Id),
9350 Constructor_Ref => Function_Call));
9351
9352 -- Finally, replace the allocator node with a reference to the result of
9353 -- the function call itself (which will effectively be an access to the
9354 -- object created by the allocator).
9355
e4494292 9356 Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
3bfb3c03
JM
9357
9358 -- Ada 2005 (AI-251): If the type of the allocator is an interface then
9359 -- generate an implicit conversion to force displacement of the "this"
9360 -- pointer.
9361
9362 if Is_Interface (Designated_Type (Acc_Type)) then
9363 Rewrite (Allocator, Convert_To (Acc_Type, Relocate_Node (Allocator)));
9364 end if;
9365
9366 Analyze_And_Resolve (Allocator, Acc_Type);
9367 end Make_CPP_Constructor_Call_In_Allocator;
9368
d3f70b35
AC
9369 -----------------------------------
9370 -- Needs_BIP_Finalization_Master --
9371 -----------------------------------
8fb68c56 9372
d3f70b35
AC
9373 function Needs_BIP_Finalization_Master
9374 (Func_Id : Entity_Id) return Boolean
9375 is
df3e68b1
HK
9376 pragma Assert (Is_Build_In_Place_Function (Func_Id));
9377 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
048e5cef 9378 begin
df3e68b1
HK
9379 return
9380 not Restriction_Active (No_Finalization)
9381 and then Needs_Finalization (Func_Typ);
d3f70b35 9382 end Needs_BIP_Finalization_Master;
048e5cef 9383
1bb6e262
AC
9384 --------------------------
9385 -- Needs_BIP_Alloc_Form --
9386 --------------------------
9387
9388 function Needs_BIP_Alloc_Form (Func_Id : Entity_Id) return Boolean is
9389 pragma Assert (Is_Build_In_Place_Function (Func_Id));
9390 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
1bb6e262
AC
9391 begin
9392 return not Is_Constrained (Func_Typ) or else Is_Tagged_Type (Func_Typ);
9393 end Needs_BIP_Alloc_Form;
9394
63585f75
SB
9395 --------------------------------------
9396 -- Needs_Result_Accessibility_Level --
9397 --------------------------------------
9398
9399 function Needs_Result_Accessibility_Level
9400 (Func_Id : Entity_Id) return Boolean
9401 is
9402 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9403
9404 function Has_Unconstrained_Access_Discriminant_Component
ebf494ec
RD
9405 (Comp_Typ : Entity_Id) return Boolean;
9406 -- Returns True if any component of the type has an unconstrained access
9407 -- discriminant.
63585f75
SB
9408
9409 -----------------------------------------------------
9410 -- Has_Unconstrained_Access_Discriminant_Component --
9411 -----------------------------------------------------
9412
9413 function Has_Unconstrained_Access_Discriminant_Component
9414 (Comp_Typ : Entity_Id) return Boolean
9415 is
9416 begin
9417 if not Is_Limited_Type (Comp_Typ) then
9418 return False;
ebf494ec 9419
63585f75
SB
9420 -- Only limited types can have access discriminants with
9421 -- defaults.
9422
9423 elsif Has_Unconstrained_Access_Discriminants (Comp_Typ) then
9424 return True;
9425
9426 elsif Is_Array_Type (Comp_Typ) then
9427 return Has_Unconstrained_Access_Discriminant_Component
9428 (Underlying_Type (Component_Type (Comp_Typ)));
9429
9430 elsif Is_Record_Type (Comp_Typ) then
9431 declare
ebf494ec
RD
9432 Comp : Entity_Id;
9433
63585f75 9434 begin
ebf494ec 9435 Comp := First_Component (Comp_Typ);
63585f75
SB
9436 while Present (Comp) loop
9437 if Has_Unconstrained_Access_Discriminant_Component
9438 (Underlying_Type (Etype (Comp)))
9439 then
9440 return True;
9441 end if;
9442
9443 Next_Component (Comp);
9444 end loop;
9445 end;
9446 end if;
9447
9448 return False;
9449 end Has_Unconstrained_Access_Discriminant_Component;
9450
57a3fca9
AC
9451 Feature_Disabled : constant Boolean := True;
9452 -- Temporary
9453
63585f75
SB
9454 -- Start of processing for Needs_Result_Accessibility_Level
9455
9456 begin
ebf494ec
RD
9457 -- False if completion unavailable (how does this happen???)
9458
9459 if not Present (Func_Typ) then
9460 return False;
63585f75 9461
57a3fca9
AC
9462 elsif Feature_Disabled then
9463 return False;
9464
ebf494ec 9465 -- False if not a function, also handle enum-lit renames case
63585f75 9466
ebf494ec
RD
9467 elsif Func_Typ = Standard_Void_Type
9468 or else Is_Scalar_Type (Func_Typ)
63585f75
SB
9469 then
9470 return False;
63585f75 9471
ebf494ec 9472 -- Handle a corner case, a cross-dialect subp renaming. For example,
30168043
AC
9473 -- an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
9474 -- an Ada 2005 (or earlier) unit references predefined run-time units.
ebf494ec
RD
9475
9476 elsif Present (Alias (Func_Id)) then
9477
63585f75
SB
9478 -- Unimplemented: a cross-dialect subp renaming which does not set
9479 -- the Alias attribute (e.g., a rename of a dereference of an access
54bf19e4 9480 -- to subprogram value). ???
63585f75
SB
9481
9482 return Present (Extra_Accessibility_Of_Result (Alias (Func_Id)));
63585f75 9483
ebf494ec
RD
9484 -- Remaining cases require Ada 2012 mode
9485
9486 elsif Ada_Version < Ada_2012 then
63585f75 9487 return False;
63585f75 9488
ebf494ec 9489 elsif Ekind (Func_Typ) = E_Anonymous_Access_Type
63585f75
SB
9490 or else Is_Tagged_Type (Func_Typ)
9491 then
9492 -- In the case of, say, a null tagged record result type, the need
9493 -- for this extra parameter might not be obvious. This function
9494 -- returns True for all tagged types for compatibility reasons.
9495 -- A function with, say, a tagged null controlling result type might
9496 -- be overridden by a primitive of an extension having an access
9497 -- discriminant and the overrider and overridden must have compatible
9498 -- calling conventions (including implicitly declared parameters).
9499 -- Similarly, values of one access-to-subprogram type might designate
9500 -- both a primitive subprogram of a given type and a function
9501 -- which is, for example, not a primitive subprogram of any type.
9502 -- Again, this requires calling convention compatibility.
9503 -- It might be possible to solve these issues by introducing
9504 -- wrappers, but that is not the approach that was chosen.
9505
9506 return True;
63585f75 9507
ebf494ec 9508 elsif Has_Unconstrained_Access_Discriminants (Func_Typ) then
63585f75 9509 return True;
63585f75 9510
ebf494ec 9511 elsif Has_Unconstrained_Access_Discriminant_Component (Func_Typ) then
63585f75 9512 return True;
63585f75 9513
ebf494ec
RD
9514 -- False for all other cases
9515
9516 else
9517 return False;
9518 end if;
63585f75
SB
9519 end Needs_Result_Accessibility_Level;
9520
70482933 9521end Exp_Ch6;
This page took 5.161932 seconds and 5 git commands to generate.