]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/exp_ch6.adb
[multiple changes]
[gcc.git] / gcc / ada / exp_ch6.adb
CommitLineData
01aef5ad 1------------------------------------------------------------------------------
70482933
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- E X P _ C H 6 --
6-- --
7-- B o d y --
8-- --
e7ba564f 9-- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
70482933
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Errout; use Errout;
31with Elists; use Elists;
4a1bfefb 32with Exp_Aggr; use Exp_Aggr;
f937473f 33with Exp_Atag; use Exp_Atag;
70482933
RK
34with Exp_Ch2; use Exp_Ch2;
35with Exp_Ch3; use Exp_Ch3;
36with Exp_Ch7; use Exp_Ch7;
37with Exp_Ch9; use Exp_Ch9;
70482933
RK
38with Exp_Dbug; use Exp_Dbug;
39with Exp_Disp; use Exp_Disp;
40with Exp_Dist; use Exp_Dist;
41with Exp_Intr; use Exp_Intr;
42with Exp_Pakd; use Exp_Pakd;
a767d69b 43with Exp_Prag; use Exp_Prag;
70482933
RK
44with Exp_Tss; use Exp_Tss;
45with Exp_Util; use Exp_Util;
fbf5a39b 46with Fname; use Fname;
70482933 47with Freeze; use Freeze;
70482933
RK
48with Inline; use Inline;
49with Lib; use Lib;
7888a6ae 50with Namet; use Namet;
70482933
RK
51with Nlists; use Nlists;
52with Nmake; use Nmake;
53with Opt; use Opt;
54with Restrict; use Restrict;
6e937c1c 55with Rident; use Rident;
70482933
RK
56with Rtsfind; use Rtsfind;
57with Sem; use Sem;
a4100e55 58with Sem_Aux; use Sem_Aux;
70482933
RK
59with Sem_Ch6; use Sem_Ch6;
60with Sem_Ch8; use Sem_Ch8;
70482933 61with Sem_Ch13; use Sem_Ch13;
dec6faf1 62with Sem_Dim; use Sem_Dim;
70482933
RK
63with Sem_Disp; use Sem_Disp;
64with Sem_Dist; use Sem_Dist;
dec6faf1 65with Sem_Eval; use Sem_Eval;
758c442c 66with Sem_Mech; use Sem_Mech;
70482933 67with Sem_Res; use Sem_Res;
d06b3b1d 68with Sem_SCIL; use Sem_SCIL;
70482933
RK
69with Sem_Util; use Sem_Util;
70with Sinfo; use Sinfo;
71with Snames; use Snames;
72with Stand; use Stand;
8b404dac 73with Stringt; use Stringt;
2b3d67a5 74with Targparm; use Targparm;
70482933
RK
75with Tbuild; use Tbuild;
76with Uintp; use Uintp;
77with Validsw; use Validsw;
78
79package body Exp_Ch6 is
80
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
84
02822a92
RD
85 procedure Add_Access_Actual_To_Build_In_Place_Call
86 (Function_Call : Node_Id;
87 Function_Id : Entity_Id;
f937473f
RD
88 Return_Object : Node_Id;
89 Is_Access : Boolean := False);
02822a92
RD
90 -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
91 -- object name given by Return_Object and add the attribute to the end of
92 -- the actual parameter list associated with the build-in-place function
f937473f
RD
93 -- call denoted by Function_Call. However, if Is_Access is True, then
94 -- Return_Object is already an access expression, in which case it's passed
95 -- along directly to the build-in-place function. Finally, if Return_Object
96 -- is empty, then pass a null literal as the actual.
97
200b7162 98 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
f937473f
RD
99 (Function_Call : Node_Id;
100 Function_Id : Entity_Id;
101 Alloc_Form : BIP_Allocation_Form := Unspecified;
200b7162
BD
102 Alloc_Form_Exp : Node_Id := Empty;
103 Pool_Actual : Node_Id := Make_Null (No_Location));
104 -- Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
105 -- function call that returns a caller-unknown-size result (BIP_Alloc_Form
106 -- and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
107 -- otherwise pass a literal corresponding to the Alloc_Form parameter
108 -- (which must not be Unspecified in that case). Pool_Actual is the
109 -- parameter to pass to BIP_Storage_Pool.
f937473f 110
d3f70b35 111 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
2c17ca0a
AC
112 (Func_Call : Node_Id;
113 Func_Id : Entity_Id;
114 Ptr_Typ : Entity_Id := Empty;
115 Master_Exp : Node_Id := Empty);
df3e68b1
HK
116 -- Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
117 -- finalization actions, add an actual parameter which is a pointer to the
2c17ca0a
AC
118 -- finalization master of the caller. If Master_Exp is not Empty, then that
119 -- will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
120 -- will result in an automatic "null" value for the actual.
f937473f
RD
121
122 procedure Add_Task_Actuals_To_Build_In_Place_Call
123 (Function_Call : Node_Id;
124 Function_Id : Entity_Id;
1399d355
AC
125 Master_Actual : Node_Id;
126 Chain : Node_Id := Empty);
f937473f
RD
127 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
128 -- contains tasks, add two actual parameters: the master, and a pointer to
129 -- the caller's activation chain. Master_Actual is the actual parameter
130 -- expression to pass for the master. In most cases, this is the current
131 -- master (_master). The two exceptions are: If the function call is the
132 -- initialization expression for an allocator, we pass the master of the
6dfc5592 133 -- access type. If the function call is the initialization expression for a
1399d355
AC
134 -- return object, we pass along the master passed in by the caller. In most
135 -- contexts, the activation chain to pass is the local one, which is
136 -- indicated by No (Chain). However, in an allocator, the caller passes in
137 -- the activation Chain. Note: Master_Actual can be Empty, but only if
138 -- there are no tasks.
02822a92 139
70482933
RK
140 procedure Check_Overriding_Operation (Subp : Entity_Id);
141 -- Subp is a dispatching operation. Check whether it may override an
142 -- inherited private operation, in which case its DT entry is that of
143 -- the hidden operation, not the one it may have received earlier.
144 -- This must be done before emitting the code to set the corresponding
145 -- DT to the address of the subprogram. The actual placement of Subp in
146 -- the proper place in the list of primitive operations is done in
147 -- Declare_Inherited_Private_Subprograms, which also has to deal with
148 -- implicit operations. This duplication is unavoidable for now???
149
150 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
151 -- This procedure is called only if the subprogram body N, whose spec
152 -- has the given entity Spec, contains a parameterless recursive call.
153 -- It attempts to generate runtime code to detect if this a case of
154 -- infinite recursion.
155 --
156 -- The body is scanned to determine dependencies. If the only external
157 -- dependencies are on a small set of scalar variables, then the values
158 -- of these variables are captured on entry to the subprogram, and if
159 -- the values are not changed for the call, we know immediately that
160 -- we have an infinite recursion.
161
da574a86
AC
162 procedure Expand_Actuals (N : in out Node_Id; Subp : Entity_Id);
163 -- For each actual of an in-out or out parameter which is a numeric
164 -- (view) conversion of the form T (A), where A denotes a variable,
165 -- we insert the declaration:
166 --
167 -- Temp : T[ := T (A)];
168 --
169 -- prior to the call. Then we replace the actual with a reference to Temp,
170 -- and append the assignment:
171 --
172 -- A := TypeA (Temp);
173 --
174 -- after the call. Here TypeA is the actual type of variable A. For out
175 -- parameters, the initial declaration has no expression. If A is not an
176 -- entity name, we generate instead:
177 --
178 -- Var : TypeA renames A;
179 -- Temp : T := Var; -- omitting expression for out parameter.
180 -- ...
181 -- Var := TypeA (Temp);
182 --
183 -- For other in-out parameters, we emit the required constraint checks
184 -- before and/or after the call.
185 --
186 -- For all parameter modes, actuals that denote components and slices of
187 -- packed arrays are expanded into suitable temporaries.
188 --
189 -- For non-scalar objects that are possibly unaligned, add call by copy
190 -- code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
191 --
5f6fb720
AC
192 -- For OUT and IN OUT parameters, add predicate checks after the call
193 -- based on the predicates of the actual type.
194 --
da574a86
AC
195 -- The parameter N is IN OUT because in some cases, the expansion code
196 -- rewrites the call as an expression actions with the call inside. In
197 -- this case N is reset to point to the inside call so that the caller
198 -- can continue processing of this call.
199
df3e68b1
HK
200 procedure Expand_Ctrl_Function_Call (N : Node_Id);
201 -- N is a function call which returns a controlled object. Transform the
202 -- call into a temporary which retrieves the returned object from the
203 -- secondary stack using 'reference.
204
2b3d67a5
AC
205 procedure Expand_Non_Function_Return (N : Node_Id);
206 -- Called by Expand_N_Simple_Return_Statement in case we're returning from
207 -- a procedure body, entry body, accept statement, or extended return
aeae67ed 208 -- statement. Note that all non-function returns are simple return
2b3d67a5
AC
209 -- statements.
210
70482933
RK
211 function Expand_Protected_Object_Reference
212 (N : Node_Id;
02822a92 213 Scop : Entity_Id) return Node_Id;
70482933
RK
214
215 procedure Expand_Protected_Subprogram_Call
216 (N : Node_Id;
217 Subp : Entity_Id;
218 Scop : Entity_Id);
219 -- A call to a protected subprogram within the protected object may appear
220 -- as a regular call. The list of actuals must be expanded to contain a
221 -- reference to the object itself, and the call becomes a call to the
222 -- corresponding protected subprogram.
223
63585f75
SB
224 function Has_Unconstrained_Access_Discriminants
225 (Subtyp : Entity_Id) return Boolean;
226 -- Returns True if the given subtype is unconstrained and has one
227 -- or more access discriminants.
228
2b3d67a5
AC
229 procedure Expand_Simple_Function_Return (N : Node_Id);
230 -- Expand simple return from function. In the case where we are returning
231 -- from a function body this is called by Expand_N_Simple_Return_Statement.
232
02822a92
RD
233 ----------------------------------------------
234 -- Add_Access_Actual_To_Build_In_Place_Call --
235 ----------------------------------------------
236
237 procedure Add_Access_Actual_To_Build_In_Place_Call
238 (Function_Call : Node_Id;
239 Function_Id : Entity_Id;
f937473f
RD
240 Return_Object : Node_Id;
241 Is_Access : Boolean := False)
02822a92
RD
242 is
243 Loc : constant Source_Ptr := Sloc (Function_Call);
244 Obj_Address : Node_Id;
f937473f 245 Obj_Acc_Formal : Entity_Id;
02822a92
RD
246
247 begin
f937473f 248 -- Locate the implicit access parameter in the called function
02822a92 249
f937473f 250 Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
02822a92 251
f937473f
RD
252 -- If no return object is provided, then pass null
253
254 if not Present (Return_Object) then
255 Obj_Address := Make_Null (Loc);
7888a6ae 256 Set_Parent (Obj_Address, Function_Call);
02822a92 257
f937473f
RD
258 -- If Return_Object is already an expression of an access type, then use
259 -- it directly, since it must be an access value denoting the return
260 -- object, and couldn't possibly be the return object itself.
261
262 elsif Is_Access then
263 Obj_Address := Return_Object;
7888a6ae 264 Set_Parent (Obj_Address, Function_Call);
02822a92
RD
265
266 -- Apply Unrestricted_Access to caller's return object
267
f937473f
RD
268 else
269 Obj_Address :=
270 Make_Attribute_Reference (Loc,
271 Prefix => Return_Object,
272 Attribute_Name => Name_Unrestricted_Access);
7888a6ae
GD
273
274 Set_Parent (Return_Object, Obj_Address);
275 Set_Parent (Obj_Address, Function_Call);
f937473f 276 end if;
02822a92
RD
277
278 Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
279
280 -- Build the parameter association for the new actual and add it to the
281 -- end of the function's actuals.
282
f937473f
RD
283 Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
284 end Add_Access_Actual_To_Build_In_Place_Call;
285
3e7302c3 286 ------------------------------------------------------
200b7162 287 -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
3e7302c3 288 ------------------------------------------------------
f937473f 289
200b7162 290 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
f937473f
RD
291 (Function_Call : Node_Id;
292 Function_Id : Entity_Id;
293 Alloc_Form : BIP_Allocation_Form := Unspecified;
200b7162
BD
294 Alloc_Form_Exp : Node_Id := Empty;
295 Pool_Actual : Node_Id := Make_Null (No_Location))
f937473f
RD
296 is
297 Loc : constant Source_Ptr := Sloc (Function_Call);
298 Alloc_Form_Actual : Node_Id;
299 Alloc_Form_Formal : Node_Id;
200b7162 300 Pool_Formal : Node_Id;
f937473f
RD
301
302 begin
7888a6ae
GD
303 -- The allocation form generally doesn't need to be passed in the case
304 -- of a constrained result subtype, since normally the caller performs
305 -- the allocation in that case. However this formal is still needed in
306 -- the case where the function has a tagged result, because generally
307 -- such functions can be called in a dispatching context and such calls
308 -- must be handled like calls to class-wide functions.
309
310 if Is_Constrained (Underlying_Type (Etype (Function_Id)))
311 and then not Is_Tagged_Type (Underlying_Type (Etype (Function_Id)))
312 then
313 return;
314 end if;
315
f937473f
RD
316 -- Locate the implicit allocation form parameter in the called function.
317 -- Maybe it would be better for each implicit formal of a build-in-place
318 -- function to have a flag or a Uint attribute to identify it. ???
319
320 Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
321
322 if Present (Alloc_Form_Exp) then
323 pragma Assert (Alloc_Form = Unspecified);
324
325 Alloc_Form_Actual := Alloc_Form_Exp;
326
327 else
328 pragma Assert (Alloc_Form /= Unspecified);
329
330 Alloc_Form_Actual :=
331 Make_Integer_Literal (Loc,
332 Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
333 end if;
334
335 Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
336
337 -- Build the parameter association for the new actual and add it to the
338 -- end of the function's actuals.
339
340 Add_Extra_Actual_To_Call
341 (Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
200b7162 342
ea10ca9c 343 -- Pass the Storage_Pool parameter. This parameter is omitted on
3e452820 344 -- .NET/JVM/ZFP as those targets do not support pools.
200b7162 345
ea10ca9c
AC
346 if VM_Target = No_VM
347 and then RTE_Available (RE_Root_Storage_Pool_Ptr)
3e452820 348 then
8417f4b2
AC
349 Pool_Formal := Build_In_Place_Formal (Function_Id, BIP_Storage_Pool);
350 Analyze_And_Resolve (Pool_Actual, Etype (Pool_Formal));
351 Add_Extra_Actual_To_Call
352 (Function_Call, Pool_Formal, Pool_Actual);
353 end if;
200b7162 354 end Add_Unconstrained_Actuals_To_Build_In_Place_Call;
f937473f 355
d3f70b35
AC
356 -----------------------------------------------------------
357 -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
358 -----------------------------------------------------------
df3e68b1 359
d3f70b35 360 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
2c17ca0a
AC
361 (Func_Call : Node_Id;
362 Func_Id : Entity_Id;
363 Ptr_Typ : Entity_Id := Empty;
364 Master_Exp : Node_Id := Empty)
df3e68b1
HK
365 is
366 begin
d3f70b35 367 if not Needs_BIP_Finalization_Master (Func_Id) then
df3e68b1
HK
368 return;
369 end if;
370
371 declare
372 Formal : constant Entity_Id :=
d3f70b35 373 Build_In_Place_Formal (Func_Id, BIP_Finalization_Master);
df3e68b1
HK
374 Loc : constant Source_Ptr := Sloc (Func_Call);
375
376 Actual : Node_Id;
377 Desig_Typ : Entity_Id;
378
379 begin
2c17ca0a
AC
380 -- If there is a finalization master actual, such as the implicit
381 -- finalization master of an enclosing build-in-place function,
382 -- then this must be added as an extra actual of the call.
383
384 if Present (Master_Exp) then
385 Actual := Master_Exp;
386
d3f70b35 387 -- Case where the context does not require an actual master
df3e68b1 388
2c17ca0a 389 elsif No (Ptr_Typ) then
df3e68b1
HK
390 Actual := Make_Null (Loc);
391
392 else
393 Desig_Typ := Directly_Designated_Type (Ptr_Typ);
394
395 -- Check for a library-level access type whose designated type has
d3f70b35 396 -- supressed finalization. Such an access types lack a master.
df3e68b1 397 -- Pass a null actual to the callee in order to signal a missing
d3f70b35 398 -- master.
df3e68b1
HK
399
400 if Is_Library_Level_Entity (Ptr_Typ)
401 and then Finalize_Storage_Only (Desig_Typ)
402 then
403 Actual := Make_Null (Loc);
404
405 -- Types in need of finalization actions
406
407 elsif Needs_Finalization (Desig_Typ) then
408
d3f70b35
AC
409 -- The general mechanism of creating finalization masters for
410 -- anonymous access types is disabled by default, otherwise
411 -- finalization masters will pop all over the place. Such types
412 -- use context-specific masters.
df3e68b1
HK
413
414 if Ekind (Ptr_Typ) = E_Anonymous_Access_Type
d3f70b35 415 and then No (Finalization_Master (Ptr_Typ))
df3e68b1 416 then
d3f70b35 417 Build_Finalization_Master
df3e68b1
HK
418 (Typ => Ptr_Typ,
419 Ins_Node => Associated_Node_For_Itype (Ptr_Typ),
420 Encl_Scope => Scope (Ptr_Typ));
421 end if;
422
d3f70b35 423 -- Access-to-controlled types should always have a master
df3e68b1 424
d3f70b35 425 pragma Assert (Present (Finalization_Master (Ptr_Typ)));
df3e68b1
HK
426
427 Actual :=
428 Make_Attribute_Reference (Loc,
429 Prefix =>
e4494292 430 New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
df3e68b1
HK
431 Attribute_Name => Name_Unrestricted_Access);
432
433 -- Tagged types
434
435 else
436 Actual := Make_Null (Loc);
437 end if;
438 end if;
439
440 Analyze_And_Resolve (Actual, Etype (Formal));
441
442 -- Build the parameter association for the new actual and add it to
443 -- the end of the function's actuals.
444
445 Add_Extra_Actual_To_Call (Func_Call, Formal, Actual);
446 end;
d3f70b35 447 end Add_Finalization_Master_Actual_To_Build_In_Place_Call;
df3e68b1 448
f937473f
RD
449 ------------------------------
450 -- Add_Extra_Actual_To_Call --
451 ------------------------------
452
453 procedure Add_Extra_Actual_To_Call
454 (Subprogram_Call : Node_Id;
455 Extra_Formal : Entity_Id;
456 Extra_Actual : Node_Id)
457 is
458 Loc : constant Source_Ptr := Sloc (Subprogram_Call);
459 Param_Assoc : Node_Id;
460
461 begin
02822a92
RD
462 Param_Assoc :=
463 Make_Parameter_Association (Loc,
f937473f
RD
464 Selector_Name => New_Occurrence_Of (Extra_Formal, Loc),
465 Explicit_Actual_Parameter => Extra_Actual);
02822a92 466
f937473f
RD
467 Set_Parent (Param_Assoc, Subprogram_Call);
468 Set_Parent (Extra_Actual, Param_Assoc);
02822a92 469
f937473f
RD
470 if Present (Parameter_Associations (Subprogram_Call)) then
471 if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
02822a92
RD
472 N_Parameter_Association
473 then
f937473f
RD
474
475 -- Find last named actual, and append
476
477 declare
478 L : Node_Id;
479 begin
480 L := First_Actual (Subprogram_Call);
481 while Present (L) loop
482 if No (Next_Actual (L)) then
483 Set_Next_Named_Actual (Parent (L), Extra_Actual);
484 exit;
485 end if;
486 Next_Actual (L);
487 end loop;
488 end;
489
02822a92 490 else
f937473f 491 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
02822a92
RD
492 end if;
493
f937473f 494 Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
02822a92
RD
495
496 else
f937473f
RD
497 Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
498 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
02822a92 499 end if;
f937473f
RD
500 end Add_Extra_Actual_To_Call;
501
f937473f
RD
502 ---------------------------------------------
503 -- Add_Task_Actuals_To_Build_In_Place_Call --
504 ---------------------------------------------
505
506 procedure Add_Task_Actuals_To_Build_In_Place_Call
507 (Function_Call : Node_Id;
508 Function_Id : Entity_Id;
1399d355
AC
509 Master_Actual : Node_Id;
510 Chain : Node_Id := Empty)
f937473f 511 is
af89615f
AC
512 Loc : constant Source_Ptr := Sloc (Function_Call);
513 Result_Subt : constant Entity_Id :=
514 Available_View (Etype (Function_Id));
515 Actual : Node_Id;
516 Chain_Actual : Node_Id;
517 Chain_Formal : Node_Id;
518 Master_Formal : Node_Id;
6dfc5592 519
f937473f
RD
520 begin
521 -- No such extra parameters are needed if there are no tasks
522
1a36a0cd 523 if not Has_Task (Result_Subt) then
f937473f
RD
524 return;
525 end if;
526
af89615f
AC
527 Actual := Master_Actual;
528
44bf8eb0
AC
529 -- Use a dummy _master actual in case of No_Task_Hierarchy
530
531 if Restriction_Active (No_Task_Hierarchy) then
532 Actual := New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc);
94bbf008
AC
533
534 -- In the case where we use the master associated with an access type,
535 -- the actual is an entity and requires an explicit reference.
536
537 elsif Nkind (Actual) = N_Defining_Identifier then
e4494292 538 Actual := New_Occurrence_Of (Actual, Loc);
44bf8eb0
AC
539 end if;
540
af89615f 541 -- Locate the implicit master parameter in the called function
f937473f 542
af89615f
AC
543 Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Task_Master);
544 Analyze_And_Resolve (Actual, Etype (Master_Formal));
f937473f 545
af89615f
AC
546 -- Build the parameter association for the new actual and add it to the
547 -- end of the function's actuals.
f937473f 548
af89615f 549 Add_Extra_Actual_To_Call (Function_Call, Master_Formal, Actual);
75a64833 550
af89615f 551 -- Locate the implicit activation chain parameter in the called function
f937473f 552
af89615f
AC
553 Chain_Formal :=
554 Build_In_Place_Formal (Function_Id, BIP_Activation_Chain);
f937473f 555
af89615f 556 -- Create the actual which is a pointer to the current activation chain
f937473f 557
1399d355
AC
558 if No (Chain) then
559 Chain_Actual :=
560 Make_Attribute_Reference (Loc,
561 Prefix => Make_Identifier (Loc, Name_uChain),
562 Attribute_Name => Name_Unrestricted_Access);
563
564 -- Allocator case; make a reference to the Chain passed in by the caller
565
566 else
567 Chain_Actual :=
568 Make_Attribute_Reference (Loc,
569 Prefix => New_Occurrence_Of (Chain, Loc),
570 Attribute_Name => Name_Unrestricted_Access);
571 end if;
f937473f 572
af89615f 573 Analyze_And_Resolve (Chain_Actual, Etype (Chain_Formal));
f937473f 574
af89615f
AC
575 -- Build the parameter association for the new actual and add it to the
576 -- end of the function's actuals.
f937473f 577
af89615f 578 Add_Extra_Actual_To_Call (Function_Call, Chain_Formal, Chain_Actual);
f937473f
RD
579 end Add_Task_Actuals_To_Build_In_Place_Call;
580
581 -----------------------
582 -- BIP_Formal_Suffix --
583 -----------------------
584
585 function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
586 begin
587 case Kind is
d3f70b35 588 when BIP_Alloc_Form =>
f937473f 589 return "BIPalloc";
af89615f 590 when BIP_Storage_Pool =>
200b7162 591 return "BIPstoragepool";
d3f70b35
AC
592 when BIP_Finalization_Master =>
593 return "BIPfinalizationmaster";
af89615f
AC
594 when BIP_Task_Master =>
595 return "BIPtaskmaster";
d3f70b35 596 when BIP_Activation_Chain =>
f937473f 597 return "BIPactivationchain";
d3f70b35 598 when BIP_Object_Access =>
f937473f
RD
599 return "BIPaccess";
600 end case;
601 end BIP_Formal_Suffix;
602
603 ---------------------------
604 -- Build_In_Place_Formal --
605 ---------------------------
606
607 function Build_In_Place_Formal
608 (Func : Entity_Id;
609 Kind : BIP_Formal_Kind) return Entity_Id
610 is
af89615f
AC
611 Formal_Name : constant Name_Id :=
612 New_External_Name
613 (Chars (Func), BIP_Formal_Suffix (Kind));
f937473f
RD
614 Extra_Formal : Entity_Id := Extra_Formals (Func);
615
616 begin
617 -- Maybe it would be better for each implicit formal of a build-in-place
618 -- function to have a flag or a Uint attribute to identify it. ???
619
0d566e01
ES
620 -- The return type in the function declaration may have been a limited
621 -- view, and the extra formals for the function were not generated at
aeae67ed 622 -- that point. At the point of call the full view must be available and
0d566e01
ES
623 -- the extra formals can be created.
624
625 if No (Extra_Formal) then
626 Create_Extra_Formals (Func);
627 Extra_Formal := Extra_Formals (Func);
628 end if;
629
f937473f 630 loop
19590d70 631 pragma Assert (Present (Extra_Formal));
af89615f
AC
632 exit when Chars (Extra_Formal) = Formal_Name;
633
f937473f
RD
634 Next_Formal_With_Extras (Extra_Formal);
635 end loop;
636
f937473f
RD
637 return Extra_Formal;
638 end Build_In_Place_Formal;
02822a92 639
c9a4817d
RD
640 --------------------------------
641 -- Check_Overriding_Operation --
642 --------------------------------
70482933
RK
643
644 procedure Check_Overriding_Operation (Subp : Entity_Id) is
645 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
646 Op_List : constant Elist_Id := Primitive_Operations (Typ);
647 Op_Elmt : Elmt_Id;
648 Prim_Op : Entity_Id;
649 Par_Op : Entity_Id;
650
651 begin
652 if Is_Derived_Type (Typ)
653 and then not Is_Private_Type (Typ)
654 and then In_Open_Scopes (Scope (Etype (Typ)))
d347f572 655 and then Is_Base_Type (Typ)
70482933 656 then
2f1b20a9
ES
657 -- Subp overrides an inherited private operation if there is an
658 -- inherited operation with a different name than Subp (see
659 -- Derive_Subprogram) whose Alias is a hidden subprogram with the
660 -- same name as Subp.
70482933
RK
661
662 Op_Elmt := First_Elmt (Op_List);
663 while Present (Op_Elmt) loop
664 Prim_Op := Node (Op_Elmt);
665 Par_Op := Alias (Prim_Op);
666
667 if Present (Par_Op)
668 and then not Comes_From_Source (Prim_Op)
669 and then Chars (Prim_Op) /= Chars (Par_Op)
670 and then Chars (Par_Op) = Chars (Subp)
671 and then Is_Hidden (Par_Op)
672 and then Type_Conformant (Prim_Op, Subp)
673 then
674 Set_DT_Position (Subp, DT_Position (Prim_Op));
675 end if;
676
677 Next_Elmt (Op_Elmt);
678 end loop;
679 end if;
680 end Check_Overriding_Operation;
681
682 -------------------------------
683 -- Detect_Infinite_Recursion --
684 -------------------------------
685
686 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
687 Loc : constant Source_Ptr := Sloc (N);
688
fbf5a39b 689 Var_List : constant Elist_Id := New_Elmt_List;
70482933
RK
690 -- List of globals referenced by body of procedure
691
fbf5a39b 692 Call_List : constant Elist_Id := New_Elmt_List;
70482933
RK
693 -- List of recursive calls in body of procedure
694
fbf5a39b 695 Shad_List : constant Elist_Id := New_Elmt_List;
2f1b20a9
ES
696 -- List of entity id's for entities created to capture the value of
697 -- referenced globals on entry to the procedure.
70482933
RK
698
699 Scop : constant Uint := Scope_Depth (Spec);
2f1b20a9
ES
700 -- This is used to record the scope depth of the current procedure, so
701 -- that we can identify global references.
70482933
RK
702
703 Max_Vars : constant := 4;
704 -- Do not test more than four global variables
705
706 Count_Vars : Natural := 0;
707 -- Count variables found so far
708
709 Var : Entity_Id;
710 Elm : Elmt_Id;
711 Ent : Entity_Id;
712 Call : Elmt_Id;
713 Decl : Node_Id;
714 Test : Node_Id;
715 Elm1 : Elmt_Id;
716 Elm2 : Elmt_Id;
717 Last : Node_Id;
718
719 function Process (Nod : Node_Id) return Traverse_Result;
720 -- Function to traverse the subprogram body (using Traverse_Func)
721
722 -------------
723 -- Process --
724 -------------
725
726 function Process (Nod : Node_Id) return Traverse_Result is
727 begin
728 -- Procedure call
729
730 if Nkind (Nod) = N_Procedure_Call_Statement then
731
732 -- Case of one of the detected recursive calls
733
734 if Is_Entity_Name (Name (Nod))
735 and then Has_Recursive_Call (Entity (Name (Nod)))
736 and then Entity (Name (Nod)) = Spec
737 then
738 Append_Elmt (Nod, Call_List);
739 return Skip;
740
741 -- Any other procedure call may have side effects
742
743 else
744 return Abandon;
745 end if;
746
747 -- A call to a pure function can always be ignored
748
749 elsif Nkind (Nod) = N_Function_Call
750 and then Is_Entity_Name (Name (Nod))
751 and then Is_Pure (Entity (Name (Nod)))
752 then
753 return Skip;
754
755 -- Case of an identifier reference
756
757 elsif Nkind (Nod) = N_Identifier then
758 Ent := Entity (Nod);
759
760 -- If no entity, then ignore the reference
761
762 -- Not clear why this can happen. To investigate, remove this
763 -- test and look at the crash that occurs here in 3401-004 ???
764
765 if No (Ent) then
766 return Skip;
767
768 -- Ignore entities with no Scope, again not clear how this
769 -- can happen, to investigate, look at 4108-008 ???
770
771 elsif No (Scope (Ent)) then
772 return Skip;
773
774 -- Ignore the reference if not to a more global object
775
776 elsif Scope_Depth (Scope (Ent)) >= Scop then
777 return Skip;
778
779 -- References to types, exceptions and constants are always OK
780
781 elsif Is_Type (Ent)
782 or else Ekind (Ent) = E_Exception
783 or else Ekind (Ent) = E_Constant
784 then
785 return Skip;
786
787 -- If other than a non-volatile scalar variable, we have some
788 -- kind of global reference (e.g. to a function) that we cannot
789 -- deal with so we forget the attempt.
790
791 elsif Ekind (Ent) /= E_Variable
792 or else not Is_Scalar_Type (Etype (Ent))
fbf5a39b 793 or else Treat_As_Volatile (Ent)
70482933
RK
794 then
795 return Abandon;
796
797 -- Otherwise we have a reference to a global scalar
798
799 else
800 -- Loop through global entities already detected
801
802 Elm := First_Elmt (Var_List);
803 loop
804 -- If not detected before, record this new global reference
805
806 if No (Elm) then
807 Count_Vars := Count_Vars + 1;
808
809 if Count_Vars <= Max_Vars then
810 Append_Elmt (Entity (Nod), Var_List);
811 else
812 return Abandon;
813 end if;
814
815 exit;
816
817 -- If recorded before, ignore
818
819 elsif Node (Elm) = Entity (Nod) then
820 return Skip;
821
822 -- Otherwise keep looking
823
824 else
825 Next_Elmt (Elm);
826 end if;
827 end loop;
828
829 return Skip;
830 end if;
831
832 -- For all other node kinds, recursively visit syntactic children
833
834 else
835 return OK;
836 end if;
837 end Process;
838
02822a92 839 function Traverse_Body is new Traverse_Func (Process);
70482933
RK
840
841 -- Start of processing for Detect_Infinite_Recursion
842
843 begin
2f1b20a9
ES
844 -- Do not attempt detection in No_Implicit_Conditional mode, since we
845 -- won't be able to generate the code to handle the recursion in any
846 -- case.
70482933 847
6e937c1c 848 if Restriction_Active (No_Implicit_Conditionals) then
70482933
RK
849 return;
850 end if;
851
852 -- Otherwise do traversal and quit if we get abandon signal
853
854 if Traverse_Body (N) = Abandon then
855 return;
856
2f1b20a9
ES
857 -- We must have a call, since Has_Recursive_Call was set. If not just
858 -- ignore (this is only an error check, so if we have a funny situation,
a90bd866 859 -- due to bugs or errors, we do not want to bomb).
70482933
RK
860
861 elsif Is_Empty_Elmt_List (Call_List) then
862 return;
863 end if;
864
865 -- Here is the case where we detect recursion at compile time
866
2f1b20a9
ES
867 -- Push our current scope for analyzing the declarations and code that
868 -- we will insert for the checking.
70482933 869
7888a6ae 870 Push_Scope (Spec);
70482933 871
2f1b20a9
ES
872 -- This loop builds temporary variables for each of the referenced
873 -- globals, so that at the end of the loop the list Shad_List contains
874 -- these temporaries in one-to-one correspondence with the elements in
875 -- Var_List.
70482933
RK
876
877 Last := Empty;
878 Elm := First_Elmt (Var_List);
879 while Present (Elm) loop
880 Var := Node (Elm);
c12beea0 881 Ent := Make_Temporary (Loc, 'S');
70482933
RK
882 Append_Elmt (Ent, Shad_List);
883
2f1b20a9
ES
884 -- Insert a declaration for this temporary at the start of the
885 -- declarations for the procedure. The temporaries are declared as
886 -- constant objects initialized to the current values of the
887 -- corresponding temporaries.
70482933
RK
888
889 Decl :=
890 Make_Object_Declaration (Loc,
891 Defining_Identifier => Ent,
892 Object_Definition => New_Occurrence_Of (Etype (Var), Loc),
893 Constant_Present => True,
894 Expression => New_Occurrence_Of (Var, Loc));
895
896 if No (Last) then
897 Prepend (Decl, Declarations (N));
898 else
899 Insert_After (Last, Decl);
900 end if;
901
902 Last := Decl;
903 Analyze (Decl);
904 Next_Elmt (Elm);
905 end loop;
906
907 -- Loop through calls
908
909 Call := First_Elmt (Call_List);
910 while Present (Call) loop
911
912 -- Build a predicate expression of the form
913
914 -- True
915 -- and then global1 = temp1
916 -- and then global2 = temp2
917 -- ...
918
919 -- This predicate determines if any of the global values
920 -- referenced by the procedure have changed since the
921 -- current call, if not an infinite recursion is assured.
922
923 Test := New_Occurrence_Of (Standard_True, Loc);
924
925 Elm1 := First_Elmt (Var_List);
926 Elm2 := First_Elmt (Shad_List);
927 while Present (Elm1) loop
928 Test :=
929 Make_And_Then (Loc,
930 Left_Opnd => Test,
931 Right_Opnd =>
932 Make_Op_Eq (Loc,
933 Left_Opnd => New_Occurrence_Of (Node (Elm1), Loc),
934 Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
935
936 Next_Elmt (Elm1);
937 Next_Elmt (Elm2);
938 end loop;
939
940 -- Now we replace the call with the sequence
941
942 -- if no-changes (see above) then
943 -- raise Storage_Error;
944 -- else
945 -- original-call
946 -- end if;
947
948 Rewrite (Node (Call),
949 Make_If_Statement (Loc,
950 Condition => Test,
951 Then_Statements => New_List (
07fc65c4
GB
952 Make_Raise_Storage_Error (Loc,
953 Reason => SE_Infinite_Recursion)),
70482933
RK
954
955 Else_Statements => New_List (
956 Relocate_Node (Node (Call)))));
957
958 Analyze (Node (Call));
959
960 Next_Elmt (Call);
961 end loop;
962
963 -- Remove temporary scope stack entry used for analysis
964
965 Pop_Scope;
966 end Detect_Infinite_Recursion;
967
968 --------------------
969 -- Expand_Actuals --
970 --------------------
971
da574a86 972 procedure Expand_Actuals (N : in out Node_Id; Subp : Entity_Id) is
70482933
RK
973 Loc : constant Source_Ptr := Sloc (N);
974 Actual : Node_Id;
975 Formal : Entity_Id;
976 N_Node : Node_Id;
977 Post_Call : List_Id;
f6820c2d 978 E_Actual : Entity_Id;
70482933
RK
979 E_Formal : Entity_Id;
980
981 procedure Add_Call_By_Copy_Code;
fbf5a39b
AC
982 -- For cases where the parameter must be passed by copy, this routine
983 -- generates a temporary variable into which the actual is copied and
984 -- then passes this as the parameter. For an OUT or IN OUT parameter,
985 -- an assignment is also generated to copy the result back. The call
986 -- also takes care of any constraint checks required for the type
987 -- conversion case (on both the way in and the way out).
70482933 988
f44fe430
RD
989 procedure Add_Simple_Call_By_Copy_Code;
990 -- This is similar to the above, but is used in cases where we know
991 -- that all that is needed is to simply create a temporary and copy
992 -- the value in and out of the temporary.
70482933
RK
993
994 procedure Check_Fortran_Logical;
995 -- A value of type Logical that is passed through a formal parameter
996 -- must be normalized because .TRUE. usually does not have the same
997 -- representation as True. We assume that .FALSE. = False = 0.
998 -- What about functions that return a logical type ???
999
758c442c
GD
1000 function Is_Legal_Copy return Boolean;
1001 -- Check that an actual can be copied before generating the temporary
1002 -- to be used in the call. If the actual is of a by_reference type then
1003 -- the program is illegal (this can only happen in the presence of
1004 -- rep. clauses that force an incorrect alignment). If the formal is
1005 -- a by_reference parameter imposed by a DEC pragma, emit a warning to
1006 -- the effect that this might lead to unaligned arguments.
1007
70482933 1008 function Make_Var (Actual : Node_Id) return Entity_Id;
da574a86
AC
1009 -- Returns an entity that refers to the given actual parameter, Actual
1010 -- (not including any type conversion). If Actual is an entity name,
1011 -- then this entity is returned unchanged, otherwise a renaming is
1012 -- created to provide an entity for the actual.
70482933
RK
1013
1014 procedure Reset_Packed_Prefix;
1015 -- The expansion of a packed array component reference is delayed in
1016 -- the context of a call. Now we need to complete the expansion, so we
1017 -- unmark the analyzed bits in all prefixes.
1018
1019 ---------------------------
1020 -- Add_Call_By_Copy_Code --
1021 ---------------------------
1022
1023 procedure Add_Call_By_Copy_Code is
cc335f43
AC
1024 Expr : Node_Id;
1025 Init : Node_Id;
1026 Temp : Entity_Id;
f44fe430 1027 Indic : Node_Id;
cc335f43 1028 Var : Entity_Id;
0da2c8ac 1029 F_Typ : constant Entity_Id := Etype (Formal);
cc335f43
AC
1030 V_Typ : Entity_Id;
1031 Crep : Boolean;
70482933
RK
1032
1033 begin
758c442c
GD
1034 if not Is_Legal_Copy then
1035 return;
1036 end if;
1037
b086849e 1038 Temp := Make_Temporary (Loc, 'T', Actual);
70482933 1039
f44fe430
RD
1040 -- Use formal type for temp, unless formal type is an unconstrained
1041 -- array, in which case we don't have to worry about bounds checks,
758c442c 1042 -- and we use the actual type, since that has appropriate bounds.
f44fe430
RD
1043
1044 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1045 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1046 else
1047 Indic := New_Occurrence_Of (Etype (Formal), Loc);
1048 end if;
1049
70482933
RK
1050 if Nkind (Actual) = N_Type_Conversion then
1051 V_Typ := Etype (Expression (Actual));
19f0526a
AC
1052
1053 -- If the formal is an (in-)out parameter, capture the name
1054 -- of the variable in order to build the post-call assignment.
81a5b587
AC
1055
1056 Var := Make_Var (Expression (Actual));
19f0526a 1057
08aa9a4a 1058 Crep := not Same_Representation
0da2c8ac 1059 (F_Typ, Etype (Expression (Actual)));
08aa9a4a 1060
70482933
RK
1061 else
1062 V_Typ := Etype (Actual);
1063 Var := Make_Var (Actual);
1064 Crep := False;
1065 end if;
1066
1067 -- Setup initialization for case of in out parameter, or an out
1068 -- parameter where the formal is an unconstrained array (in the
1069 -- latter case, we have to pass in an object with bounds).
1070
cc335f43
AC
1071 -- If this is an out parameter, the initial copy is wasteful, so as
1072 -- an optimization for the one-dimensional case we extract the
1073 -- bounds of the actual and build an uninitialized temporary of the
1074 -- right size.
1075
70482933 1076 if Ekind (Formal) = E_In_Out_Parameter
0da2c8ac 1077 or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
70482933
RK
1078 then
1079 if Nkind (Actual) = N_Type_Conversion then
1080 if Conversion_OK (Actual) then
0da2c8ac 1081 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
70482933 1082 else
0da2c8ac 1083 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
70482933 1084 end if;
cc335f43
AC
1085
1086 elsif Ekind (Formal) = E_Out_Parameter
0da2c8ac
AC
1087 and then Is_Array_Type (F_Typ)
1088 and then Number_Dimensions (F_Typ) = 1
1089 and then not Has_Non_Null_Base_Init_Proc (F_Typ)
cc335f43
AC
1090 then
1091 -- Actual is a one-dimensional array or slice, and the type
1092 -- requires no initialization. Create a temporary of the
f44fe430 1093 -- right size, but do not copy actual into it (optimization).
cc335f43
AC
1094
1095 Init := Empty;
1096 Indic :=
1097 Make_Subtype_Indication (Loc,
5f6fb720 1098 Subtype_Mark => New_Occurrence_Of (F_Typ, Loc),
cc335f43
AC
1099 Constraint =>
1100 Make_Index_Or_Discriminant_Constraint (Loc,
1101 Constraints => New_List (
1102 Make_Range (Loc,
1103 Low_Bound =>
1104 Make_Attribute_Reference (Loc,
5f6fb720 1105 Prefix => New_Occurrence_Of (Var, Loc),
70f91180 1106 Attribute_Name => Name_First),
cc335f43
AC
1107 High_Bound =>
1108 Make_Attribute_Reference (Loc,
5f6fb720 1109 Prefix => New_Occurrence_Of (Var, Loc),
cc335f43
AC
1110 Attribute_Name => Name_Last)))));
1111
70482933
RK
1112 else
1113 Init := New_Occurrence_Of (Var, Loc);
1114 end if;
1115
1116 -- An initialization is created for packed conversions as
1117 -- actuals for out parameters to enable Make_Object_Declaration
1118 -- to determine the proper subtype for N_Node. Note that this
1119 -- is wasteful because the extra copying on the call side is
1120 -- not required for such out parameters. ???
1121
1122 elsif Ekind (Formal) = E_Out_Parameter
1123 and then Nkind (Actual) = N_Type_Conversion
0da2c8ac 1124 and then (Is_Bit_Packed_Array (F_Typ)
70482933
RK
1125 or else
1126 Is_Bit_Packed_Array (Etype (Expression (Actual))))
1127 then
1128 if Conversion_OK (Actual) then
f44fe430 1129 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
70482933 1130 else
f44fe430 1131 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
70482933 1132 end if;
2e071734
AC
1133
1134 elsif Ekind (Formal) = E_In_Parameter then
02822a92
RD
1135
1136 -- Handle the case in which the actual is a type conversion
1137
1138 if Nkind (Actual) = N_Type_Conversion then
1139 if Conversion_OK (Actual) then
1140 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1141 else
1142 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1143 end if;
1144 else
1145 Init := New_Occurrence_Of (Var, Loc);
1146 end if;
2e071734 1147
70482933
RK
1148 else
1149 Init := Empty;
1150 end if;
1151
1152 N_Node :=
1153 Make_Object_Declaration (Loc,
1154 Defining_Identifier => Temp,
cc335f43 1155 Object_Definition => Indic,
f44fe430 1156 Expression => Init);
70482933
RK
1157 Set_Assignment_OK (N_Node);
1158 Insert_Action (N, N_Node);
1159
1160 -- Now, normally the deal here is that we use the defining
1161 -- identifier created by that object declaration. There is
1162 -- one exception to this. In the change of representation case
1163 -- the above declaration will end up looking like:
1164
1165 -- temp : type := identifier;
1166
1167 -- And in this case we might as well use the identifier directly
1168 -- and eliminate the temporary. Note that the analysis of the
1169 -- declaration was not a waste of time in that case, since it is
1170 -- what generated the necessary change of representation code. If
1171 -- the change of representation introduced additional code, as in
1172 -- a fixed-integer conversion, the expression is not an identifier
1173 -- and must be kept.
1174
1175 if Crep
1176 and then Present (Expression (N_Node))
1177 and then Is_Entity_Name (Expression (N_Node))
1178 then
1179 Temp := Entity (Expression (N_Node));
1180 Rewrite (N_Node, Make_Null_Statement (Loc));
1181 end if;
1182
fbf5a39b 1183 -- For IN parameter, all we do is to replace the actual
70482933 1184
fbf5a39b 1185 if Ekind (Formal) = E_In_Parameter then
e4494292 1186 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
fbf5a39b
AC
1187 Analyze (Actual);
1188
1189 -- Processing for OUT or IN OUT parameter
1190
1191 else
c8ef728f
ES
1192 -- Kill current value indications for the temporary variable we
1193 -- created, since we just passed it as an OUT parameter.
1194
1195 Kill_Current_Values (Temp);
75ba322d 1196 Set_Is_Known_Valid (Temp, False);
c8ef728f 1197
fbf5a39b
AC
1198 -- If type conversion, use reverse conversion on exit
1199
1200 if Nkind (Actual) = N_Type_Conversion then
1201 if Conversion_OK (Actual) then
1202 Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1203 else
1204 Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1205 end if;
70482933 1206 else
fbf5a39b 1207 Expr := New_Occurrence_Of (Temp, Loc);
70482933 1208 end if;
70482933 1209
e4494292 1210 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
fbf5a39b 1211 Analyze (Actual);
70482933 1212
d766cee3
RD
1213 -- If the actual is a conversion of a packed reference, it may
1214 -- already have been expanded by Remove_Side_Effects, and the
1215 -- resulting variable is a temporary which does not designate
1216 -- the proper out-parameter, which may not be addressable. In
1217 -- that case, generate an assignment to the original expression
b0159fbe 1218 -- (before expansion of the packed reference) so that the proper
d766cee3 1219 -- expansion of assignment to a packed component can take place.
70482933 1220
d766cee3
RD
1221 declare
1222 Obj : Node_Id;
1223 Lhs : Node_Id;
1224
1225 begin
1226 if Is_Renaming_Of_Object (Var)
1227 and then Nkind (Renamed_Object (Var)) = N_Selected_Component
1228 and then Is_Entity_Name (Prefix (Renamed_Object (Var)))
1229 and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
1230 = N_Indexed_Component
1231 and then
1232 Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
1233 then
1234 Obj := Renamed_Object (Var);
1235 Lhs :=
1236 Make_Selected_Component (Loc,
1237 Prefix =>
1238 New_Copy_Tree (Original_Node (Prefix (Obj))),
1239 Selector_Name => New_Copy (Selector_Name (Obj)));
1240 Reset_Analyzed_Flags (Lhs);
1241
1242 else
1243 Lhs := New_Occurrence_Of (Var, Loc);
1244 end if;
1245
1246 Set_Assignment_OK (Lhs);
1247
d15f9422
AC
1248 if Is_Access_Type (E_Formal)
1249 and then Is_Entity_Name (Lhs)
996c8821
RD
1250 and then
1251 Present (Effective_Extra_Accessibility (Entity (Lhs)))
d15f9422 1252 then
4bb43ffb
AC
1253 -- Copyback target is an Ada 2012 stand-alone object of an
1254 -- anonymous access type.
d15f9422
AC
1255
1256 pragma Assert (Ada_Version >= Ada_2012);
1257
1258 if Type_Access_Level (E_Formal) >
996c8821
RD
1259 Object_Access_Level (Lhs)
1260 then
1261 Append_To (Post_Call,
1262 Make_Raise_Program_Error (Loc,
1263 Reason => PE_Accessibility_Check_Failed));
d15f9422
AC
1264 end if;
1265
1266 Append_To (Post_Call,
1267 Make_Assignment_Statement (Loc,
1268 Name => Lhs,
1269 Expression => Expr));
1270
996c8821
RD
1271 -- We would like to somehow suppress generation of the
1272 -- extra_accessibility assignment generated by the expansion
1273 -- of the above assignment statement. It's not a correctness
1274 -- issue because the following assignment renders it dead,
1275 -- but generating back-to-back assignments to the same
1276 -- target is undesirable. ???
d15f9422
AC
1277
1278 Append_To (Post_Call,
1279 Make_Assignment_Statement (Loc,
1280 Name => New_Occurrence_Of (
1281 Effective_Extra_Accessibility (Entity (Lhs)), Loc),
1282 Expression => Make_Integer_Literal (Loc,
1283 Type_Access_Level (E_Formal))));
996c8821 1284
d15f9422
AC
1285 else
1286 Append_To (Post_Call,
1287 Make_Assignment_Statement (Loc,
1288 Name => Lhs,
1289 Expression => Expr));
1290 end if;
d766cee3 1291 end;
fbf5a39b 1292 end if;
70482933
RK
1293 end Add_Call_By_Copy_Code;
1294
1295 ----------------------------------
f44fe430 1296 -- Add_Simple_Call_By_Copy_Code --
70482933
RK
1297 ----------------------------------
1298
f44fe430 1299 procedure Add_Simple_Call_By_Copy_Code is
70482933 1300 Temp : Entity_Id;
758c442c 1301 Decl : Node_Id;
70482933
RK
1302 Incod : Node_Id;
1303 Outcod : Node_Id;
1304 Lhs : Node_Id;
1305 Rhs : Node_Id;
f44fe430
RD
1306 Indic : Node_Id;
1307 F_Typ : constant Entity_Id := Etype (Formal);
70482933
RK
1308
1309 begin
758c442c
GD
1310 if not Is_Legal_Copy then
1311 return;
1312 end if;
1313
f44fe430
RD
1314 -- Use formal type for temp, unless formal type is an unconstrained
1315 -- array, in which case we don't have to worry about bounds checks,
758c442c 1316 -- and we use the actual type, since that has appropriate bounds.
f44fe430
RD
1317
1318 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1319 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1320 else
1321 Indic := New_Occurrence_Of (Etype (Formal), Loc);
1322 end if;
70482933
RK
1323
1324 -- Prepare to generate code
1325
f44fe430
RD
1326 Reset_Packed_Prefix;
1327
b086849e 1328 Temp := Make_Temporary (Loc, 'T', Actual);
70482933
RK
1329 Incod := Relocate_Node (Actual);
1330 Outcod := New_Copy_Tree (Incod);
1331
1332 -- Generate declaration of temporary variable, initializing it
c73ae90f 1333 -- with the input parameter unless we have an OUT formal or
758c442c 1334 -- this is an initialization call.
70482933 1335
c73ae90f
GD
1336 -- If the formal is an out parameter with discriminants, the
1337 -- discriminants must be captured even if the rest of the object
1338 -- is in principle uninitialized, because the discriminants may
1339 -- be read by the called subprogram.
1340
70482933
RK
1341 if Ekind (Formal) = E_Out_Parameter then
1342 Incod := Empty;
758c442c 1343
c73ae90f
GD
1344 if Has_Discriminants (Etype (Formal)) then
1345 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1346 end if;
1347
758c442c 1348 elsif Inside_Init_Proc then
c73ae90f
GD
1349
1350 -- Could use a comment here to match comment below ???
1351
758c442c
GD
1352 if Nkind (Actual) /= N_Selected_Component
1353 or else
1354 not Has_Discriminant_Dependent_Constraint
1355 (Entity (Selector_Name (Actual)))
1356 then
1357 Incod := Empty;
1358
c73ae90f
GD
1359 -- Otherwise, keep the component in order to generate the proper
1360 -- actual subtype, that depends on enclosing discriminants.
758c442c 1361
c73ae90f 1362 else
758c442c
GD
1363 null;
1364 end if;
70482933
RK
1365 end if;
1366
758c442c 1367 Decl :=
70482933
RK
1368 Make_Object_Declaration (Loc,
1369 Defining_Identifier => Temp,
f44fe430 1370 Object_Definition => Indic,
758c442c
GD
1371 Expression => Incod);
1372
1373 if Inside_Init_Proc
1374 and then No (Incod)
1375 then
1376 -- If the call is to initialize a component of a composite type,
1377 -- and the component does not depend on discriminants, use the
1378 -- actual type of the component. This is required in case the
1379 -- component is constrained, because in general the formal of the
1380 -- initialization procedure will be unconstrained. Note that if
1381 -- the component being initialized is constrained by an enclosing
1382 -- discriminant, the presence of the initialization in the
1383 -- declaration will generate an expression for the actual subtype.
1384
1385 Set_No_Initialization (Decl);
1386 Set_Object_Definition (Decl,
1387 New_Occurrence_Of (Etype (Actual), Loc));
1388 end if;
1389
1390 Insert_Action (N, Decl);
70482933
RK
1391
1392 -- The actual is simply a reference to the temporary
1393
1394 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1395
1396 -- Generate copy out if OUT or IN OUT parameter
1397
1398 if Ekind (Formal) /= E_In_Parameter then
1399 Lhs := Outcod;
1400 Rhs := New_Occurrence_Of (Temp, Loc);
1401
1402 -- Deal with conversion
1403
1404 if Nkind (Lhs) = N_Type_Conversion then
1405 Lhs := Expression (Lhs);
1406 Rhs := Convert_To (Etype (Actual), Rhs);
1407 end if;
1408
1409 Append_To (Post_Call,
1410 Make_Assignment_Statement (Loc,
1411 Name => Lhs,
1412 Expression => Rhs));
f44fe430 1413 Set_Assignment_OK (Name (Last (Post_Call)));
70482933 1414 end if;
f44fe430 1415 end Add_Simple_Call_By_Copy_Code;
70482933
RK
1416
1417 ---------------------------
1418 -- Check_Fortran_Logical --
1419 ---------------------------
1420
1421 procedure Check_Fortran_Logical is
fbf5a39b 1422 Logical : constant Entity_Id := Etype (Formal);
70482933
RK
1423 Var : Entity_Id;
1424
1425 -- Note: this is very incomplete, e.g. it does not handle arrays
1426 -- of logical values. This is really not the right approach at all???)
1427
1428 begin
1429 if Convention (Subp) = Convention_Fortran
1430 and then Root_Type (Etype (Formal)) = Standard_Boolean
1431 and then Ekind (Formal) /= E_In_Parameter
1432 then
1433 Var := Make_Var (Actual);
1434 Append_To (Post_Call,
1435 Make_Assignment_Statement (Loc,
1436 Name => New_Occurrence_Of (Var, Loc),
1437 Expression =>
1438 Unchecked_Convert_To (
1439 Logical,
1440 Make_Op_Ne (Loc,
1441 Left_Opnd => New_Occurrence_Of (Var, Loc),
1442 Right_Opnd =>
1443 Unchecked_Convert_To (
1444 Logical,
1445 New_Occurrence_Of (Standard_False, Loc))))));
1446 end if;
1447 end Check_Fortran_Logical;
1448
758c442c
GD
1449 -------------------
1450 -- Is_Legal_Copy --
1451 -------------------
1452
1453 function Is_Legal_Copy return Boolean is
1454 begin
1455 -- An attempt to copy a value of such a type can only occur if
1456 -- representation clauses give the actual a misaligned address.
1457
1458 if Is_By_Reference_Type (Etype (Formal)) then
f45ccc7c 1459
aaf1cd90
RD
1460 -- If the front-end does not perform full type layout, the actual
1461 -- may in fact be properly aligned but there is not enough front-
1462 -- end information to determine this. In that case gigi will emit
1463 -- an error if a copy is not legal, or generate the proper code.
1464 -- For other backends we report the error now.
1465
1466 -- Seems wrong to be issuing an error in the expander, since it
1467 -- will be missed in -gnatc mode ???
f45ccc7c
AC
1468
1469 if Frontend_Layout_On_Target then
1470 Error_Msg_N
1471 ("misaligned actual cannot be passed by reference", Actual);
1472 end if;
1473
758c442c
GD
1474 return False;
1475
1476 -- For users of Starlet, we assume that the specification of by-
7888a6ae 1477 -- reference mechanism is mandatory. This may lead to unaligned
758c442c
GD
1478 -- objects but at least for DEC legacy code it is known to work.
1479 -- The warning will alert users of this code that a problem may
1480 -- be lurking.
1481
1482 elsif Mechanism (Formal) = By_Reference
1483 and then Is_Valued_Procedure (Scope (Formal))
1484 then
1485 Error_Msg_N
685bc70f 1486 ("by_reference actual may be misaligned??", Actual);
758c442c
GD
1487 return False;
1488
1489 else
1490 return True;
1491 end if;
1492 end Is_Legal_Copy;
1493
70482933
RK
1494 --------------
1495 -- Make_Var --
1496 --------------
1497
1498 function Make_Var (Actual : Node_Id) return Entity_Id is
1499 Var : Entity_Id;
1500
1501 begin
1502 if Is_Entity_Name (Actual) then
1503 return Entity (Actual);
1504
1505 else
b086849e 1506 Var := Make_Temporary (Loc, 'T', Actual);
70482933
RK
1507
1508 N_Node :=
1509 Make_Object_Renaming_Declaration (Loc,
1510 Defining_Identifier => Var,
1511 Subtype_Mark =>
1512 New_Occurrence_Of (Etype (Actual), Loc),
1513 Name => Relocate_Node (Actual));
1514
1515 Insert_Action (N, N_Node);
1516 return Var;
1517 end if;
1518 end Make_Var;
1519
1520 -------------------------
1521 -- Reset_Packed_Prefix --
1522 -------------------------
1523
1524 procedure Reset_Packed_Prefix is
1525 Pfx : Node_Id := Actual;
70482933
RK
1526 begin
1527 loop
1528 Set_Analyzed (Pfx, False);
ac4d6407
RD
1529 exit when
1530 not Nkind_In (Pfx, N_Selected_Component, N_Indexed_Component);
70482933
RK
1531 Pfx := Prefix (Pfx);
1532 end loop;
1533 end Reset_Packed_Prefix;
1534
1535 -- Start of processing for Expand_Actuals
1536
1537 begin
70482933
RK
1538 Post_Call := New_List;
1539
2f1b20a9
ES
1540 Formal := First_Formal (Subp);
1541 Actual := First_Actual (N);
70482933
RK
1542 while Present (Formal) loop
1543 E_Formal := Etype (Formal);
f6820c2d 1544 E_Actual := Etype (Actual);
70482933
RK
1545
1546 if Is_Scalar_Type (E_Formal)
1547 or else Nkind (Actual) = N_Slice
1548 then
1549 Check_Fortran_Logical;
1550
1551 -- RM 6.4.1 (11)
1552
1553 elsif Ekind (Formal) /= E_Out_Parameter then
1554
1555 -- The unusual case of the current instance of a protected type
1556 -- requires special handling. This can only occur in the context
1557 -- of a call within the body of a protected operation.
1558
1559 if Is_Entity_Name (Actual)
1560 and then Ekind (Entity (Actual)) = E_Protected_Type
1561 and then In_Open_Scopes (Entity (Actual))
1562 then
1563 if Scope (Subp) /= Entity (Actual) then
685bc70f
AC
1564 Error_Msg_N
1565 ("operation outside protected type may not "
1566 & "call back its protected operations??", Actual);
70482933
RK
1567 end if;
1568
1569 Rewrite (Actual,
1570 Expand_Protected_Object_Reference (N, Entity (Actual)));
1571 end if;
1572
02822a92
RD
1573 -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
1574 -- build-in-place function, then a temporary return object needs
1575 -- to be created and access to it must be passed to the function.
f937473f
RD
1576 -- Currently we limit such functions to those with inherently
1577 -- limited result subtypes, but eventually we plan to expand the
1578 -- functions that are treated as build-in-place to include other
1579 -- composite result types.
02822a92 1580
95eb8b69 1581 if Is_Build_In_Place_Function_Call (Actual) then
02822a92
RD
1582 Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
1583 end if;
1584
70482933
RK
1585 Apply_Constraint_Check (Actual, E_Formal);
1586
1587 -- Out parameter case. No constraint checks on access type
1588 -- RM 6.4.1 (13)
1589
1590 elsif Is_Access_Type (E_Formal) then
1591 null;
1592
1593 -- RM 6.4.1 (14)
1594
1595 elsif Has_Discriminants (Base_Type (E_Formal))
1596 or else Has_Non_Null_Base_Init_Proc (E_Formal)
1597 then
1598 Apply_Constraint_Check (Actual, E_Formal);
1599
1600 -- RM 6.4.1 (15)
1601
1602 else
1603 Apply_Constraint_Check (Actual, Base_Type (E_Formal));
1604 end if;
1605
1606 -- Processing for IN-OUT and OUT parameters
1607
1608 if Ekind (Formal) /= E_In_Parameter then
1609
1610 -- For type conversions of arrays, apply length/range checks
1611
1612 if Is_Array_Type (E_Formal)
1613 and then Nkind (Actual) = N_Type_Conversion
1614 then
1615 if Is_Constrained (E_Formal) then
1616 Apply_Length_Check (Expression (Actual), E_Formal);
1617 else
1618 Apply_Range_Check (Expression (Actual), E_Formal);
1619 end if;
1620 end if;
1621
1622 -- If argument is a type conversion for a type that is passed
1623 -- by copy, then we must pass the parameter by copy.
1624
1625 if Nkind (Actual) = N_Type_Conversion
1626 and then
1627 (Is_Numeric_Type (E_Formal)
1628 or else Is_Access_Type (E_Formal)
1629 or else Is_Enumeration_Type (E_Formal)
1630 or else Is_Bit_Packed_Array (Etype (Formal))
1631 or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
1632
1633 -- Also pass by copy if change of representation
1634
1635 or else not Same_Representation
da574a86
AC
1636 (Etype (Formal),
1637 Etype (Expression (Actual))))
70482933
RK
1638 then
1639 Add_Call_By_Copy_Code;
1640
1641 -- References to components of bit packed arrays are expanded
1642 -- at this point, rather than at the point of analysis of the
1643 -- actuals, to handle the expansion of the assignment to
1644 -- [in] out parameters.
1645
1646 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
f44fe430
RD
1647 Add_Simple_Call_By_Copy_Code;
1648
02822a92
RD
1649 -- If a non-scalar actual is possibly bit-aligned, we need a copy
1650 -- because the back-end cannot cope with such objects. In other
1651 -- cases where alignment forces a copy, the back-end generates
1652 -- it properly. It should not be generated unconditionally in the
1653 -- front-end because it does not know precisely the alignment
1654 -- requirements of the target, and makes too conservative an
1655 -- estimate, leading to superfluous copies or spurious errors
1656 -- on by-reference parameters.
f44fe430 1657
02822a92
RD
1658 elsif Nkind (Actual) = N_Selected_Component
1659 and then
1660 Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
f44fe430
RD
1661 and then not Represented_As_Scalar (Etype (Formal))
1662 then
1663 Add_Simple_Call_By_Copy_Code;
70482933
RK
1664
1665 -- References to slices of bit packed arrays are expanded
1666
1667 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
1668 Add_Call_By_Copy_Code;
1669
fbf5a39b
AC
1670 -- References to possibly unaligned slices of arrays are expanded
1671
1672 elsif Is_Possibly_Unaligned_Slice (Actual) then
1673 Add_Call_By_Copy_Code;
1674
7888a6ae 1675 -- Deal with access types where the actual subtype and the
70482933
RK
1676 -- formal subtype are not the same, requiring a check.
1677
638e383e 1678 -- It is necessary to exclude tagged types because of "downward
70f91180 1679 -- conversion" errors.
70482933
RK
1680
1681 elsif Is_Access_Type (E_Formal)
f6820c2d 1682 and then not Same_Type (E_Formal, E_Actual)
70482933
RK
1683 and then not Is_Tagged_Type (Designated_Type (E_Formal))
1684 then
1685 Add_Call_By_Copy_Code;
1686
faf3cf91
ES
1687 -- If the actual is not a scalar and is marked for volatile
1688 -- treatment, whereas the formal is not volatile, then pass
1689 -- by copy unless it is a by-reference type.
1690
0386aad1
AC
1691 -- Note: we use Is_Volatile here rather than Treat_As_Volatile,
1692 -- because this is the enforcement of a language rule that applies
1693 -- only to "real" volatile variables, not e.g. to the address
1694 -- clause overlay case.
1695
70482933 1696 elsif Is_Entity_Name (Actual)
0386aad1 1697 and then Is_Volatile (Entity (Actual))
f6820c2d 1698 and then not Is_By_Reference_Type (E_Actual)
70482933 1699 and then not Is_Scalar_Type (Etype (Entity (Actual)))
0386aad1 1700 and then not Is_Volatile (E_Formal)
70482933
RK
1701 then
1702 Add_Call_By_Copy_Code;
1703
1704 elsif Nkind (Actual) = N_Indexed_Component
1705 and then Is_Entity_Name (Prefix (Actual))
1706 and then Has_Volatile_Components (Entity (Prefix (Actual)))
1707 then
1708 Add_Call_By_Copy_Code;
d79e621a
GD
1709
1710 -- Add call-by-copy code for the case of scalar out parameters
1711 -- when it is not known at compile time that the subtype of the
c2369146
AC
1712 -- formal is a subrange of the subtype of the actual (or vice
1713 -- versa for in out parameters), in order to get range checks
1714 -- on such actuals. (Maybe this case should be handled earlier
1715 -- in the if statement???)
d79e621a
GD
1716
1717 elsif Is_Scalar_Type (E_Formal)
c2369146 1718 and then
f6820c2d 1719 (not In_Subrange_Of (E_Formal, E_Actual)
c2369146
AC
1720 or else
1721 (Ekind (Formal) = E_In_Out_Parameter
f6820c2d 1722 and then not In_Subrange_Of (E_Actual, E_Formal)))
d79e621a
GD
1723 then
1724 -- Perhaps the setting back to False should be done within
1725 -- Add_Call_By_Copy_Code, since it could get set on other
1726 -- cases occurring above???
1727
1728 if Do_Range_Check (Actual) then
1729 Set_Do_Range_Check (Actual, False);
1730 end if;
1731
1732 Add_Call_By_Copy_Code;
70482933
RK
1733 end if;
1734
5f6fb720 1735 -- RM 3.2.4 (23/3): A predicate is checked on in-out and out
f6820c2d
AC
1736 -- by-reference parameters on exit from the call. If the actual
1737 -- is a derived type and the operation is inherited, the body
1738 -- of the operation will not contain a call to the predicate
1739 -- function, so it must be done explicitly after the call. Ditto
1740 -- if the actual is an entity of a predicated subtype.
1741
cae64f11
AC
1742 -- The rule refers to by-reference types, but a check is needed
1743 -- for by-copy types as well. That check is subsumed by the rule
1744 -- for subtype conversion on assignment, but we can generate the
1745 -- required check now.
1746
dd4e47ab 1747 -- Note also that Subp may be either a subprogram entity for
e93f4e12
AC
1748 -- direct calls, or a type entity for indirect calls, which must
1749 -- be handled separately because the name does not denote an
1750 -- overloadable entity.
dd4e47ab 1751
5f6fb720
AC
1752 declare
1753 Aund : constant Entity_Id := Underlying_Type (E_Actual);
1754 Atyp : Entity_Id;
1755
1756 begin
1757 if No (Aund) then
1758 Atyp := E_Actual;
1759 else
1760 Atyp := Aund;
1761 end if;
1762
1763 if Has_Predicates (Atyp)
1764 and then Present (Predicate_Function (Atyp))
1765
1766 -- Skip predicate checks for special cases
1767
b8e6830b 1768 and then Predicate_Tests_On_Arguments (Subp)
5f6fb720
AC
1769 then
1770 Append_To (Post_Call,
1771 Make_Predicate_Check (Atyp, Actual));
1772 end if;
1773 end;
f6820c2d 1774
fbf5a39b 1775 -- Processing for IN parameters
70482933
RK
1776
1777 else
fbf5a39b
AC
1778 -- For IN parameters is in the packed array case, we expand an
1779 -- indexed component (the circuit in Exp_Ch4 deliberately left
1780 -- indexed components appearing as actuals untouched, so that
1781 -- the special processing above for the OUT and IN OUT cases
1782 -- could be performed. We could make the test in Exp_Ch4 more
1783 -- complex and have it detect the parameter mode, but it is
f44fe430 1784 -- easier simply to handle all cases here.)
fbf5a39b 1785
70482933
RK
1786 if Nkind (Actual) = N_Indexed_Component
1787 and then Is_Packed (Etype (Prefix (Actual)))
1788 then
1789 Reset_Packed_Prefix;
1790 Expand_Packed_Element_Reference (Actual);
1791
0386aad1
AC
1792 -- If we have a reference to a bit packed array, we copy it, since
1793 -- the actual must be byte aligned.
70482933 1794
fbf5a39b 1795 -- Is this really necessary in all cases???
70482933 1796
fbf5a39b 1797 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
f44fe430
RD
1798 Add_Simple_Call_By_Copy_Code;
1799
1800 -- If a non-scalar actual is possibly unaligned, we need a copy
1801
1802 elsif Is_Possibly_Unaligned_Object (Actual)
1803 and then not Represented_As_Scalar (Etype (Formal))
1804 then
1805 Add_Simple_Call_By_Copy_Code;
70482933 1806
fbf5a39b
AC
1807 -- Similarly, we have to expand slices of packed arrays here
1808 -- because the result must be byte aligned.
70482933 1809
fbf5a39b
AC
1810 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
1811 Add_Call_By_Copy_Code;
70482933 1812
fbf5a39b
AC
1813 -- Only processing remaining is to pass by copy if this is a
1814 -- reference to a possibly unaligned slice, since the caller
1815 -- expects an appropriately aligned argument.
70482933 1816
fbf5a39b
AC
1817 elsif Is_Possibly_Unaligned_Slice (Actual) then
1818 Add_Call_By_Copy_Code;
fb468a94
AC
1819
1820 -- An unusual case: a current instance of an enclosing task can be
1821 -- an actual, and must be replaced by a reference to self.
1822
1823 elsif Is_Entity_Name (Actual)
1824 and then Is_Task_Type (Entity (Actual))
1825 then
1826 if In_Open_Scopes (Entity (Actual)) then
1827 Rewrite (Actual,
1828 (Make_Function_Call (Loc,
da574a86 1829 Name => New_Occurrence_Of (RTE (RE_Self), Loc))));
fb468a94
AC
1830 Analyze (Actual);
1831
1832 -- A task type cannot otherwise appear as an actual
1833
1834 else
1835 raise Program_Error;
1836 end if;
70482933
RK
1837 end if;
1838 end if;
1839
1840 Next_Formal (Formal);
1841 Next_Actual (Actual);
1842 end loop;
1843
1844 -- Find right place to put post call stuff if it is present
1845
1846 if not Is_Empty_List (Post_Call) then
1847
bdf69d33 1848 -- Cases where the call is not a member of a statement list
70482933
RK
1849
1850 if not Is_List_Member (N) then
70482933 1851
da574a86
AC
1852 -- In Ada 2012 the call may be a function call in an expression
1853 -- (since OUT and IN OUT parameters are now allowed for such
1854 -- calls). The write-back of (in)-out parameters is handled
1855 -- by the back-end, but the constraint checks generated when
1856 -- subtypes of formal and actual don't match must be inserted
1857 -- in the form of assignments.
bdf69d33 1858
da574a86
AC
1859 if Ada_Version >= Ada_2012
1860 and then Nkind (N) = N_Function_Call
1861 then
1862 -- We used to just do handle this by climbing up parents to
1863 -- a non-statement/declaration and then simply making a call
1864 -- to Insert_Actions_After (P, Post_Call), but that doesn't
1865 -- work. If we are in the middle of an expression, e.g. the
1866 -- condition of an IF, this call would insert after the IF
1867 -- statement, which is much too late to be doing the write
1868 -- back. For example:
1869
1870 -- if Clobber (X) then
1871 -- Put_Line (X'Img);
1872 -- else
1873 -- goto Junk
1874 -- end if;
1875
1876 -- Now assume Clobber changes X, if we put the write back
1877 -- after the IF, the Put_Line gets the wrong value and the
1878 -- goto causes the write back to be skipped completely.
1879
1880 -- To deal with this, we replace the call by
1881
1882 -- do
1883 -- Tnnn : function-result-type renames function-call;
1884 -- Post_Call actions
1885 -- in
1886 -- Tnnn;
1887 -- end;
1888
1889 -- Note: this won't do in Modify_Tree_For_C mode, but we
1890 -- will deal with that later (it will require creating a
1891 -- declaration for Temp, using Insert_Declaration) ???
1892
1893 declare
1894 Tnnn : constant Entity_Id := Make_Temporary (Loc, 'T');
1895 FRTyp : constant Entity_Id := Etype (N);
1896 Name : constant Node_Id := Relocate_Node (N);
1897
1898 begin
1899 Prepend_To (Post_Call,
1900 Make_Object_Renaming_Declaration (Loc,
1901 Defining_Identifier => Tnnn,
1902 Subtype_Mark => New_Occurrence_Of (FRTyp, Loc),
1903 Name => Name));
1904
1905 Rewrite (N,
1906 Make_Expression_With_Actions (Loc,
1907 Actions => Post_Call,
1908 Expression => New_Occurrence_Of (Tnnn, Loc)));
1909
1910 -- We don't want to just blindly call Analyze_And_Resolve
1911 -- because that would cause unwanted recursion on the call.
1912 -- So for a moment set the call as analyzed to prevent that
1913 -- recursion, and get the rest analyzed properly, then reset
1914 -- the analyzed flag, so our caller can continue.
1915
1916 Set_Analyzed (Name, True);
1917 Analyze_And_Resolve (N, FRTyp);
1918 Set_Analyzed (Name, False);
1919
1920 -- Reset calling argument to point to function call inside
1921 -- the expression with actions so the caller can continue
1922 -- to process the call.
1923
1924 N := Name;
1925 end;
1926
1927 -- If not the special Ada 2012 case of a function call, then
1928 -- we must have the triggering statement of a triggering
1929 -- alternative or an entry call alternative, and we can add
1930 -- the post call stuff to the corresponding statement list.
bdf69d33 1931
da574a86
AC
1932 else
1933 declare
1934 P : Node_Id;
70482933 1935
da574a86
AC
1936 begin
1937 P := Parent (N);
bdf69d33
AC
1938 pragma Assert (Nkind_In (P, N_Triggering_Alternative,
1939 N_Entry_Call_Alternative));
1940
1941 if Is_Non_Empty_List (Statements (P)) then
1942 Insert_List_Before_And_Analyze
1943 (First (Statements (P)), Post_Call);
1944 else
1945 Set_Statements (P, Post_Call);
1946 end if;
bdf69d33 1947
da574a86
AC
1948 return;
1949 end;
1950 end if;
70482933
RK
1951
1952 -- Otherwise, normal case where N is in a statement sequence,
1953 -- just put the post-call stuff after the call statement.
1954
1955 else
1956 Insert_Actions_After (N, Post_Call);
da574a86 1957 return;
70482933
RK
1958 end if;
1959 end if;
1960
98f01d53 1961 -- The call node itself is re-analyzed in Expand_Call
70482933
RK
1962
1963 end Expand_Actuals;
1964
1965 -----------------
1966 -- Expand_Call --
1967 -----------------
1968
1969 -- This procedure handles expansion of function calls and procedure call
1970 -- statements (i.e. it serves as the body for Expand_N_Function_Call and
70f91180 1971 -- Expand_N_Procedure_Call_Statement). Processing for calls includes:
70482933 1972
70f91180 1973 -- Replace call to Raise_Exception by Raise_Exception_Always if possible
70482933
RK
1974 -- Provide values of actuals for all formals in Extra_Formals list
1975 -- Replace "call" to enumeration literal function by literal itself
1976 -- Rewrite call to predefined operator as operator
1977 -- Replace actuals to in-out parameters that are numeric conversions,
1978 -- with explicit assignment to temporaries before and after the call.
70482933
RK
1979
1980 -- Note that the list of actuals has been filled with default expressions
1981 -- during semantic analysis of the call. Only the extra actuals required
1982 -- for the 'Constrained attribute and for accessibility checks are added
1983 -- at this point.
1984
1985 procedure Expand_Call (N : Node_Id) is
1986 Loc : constant Source_Ptr := Sloc (N);
6dfc5592 1987 Call_Node : Node_Id := N;
70482933 1988 Extra_Actuals : List_Id := No_List;
fdce4bb7 1989 Prev : Node_Id := Empty;
758c442c 1990
70482933
RK
1991 procedure Add_Actual_Parameter (Insert_Param : Node_Id);
1992 -- Adds one entry to the end of the actual parameter list. Used for
2f1b20a9
ES
1993 -- default parameters and for extra actuals (for Extra_Formals). The
1994 -- argument is an N_Parameter_Association node.
70482933
RK
1995
1996 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
2f1b20a9
ES
1997 -- Adds an extra actual to the list of extra actuals. Expr is the
1998 -- expression for the value of the actual, EF is the entity for the
1999 -- extra formal.
70482933 2000
84f4072a
JM
2001 procedure Do_Inline (Subp : Entity_Id; Orig_Subp : Entity_Id);
2002 -- Check and inline the body of Subp. Invoked when compiling with
2003 -- optimizations enabled and Subp has pragma inline or inline always.
2004 -- If the subprogram is a renaming, or if it is inherited, then Subp
2005 -- references the renamed entity and Orig_Subp is the entity of the
2006 -- call node N.
2007
2008 procedure Do_Inline_Always (Subp : Entity_Id; Orig_Subp : Entity_Id);
2009 -- Check and inline the body of Subp. Invoked when compiling without
2010 -- optimizations and Subp has pragma inline always. If the subprogram is
2011 -- a renaming, or if it is inherited, then Subp references the renamed
2012 -- entity and Orig_Subp is the entity of the call node N.
2013
70482933 2014 function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
1fb63e89 2015 -- Within an instance, a type derived from an untagged formal derived
70f91180
RD
2016 -- type inherits from the original parent, not from the actual. The
2017 -- current derivation mechanism has the derived type inherit from the
2018 -- actual, which is only correct outside of the instance. If the
2019 -- subprogram is inherited, we test for this particular case through a
2020 -- convoluted tree traversal before setting the proper subprogram to be
2021 -- called.
70482933 2022
84f4072a
JM
2023 function In_Unfrozen_Instance (E : Entity_Id) return Boolean;
2024 -- Return true if E comes from an instance that is not yet frozen
2025
df3e68b1 2026 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean;
2c1b72d7 2027 -- Determine if Subp denotes a non-dispatching call to a Deep routine
df3e68b1 2028
dd386db0
AC
2029 function New_Value (From : Node_Id) return Node_Id;
2030 -- From is the original Expression. New_Value is equivalent to a call
2031 -- to Duplicate_Subexpr with an explicit dereference when From is an
2032 -- access parameter.
2033
70482933
RK
2034 --------------------------
2035 -- Add_Actual_Parameter --
2036 --------------------------
2037
2038 procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
2039 Actual_Expr : constant Node_Id :=
2040 Explicit_Actual_Parameter (Insert_Param);
2041
2042 begin
2043 -- Case of insertion is first named actual
2044
2045 if No (Prev) or else
2046 Nkind (Parent (Prev)) /= N_Parameter_Association
2047 then
6dfc5592
RD
2048 Set_Next_Named_Actual
2049 (Insert_Param, First_Named_Actual (Call_Node));
2050 Set_First_Named_Actual (Call_Node, Actual_Expr);
70482933
RK
2051
2052 if No (Prev) then
6dfc5592
RD
2053 if No (Parameter_Associations (Call_Node)) then
2054 Set_Parameter_Associations (Call_Node, New_List);
70482933 2055 end if;
57a3fca9
AC
2056
2057 Append (Insert_Param, Parameter_Associations (Call_Node));
2058
70482933
RK
2059 else
2060 Insert_After (Prev, Insert_Param);
2061 end if;
2062
2063 -- Case of insertion is not first named actual
2064
2065 else
2066 Set_Next_Named_Actual
2067 (Insert_Param, Next_Named_Actual (Parent (Prev)));
2068 Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
6dfc5592 2069 Append (Insert_Param, Parameter_Associations (Call_Node));
70482933
RK
2070 end if;
2071
2072 Prev := Actual_Expr;
2073 end Add_Actual_Parameter;
2074
2075 ----------------------
2076 -- Add_Extra_Actual --
2077 ----------------------
2078
2079 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
2080 Loc : constant Source_Ptr := Sloc (Expr);
2081
2082 begin
2083 if Extra_Actuals = No_List then
2084 Extra_Actuals := New_List;
6dfc5592 2085 Set_Parent (Extra_Actuals, Call_Node);
70482933
RK
2086 end if;
2087
2088 Append_To (Extra_Actuals,
2089 Make_Parameter_Association (Loc,
7a2c2277 2090 Selector_Name => New_Occurrence_Of (EF, Loc),
9d983bbf 2091 Explicit_Actual_Parameter => Expr));
70482933
RK
2092
2093 Analyze_And_Resolve (Expr, Etype (EF));
75a64833 2094
6dfc5592 2095 if Nkind (Call_Node) = N_Function_Call then
75a64833
AC
2096 Set_Is_Accessibility_Actual (Parent (Expr));
2097 end if;
70482933
RK
2098 end Add_Extra_Actual;
2099
84f4072a
JM
2100 ----------------
2101 -- Do_Inline --
2102 ----------------
2103
2104 procedure Do_Inline (Subp : Entity_Id; Orig_Subp : Entity_Id) is
2105 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
2106
2107 procedure Do_Backend_Inline;
2108 -- Check that the call can be safely passed to the backend. If true
2109 -- then register the enclosing unit of Subp to Inlined_Bodies so that
2110 -- the body of Subp can be retrieved and analyzed by the backend.
2111
84f4072a
JM
2112 -----------------------
2113 -- Do_Backend_Inline --
2114 -----------------------
2115
2116 procedure Do_Backend_Inline is
2117 begin
2118 -- No extra test needed for init subprograms since we know they
a90bd866 2119 -- are available to the backend.
84f4072a
JM
2120
2121 if Is_Init_Proc (Subp) then
2122 Add_Inlined_Body (Subp);
2123 Register_Backend_Call (Call_Node);
2124
2125 -- Verify that if the body to inline is located in the current
2126 -- unit the inlining does not occur earlier. This avoids
2127 -- order-of-elaboration problems in the back end.
2128
2129 elsif In_Same_Extended_Unit (Call_Node, Subp)
2130 and then Nkind (Spec) = N_Subprogram_Declaration
2131 and then Earlier_In_Extended_Unit
2132 (Loc, Sloc (Body_To_Inline (Spec)))
2133 then
2134 Error_Msg_NE
685bc70f 2135 ("cannot inline& (body not seen yet)??", Call_Node, Subp);
84f4072a
JM
2136
2137 else
2138 declare
2139 Backend_Inline : Boolean := True;
2140
2141 begin
2142 -- If we are compiling a package body that is not the
2143 -- main unit, it must be for inlining/instantiation
2144 -- purposes, in which case we inline the call to insure
2145 -- that the same temporaries are generated when compiling
2146 -- the body by itself. Otherwise link errors can occur.
2147
2148 -- If the function being called is itself in the main
2149 -- unit, we cannot inline, because there is a risk of
2150 -- double elaboration and/or circularity: the inlining
2151 -- can make visible a private entity in the body of the
2152 -- main unit, that gigi will see before its sees its
2153 -- proper definition.
2154
2155 if not (In_Extended_Main_Code_Unit (Call_Node))
2156 and then In_Package_Body
2157 then
2158 Backend_Inline :=
2159 not In_Extended_Main_Source_Unit (Subp);
2160 end if;
2161
2162 if Backend_Inline then
2163 Add_Inlined_Body (Subp);
2164 Register_Backend_Call (Call_Node);
2165 end if;
2166 end;
2167 end if;
2168 end Do_Backend_Inline;
2169
84f4072a
JM
2170 -- Start of processing for Do_Inline
2171
2172 begin
2173 -- Verify that the body to inline has already been seen
2174
2175 if No (Spec)
2176 or else Nkind (Spec) /= N_Subprogram_Declaration
2177 or else No (Body_To_Inline (Spec))
2178 then
2179 if Comes_From_Source (Subp)
2180 and then Must_Inline (Subp)
2181 then
2182 Cannot_Inline
2183 ("cannot inline& (body not seen yet)?", Call_Node, Subp);
2184
2185 -- Let the back end handle it
2186
2187 else
2188 Do_Backend_Inline;
2189 return;
2190 end if;
2191
2192 -- If this an inherited function that returns a private type, do not
2193 -- inline if the full view is an unconstrained array, because such
2194 -- calls cannot be inlined.
2195
2196 elsif Present (Orig_Subp)
2197 and then Is_Array_Type (Etype (Orig_Subp))
2198 and then not Is_Constrained (Etype (Orig_Subp))
2199 then
2200 Cannot_Inline
2201 ("cannot inline& (unconstrained array)?", Call_Node, Subp);
2202
2203 else
2204 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
2205 end if;
2206 end Do_Inline;
2207
2208 ----------------------
2209 -- Do_Inline_Always --
2210 ----------------------
2211
2212 procedure Do_Inline_Always (Subp : Entity_Id; Orig_Subp : Entity_Id) is
2213 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
2214 Body_Id : Entity_Id;
2215
2216 begin
2217 if No (Spec)
2218 or else Nkind (Spec) /= N_Subprogram_Declaration
2219 or else No (Body_To_Inline (Spec))
2220 or else Serious_Errors_Detected /= 0
2221 then
2222 return;
2223 end if;
2224
2225 Body_Id := Corresponding_Body (Spec);
2226
2227 -- Verify that the body to inline has already been seen
2228
2229 if No (Body_Id)
2230 or else not Analyzed (Body_Id)
2231 then
2232 Set_Is_Inlined (Subp, False);
2233
2234 if Comes_From_Source (Subp) then
2235
2236 -- Report a warning only if the call is located in the unit of
2237 -- the called subprogram; otherwise it is an error.
2238
2239 if not In_Same_Extended_Unit (Call_Node, Subp) then
2240 Cannot_Inline
685bc70f 2241 ("cannot inline& (body not seen yet)?", Call_Node, Subp,
84f4072a
JM
2242 Is_Serious => True);
2243
2244 elsif In_Open_Scopes (Subp) then
2245
2246 -- For backward compatibility we generate the same error
2247 -- or warning of the previous implementation. This will
2248 -- be changed when we definitely incorporate the new
2249 -- support ???
2250
2251 if Front_End_Inlining
2252 and then Optimization_Level = 0
2253 then
2254 Error_Msg_N
685bc70f 2255 ("call to recursive subprogram cannot be inlined?p?",
84f4072a
JM
2256 N);
2257
2258 -- Do not emit error compiling runtime packages
2259
2260 elsif Is_Predefined_File_Name
2261 (Unit_File_Name (Get_Source_Unit (Subp)))
2262 then
2263 Error_Msg_N
685bc70f 2264 ("call to recursive subprogram cannot be inlined??",
84f4072a
JM
2265 N);
2266
2267 else
2268 Error_Msg_N
2269 ("call to recursive subprogram cannot be inlined",
2270 N);
2271 end if;
2272
2273 else
2274 Cannot_Inline
2275 ("cannot inline& (body not seen yet)?", Call_Node, Subp);
2276 end if;
2277 end if;
2278
2279 return;
2280
2281 -- If this an inherited function that returns a private type, do not
2282 -- inline if the full view is an unconstrained array, because such
2283 -- calls cannot be inlined.
2284
2285 elsif Present (Orig_Subp)
2286 and then Is_Array_Type (Etype (Orig_Subp))
2287 and then not Is_Constrained (Etype (Orig_Subp))
2288 then
2289 Cannot_Inline
2290 ("cannot inline& (unconstrained array)?", Call_Node, Subp);
2291
2292 -- If the called subprogram comes from an instance in the same
2293 -- unit, and the instance is not yet frozen, inlining might
2294 -- trigger order-of-elaboration problems.
2295
2296 elsif In_Unfrozen_Instance (Scope (Subp)) then
2297 Cannot_Inline
2298 ("cannot inline& (unfrozen instance)?", Call_Node, Subp);
2299
2300 else
2301 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
2302 end if;
2303 end Do_Inline_Always;
2304
70482933
RK
2305 ---------------------------
2306 -- Inherited_From_Formal --
2307 ---------------------------
2308
2309 function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
2310 Par : Entity_Id;
2311 Gen_Par : Entity_Id;
2312 Gen_Prim : Elist_Id;
2313 Elmt : Elmt_Id;
2314 Indic : Node_Id;
2315
2316 begin
2317 -- If the operation is inherited, it is attached to the corresponding
2318 -- type derivation. If the parent in the derivation is a generic
2319 -- actual, it is a subtype of the actual, and we have to recover the
2320 -- original derived type declaration to find the proper parent.
2321
2322 if Nkind (Parent (S)) /= N_Full_Type_Declaration
fbf5a39b 2323 or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
2f1b20a9
ES
2324 or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
2325 N_Derived_Type_Definition
fbf5a39b 2326 or else not In_Instance
70482933
RK
2327 then
2328 return Empty;
2329
2330 else
2331 Indic :=
e27b834b
AC
2332 Subtype_Indication
2333 (Type_Definition (Original_Node (Parent (S))));
70482933
RK
2334
2335 if Nkind (Indic) = N_Subtype_Indication then
2336 Par := Entity (Subtype_Mark (Indic));
2337 else
2338 Par := Entity (Indic);
2339 end if;
2340 end if;
2341
2342 if not Is_Generic_Actual_Type (Par)
2343 or else Is_Tagged_Type (Par)
2344 or else Nkind (Parent (Par)) /= N_Subtype_Declaration
2345 or else not In_Open_Scopes (Scope (Par))
70482933
RK
2346 then
2347 return Empty;
70482933
RK
2348 else
2349 Gen_Par := Generic_Parent_Type (Parent (Par));
2350 end if;
2351
7888a6ae
GD
2352 -- If the actual has no generic parent type, the formal is not
2353 -- a formal derived type, so nothing to inherit.
2354
2355 if No (Gen_Par) then
2356 return Empty;
2357 end if;
2358
2f1b20a9
ES
2359 -- If the generic parent type is still the generic type, this is a
2360 -- private formal, not a derived formal, and there are no operations
2361 -- inherited from the formal.
fbf5a39b
AC
2362
2363 if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
2364 return Empty;
2365 end if;
2366
70482933 2367 Gen_Prim := Collect_Primitive_Operations (Gen_Par);
70482933 2368
2f1b20a9 2369 Elmt := First_Elmt (Gen_Prim);
70482933
RK
2370 while Present (Elmt) loop
2371 if Chars (Node (Elmt)) = Chars (S) then
2372 declare
2373 F1 : Entity_Id;
2374 F2 : Entity_Id;
70482933 2375
2f1b20a9 2376 begin
70482933
RK
2377 F1 := First_Formal (S);
2378 F2 := First_Formal (Node (Elmt));
70482933
RK
2379 while Present (F1)
2380 and then Present (F2)
2381 loop
70482933
RK
2382 if Etype (F1) = Etype (F2)
2383 or else Etype (F2) = Gen_Par
2384 then
2385 Next_Formal (F1);
2386 Next_Formal (F2);
2387 else
2388 Next_Elmt (Elmt);
2389 exit; -- not the right subprogram
2390 end if;
2391
2392 return Node (Elmt);
2393 end loop;
2394 end;
2395
2396 else
2397 Next_Elmt (Elmt);
2398 end if;
2399 end loop;
2400
2401 raise Program_Error;
2402 end Inherited_From_Formal;
2403
84f4072a
JM
2404 --------------------------
2405 -- In_Unfrozen_Instance --
2406 --------------------------
2407
2408 function In_Unfrozen_Instance (E : Entity_Id) return Boolean is
bde73c6b 2409 S : Entity_Id;
84f4072a
JM
2410
2411 begin
bde73c6b
AC
2412 S := E;
2413 while Present (S) and then S /= Standard_Standard loop
84f4072a
JM
2414 if Is_Generic_Instance (S)
2415 and then Present (Freeze_Node (S))
2416 and then not Analyzed (Freeze_Node (S))
2417 then
2418 return True;
2419 end if;
2420
2421 S := Scope (S);
2422 end loop;
2423
2424 return False;
2425 end In_Unfrozen_Instance;
2426
df3e68b1
HK
2427 -------------------------
2428 -- Is_Direct_Deep_Call --
2429 -------------------------
2430
2431 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean is
2432 begin
2433 if Is_TSS (Subp, TSS_Deep_Adjust)
2434 or else Is_TSS (Subp, TSS_Deep_Finalize)
2435 or else Is_TSS (Subp, TSS_Deep_Initialize)
2436 then
2437 declare
2438 Actual : Node_Id;
2439 Formal : Node_Id;
2440
2441 begin
2442 Actual := First (Parameter_Associations (N));
2443 Formal := First_Formal (Subp);
2444 while Present (Actual)
2445 and then Present (Formal)
2446 loop
2447 if Nkind (Actual) = N_Identifier
2448 and then Is_Controlling_Actual (Actual)
2449 and then Etype (Actual) = Etype (Formal)
2450 then
2451 return True;
2452 end if;
2453
2454 Next (Actual);
2455 Next_Formal (Formal);
2456 end loop;
2457 end;
2458 end if;
2459
2460 return False;
2461 end Is_Direct_Deep_Call;
2462
dd386db0
AC
2463 ---------------
2464 -- New_Value --
2465 ---------------
2466
2467 function New_Value (From : Node_Id) return Node_Id is
2468 Res : constant Node_Id := Duplicate_Subexpr (From);
2469 begin
2470 if Is_Access_Type (Etype (From)) then
bde73c6b 2471 return Make_Explicit_Dereference (Sloc (From), Prefix => Res);
dd386db0
AC
2472 else
2473 return Res;
2474 end if;
2475 end New_Value;
2476
fdce4bb7
JM
2477 -- Local variables
2478
deb8dacc
HK
2479 Curr_S : constant Entity_Id := Current_Scope;
2480 Remote : constant Boolean := Is_Remote_Call (Call_Node);
fdce4bb7
JM
2481 Actual : Node_Id;
2482 Formal : Entity_Id;
2483 Orig_Subp : Entity_Id := Empty;
2484 Param_Count : Natural := 0;
2485 Parent_Formal : Entity_Id;
2486 Parent_Subp : Entity_Id;
2487 Scop : Entity_Id;
2488 Subp : Entity_Id;
2489
e27b834b 2490 Prev_Orig : Node_Id;
fdce4bb7
JM
2491 -- Original node for an actual, which may have been rewritten. If the
2492 -- actual is a function call that has been transformed from a selected
2493 -- component, the original node is unanalyzed. Otherwise, it carries
2494 -- semantic information used to generate additional actuals.
2495
2496 CW_Interface_Formals_Present : Boolean := False;
2497
70482933
RK
2498 -- Start of processing for Expand_Call
2499
2500 begin
dec6faf1
AC
2501 -- Expand the procedure call if the first actual has a dimension and if
2502 -- the procedure is Put (Ada 2012).
2503
2504 if Ada_Version >= Ada_2012
2505 and then Nkind (Call_Node) = N_Procedure_Call_Statement
2506 and then Present (Parameter_Associations (Call_Node))
2507 then
df378148 2508 Expand_Put_Call_With_Symbol (Call_Node);
dec6faf1
AC
2509 end if;
2510
07fc65c4
GB
2511 -- Ignore if previous error
2512
6dfc5592
RD
2513 if Nkind (Call_Node) in N_Has_Etype
2514 and then Etype (Call_Node) = Any_Type
2515 then
07fc65c4
GB
2516 return;
2517 end if;
2518
70482933
RK
2519 -- Call using access to subprogram with explicit dereference
2520
6dfc5592
RD
2521 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
2522 Subp := Etype (Name (Call_Node));
70482933
RK
2523 Parent_Subp := Empty;
2524
2525 -- Case of call to simple entry, where the Name is a selected component
2526 -- whose prefix is the task, and whose selector name is the entry name
2527
6dfc5592
RD
2528 elsif Nkind (Name (Call_Node)) = N_Selected_Component then
2529 Subp := Entity (Selector_Name (Name (Call_Node)));
70482933
RK
2530 Parent_Subp := Empty;
2531
2532 -- Case of call to member of entry family, where Name is an indexed
2533 -- component, with the prefix being a selected component giving the
2534 -- task and entry family name, and the index being the entry index.
2535
6dfc5592
RD
2536 elsif Nkind (Name (Call_Node)) = N_Indexed_Component then
2537 Subp := Entity (Selector_Name (Prefix (Name (Call_Node))));
70482933
RK
2538 Parent_Subp := Empty;
2539
2540 -- Normal case
2541
2542 else
6dfc5592 2543 Subp := Entity (Name (Call_Node));
70482933
RK
2544 Parent_Subp := Alias (Subp);
2545
2546 -- Replace call to Raise_Exception by call to Raise_Exception_Always
2547 -- if we can tell that the first parameter cannot possibly be null.
70f91180 2548 -- This improves efficiency by avoiding a run-time test.
70482933 2549
7888a6ae
GD
2550 -- We do not do this if Raise_Exception_Always does not exist, which
2551 -- can happen in configurable run time profiles which provide only a
70f91180 2552 -- Raise_Exception.
7888a6ae
GD
2553
2554 if Is_RTE (Subp, RE_Raise_Exception)
2555 and then RTE_Available (RE_Raise_Exception_Always)
70482933
RK
2556 then
2557 declare
3cae7f14
RD
2558 FA : constant Node_Id :=
2559 Original_Node (First_Actual (Call_Node));
2560
70482933
RK
2561 begin
2562 -- The case we catch is where the first argument is obtained
2f1b20a9
ES
2563 -- using the Identity attribute (which must always be
2564 -- non-null).
70482933
RK
2565
2566 if Nkind (FA) = N_Attribute_Reference
2567 and then Attribute_Name (FA) = Name_Identity
2568 then
2569 Subp := RTE (RE_Raise_Exception_Always);
6dfc5592 2570 Set_Name (Call_Node, New_Occurrence_Of (Subp, Loc));
70482933
RK
2571 end if;
2572 end;
2573 end if;
2574
2575 if Ekind (Subp) = E_Entry then
2576 Parent_Subp := Empty;
2577 end if;
2578 end if;
2579
d3f70b35
AC
2580 -- Detect the following code in System.Finalization_Masters only on
2581 -- .NET/JVM targets:
e80f0cb0 2582
d3f70b35 2583 -- procedure Finalize (Master : in out Finalization_Master) is
deb8dacc
HK
2584 -- begin
2585 -- . . .
2586 -- begin
2587 -- Finalize (Curr_Ptr.all);
e80f0cb0 2588
deb8dacc 2589 -- Since .NET/JVM compilers lack address arithmetic and Deep_Finalize
e80f0cb0
RD
2590 -- cannot be named in library or user code, the compiler has to deal
2591 -- with this by transforming the call to Finalize into Deep_Finalize.
deb8dacc
HK
2592
2593 if VM_Target /= No_VM
2594 and then Chars (Subp) = Name_Finalize
2595 and then Ekind (Curr_S) = E_Block
2596 and then Ekind (Scope (Curr_S)) = E_Procedure
2597 and then Chars (Scope (Curr_S)) = Name_Finalize
2598 and then Etype (First_Formal (Scope (Curr_S))) =
d3f70b35 2599 RTE (RE_Finalization_Master)
deb8dacc
HK
2600 then
2601 declare
2602 Deep_Fin : constant Entity_Id :=
2603 Find_Prim_Op (RTE (RE_Root_Controlled),
2604 TSS_Deep_Finalize);
2605 begin
2606 -- Since Root_Controlled is a tagged type, the compiler should
2607 -- always generate Deep_Finalize for it.
2608
2609 pragma Assert (Present (Deep_Fin));
2610
2611 -- Generate:
2612 -- Deep_Finalize (Curr_Ptr.all);
2613
2614 Rewrite (N,
2615 Make_Procedure_Call_Statement (Loc,
2616 Name =>
e4494292 2617 New_Occurrence_Of (Deep_Fin, Loc),
deb8dacc
HK
2618 Parameter_Associations =>
2619 New_Copy_List_Tree (Parameter_Associations (N))));
2620
2621 Analyze (N);
2622 return;
2623 end;
2624 end if;
2625
f4d379b8
HK
2626 -- Ada 2005 (AI-345): We have a procedure call as a triggering
2627 -- alternative in an asynchronous select or as an entry call in
2628 -- a conditional or timed select. Check whether the procedure call
2629 -- is a renaming of an entry and rewrite it as an entry call.
2630
0791fbe9 2631 if Ada_Version >= Ada_2005
6dfc5592 2632 and then Nkind (Call_Node) = N_Procedure_Call_Statement
f4d379b8 2633 and then
6dfc5592 2634 ((Nkind (Parent (Call_Node)) = N_Triggering_Alternative
3cae7f14 2635 and then Triggering_Statement (Parent (Call_Node)) = Call_Node)
f4d379b8 2636 or else
6dfc5592 2637 (Nkind (Parent (Call_Node)) = N_Entry_Call_Alternative
3cae7f14 2638 and then Entry_Call_Statement (Parent (Call_Node)) = Call_Node))
f4d379b8
HK
2639 then
2640 declare
2641 Ren_Decl : Node_Id;
2642 Ren_Root : Entity_Id := Subp;
2643
2644 begin
2645 -- This may be a chain of renamings, find the root
2646
2647 if Present (Alias (Ren_Root)) then
2648 Ren_Root := Alias (Ren_Root);
2649 end if;
2650
2651 if Present (Original_Node (Parent (Parent (Ren_Root)))) then
2652 Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
2653
2654 if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
6dfc5592 2655 Rewrite (Call_Node,
f4d379b8
HK
2656 Make_Entry_Call_Statement (Loc,
2657 Name =>
2658 New_Copy_Tree (Name (Ren_Decl)),
2659 Parameter_Associations =>
6dfc5592
RD
2660 New_Copy_List_Tree
2661 (Parameter_Associations (Call_Node))));
f4d379b8
HK
2662
2663 return;
2664 end if;
2665 end if;
2666 end;
2667 end if;
2668
e27b834b
AC
2669 -- First step, compute extra actuals, corresponding to any Extra_Formals
2670 -- present. Note that we do not access Extra_Formals directly, instead
2671 -- we simply note the presence of the extra formals as we process the
2672 -- regular formals collecting corresponding actuals in Extra_Actuals.
70482933 2673
c2369146
AC
2674 -- We also generate any required range checks for actuals for in formals
2675 -- as we go through the loop, since this is a convenient place to do it.
2676 -- (Though it seems that this would be better done in Expand_Actuals???)
fbf5a39b 2677
e2441021
AC
2678 -- Special case: Thunks must not compute the extra actuals; they must
2679 -- just propagate to the target primitive their extra actuals.
2680
2681 if Is_Thunk (Current_Scope)
2682 and then Thunk_Entity (Current_Scope) = Subp
2683 and then Present (Extra_Formals (Subp))
2684 then
2685 pragma Assert (Present (Extra_Formals (Current_Scope)));
2686
2687 declare
2688 Target_Formal : Entity_Id;
2689 Thunk_Formal : Entity_Id;
2690
2691 begin
2692 Target_Formal := Extra_Formals (Subp);
2693 Thunk_Formal := Extra_Formals (Current_Scope);
2694 while Present (Target_Formal) loop
2695 Add_Extra_Actual
2696 (New_Occurrence_Of (Thunk_Formal, Loc), Thunk_Formal);
2697
2698 Target_Formal := Extra_Formal (Target_Formal);
2699 Thunk_Formal := Extra_Formal (Thunk_Formal);
2700 end loop;
2701
2702 while Is_Non_Empty_List (Extra_Actuals) loop
2703 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
2704 end loop;
2705
2706 Expand_Actuals (Call_Node, Subp);
2707 return;
2708 end;
2709 end if;
2710
8c5b03a0
AC
2711 Formal := First_Formal (Subp);
2712 Actual := First_Actual (Call_Node);
fdce4bb7 2713 Param_Count := 1;
70482933 2714 while Present (Formal) loop
fbf5a39b 2715
d79e621a 2716 -- Generate range check if required
fbf5a39b 2717
d79e621a 2718 if Do_Range_Check (Actual)
c2369146 2719 and then Ekind (Formal) = E_In_Parameter
d79e621a 2720 then
d79e621a
GD
2721 Generate_Range_Check
2722 (Actual, Etype (Formal), CE_Range_Check_Failed);
2723 end if;
fbf5a39b
AC
2724
2725 -- Prepare to examine current entry
2726
70482933
RK
2727 Prev := Actual;
2728 Prev_Orig := Original_Node (Prev);
2729
758c442c 2730 -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
2f1b20a9 2731 -- to expand it in a further round.
758c442c
GD
2732
2733 CW_Interface_Formals_Present :=
2734 CW_Interface_Formals_Present
2735 or else
2736 (Ekind (Etype (Formal)) = E_Class_Wide_Type
8c5b03a0 2737 and then Is_Interface (Etype (Etype (Formal))))
758c442c
GD
2738 or else
2739 (Ekind (Etype (Formal)) = E_Anonymous_Access_Type
2740 and then Is_Interface (Directly_Designated_Type
2741 (Etype (Etype (Formal)))));
2742
2743 -- Create possible extra actual for constrained case. Usually, the
2744 -- extra actual is of the form actual'constrained, but since this
2745 -- attribute is only available for unconstrained records, TRUE is
2746 -- expanded if the type of the formal happens to be constrained (for
2747 -- instance when this procedure is inherited from an unconstrained
2748 -- record to a constrained one) or if the actual has no discriminant
2749 -- (its type is constrained). An exception to this is the case of a
2750 -- private type without discriminants. In this case we pass FALSE
2751 -- because the object has underlying discriminants with defaults.
70482933
RK
2752
2753 if Present (Extra_Constrained (Formal)) then
2754 if Ekind (Etype (Prev)) in Private_Kind
2755 and then not Has_Discriminants (Base_Type (Etype (Prev)))
2756 then
01aef5ad
GD
2757 Add_Extra_Actual
2758 (New_Occurrence_Of (Standard_False, Loc),
2759 Extra_Constrained (Formal));
70482933
RK
2760
2761 elsif Is_Constrained (Etype (Formal))
2762 or else not Has_Discriminants (Etype (Prev))
2763 then
01aef5ad
GD
2764 Add_Extra_Actual
2765 (New_Occurrence_Of (Standard_True, Loc),
2766 Extra_Constrained (Formal));
70482933 2767
5d09245e
AC
2768 -- Do not produce extra actuals for Unchecked_Union parameters.
2769 -- Jump directly to the end of the loop.
2770
2771 elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
2772 goto Skip_Extra_Actual_Generation;
2773
70482933
RK
2774 else
2775 -- If the actual is a type conversion, then the constrained
2776 -- test applies to the actual, not the target type.
2777
2778 declare
2f1b20a9 2779 Act_Prev : Node_Id;
70482933
RK
2780
2781 begin
2f1b20a9
ES
2782 -- Test for unchecked conversions as well, which can occur
2783 -- as out parameter actuals on calls to stream procedures.
70482933 2784
2f1b20a9 2785 Act_Prev := Prev;
ac4d6407
RD
2786 while Nkind_In (Act_Prev, N_Type_Conversion,
2787 N_Unchecked_Type_Conversion)
fbf5a39b 2788 loop
70482933 2789 Act_Prev := Expression (Act_Prev);
fbf5a39b 2790 end loop;
70482933 2791
3563739b
AC
2792 -- If the expression is a conversion of a dereference, this
2793 -- is internally generated code that manipulates addresses,
2794 -- e.g. when building interface tables. No check should
2795 -- occur in this case, and the discriminated object is not
2796 -- directly a hand.
f4d379b8
HK
2797
2798 if not Comes_From_Source (Actual)
2799 and then Nkind (Actual) = N_Unchecked_Type_Conversion
2800 and then Nkind (Act_Prev) = N_Explicit_Dereference
2801 then
2802 Add_Extra_Actual
2803 (New_Occurrence_Of (Standard_False, Loc),
2804 Extra_Constrained (Formal));
2805
2806 else
2807 Add_Extra_Actual
2808 (Make_Attribute_Reference (Sloc (Prev),
2809 Prefix =>
2810 Duplicate_Subexpr_No_Checks
2811 (Act_Prev, Name_Req => True),
2812 Attribute_Name => Name_Constrained),
2813 Extra_Constrained (Formal));
2814 end if;
70482933
RK
2815 end;
2816 end if;
2817 end if;
2818
2819 -- Create possible extra actual for accessibility level
2820
2821 if Present (Extra_Accessibility (Formal)) then
7888a6ae
GD
2822
2823 -- Ada 2005 (AI-252): If the actual was rewritten as an Access
2824 -- attribute, then the original actual may be an aliased object
2825 -- occurring as the prefix in a call using "Object.Operation"
2826 -- notation. In that case we must pass the level of the object,
2827 -- so Prev_Orig is reset to Prev and the attribute will be
2828 -- processed by the code for Access attributes further below.
2829
2830 if Prev_Orig /= Prev
2831 and then Nkind (Prev) = N_Attribute_Reference
2832 and then
2833 Get_Attribute_Id (Attribute_Name (Prev)) = Attribute_Access
2834 and then Is_Aliased_View (Prev_Orig)
2835 then
2836 Prev_Orig := Prev;
2837 end if;
2838
9d983bbf
AC
2839 -- Ada 2005 (AI-251): Thunks must propagate the extra actuals of
2840 -- accessibility levels.
fdce4bb7 2841
da1c23dd 2842 if Is_Thunk (Current_Scope) then
fdce4bb7
JM
2843 declare
2844 Parm_Ent : Entity_Id;
2845
2846 begin
2847 if Is_Controlling_Actual (Actual) then
2848
2849 -- Find the corresponding actual of the thunk
2850
2851 Parm_Ent := First_Entity (Current_Scope);
2852 for J in 2 .. Param_Count loop
2853 Next_Entity (Parm_Ent);
2854 end loop;
2855
8a49a499 2856 -- Handle unchecked conversion of access types generated
5b5b27ad 2857 -- in thunks (cf. Expand_Interface_Thunk).
8a49a499
AC
2858
2859 elsif Is_Access_Type (Etype (Actual))
2860 and then Nkind (Actual) = N_Unchecked_Type_Conversion
2861 then
2862 Parm_Ent := Entity (Expression (Actual));
2863
fdce4bb7
JM
2864 else pragma Assert (Is_Entity_Name (Actual));
2865 Parm_Ent := Entity (Actual);
2866 end if;
2867
2868 Add_Extra_Actual
2869 (New_Occurrence_Of (Extra_Accessibility (Parm_Ent), Loc),
2870 Extra_Accessibility (Formal));
2871 end;
2872
2873 elsif Is_Entity_Name (Prev_Orig) then
70482933 2874
d766cee3
RD
2875 -- When passing an access parameter, or a renaming of an access
2876 -- parameter, as the actual to another access parameter we need
2877 -- to pass along the actual's own access level parameter. This
2878 -- is done if we are within the scope of the formal access
2879 -- parameter (if this is an inlined body the extra formal is
2880 -- irrelevant).
2881
2882 if (Is_Formal (Entity (Prev_Orig))
2883 or else
2884 (Present (Renamed_Object (Entity (Prev_Orig)))
2885 and then
2886 Is_Entity_Name (Renamed_Object (Entity (Prev_Orig)))
2887 and then
2888 Is_Formal
2889 (Entity (Renamed_Object (Entity (Prev_Orig))))))
70482933
RK
2890 and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
2891 and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
2892 then
2893 declare
2894 Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
2895
2896 begin
2897 pragma Assert (Present (Parm_Ent));
2898
2899 if Present (Extra_Accessibility (Parm_Ent)) then
f4d379b8
HK
2900 Add_Extra_Actual
2901 (New_Occurrence_Of
2902 (Extra_Accessibility (Parm_Ent), Loc),
2903 Extra_Accessibility (Formal));
70482933
RK
2904
2905 -- If the actual access parameter does not have an
2906 -- associated extra formal providing its scope level,
2907 -- then treat the actual as having library-level
2908 -- accessibility.
2909
2910 else
f4d379b8
HK
2911 Add_Extra_Actual
2912 (Make_Integer_Literal (Loc,
01aef5ad 2913 Intval => Scope_Depth (Standard_Standard)),
f4d379b8 2914 Extra_Accessibility (Formal));
70482933
RK
2915 end if;
2916 end;
2917
7888a6ae
GD
2918 -- The actual is a normal access value, so just pass the level
2919 -- of the actual's access type.
70482933
RK
2920
2921 else
f4d379b8 2922 Add_Extra_Actual
d15f9422 2923 (Dynamic_Accessibility_Level (Prev_Orig),
f4d379b8 2924 Extra_Accessibility (Formal));
70482933
RK
2925 end if;
2926
01aef5ad
GD
2927 -- If the actual is an access discriminant, then pass the level
2928 -- of the enclosing object (RM05-3.10.2(12.4/2)).
2929
2930 elsif Nkind (Prev_Orig) = N_Selected_Component
2931 and then Ekind (Entity (Selector_Name (Prev_Orig))) =
2932 E_Discriminant
2933 and then Ekind (Etype (Entity (Selector_Name (Prev_Orig)))) =
2934 E_Anonymous_Access_Type
2935 then
2936 Add_Extra_Actual
2937 (Make_Integer_Literal (Loc,
2938 Intval => Object_Access_Level (Prefix (Prev_Orig))),
2939 Extra_Accessibility (Formal));
2940
2941 -- All other cases
fdce4bb7 2942
70482933
RK
2943 else
2944 case Nkind (Prev_Orig) is
2945
2946 when N_Attribute_Reference =>
70482933
RK
2947 case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
2948
75a64833 2949 -- For X'Access, pass on the level of the prefix X
70482933
RK
2950
2951 when Attribute_Access =>
996c8821 2952
6cce2156
GD
2953 -- If this is an Access attribute applied to the
2954 -- the current instance object passed to a type
2955 -- initialization procedure, then use the level
2956 -- of the type itself. This is not really correct,
2957 -- as there should be an extra level parameter
2958 -- passed in with _init formals (only in the case
2959 -- where the type is immutably limited), but we
2960 -- don't have an easy way currently to create such
2961 -- an extra formal (init procs aren't ever frozen).
2962 -- For now we just use the level of the type,
2963 -- which may be too shallow, but that works better
2964 -- than passing Object_Access_Level of the type,
2965 -- which can be one level too deep in some cases.
2966 -- ???
2967
2968 if Is_Entity_Name (Prefix (Prev_Orig))
2969 and then Is_Type (Entity (Prefix (Prev_Orig)))
2970 then
2971 Add_Extra_Actual
2972 (Make_Integer_Literal (Loc,
2973 Intval =>
2974 Type_Access_Level
2975 (Entity (Prefix (Prev_Orig)))),
2976 Extra_Accessibility (Formal));
2977
2978 else
2979 Add_Extra_Actual
2980 (Make_Integer_Literal (Loc,
2981 Intval =>
2982 Object_Access_Level
2983 (Prefix (Prev_Orig))),
2984 Extra_Accessibility (Formal));
2985 end if;
70482933
RK
2986
2987 -- Treat the unchecked attributes as library-level
2988
2989 when Attribute_Unchecked_Access |
2990 Attribute_Unrestricted_Access =>
01aef5ad
GD
2991 Add_Extra_Actual
2992 (Make_Integer_Literal (Loc,
2993 Intval => Scope_Depth (Standard_Standard)),
2994 Extra_Accessibility (Formal));
70482933
RK
2995
2996 -- No other cases of attributes returning access
9d983bbf 2997 -- values that can be passed to access parameters.
70482933
RK
2998
2999 when others =>
3000 raise Program_Error;
3001
3002 end case;
3003
92a745f3
TQ
3004 -- For allocators we pass the level of the execution of the
3005 -- called subprogram, which is one greater than the current
3006 -- scope level.
70482933
RK
3007
3008 when N_Allocator =>
01aef5ad
GD
3009 Add_Extra_Actual
3010 (Make_Integer_Literal (Loc,
3011 Intval => Scope_Depth (Current_Scope) + 1),
3012 Extra_Accessibility (Formal));
70482933 3013
d15f9422
AC
3014 -- For most other cases we simply pass the level of the
3015 -- actual's access type. The type is retrieved from
3016 -- Prev rather than Prev_Orig, because in some cases
3017 -- Prev_Orig denotes an original expression that has
3018 -- not been analyzed.
70482933
RK
3019
3020 when others =>
01aef5ad 3021 Add_Extra_Actual
d15f9422 3022 (Dynamic_Accessibility_Level (Prev),
01aef5ad 3023 Extra_Accessibility (Formal));
70482933
RK
3024 end case;
3025 end if;
3026 end if;
3027
2f1b20a9 3028 -- Perform the check of 4.6(49) that prevents a null value from being
b3f48fd4
AC
3029 -- passed as an actual to an access parameter. Note that the check
3030 -- is elided in the common cases of passing an access attribute or
2f1b20a9
ES
3031 -- access parameter as an actual. Also, we currently don't enforce
3032 -- this check for expander-generated actuals and when -gnatdj is set.
70482933 3033
0791fbe9 3034 if Ada_Version >= Ada_2005 then
70482933 3035
b3f48fd4
AC
3036 -- Ada 2005 (AI-231): Check null-excluding access types. Note that
3037 -- the intent of 6.4.1(13) is that null-exclusion checks should
3038 -- not be done for 'out' parameters, even though it refers only
308e6f3a 3039 -- to constraint checks, and a null_exclusion is not a constraint.
b3f48fd4 3040 -- Note that AI05-0196-1 corrects this mistake in the RM.
70482933 3041
2f1b20a9
ES
3042 if Is_Access_Type (Etype (Formal))
3043 and then Can_Never_Be_Null (Etype (Formal))
b3f48fd4 3044 and then Ekind (Formal) /= E_Out_Parameter
2f1b20a9 3045 and then Nkind (Prev) /= N_Raise_Constraint_Error
d766cee3 3046 and then (Known_Null (Prev)
996c8821 3047 or else not Can_Never_Be_Null (Etype (Prev)))
2f1b20a9
ES
3048 then
3049 Install_Null_Excluding_Check (Prev);
3050 end if;
70482933 3051
0791fbe9 3052 -- Ada_Version < Ada_2005
70482933 3053
2f1b20a9
ES
3054 else
3055 if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
3056 or else Access_Checks_Suppressed (Subp)
3057 then
3058 null;
70482933 3059
2f1b20a9
ES
3060 elsif Debug_Flag_J then
3061 null;
70482933 3062
2f1b20a9
ES
3063 elsif not Comes_From_Source (Prev) then
3064 null;
70482933 3065
2f1b20a9
ES
3066 elsif Is_Entity_Name (Prev)
3067 and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
3068 then
3069 null;
2820d220 3070
ac4d6407 3071 elsif Nkind_In (Prev, N_Allocator, N_Attribute_Reference) then
2f1b20a9
ES
3072 null;
3073
3074 -- Suppress null checks when passing to access parameters of Java
7888a6ae
GD
3075 -- and CIL subprograms. (Should this be done for other foreign
3076 -- conventions as well ???)
2f1b20a9 3077
7888a6ae
GD
3078 elsif Convention (Subp) = Convention_Java
3079 or else Convention (Subp) = Convention_CIL
3080 then
2f1b20a9
ES
3081 null;
3082
3083 else
3084 Install_Null_Excluding_Check (Prev);
3085 end if;
70482933
RK
3086 end if;
3087
fbf5a39b
AC
3088 -- Perform appropriate validity checks on parameters that
3089 -- are entities.
70482933
RK
3090
3091 if Validity_Checks_On then
6cdb2c6e 3092 if (Ekind (Formal) = E_In_Parameter
996c8821 3093 and then Validity_Check_In_Params)
6cdb2c6e
AC
3094 or else
3095 (Ekind (Formal) = E_In_Out_Parameter
996c8821 3096 and then Validity_Check_In_Out_Params)
70482933 3097 then
7888a6ae
GD
3098 -- If the actual is an indexed component of a packed type (or
3099 -- is an indexed or selected component whose prefix recursively
3100 -- meets this condition), it has not been expanded yet. It will
3101 -- be copied in the validity code that follows, and has to be
3102 -- expanded appropriately, so reanalyze it.
08aa9a4a 3103
7888a6ae
GD
3104 -- What we do is just to unset analyzed bits on prefixes till
3105 -- we reach something that does not have a prefix.
3106
3107 declare
3108 Nod : Node_Id;
3109
3110 begin
3111 Nod := Actual;
ac4d6407
RD
3112 while Nkind_In (Nod, N_Indexed_Component,
3113 N_Selected_Component)
7888a6ae
GD
3114 loop
3115 Set_Analyzed (Nod, False);
3116 Nod := Prefix (Nod);
3117 end loop;
3118 end;
08aa9a4a 3119
70482933 3120 Ensure_Valid (Actual);
70482933
RK
3121 end if;
3122 end if;
3123
3124 -- For IN OUT and OUT parameters, ensure that subscripts are valid
3125 -- since this is a left side reference. We only do this for calls
3126 -- from the source program since we assume that compiler generated
3127 -- calls explicitly generate any required checks. We also need it
b3f48fd4
AC
3128 -- only if we are doing standard validity checks, since clearly it is
3129 -- not needed if validity checks are off, and in subscript validity
3130 -- checking mode, all indexed components are checked with a call
3131 -- directly from Expand_N_Indexed_Component.
70482933 3132
6dfc5592 3133 if Comes_From_Source (Call_Node)
70482933
RK
3134 and then Ekind (Formal) /= E_In_Parameter
3135 and then Validity_Checks_On
3136 and then Validity_Check_Default
3137 and then not Validity_Check_Subscripts
3138 then
3139 Check_Valid_Lvalue_Subscripts (Actual);
3140 end if;
3141
c8ef728f
ES
3142 -- Mark any scalar OUT parameter that is a simple variable as no
3143 -- longer known to be valid (unless the type is always valid). This
3144 -- reflects the fact that if an OUT parameter is never set in a
3145 -- procedure, then it can become invalid on the procedure return.
fbf5a39b
AC
3146
3147 if Ekind (Formal) = E_Out_Parameter
3148 and then Is_Entity_Name (Actual)
3149 and then Ekind (Entity (Actual)) = E_Variable
3150 and then not Is_Known_Valid (Etype (Actual))
3151 then
3152 Set_Is_Known_Valid (Entity (Actual), False);
3153 end if;
3154
c8ef728f
ES
3155 -- For an OUT or IN OUT parameter, if the actual is an entity, then
3156 -- clear current values, since they can be clobbered. We are probably
3157 -- doing this in more places than we need to, but better safe than
a90bd866 3158 -- sorry when it comes to retaining bad current values.
fbf5a39b
AC
3159
3160 if Ekind (Formal) /= E_In_Parameter
3161 and then Is_Entity_Name (Actual)
67ce0d7e 3162 and then Present (Entity (Actual))
fbf5a39b 3163 then
67ce0d7e
RD
3164 declare
3165 Ent : constant Entity_Id := Entity (Actual);
3166 Sav : Node_Id;
3167
3168 begin
ac4d6407
RD
3169 -- For an OUT or IN OUT parameter that is an assignable entity,
3170 -- we do not want to clobber the Last_Assignment field, since
3171 -- if it is set, it was precisely because it is indeed an OUT
a90bd866 3172 -- or IN OUT parameter. We do reset the Is_Known_Valid flag
75ba322d 3173 -- since the subprogram could have returned in invalid value.
ac4d6407 3174
8c5b03a0 3175 if Ekind_In (Formal, E_Out_Parameter, E_In_Out_Parameter)
67ce0d7e
RD
3176 and then Is_Assignable (Ent)
3177 then
3178 Sav := Last_Assignment (Ent);
3179 Kill_Current_Values (Ent);
3180 Set_Last_Assignment (Ent, Sav);
75ba322d 3181 Set_Is_Known_Valid (Ent, False);
67ce0d7e 3182
4bb43ffb 3183 -- For all other cases, just kill the current values
67ce0d7e
RD
3184
3185 else
3186 Kill_Current_Values (Ent);
3187 end if;
3188 end;
fbf5a39b
AC
3189 end if;
3190
70482933
RK
3191 -- If the formal is class wide and the actual is an aggregate, force
3192 -- evaluation so that the back end who does not know about class-wide
3193 -- type, does not generate a temporary of the wrong size.
3194
3195 if not Is_Class_Wide_Type (Etype (Formal)) then
3196 null;
3197
3198 elsif Nkind (Actual) = N_Aggregate
3199 or else (Nkind (Actual) = N_Qualified_Expression
3200 and then Nkind (Expression (Actual)) = N_Aggregate)
3201 then
3202 Force_Evaluation (Actual);
3203 end if;
3204
3205 -- In a remote call, if the formal is of a class-wide type, check
3206 -- that the actual meets the requirements described in E.4(18).
3207
7888a6ae 3208 if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
70482933 3209 Insert_Action (Actual,
7888a6ae
GD
3210 Make_Transportable_Check (Loc,
3211 Duplicate_Subexpr_Move_Checks (Actual)));
70482933
RK
3212 end if;
3213
5d09245e
AC
3214 -- This label is required when skipping extra actual generation for
3215 -- Unchecked_Union parameters.
3216
3217 <<Skip_Extra_Actual_Generation>>
3218
fdce4bb7 3219 Param_Count := Param_Count + 1;
70482933
RK
3220 Next_Actual (Actual);
3221 Next_Formal (Formal);
3222 end loop;
3223
bdf69d33 3224 -- If we are calling an Ada 2012 function which needs to have the
63585f75
SB
3225 -- "accessibility level determined by the point of call" (AI05-0234)
3226 -- passed in to it, then pass it in.
3227
b8a93198 3228 if Ekind_In (Subp, E_Function, E_Operator, E_Subprogram_Type)
57a3fca9
AC
3229 and then
3230 Present (Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)))
63585f75
SB
3231 then
3232 declare
3233 Ancestor : Node_Id := Parent (Call_Node);
3234 Level : Node_Id := Empty;
3235 Defer : Boolean := False;
3236
3237 begin
3238 -- Unimplemented: if Subp returns an anonymous access type, then
57a3fca9 3239
63585f75
SB
3240 -- a) if the call is the operand of an explict conversion, then
3241 -- the target type of the conversion (a named access type)
3242 -- determines the accessibility level pass in;
57a3fca9 3243
63585f75
SB
3244 -- b) if the call defines an access discriminant of an object
3245 -- (e.g., the discriminant of an object being created by an
3246 -- allocator, or the discriminant of a function result),
3247 -- then the accessibility level to pass in is that of the
3248 -- discriminated object being initialized).
3249
57a3fca9
AC
3250 -- ???
3251
63585f75
SB
3252 while Nkind (Ancestor) = N_Qualified_Expression
3253 loop
3254 Ancestor := Parent (Ancestor);
3255 end loop;
3256
3257 case Nkind (Ancestor) is
3258 when N_Allocator =>
ebf494ec 3259
63585f75 3260 -- At this point, we'd like to assign
ebf494ec 3261
63585f75 3262 -- Level := Dynamic_Accessibility_Level (Ancestor);
ebf494ec 3263
63585f75
SB
3264 -- but Etype of Ancestor may not have been set yet,
3265 -- so that doesn't work.
ebf494ec 3266
63585f75
SB
3267 -- Handle this later in Expand_Allocator_Expression.
3268
3269 Defer := True;
3270
3271 when N_Object_Declaration | N_Object_Renaming_Declaration =>
3272 declare
3273 Def_Id : constant Entity_Id :=
3274 Defining_Identifier (Ancestor);
ebf494ec 3275
63585f75
SB
3276 begin
3277 if Is_Return_Object (Def_Id) then
3278 if Present (Extra_Accessibility_Of_Result
3279 (Return_Applies_To (Scope (Def_Id))))
3280 then
3281 -- Pass along value that was passed in if the
3282 -- routine we are returning from also has an
3283 -- Accessibility_Of_Result formal.
3284
3285 Level :=
3286 New_Occurrence_Of
3287 (Extra_Accessibility_Of_Result
ebf494ec 3288 (Return_Applies_To (Scope (Def_Id))), Loc);
63585f75
SB
3289 end if;
3290 else
ebf494ec
RD
3291 Level :=
3292 Make_Integer_Literal (Loc,
3293 Intval => Object_Access_Level (Def_Id));
63585f75
SB
3294 end if;
3295 end;
3296
3297 when N_Simple_Return_Statement =>
3298 if Present (Extra_Accessibility_Of_Result
ebf494ec
RD
3299 (Return_Applies_To
3300 (Return_Statement_Entity (Ancestor))))
63585f75 3301 then
fb12497d
AC
3302 -- Pass along value that was passed in if the returned
3303 -- routine also has an Accessibility_Of_Result formal.
63585f75
SB
3304
3305 Level :=
3306 New_Occurrence_Of
3307 (Extra_Accessibility_Of_Result
3308 (Return_Applies_To
3309 (Return_Statement_Entity (Ancestor))), Loc);
3310 end if;
3311
3312 when others =>
3313 null;
3314 end case;
3315
3316 if not Defer then
3317 if not Present (Level) then
ebf494ec 3318
63585f75 3319 -- The "innermost master that evaluates the function call".
ebf494ec 3320
886b5a18
AC
3321 -- ??? - Should we use Integer'Last here instead in order
3322 -- to deal with (some of) the problems associated with
3323 -- calls to subps whose enclosing scope is unknown (e.g.,
3324 -- Anon_Access_To_Subp_Param.all)?
63585f75
SB
3325
3326 Level := Make_Integer_Literal (Loc,
3327 Scope_Depth (Current_Scope) + 1);
3328 end if;
3329
57a3fca9
AC
3330 Add_Extra_Actual
3331 (Level,
3332 Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)));
63585f75
SB
3333 end if;
3334 end;
3335 end if;
3336
4bb43ffb 3337 -- If we are expanding the RHS of an assignment we need to check if tag
c8ef728f
ES
3338 -- propagation is needed. You might expect this processing to be in
3339 -- Analyze_Assignment but has to be done earlier (bottom-up) because the
3340 -- assignment might be transformed to a declaration for an unconstrained
3341 -- value if the expression is classwide.
70482933 3342
6dfc5592
RD
3343 if Nkind (Call_Node) = N_Function_Call
3344 and then Is_Tag_Indeterminate (Call_Node)
3345 and then Is_Entity_Name (Name (Call_Node))
70482933
RK
3346 then
3347 declare
3348 Ass : Node_Id := Empty;
3349
3350 begin
6dfc5592
RD
3351 if Nkind (Parent (Call_Node)) = N_Assignment_Statement then
3352 Ass := Parent (Call_Node);
70482933 3353
6dfc5592 3354 elsif Nkind (Parent (Call_Node)) = N_Qualified_Expression
3cae7f14
RD
3355 and then Nkind (Parent (Parent (Call_Node))) =
3356 N_Assignment_Statement
70482933 3357 then
6dfc5592 3358 Ass := Parent (Parent (Call_Node));
02822a92 3359
6dfc5592 3360 elsif Nkind (Parent (Call_Node)) = N_Explicit_Dereference
3cae7f14
RD
3361 and then Nkind (Parent (Parent (Call_Node))) =
3362 N_Assignment_Statement
02822a92 3363 then
6dfc5592 3364 Ass := Parent (Parent (Call_Node));
70482933
RK
3365 end if;
3366
3367 if Present (Ass)
3368 and then Is_Class_Wide_Type (Etype (Name (Ass)))
3369 then
6dfc5592
RD
3370 if Is_Access_Type (Etype (Call_Node)) then
3371 if Designated_Type (Etype (Call_Node)) /=
02822a92
RD
3372 Root_Type (Etype (Name (Ass)))
3373 then
3374 Error_Msg_NE
3375 ("tag-indeterminate expression "
d766cee3 3376 & " must have designated type& (RM 5.2 (6))",
3cae7f14 3377 Call_Node, Root_Type (Etype (Name (Ass))));
02822a92 3378 else
6dfc5592 3379 Propagate_Tag (Name (Ass), Call_Node);
02822a92
RD
3380 end if;
3381
6dfc5592 3382 elsif Etype (Call_Node) /= Root_Type (Etype (Name (Ass))) then
fbf5a39b
AC
3383 Error_Msg_NE
3384 ("tag-indeterminate expression must have type&"
6dfc5592
RD
3385 & "(RM 5.2 (6))",
3386 Call_Node, Root_Type (Etype (Name (Ass))));
02822a92 3387
fbf5a39b 3388 else
6dfc5592 3389 Propagate_Tag (Name (Ass), Call_Node);
fbf5a39b
AC
3390 end if;
3391
3392 -- The call will be rewritten as a dispatching call, and
3393 -- expanded as such.
3394
70482933
RK
3395 return;
3396 end if;
3397 end;
3398 end if;
3399
758c442c
GD
3400 -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
3401 -- it to point to the correct secondary virtual table
3402
d3b00ce3 3403 if Nkind (Call_Node) in N_Subprogram_Call
758c442c
GD
3404 and then CW_Interface_Formals_Present
3405 then
6dfc5592 3406 Expand_Interface_Actuals (Call_Node);
758c442c
GD
3407 end if;
3408
70482933
RK
3409 -- Deals with Dispatch_Call if we still have a call, before expanding
3410 -- extra actuals since this will be done on the re-analysis of the
b3f48fd4
AC
3411 -- dispatching call. Note that we do not try to shorten the actual list
3412 -- for a dispatching call, it would not make sense to do so. Expansion
3413 -- of dispatching calls is suppressed when VM_Target, because the VM
3414 -- back-ends directly handle the generation of dispatching calls and
3415 -- would have to undo any expansion to an indirect call.
70482933 3416
d3b00ce3 3417 if Nkind (Call_Node) in N_Subprogram_Call
6dfc5592 3418 and then Present (Controlling_Argument (Call_Node))
70482933 3419 then
6dfc5592 3420 declare
dd386db0 3421 Call_Typ : constant Entity_Id := Etype (Call_Node);
6dfc5592
RD
3422 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
3423 Eq_Prim_Op : Entity_Id := Empty;
dd386db0
AC
3424 New_Call : Node_Id;
3425 Param : Node_Id;
3426 Prev_Call : Node_Id;
fbf5a39b 3427
6dfc5592
RD
3428 begin
3429 if not Is_Limited_Type (Typ) then
3430 Eq_Prim_Op := Find_Prim_Op (Typ, Name_Op_Eq);
3431 end if;
fbf5a39b 3432
6dfc5592
RD
3433 if Tagged_Type_Expansion then
3434 Expand_Dispatching_Call (Call_Node);
70f91180 3435
6dfc5592
RD
3436 -- The following return is worrisome. Is it really OK to skip
3437 -- all remaining processing in this procedure ???
5a1ccfb1 3438
6dfc5592 3439 return;
5a1ccfb1 3440
6dfc5592
RD
3441 -- VM targets
3442
3443 else
3444 Apply_Tag_Checks (Call_Node);
3445
dd386db0
AC
3446 -- If this is a dispatching "=", we must first compare the
3447 -- tags so we generate: x.tag = y.tag and then x = y
3448
3449 if Subp = Eq_Prim_Op then
3450
3451 -- Mark the node as analyzed to avoid reanalizing this
3452 -- dispatching call (which would cause a never-ending loop)
3453
3454 Prev_Call := Relocate_Node (Call_Node);
3455 Set_Analyzed (Prev_Call);
3456
3457 Param := First_Actual (Call_Node);
3458 New_Call :=
3459 Make_And_Then (Loc,
3460 Left_Opnd =>
3461 Make_Op_Eq (Loc,
3462 Left_Opnd =>
3463 Make_Selected_Component (Loc,
3464 Prefix => New_Value (Param),
3465 Selector_Name =>
e4494292
RD
3466 New_Occurrence_Of
3467 (First_Tag_Component (Typ), Loc)),
dd386db0
AC
3468
3469 Right_Opnd =>
3470 Make_Selected_Component (Loc,
3471 Prefix =>
3472 Unchecked_Convert_To (Typ,
3473 New_Value (Next_Actual (Param))),
3474 Selector_Name =>
e4494292 3475 New_Occurrence_Of
dd386db0
AC
3476 (First_Tag_Component (Typ), Loc))),
3477 Right_Opnd => Prev_Call);
3478
3479 Rewrite (Call_Node, New_Call);
3480
3481 Analyze_And_Resolve
3482 (Call_Node, Call_Typ, Suppress => All_Checks);
3483 end if;
3484
6dfc5592
RD
3485 -- Expansion of a dispatching call results in an indirect call,
3486 -- which in turn causes current values to be killed (see
3487 -- Resolve_Call), so on VM targets we do the call here to
3488 -- ensure consistent warnings between VM and non-VM targets.
3489
3490 Kill_Current_Values;
3491 end if;
3492
3493 -- If this is a dispatching "=" then we must update the reference
3494 -- to the call node because we generated:
3495 -- x.tag = y.tag and then x = y
3496
dd386db0 3497 if Subp = Eq_Prim_Op then
6dfc5592
RD
3498 Call_Node := Right_Opnd (Call_Node);
3499 end if;
3500 end;
70f91180 3501 end if;
70482933
RK
3502
3503 -- Similarly, expand calls to RCI subprograms on which pragma
3504 -- All_Calls_Remote applies. The rewriting will be reanalyzed
b3f48fd4
AC
3505 -- later. Do this only when the call comes from source since we
3506 -- do not want such a rewriting to occur in expanded code.
70482933 3507
6dfc5592
RD
3508 if Is_All_Remote_Call (Call_Node) then
3509 Expand_All_Calls_Remote_Subprogram_Call (Call_Node);
70482933
RK
3510
3511 -- Similarly, do not add extra actuals for an entry call whose entity
3512 -- is a protected procedure, or for an internal protected subprogram
3513 -- call, because it will be rewritten as a protected subprogram call
3514 -- and reanalyzed (see Expand_Protected_Subprogram_Call).
3515
3516 elsif Is_Protected_Type (Scope (Subp))
3517 and then (Ekind (Subp) = E_Procedure
3518 or else Ekind (Subp) = E_Function)
3519 then
3520 null;
3521
3522 -- During that loop we gathered the extra actuals (the ones that
3523 -- correspond to Extra_Formals), so now they can be appended.
3524
3525 else
3526 while Is_Non_Empty_List (Extra_Actuals) loop
3527 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
3528 end loop;
3529 end if;
3530
b3f48fd4
AC
3531 -- At this point we have all the actuals, so this is the point at which
3532 -- the various expansion activities for actuals is carried out.
f44fe430 3533
6dfc5592 3534 Expand_Actuals (Call_Node, Subp);
70482933 3535
5f49133f
AC
3536 -- Verify that the actuals do not share storage. This check must be done
3537 -- on the caller side rather that inside the subprogram to avoid issues
3538 -- of parameter passing.
3539
3540 if Check_Aliasing_Of_Parameters then
3541 Apply_Parameter_Aliasing_Checks (Call_Node, Subp);
3542 end if;
3543
b3f48fd4
AC
3544 -- If the subprogram is a renaming, or if it is inherited, replace it in
3545 -- the call with the name of the actual subprogram being called. If this
3546 -- is a dispatching call, the run-time decides what to call. The Alias
3547 -- attribute does not apply to entries.
70482933 3548
6dfc5592
RD
3549 if Nkind (Call_Node) /= N_Entry_Call_Statement
3550 and then No (Controlling_Argument (Call_Node))
70482933 3551 and then Present (Parent_Subp)
df3e68b1 3552 and then not Is_Direct_Deep_Call (Subp)
70482933
RK
3553 then
3554 if Present (Inherited_From_Formal (Subp)) then
3555 Parent_Subp := Inherited_From_Formal (Subp);
3556 else
b81a5940 3557 Parent_Subp := Ultimate_Alias (Parent_Subp);
70482933
RK
3558 end if;
3559
c8ef728f
ES
3560 -- The below setting of Entity is suspect, see F109-018 discussion???
3561
6dfc5592 3562 Set_Entity (Name (Call_Node), Parent_Subp);
70482933 3563
f937473f 3564 if Is_Abstract_Subprogram (Parent_Subp)
70482933
RK
3565 and then not In_Instance
3566 then
3567 Error_Msg_NE
6dfc5592
RD
3568 ("cannot call abstract subprogram &!",
3569 Name (Call_Node), Parent_Subp);
70482933
RK
3570 end if;
3571
d4817e3f
HK
3572 -- Inspect all formals of derived subprogram Subp. Compare parameter
3573 -- types with the parent subprogram and check whether an actual may
3574 -- need a type conversion to the corresponding formal of the parent
3575 -- subprogram.
70482933 3576
d4817e3f 3577 -- Not clear whether intrinsic subprograms need such conversions. ???
70482933
RK
3578
3579 if not Is_Intrinsic_Subprogram (Parent_Subp)
3580 or else Is_Generic_Instance (Parent_Subp)
3581 then
d4817e3f
HK
3582 declare
3583 procedure Convert (Act : Node_Id; Typ : Entity_Id);
3584 -- Rewrite node Act as a type conversion of Act to Typ. Analyze
3585 -- and resolve the newly generated construct.
70482933 3586
d4817e3f
HK
3587 -------------
3588 -- Convert --
3589 -------------
70482933 3590
d4817e3f
HK
3591 procedure Convert (Act : Node_Id; Typ : Entity_Id) is
3592 begin
3593 Rewrite (Act, OK_Convert_To (Typ, Relocate_Node (Act)));
3594 Analyze (Act);
3595 Resolve (Act, Typ);
3596 end Convert;
3597
3598 -- Local variables
3599
3600 Actual_Typ : Entity_Id;
3601 Formal_Typ : Entity_Id;
3602 Parent_Typ : Entity_Id;
3603
3604 begin
6dfc5592 3605 Actual := First_Actual (Call_Node);
d4817e3f
HK
3606 Formal := First_Formal (Subp);
3607 Parent_Formal := First_Formal (Parent_Subp);
3608 while Present (Formal) loop
3609 Actual_Typ := Etype (Actual);
3610 Formal_Typ := Etype (Formal);
3611 Parent_Typ := Etype (Parent_Formal);
3612
3613 -- For an IN parameter of a scalar type, the parent formal
3614 -- type and derived formal type differ or the parent formal
3615 -- type and actual type do not match statically.
3616
3617 if Is_Scalar_Type (Formal_Typ)
3618 and then Ekind (Formal) = E_In_Parameter
3619 and then Formal_Typ /= Parent_Typ
3620 and then
3621 not Subtypes_Statically_Match (Parent_Typ, Actual_Typ)
3622 and then not Raises_Constraint_Error (Actual)
3623 then
3624 Convert (Actual, Parent_Typ);
3625 Enable_Range_Check (Actual);
3626
d79e621a
GD
3627 -- If the actual has been marked as requiring a range
3628 -- check, then generate it here.
3629
3630 if Do_Range_Check (Actual) then
d79e621a
GD
3631 Generate_Range_Check
3632 (Actual, Etype (Formal), CE_Range_Check_Failed);
3633 end if;
3634
d4817e3f
HK
3635 -- For access types, the parent formal type and actual type
3636 -- differ.
3637
3638 elsif Is_Access_Type (Formal_Typ)
3639 and then Base_Type (Parent_Typ) /= Base_Type (Actual_Typ)
70482933 3640 then
d4817e3f
HK
3641 if Ekind (Formal) /= E_In_Parameter then
3642 Convert (Actual, Parent_Typ);
3643
3644 elsif Ekind (Parent_Typ) = E_Anonymous_Access_Type
3645 and then Designated_Type (Parent_Typ) /=
3646 Designated_Type (Actual_Typ)
3647 and then not Is_Controlling_Formal (Formal)
3648 then
3649 -- This unchecked conversion is not necessary unless
3650 -- inlining is enabled, because in that case the type
3651 -- mismatch may become visible in the body about to be
3652 -- inlined.
3653
3654 Rewrite (Actual,
3655 Unchecked_Convert_To (Parent_Typ,
3656 Relocate_Node (Actual)));
d4817e3f
HK
3657 Analyze (Actual);
3658 Resolve (Actual, Parent_Typ);
3659 end if;
70482933 3660
ab01e614
AC
3661 -- If there is a change of representation, then generate a
3662 -- warning, and do the change of representation.
3663
3664 elsif not Same_Representation (Formal_Typ, Parent_Typ) then
3665 Error_Msg_N
3666 ("??change of representation required", Actual);
3667 Convert (Actual, Parent_Typ);
3668
d4817e3f
HK
3669 -- For array and record types, the parent formal type and
3670 -- derived formal type have different sizes or pragma Pack
3671 -- status.
70482933 3672
d4817e3f 3673 elsif ((Is_Array_Type (Formal_Typ)
ab01e614 3674 and then Is_Array_Type (Parent_Typ))
d4817e3f
HK
3675 or else
3676 (Is_Record_Type (Formal_Typ)
ab01e614 3677 and then Is_Record_Type (Parent_Typ)))
d4817e3f
HK
3678 and then
3679 (Esize (Formal_Typ) /= Esize (Parent_Typ)
ab01e614
AC
3680 or else Has_Pragma_Pack (Formal_Typ) /=
3681 Has_Pragma_Pack (Parent_Typ))
d4817e3f
HK
3682 then
3683 Convert (Actual, Parent_Typ);
70482933 3684 end if;
70482933 3685
d4817e3f
HK
3686 Next_Actual (Actual);
3687 Next_Formal (Formal);
3688 Next_Formal (Parent_Formal);
3689 end loop;
3690 end;
70482933
RK
3691 end if;
3692
3693 Orig_Subp := Subp;
3694 Subp := Parent_Subp;
3695 end if;
3696
8a36a0cc
AC
3697 -- Deal with case where call is an explicit dereference
3698
6dfc5592 3699 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
70482933
RK
3700
3701 -- Handle case of access to protected subprogram type
3702
f937473f 3703 if Is_Access_Protected_Subprogram_Type
6dfc5592 3704 (Base_Type (Etype (Prefix (Name (Call_Node)))))
70482933 3705 then
b3f48fd4
AC
3706 -- If this is a call through an access to protected operation, the
3707 -- prefix has the form (object'address, operation'access). Rewrite
3708 -- as a for other protected calls: the object is the 1st parameter
3709 -- of the list of actuals.
70482933
RK
3710
3711 declare
3712 Call : Node_Id;
3713 Parm : List_Id;
3714 Nam : Node_Id;
3715 Obj : Node_Id;
6dfc5592 3716 Ptr : constant Node_Id := Prefix (Name (Call_Node));
fbf5a39b
AC
3717
3718 T : constant Entity_Id :=
3719 Equivalent_Type (Base_Type (Etype (Ptr)));
3720
3721 D_T : constant Entity_Id :=
3722 Designated_Type (Base_Type (Etype (Ptr)));
70482933
RK
3723
3724 begin
f44fe430
RD
3725 Obj :=
3726 Make_Selected_Component (Loc,
3727 Prefix => Unchecked_Convert_To (T, Ptr),
3728 Selector_Name =>
3729 New_Occurrence_Of (First_Entity (T), Loc));
3730
3731 Nam :=
3732 Make_Selected_Component (Loc,
3733 Prefix => Unchecked_Convert_To (T, Ptr),
3734 Selector_Name =>
3735 New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
70482933 3736
02822a92
RD
3737 Nam :=
3738 Make_Explicit_Dereference (Loc,
3739 Prefix => Nam);
70482933 3740
6dfc5592
RD
3741 if Present (Parameter_Associations (Call_Node)) then
3742 Parm := Parameter_Associations (Call_Node);
70482933
RK
3743 else
3744 Parm := New_List;
3745 end if;
3746
3747 Prepend (Obj, Parm);
3748
3749 if Etype (D_T) = Standard_Void_Type then
02822a92
RD
3750 Call :=
3751 Make_Procedure_Call_Statement (Loc,
3752 Name => Nam,
3753 Parameter_Associations => Parm);
70482933 3754 else
02822a92
RD
3755 Call :=
3756 Make_Function_Call (Loc,
3757 Name => Nam,
3758 Parameter_Associations => Parm);
70482933
RK
3759 end if;
3760
6dfc5592 3761 Set_First_Named_Actual (Call, First_Named_Actual (Call_Node));
70482933
RK
3762 Set_Etype (Call, Etype (D_T));
3763
3764 -- We do not re-analyze the call to avoid infinite recursion.
3765 -- We analyze separately the prefix and the object, and set
3766 -- the checks on the prefix that would otherwise be emitted
3767 -- when resolving a call.
3768
6dfc5592 3769 Rewrite (Call_Node, Call);
70482933
RK
3770 Analyze (Nam);
3771 Apply_Access_Check (Nam);
3772 Analyze (Obj);
3773 return;
3774 end;
3775 end if;
3776 end if;
3777
3778 -- If this is a call to an intrinsic subprogram, then perform the
3779 -- appropriate expansion to the corresponding tree node and we
a90bd866 3780 -- are all done (since after that the call is gone).
70482933 3781
98f01d53
AC
3782 -- In the case where the intrinsic is to be processed by the back end,
3783 -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
b3f48fd4
AC
3784 -- since the idea in this case is to pass the call unchanged. If the
3785 -- intrinsic is an inherited unchecked conversion, and the derived type
3786 -- is the target type of the conversion, we must retain it as the return
3787 -- type of the expression. Otherwise the expansion below, which uses the
3788 -- parent operation, will yield the wrong type.
98f01d53 3789
70482933 3790 if Is_Intrinsic_Subprogram (Subp) then
6dfc5592 3791 Expand_Intrinsic_Call (Call_Node, Subp);
d766cee3 3792
6dfc5592 3793 if Nkind (Call_Node) = N_Unchecked_Type_Conversion
d766cee3
RD
3794 and then Parent_Subp /= Orig_Subp
3795 and then Etype (Parent_Subp) /= Etype (Orig_Subp)
3796 then
6dfc5592 3797 Set_Etype (Call_Node, Etype (Orig_Subp));
d766cee3
RD
3798 end if;
3799
70482933
RK
3800 return;
3801 end if;
3802
b29def53
AC
3803 if Ekind_In (Subp, E_Function, E_Procedure) then
3804
26a43556 3805 -- We perform two simple optimization on calls:
8dbf3473 3806
3563739b 3807 -- a) replace calls to null procedures unconditionally;
26a43556 3808
3563739b 3809 -- b) for To_Address, just do an unchecked conversion. Not only is
26a43556
AC
3810 -- this efficient, but it also avoids order of elaboration problems
3811 -- when address clauses are inlined (address expression elaborated
3812 -- at the wrong point).
3813
3814 -- We perform these optimization regardless of whether we are in the
3815 -- main unit or in a unit in the context of the main unit, to ensure
2cbac6c6 3816 -- that tree generated is the same in both cases, for CodePeer use.
26a43556
AC
3817
3818 if Is_RTE (Subp, RE_To_Address) then
6dfc5592 3819 Rewrite (Call_Node,
26a43556 3820 Unchecked_Convert_To
6dfc5592 3821 (RTE (RE_Address), Relocate_Node (First_Actual (Call_Node))));
26a43556
AC
3822 return;
3823
3824 elsif Is_Null_Procedure (Subp) then
6dfc5592 3825 Rewrite (Call_Node, Make_Null_Statement (Loc));
8dbf3473
AC
3826 return;
3827 end if;
3828
6c26bac2 3829 -- Handle inlining. No action needed if the subprogram is not inlined
f087ea44 3830
6c26bac2
AC
3831 if not Is_Inlined (Subp) then
3832 null;
f087ea44 3833
6c26bac2 3834 -- Handle frontend inlining
84f4072a 3835
6c26bac2 3836 elsif not Back_End_Inlining then
a41ea816 3837 Inlined_Subprogram : declare
fbf5a39b
AC
3838 Bod : Node_Id;
3839 Must_Inline : Boolean := False;
3840 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
a41ea816 3841
70482933 3842 begin
2f1b20a9
ES
3843 -- Verify that the body to inline has already been seen, and
3844 -- that if the body is in the current unit the inlining does
3845 -- not occur earlier. This avoids order-of-elaboration problems
3846 -- in the back end.
3847
3848 -- This should be documented in sinfo/einfo ???
70482933 3849
fbf5a39b
AC
3850 if No (Spec)
3851 or else Nkind (Spec) /= N_Subprogram_Declaration
3852 or else No (Body_To_Inline (Spec))
70482933 3853 then
fbf5a39b
AC
3854 Must_Inline := False;
3855
26a43556
AC
3856 -- If this an inherited function that returns a private type,
3857 -- do not inline if the full view is an unconstrained array,
3858 -- because such calls cannot be inlined.
5b4994bc
AC
3859
3860 elsif Present (Orig_Subp)
3861 and then Is_Array_Type (Etype (Orig_Subp))
3862 and then not Is_Constrained (Etype (Orig_Subp))
3863 then
3864 Must_Inline := False;
3865
84f4072a 3866 elsif In_Unfrozen_Instance (Scope (Subp)) then
5b4994bc
AC
3867 Must_Inline := False;
3868
fbf5a39b
AC
3869 else
3870 Bod := Body_To_Inline (Spec);
3871
6dfc5592
RD
3872 if (In_Extended_Main_Code_Unit (Call_Node)
3873 or else In_Extended_Main_Code_Unit (Parent (Call_Node))
ac4d6407 3874 or else Has_Pragma_Inline_Always (Subp))
fbf5a39b
AC
3875 and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
3876 or else
3877 Earlier_In_Extended_Unit (Sloc (Bod), Loc))
3878 then
3879 Must_Inline := True;
3880
3881 -- If we are compiling a package body that is not the main
3882 -- unit, it must be for inlining/instantiation purposes,
3883 -- in which case we inline the call to insure that the same
3884 -- temporaries are generated when compiling the body by
3885 -- itself. Otherwise link errors can occur.
3886
2820d220
AC
3887 -- If the function being called is itself in the main unit,
3888 -- we cannot inline, because there is a risk of double
3889 -- elaboration and/or circularity: the inlining can make
3890 -- visible a private entity in the body of the main unit,
3891 -- that gigi will see before its sees its proper definition.
3892
6dfc5592 3893 elsif not (In_Extended_Main_Code_Unit (Call_Node))
fbf5a39b
AC
3894 and then In_Package_Body
3895 then
2820d220 3896 Must_Inline := not In_Extended_Main_Source_Unit (Subp);
fbf5a39b
AC
3897 end if;
3898 end if;
3899
3900 if Must_Inline then
6dfc5592 3901 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
70482933
RK
3902
3903 else
fbf5a39b 3904 -- Let the back end handle it
70482933
RK
3905
3906 Add_Inlined_Body (Subp);
3907
3908 if Front_End_Inlining
3909 and then Nkind (Spec) = N_Subprogram_Declaration
6dfc5592 3910 and then (In_Extended_Main_Code_Unit (Call_Node))
70482933
RK
3911 and then No (Body_To_Inline (Spec))
3912 and then not Has_Completion (Subp)
3913 and then In_Same_Extended_Unit (Sloc (Spec), Loc)
70482933 3914 then
fbf5a39b 3915 Cannot_Inline
685bc70f
AC
3916 ("cannot inline& (body not seen yet)?",
3917 Call_Node, Subp);
70482933
RK
3918 end if;
3919 end if;
a41ea816 3920 end Inlined_Subprogram;
84f4072a 3921
6c26bac2
AC
3922 -- Back end inlining: let the back end handle it
3923
3924 elsif No (Unit_Declaration_Node (Subp))
ea0c8cfb
RD
3925 or else Nkind (Unit_Declaration_Node (Subp)) /=
3926 N_Subprogram_Declaration
3927 or else No (Body_To_Inline (Unit_Declaration_Node (Subp)))
6c26bac2
AC
3928 then
3929 Add_Inlined_Body (Subp);
3930 Register_Backend_Call (Call_Node);
3931
ea0c8cfb
RD
3932 -- Frontend expands supported functions returning unconstrained types
3933
3934 else
3935 pragma Assert (Ekind (Subp) = E_Function
3936 and then Returns_Unconstrained_Type (Subp));
84f4072a 3937
84f4072a
JM
3938 declare
3939 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
3940
3941 begin
ea3a4ad0 3942 if Must_Inline (Subp) then
84f4072a
JM
3943 if In_Extended_Main_Code_Unit (Call_Node)
3944 and then In_Same_Extended_Unit (Sloc (Spec), Loc)
3945 and then not Has_Completion (Subp)
3946 then
3947 Cannot_Inline
3948 ("cannot inline& (body not seen yet)?",
3949 Call_Node, Subp);
3950
3951 else
3952 Do_Inline_Always (Subp, Orig_Subp);
3953 end if;
ea3a4ad0
JM
3954
3955 elsif Optimization_Level > 0 then
3956 Do_Inline (Subp, Orig_Subp);
84f4072a
JM
3957 end if;
3958
3959 -- The call may have been inlined or may have been passed to
3960 -- the backend. No further action needed if it was inlined.
3961
3962 if Nkind (N) /= N_Function_Call then
3963 return;
3964 end if;
3965 end;
70482933
RK
3966 end if;
3967 end if;
3968
26a43556
AC
3969 -- Check for protected subprogram. This is either an intra-object call,
3970 -- or a protected function call. Protected procedure calls are rewritten
3971 -- as entry calls and handled accordingly.
70482933 3972
26a43556
AC
3973 -- In Ada 2005, this may be an indirect call to an access parameter that
3974 -- is an access_to_subprogram. In that case the anonymous type has a
3975 -- scope that is a protected operation, but the call is a regular one.
6f76a257 3976 -- In either case do not expand call if subprogram is eliminated.
c8ef728f 3977
70482933
RK
3978 Scop := Scope (Subp);
3979
6dfc5592 3980 if Nkind (Call_Node) /= N_Entry_Call_Statement
70482933 3981 and then Is_Protected_Type (Scop)
c8ef728f 3982 and then Ekind (Subp) /= E_Subprogram_Type
6f76a257 3983 and then not Is_Eliminated (Subp)
70482933 3984 then
26a43556
AC
3985 -- If the call is an internal one, it is rewritten as a call to the
3986 -- corresponding unprotected subprogram.
70482933 3987
6dfc5592 3988 Expand_Protected_Subprogram_Call (Call_Node, Subp, Scop);
70482933
RK
3989 end if;
3990
df3e68b1
HK
3991 -- Functions returning controlled objects need special attention. If
3992 -- the return type is limited, then the context is initialization and
3993 -- different processing applies. If the call is to a protected function,
3994 -- the expansion above will call Expand_Call recursively. Otherwise the
3995 -- function call is transformed into a temporary which obtains the
3996 -- result from the secondary stack.
70482933 3997
c768e988 3998 if Needs_Finalization (Etype (Subp)) then
51245e2d 3999 if not Is_Limited_View (Etype (Subp))
c768e988
AC
4000 and then
4001 (No (First_Formal (Subp))
4002 or else
4003 not Is_Concurrent_Record_Type (Etype (First_Formal (Subp))))
4004 then
6dfc5592 4005 Expand_Ctrl_Function_Call (Call_Node);
c768e988
AC
4006
4007 -- Build-in-place function calls which appear in anonymous contexts
4008 -- need a transient scope to ensure the proper finalization of the
4009 -- intermediate result after its use.
4010
6dfc5592 4011 elsif Is_Build_In_Place_Function_Call (Call_Node)
d3b00ce3
AC
4012 and then
4013 Nkind_In (Parent (Call_Node), N_Attribute_Reference,
4014 N_Function_Call,
4015 N_Indexed_Component,
4016 N_Object_Renaming_Declaration,
4017 N_Procedure_Call_Statement,
4018 N_Selected_Component,
4019 N_Slice)
c768e988 4020 then
6dfc5592 4021 Establish_Transient_Scope (Call_Node, Sec_Stack => True);
c768e988 4022 end if;
70482933 4023 end if;
70482933
RK
4024 end Expand_Call;
4025
df3e68b1
HK
4026 -------------------------------
4027 -- Expand_Ctrl_Function_Call --
4028 -------------------------------
4029
4030 procedure Expand_Ctrl_Function_Call (N : Node_Id) is
bf561f2b
AC
4031 function Is_Element_Reference (N : Node_Id) return Boolean;
4032 -- Determine whether node N denotes a reference to an Ada 2012 container
4033 -- element.
4034
4035 --------------------------
4036 -- Is_Element_Reference --
4037 --------------------------
4038
4039 function Is_Element_Reference (N : Node_Id) return Boolean is
4040 Ref : constant Node_Id := Original_Node (N);
4041
4042 begin
4043 -- Analysis marks an element reference by setting the generalized
4044 -- indexing attribute of an indexed component before the component
4045 -- is rewritten into a function call.
4046
4047 return
4048 Nkind (Ref) = N_Indexed_Component
4049 and then Present (Generalized_Indexing (Ref));
4050 end Is_Element_Reference;
4051
4052 -- Local variables
4053
4054 Is_Elem_Ref : constant Boolean := Is_Element_Reference (N);
4055
4056 -- Start of processing for Expand_Ctrl_Function_Call
4057
df3e68b1
HK
4058 begin
4059 -- Optimization, if the returned value (which is on the sec-stack) is
4060 -- returned again, no need to copy/readjust/finalize, we can just pass
4061 -- the value thru (see Expand_N_Simple_Return_Statement), and thus no
4062 -- attachment is needed
4063
4064 if Nkind (Parent (N)) = N_Simple_Return_Statement then
4065 return;
4066 end if;
4067
4068 -- Resolution is now finished, make sure we don't start analysis again
4069 -- because of the duplication.
4070
4071 Set_Analyzed (N);
4072
4073 -- A function which returns a controlled object uses the secondary
4074 -- stack. Rewrite the call into a temporary which obtains the result of
4075 -- the function using 'reference.
4076
4077 Remove_Side_Effects (N);
3cebd1c0 4078
bf561f2b
AC
4079 -- When the temporary function result appears inside a case expression
4080 -- or an if expression, its lifetime must be extended to match that of
4081 -- the context. If not, the function result will be finalized too early
4082 -- and the evaluation of the expression could yield incorrect result. An
4083 -- exception to this rule are references to Ada 2012 container elements.
4084 -- Such references must be finalized at the end of each iteration of the
4085 -- related quantified expression, otherwise the container will remain
4086 -- busy.
4087
4088 if not Is_Elem_Ref
4089 and then Within_Case_Or_If_Expression (N)
3cebd1c0
AC
4090 and then Nkind (N) = N_Explicit_Dereference
4091 then
4092 Set_Is_Processed_Transient (Entity (Prefix (N)));
4093 end if;
df3e68b1
HK
4094 end Expand_Ctrl_Function_Call;
4095
2b3d67a5
AC
4096 ----------------------------------------
4097 -- Expand_N_Extended_Return_Statement --
4098 ----------------------------------------
4099
4100 -- If there is a Handled_Statement_Sequence, we rewrite this:
4101
4102 -- return Result : T := <expression> do
4103 -- <handled_seq_of_stms>
4104 -- end return;
4105
4106 -- to be:
4107
4108 -- declare
4109 -- Result : T := <expression>;
4110 -- begin
4111 -- <handled_seq_of_stms>
4112 -- return Result;
4113 -- end;
4114
4115 -- Otherwise (no Handled_Statement_Sequence), we rewrite this:
4116
4117 -- return Result : T := <expression>;
4118
4119 -- to be:
4120
4121 -- return <expression>;
4122
4123 -- unless it's build-in-place or there's no <expression>, in which case
4124 -- we generate:
4125
4126 -- declare
4127 -- Result : T := <expression>;
4128 -- begin
4129 -- return Result;
4130 -- end;
4131
4132 -- Note that this case could have been written by the user as an extended
4133 -- return statement, or could have been transformed to this from a simple
4134 -- return statement.
4135
4136 -- That is, we need to have a reified return object if there are statements
4137 -- (which might refer to it) or if we're doing build-in-place (so we can
4138 -- set its address to the final resting place or if there is no expression
4139 -- (in which case default initial values might need to be set).
4140
4141 procedure Expand_N_Extended_Return_Statement (N : Node_Id) is
4142 Loc : constant Source_Ptr := Sloc (N);
4143
df3e68b1
HK
4144 Par_Func : constant Entity_Id :=
4145 Return_Applies_To (Return_Statement_Entity (N));
1a36a0cd 4146 Result_Subt : constant Entity_Id := Etype (Par_Func);
df3e68b1
HK
4147 Ret_Obj_Id : constant Entity_Id :=
4148 First_Entity (Return_Statement_Entity (N));
4149 Ret_Obj_Decl : constant Node_Id := Parent (Ret_Obj_Id);
4150
4151 Is_Build_In_Place : constant Boolean :=
4152 Is_Build_In_Place_Function (Par_Func);
4153
4154 Exp : Node_Id;
4155 HSS : Node_Id;
4156 Result : Node_Id;
4157 Return_Stmt : Node_Id;
4158 Stmts : List_Id;
4159
4160 function Build_Heap_Allocator
4161 (Temp_Id : Entity_Id;
4162 Temp_Typ : Entity_Id;
4163 Func_Id : Entity_Id;
4164 Ret_Typ : Entity_Id;
4165 Alloc_Expr : Node_Id) return Node_Id;
4166 -- Create the statements necessary to allocate a return object on the
d3f70b35
AC
4167 -- caller's master. The master is available through implicit parameter
4168 -- BIPfinalizationmaster.
df3e68b1 4169 --
d3f70b35 4170 -- if BIPfinalizationmaster /= null then
df3e68b1
HK
4171 -- declare
4172 -- type Ptr_Typ is access Ret_Typ;
4173 -- for Ptr_Typ'Storage_Pool use
d3f70b35 4174 -- Base_Pool (BIPfinalizationmaster.all).all;
df3e68b1
HK
4175 -- Local : Ptr_Typ;
4176 --
4177 -- begin
4178 -- procedure Allocate (...) is
4179 -- begin
d3f70b35 4180 -- System.Storage_Pools.Subpools.Allocate_Any (...);
df3e68b1
HK
4181 -- end Allocate;
4182 --
4183 -- Local := <Alloc_Expr>;
4184 -- Temp_Id := Temp_Typ (Local);
4185 -- end;
4186 -- end if;
4187 --
4188 -- Temp_Id is the temporary which is used to reference the internally
4189 -- created object in all allocation forms. Temp_Typ is the type of the
4190 -- temporary. Func_Id is the enclosing function. Ret_Typ is the return
4191 -- type of Func_Id. Alloc_Expr is the actual allocator.
2b3d67a5 4192
2b3d67a5
AC
4193 function Move_Activation_Chain return Node_Id;
4194 -- Construct a call to System.Tasking.Stages.Move_Activation_Chain
4195 -- with parameters:
4196 -- From current activation chain
4197 -- To activation chain passed in by the caller
4198 -- New_Master master passed in by the caller
4199
df3e68b1
HK
4200 --------------------------
4201 -- Build_Heap_Allocator --
4202 --------------------------
4203
4204 function Build_Heap_Allocator
4205 (Temp_Id : Entity_Id;
4206 Temp_Typ : Entity_Id;
4207 Func_Id : Entity_Id;
4208 Ret_Typ : Entity_Id;
4209 Alloc_Expr : Node_Id) return Node_Id
4210 is
4211 begin
200b7162
BD
4212 pragma Assert (Is_Build_In_Place_Function (Func_Id));
4213
df3e68b1 4214 -- Processing for build-in-place object allocation. This is disabled
d3f70b35 4215 -- on .NET/JVM because the targets do not support pools.
df3e68b1
HK
4216
4217 if VM_Target = No_VM
df3e68b1
HK
4218 and then Needs_Finalization (Ret_Typ)
4219 then
4220 declare
d3f70b35
AC
4221 Decls : constant List_Id := New_List;
4222 Fin_Mas_Id : constant Entity_Id :=
4223 Build_In_Place_Formal
4224 (Func_Id, BIP_Finalization_Master);
4225 Stmts : constant List_Id := New_List;
ba759acd
AC
4226 Desig_Typ : Entity_Id;
4227 Local_Id : Entity_Id;
4228 Pool_Id : Entity_Id;
4229 Ptr_Typ : Entity_Id;
df3e68b1
HK
4230
4231 begin
4232 -- Generate:
d3f70b35 4233 -- Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
df3e68b1
HK
4234
4235 Pool_Id := Make_Temporary (Loc, 'P');
4236
4237 Append_To (Decls,
4238 Make_Object_Renaming_Declaration (Loc,
4239 Defining_Identifier => Pool_Id,
2c1b72d7 4240 Subtype_Mark =>
e4494292 4241 New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc),
2c1b72d7 4242 Name =>
df3e68b1
HK
4243 Make_Explicit_Dereference (Loc,
4244 Prefix =>
4245 Make_Function_Call (Loc,
2c1b72d7 4246 Name =>
e4494292 4247 New_Occurrence_Of (RTE (RE_Base_Pool), Loc),
df3e68b1
HK
4248 Parameter_Associations => New_List (
4249 Make_Explicit_Dereference (Loc,
d3f70b35 4250 Prefix =>
e4494292 4251 New_Occurrence_Of (Fin_Mas_Id, Loc)))))));
df3e68b1
HK
4252
4253 -- Create an access type which uses the storage pool of the
d3f70b35
AC
4254 -- caller's master. This additional type is necessary because
4255 -- the finalization master cannot be associated with the type
df3e68b1
HK
4256 -- of the temporary. Otherwise the secondary stack allocation
4257 -- will fail.
4258
ba759acd
AC
4259 Desig_Typ := Ret_Typ;
4260
4261 -- Ensure that the build-in-place machinery uses a fat pointer
4262 -- when allocating an unconstrained array on the heap. In this
4263 -- case the result object type is a constrained array type even
4264 -- though the function type is unconstrained.
4265
4266 if Ekind (Desig_Typ) = E_Array_Subtype then
4267 Desig_Typ := Base_Type (Desig_Typ);
4268 end if;
4269
df3e68b1 4270 -- Generate:
ba759acd 4271 -- type Ptr_Typ is access Desig_Typ;
df3e68b1
HK
4272
4273 Ptr_Typ := Make_Temporary (Loc, 'P');
4274
4275 Append_To (Decls,
4276 Make_Full_Type_Declaration (Loc,
4277 Defining_Identifier => Ptr_Typ,
2c1b72d7 4278 Type_Definition =>
df3e68b1
HK
4279 Make_Access_To_Object_Definition (Loc,
4280 Subtype_Indication =>
e4494292 4281 New_Occurrence_Of (Desig_Typ, Loc))));
df3e68b1 4282
d3f70b35
AC
4283 -- Perform minor decoration in order to set the master and the
4284 -- storage pool attributes.
df3e68b1
HK
4285
4286 Set_Ekind (Ptr_Typ, E_Access_Type);
d3f70b35 4287 Set_Finalization_Master (Ptr_Typ, Fin_Mas_Id);
df3e68b1
HK
4288 Set_Associated_Storage_Pool (Ptr_Typ, Pool_Id);
4289
4290 -- Create the temporary, generate:
df3e68b1
HK
4291 -- Local_Id : Ptr_Typ;
4292
4293 Local_Id := Make_Temporary (Loc, 'T');
4294
4295 Append_To (Decls,
4296 Make_Object_Declaration (Loc,
4297 Defining_Identifier => Local_Id,
2c1b72d7 4298 Object_Definition =>
e4494292 4299 New_Occurrence_Of (Ptr_Typ, Loc)));
df3e68b1
HK
4300
4301 -- Allocate the object, generate:
df3e68b1
HK
4302 -- Local_Id := <Alloc_Expr>;
4303
4304 Append_To (Stmts,
4305 Make_Assignment_Statement (Loc,
e4494292 4306 Name => New_Occurrence_Of (Local_Id, Loc),
df3e68b1
HK
4307 Expression => Alloc_Expr));
4308
4309 -- Generate:
4310 -- Temp_Id := Temp_Typ (Local_Id);
4311
4312 Append_To (Stmts,
4313 Make_Assignment_Statement (Loc,
e4494292 4314 Name => New_Occurrence_Of (Temp_Id, Loc),
df3e68b1
HK
4315 Expression =>
4316 Unchecked_Convert_To (Temp_Typ,
e4494292 4317 New_Occurrence_Of (Local_Id, Loc))));
df3e68b1
HK
4318
4319 -- Wrap the allocation in a block. This is further conditioned
d3f70b35
AC
4320 -- by checking the caller finalization master at runtime. A
4321 -- null value indicates a non-existent master, most likely due
4322 -- to a Finalize_Storage_Only allocation.
df3e68b1
HK
4323
4324 -- Generate:
d3f70b35 4325 -- if BIPfinalizationmaster /= null then
df3e68b1
HK
4326 -- declare
4327 -- <Decls>
4328 -- begin
4329 -- <Stmts>
4330 -- end;
4331 -- end if;
4332
4333 return
4334 Make_If_Statement (Loc,
2c1b72d7 4335 Condition =>
df3e68b1 4336 Make_Op_Ne (Loc,
e4494292 4337 Left_Opnd => New_Occurrence_Of (Fin_Mas_Id, Loc),
2c1b72d7 4338 Right_Opnd => Make_Null (Loc)),
df3e68b1
HK
4339
4340 Then_Statements => New_List (
4341 Make_Block_Statement (Loc,
2c1b72d7 4342 Declarations => Decls,
df3e68b1
HK
4343 Handled_Statement_Sequence =>
4344 Make_Handled_Sequence_Of_Statements (Loc,
4345 Statements => Stmts))));
4346 end;
4347
4348 -- For all other cases, generate:
df3e68b1
HK
4349 -- Temp_Id := <Alloc_Expr>;
4350
4351 else
4352 return
4353 Make_Assignment_Statement (Loc,
e4494292 4354 Name => New_Occurrence_Of (Temp_Id, Loc),
df3e68b1
HK
4355 Expression => Alloc_Expr);
4356 end if;
4357 end Build_Heap_Allocator;
2b3d67a5 4358
2b3d67a5
AC
4359 ---------------------------
4360 -- Move_Activation_Chain --
4361 ---------------------------
4362
4363 function Move_Activation_Chain return Node_Id is
2b3d67a5 4364 begin
2b3d67a5
AC
4365 return
4366 Make_Procedure_Call_Statement (Loc,
2c1b72d7 4367 Name =>
e4494292 4368 New_Occurrence_Of (RTE (RE_Move_Activation_Chain), Loc),
0613fb33
AC
4369
4370 Parameter_Associations => New_List (
4371
4372 -- Source chain
4373
4374 Make_Attribute_Reference (Loc,
4375 Prefix => Make_Identifier (Loc, Name_uChain),
4376 Attribute_Name => Name_Unrestricted_Access),
4377
4378 -- Destination chain
4379
e4494292 4380 New_Occurrence_Of
0613fb33
AC
4381 (Build_In_Place_Formal (Par_Func, BIP_Activation_Chain), Loc),
4382
4383 -- New master
4384
e4494292 4385 New_Occurrence_Of
af89615f 4386 (Build_In_Place_Formal (Par_Func, BIP_Task_Master), Loc)));
2b3d67a5
AC
4387 end Move_Activation_Chain;
4388
df3e68b1 4389 -- Start of processing for Expand_N_Extended_Return_Statement
2b3d67a5 4390
df3e68b1 4391 begin
f6f4d8d4
JM
4392 -- Given that functionality of interface thunks is simple (just displace
4393 -- the pointer to the object) they are always handled by means of
4394 -- simple return statements.
4395
da1c23dd 4396 pragma Assert (not Is_Thunk (Current_Scope));
f6f4d8d4 4397
df3e68b1
HK
4398 if Nkind (Ret_Obj_Decl) = N_Object_Declaration then
4399 Exp := Expression (Ret_Obj_Decl);
4400 else
4401 Exp := Empty;
4402 end if;
2b3d67a5 4403
df3e68b1 4404 HSS := Handled_Statement_Sequence (N);
2b3d67a5 4405
df3e68b1
HK
4406 -- If the returned object needs finalization actions, the function must
4407 -- perform the appropriate cleanup should it fail to return. The state
4408 -- of the function itself is tracked through a flag which is coupled
4409 -- with the scope finalizer. There is one flag per each return object
4410 -- in case of multiple returns.
2b3d67a5 4411
df3e68b1
HK
4412 if Is_Build_In_Place
4413 and then Needs_Finalization (Etype (Ret_Obj_Id))
4414 then
4415 declare
4416 Flag_Decl : Node_Id;
4417 Flag_Id : Entity_Id;
4418 Func_Bod : Node_Id;
2b3d67a5 4419
df3e68b1
HK
4420 begin
4421 -- Recover the function body
2b3d67a5 4422
df3e68b1 4423 Func_Bod := Unit_Declaration_Node (Par_Func);
0613fb33 4424
df3e68b1
HK
4425 if Nkind (Func_Bod) = N_Subprogram_Declaration then
4426 Func_Bod := Parent (Parent (Corresponding_Body (Func_Bod)));
4427 end if;
2b3d67a5 4428
df3e68b1 4429 -- Create a flag to track the function state
2b3d67a5 4430
df3e68b1 4431 Flag_Id := Make_Temporary (Loc, 'F');
3cebd1c0 4432 Set_Status_Flag_Or_Transient_Decl (Ret_Obj_Id, Flag_Id);
2b3d67a5 4433
df3e68b1
HK
4434 -- Insert the flag at the beginning of the function declarations,
4435 -- generate:
4436 -- Fnn : Boolean := False;
2b3d67a5 4437
df3e68b1
HK
4438 Flag_Decl :=
4439 Make_Object_Declaration (Loc,
4440 Defining_Identifier => Flag_Id,
2c1b72d7 4441 Object_Definition =>
e4494292
RD
4442 New_Occurrence_Of (Standard_Boolean, Loc),
4443 Expression =>
4444 New_Occurrence_Of (Standard_False, Loc));
2b3d67a5 4445
df3e68b1
HK
4446 Prepend_To (Declarations (Func_Bod), Flag_Decl);
4447 Analyze (Flag_Decl);
4448 end;
4449 end if;
2b3d67a5
AC
4450
4451 -- Build a simple_return_statement that returns the return object when
4452 -- there is a statement sequence, or no expression, or the result will
4453 -- be built in place. Note however that we currently do this for all
4454 -- composite cases, even though nonlimited composite results are not yet
4455 -- built in place (though we plan to do so eventually).
4456
df3e68b1 4457 if Present (HSS)
1a36a0cd 4458 or else Is_Composite_Type (Result_Subt)
2b3d67a5
AC
4459 or else No (Exp)
4460 then
df3e68b1
HK
4461 if No (HSS) then
4462 Stmts := New_List;
2b3d67a5
AC
4463
4464 -- If the extended return has a handled statement sequence, then wrap
4465 -- it in a block and use the block as the first statement.
4466
4467 else
df3e68b1
HK
4468 Stmts := New_List (
4469 Make_Block_Statement (Loc,
2c1b72d7 4470 Declarations => New_List,
df3e68b1 4471 Handled_Statement_Sequence => HSS));
2b3d67a5
AC
4472 end if;
4473
df3e68b1
HK
4474 -- If the result type contains tasks, we call Move_Activation_Chain.
4475 -- Later, the cleanup code will call Complete_Master, which will
4476 -- terminate any unactivated tasks belonging to the return statement
4477 -- master. But Move_Activation_Chain updates their master to be that
4478 -- of the caller, so they will not be terminated unless the return
4479 -- statement completes unsuccessfully due to exception, abort, goto,
4480 -- or exit. As a formality, we test whether the function requires the
4481 -- result to be built in place, though that's necessarily true for
4482 -- the case of result types with task parts.
2b3d67a5
AC
4483
4484 if Is_Build_In_Place
1a36a0cd 4485 and then Has_Task (Result_Subt)
2b3d67a5 4486 then
4a1bfefb
AC
4487 -- The return expression is an aggregate for a complex type which
4488 -- contains tasks. This particular case is left unexpanded since
4489 -- the regular expansion would insert all temporaries and
4490 -- initialization code in the wrong block.
4491
4492 if Nkind (Exp) = N_Aggregate then
4493 Expand_N_Aggregate (Exp);
4494 end if;
4495
1a36a0cd
AC
4496 -- Do not move the activation chain if the return object does not
4497 -- contain tasks.
4498
4499 if Has_Task (Etype (Ret_Obj_Id)) then
4500 Append_To (Stmts, Move_Activation_Chain);
4501 end if;
2b3d67a5
AC
4502 end if;
4503
df3e68b1
HK
4504 -- Update the state of the function right before the object is
4505 -- returned.
4506
4507 if Is_Build_In_Place
4508 and then Needs_Finalization (Etype (Ret_Obj_Id))
4509 then
4510 declare
35a1c212 4511 Flag_Id : constant Entity_Id :=
3cebd1c0 4512 Status_Flag_Or_Transient_Decl (Ret_Obj_Id);
4fdebd93 4513
df3e68b1
HK
4514 begin
4515 -- Generate:
4516 -- Fnn := True;
4517
4518 Append_To (Stmts,
4519 Make_Assignment_Statement (Loc,
e4494292
RD
4520 Name => New_Occurrence_Of (Flag_Id, Loc),
4521 Expression => New_Occurrence_Of (Standard_True, Loc)));
df3e68b1 4522 end;
2b3d67a5
AC
4523 end if;
4524
4525 -- Build a simple_return_statement that returns the return object
4526
df3e68b1 4527 Return_Stmt :=
2b3d67a5 4528 Make_Simple_Return_Statement (Loc,
2c1b72d7 4529 Expression => New_Occurrence_Of (Ret_Obj_Id, Loc));
df3e68b1 4530 Append_To (Stmts, Return_Stmt);
2b3d67a5 4531
df3e68b1 4532 HSS := Make_Handled_Sequence_Of_Statements (Loc, Stmts);
2b3d67a5
AC
4533 end if;
4534
df3e68b1 4535 -- Case where we build a return statement block
2b3d67a5 4536
df3e68b1 4537 if Present (HSS) then
2b3d67a5
AC
4538 Result :=
4539 Make_Block_Statement (Loc,
2c1b72d7 4540 Declarations => Return_Object_Declarations (N),
df3e68b1 4541 Handled_Statement_Sequence => HSS);
2b3d67a5
AC
4542
4543 -- We set the entity of the new block statement to be that of the
4544 -- return statement. This is necessary so that various fields, such
4545 -- as Finalization_Chain_Entity carry over from the return statement
4546 -- to the block. Note that this block is unusual, in that its entity
4547 -- is an E_Return_Statement rather than an E_Block.
4548
4549 Set_Identifier
4550 (Result, New_Occurrence_Of (Return_Statement_Entity (N), Loc));
4551
54bf19e4
AC
4552 -- If the object decl was already rewritten as a renaming, then we
4553 -- don't want to do the object allocation and transformation of of
4554 -- the return object declaration to a renaming. This case occurs
2b3d67a5 4555 -- when the return object is initialized by a call to another
54bf19e4
AC
4556 -- build-in-place function, and that function is responsible for
4557 -- the allocation of the return object.
2b3d67a5
AC
4558
4559 if Is_Build_In_Place
df3e68b1 4560 and then Nkind (Ret_Obj_Decl) = N_Object_Renaming_Declaration
2b3d67a5 4561 then
df3e68b1
HK
4562 pragma Assert
4563 (Nkind (Original_Node (Ret_Obj_Decl)) = N_Object_Declaration
2c1b72d7
AC
4564 and then Is_Build_In_Place_Function_Call
4565 (Expression (Original_Node (Ret_Obj_Decl))));
df3e68b1
HK
4566
4567 -- Return the build-in-place result by reference
2b3d67a5 4568
df3e68b1 4569 Set_By_Ref (Return_Stmt);
2b3d67a5
AC
4570
4571 elsif Is_Build_In_Place then
4572
4573 -- Locate the implicit access parameter associated with the
4574 -- caller-supplied return object and convert the return
4575 -- statement's return object declaration to a renaming of a
4576 -- dereference of the access parameter. If the return object's
4577 -- declaration includes an expression that has not already been
4578 -- expanded as separate assignments, then add an assignment
4579 -- statement to ensure the return object gets initialized.
4580
df3e68b1
HK
4581 -- declare
4582 -- Result : T [:= <expression>];
4583 -- begin
4584 -- ...
2b3d67a5
AC
4585
4586 -- is converted to
4587
df3e68b1
HK
4588 -- declare
4589 -- Result : T renames FuncRA.all;
4590 -- [Result := <expression;]
4591 -- begin
4592 -- ...
2b3d67a5
AC
4593
4594 declare
4595 Return_Obj_Id : constant Entity_Id :=
df3e68b1 4596 Defining_Identifier (Ret_Obj_Decl);
2b3d67a5
AC
4597 Return_Obj_Typ : constant Entity_Id := Etype (Return_Obj_Id);
4598 Return_Obj_Expr : constant Node_Id :=
df3e68b1 4599 Expression (Ret_Obj_Decl);
2b3d67a5
AC
4600 Constr_Result : constant Boolean :=
4601 Is_Constrained (Result_Subt);
4602 Obj_Alloc_Formal : Entity_Id;
4603 Object_Access : Entity_Id;
4604 Obj_Acc_Deref : Node_Id;
4605 Init_Assignment : Node_Id := Empty;
4606
4607 begin
4608 -- Build-in-place results must be returned by reference
4609
df3e68b1 4610 Set_By_Ref (Return_Stmt);
2b3d67a5
AC
4611
4612 -- Retrieve the implicit access parameter passed by the caller
4613
4614 Object_Access :=
df3e68b1 4615 Build_In_Place_Formal (Par_Func, BIP_Object_Access);
2b3d67a5
AC
4616
4617 -- If the return object's declaration includes an expression
4618 -- and the declaration isn't marked as No_Initialization, then
4619 -- we need to generate an assignment to the object and insert
4620 -- it after the declaration before rewriting it as a renaming
4621 -- (otherwise we'll lose the initialization). The case where
4622 -- the result type is an interface (or class-wide interface)
4623 -- is also excluded because the context of the function call
4624 -- must be unconstrained, so the initialization will always
4625 -- be done as part of an allocator evaluation (storage pool
4626 -- or secondary stack), never to a constrained target object
4627 -- passed in by the caller. Besides the assignment being
4628 -- unneeded in this case, it avoids problems with trying to
4629 -- generate a dispatching assignment when the return expression
4630 -- is a nonlimited descendant of a limited interface (the
4631 -- interface has no assignment operation).
4632
4633 if Present (Return_Obj_Expr)
df3e68b1 4634 and then not No_Initialization (Ret_Obj_Decl)
2b3d67a5
AC
4635 and then not Is_Interface (Return_Obj_Typ)
4636 then
4637 Init_Assignment :=
4638 Make_Assignment_Statement (Loc,
e4494292 4639 Name => New_Occurrence_Of (Return_Obj_Id, Loc),
2c1b72d7 4640 Expression => Relocate_Node (Return_Obj_Expr));
df3e68b1 4641
2b3d67a5
AC
4642 Set_Etype (Name (Init_Assignment), Etype (Return_Obj_Id));
4643 Set_Assignment_OK (Name (Init_Assignment));
4644 Set_No_Ctrl_Actions (Init_Assignment);
4645
4646 Set_Parent (Name (Init_Assignment), Init_Assignment);
4647 Set_Parent (Expression (Init_Assignment), Init_Assignment);
4648
df3e68b1 4649 Set_Expression (Ret_Obj_Decl, Empty);
2b3d67a5
AC
4650
4651 if Is_Class_Wide_Type (Etype (Return_Obj_Id))
4652 and then not Is_Class_Wide_Type
4653 (Etype (Expression (Init_Assignment)))
4654 then
4655 Rewrite (Expression (Init_Assignment),
4656 Make_Type_Conversion (Loc,
4657 Subtype_Mark =>
df3e68b1 4658 New_Occurrence_Of (Etype (Return_Obj_Id), Loc),
2c1b72d7 4659 Expression =>
2b3d67a5
AC
4660 Relocate_Node (Expression (Init_Assignment))));
4661 end if;
4662
4663 -- In the case of functions where the calling context can
4664 -- determine the form of allocation needed, initialization
4665 -- is done with each part of the if statement that handles
4666 -- the different forms of allocation (this is true for
4667 -- unconstrained and tagged result subtypes).
4668
4669 if Constr_Result
4670 and then not Is_Tagged_Type (Underlying_Type (Result_Subt))
4671 then
df3e68b1 4672 Insert_After (Ret_Obj_Decl, Init_Assignment);
2b3d67a5
AC
4673 end if;
4674 end if;
4675
4676 -- When the function's subtype is unconstrained, a run-time
4677 -- test is needed to determine the form of allocation to use
4678 -- for the return object. The function has an implicit formal
4679 -- parameter indicating this. If the BIP_Alloc_Form formal has
4680 -- the value one, then the caller has passed access to an
4681 -- existing object for use as the return object. If the value
4682 -- is two, then the return object must be allocated on the
4683 -- secondary stack. Otherwise, the object must be allocated in
4684 -- a storage pool (currently only supported for the global
4685 -- heap, user-defined storage pools TBD ???). We generate an
4686 -- if statement to test the implicit allocation formal and
4687 -- initialize a local access value appropriately, creating
4688 -- allocators in the secondary stack and global heap cases.
4689 -- The special formal also exists and must be tested when the
4690 -- function has a tagged result, even when the result subtype
4691 -- is constrained, because in general such functions can be
4692 -- called in dispatching contexts and must be handled similarly
4693 -- to functions with a class-wide result.
4694
4695 if not Constr_Result
4696 or else Is_Tagged_Type (Underlying_Type (Result_Subt))
4697 then
4698 Obj_Alloc_Formal :=
df3e68b1 4699 Build_In_Place_Formal (Par_Func, BIP_Alloc_Form);
2b3d67a5
AC
4700
4701 declare
8417f4b2
AC
4702 Pool_Id : constant Entity_Id :=
4703 Make_Temporary (Loc, 'P');
2b3d67a5
AC
4704 Alloc_Obj_Id : Entity_Id;
4705 Alloc_Obj_Decl : Node_Id;
4706 Alloc_If_Stmt : Node_Id;
200b7162 4707 Heap_Allocator : Node_Id;
200b7162
BD
4708 Pool_Decl : Node_Id;
4709 Pool_Allocator : Node_Id;
8417f4b2
AC
4710 Ptr_Type_Decl : Node_Id;
4711 Ref_Type : Entity_Id;
4712 SS_Allocator : Node_Id;
2b3d67a5
AC
4713
4714 begin
4715 -- Reuse the itype created for the function's implicit
4716 -- access formal. This avoids the need to create a new
4717 -- access type here, plus it allows assigning the access
4718 -- formal directly without applying a conversion.
4719
df3e68b1 4720 -- Ref_Type := Etype (Object_Access);
2b3d67a5
AC
4721
4722 -- Create an access type designating the function's
4723 -- result subtype.
4724
4725 Ref_Type := Make_Temporary (Loc, 'A');
4726
4727 Ptr_Type_Decl :=
4728 Make_Full_Type_Declaration (Loc,
4729 Defining_Identifier => Ref_Type,
2c1b72d7 4730 Type_Definition =>
2b3d67a5 4731 Make_Access_To_Object_Definition (Loc,
2c1b72d7 4732 All_Present => True,
2b3d67a5 4733 Subtype_Indication =>
e4494292 4734 New_Occurrence_Of (Return_Obj_Typ, Loc)));
2b3d67a5 4735
df3e68b1 4736 Insert_Before (Ret_Obj_Decl, Ptr_Type_Decl);
2b3d67a5
AC
4737
4738 -- Create an access object that will be initialized to an
4739 -- access value denoting the return object, either coming
4740 -- from an implicit access value passed in by the caller
4741 -- or from the result of an allocator.
4742
4743 Alloc_Obj_Id := Make_Temporary (Loc, 'R');
4744 Set_Etype (Alloc_Obj_Id, Ref_Type);
4745
4746 Alloc_Obj_Decl :=
4747 Make_Object_Declaration (Loc,
4748 Defining_Identifier => Alloc_Obj_Id,
2c1b72d7 4749 Object_Definition =>
e4494292 4750 New_Occurrence_Of (Ref_Type, Loc));
2b3d67a5 4751
df3e68b1 4752 Insert_Before (Ret_Obj_Decl, Alloc_Obj_Decl);
2b3d67a5
AC
4753
4754 -- Create allocators for both the secondary stack and
4755 -- global heap. If there's an initialization expression,
4756 -- then create these as initialized allocators.
4757
4758 if Present (Return_Obj_Expr)
df3e68b1 4759 and then not No_Initialization (Ret_Obj_Decl)
2b3d67a5
AC
4760 then
4761 -- Always use the type of the expression for the
4762 -- qualified expression, rather than the result type.
4763 -- In general we cannot always use the result type
4764 -- for the allocator, because the expression might be
4765 -- of a specific type, such as in the case of an
4766 -- aggregate or even a nonlimited object when the
4767 -- result type is a limited class-wide interface type.
4768
4769 Heap_Allocator :=
4770 Make_Allocator (Loc,
4771 Expression =>
4772 Make_Qualified_Expression (Loc,
4773 Subtype_Mark =>
e4494292 4774 New_Occurrence_Of
2b3d67a5 4775 (Etype (Return_Obj_Expr), Loc),
2c1b72d7 4776 Expression =>
2b3d67a5
AC
4777 New_Copy_Tree (Return_Obj_Expr)));
4778
4779 else
4780 -- If the function returns a class-wide type we cannot
4781 -- use the return type for the allocator. Instead we
4782 -- use the type of the expression, which must be an
4783 -- aggregate of a definite type.
4784
4785 if Is_Class_Wide_Type (Return_Obj_Typ) then
4786 Heap_Allocator :=
4787 Make_Allocator (Loc,
4788 Expression =>
e4494292 4789 New_Occurrence_Of
2b3d67a5
AC
4790 (Etype (Return_Obj_Expr), Loc));
4791 else
4792 Heap_Allocator :=
4793 Make_Allocator (Loc,
4794 Expression =>
e4494292 4795 New_Occurrence_Of (Return_Obj_Typ, Loc));
2b3d67a5
AC
4796 end if;
4797
4798 -- If the object requires default initialization then
4799 -- that will happen later following the elaboration of
4800 -- the object renaming. If we don't turn it off here
4801 -- then the object will be default initialized twice.
4802
4803 Set_No_Initialization (Heap_Allocator);
4804 end if;
4805
200b7162 4806 -- The Pool_Allocator is just like the Heap_Allocator,
8417f4b2
AC
4807 -- except we set Storage_Pool and Procedure_To_Call so
4808 -- it will use the user-defined storage pool.
200b7162
BD
4809
4810 Pool_Allocator := New_Copy_Tree (Heap_Allocator);
8417f4b2
AC
4811
4812 -- Do not generate the renaming of the build-in-place
3e452820
AC
4813 -- pool parameter on .NET/JVM/ZFP because the parameter
4814 -- is not created in the first place.
8417f4b2 4815
ea10ca9c
AC
4816 if VM_Target = No_VM
4817 and then RTE_Available (RE_Root_Storage_Pool_Ptr)
3e452820 4818 then
8417f4b2
AC
4819 Pool_Decl :=
4820 Make_Object_Renaming_Declaration (Loc,
4821 Defining_Identifier => Pool_Id,
4822 Subtype_Mark =>
e4494292 4823 New_Occurrence_Of
8417f4b2
AC
4824 (RTE (RE_Root_Storage_Pool), Loc),
4825 Name =>
4826 Make_Explicit_Dereference (Loc,
e4494292 4827 New_Occurrence_Of
8417f4b2
AC
4828 (Build_In_Place_Formal
4829 (Par_Func, BIP_Storage_Pool), Loc)));
4830 Set_Storage_Pool (Pool_Allocator, Pool_Id);
4831 Set_Procedure_To_Call
4832 (Pool_Allocator, RTE (RE_Allocate_Any));
4833 else
4834 Pool_Decl := Make_Null_Statement (Loc);
4835 end if;
200b7162 4836
2b3d67a5
AC
4837 -- If the No_Allocators restriction is active, then only
4838 -- an allocator for secondary stack allocation is needed.
4839 -- It's OK for such allocators to have Comes_From_Source
4840 -- set to False, because gigi knows not to flag them as
4841 -- being a violation of No_Implicit_Heap_Allocations.
4842
4843 if Restriction_Active (No_Allocators) then
4844 SS_Allocator := Heap_Allocator;
4845 Heap_Allocator := Make_Null (Loc);
200b7162 4846 Pool_Allocator := Make_Null (Loc);
2b3d67a5 4847
200b7162
BD
4848 -- Otherwise the heap and pool allocators may be needed,
4849 -- so we make another allocator for secondary stack
4850 -- allocation.
2b3d67a5
AC
4851
4852 else
4853 SS_Allocator := New_Copy_Tree (Heap_Allocator);
4854
3e7302c3 4855 -- The heap and pool allocators are marked as
200b7162
BD
4856 -- Comes_From_Source since they correspond to an
4857 -- explicit user-written allocator (that is, it will
4858 -- only be executed on behalf of callers that call the
3e7302c3
AC
4859 -- function as initialization for such an allocator).
4860 -- Prevents errors when No_Implicit_Heap_Allocations
4861 -- is in force.
2b3d67a5
AC
4862
4863 Set_Comes_From_Source (Heap_Allocator, True);
200b7162 4864 Set_Comes_From_Source (Pool_Allocator, True);
2b3d67a5
AC
4865 end if;
4866
4867 -- The allocator is returned on the secondary stack. We
4868 -- don't do this on VM targets, since the SS is not used.
4869
4870 if VM_Target = No_VM then
4871 Set_Storage_Pool (SS_Allocator, RTE (RE_SS_Pool));
4872 Set_Procedure_To_Call
4873 (SS_Allocator, RTE (RE_SS_Allocate));
4874
4875 -- The allocator is returned on the secondary stack,
4876 -- so indicate that the function return, as well as
4877 -- the block that encloses the allocator, must not
54bf19e4
AC
4878 -- release it. The flags must be set now because
4879 -- the decision to use the secondary stack is done
4880 -- very late in the course of expanding the return
2b3d67a5
AC
4881 -- statement, past the point where these flags are
4882 -- normally set.
4883
df3e68b1 4884 Set_Sec_Stack_Needed_For_Return (Par_Func);
2b3d67a5
AC
4885 Set_Sec_Stack_Needed_For_Return
4886 (Return_Statement_Entity (N));
df3e68b1 4887 Set_Uses_Sec_Stack (Par_Func);
2b3d67a5
AC
4888 Set_Uses_Sec_Stack (Return_Statement_Entity (N));
4889 end if;
4890
4891 -- Create an if statement to test the BIP_Alloc_Form
4892 -- formal and initialize the access object to either the
200b7162
BD
4893 -- BIP_Object_Access formal (BIP_Alloc_Form =
4894 -- Caller_Allocation), the result of allocating the
4895 -- object in the secondary stack (BIP_Alloc_Form =
4896 -- Secondary_Stack), or else an allocator to create the
4897 -- return object in the heap or user-defined pool
4898 -- (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
2b3d67a5
AC
4899
4900 -- ??? An unchecked type conversion must be made in the
4901 -- case of assigning the access object formal to the
4902 -- local access object, because a normal conversion would
4903 -- be illegal in some cases (such as converting access-
4904 -- to-unconstrained to access-to-constrained), but the
4905 -- the unchecked conversion will presumably fail to work
4906 -- right in just such cases. It's not clear at all how to
4907 -- handle this. ???
4908
4909 Alloc_If_Stmt :=
4910 Make_If_Statement (Loc,
df3e68b1 4911 Condition =>
2b3d67a5 4912 Make_Op_Eq (Loc,
2c1b72d7 4913 Left_Opnd =>
e4494292 4914 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
2b3d67a5
AC
4915 Right_Opnd =>
4916 Make_Integer_Literal (Loc,
4917 UI_From_Int (BIP_Allocation_Form'Pos
4918 (Caller_Allocation)))),
df3e68b1
HK
4919
4920 Then_Statements => New_List (
4921 Make_Assignment_Statement (Loc,
2c1b72d7 4922 Name =>
e4494292 4923 New_Occurrence_Of (Alloc_Obj_Id, Loc),
df3e68b1
HK
4924 Expression =>
4925 Make_Unchecked_Type_Conversion (Loc,
4926 Subtype_Mark =>
e4494292 4927 New_Occurrence_Of (Ref_Type, Loc),
2c1b72d7 4928 Expression =>
e4494292 4929 New_Occurrence_Of (Object_Access, Loc)))),
df3e68b1
HK
4930
4931 Elsif_Parts => New_List (
4932 Make_Elsif_Part (Loc,
4933 Condition =>
4934 Make_Op_Eq (Loc,
2c1b72d7 4935 Left_Opnd =>
e4494292 4936 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
df3e68b1
HK
4937 Right_Opnd =>
4938 Make_Integer_Literal (Loc,
4939 UI_From_Int (BIP_Allocation_Form'Pos
2b3d67a5 4940 (Secondary_Stack)))),
df3e68b1
HK
4941
4942 Then_Statements => New_List (
4943 Make_Assignment_Statement (Loc,
2c1b72d7 4944 Name =>
e4494292 4945 New_Occurrence_Of (Alloc_Obj_Id, Loc),
200b7162
BD
4946 Expression => SS_Allocator))),
4947
4948 Make_Elsif_Part (Loc,
4949 Condition =>
4950 Make_Op_Eq (Loc,
4951 Left_Opnd =>
e4494292 4952 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
200b7162
BD
4953 Right_Opnd =>
4954 Make_Integer_Literal (Loc,
4955 UI_From_Int (BIP_Allocation_Form'Pos
4956 (Global_Heap)))),
4957
4958 Then_Statements => New_List (
4959 Build_Heap_Allocator
4960 (Temp_Id => Alloc_Obj_Id,
4961 Temp_Typ => Ref_Type,
4962 Func_Id => Par_Func,
4963 Ret_Typ => Return_Obj_Typ,
4964 Alloc_Expr => Heap_Allocator)))),
df3e68b1
HK
4965
4966 Else_Statements => New_List (
200b7162 4967 Pool_Decl,
df3e68b1
HK
4968 Build_Heap_Allocator
4969 (Temp_Id => Alloc_Obj_Id,
4970 Temp_Typ => Ref_Type,
4971 Func_Id => Par_Func,
4972 Ret_Typ => Return_Obj_Typ,
200b7162 4973 Alloc_Expr => Pool_Allocator)));
2b3d67a5
AC
4974
4975 -- If a separate initialization assignment was created
4976 -- earlier, append that following the assignment of the
4977 -- implicit access formal to the access object, to ensure
54bf19e4
AC
4978 -- that the return object is initialized in that case. In
4979 -- this situation, the target of the assignment must be
4980 -- rewritten to denote a dereference of the access to the
4981 -- return object passed in by the caller.
2b3d67a5
AC
4982
4983 if Present (Init_Assignment) then
4984 Rewrite (Name (Init_Assignment),
4985 Make_Explicit_Dereference (Loc,
e4494292 4986 Prefix => New_Occurrence_Of (Alloc_Obj_Id, Loc)));
df3e68b1 4987
2b3d67a5
AC
4988 Set_Etype
4989 (Name (Init_Assignment), Etype (Return_Obj_Id));
4990
4991 Append_To
2c1b72d7 4992 (Then_Statements (Alloc_If_Stmt), Init_Assignment);
2b3d67a5
AC
4993 end if;
4994
df3e68b1 4995 Insert_Before (Ret_Obj_Decl, Alloc_If_Stmt);
2b3d67a5
AC
4996
4997 -- Remember the local access object for use in the
4998 -- dereference of the renaming created below.
4999
5000 Object_Access := Alloc_Obj_Id;
5001 end;
5002 end if;
5003
5004 -- Replace the return object declaration with a renaming of a
5005 -- dereference of the access value designating the return
5006 -- object.
5007
5008 Obj_Acc_Deref :=
5009 Make_Explicit_Dereference (Loc,
e4494292 5010 Prefix => New_Occurrence_Of (Object_Access, Loc));
2b3d67a5 5011
df3e68b1 5012 Rewrite (Ret_Obj_Decl,
2b3d67a5
AC
5013 Make_Object_Renaming_Declaration (Loc,
5014 Defining_Identifier => Return_Obj_Id,
2c1b72d7
AC
5015 Access_Definition => Empty,
5016 Subtype_Mark =>
df3e68b1 5017 New_Occurrence_Of (Return_Obj_Typ, Loc),
2c1b72d7 5018 Name => Obj_Acc_Deref));
2b3d67a5
AC
5019
5020 Set_Renamed_Object (Return_Obj_Id, Obj_Acc_Deref);
5021 end;
5022 end if;
5023
5024 -- Case where we do not build a block
5025
5026 else
df3e68b1
HK
5027 -- We're about to drop Return_Object_Declarations on the floor, so
5028 -- we need to insert it, in case it got expanded into useful code.
2b3d67a5
AC
5029 -- Remove side effects from expression, which may be duplicated in
5030 -- subsequent checks (see Expand_Simple_Function_Return).
5031
df3e68b1 5032 Insert_List_Before (N, Return_Object_Declarations (N));
2b3d67a5
AC
5033 Remove_Side_Effects (Exp);
5034
5035 -- Build simple_return_statement that returns the expression directly
5036
df3e68b1
HK
5037 Return_Stmt := Make_Simple_Return_Statement (Loc, Expression => Exp);
5038 Result := Return_Stmt;
2b3d67a5
AC
5039 end if;
5040
5041 -- Set the flag to prevent infinite recursion
5042
df3e68b1 5043 Set_Comes_From_Extended_Return_Statement (Return_Stmt);
2b3d67a5
AC
5044
5045 Rewrite (N, Result);
5046 Analyze (N);
5047 end Expand_N_Extended_Return_Statement;
5048
70482933
RK
5049 ----------------------------
5050 -- Expand_N_Function_Call --
5051 ----------------------------
5052
5053 procedure Expand_N_Function_Call (N : Node_Id) is
70482933 5054 begin
ac4d6407 5055 Expand_Call (N);
70482933
RK
5056 end Expand_N_Function_Call;
5057
5058 ---------------------------------------
5059 -- Expand_N_Procedure_Call_Statement --
5060 ---------------------------------------
5061
5062 procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
5063 begin
5064 Expand_Call (N);
5065 end Expand_N_Procedure_Call_Statement;
5066
2b3d67a5
AC
5067 --------------------------------------
5068 -- Expand_N_Simple_Return_Statement --
5069 --------------------------------------
5070
5071 procedure Expand_N_Simple_Return_Statement (N : Node_Id) is
5072 begin
5073 -- Defend against previous errors (i.e. the return statement calls a
5074 -- function that is not available in configurable runtime).
5075
5076 if Present (Expression (N))
5077 and then Nkind (Expression (N)) = N_Empty
5078 then
ee2ba856 5079 Check_Error_Detected;
2b3d67a5
AC
5080 return;
5081 end if;
5082
5083 -- Distinguish the function and non-function cases:
5084
5085 case Ekind (Return_Applies_To (Return_Statement_Entity (N))) is
5086
5087 when E_Function |
5088 E_Generic_Function =>
5089 Expand_Simple_Function_Return (N);
5090
5091 when E_Procedure |
5092 E_Generic_Procedure |
5093 E_Entry |
5094 E_Entry_Family |
5095 E_Return_Statement =>
5096 Expand_Non_Function_Return (N);
5097
5098 when others =>
5099 raise Program_Error;
5100 end case;
5101
5102 exception
5103 when RE_Not_Available =>
5104 return;
5105 end Expand_N_Simple_Return_Statement;
5106
70482933
RK
5107 ------------------------------
5108 -- Expand_N_Subprogram_Body --
5109 ------------------------------
5110
4a3b249c
RD
5111 -- Add poll call if ATC polling is enabled, unless the body will be inlined
5112 -- by the back-end.
70482933 5113
7888a6ae 5114 -- Add dummy push/pop label nodes at start and end to clear any local
4a3b249c 5115 -- exception indications if local-exception-to-goto optimization is active.
7888a6ae 5116
f44fe430
RD
5117 -- Add return statement if last statement in body is not a return statement
5118 -- (this makes things easier on Gigi which does not want to have to handle
5119 -- a missing return).
70482933
RK
5120
5121 -- Add call to Activate_Tasks if body is a task activator
5122
5123 -- Deal with possible detection of infinite recursion
5124
5125 -- Eliminate body completely if convention stubbed
5126
5127 -- Encode entity names within body, since we will not need to reference
5128 -- these entities any longer in the front end.
5129
5130 -- Initialize scalar out parameters if Initialize/Normalize_Scalars
5131
c9a4817d 5132 -- Reset Pure indication if any parameter has root type System.Address
199c6a10
AC
5133 -- or has any parameters of limited types, where limited means that the
5134 -- run-time view is limited (i.e. the full type is limited).
c9a4817d 5135
12e0c41c
AC
5136 -- Wrap thread body
5137
70482933
RK
5138 procedure Expand_N_Subprogram_Body (N : Node_Id) is
5139 Loc : constant Source_Ptr := Sloc (N);
5140 H : constant Node_Id := Handled_Statement_Sequence (N);
c9a4817d 5141 Body_Id : Entity_Id;
70482933 5142 Except_H : Node_Id;
70482933 5143 L : List_Id;
70f91180 5144 Spec_Id : Entity_Id;
70482933
RK
5145
5146 procedure Add_Return (S : List_Id);
5147 -- Append a return statement to the statement sequence S if the last
5148 -- statement is not already a return or a goto statement. Note that
4a3b249c
RD
5149 -- the latter test is not critical, it does not matter if we add a few
5150 -- extra returns, since they get eliminated anyway later on.
70482933
RK
5151
5152 ----------------
5153 -- Add_Return --
5154 ----------------
5155
5156 procedure Add_Return (S : List_Id) is
7888a6ae
GD
5157 Last_Stm : Node_Id;
5158 Loc : Source_Ptr;
12e0c41c
AC
5159
5160 begin
7888a6ae
GD
5161 -- Get last statement, ignoring any Pop_xxx_Label nodes, which are
5162 -- not relevant in this context since they are not executable.
12e0c41c 5163
7888a6ae
GD
5164 Last_Stm := Last (S);
5165 while Nkind (Last_Stm) in N_Pop_xxx_Label loop
5166 Prev (Last_Stm);
5167 end loop;
12e0c41c 5168
7888a6ae 5169 -- Now insert return unless last statement is a transfer
12e0c41c 5170
7888a6ae 5171 if not Is_Transfer (Last_Stm) then
12e0c41c 5172
7888a6ae
GD
5173 -- The source location for the return is the end label of the
5174 -- procedure if present. Otherwise use the sloc of the last
5175 -- statement in the list. If the list comes from a generated
5176 -- exception handler and we are not debugging generated code,
5177 -- all the statements within the handler are made invisible
5178 -- to the debugger.
12e0c41c 5179
7888a6ae
GD
5180 if Nkind (Parent (S)) = N_Exception_Handler
5181 and then not Comes_From_Source (Parent (S))
5182 then
5183 Loc := Sloc (Last_Stm);
7888a6ae
GD
5184 elsif Present (End_Label (H)) then
5185 Loc := Sloc (End_Label (H));
7888a6ae
GD
5186 else
5187 Loc := Sloc (Last_Stm);
5188 end if;
12e0c41c 5189
5334d18f
BD
5190 declare
5191 Rtn : constant Node_Id := Make_Simple_Return_Statement (Loc);
5192
5193 begin
4a3b249c
RD
5194 -- Append return statement, and set analyzed manually. We can't
5195 -- call Analyze on this return since the scope is wrong.
5334d18f
BD
5196
5197 -- Note: it almost works to push the scope and then do the
4a3b249c 5198 -- Analyze call, but something goes wrong in some weird cases
5334d18f
BD
5199 -- and it is not worth worrying about ???
5200
5201 Append_To (S, Rtn);
5202 Set_Analyzed (Rtn);
5203
5204 -- Call _Postconditions procedure if appropriate. We need to
5205 -- do this explicitly because we did not analyze the generated
5206 -- return statement above, so the call did not get inserted.
5207
5208 if Ekind (Spec_Id) = E_Procedure
5209 and then Has_Postconditions (Spec_Id)
5210 then
5211 pragma Assert (Present (Postcondition_Proc (Spec_Id)));
5212 Insert_Action (Rtn,
5213 Make_Procedure_Call_Statement (Loc,
5214 Name =>
e4494292
RD
5215 New_Occurrence_Of
5216 (Postcondition_Proc (Spec_Id), Loc)));
5334d18f
BD
5217 end if;
5218 end;
12e0c41c 5219 end if;
7888a6ae 5220 end Add_Return;
12e0c41c 5221
70482933
RK
5222 -- Start of processing for Expand_N_Subprogram_Body
5223
5224 begin
4a3b249c
RD
5225 -- Set L to either the list of declarations if present, or to the list
5226 -- of statements if no declarations are present. This is used to insert
5227 -- new stuff at the start.
70482933
RK
5228
5229 if Is_Non_Empty_List (Declarations (N)) then
5230 L := Declarations (N);
5231 else
7888a6ae
GD
5232 L := Statements (H);
5233 end if;
5234
5235 -- If local-exception-to-goto optimization active, insert dummy push
1adaea16
AC
5236 -- statements at start, and dummy pop statements at end, but inhibit
5237 -- this if we have No_Exception_Handlers, since they are useless and
5238 -- intefere with analysis, e.g. by codepeer.
7888a6ae
GD
5239
5240 if (Debug_Flag_Dot_G
5241 or else Restriction_Active (No_Exception_Propagation))
1adaea16
AC
5242 and then not Restriction_Active (No_Exception_Handlers)
5243 and then not CodePeer_Mode
7888a6ae
GD
5244 and then Is_Non_Empty_List (L)
5245 then
5246 declare
5247 FS : constant Node_Id := First (L);
5248 FL : constant Source_Ptr := Sloc (FS);
5249 LS : Node_Id;
5250 LL : Source_Ptr;
5251
5252 begin
5253 -- LS points to either last statement, if statements are present
5254 -- or to the last declaration if there are no statements present.
5255 -- It is the node after which the pop's are generated.
5256
5257 if Is_Non_Empty_List (Statements (H)) then
5258 LS := Last (Statements (H));
5259 else
5260 LS := Last (L);
5261 end if;
5262
5263 LL := Sloc (LS);
5264
5265 Insert_List_Before_And_Analyze (FS, New_List (
5266 Make_Push_Constraint_Error_Label (FL),
5267 Make_Push_Program_Error_Label (FL),
5268 Make_Push_Storage_Error_Label (FL)));
5269
5270 Insert_List_After_And_Analyze (LS, New_List (
5271 Make_Pop_Constraint_Error_Label (LL),
5272 Make_Pop_Program_Error_Label (LL),
5273 Make_Pop_Storage_Error_Label (LL)));
5274 end;
70482933
RK
5275 end if;
5276
70482933
RK
5277 -- Find entity for subprogram
5278
c9a4817d
RD
5279 Body_Id := Defining_Entity (N);
5280
70482933
RK
5281 if Present (Corresponding_Spec (N)) then
5282 Spec_Id := Corresponding_Spec (N);
5283 else
c9a4817d
RD
5284 Spec_Id := Body_Id;
5285 end if;
5286
7888a6ae
GD
5287 -- Need poll on entry to subprogram if polling enabled. We only do this
5288 -- for non-empty subprograms, since it does not seem necessary to poll
4a3b249c 5289 -- for a dummy null subprogram.
c885d7a1
AC
5290
5291 if Is_Non_Empty_List (L) then
4a3b249c
RD
5292
5293 -- Do not add a polling call if the subprogram is to be inlined by
5294 -- the back-end, to avoid repeated calls with multiple inlinings.
5295
c885d7a1
AC
5296 if Is_Inlined (Spec_Id)
5297 and then Front_End_Inlining
5298 and then Optimization_Level > 1
5299 then
5300 null;
5301 else
5302 Generate_Poll_Call (First (L));
5303 end if;
5304 end if;
5305
4a3b249c
RD
5306 -- If this is a Pure function which has any parameters whose root type
5307 -- is System.Address, reset the Pure indication, since it will likely
5308 -- cause incorrect code to be generated as the parameter is probably
5309 -- a pointer, and the fact that the same pointer is passed does not mean
5310 -- that the same value is being referenced.
91b1417d
AC
5311
5312 -- Note that if the programmer gave an explicit Pure_Function pragma,
5313 -- then we believe the programmer, and leave the subprogram Pure.
5314
4a3b249c
RD
5315 -- This code should probably be at the freeze point, so that it happens
5316 -- even on a -gnatc (or more importantly -gnatt) compile, so that the
5317 -- semantic tree has Is_Pure set properly ???
c9a4817d
RD
5318
5319 if Is_Pure (Spec_Id)
5320 and then Is_Subprogram (Spec_Id)
5321 and then not Has_Pragma_Pure_Function (Spec_Id)
5322 then
5323 declare
2f1b20a9 5324 F : Entity_Id;
c9a4817d
RD
5325
5326 begin
2f1b20a9 5327 F := First_Formal (Spec_Id);
c9a4817d 5328 while Present (F) loop
e5dc610e 5329 if Is_Descendent_Of_Address (Etype (F))
199c6a10
AC
5330
5331 -- Note that this test is being made in the body of the
5332 -- subprogram, not the spec, so we are testing the full
5333 -- type for being limited here, as required.
5334
e5dc610e
AC
5335 or else Is_Limited_Type (Etype (F))
5336 then
c9a4817d
RD
5337 Set_Is_Pure (Spec_Id, False);
5338
5339 if Spec_Id /= Body_Id then
5340 Set_Is_Pure (Body_Id, False);
5341 end if;
5342
5343 exit;
5344 end if;
5345
5346 Next_Formal (F);
5347 end loop;
5348 end;
70482933
RK
5349 end if;
5350
5351 -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
5352
5353 if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
5354 declare
2f1b20a9 5355 F : Entity_Id;
05c064c1 5356 A : Node_Id;
70482933
RK
5357
5358 begin
70482933
RK
5359 -- Loop through formals
5360
2f1b20a9 5361 F := First_Formal (Spec_Id);
70482933
RK
5362 while Present (F) loop
5363 if Is_Scalar_Type (Etype (F))
5364 and then Ekind (F) = E_Out_Parameter
5365 then
70f91180
RD
5366 Check_Restriction (No_Default_Initialization, F);
5367
02822a92
RD
5368 -- Insert the initialization. We turn off validity checks
5369 -- for this assignment, since we do not want any check on
5370 -- the initial value itself (which may well be invalid).
05c064c1 5371 -- Predicate checks are disabled as well (RM 6.4.1 (13/3))
02822a92 5372
05c064c1 5373 A := Make_Assignment_Statement (Loc,
02822a92 5374 Name => New_Occurrence_Of (F, Loc),
05c064c1
AC
5375 Expression => Get_Simple_Init_Val (Etype (F), N));
5376 Set_Suppress_Assignment_Checks (A);
5377
5378 Insert_Before_And_Analyze (First (L),
5379 A, Suppress => Validity_Check);
70482933
RK
5380 end if;
5381
5382 Next_Formal (F);
5383 end loop;
70482933
RK
5384 end;
5385 end if;
5386
5387 -- Clear out statement list for stubbed procedure
5388
5389 if Present (Corresponding_Spec (N)) then
5390 Set_Elaboration_Flag (N, Spec_Id);
5391
5392 if Convention (Spec_Id) = Convention_Stubbed
5393 or else Is_Eliminated (Spec_Id)
5394 then
5395 Set_Declarations (N, Empty_List);
5396 Set_Handled_Statement_Sequence (N,
5397 Make_Handled_Sequence_Of_Statements (Loc,
2c1b72d7 5398 Statements => New_List (Make_Null_Statement (Loc))));
70482933
RK
5399 return;
5400 end if;
5401 end if;
5402
70f91180
RD
5403 -- Create a set of discriminals for the next protected subprogram body
5404
5405 if Is_List_Member (N)
5406 and then Present (Parent (List_Containing (N)))
5407 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5408 and then Present (Next_Protected_Operation (N))
5409 then
5410 Set_Discriminals (Parent (Base_Type (Scope (Spec_Id))));
5411 end if;
5412
4a3b249c
RD
5413 -- Returns_By_Ref flag is normally set when the subprogram is frozen but
5414 -- subprograms with no specs are not frozen.
70482933
RK
5415
5416 declare
5417 Typ : constant Entity_Id := Etype (Spec_Id);
5418 Utyp : constant Entity_Id := Underlying_Type (Typ);
5419
5420 begin
5421 if not Acts_As_Spec (N)
5422 and then Nkind (Parent (Parent (Spec_Id))) /=
5423 N_Subprogram_Body_Stub
5424 then
5425 null;
5426
51245e2d 5427 elsif Is_Limited_View (Typ) then
70482933
RK
5428 Set_Returns_By_Ref (Spec_Id);
5429
048e5cef 5430 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
70482933
RK
5431 Set_Returns_By_Ref (Spec_Id);
5432 end if;
5433 end;
5434
4a3b249c
RD
5435 -- For a procedure, we add a return for all possible syntactic ends of
5436 -- the subprogram.
70482933 5437
b29def53 5438 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure) then
70482933
RK
5439 Add_Return (Statements (H));
5440
5441 if Present (Exception_Handlers (H)) then
5442 Except_H := First_Non_Pragma (Exception_Handlers (H));
70482933
RK
5443 while Present (Except_H) loop
5444 Add_Return (Statements (Except_H));
5445 Next_Non_Pragma (Except_H);
5446 end loop;
5447 end if;
5448
98f01d53
AC
5449 -- For a function, we must deal with the case where there is at least
5450 -- one missing return. What we do is to wrap the entire body of the
5451 -- function in a block:
70482933
RK
5452
5453 -- begin
5454 -- ...
5455 -- end;
5456
5457 -- becomes
5458
5459 -- begin
5460 -- begin
5461 -- ...
5462 -- end;
5463
5464 -- raise Program_Error;
5465 -- end;
5466
4a3b249c
RD
5467 -- This approach is necessary because the raise must be signalled to the
5468 -- caller, not handled by any local handler (RM 6.4(11)).
70482933 5469
4a3b249c
RD
5470 -- Note: we do not need to analyze the constructed sequence here, since
5471 -- it has no handler, and an attempt to analyze the handled statement
5472 -- sequence twice is risky in various ways (e.g. the issue of expanding
5473 -- cleanup actions twice).
70482933
RK
5474
5475 elsif Has_Missing_Return (Spec_Id) then
5476 declare
5477 Hloc : constant Source_Ptr := Sloc (H);
5478 Blok : constant Node_Id :=
5479 Make_Block_Statement (Hloc,
5480 Handled_Statement_Sequence => H);
5481 Rais : constant Node_Id :=
07fc65c4
GB
5482 Make_Raise_Program_Error (Hloc,
5483 Reason => PE_Missing_Return);
70482933
RK
5484
5485 begin
5486 Set_Handled_Statement_Sequence (N,
5487 Make_Handled_Sequence_Of_Statements (Hloc,
5488 Statements => New_List (Blok, Rais)));
5489
7888a6ae 5490 Push_Scope (Spec_Id);
70482933
RK
5491 Analyze (Blok);
5492 Analyze (Rais);
5493 Pop_Scope;
5494 end;
5495 end if;
5496
70482933
RK
5497 -- If subprogram contains a parameterless recursive call, then we may
5498 -- have an infinite recursion, so see if we can generate code to check
5499 -- for this possibility if storage checks are not suppressed.
5500
5501 if Ekind (Spec_Id) = E_Procedure
5502 and then Has_Recursive_Call (Spec_Id)
5503 and then not Storage_Checks_Suppressed (Spec_Id)
5504 then
5505 Detect_Infinite_Recursion (N, Spec_Id);
5506 end if;
5507
70482933
RK
5508 -- Set to encode entity names in package body before gigi is called
5509
5510 Qualify_Entity_Names (N);
5511 end Expand_N_Subprogram_Body;
5512
5513 -----------------------------------
5514 -- Expand_N_Subprogram_Body_Stub --
5515 -----------------------------------
5516
5517 procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
5518 begin
5519 if Present (Corresponding_Body (N)) then
5520 Expand_N_Subprogram_Body (
5521 Unit_Declaration_Node (Corresponding_Body (N)));
5522 end if;
70482933
RK
5523 end Expand_N_Subprogram_Body_Stub;
5524
5525 -------------------------------------
5526 -- Expand_N_Subprogram_Declaration --
5527 -------------------------------------
5528
70482933
RK
5529 -- If the declaration appears within a protected body, it is a private
5530 -- operation of the protected type. We must create the corresponding
5531 -- protected subprogram an associated formals. For a normal protected
5532 -- operation, this is done when expanding the protected type declaration.
5533
758c442c
GD
5534 -- If the declaration is for a null procedure, emit null body
5535
70482933 5536 procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
fbf5a39b
AC
5537 Loc : constant Source_Ptr := Sloc (N);
5538 Subp : constant Entity_Id := Defining_Entity (N);
5539 Scop : constant Entity_Id := Scope (Subp);
5540 Prot_Decl : Node_Id;
5541 Prot_Bod : Node_Id;
5542 Prot_Id : Entity_Id;
70482933
RK
5543
5544 begin
2ba431e5
YM
5545 -- In SPARK, subprogram declarations are only allowed in package
5546 -- specifications.
7ff2d234 5547
fe5d3068
YM
5548 if Nkind (Parent (N)) /= N_Package_Specification then
5549 if Nkind (Parent (N)) = N_Compilation_Unit then
2ba431e5 5550 Check_SPARK_Restriction
fe5d3068
YM
5551 ("subprogram declaration is not a library item", N);
5552
5553 elsif Present (Next (N))
7ff2d234
AC
5554 and then Nkind (Next (N)) = N_Pragma
5555 and then Get_Pragma_Id (Pragma_Name (Next (N))) = Pragma_Import
5556 then
2ba431e5 5557 -- In SPARK, subprogram declarations are also permitted in
7ff2d234
AC
5558 -- declarative parts when immediately followed by a corresponding
5559 -- pragma Import. We only check here that there is some pragma
5560 -- Import.
5561
5562 null;
5563 else
2ba431e5 5564 Check_SPARK_Restriction
fe5d3068 5565 ("subprogram declaration is not allowed here", N);
7ff2d234
AC
5566 end if;
5567 end if;
5568
2f1b20a9
ES
5569 -- Deal with case of protected subprogram. Do not generate protected
5570 -- operation if operation is flagged as eliminated.
70482933
RK
5571
5572 if Is_List_Member (N)
5573 and then Present (Parent (List_Containing (N)))
5574 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5575 and then Is_Protected_Type (Scop)
5576 then
6871ba5f
AC
5577 if No (Protected_Body_Subprogram (Subp))
5578 and then not Is_Eliminated (Subp)
5579 then
fbf5a39b 5580 Prot_Decl :=
70482933
RK
5581 Make_Subprogram_Declaration (Loc,
5582 Specification =>
5583 Build_Protected_Sub_Specification
2f1b20a9 5584 (N, Scop, Unprotected_Mode));
70482933
RK
5585
5586 -- The protected subprogram is declared outside of the protected
5587 -- body. Given that the body has frozen all entities so far, we
fbf5a39b 5588 -- analyze the subprogram and perform freezing actions explicitly.
19590d70
GD
5589 -- including the generation of an explicit freeze node, to ensure
5590 -- that gigi has the proper order of elaboration.
fbf5a39b
AC
5591 -- If the body is a subunit, the insertion point is before the
5592 -- stub in the parent.
70482933
RK
5593
5594 Prot_Bod := Parent (List_Containing (N));
5595
5596 if Nkind (Parent (Prot_Bod)) = N_Subunit then
5597 Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
5598 end if;
5599
fbf5a39b
AC
5600 Insert_Before (Prot_Bod, Prot_Decl);
5601 Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
19590d70 5602 Set_Has_Delayed_Freeze (Prot_Id);
70482933 5603
7888a6ae 5604 Push_Scope (Scope (Scop));
fbf5a39b 5605 Analyze (Prot_Decl);
6b958cec 5606 Freeze_Before (N, Prot_Id);
fbf5a39b 5607 Set_Protected_Body_Subprogram (Subp, Prot_Id);
47bfea3a
AC
5608
5609 -- Create protected operation as well. Even though the operation
5610 -- is only accessible within the body, it is possible to make it
5611 -- available outside of the protected object by using 'Access to
3d923671 5612 -- provide a callback, so build protected version in all cases.
47bfea3a
AC
5613
5614 Prot_Decl :=
3d923671
AC
5615 Make_Subprogram_Declaration (Loc,
5616 Specification =>
5617 Build_Protected_Sub_Specification (N, Scop, Protected_Mode));
47bfea3a
AC
5618 Insert_Before (Prot_Bod, Prot_Decl);
5619 Analyze (Prot_Decl);
5620
70482933
RK
5621 Pop_Scope;
5622 end if;
758c442c 5623
54bf19e4
AC
5624 -- Ada 2005 (AI-348): Generate body for a null procedure. In most
5625 -- cases this is superfluous because calls to it will be automatically
5626 -- inlined, but we definitely need the body if preconditions for the
5627 -- procedure are present.
02822a92 5628
758c442c
GD
5629 elsif Nkind (Specification (N)) = N_Procedure_Specification
5630 and then Null_Present (Specification (N))
5631 then
5632 declare
e1f3cb58 5633 Bod : constant Node_Id := Body_To_Inline (N);
d6533e74 5634
758c442c 5635 begin
e1f3cb58
AC
5636 Set_Has_Completion (Subp, False);
5637 Append_Freeze_Action (Subp, Bod);
c73ae90f 5638
e1f3cb58
AC
5639 -- The body now contains raise statements, so calls to it will
5640 -- not be inlined.
c73ae90f 5641
e1f3cb58 5642 Set_Is_Inlined (Subp, False);
758c442c 5643 end;
70482933
RK
5644 end if;
5645 end Expand_N_Subprogram_Declaration;
5646
2b3d67a5
AC
5647 --------------------------------
5648 -- Expand_Non_Function_Return --
5649 --------------------------------
5650
5651 procedure Expand_Non_Function_Return (N : Node_Id) is
5652 pragma Assert (No (Expression (N)));
5653
5654 Loc : constant Source_Ptr := Sloc (N);
5655 Scope_Id : Entity_Id :=
5656 Return_Applies_To (Return_Statement_Entity (N));
5657 Kind : constant Entity_Kind := Ekind (Scope_Id);
5658 Call : Node_Id;
5659 Acc_Stat : Node_Id;
5660 Goto_Stat : Node_Id;
5661 Lab_Node : Node_Id;
5662
5663 begin
5664 -- Call _Postconditions procedure if procedure with active
54bf19e4
AC
5665 -- postconditions. Here, we use the Postcondition_Proc attribute,
5666 -- which is needed for implicitly-generated returns. Functions
5667 -- never have implicitly-generated returns, and there's no
5668 -- room for Postcondition_Proc in E_Function, so we look up the
5669 -- identifier Name_uPostconditions for function returns (see
2b3d67a5
AC
5670 -- Expand_Simple_Function_Return).
5671
5672 if Ekind (Scope_Id) = E_Procedure
5673 and then Has_Postconditions (Scope_Id)
5674 then
5675 pragma Assert (Present (Postcondition_Proc (Scope_Id)));
5676 Insert_Action (N,
5677 Make_Procedure_Call_Statement (Loc,
e4494292 5678 Name => New_Occurrence_Of (Postcondition_Proc (Scope_Id), Loc)));
2b3d67a5
AC
5679 end if;
5680
5681 -- If it is a return from a procedure do no extra steps
5682
5683 if Kind = E_Procedure or else Kind = E_Generic_Procedure then
5684 return;
5685
5686 -- If it is a nested return within an extended one, replace it with a
5687 -- return of the previously declared return object.
5688
5689 elsif Kind = E_Return_Statement then
5690 Rewrite (N,
5691 Make_Simple_Return_Statement (Loc,
5692 Expression =>
5693 New_Occurrence_Of (First_Entity (Scope_Id), Loc)));
5694 Set_Comes_From_Extended_Return_Statement (N);
5695 Set_Return_Statement_Entity (N, Scope_Id);
5696 Expand_Simple_Function_Return (N);
5697 return;
5698 end if;
5699
5700 pragma Assert (Is_Entry (Scope_Id));
5701
5702 -- Look at the enclosing block to see whether the return is from an
5703 -- accept statement or an entry body.
5704
5705 for J in reverse 0 .. Scope_Stack.Last loop
5706 Scope_Id := Scope_Stack.Table (J).Entity;
5707 exit when Is_Concurrent_Type (Scope_Id);
5708 end loop;
5709
5710 -- If it is a return from accept statement it is expanded as call to
5711 -- RTS Complete_Rendezvous and a goto to the end of the accept body.
5712
5713 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
5714 -- Expand_N_Accept_Alternative in exp_ch9.adb)
5715
5716 if Is_Task_Type (Scope_Id) then
5717
5718 Call :=
5719 Make_Procedure_Call_Statement (Loc,
e4494292 5720 Name => New_Occurrence_Of (RTE (RE_Complete_Rendezvous), Loc));
2b3d67a5
AC
5721 Insert_Before (N, Call);
5722 -- why not insert actions here???
5723 Analyze (Call);
5724
5725 Acc_Stat := Parent (N);
5726 while Nkind (Acc_Stat) /= N_Accept_Statement loop
5727 Acc_Stat := Parent (Acc_Stat);
5728 end loop;
5729
5730 Lab_Node := Last (Statements
5731 (Handled_Statement_Sequence (Acc_Stat)));
5732
5733 Goto_Stat := Make_Goto_Statement (Loc,
5734 Name => New_Occurrence_Of
5735 (Entity (Identifier (Lab_Node)), Loc));
5736
5737 Set_Analyzed (Goto_Stat);
5738
5739 Rewrite (N, Goto_Stat);
5740 Analyze (N);
5741
5742 -- If it is a return from an entry body, put a Complete_Entry_Body call
5743 -- in front of the return.
5744
5745 elsif Is_Protected_Type (Scope_Id) then
5746 Call :=
5747 Make_Procedure_Call_Statement (Loc,
5748 Name =>
e4494292 5749 New_Occurrence_Of (RTE (RE_Complete_Entry_Body), Loc),
2b3d67a5
AC
5750 Parameter_Associations => New_List (
5751 Make_Attribute_Reference (Loc,
2c1b72d7 5752 Prefix =>
e4494292 5753 New_Occurrence_Of
2b3d67a5 5754 (Find_Protection_Object (Current_Scope), Loc),
2c1b72d7 5755 Attribute_Name => Name_Unchecked_Access)));
2b3d67a5
AC
5756
5757 Insert_Before (N, Call);
5758 Analyze (Call);
5759 end if;
5760 end Expand_Non_Function_Return;
5761
70482933
RK
5762 ---------------------------------------
5763 -- Expand_Protected_Object_Reference --
5764 ---------------------------------------
5765
5766 function Expand_Protected_Object_Reference
5767 (N : Node_Id;
02822a92 5768 Scop : Entity_Id) return Node_Id
70482933
RK
5769 is
5770 Loc : constant Source_Ptr := Sloc (N);
5771 Corr : Entity_Id;
5772 Rec : Node_Id;
5773 Param : Entity_Id;
5774 Proc : Entity_Id;
5775
5776 begin
7675ad4f 5777 Rec := Make_Identifier (Loc, Name_uObject);
70482933
RK
5778 Set_Etype (Rec, Corresponding_Record_Type (Scop));
5779
2f1b20a9
ES
5780 -- Find enclosing protected operation, and retrieve its first parameter,
5781 -- which denotes the enclosing protected object. If the enclosing
5782 -- operation is an entry, we are immediately within the protected body,
5783 -- and we can retrieve the object from the service entries procedure. A
16b05213 5784 -- barrier function has the same signature as an entry. A barrier
2f1b20a9
ES
5785 -- function is compiled within the protected object, but unlike
5786 -- protected operations its never needs locks, so that its protected
5787 -- body subprogram points to itself.
70482933
RK
5788
5789 Proc := Current_Scope;
70482933
RK
5790 while Present (Proc)
5791 and then Scope (Proc) /= Scop
5792 loop
5793 Proc := Scope (Proc);
5794 end loop;
5795
5796 Corr := Protected_Body_Subprogram (Proc);
5797
5798 if No (Corr) then
5799
5800 -- Previous error left expansion incomplete.
5801 -- Nothing to do on this call.
5802
5803 return Empty;
5804 end if;
5805
5806 Param :=
5807 Defining_Identifier
5808 (First (Parameter_Specifications (Parent (Corr))));
5809
5810 if Is_Subprogram (Proc)
5811 and then Proc /= Corr
5812 then
98f01d53 5813 -- Protected function or procedure
70482933
RK
5814
5815 Set_Entity (Rec, Param);
5816
2f1b20a9
ES
5817 -- Rec is a reference to an entity which will not be in scope when
5818 -- the call is reanalyzed, and needs no further analysis.
70482933
RK
5819
5820 Set_Analyzed (Rec);
5821
5822 else
2f1b20a9
ES
5823 -- Entry or barrier function for entry body. The first parameter of
5824 -- the entry body procedure is pointer to the object. We create a
5825 -- local variable of the proper type, duplicating what is done to
5826 -- define _object later on.
70482933
RK
5827
5828 declare
c12beea0
RD
5829 Decls : List_Id;
5830 Obj_Ptr : constant Entity_Id := Make_Temporary (Loc, 'T');
fbf5a39b 5831
70482933
RK
5832 begin
5833 Decls := New_List (
5834 Make_Full_Type_Declaration (Loc,
5835 Defining_Identifier => Obj_Ptr,
2c1b72d7 5836 Type_Definition =>
70482933
RK
5837 Make_Access_To_Object_Definition (Loc,
5838 Subtype_Indication =>
e4494292 5839 New_Occurrence_Of
c12beea0 5840 (Corresponding_Record_Type (Scop), Loc))));
70482933
RK
5841
5842 Insert_Actions (N, Decls);
6b958cec 5843 Freeze_Before (N, Obj_Ptr);
70482933
RK
5844
5845 Rec :=
5846 Make_Explicit_Dereference (Loc,
2c1b72d7
AC
5847 Prefix =>
5848 Unchecked_Convert_To (Obj_Ptr,
5849 New_Occurrence_Of (Param, Loc)));
70482933 5850
2f1b20a9 5851 -- Analyze new actual. Other actuals in calls are already analyzed
7888a6ae 5852 -- and the list of actuals is not reanalyzed after rewriting.
70482933
RK
5853
5854 Set_Parent (Rec, N);
5855 Analyze (Rec);
5856 end;
5857 end if;
5858
5859 return Rec;
5860 end Expand_Protected_Object_Reference;
5861
5862 --------------------------------------
5863 -- Expand_Protected_Subprogram_Call --
5864 --------------------------------------
5865
5866 procedure Expand_Protected_Subprogram_Call
5867 (N : Node_Id;
5868 Subp : Entity_Id;
5869 Scop : Entity_Id)
5870 is
5871 Rec : Node_Id;
5872
36295779
AC
5873 procedure Freeze_Called_Function;
5874 -- If it is a function call it can appear in elaboration code and
5875 -- the called entity must be frozen before the call. This must be
5876 -- done before the call is expanded, as the expansion may rewrite it
5877 -- to something other than a call (e.g. a temporary initialized in a
5878 -- transient block).
5879
5880 ----------------------------
5881 -- Freeze_Called_Function --
5882 ----------------------------
5883
5884 procedure Freeze_Called_Function is
5885 begin
5886 if Ekind (Subp) = E_Function then
5887 Freeze_Expression (Name (N));
5888 end if;
5889 end Freeze_Called_Function;
5890
5891 -- Start of processing for Expand_Protected_Subprogram_Call
5892
70482933 5893 begin
54bf19e4
AC
5894 -- If the protected object is not an enclosing scope, this is an inter-
5895 -- object function call. Inter-object procedure calls are expanded by
5896 -- Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
5897 -- subprogram being called is in the protected body being compiled, and
5898 -- if the protected object in the call is statically the enclosing type.
5899 -- The object may be an component of some other data structure, in which
5900 -- case this must be handled as an inter-object call.
70482933
RK
5901
5902 if not In_Open_Scopes (Scop)
5903 or else not Is_Entity_Name (Name (N))
5904 then
5905 if Nkind (Name (N)) = N_Selected_Component then
5906 Rec := Prefix (Name (N));
5907
5908 else
5909 pragma Assert (Nkind (Name (N)) = N_Indexed_Component);
5910 Rec := Prefix (Prefix (Name (N)));
5911 end if;
5912
36295779 5913 Freeze_Called_Function;
70482933 5914 Build_Protected_Subprogram_Call (N,
2c1b72d7 5915 Name => New_Occurrence_Of (Subp, Sloc (N)),
2ba1a7c7 5916 Rec => Convert_Concurrent (Rec, Etype (Rec)),
70482933
RK
5917 External => True);
5918
5919 else
5920 Rec := Expand_Protected_Object_Reference (N, Scop);
5921
5922 if No (Rec) then
5923 return;
5924 end if;
5925
36295779 5926 Freeze_Called_Function;
70482933
RK
5927 Build_Protected_Subprogram_Call (N,
5928 Name => Name (N),
5929 Rec => Rec,
5930 External => False);
5931
5932 end if;
5933
811c6a85 5934 -- Analyze and resolve the new call. The actuals have already been
b0159fbe 5935 -- resolved, but expansion of a function call will add extra actuals
811c6a85
AC
5936 -- if needed. Analysis of a procedure call already includes resolution.
5937
5938 Analyze (N);
5939
5940 if Ekind (Subp) = E_Function then
5941 Resolve (N, Etype (Subp));
5942 end if;
70482933
RK
5943 end Expand_Protected_Subprogram_Call;
5944
63585f75
SB
5945 --------------------------------------------
5946 -- Has_Unconstrained_Access_Discriminants --
5947 --------------------------------------------
5948
5949 function Has_Unconstrained_Access_Discriminants
5950 (Subtyp : Entity_Id) return Boolean
5951 is
5952 Discr : Entity_Id;
5953
5954 begin
5955 if Has_Discriminants (Subtyp)
5956 and then not Is_Constrained (Subtyp)
5957 then
5958 Discr := First_Discriminant (Subtyp);
5959 while Present (Discr) loop
5960 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
5961 return True;
5962 end if;
5963
5964 Next_Discriminant (Discr);
5965 end loop;
5966 end if;
ebf494ec 5967
63585f75
SB
5968 return False;
5969 end Has_Unconstrained_Access_Discriminants;
5970
2b3d67a5
AC
5971 -----------------------------------
5972 -- Expand_Simple_Function_Return --
5973 -----------------------------------
5974
54bf19e4 5975 -- The "simple" comes from the syntax rule simple_return_statement. The
a90bd866 5976 -- semantics are not at all simple.
2b3d67a5
AC
5977
5978 procedure Expand_Simple_Function_Return (N : Node_Id) is
5979 Loc : constant Source_Ptr := Sloc (N);
5980
5981 Scope_Id : constant Entity_Id :=
5982 Return_Applies_To (Return_Statement_Entity (N));
5983 -- The function we are returning from
5984
5985 R_Type : constant Entity_Id := Etype (Scope_Id);
5986 -- The result type of the function
5987
5988 Utyp : constant Entity_Id := Underlying_Type (R_Type);
5989
5990 Exp : constant Node_Id := Expression (N);
5991 pragma Assert (Present (Exp));
5992
5993 Exptyp : constant Entity_Id := Etype (Exp);
5994 -- The type of the expression (not necessarily the same as R_Type)
5995
5996 Subtype_Ind : Node_Id;
54bf19e4
AC
5997 -- If the result type of the function is class-wide and the expression
5998 -- has a specific type, then we use the expression's type as the type of
5999 -- the return object. In cases where the expression is an aggregate that
6000 -- is built in place, this avoids the need for an expensive conversion
6001 -- of the return object to the specific type on assignments to the
6002 -- individual components.
2b3d67a5
AC
6003
6004 begin
6005 if Is_Class_Wide_Type (R_Type)
6006 and then not Is_Class_Wide_Type (Etype (Exp))
6007 then
6008 Subtype_Ind := New_Occurrence_Of (Etype (Exp), Loc);
6009 else
6010 Subtype_Ind := New_Occurrence_Of (R_Type, Loc);
6011 end if;
6012
6013 -- For the case of a simple return that does not come from an extended
6014 -- return, in the case of Ada 2005 where we are returning a limited
6015 -- type, we rewrite "return <expression>;" to be:
6016
6017 -- return _anon_ : <return_subtype> := <expression>
6018
6019 -- The expansion produced by Expand_N_Extended_Return_Statement will
6020 -- contain simple return statements (for example, a block containing
6021 -- simple return of the return object), which brings us back here with
6022 -- Comes_From_Extended_Return_Statement set. The reason for the barrier
6023 -- checking for a simple return that does not come from an extended
6024 -- return is to avoid this infinite recursion.
6025
6026 -- The reason for this design is that for Ada 2005 limited returns, we
6027 -- need to reify the return object, so we can build it "in place", and
6028 -- we need a block statement to hang finalization and tasking stuff.
6029
6030 -- ??? In order to avoid disruption, we avoid translating to extended
6031 -- return except in the cases where we really need to (Ada 2005 for
6032 -- inherently limited). We might prefer to do this translation in all
6033 -- cases (except perhaps for the case of Ada 95 inherently limited),
6034 -- in order to fully exercise the Expand_N_Extended_Return_Statement
6035 -- code. This would also allow us to do the build-in-place optimization
6036 -- for efficiency even in cases where it is semantically not required.
6037
6038 -- As before, we check the type of the return expression rather than the
6039 -- return type of the function, because the latter may be a limited
6040 -- class-wide interface type, which is not a limited type, even though
6041 -- the type of the expression may be.
6042
6043 if not Comes_From_Extended_Return_Statement (N)
51245e2d 6044 and then Is_Limited_View (Etype (Expression (N)))
0791fbe9 6045 and then Ada_Version >= Ada_2005
2b3d67a5 6046 and then not Debug_Flag_Dot_L
f6f4d8d4
JM
6047
6048 -- The functionality of interface thunks is simple and it is always
6049 -- handled by means of simple return statements. This leaves their
6050 -- expansion simple and clean.
6051
da1c23dd 6052 and then not Is_Thunk (Current_Scope)
2b3d67a5
AC
6053 then
6054 declare
6055 Return_Object_Entity : constant Entity_Id :=
6056 Make_Temporary (Loc, 'R', Exp);
f6f4d8d4 6057
2b3d67a5
AC
6058 Obj_Decl : constant Node_Id :=
6059 Make_Object_Declaration (Loc,
6060 Defining_Identifier => Return_Object_Entity,
6061 Object_Definition => Subtype_Ind,
6062 Expression => Exp);
6063
f6f4d8d4
JM
6064 Ext : constant Node_Id :=
6065 Make_Extended_Return_Statement (Loc,
6066 Return_Object_Declarations => New_List (Obj_Decl));
2b3d67a5
AC
6067 -- Do not perform this high-level optimization if the result type
6068 -- is an interface because the "this" pointer must be displaced.
6069
6070 begin
6071 Rewrite (N, Ext);
6072 Analyze (N);
6073 return;
6074 end;
6075 end if;
6076
6077 -- Here we have a simple return statement that is part of the expansion
6078 -- of an extended return statement (either written by the user, or
6079 -- generated by the above code).
6080
6081 -- Always normalize C/Fortran boolean result. This is not always needed,
6082 -- but it seems a good idea to minimize the passing around of non-
6083 -- normalized values, and in any case this handles the processing of
6084 -- barrier functions for protected types, which turn the condition into
6085 -- a return statement.
6086
6087 if Is_Boolean_Type (Exptyp)
6088 and then Nonzero_Is_True (Exptyp)
6089 then
6090 Adjust_Condition (Exp);
6091 Adjust_Result_Type (Exp, Exptyp);
6092 end if;
6093
6094 -- Do validity check if enabled for returns
6095
6096 if Validity_Checks_On
6097 and then Validity_Check_Returns
6098 then
6099 Ensure_Valid (Exp);
6100 end if;
6101
6102 -- Check the result expression of a scalar function against the subtype
6103 -- of the function by inserting a conversion. This conversion must
6104 -- eventually be performed for other classes of types, but for now it's
6105 -- only done for scalars.
6106 -- ???
6107
6108 if Is_Scalar_Type (Exptyp) then
6109 Rewrite (Exp, Convert_To (R_Type, Exp));
6110
6111 -- The expression is resolved to ensure that the conversion gets
6112 -- expanded to generate a possible constraint check.
6113
6114 Analyze_And_Resolve (Exp, R_Type);
6115 end if;
6116
6117 -- Deal with returning variable length objects and controlled types
6118
6119 -- Nothing to do if we are returning by reference, or this is not a
6120 -- type that requires special processing (indicated by the fact that
6121 -- it requires a cleanup scope for the secondary stack case).
6122
51245e2d 6123 if Is_Limited_View (Exptyp)
2b3d67a5
AC
6124 or else Is_Limited_Interface (Exptyp)
6125 then
6126 null;
6127
f6f4d8d4
JM
6128 -- No copy needed for thunks returning interface type objects since
6129 -- the object is returned by reference and the maximum functionality
6130 -- required is just to displace the pointer.
6131
4b342b91 6132 elsif Is_Thunk (Current_Scope) and then Is_Interface (Exptyp) then
f6f4d8d4
JM
6133 null;
6134
2b3d67a5
AC
6135 elsif not Requires_Transient_Scope (R_Type) then
6136
6137 -- Mutable records with no variable length components are not
6138 -- returned on the sec-stack, so we need to make sure that the
6139 -- backend will only copy back the size of the actual value, and not
6140 -- the maximum size. We create an actual subtype for this purpose.
6141
6142 declare
6143 Ubt : constant Entity_Id := Underlying_Type (Base_Type (Exptyp));
6144 Decl : Node_Id;
6145 Ent : Entity_Id;
6146 begin
6147 if Has_Discriminants (Ubt)
6148 and then not Is_Constrained (Ubt)
6149 and then not Has_Unchecked_Union (Ubt)
6150 then
6151 Decl := Build_Actual_Subtype (Ubt, Exp);
6152 Ent := Defining_Identifier (Decl);
6153 Insert_Action (Exp, Decl);
6154 Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
6155 Analyze_And_Resolve (Exp);
6156 end if;
6157 end;
6158
6159 -- Here if secondary stack is used
6160
6161 else
c624298a
AC
6162 -- Prevent the reclamation of the secondary stack by all enclosing
6163 -- blocks and loops as well as the related function, otherwise the
6164 -- result will be reclaimed too early or even clobbered. Due to a
6165 -- possible mix of internally generated blocks, source blocks and
6166 -- loops, the scope stack may not be contiguous as all labels are
6167 -- inserted at the top level within the related function. Instead,
6168 -- perform a parent-based traversal and mark all appropriate
6169 -- constructs.
2b3d67a5
AC
6170
6171 declare
c624298a
AC
6172 P : Node_Id;
6173
2b3d67a5 6174 begin
c624298a
AC
6175 P := N;
6176 while Present (P) loop
adb252d8 6177
c624298a
AC
6178 -- Mark the label of a source or internally generated block or
6179 -- loop.
adb252d8 6180
c624298a
AC
6181 if Nkind_In (P, N_Block_Statement, N_Loop_Statement) then
6182 Set_Sec_Stack_Needed_For_Return (Entity (Identifier (P)));
6183
6184 -- Mark the enclosing function
6185
6186 elsif Nkind (P) = N_Subprogram_Body then
6187 if Present (Corresponding_Spec (P)) then
6188 Set_Sec_Stack_Needed_For_Return (Corresponding_Spec (P));
6189 else
6190 Set_Sec_Stack_Needed_For_Return (Defining_Entity (P));
6191 end if;
6192
6193 -- Do not go beyond the enclosing function
6194
6195 exit;
6196 end if;
6197
6198 P := Parent (P);
6199 end loop;
2b3d67a5
AC
6200 end;
6201
6202 -- Optimize the case where the result is a function call. In this
6203 -- case either the result is already on the secondary stack, or is
6204 -- already being returned with the stack pointer depressed and no
54bf19e4
AC
6205 -- further processing is required except to set the By_Ref flag
6206 -- to ensure that gigi does not attempt an extra unnecessary copy.
2b3d67a5
AC
6207 -- (actually not just unnecessary but harmfully wrong in the case
6208 -- of a controlled type, where gigi does not know how to do a copy).
54bf19e4
AC
6209 -- To make up for a gcc 2.8.1 deficiency (???), we perform the copy
6210 -- for array types if the constrained status of the target type is
6211 -- different from that of the expression.
2b3d67a5
AC
6212
6213 if Requires_Transient_Scope (Exptyp)
6214 and then
6215 (not Is_Array_Type (Exptyp)
6216 or else Is_Constrained (Exptyp) = Is_Constrained (R_Type)
6217 or else CW_Or_Has_Controlled_Part (Utyp))
6218 and then Nkind (Exp) = N_Function_Call
6219 then
6220 Set_By_Ref (N);
6221
6222 -- Remove side effects from the expression now so that other parts
6223 -- of the expander do not have to reanalyze this node without this
6224 -- optimization
6225
6226 Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
6227
6228 -- For controlled types, do the allocation on the secondary stack
6229 -- manually in order to call adjust at the right time:
6230
6231 -- type Anon1 is access R_Type;
6232 -- for Anon1'Storage_pool use ss_pool;
6233 -- Anon2 : anon1 := new R_Type'(expr);
6234 -- return Anon2.all;
6235
6236 -- We do the same for classwide types that are not potentially
6237 -- controlled (by the virtue of restriction No_Finalization) because
6238 -- gigi is not able to properly allocate class-wide types.
6239
6240 elsif CW_Or_Has_Controlled_Part (Utyp) then
6241 declare
6242 Loc : constant Source_Ptr := Sloc (N);
6243 Acc_Typ : constant Entity_Id := Make_Temporary (Loc, 'A');
6244 Alloc_Node : Node_Id;
6245 Temp : Entity_Id;
6246
6247 begin
6248 Set_Ekind (Acc_Typ, E_Access_Type);
6249
6250 Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
6251
6252 -- This is an allocator for the secondary stack, and it's fine
6253 -- to have Comes_From_Source set False on it, as gigi knows not
6254 -- to flag it as a violation of No_Implicit_Heap_Allocations.
6255
6256 Alloc_Node :=
6257 Make_Allocator (Loc,
6258 Expression =>
6259 Make_Qualified_Expression (Loc,
e4494292 6260 Subtype_Mark => New_Occurrence_Of (Etype (Exp), Loc),
2b3d67a5
AC
6261 Expression => Relocate_Node (Exp)));
6262
6263 -- We do not want discriminant checks on the declaration,
6264 -- given that it gets its value from the allocator.
6265
6266 Set_No_Initialization (Alloc_Node);
6267
6268 Temp := Make_Temporary (Loc, 'R', Alloc_Node);
6269
6270 Insert_List_Before_And_Analyze (N, New_List (
6271 Make_Full_Type_Declaration (Loc,
6272 Defining_Identifier => Acc_Typ,
6273 Type_Definition =>
6274 Make_Access_To_Object_Definition (Loc,
6275 Subtype_Indication => Subtype_Ind)),
6276
6277 Make_Object_Declaration (Loc,
6278 Defining_Identifier => Temp,
e4494292 6279 Object_Definition => New_Occurrence_Of (Acc_Typ, Loc),
2b3d67a5
AC
6280 Expression => Alloc_Node)));
6281
6282 Rewrite (Exp,
6283 Make_Explicit_Dereference (Loc,
e4494292 6284 Prefix => New_Occurrence_Of (Temp, Loc)));
2b3d67a5 6285
a1092b48
AC
6286 -- Ada 2005 (AI-251): If the type of the returned object is
6287 -- an interface then add an implicit type conversion to force
6288 -- displacement of the "this" pointer.
6289
6290 if Is_Interface (R_Type) then
6291 Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
6292 end if;
6293
2b3d67a5
AC
6294 Analyze_And_Resolve (Exp, R_Type);
6295 end;
6296
6297 -- Otherwise use the gigi mechanism to allocate result on the
6298 -- secondary stack.
6299
6300 else
6301 Check_Restriction (No_Secondary_Stack, N);
6302 Set_Storage_Pool (N, RTE (RE_SS_Pool));
6303
6304 -- If we are generating code for the VM do not use
6305 -- SS_Allocate since everything is heap-allocated anyway.
6306
6307 if VM_Target = No_VM then
6308 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
6309 end if;
6310 end if;
6311 end if;
6312
54bf19e4
AC
6313 -- Implement the rules of 6.5(8-10), which require a tag check in
6314 -- the case of a limited tagged return type, and tag reassignment for
2b3d67a5
AC
6315 -- nonlimited tagged results. These actions are needed when the return
6316 -- type is a specific tagged type and the result expression is a
54bf19e4
AC
6317 -- conversion or a formal parameter, because in that case the tag of
6318 -- the expression might differ from the tag of the specific result type.
2b3d67a5
AC
6319
6320 if Is_Tagged_Type (Utyp)
6321 and then not Is_Class_Wide_Type (Utyp)
6322 and then (Nkind_In (Exp, N_Type_Conversion,
6323 N_Unchecked_Type_Conversion)
6324 or else (Is_Entity_Name (Exp)
6325 and then Ekind (Entity (Exp)) in Formal_Kind))
6326 then
54bf19e4
AC
6327 -- When the return type is limited, perform a check that the tag of
6328 -- the result is the same as the tag of the return type.
2b3d67a5
AC
6329
6330 if Is_Limited_Type (R_Type) then
6331 Insert_Action (Exp,
6332 Make_Raise_Constraint_Error (Loc,
6333 Condition =>
6334 Make_Op_Ne (Loc,
2c1b72d7 6335 Left_Opnd =>
2b3d67a5 6336 Make_Selected_Component (Loc,
7675ad4f
AC
6337 Prefix => Duplicate_Subexpr (Exp),
6338 Selector_Name => Make_Identifier (Loc, Name_uTag)),
2b3d67a5
AC
6339 Right_Opnd =>
6340 Make_Attribute_Reference (Loc,
2c1b72d7
AC
6341 Prefix =>
6342 New_Occurrence_Of (Base_Type (Utyp), Loc),
2b3d67a5 6343 Attribute_Name => Name_Tag)),
2c1b72d7 6344 Reason => CE_Tag_Check_Failed));
2b3d67a5
AC
6345
6346 -- If the result type is a specific nonlimited tagged type, then we
6347 -- have to ensure that the tag of the result is that of the result
54bf19e4
AC
6348 -- type. This is handled by making a copy of the expression in
6349 -- the case where it might have a different tag, namely when the
2b3d67a5
AC
6350 -- expression is a conversion or a formal parameter. We create a new
6351 -- object of the result type and initialize it from the expression,
6352 -- which will implicitly force the tag to be set appropriately.
6353
6354 else
6355 declare
6356 ExpR : constant Node_Id := Relocate_Node (Exp);
6357 Result_Id : constant Entity_Id :=
6358 Make_Temporary (Loc, 'R', ExpR);
6359 Result_Exp : constant Node_Id :=
e4494292 6360 New_Occurrence_Of (Result_Id, Loc);
2b3d67a5
AC
6361 Result_Obj : constant Node_Id :=
6362 Make_Object_Declaration (Loc,
6363 Defining_Identifier => Result_Id,
6364 Object_Definition =>
e4494292 6365 New_Occurrence_Of (R_Type, Loc),
2b3d67a5
AC
6366 Constant_Present => True,
6367 Expression => ExpR);
6368
6369 begin
6370 Set_Assignment_OK (Result_Obj);
6371 Insert_Action (Exp, Result_Obj);
6372
6373 Rewrite (Exp, Result_Exp);
6374 Analyze_And_Resolve (Exp, R_Type);
6375 end;
6376 end if;
6377
6378 -- Ada 2005 (AI-344): If the result type is class-wide, then insert
6379 -- a check that the level of the return expression's underlying type
6380 -- is not deeper than the level of the master enclosing the function.
6381 -- Always generate the check when the type of the return expression
6382 -- is class-wide, when it's a type conversion, or when it's a formal
6383 -- parameter. Otherwise, suppress the check in the case where the
6384 -- return expression has a specific type whose level is known not to
6385 -- be statically deeper than the function's result type.
6386
0a376301
JM
6387 -- No runtime check needed in interface thunks since it is performed
6388 -- by the target primitive associated with the thunk.
6389
2b3d67a5
AC
6390 -- Note: accessibility check is skipped in the VM case, since there
6391 -- does not seem to be any practical way to implement this check.
6392
0791fbe9 6393 elsif Ada_Version >= Ada_2005
2b3d67a5
AC
6394 and then Tagged_Type_Expansion
6395 and then Is_Class_Wide_Type (R_Type)
0a376301 6396 and then not Is_Thunk (Current_Scope)
3217f71e 6397 and then not Scope_Suppress.Suppress (Accessibility_Check)
2b3d67a5
AC
6398 and then
6399 (Is_Class_Wide_Type (Etype (Exp))
6400 or else Nkind_In (Exp, N_Type_Conversion,
6401 N_Unchecked_Type_Conversion)
6402 or else (Is_Entity_Name (Exp)
2c1b72d7 6403 and then Ekind (Entity (Exp)) in Formal_Kind)
2b3d67a5
AC
6404 or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
6405 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))
6406 then
6407 declare
6408 Tag_Node : Node_Id;
6409
6410 begin
6411 -- Ada 2005 (AI-251): In class-wide interface objects we displace
c5f5123f
AC
6412 -- "this" to reference the base of the object. This is required to
6413 -- get access to the TSD of the object.
2b3d67a5
AC
6414
6415 if Is_Class_Wide_Type (Etype (Exp))
6416 and then Is_Interface (Etype (Exp))
6417 and then Nkind (Exp) = N_Explicit_Dereference
6418 then
6419 Tag_Node :=
6420 Make_Explicit_Dereference (Loc,
2c1b72d7
AC
6421 Prefix =>
6422 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6423 Make_Function_Call (Loc,
6424 Name =>
e4494292 6425 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
2c1b72d7
AC
6426 Parameter_Associations => New_List (
6427 Unchecked_Convert_To (RTE (RE_Address),
6428 Duplicate_Subexpr (Prefix (Exp)))))));
2b3d67a5
AC
6429 else
6430 Tag_Node :=
6431 Make_Attribute_Reference (Loc,
2c1b72d7 6432 Prefix => Duplicate_Subexpr (Exp),
2b3d67a5
AC
6433 Attribute_Name => Name_Tag);
6434 end if;
6435
6436 Insert_Action (Exp,
6437 Make_Raise_Program_Error (Loc,
6438 Condition =>
6439 Make_Op_Gt (Loc,
2c1b72d7 6440 Left_Opnd => Build_Get_Access_Level (Loc, Tag_Node),
2b3d67a5
AC
6441 Right_Opnd =>
6442 Make_Integer_Literal (Loc,
6443 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))),
6444 Reason => PE_Accessibility_Check_Failed));
6445 end;
6446
6447 -- AI05-0073: If function has a controlling access result, check that
6448 -- the tag of the return value, if it is not null, matches designated
6449 -- type of return type.
f7ea2603
RD
6450
6451 -- The return expression is referenced twice in the code below, so it
6452 -- must be made free of side effects. Given that different compilers
2b3d67a5
AC
6453 -- may evaluate these parameters in different order, both occurrences
6454 -- perform a copy.
6455
6456 elsif Ekind (R_Type) = E_Anonymous_Access_Type
6457 and then Has_Controlling_Result (Scope_Id)
6458 then
6459 Insert_Action (N,
6460 Make_Raise_Constraint_Error (Loc,
6461 Condition =>
6462 Make_And_Then (Loc,
6463 Left_Opnd =>
6464 Make_Op_Ne (Loc,
6465 Left_Opnd => Duplicate_Subexpr (Exp),
6466 Right_Opnd => Make_Null (Loc)),
ebf494ec 6467
2b3d67a5
AC
6468 Right_Opnd => Make_Op_Ne (Loc,
6469 Left_Opnd =>
6470 Make_Selected_Component (Loc,
6471 Prefix => Duplicate_Subexpr (Exp),
7675ad4f 6472 Selector_Name => Make_Identifier (Loc, Name_uTag)),
ebf494ec 6473
2b3d67a5
AC
6474 Right_Opnd =>
6475 Make_Attribute_Reference (Loc,
6476 Prefix =>
6477 New_Occurrence_Of (Designated_Type (R_Type), Loc),
6478 Attribute_Name => Name_Tag))),
ebf494ec 6479
2b3d67a5
AC
6480 Reason => CE_Tag_Check_Failed),
6481 Suppress => All_Checks);
6482 end if;
6483
63585f75
SB
6484 -- AI05-0234: RM 6.5(21/3). Check access discriminants to
6485 -- ensure that the function result does not outlive an
6486 -- object designated by one of it discriminants.
6487
57a3fca9 6488 if Present (Extra_Accessibility_Of_Result (Scope_Id))
63585f75
SB
6489 and then Has_Unconstrained_Access_Discriminants (R_Type)
6490 then
6491 declare
ebf494ec 6492 Discrim_Source : Node_Id;
63585f75
SB
6493
6494 procedure Check_Against_Result_Level (Level : Node_Id);
ebf494ec
RD
6495 -- Check the given accessibility level against the level
6496 -- determined by the point of call. (AI05-0234).
63585f75
SB
6497
6498 --------------------------------
6499 -- Check_Against_Result_Level --
6500 --------------------------------
6501
6502 procedure Check_Against_Result_Level (Level : Node_Id) is
6503 begin
6504 Insert_Action (N,
6505 Make_Raise_Program_Error (Loc,
6506 Condition =>
6507 Make_Op_Gt (Loc,
6508 Left_Opnd => Level,
6509 Right_Opnd =>
6510 New_Occurrence_Of
6511 (Extra_Accessibility_Of_Result (Scope_Id), Loc)),
6512 Reason => PE_Accessibility_Check_Failed));
6513 end Check_Against_Result_Level;
ebf494ec 6514
63585f75 6515 begin
ebf494ec 6516 Discrim_Source := Exp;
63585f75
SB
6517 while Nkind (Discrim_Source) = N_Qualified_Expression loop
6518 Discrim_Source := Expression (Discrim_Source);
6519 end loop;
6520
6521 if Nkind (Discrim_Source) = N_Identifier
6522 and then Is_Return_Object (Entity (Discrim_Source))
6523 then
63585f75
SB
6524 Discrim_Source := Entity (Discrim_Source);
6525
6526 if Is_Constrained (Etype (Discrim_Source)) then
6527 Discrim_Source := Etype (Discrim_Source);
6528 else
6529 Discrim_Source := Expression (Parent (Discrim_Source));
6530 end if;
6531
6532 elsif Nkind (Discrim_Source) = N_Identifier
6533 and then Nkind_In (Original_Node (Discrim_Source),
6534 N_Aggregate, N_Extension_Aggregate)
6535 then
63585f75
SB
6536 Discrim_Source := Original_Node (Discrim_Source);
6537
6538 elsif Nkind (Discrim_Source) = N_Explicit_Dereference and then
6539 Nkind (Original_Node (Discrim_Source)) = N_Function_Call
6540 then
63585f75 6541 Discrim_Source := Original_Node (Discrim_Source);
63585f75
SB
6542 end if;
6543
6544 while Nkind_In (Discrim_Source, N_Qualified_Expression,
6545 N_Type_Conversion,
6546 N_Unchecked_Type_Conversion)
6547 loop
63585f75
SB
6548 Discrim_Source := Expression (Discrim_Source);
6549 end loop;
6550
6551 case Nkind (Discrim_Source) is
6552 when N_Defining_Identifier =>
6553
54bf19e4
AC
6554 pragma Assert (Is_Composite_Type (Discrim_Source)
6555 and then Has_Discriminants (Discrim_Source)
6556 and then Is_Constrained (Discrim_Source));
63585f75
SB
6557
6558 declare
6559 Discrim : Entity_Id :=
6560 First_Discriminant (Base_Type (R_Type));
6561 Disc_Elmt : Elmt_Id :=
6562 First_Elmt (Discriminant_Constraint
6563 (Discrim_Source));
6564 begin
6565 loop
6566 if Ekind (Etype (Discrim)) =
54bf19e4
AC
6567 E_Anonymous_Access_Type
6568 then
63585f75
SB
6569 Check_Against_Result_Level
6570 (Dynamic_Accessibility_Level (Node (Disc_Elmt)));
6571 end if;
6572
6573 Next_Elmt (Disc_Elmt);
6574 Next_Discriminant (Discrim);
6575 exit when not Present (Discrim);
6576 end loop;
6577 end;
6578
6579 when N_Aggregate | N_Extension_Aggregate =>
6580
54bf19e4
AC
6581 -- Unimplemented: extension aggregate case where discrims
6582 -- come from ancestor part, not extension part.
63585f75
SB
6583
6584 declare
6585 Discrim : Entity_Id :=
6586 First_Discriminant (Base_Type (R_Type));
6587
6588 Disc_Exp : Node_Id := Empty;
6589
6590 Positionals_Exhausted
6591 : Boolean := not Present (Expressions
6592 (Discrim_Source));
6593
6594 function Associated_Expr
6595 (Comp_Id : Entity_Id;
6596 Associations : List_Id) return Node_Id;
6597
6598 -- Given a component and a component associations list,
6599 -- locate the expression for that component; returns
6600 -- Empty if no such expression is found.
6601
6602 ---------------------
6603 -- Associated_Expr --
6604 ---------------------
6605
6606 function Associated_Expr
6607 (Comp_Id : Entity_Id;
6608 Associations : List_Id) return Node_Id
6609 is
54bf19e4 6610 Assoc : Node_Id;
63585f75 6611 Choice : Node_Id;
54bf19e4 6612
63585f75
SB
6613 begin
6614 -- Simple linear search seems ok here
6615
54bf19e4 6616 Assoc := First (Associations);
63585f75
SB
6617 while Present (Assoc) loop
6618 Choice := First (Choices (Assoc));
63585f75
SB
6619 while Present (Choice) loop
6620 if (Nkind (Choice) = N_Identifier
54bf19e4
AC
6621 and then Chars (Choice) = Chars (Comp_Id))
6622 or else (Nkind (Choice) = N_Others_Choice)
63585f75
SB
6623 then
6624 return Expression (Assoc);
6625 end if;
6626
6627 Next (Choice);
6628 end loop;
6629
6630 Next (Assoc);
6631 end loop;
6632
6633 return Empty;
6634 end Associated_Expr;
6635
6636 -- Start of processing for Expand_Simple_Function_Return
6637
6638 begin
6639 if not Positionals_Exhausted then
6640 Disc_Exp := First (Expressions (Discrim_Source));
6641 end if;
6642
6643 loop
6644 if Positionals_Exhausted then
54bf19e4
AC
6645 Disc_Exp :=
6646 Associated_Expr
6647 (Discrim,
6648 Component_Associations (Discrim_Source));
63585f75
SB
6649 end if;
6650
6651 if Ekind (Etype (Discrim)) =
54bf19e4
AC
6652 E_Anonymous_Access_Type
6653 then
63585f75
SB
6654 Check_Against_Result_Level
6655 (Dynamic_Accessibility_Level (Disc_Exp));
6656 end if;
6657
6658 Next_Discriminant (Discrim);
6659 exit when not Present (Discrim);
6660
6661 if not Positionals_Exhausted then
6662 Next (Disc_Exp);
6663 Positionals_Exhausted := not Present (Disc_Exp);
6664 end if;
6665 end loop;
6666 end;
6667
6668 when N_Function_Call =>
54bf19e4
AC
6669
6670 -- No check needed (check performed by callee)
6671
63585f75
SB
6672 null;
6673
6674 when others =>
6675
6676 declare
6677 Level : constant Node_Id :=
54bf19e4
AC
6678 Make_Integer_Literal (Loc,
6679 Object_Access_Level (Discrim_Source));
6680
63585f75
SB
6681 begin
6682 -- Unimplemented: check for name prefix that includes
6683 -- a dereference of an access value with a dynamic
6684 -- accessibility level (e.g., an access param or a
6685 -- saooaaat) and use dynamic level in that case. For
6686 -- example:
6687 -- return Access_Param.all(Some_Index).Some_Component;
54bf19e4 6688 -- ???
63585f75
SB
6689
6690 Set_Etype (Level, Standard_Natural);
6691 Check_Against_Result_Level (Level);
6692 end;
6693
6694 end case;
6695 end;
6696 end if;
6697
2b3d67a5
AC
6698 -- If we are returning an object that may not be bit-aligned, then copy
6699 -- the value into a temporary first. This copy may need to expand to a
6700 -- loop of component operations.
6701
6702 if Is_Possibly_Unaligned_Slice (Exp)
6703 or else Is_Possibly_Unaligned_Object (Exp)
6704 then
6705 declare
6706 ExpR : constant Node_Id := Relocate_Node (Exp);
6707 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
6708 begin
6709 Insert_Action (Exp,
6710 Make_Object_Declaration (Loc,
6711 Defining_Identifier => Tnn,
6712 Constant_Present => True,
6713 Object_Definition => New_Occurrence_Of (R_Type, Loc),
6714 Expression => ExpR),
2c1b72d7 6715 Suppress => All_Checks);
2b3d67a5
AC
6716 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6717 end;
6718 end if;
6719
6720 -- Generate call to postcondition checks if they are present
6721
6722 if Ekind (Scope_Id) = E_Function
6723 and then Has_Postconditions (Scope_Id)
6724 then
6725 -- We are going to reference the returned value twice in this case,
6726 -- once in the call to _Postconditions, and once in the actual return
6727 -- statement, but we can't have side effects happening twice, and in
6728 -- any case for efficiency we don't want to do the computation twice.
6729
6730 -- If the returned expression is an entity name, we don't need to
6731 -- worry since it is efficient and safe to reference it twice, that's
6732 -- also true for literals other than string literals, and for the
6733 -- case of X.all where X is an entity name.
6734
6735 if Is_Entity_Name (Exp)
6736 or else Nkind_In (Exp, N_Character_Literal,
6737 N_Integer_Literal,
6738 N_Real_Literal)
6739 or else (Nkind (Exp) = N_Explicit_Dereference
2c1b72d7 6740 and then Is_Entity_Name (Prefix (Exp)))
2b3d67a5
AC
6741 then
6742 null;
6743
6744 -- Otherwise we are going to need a temporary to capture the value
6745
6746 else
6747 declare
ca3e17b0 6748 ExpR : Node_Id := Relocate_Node (Exp);
2b3d67a5
AC
6749 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
6750
6751 begin
ca3e17b0
AC
6752 -- In the case of discriminated objects, we have created a
6753 -- constrained subtype above, and used the underlying type.
6754 -- This transformation is post-analysis and harmless, except
6755 -- that now the call to the post-condition will be analyzed and
6756 -- type kinds have to match.
6757
6758 if Nkind (ExpR) = N_Unchecked_Type_Conversion
6759 and then
6760 Is_Private_Type (R_Type) /= Is_Private_Type (Etype (ExpR))
6761 then
6762 ExpR := Expression (ExpR);
6763 end if;
6764
2b3d67a5
AC
6765 -- For a complex expression of an elementary type, capture
6766 -- value in the temporary and use it as the reference.
6767
6768 if Is_Elementary_Type (R_Type) then
6769 Insert_Action (Exp,
6770 Make_Object_Declaration (Loc,
6771 Defining_Identifier => Tnn,
6772 Constant_Present => True,
6773 Object_Definition => New_Occurrence_Of (R_Type, Loc),
6774 Expression => ExpR),
6775 Suppress => All_Checks);
6776
6777 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6778
6779 -- If we have something we can rename, generate a renaming of
6780 -- the object and replace the expression with a reference
6781
6782 elsif Is_Object_Reference (Exp) then
6783 Insert_Action (Exp,
6784 Make_Object_Renaming_Declaration (Loc,
6785 Defining_Identifier => Tnn,
6786 Subtype_Mark => New_Occurrence_Of (R_Type, Loc),
6787 Name => ExpR),
6788 Suppress => All_Checks);
6789
6790 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6791
6792 -- Otherwise we have something like a string literal or an
6793 -- aggregate. We could copy the value, but that would be
6794 -- inefficient. Instead we make a reference to the value and
6795 -- capture this reference with a renaming, the expression is
6796 -- then replaced by a dereference of this renaming.
6797
6798 else
6799 -- For now, copy the value, since the code below does not
6800 -- seem to work correctly ???
6801
6802 Insert_Action (Exp,
6803 Make_Object_Declaration (Loc,
6804 Defining_Identifier => Tnn,
6805 Constant_Present => True,
6806 Object_Definition => New_Occurrence_Of (R_Type, Loc),
6807 Expression => Relocate_Node (Exp)),
6808 Suppress => All_Checks);
6809
6810 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6811
6812 -- Insert_Action (Exp,
6813 -- Make_Object_Renaming_Declaration (Loc,
6814 -- Defining_Identifier => Tnn,
6815 -- Access_Definition =>
6816 -- Make_Access_Definition (Loc,
6817 -- All_Present => True,
6818 -- Subtype_Mark => New_Occurrence_Of (R_Type, Loc)),
6819 -- Name =>
6820 -- Make_Reference (Loc,
6821 -- Prefix => Relocate_Node (Exp))),
6822 -- Suppress => All_Checks);
6823
6824 -- Rewrite (Exp,
6825 -- Make_Explicit_Dereference (Loc,
6826 -- Prefix => New_Occurrence_Of (Tnn, Loc)));
6827 end if;
6828 end;
6829 end if;
6830
6831 -- Generate call to _postconditions
6832
6833 Insert_Action (Exp,
6834 Make_Procedure_Call_Statement (Loc,
6835 Name => Make_Identifier (Loc, Name_uPostconditions),
6836 Parameter_Associations => New_List (Duplicate_Subexpr (Exp))));
6837 end if;
6838
6839 -- Ada 2005 (AI-251): If this return statement corresponds with an
6840 -- simple return statement associated with an extended return statement
6841 -- and the type of the returned object is an interface then generate an
6842 -- implicit conversion to force displacement of the "this" pointer.
6843
0791fbe9 6844 if Ada_Version >= Ada_2005
2b3d67a5
AC
6845 and then Comes_From_Extended_Return_Statement (N)
6846 and then Nkind (Expression (N)) = N_Identifier
6847 and then Is_Interface (Utyp)
6848 and then Utyp /= Underlying_Type (Exptyp)
6849 then
6850 Rewrite (Exp, Convert_To (Utyp, Relocate_Node (Exp)));
6851 Analyze_And_Resolve (Exp);
6852 end if;
6853 end Expand_Simple_Function_Return;
6854
ea3c0651
AC
6855 --------------------------------
6856 -- Expand_Subprogram_Contract --
6857 --------------------------------
6858
6859 procedure Expand_Subprogram_Contract
6860 (N : Node_Id;
6861 Spec_Id : Entity_Id;
6862 Body_Id : Entity_Id)
6863 is
6864 procedure Add_Invariant_And_Predicate_Checks
6865 (Subp_Id : Entity_Id;
6866 Stmts : in out List_Id;
6867 Result : out Node_Id);
6868 -- Process the result of function Subp_Id (if applicable) and all its
6869 -- formals. Add invariant and predicate checks where applicable. The
6870 -- routine appends all the checks to list Stmts. If Subp_Id denotes a
6871 -- function, Result contains the entity of parameter _Result, to be
6872 -- used in the creation of procedure _Postconditions.
6873
6874 procedure Append_Enabled_Item (Item : Node_Id; List : in out List_Id);
6875 -- Append a node to a list. If there is no list, create a new one. When
6876 -- the item denotes a pragma, it is added to the list only when it is
6877 -- enabled.
6878
6879 procedure Build_Postconditions_Procedure
6880 (Subp_Id : Entity_Id;
6881 Stmts : List_Id;
6882 Result : Entity_Id);
6883 -- Create the body of procedure _Postconditions which handles various
6884 -- assertion actions on exit from subprogram Subp_Id. Stmts is the list
6885 -- of statements to be checked on exit. Parameter Result is the entity
6886 -- of parameter _Result when Subp_Id denotes a function.
6887
6888 function Build_Pragma_Check_Equivalent
6889 (Prag : Node_Id;
6890 Subp_Id : Entity_Id := Empty;
6891 Inher_Id : Entity_Id := Empty) return Node_Id;
6892 -- Transform a [refined] pre- or postcondition denoted by Prag into an
6893 -- equivalent pragma Check. When the pre- or postcondition is inherited,
6894 -- the routine corrects the references of all formals of Inher_Id to
6895 -- point to the formals of Subp_Id.
6896
6897 procedure Collect_Body_Postconditions (Stmts : in out List_Id);
6898 -- Process all postconditions found in the declarations of the body. The
6899 -- routine appends the pragma Check equivalents to list Stmts.
6900
6901 procedure Collect_Spec_Postconditions
6902 (Subp_Id : Entity_Id;
6903 Stmts : in out List_Id);
6904 -- Process all [inherited] postconditions of subprogram spec Subp_Id.
6905 -- The routine appends the pragma Check equivalents to list Stmts.
6906
6907 procedure Collect_Spec_Preconditions (Subp_Id : Entity_Id);
6908 -- Process all [inherited] preconditions of subprogram spec Subp_Id. The
6909 -- routine prepends the pragma Check equivalents to the declarations of
6910 -- the body.
6911
6912 procedure Prepend_To_Declarations (Item : Node_Id);
6913 -- Prepend a single item to the declarations of the subprogram body
6914
6915 procedure Process_Contract_Cases
6916 (Subp_Id : Entity_Id;
6917 Stmts : in out List_Id);
6918 -- Process pragma Contract_Cases of subprogram spec Subp_Id. The routine
6919 -- appends the expanded code to list Stmts.
6920
6921 ----------------------------------------
6922 -- Add_Invariant_And_Predicate_Checks --
6923 ----------------------------------------
6924
6925 procedure Add_Invariant_And_Predicate_Checks
6926 (Subp_Id : Entity_Id;
6927 Stmts : in out List_Id;
6928 Result : out Node_Id)
6929 is
6930 procedure Add_Invariant_Access_Checks (Id : Entity_Id);
6931 -- Id denotes the return value of a function or a formal parameter.
6932 -- Add an invariant check if the type of Id is access to a type with
6933 -- invariants. The routine appends the generated code to Stmts.
6934
6935 function Invariant_Checks_OK (Typ : Entity_Id) return Boolean;
6936 -- Determine whether type Typ can benefit from invariant checks. To
6937 -- qualify, the type must have a non-null invariant procedure and
6938 -- subprogram Subp_Id must appear visible from the point of view of
6939 -- the type.
6940
ea3c0651
AC
6941 ---------------------------------
6942 -- Add_Invariant_Access_Checks --
6943 ---------------------------------
6944
6945 procedure Add_Invariant_Access_Checks (Id : Entity_Id) is
6946 Loc : constant Source_Ptr := Sloc (N);
6947 Ref : Node_Id;
6948 Typ : Entity_Id;
6949
6950 begin
6951 Typ := Etype (Id);
6952
6953 if Is_Access_Type (Typ) and then not Is_Access_Constant (Typ) then
6954 Typ := Designated_Type (Typ);
6955
6956 if Invariant_Checks_OK (Typ) then
6957 Ref :=
6958 Make_Explicit_Dereference (Loc,
6959 Prefix => New_Occurrence_Of (Id, Loc));
6960 Set_Etype (Ref, Typ);
6961
6962 -- Generate:
6963 -- if <Id> /= null then
6964 -- <invariant_call (<Ref>)>
6965 -- end if;
6966
6967 Append_Enabled_Item
6968 (Item =>
6969 Make_If_Statement (Loc,
6970 Condition =>
6971 Make_Op_Ne (Loc,
6972 Left_Opnd => New_Occurrence_Of (Id, Loc),
6973 Right_Opnd => Make_Null (Loc)),
6974 Then_Statements => New_List (
6975 Make_Invariant_Call (Ref))),
6976 List => Stmts);
6977 end if;
6978 end if;
6979 end Add_Invariant_Access_Checks;
6980
6981 -------------------------
6982 -- Invariant_Checks_OK --
6983 -------------------------
6984
6985 function Invariant_Checks_OK (Typ : Entity_Id) return Boolean is
6986 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean;
6987 -- Determine whether the body of procedure Proc_Id contains a sole
6988 -- null statement, possibly followed by an optional return.
6989
6990 function Has_Public_Visibility_Of_Subprogram return Boolean;
6991 -- Determine whether type Typ has public visibility of subprogram
6992 -- Subp_Id.
6993
6994 -------------------
6995 -- Has_Null_Body --
6996 -------------------
6997
6998 function Has_Null_Body (Proc_Id : Entity_Id) return Boolean is
6999 Body_Id : Entity_Id;
7000 Decl : Node_Id;
7001 Spec : Node_Id;
7002 Stmt1 : Node_Id;
7003 Stmt2 : Node_Id;
7004
7005 begin
7006 Spec := Parent (Proc_Id);
7007 Decl := Parent (Spec);
7008
7009 -- Retrieve the entity of the invariant procedure body
7010
7011 if Nkind (Spec) = N_Procedure_Specification
7012 and then Nkind (Decl) = N_Subprogram_Declaration
7013 then
7014 Body_Id := Corresponding_Body (Decl);
7015
7016 -- The body acts as a spec
7017
7018 else
7019 Body_Id := Proc_Id;
7020 end if;
7021
7022 -- The body will be generated later
7023
7024 if No (Body_Id) then
7025 return False;
7026 end if;
7027
7028 Spec := Parent (Body_Id);
7029 Decl := Parent (Spec);
7030
7031 pragma Assert
7032 (Nkind (Spec) = N_Procedure_Specification
7033 and then Nkind (Decl) = N_Subprogram_Body);
7034
7035 Stmt1 := First (Statements (Handled_Statement_Sequence (Decl)));
7036
7037 -- Look for a null statement followed by an optional return
7038 -- statement.
7039
7040 if Nkind (Stmt1) = N_Null_Statement then
7041 Stmt2 := Next (Stmt1);
7042
7043 if Present (Stmt2) then
7044 return Nkind (Stmt2) = N_Simple_Return_Statement;
7045 else
7046 return True;
7047 end if;
7048 end if;
7049
7050 return False;
7051 end Has_Null_Body;
7052
7053 -----------------------------------------
7054 -- Has_Public_Visibility_Of_Subprogram --
7055 -----------------------------------------
7056
7057 function Has_Public_Visibility_Of_Subprogram return Boolean is
7058 Subp_Decl : constant Node_Id := Unit_Declaration_Node (Subp_Id);
d950f051 7059
ea3c0651
AC
7060 begin
7061 -- An Initialization procedure must be considered visible even
7062 -- though it is internally generated.
7063
7064 if Is_Init_Proc (Defining_Entity (Subp_Decl)) then
7065 return True;
7066
d950f051
AC
7067 elsif Ekind (Scope (Typ)) /= E_Package then
7068 return False;
7069
ea3c0651
AC
7070 -- Internally generated code is never publicly visible except
7071 -- for a subprogram that is the implementation of an expression
7072 -- function. In that case the visibility is determined by the
7073 -- last check.
7074
7075 elsif not Comes_From_Source (Subp_Decl)
7076 and then
7077 (Nkind (Original_Node (Subp_Decl)) /= N_Expression_Function
7078 or else not
7079 Comes_From_Source (Defining_Entity (Subp_Decl)))
7080 then
7081 return False;
7082
7083 -- Determine whether the subprogram is declared in the visible
7084 -- declarations of the package containing the type.
7085
7086 else
d950f051
AC
7087 return List_Containing (Subp_Decl) =
7088 Visible_Declarations
7089 (Specification (Unit_Declaration_Node (Scope (Typ))));
ea3c0651
AC
7090 end if;
7091 end Has_Public_Visibility_Of_Subprogram;
7092
7093 -- Start of processing for Invariant_Checks_OK
7094
7095 begin
7096 return
7097 Has_Invariants (Typ)
7098 and then Present (Invariant_Procedure (Typ))
7099 and then not Has_Null_Body (Invariant_Procedure (Typ))
7100 and then Has_Public_Visibility_Of_Subprogram;
7101 end Invariant_Checks_OK;
7102
ea3c0651
AC
7103 -- Local variables
7104
ff1f1705
AC
7105 Loc : constant Source_Ptr := Sloc (N);
7106 -- Source location of subprogram contract
7107
ea3c0651
AC
7108 Formal : Entity_Id;
7109 Typ : Entity_Id;
7110
7111 -- Start of processing for Add_Invariant_And_Predicate_Checks
7112
7113 begin
7114 Result := Empty;
7115
7116 -- Do not generate any checks if no code is being generated
7117
7118 if not Expander_Active then
7119 return;
7120 end if;
7121
7122 -- Process the result of a function
7123
7124 if Ekind_In (Subp_Id, E_Function, E_Generic_Function) then
7125 Typ := Etype (Subp_Id);
7126
7127 -- Generate _Result which is used in procedure _Postconditions to
7128 -- verify the return value.
7129
7130 Result := Make_Defining_Identifier (Loc, Name_uResult);
7131 Set_Etype (Result, Typ);
7132
7133 -- Add an invariant check when the return type has invariants and
7134 -- the related function is visible to the outside.
7135
7136 if Invariant_Checks_OK (Typ) then
7137 Append_Enabled_Item
7138 (Item =>
7139 Make_Invariant_Call (New_Occurrence_Of (Result, Loc)),
7140 List => Stmts);
7141 end if;
7142
7143 -- Add an invariant check when the return type is an access to a
7144 -- type with invariants.
7145
7146 Add_Invariant_Access_Checks (Result);
7147 end if;
7148
7149 -- Add invariant and predicates for all formals that qualify
7150
7151 Formal := First_Formal (Subp_Id);
7152 while Present (Formal) loop
7153 Typ := Etype (Formal);
7154
7155 if Ekind (Formal) /= E_In_Parameter
7156 or else Is_Access_Type (Typ)
7157 then
7158 if Invariant_Checks_OK (Typ) then
7159 Append_Enabled_Item
7160 (Item =>
7161 Make_Invariant_Call (New_Occurrence_Of (Formal, Loc)),
7162 List => Stmts);
7163 end if;
7164
7165 Add_Invariant_Access_Checks (Formal);
7166
28e18b4f
AC
7167 -- Note: we used to add predicate checks for OUT and IN OUT
7168 -- formals here, but that was misguided, since such checks are
7169 -- performed on the caller side, based on the predicate of the
7170 -- actual, rather than the predicate of the formal.
7171
ea3c0651
AC
7172 end if;
7173
7174 Next_Formal (Formal);
7175 end loop;
7176 end Add_Invariant_And_Predicate_Checks;
7177
7178 -------------------------
7179 -- Append_Enabled_Item --
7180 -------------------------
7181
7182 procedure Append_Enabled_Item (Item : Node_Id; List : in out List_Id) is
7183 begin
7184 -- Do not chain ignored or disabled pragmas
7185
7186 if Nkind (Item) = N_Pragma
7187 and then (Is_Ignored (Item) or else Is_Disabled (Item))
7188 then
7189 null;
7190
5b6f12c7 7191 -- Otherwise, add the item
ea3c0651
AC
7192
7193 else
7194 if No (List) then
7195 List := New_List;
7196 end if;
7197
cbee4f74
AC
7198 -- If the pragma is a conjunct in a composite postcondition, it
7199 -- has been processed in reverse order. In the postcondition body
7200 -- if must appear before the others.
7201
7202 if Nkind (Item) = N_Pragma
7203 and then From_Aspect_Specification (Item)
7204 and then Split_PPC (Item)
7205 then
7206 Prepend (Item, List);
7207 else
7208 Append (Item, List);
7209 end if;
ea3c0651
AC
7210 end if;
7211 end Append_Enabled_Item;
7212
7213 ------------------------------------
7214 -- Build_Postconditions_Procedure --
7215 ------------------------------------
7216
7217 procedure Build_Postconditions_Procedure
7218 (Subp_Id : Entity_Id;
7219 Stmts : List_Id;
7220 Result : Entity_Id)
7221 is
8e1e62e3
AC
7222 procedure Insert_Before_First_Source_Declaration (Stmt : Node_Id);
7223 -- Insert node Stmt before the first source declaration of the
7224 -- related subprogram's body. If no such declaration exists, Stmt
7225 -- becomes the last declaration.
ea3c0651 7226
8e1e62e3
AC
7227 --------------------------------------------
7228 -- Insert_Before_First_Source_Declaration --
7229 --------------------------------------------
ea3c0651 7230
8e1e62e3
AC
7231 procedure Insert_Before_First_Source_Declaration (Stmt : Node_Id) is
7232 Decls : constant List_Id := Declarations (N);
7233 Decl : Node_Id;
ea3c0651
AC
7234
7235 begin
8e1e62e3
AC
7236 -- Inspect the declarations of the related subprogram body looking
7237 -- for the first source declaration.
7238
7239 if Present (Decls) then
7240 Decl := First (Decls);
7241 while Present (Decl) loop
7242 if Comes_From_Source (Decl) then
7243 Insert_Before (Decl, Stmt);
7244 return;
7245 end if;
7246
7247 Next (Decl);
7248 end loop;
7249
7250 -- If we get there, then the subprogram body lacks any source
7251 -- declarations. The body of _Postconditions now acts as the
7252 -- last declaration.
7253
7254 Append (Stmt, Decls);
7255
ea3c0651
AC
7256 -- Ensure that the body has a declaration list
7257
8e1e62e3
AC
7258 else
7259 Set_Declarations (N, New_List (Stmt));
ea3c0651 7260 end if;
8e1e62e3 7261 end Insert_Before_First_Source_Declaration;
ea3c0651
AC
7262
7263 -- Local variables
7264
7265 Loc : constant Source_Ptr := Sloc (N);
7266 Params : List_Id := No_List;
7267 Proc_Id : Entity_Id;
7268
7269 -- Start of processing for Build_Postconditions_Procedure
7270
7271 begin
7272 -- Do not create the routine if no code is being generated
7273
7274 if not Expander_Active then
7275 return;
7276
7277 -- Nothing to do if there are no actions to check on exit
7278
7279 elsif No (Stmts) then
7280 return;
7281 end if;
7282
7283 Proc_Id := Make_Defining_Identifier (Loc, Name_uPostconditions);
7284
7285 -- The related subprogram is a function, create the specification of
7286 -- parameter _Result.
7287
7288 if Present (Result) then
7289 Params := New_List (
7290 Make_Parameter_Specification (Loc,
7291 Defining_Identifier => Result,
7292 Parameter_Type =>
e4494292 7293 New_Occurrence_Of (Etype (Result), Loc)));
ea3c0651
AC
7294 end if;
7295
8e1e62e3
AC
7296 -- Insert _Postconditions before the first source declaration of the
7297 -- body. This ensures that the body will not cause any premature
7298 -- freezing as it may mention types:
ea3c0651
AC
7299
7300 -- procedure Proc (Obj : Array_Typ) is
7301 -- procedure _postconditions is
7302 -- begin
7303 -- ... Obj ...
7304 -- end _postconditions;
7305
7306 -- subtype T is Array_Typ (Obj'First (1) .. Obj'Last (1));
7307 -- begin
7308
7309 -- In the example above, Obj is of type T but the incorrect placement
7310 -- of _Postconditions will cause a crash in gigi due to an out of
7311 -- order reference. The body of _Postconditions must be placed after
7312 -- the declaration of Temp to preserve correct visibility.
7313
ff1f1705
AC
7314 -- Note that we set an explicit End_Label in order to override the
7315 -- sloc of the implicit RETURN statement, and prevent it from
7316 -- inheriting the sloc of one of the postconditions: this would cause
7317 -- confusing debug info to be produced, interfering with coverage
7318 -- analysis tools.
7319
8e1e62e3 7320 Insert_Before_First_Source_Declaration (
ea3c0651
AC
7321 Make_Subprogram_Body (Loc,
7322 Specification =>
7323 Make_Procedure_Specification (Loc,
7324 Defining_Unit_Name => Proc_Id,
7325 Parameter_Specifications => Params),
7326
7327 Declarations => Empty_List,
7328 Handled_Statement_Sequence =>
ff1f1705
AC
7329 Make_Handled_Sequence_Of_Statements (Loc,
7330 Statements => Stmts,
7331 End_Label => Make_Identifier (Loc, Chars (Proc_Id)))));
ea3c0651
AC
7332
7333 -- Set the attributes of the related subprogram to capture the
7334 -- generated procedure.
7335
7336 if Ekind_In (Subp_Id, E_Generic_Procedure, E_Procedure) then
7337 Set_Postcondition_Proc (Subp_Id, Proc_Id);
7338 end if;
7339
7340 Set_Has_Postconditions (Subp_Id);
7341 end Build_Postconditions_Procedure;
7342
7343 -----------------------------------
7344 -- Build_Pragma_Check_Equivalent --
7345 -----------------------------------
7346
7347 function Build_Pragma_Check_Equivalent
7348 (Prag : Node_Id;
7349 Subp_Id : Entity_Id := Empty;
7350 Inher_Id : Entity_Id := Empty) return Node_Id
7351 is
7352 Loc : constant Source_Ptr := Sloc (Prag);
7353 Prag_Nam : constant Name_Id := Pragma_Name (Prag);
7354 Check_Prag : Node_Id;
7355 Formals_Map : Elist_Id;
7356 Inher_Formal : Entity_Id;
7357 Msg_Arg : Node_Id;
7358 Nam : Name_Id;
7359 Subp_Formal : Entity_Id;
7360
7361 begin
7362 Formals_Map := No_Elist;
7363
7364 -- When the pre- or postcondition is inherited, map the formals of
7365 -- the inherited subprogram to those of the current subprogram.
7366
7367 if Present (Inher_Id) then
7368 pragma Assert (Present (Subp_Id));
7369
7370 Formals_Map := New_Elmt_List;
7371
7372 -- Create a relation <inherited formal> => <subprogram formal>
7373
7374 Inher_Formal := First_Formal (Inher_Id);
7375 Subp_Formal := First_Formal (Subp_Id);
7376 while Present (Inher_Formal) and then Present (Subp_Formal) loop
7377 Append_Elmt (Inher_Formal, Formals_Map);
7378 Append_Elmt (Subp_Formal, Formals_Map);
7379
7380 Next_Formal (Inher_Formal);
7381 Next_Formal (Subp_Formal);
7382 end loop;
7383 end if;
7384
7385 -- Copy the original pragma while performing substitutions (if
7386 -- applicable).
7387
7388 Check_Prag :=
7389 New_Copy_Tree
7390 (Source => Prag,
7391 Map => Formals_Map,
7392 New_Scope => Current_Scope);
7393
7394 -- Mark the pragma as being internally generated and reset the
7395 -- Analyzed flag.
7396
7397 Set_Comes_From_Source (Check_Prag, False);
7398 Set_Analyzed (Check_Prag, False);
7399
7400 -- For a postcondition pragma within a generic, preserve the pragma
7401 -- for later expansion. This is also used when an error was detected,
7402 -- thus setting Expander_Active to False.
7403
7404 if Prag_Nam = Name_Postcondition and then not Expander_Active then
7405 return Check_Prag;
7406 end if;
7407
7408 if Present (Corresponding_Aspect (Prag)) then
7409 Nam := Chars (Identifier (Corresponding_Aspect (Prag)));
7410 else
7411 Nam := Prag_Nam;
7412 end if;
7413
7414 -- Convert the copy into pragma Check by correcting the name and
7415 -- adding a check_kind argument.
7416
7417 Set_Pragma_Identifier
7418 (Check_Prag, Make_Identifier (Loc, Name_Check));
7419
7420 Prepend_To (Pragma_Argument_Associations (Check_Prag),
7421 Make_Pragma_Argument_Association (Loc,
7422 Expression => Make_Identifier (Loc, Nam)));
7423
7424 -- Update the error message when the pragma is inherited
7425
7426 if Present (Inher_Id) then
7427 Msg_Arg := Last (Pragma_Argument_Associations (Check_Prag));
7428
7429 if Chars (Msg_Arg) = Name_Message then
7430 String_To_Name_Buffer (Strval (Expression (Msg_Arg)));
7431
7432 -- Insert "inherited" to improve the error message
7433
7434 if Name_Buffer (1 .. 8) = "failed p" then
7435 Insert_Str_In_Name_Buffer ("inherited ", 8);
7436 Set_Strval (Expression (Msg_Arg), String_From_Name_Buffer);
7437 end if;
7438 end if;
7439 end if;
7440
7441 return Check_Prag;
7442 end Build_Pragma_Check_Equivalent;
7443
7444 ---------------------------------
7445 -- Collect_Body_Postconditions --
7446 ---------------------------------
7447
7448 procedure Collect_Body_Postconditions (Stmts : in out List_Id) is
7449 procedure Collect_Body_Postconditions_Of_Kind (Post_Nam : Name_Id);
e917e3b8 7450 -- Process all postconditions of the kind denoted by Post_Nam
ea3c0651
AC
7451
7452 -----------------------------------------
7453 -- Collect_Body_Postconditions_Of_Kind --
7454 -----------------------------------------
7455
7456 procedure Collect_Body_Postconditions_Of_Kind (Post_Nam : Name_Id) is
5f24a82a
HK
7457 procedure Collect_Body_Postconditions_In_Decls
7458 (First_Decl : Node_Id);
7459 -- Process all postconditions found in a declarative list starting
7460 -- with declaration First_Decl.
ea3c0651 7461
5f24a82a
HK
7462 ------------------------------------------
7463 -- Collect_Body_Postconditions_In_Decls --
7464 ------------------------------------------
ea3c0651 7465
5f24a82a
HK
7466 procedure Collect_Body_Postconditions_In_Decls
7467 (First_Decl : Node_Id)
7468 is
7469 Check_Prag : Node_Id;
7470 Decl : Node_Id;
ea3c0651 7471
5f24a82a
HK
7472 begin
7473 -- Inspect the declarative list looking for a pragma that
7474 -- matches the desired name.
ea3c0651 7475
5f24a82a
HK
7476 Decl := First_Decl;
7477 while Present (Decl) loop
ea3c0651 7478
5f24a82a 7479 -- Note that non-matching pragmas are skipped
ea3c0651 7480
5f24a82a
HK
7481 if Nkind (Decl) = N_Pragma then
7482 if Pragma_Name (Decl) = Post_Nam then
7483 if not Analyzed (Decl) then
7484 Analyze (Decl);
7485 end if;
7486
7487 Check_Prag := Build_Pragma_Check_Equivalent (Decl);
7488
7489 if Expander_Active then
7490 Append_Enabled_Item
7491 (Item => Check_Prag,
7492 List => Stmts);
7493
e917e3b8 7494 -- If analyzing a generic unit, save pragma for later
5f24a82a
HK
7495
7496 else
7497 Prepend_To_Declarations (Check_Prag);
7498 end if;
ea3c0651 7499 end if;
5f24a82a
HK
7500
7501 -- Skip internally generated code
7502
7503 elsif not Comes_From_Source (Decl) then
7504 null;
7505
7506 -- Postcondition pragmas are usually grouped together. There
7507 -- is no need to inspect the whole declarative list.
7508
7509 else
7510 exit;
ea3c0651
AC
7511 end if;
7512
5f24a82a
HK
7513 Next (Decl);
7514 end loop;
7515 end Collect_Body_Postconditions_In_Decls;
ea3c0651 7516
5f24a82a 7517 -- Local variables
ea3c0651 7518
5f24a82a 7519 Unit_Decl : constant Node_Id := Parent (N);
ea3c0651 7520
5f24a82a 7521 -- Start of processing for Collect_Body_Postconditions_Of_Kind
ea3c0651 7522
5f24a82a
HK
7523 begin
7524 pragma Assert (Nam_In (Post_Nam, Name_Postcondition,
7525 Name_Refined_Post));
7526
7527 -- Inspect the declarations of the subprogram body looking for a
7528 -- pragma that matches the desired name.
7529
7530 Collect_Body_Postconditions_In_Decls
7531 (First_Decl => First (Declarations (N)));
7532
7533 -- The subprogram body being processed is actually the proper body
7534 -- of a stub with a corresponding spec. The subprogram stub may
7535 -- carry a postcondition pragma in which case it must be taken
7536 -- into account. The pragma appears after the stub.
7537
7538 if Present (Spec_Id) and then Nkind (Unit_Decl) = N_Subunit then
7539 Collect_Body_Postconditions_In_Decls
7540 (First_Decl => Next (Corresponding_Stub (Unit_Decl)));
7541 end if;
ea3c0651
AC
7542 end Collect_Body_Postconditions_Of_Kind;
7543
7544 -- Start of processing for Collect_Body_Postconditions
7545
7546 begin
7547 Collect_Body_Postconditions_Of_Kind (Name_Refined_Post);
7548 Collect_Body_Postconditions_Of_Kind (Name_Postcondition);
7549 end Collect_Body_Postconditions;
7550
7551 ---------------------------------
7552 -- Collect_Spec_Postconditions --
7553 ---------------------------------
7554
7555 procedure Collect_Spec_Postconditions
7556 (Subp_Id : Entity_Id;
7557 Stmts : in out List_Id)
7558 is
7559 Inher_Subps : constant Subprogram_List :=
7560 Inherited_Subprograms (Subp_Id);
7561 Check_Prag : Node_Id;
7562 Prag : Node_Id;
7563 Inher_Subp_Id : Entity_Id;
7564
7565 begin
7566 -- Process the contract of the spec
7567
7568 Prag := Pre_Post_Conditions (Contract (Subp_Id));
7569 while Present (Prag) loop
7570 if Pragma_Name (Prag) = Name_Postcondition then
7571 Check_Prag := Build_Pragma_Check_Equivalent (Prag);
7572
7573 if Expander_Active then
7574 Append_Enabled_Item
7575 (Item => Check_Prag,
7576 List => Stmts);
7577
7578 -- When analyzing a generic unit, save the pragma for later
7579
7580 else
7581 Prepend_To_Declarations (Check_Prag);
7582 end if;
7583 end if;
7584
7585 Prag := Next_Pragma (Prag);
7586 end loop;
7587
7588 -- Process the contracts of all inherited subprograms, looking for
7589 -- class-wide postconditions.
7590
7591 for Index in Inher_Subps'Range loop
7592 Inher_Subp_Id := Inher_Subps (Index);
7593
7594 Prag := Pre_Post_Conditions (Contract (Inher_Subp_Id));
7595 while Present (Prag) loop
7596 if Pragma_Name (Prag) = Name_Postcondition
7597 and then Class_Present (Prag)
7598 then
7599 Check_Prag :=
7600 Build_Pragma_Check_Equivalent
7601 (Prag => Prag,
7602 Subp_Id => Subp_Id,
7603 Inher_Id => Inher_Subp_Id);
7604
7605 if Expander_Active then
7606 Append_Enabled_Item
7607 (Item => Check_Prag,
7608 List => Stmts);
7609
7610 -- When analyzing a generic unit, save the pragma for later
7611
7612 else
7613 Prepend_To_Declarations (Check_Prag);
7614 end if;
7615 end if;
7616
7617 Prag := Next_Pragma (Prag);
7618 end loop;
7619 end loop;
7620 end Collect_Spec_Postconditions;
7621
7622 --------------------------------
7623 -- Collect_Spec_Preconditions --
7624 --------------------------------
7625
7626 procedure Collect_Spec_Preconditions (Subp_Id : Entity_Id) is
5f24a82a
HK
7627 Class_Pre : Node_Id := Empty;
7628 -- The sole class-wide precondition pragma that applies to the
7629 -- subprogram.
7630
7631 procedure Add_Or_Save_Precondition (Prag : Node_Id);
7632 -- Save a class-wide precondition or add a regulat precondition to
7633 -- the declarative list of the body.
7634
ea3c0651
AC
7635 procedure Merge_Preconditions (From : Node_Id; Into : Node_Id);
7636 -- Merge two class-wide preconditions by "or else"-ing them. The
7637 -- changes are accumulated in parameter Into. Update the error
7638 -- message of Into.
7639
5f24a82a
HK
7640 ------------------------------
7641 -- Add_Or_Save_Precondition --
7642 ------------------------------
7643
7644 procedure Add_Or_Save_Precondition (Prag : Node_Id) is
7645 Check_Prag : Node_Id;
7646
7647 begin
7648 Check_Prag := Build_Pragma_Check_Equivalent (Prag);
7649
7650 -- Save the sole class-wide precondition (if any) for the next
7651 -- step where it will be merged with inherited preconditions.
7652
7653 if Class_Present (Prag) then
7654 pragma Assert (No (Class_Pre));
7655 Class_Pre := Check_Prag;
7656
7657 -- Accumulate the corresponding Check pragmas to the top of the
7658 -- declarations. Prepending the items ensures that they will be
7659 -- evaluated in their original order.
7660
7661 else
7662 Prepend_To_Declarations (Check_Prag);
7663 end if;
7664 end Add_Or_Save_Precondition;
7665
ea3c0651
AC
7666 -------------------------
7667 -- Merge_Preconditions --
7668 -------------------------
7669
7670 procedure Merge_Preconditions (From : Node_Id; Into : Node_Id) is
7671 function Expression_Arg (Prag : Node_Id) return Node_Id;
7672 -- Return the boolean expression argument of a precondition while
7673 -- updating its parenteses count for the subsequent merge.
7674
7675 function Message_Arg (Prag : Node_Id) return Node_Id;
7676 -- Return the message argument of a precondition
7677
7678 --------------------
7679 -- Expression_Arg --
7680 --------------------
7681
7682 function Expression_Arg (Prag : Node_Id) return Node_Id is
7683 Args : constant List_Id := Pragma_Argument_Associations (Prag);
7684 Arg : constant Node_Id := Get_Pragma_Arg (Next (First (Args)));
7685
7686 begin
7687 if Paren_Count (Arg) = 0 then
7688 Set_Paren_Count (Arg, 1);
7689 end if;
7690
7691 return Arg;
7692 end Expression_Arg;
7693
7694 -----------------
7695 -- Message_Arg --
7696 -----------------
7697
7698 function Message_Arg (Prag : Node_Id) return Node_Id is
7699 Args : constant List_Id := Pragma_Argument_Associations (Prag);
7700 begin
7701 return Get_Pragma_Arg (Last (Args));
7702 end Message_Arg;
7703
7704 -- Local variables
7705
7706 From_Expr : constant Node_Id := Expression_Arg (From);
7707 From_Msg : constant Node_Id := Message_Arg (From);
7708 Into_Expr : constant Node_Id := Expression_Arg (Into);
7709 Into_Msg : constant Node_Id := Message_Arg (Into);
7710 Loc : constant Source_Ptr := Sloc (Into);
7711
7712 -- Start of processing for Merge_Preconditions
7713
7714 begin
7715 -- Merge the two preconditions by "or else"-ing them
7716
7717 Rewrite (Into_Expr,
7718 Make_Or_Else (Loc,
7719 Right_Opnd => Relocate_Node (Into_Expr),
7720 Left_Opnd => From_Expr));
7721
7722 -- Merge the two error messages to produce a single message of the
7723 -- form:
7724
7725 -- failed precondition from ...
7726 -- also failed inherited precondition from ...
7727
7728 if not Exception_Locations_Suppressed then
7729 Start_String (Strval (Into_Msg));
7730 Store_String_Char (ASCII.LF);
7731 Store_String_Chars (" also ");
7732 Store_String_Chars (Strval (From_Msg));
7733
7734 Set_Strval (Into_Msg, End_String);
7735 end if;
7736 end Merge_Preconditions;
7737
7738 -- Local variables
7739
7740 Inher_Subps : constant Subprogram_List :=
7741 Inherited_Subprograms (Subp_Id);
5f24a82a 7742 Subp_Decl : constant Node_Id := Parent (Parent (Subp_Id));
ea3c0651 7743 Check_Prag : Node_Id;
5f24a82a 7744 Decl : Node_Id;
ea3c0651
AC
7745 Inher_Subp_Id : Entity_Id;
7746 Prag : Node_Id;
7747
7748 -- Start of processing for Collect_Spec_Preconditions
7749
7750 begin
7751 -- Process the contract of the spec
7752
7753 Prag := Pre_Post_Conditions (Contract (Subp_Id));
7754 while Present (Prag) loop
7755 if Pragma_Name (Prag) = Name_Precondition then
5f24a82a
HK
7756 Add_Or_Save_Precondition (Prag);
7757 end if;
ea3c0651 7758
5f24a82a
HK
7759 Prag := Next_Pragma (Prag);
7760 end loop;
ea3c0651 7761
5f24a82a
HK
7762 -- The subprogram declaration being processed is actually a body
7763 -- stub. The stub may carry a precondition pragma in which case it
7764 -- must be taken into account. The pragma appears after the stub.
ea3c0651 7765
5f24a82a
HK
7766 if Nkind (Subp_Decl) = N_Subprogram_Body_Stub then
7767
7768 -- Inspect the declarations following the body stub
7769
7770 Decl := Next (Subp_Decl);
7771 while Present (Decl) loop
7772
7773 -- Note that non-matching pragmas are skipped
7774
7775 if Nkind (Decl) = N_Pragma then
7776 if Pragma_Name (Decl) = Name_Precondition then
7777 if not Analyzed (Decl) then
7778 Analyze (Decl);
7779 end if;
7780
7781 Add_Or_Save_Precondition (Decl);
7782 end if;
7783
7784 -- Skip internally generated code
7785
7786 elsif not Comes_From_Source (Decl) then
7787 null;
7788
7789 -- Preconditions are usually grouped together. There is no need
7790 -- to inspect the whole declarative list.
ea3c0651
AC
7791
7792 else
5f24a82a 7793 exit;
ea3c0651 7794 end if;
ea3c0651 7795
5f24a82a
HK
7796 Next (Decl);
7797 end loop;
7798 end if;
ea3c0651
AC
7799
7800 -- Process the contracts of all inherited subprograms, looking for
7801 -- class-wide preconditions.
7802
7803 for Index in Inher_Subps'Range loop
7804 Inher_Subp_Id := Inher_Subps (Index);
7805
7806 Prag := Pre_Post_Conditions (Contract (Inher_Subp_Id));
7807 while Present (Prag) loop
7808 if Pragma_Name (Prag) = Name_Precondition
7809 and then Class_Present (Prag)
7810 then
7811 Check_Prag :=
7812 Build_Pragma_Check_Equivalent
7813 (Prag => Prag,
7814 Subp_Id => Subp_Id,
7815 Inher_Id => Inher_Subp_Id);
7816
7817 -- The spec or an inherited subprogram already yielded a
7818 -- class-wide precondition. Merge the existing precondition
7819 -- with the current one using "or else".
7820
7821 if Present (Class_Pre) then
7822 Merge_Preconditions (Check_Prag, Class_Pre);
7823 else
7824 Class_Pre := Check_Prag;
7825 end if;
7826 end if;
7827
7828 Prag := Next_Pragma (Prag);
7829 end loop;
7830 end loop;
7831
7832 -- Add the merged class-wide preconditions (if any)
7833
7834 if Present (Class_Pre) then
7835 Prepend_To_Declarations (Class_Pre);
7836 end if;
7837 end Collect_Spec_Preconditions;
7838
7839 -----------------------------
7840 -- Prepend_To_Declarations --
7841 -----------------------------
7842
7843 procedure Prepend_To_Declarations (Item : Node_Id) is
7844 Decls : List_Id := Declarations (N);
7845
7846 begin
7847 -- Ensure that the body has a declarative list
7848
7849 if No (Decls) then
7850 Decls := New_List;
7851 Set_Declarations (N, Decls);
7852 end if;
7853
7854 Prepend_To (Decls, Item);
7855 end Prepend_To_Declarations;
7856
7857 ----------------------------
7858 -- Process_Contract_Cases --
7859 ----------------------------
7860
7861 procedure Process_Contract_Cases
7862 (Subp_Id : Entity_Id;
7863 Stmts : in out List_Id)
7864 is
7865 Prag : Node_Id;
7866
7867 begin
7868 -- Do not build the Contract_Cases circuitry if no code is being
7869 -- generated.
7870
7871 if not Expander_Active then
3cd4a210 7872 return;
ea3c0651
AC
7873 end if;
7874
7875 Prag := Contract_Test_Cases (Contract (Subp_Id));
7876 while Present (Prag) loop
7877 if Pragma_Name (Prag) = Name_Contract_Cases then
7878 Expand_Contract_Cases
7879 (CCs => Prag,
7880 Subp_Id => Subp_Id,
7881 Decls => Declarations (N),
7882 Stmts => Stmts);
7883 end if;
7884
7885 Prag := Next_Pragma (Prag);
7886 end loop;
7887 end Process_Contract_Cases;
7888
7889 -- Local variables
7890
7891 Post_Stmts : List_Id := No_List;
7892 Result : Entity_Id;
7893 Subp_Id : Entity_Id;
7894
7895 -- Start of processing for Expand_Subprogram_Contract
7896
7897 begin
7898 if Present (Spec_Id) then
7899 Subp_Id := Spec_Id;
7900 else
7901 Subp_Id := Body_Id;
7902 end if;
7903
7904 -- Do not process a predicate function as its body will end up with a
7905 -- recursive call to itself and blow up the stack.
7906
7907 if Ekind (Subp_Id) = E_Function
7908 and then Is_Predicate_Function (Subp_Id)
7909 then
7910 return;
7911
7912 -- Do not process TSS subprograms
7913
7914 elsif Get_TSS_Name (Subp_Id) /= TSS_Null then
7915 return;
7916 end if;
7917
7918 -- The expansion of a subprogram contract involves the relocation of
7919 -- various contract assertions to the declarations of the body in a
7920 -- particular order. The order is as follows:
7921
7922 -- function Example (...) return ... is
7923 -- procedure _Postconditions (...) is
7924 -- begin
7925 -- <refined postconditions from body>
7926 -- <postconditions from body>
7927 -- <postconditions from spec>
7928 -- <inherited postconditions>
f1bd0415 7929 -- <contract case consequences>
ea3c0651
AC
7930 -- <invariant check of function result (if applicable)>
7931 -- <invariant and predicate checks of parameters>
7932 -- end _Postconditions;
7933
7934 -- <inherited preconditions>
7935 -- <preconditions from spec>
7936 -- <preconditions from body>
7937 -- <refined preconditions from body>
f1bd0415 7938 -- <contract case conditions>
ea3c0651
AC
7939
7940 -- <source declarations>
7941 -- begin
7942 -- <source statements>
7943
7944 -- _Preconditions (Result);
7945 -- return Result;
7946 -- end Example;
7947
7948 -- Routine _Postconditions holds all contract assertions that must be
7949 -- verified on exit from the related routine.
7950
7951 -- Collect all [inherited] preconditions from the spec, transform them
7952 -- into Check pragmas and add them to the declarations of the body in
7953 -- the order outlined above.
7954
7955 if Present (Spec_Id) then
7956 Collect_Spec_Preconditions (Spec_Id);
7957 end if;
7958
7959 -- Transform all [refined] postconditions of the body into Check
7960 -- pragmas. The resulting pragmas are accumulated in list Post_Stmts.
7961
7962 Collect_Body_Postconditions (Post_Stmts);
7963
7964 -- Transform all [inherited] postconditions from the spec into Check
7965 -- pragmas. The resulting pragmas are accumulated in list Post_Stmts.
7966
7967 if Present (Spec_Id) then
7968 Collect_Spec_Postconditions (Spec_Id, Post_Stmts);
7969
7970 -- Transform pragma Contract_Cases from the spec into its circuitry
7971
7972 Process_Contract_Cases (Spec_Id, Post_Stmts);
7973 end if;
7974
7975 -- Apply invariant and predicate checks on the result of a function (if
7976 -- applicable) and all formals. The resulting checks are accumulated in
7977 -- list Post_Stmts.
7978
7979 Add_Invariant_And_Predicate_Checks (Subp_Id, Post_Stmts, Result);
7980
7981 -- Construct procedure _Postconditions
7982
7983 Build_Postconditions_Procedure (Subp_Id, Post_Stmts, Result);
7984 end Expand_Subprogram_Contract;
7985
02822a92
RD
7986 --------------------------------
7987 -- Is_Build_In_Place_Function --
7988 --------------------------------
70482933 7989
02822a92
RD
7990 function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
7991 begin
5087048c
AC
7992 -- This function is called from Expand_Subtype_From_Expr during
7993 -- semantic analysis, even when expansion is off. In those cases
7994 -- the build_in_place expansion will not take place.
b0256cb6
AC
7995
7996 if not Expander_Active then
7997 return False;
7998 end if;
7999
02822a92 8000 -- For now we test whether E denotes a function or access-to-function
5b6f12c7
AC
8001 -- type whose result subtype is inherently limited. Later this test
8002 -- may be revised to allow composite nonlimited types. Functions with
8003 -- a foreign convention or whose result type has a foreign convention
02822a92
RD
8004 -- never qualify.
8005
b29def53 8006 if Ekind_In (E, E_Function, E_Generic_Function)
02822a92
RD
8007 or else (Ekind (E) = E_Subprogram_Type
8008 and then Etype (E) /= Standard_Void_Type)
8009 then
4446a13f
AC
8010 -- Note: If the function has a foreign convention, it cannot build
8011 -- its result in place, so you're on your own. On the other hand,
8012 -- if only the return type has a foreign convention, its layout is
8013 -- intended to be compatible with the other language, but the build-
8014 -- in place machinery can ensure that the object is not copied.
f937473f 8015
4446a13f 8016 if Has_Foreign_Convention (E) then
02822a92 8017 return False;
c8ef728f 8018
2a31c32b
AC
8019 -- In Ada 2005 all functions with an inherently limited return type
8020 -- must be handled using a build-in-place profile, including the case
8021 -- of a function with a limited interface result, where the function
8022 -- may return objects of nonlimited descendants.
7888a6ae 8023
02822a92 8024 else
51245e2d 8025 return Is_Limited_View (Etype (E))
0791fbe9 8026 and then Ada_Version >= Ada_2005
f937473f 8027 and then not Debug_Flag_Dot_L;
c8ef728f
ES
8028 end if;
8029
02822a92
RD
8030 else
8031 return False;
8032 end if;
8033 end Is_Build_In_Place_Function;
f4d379b8 8034
02822a92
RD
8035 -------------------------------------
8036 -- Is_Build_In_Place_Function_Call --
8037 -------------------------------------
f4d379b8 8038
02822a92
RD
8039 function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
8040 Exp_Node : Node_Id := N;
8041 Function_Id : Entity_Id;
f4d379b8 8042
02822a92 8043 begin
5b6f12c7
AC
8044 -- Return False if the expander is currently inactive, since awareness
8045 -- of build-in-place treatment is only relevant during expansion. Note
8046 -- that Is_Build_In_Place_Function, which is called as part of this
8047 -- function, is also conditioned this way, but we need to check here as
8048 -- well to avoid blowing up on processing protected calls when expansion
8049 -- is disabled (such as with -gnatc) since those would trip over the
8050 -- raise of Program_Error below.
c6d5d1ac 8051
5114f3ff
AC
8052 -- In SPARK mode, build-in-place calls are not expanded, so that we
8053 -- may end up with a call that is neither resolved to an entity, nor
8054 -- an indirect call.
8055
4460a9bc 8056 if not Expander_Active then
c6d5d1ac
AC
8057 return False;
8058 end if;
8059
19590d70
GD
8060 -- Step past qualification or unchecked conversion (the latter can occur
8061 -- in cases of calls to 'Input).
8062
94bbf008
AC
8063 if Nkind_In (Exp_Node, N_Qualified_Expression,
8064 N_Unchecked_Type_Conversion)
19590d70 8065 then
02822a92
RD
8066 Exp_Node := Expression (N);
8067 end if;
758c442c 8068
02822a92
RD
8069 if Nkind (Exp_Node) /= N_Function_Call then
8070 return False;
3ca505dc 8071
02822a92 8072 else
5114f3ff 8073 if Is_Entity_Name (Name (Exp_Node)) then
02822a92 8074 Function_Id := Entity (Name (Exp_Node));
758c442c 8075
94bbf008
AC
8076 -- In the case of an explicitly dereferenced call, use the subprogram
8077 -- type generated for the dereference.
8078
02822a92
RD
8079 elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
8080 Function_Id := Etype (Name (Exp_Node));
2ba1a7c7 8081
0812b84e
AC
8082 -- This may be a call to a protected function.
8083
8084 elsif Nkind (Name (Exp_Node)) = N_Selected_Component then
8085 Function_Id := Etype (Entity (Selector_Name (Name (Exp_Node))));
8086
2ba1a7c7
AC
8087 else
8088 raise Program_Error;
02822a92 8089 end if;
758c442c 8090
02822a92
RD
8091 return Is_Build_In_Place_Function (Function_Id);
8092 end if;
8093 end Is_Build_In_Place_Function_Call;
758c442c 8094
02822a92
RD
8095 -----------------------
8096 -- Freeze_Subprogram --
8097 -----------------------
758c442c 8098
02822a92
RD
8099 procedure Freeze_Subprogram (N : Node_Id) is
8100 Loc : constant Source_Ptr := Sloc (N);
3ca505dc 8101
02822a92
RD
8102 procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
8103 -- (Ada 2005): Register a predefined primitive in all the secondary
8104 -- dispatch tables of its primitive type.
3ca505dc 8105
f4d379b8
HK
8106 ----------------------------------
8107 -- Register_Predefined_DT_Entry --
8108 ----------------------------------
8109
8110 procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
8111 Iface_DT_Ptr : Elmt_Id;
02822a92 8112 Tagged_Typ : Entity_Id;
f4d379b8 8113 Thunk_Id : Entity_Id;
7888a6ae 8114 Thunk_Code : Node_Id;
f4d379b8
HK
8115
8116 begin
02822a92 8117 Tagged_Typ := Find_Dispatching_Type (Prim);
f4d379b8 8118
02822a92 8119 if No (Access_Disp_Table (Tagged_Typ))
ce2b6ba5 8120 or else not Has_Interfaces (Tagged_Typ)
c8ef728f 8121 or else not RTE_Available (RE_Interface_Tag)
f937473f 8122 or else Restriction_Active (No_Dispatching_Calls)
f4d379b8
HK
8123 then
8124 return;
8125 end if;
8126
1923d2d6
JM
8127 -- Skip the first two access-to-dispatch-table pointers since they
8128 -- leads to the primary dispatch table (predefined DT and user
8129 -- defined DT). We are only concerned with the secondary dispatch
8130 -- table pointers. Note that the access-to- dispatch-table pointer
8131 -- corresponds to the first implemented interface retrieved below.
f4d379b8 8132
02822a92 8133 Iface_DT_Ptr :=
1923d2d6 8134 Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Tagged_Typ))));
f937473f 8135
7888a6ae 8136 while Present (Iface_DT_Ptr)
df3e68b1 8137 and then Ekind (Node (Iface_DT_Ptr)) = E_Constant
7888a6ae 8138 loop
ac4d6407 8139 pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
d766cee3 8140 Expand_Interface_Thunk (Prim, Thunk_Id, Thunk_Code);
7888a6ae
GD
8141
8142 if Present (Thunk_Code) then
ac4d6407 8143 Insert_Actions_After (N, New_List (
7888a6ae
GD
8144 Thunk_Code,
8145
8146 Build_Set_Predefined_Prim_Op_Address (Loc,
54bf19e4 8147 Tag_Node =>
e4494292 8148 New_Occurrence_Of (Node (Next_Elmt (Iface_DT_Ptr)), Loc),
54bf19e4 8149 Position => DT_Position (Prim),
7888a6ae 8150 Address_Node =>
70f91180 8151 Unchecked_Convert_To (RTE (RE_Prim_Ptr),
1923d2d6 8152 Make_Attribute_Reference (Loc,
e4494292 8153 Prefix => New_Occurrence_Of (Thunk_Id, Loc),
1923d2d6 8154 Attribute_Name => Name_Unrestricted_Access))),
ac4d6407
RD
8155
8156 Build_Set_Predefined_Prim_Op_Address (Loc,
54bf19e4 8157 Tag_Node =>
e4494292 8158 New_Occurrence_Of
1923d2d6
JM
8159 (Node (Next_Elmt (Next_Elmt (Next_Elmt (Iface_DT_Ptr)))),
8160 Loc),
54bf19e4 8161 Position => DT_Position (Prim),
ac4d6407 8162 Address_Node =>
70f91180 8163 Unchecked_Convert_To (RTE (RE_Prim_Ptr),
1923d2d6 8164 Make_Attribute_Reference (Loc,
e4494292 8165 Prefix => New_Occurrence_Of (Prim, Loc),
1923d2d6 8166 Attribute_Name => Name_Unrestricted_Access)))));
7888a6ae 8167 end if;
f4d379b8 8168
1923d2d6
JM
8169 -- Skip the tag of the predefined primitives dispatch table
8170
8171 Next_Elmt (Iface_DT_Ptr);
8172 pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
8173
54bf19e4 8174 -- Skip tag of the no-thunks dispatch table
1923d2d6
JM
8175
8176 Next_Elmt (Iface_DT_Ptr);
8177 pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
8178
54bf19e4 8179 -- Skip tag of predefined primitives no-thunks dispatch table
1923d2d6 8180
ac4d6407
RD
8181 Next_Elmt (Iface_DT_Ptr);
8182 pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
8183
f4d379b8 8184 Next_Elmt (Iface_DT_Ptr);
f4d379b8
HK
8185 end loop;
8186 end Register_Predefined_DT_Entry;
8187
7888a6ae 8188 -- Local variables
3ca505dc 8189
df3e68b1 8190 Subp : constant Entity_Id := Entity (N);
3ca505dc 8191
ac4d6407
RD
8192 -- Start of processing for Freeze_Subprogram
8193
7888a6ae 8194 begin
d766cee3
RD
8195 -- We suppress the initialization of the dispatch table entry when
8196 -- VM_Target because the dispatching mechanism is handled internally
8197 -- by the VM.
8198
8199 if Is_Dispatching_Operation (Subp)
8200 and then not Is_Abstract_Subprogram (Subp)
8201 and then Present (DTC_Entity (Subp))
8202 and then Present (Scope (DTC_Entity (Subp)))
1f110335 8203 and then Tagged_Type_Expansion
d766cee3
RD
8204 and then not Restriction_Active (No_Dispatching_Calls)
8205 and then RTE_Available (RE_Tag)
8206 then
7888a6ae 8207 declare
d766cee3 8208 Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
c8ef728f 8209
7888a6ae 8210 begin
8fc789c8 8211 -- Handle private overridden primitives
c8ef728f 8212
d766cee3
RD
8213 if not Is_CPP_Class (Typ) then
8214 Check_Overriding_Operation (Subp);
7888a6ae 8215 end if;
c8ef728f 8216
d766cee3
RD
8217 -- We assume that imported CPP primitives correspond with objects
8218 -- whose constructor is in the CPP side; therefore we don't need
8219 -- to generate code to register them in the dispatch table.
c8ef728f 8220
d766cee3
RD
8221 if Is_CPP_Class (Typ) then
8222 null;
3ca505dc 8223
d766cee3
RD
8224 -- Handle CPP primitives found in derivations of CPP_Class types.
8225 -- These primitives must have been inherited from some parent, and
8226 -- there is no need to register them in the dispatch table because
5b6f12c7 8227 -- Build_Inherit_Prims takes care of initializing these slots.
3ca505dc 8228
d766cee3 8229 elsif Is_Imported (Subp)
54bf19e4
AC
8230 and then (Convention (Subp) = Convention_CPP
8231 or else Convention (Subp) = Convention_C)
d766cee3
RD
8232 then
8233 null;
8234
8235 -- Generate code to register the primitive in non statically
8236 -- allocated dispatch tables
8237
bfae1846
AC
8238 elsif not Building_Static_DT (Scope (DTC_Entity (Subp))) then
8239
d766cee3
RD
8240 -- When a primitive is frozen, enter its name in its dispatch
8241 -- table slot.
f4d379b8 8242
d766cee3 8243 if not Is_Interface (Typ)
ce2b6ba5 8244 or else Present (Interface_Alias (Subp))
d766cee3
RD
8245 then
8246 if Is_Predefined_Dispatching_Operation (Subp) then
8247 Register_Predefined_DT_Entry (Subp);
7888a6ae 8248 end if;
d766cee3 8249
991395ab
AC
8250 Insert_Actions_After (N,
8251 Register_Primitive (Loc, Prim => Subp));
7888a6ae
GD
8252 end if;
8253 end if;
8254 end;
70482933
RK
8255 end if;
8256
7888a6ae
GD
8257 -- Mark functions that return by reference. Note that it cannot be part
8258 -- of the normal semantic analysis of the spec since the underlying
8259 -- returned type may not be known yet (for private types).
70482933 8260
d766cee3
RD
8261 declare
8262 Typ : constant Entity_Id := Etype (Subp);
8263 Utyp : constant Entity_Id := Underlying_Type (Typ);
8264 begin
51245e2d 8265 if Is_Limited_View (Typ) then
d766cee3 8266 Set_Returns_By_Ref (Subp);
048e5cef 8267 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
d766cee3
RD
8268 Set_Returns_By_Ref (Subp);
8269 end if;
8270 end;
b546e2a7
AC
8271
8272 -- Wnen freezing a null procedure, analyze its delayed aspects now
8273 -- because we may not have reached the end of the declarative list when
8274 -- delayed aspects are normally analyzed. This ensures that dispatching
8275 -- calls are properly rewritten when the generated _Postcondition
8276 -- procedure is analyzed in the null procedure body.
8277
8278 if Nkind (Parent (Subp)) = N_Procedure_Specification
8279 and then Null_Present (Parent (Subp))
8280 then
5afe5d2d 8281 Analyze_Subprogram_Contract (Subp);
b546e2a7 8282 end if;
70482933
RK
8283 end Freeze_Subprogram;
8284
8dbf3473
AC
8285 -----------------------
8286 -- Is_Null_Procedure --
8287 -----------------------
8288
8289 function Is_Null_Procedure (Subp : Entity_Id) return Boolean is
8290 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
8291
8292 begin
8293 if Ekind (Subp) /= E_Procedure then
8294 return False;
8295
8296 -- Check if this is a declared null procedure
8297
8298 elsif Nkind (Decl) = N_Subprogram_Declaration then
e1f3cb58
AC
8299 if not Null_Present (Specification (Decl)) then
8300 return False;
8dbf3473
AC
8301
8302 elsif No (Body_To_Inline (Decl)) then
8303 return False;
8304
8305 -- Check if the body contains only a null statement, followed by
8306 -- the return statement added during expansion.
8307
8308 else
8309 declare
8310 Orig_Bod : constant Node_Id := Body_To_Inline (Decl);
8311
8312 Stat : Node_Id;
8313 Stat2 : Node_Id;
8314
8315 begin
8316 if Nkind (Orig_Bod) /= N_Subprogram_Body then
8317 return False;
8318 else
327503f1
JM
8319 -- We must skip SCIL nodes because they are currently
8320 -- implemented as special N_Null_Statement nodes.
8321
8dbf3473 8322 Stat :=
327503f1 8323 First_Non_SCIL_Node
8dbf3473 8324 (Statements (Handled_Statement_Sequence (Orig_Bod)));
327503f1 8325 Stat2 := Next_Non_SCIL_Node (Stat);
8dbf3473
AC
8326
8327 return
e1f3cb58
AC
8328 Is_Empty_List (Declarations (Orig_Bod))
8329 and then Nkind (Stat) = N_Null_Statement
8330 and then
8dbf3473
AC
8331 (No (Stat2)
8332 or else
8333 (Nkind (Stat2) = N_Simple_Return_Statement
8334 and then No (Next (Stat2))));
8335 end if;
8336 end;
8337 end if;
8338
8339 else
8340 return False;
8341 end if;
8342 end Is_Null_Procedure;
8343
02822a92
RD
8344 -------------------------------------------
8345 -- Make_Build_In_Place_Call_In_Allocator --
8346 -------------------------------------------
8347
8348 procedure Make_Build_In_Place_Call_In_Allocator
8349 (Allocator : Node_Id;
8350 Function_Call : Node_Id)
8351 is
94bbf008 8352 Acc_Type : constant Entity_Id := Etype (Allocator);
02822a92
RD
8353 Loc : Source_Ptr;
8354 Func_Call : Node_Id := Function_Call;
1399d355 8355 Ref_Func_Call : Node_Id;
02822a92
RD
8356 Function_Id : Entity_Id;
8357 Result_Subt : Entity_Id;
02822a92 8358 New_Allocator : Node_Id;
1399d355
AC
8359 Return_Obj_Access : Entity_Id; -- temp for function result
8360 Temp_Init : Node_Id; -- initial value of Return_Obj_Access
8361 Alloc_Form : BIP_Allocation_Form;
8362 Pool : Node_Id; -- nonnull if Alloc_Form = User_Storage_Pool
8363 Return_Obj_Actual : Node_Id; -- the temp.all, in caller-allocates case
8364 Chain : Entity_Id; -- activation chain, in case of tasks
02822a92
RD
8365
8366 begin
19590d70
GD
8367 -- Step past qualification or unchecked conversion (the latter can occur
8368 -- in cases of calls to 'Input).
8369
ac4d6407
RD
8370 if Nkind_In (Func_Call,
8371 N_Qualified_Expression,
8372 N_Unchecked_Type_Conversion)
19590d70 8373 then
02822a92
RD
8374 Func_Call := Expression (Func_Call);
8375 end if;
8376
fdce4bb7
JM
8377 -- If the call has already been processed to add build-in-place actuals
8378 -- then return. This should not normally occur in an allocator context,
8379 -- but we add the protection as a defensive measure.
8380
8381 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8382 return;
8383 end if;
8384
8385 -- Mark the call as processed as a build-in-place call
8386
8387 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8388
02822a92
RD
8389 Loc := Sloc (Function_Call);
8390
8391 if Is_Entity_Name (Name (Func_Call)) then
8392 Function_Id := Entity (Name (Func_Call));
8393
8394 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8395 Function_Id := Etype (Name (Func_Call));
8396
8397 else
8398 raise Program_Error;
8399 end if;
8400
94bbf008 8401 Result_Subt := Available_View (Etype (Function_Id));
02822a92 8402
1399d355
AC
8403 -- Create a temp for the function result. In the caller-allocates case,
8404 -- this will be initialized to the result of a new uninitialized
8405 -- allocator. Note: we do not use Allocator as the Related_Node of
8406 -- Return_Obj_Access in call to Make_Temporary below as this would
8407 -- create a sort of infinite "recursion".
0d566e01 8408
1399d355
AC
8409 Return_Obj_Access := Make_Temporary (Loc, 'R');
8410 Set_Etype (Return_Obj_Access, Acc_Type);
0d566e01 8411
1399d355 8412 -- When the result subtype is constrained, the return object is
f937473f
RD
8413 -- allocated on the caller side, and access to it is passed to the
8414 -- function.
02822a92 8415
7888a6ae
GD
8416 -- Here and in related routines, we must examine the full view of the
8417 -- type, because the view at the point of call may differ from that
8418 -- that in the function body, and the expansion mechanism depends on
8419 -- the characteristics of the full view.
8420
8421 if Is_Constrained (Underlying_Type (Result_Subt)) then
02822a92 8422
f937473f
RD
8423 -- Replace the initialized allocator of form "new T'(Func (...))"
8424 -- with an uninitialized allocator of form "new T", where T is the
8425 -- result subtype of the called function. The call to the function
8426 -- is handled separately further below.
02822a92 8427
f937473f 8428 New_Allocator :=
fad0600d 8429 Make_Allocator (Loc,
e4494292 8430 Expression => New_Occurrence_Of (Result_Subt, Loc));
fad0600d
AC
8431 Set_No_Initialization (New_Allocator);
8432
8433 -- Copy attributes to new allocator. Note that the new allocator
8434 -- logically comes from source if the original one did, so copy the
8435 -- relevant flag. This ensures proper treatment of the restriction
8436 -- No_Implicit_Heap_Allocations in this case.
02822a92 8437
fad0600d 8438 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
f937473f 8439 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
fad0600d 8440 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
02822a92 8441
f937473f 8442 Rewrite (Allocator, New_Allocator);
02822a92 8443
1399d355
AC
8444 -- Initial value of the temp is the result of the uninitialized
8445 -- allocator
02822a92 8446
1399d355 8447 Temp_Init := Relocate_Node (Allocator);
f937473f 8448
1399d355
AC
8449 -- Indicate that caller allocates, and pass in the return object
8450
8451 Alloc_Form := Caller_Allocation;
8452 Pool := Make_Null (No_Location);
8453 Return_Obj_Actual :=
8454 Make_Unchecked_Type_Conversion (Loc,
8455 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8456 Expression =>
8457 Make_Explicit_Dereference (Loc,
8458 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)));
f937473f
RD
8459
8460 -- When the result subtype is unconstrained, the function itself must
8461 -- perform the allocation of the return object, so we pass parameters
1399d355 8462 -- indicating that.
f937473f
RD
8463
8464 else
1399d355
AC
8465 Temp_Init := Empty;
8466
8417f4b2
AC
8467 -- Case of a user-defined storage pool. Pass an allocation parameter
8468 -- indicating that the function should allocate its result in the
8469 -- pool, and pass the pool. Use 'Unrestricted_Access because the
8470 -- pool may not be aliased.
200b7162 8471
8417f4b2
AC
8472 if VM_Target = No_VM
8473 and then Present (Associated_Storage_Pool (Acc_Type))
8474 then
1399d355
AC
8475 Alloc_Form := User_Storage_Pool;
8476 Pool :=
8477 Make_Attribute_Reference (Loc,
8478 Prefix =>
8479 New_Occurrence_Of
8480 (Associated_Storage_Pool (Acc_Type), Loc),
8481 Attribute_Name => Name_Unrestricted_Access);
8417f4b2
AC
8482
8483 -- No user-defined pool; pass an allocation parameter indicating that
8484 -- the function should allocate its result on the heap.
8485
8486 else
1399d355
AC
8487 Alloc_Form := Global_Heap;
8488 Pool := Make_Null (No_Location);
200b7162 8489 end if;
f937473f 8490
7888a6ae
GD
8491 -- The caller does not provide the return object in this case, so we
8492 -- have to pass null for the object access actual.
8493
1399d355
AC
8494 Return_Obj_Actual := Empty;
8495 end if;
8496
8497 -- Declare the temp object
8498
8499 Insert_Action (Allocator,
8500 Make_Object_Declaration (Loc,
8501 Defining_Identifier => Return_Obj_Access,
8502 Object_Definition => New_Occurrence_Of (Acc_Type, Loc),
8503 Expression => Temp_Init));
8504
8505 Ref_Func_Call := Make_Reference (Loc, Func_Call);
8506
8507 -- Ada 2005 (AI-251): If the type of the allocator is an interface
8508 -- then generate an implicit conversion to force displacement of the
8509 -- "this" pointer.
8510
8511 if Is_Interface (Designated_Type (Acc_Type)) then
8512 Rewrite
8513 (Ref_Func_Call,
8514 OK_Convert_To (Acc_Type, Ref_Func_Call));
f937473f 8515 end if;
02822a92 8516
1399d355
AC
8517 declare
8518 Assign : constant Node_Id :=
8519 Make_Assignment_Statement (Loc,
8520 Name => New_Occurrence_Of (Return_Obj_Access, Loc),
8521 Expression => Ref_Func_Call);
8522 -- Assign the result of the function call into the temp. In the
8523 -- caller-allocates case, this is overwriting the temp with its
8524 -- initial value, which has no effect. In the callee-allocates case,
8525 -- this is setting the temp to point to the object allocated by the
8526 -- callee.
8527
8528 Actions : List_Id;
8529 -- Actions to be inserted. If there are no tasks, this is just the
8530 -- assignment statement. If the allocated object has tasks, we need
8531 -- to wrap the assignment in a block that activates them. The
8532 -- activation chain of that block must be passed to the function,
8533 -- rather than some outer chain.
8534 begin
8535 if Has_Task (Result_Subt) then
8536 Actions := New_List;
8537 Build_Task_Allocate_Block_With_Init_Stmts
8538 (Actions, Allocator, Init_Stmts => New_List (Assign));
8539 Chain := Activation_Chain_Entity (Last (Actions));
8540 else
8541 Actions := New_List (Assign);
8542 Chain := Empty;
8543 end if;
8544
8545 Insert_Actions (Allocator, Actions);
8546 end;
8547
8548 -- When the function has a controlling result, an allocation-form
8549 -- parameter must be passed indicating that the caller is allocating
8550 -- the result object. This is needed because such a function can be
8551 -- called as a dispatching operation and must be treated similarly
8552 -- to functions with unconstrained result subtypes.
8553
8554 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8555 (Func_Call, Function_Id, Alloc_Form, Pool_Actual => Pool);
8556
8557 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8558 (Func_Call, Function_Id, Acc_Type);
8559
8560 Add_Task_Actuals_To_Build_In_Place_Call
8561 (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type),
8562 Chain => Chain);
8563
8564 -- Add an implicit actual to the function call that provides access
8565 -- to the allocated object. An unchecked conversion to the (specific)
8566 -- result subtype of the function is inserted to handle cases where
8567 -- the access type of the allocator has a class-wide designated type.
8568
8569 Add_Access_Actual_To_Build_In_Place_Call
8570 (Func_Call, Function_Id, Return_Obj_Actual);
8571
b254da66
AC
8572 -- If the build-in-place function call returns a controlled object,
8573 -- the finalization master will require a reference to routine
8574 -- Finalize_Address of the designated type. Setting this attribute
8575 -- is done in the same manner to expansion of allocators.
8576
8577 if Needs_Finalization (Result_Subt) then
8578
8579 -- Controlled types with supressed finalization do not need to
8580 -- associate the address of their Finalize_Address primitives with
8581 -- a master since they do not need a master to begin with.
8582
8583 if Is_Library_Level_Entity (Acc_Type)
8584 and then Finalize_Storage_Only (Result_Subt)
8585 then
8586 null;
8587
5114f3ff
AC
8588 -- Do not generate the call to Set_Finalize_Address in CodePeer mode
8589 -- because Finalize_Address is never built.
b254da66 8590
5114f3ff 8591 elsif not CodePeer_Mode then
b254da66
AC
8592 Insert_Action (Allocator,
8593 Make_Set_Finalize_Address_Call (Loc,
8594 Typ => Etype (Function_Id),
8595 Ptr_Typ => Acc_Type));
8596 end if;
8597 end if;
8598
1399d355 8599 -- Finally, replace the allocator node with a reference to the temp
02822a92 8600
1399d355 8601 Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
d2d4b355 8602
02822a92
RD
8603 Analyze_And_Resolve (Allocator, Acc_Type);
8604 end Make_Build_In_Place_Call_In_Allocator;
8605
8606 ---------------------------------------------------
8607 -- Make_Build_In_Place_Call_In_Anonymous_Context --
8608 ---------------------------------------------------
8609
8610 procedure Make_Build_In_Place_Call_In_Anonymous_Context
8611 (Function_Call : Node_Id)
8612 is
8613 Loc : Source_Ptr;
8614 Func_Call : Node_Id := Function_Call;
8615 Function_Id : Entity_Id;
8616 Result_Subt : Entity_Id;
8617 Return_Obj_Id : Entity_Id;
8618 Return_Obj_Decl : Entity_Id;
8619
8620 begin
19590d70
GD
8621 -- Step past qualification or unchecked conversion (the latter can occur
8622 -- in cases of calls to 'Input).
8623
ac4d6407
RD
8624 if Nkind_In (Func_Call, N_Qualified_Expression,
8625 N_Unchecked_Type_Conversion)
19590d70 8626 then
02822a92
RD
8627 Func_Call := Expression (Func_Call);
8628 end if;
8629
fdce4bb7
JM
8630 -- If the call has already been processed to add build-in-place actuals
8631 -- then return. One place this can occur is for calls to build-in-place
8632 -- functions that occur within a call to a protected operation, where
8633 -- due to rewriting and expansion of the protected call there can be
8634 -- more than one call to Expand_Actuals for the same set of actuals.
8635
8636 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8637 return;
8638 end if;
8639
8640 -- Mark the call as processed as a build-in-place call
8641
8642 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8643
02822a92
RD
8644 Loc := Sloc (Function_Call);
8645
8646 if Is_Entity_Name (Name (Func_Call)) then
8647 Function_Id := Entity (Name (Func_Call));
8648
8649 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8650 Function_Id := Etype (Name (Func_Call));
8651
8652 else
8653 raise Program_Error;
8654 end if;
8655
8656 Result_Subt := Etype (Function_Id);
8657
df3e68b1
HK
8658 -- If the build-in-place function returns a controlled object, then the
8659 -- object needs to be finalized immediately after the context. Since
8660 -- this case produces a transient scope, the servicing finalizer needs
8661 -- to name the returned object. Create a temporary which is initialized
8662 -- with the function call:
8663 --
8664 -- Temp_Id : Func_Type := BIP_Func_Call;
8665 --
8666 -- The initialization expression of the temporary will be rewritten by
8667 -- the expander using the appropriate mechanism in Make_Build_In_Place_
8668 -- Call_In_Object_Declaration.
8669
8670 if Needs_Finalization (Result_Subt) then
8671 declare
8672 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'R');
8673 Temp_Decl : Node_Id;
8674
8675 begin
8676 -- Reset the guard on the function call since the following does
8677 -- not perform actual call expansion.
8678
8679 Set_Is_Expanded_Build_In_Place_Call (Func_Call, False);
8680
8681 Temp_Decl :=
8682 Make_Object_Declaration (Loc,
8683 Defining_Identifier => Temp_Id,
8684 Object_Definition =>
e4494292 8685 New_Occurrence_Of (Result_Subt, Loc),
df3e68b1
HK
8686 Expression =>
8687 New_Copy_Tree (Function_Call));
8688
8689 Insert_Action (Function_Call, Temp_Decl);
8690
e4494292 8691 Rewrite (Function_Call, New_Occurrence_Of (Temp_Id, Loc));
df3e68b1
HK
8692 Analyze (Function_Call);
8693 end;
8694
f937473f
RD
8695 -- When the result subtype is constrained, an object of the subtype is
8696 -- declared and an access value designating it is passed as an actual.
02822a92 8697
df3e68b1 8698 elsif Is_Constrained (Underlying_Type (Result_Subt)) then
02822a92 8699
f937473f
RD
8700 -- Create a temporary object to hold the function result
8701
c12beea0 8702 Return_Obj_Id := Make_Temporary (Loc, 'R');
f937473f 8703 Set_Etype (Return_Obj_Id, Result_Subt);
02822a92 8704
f937473f
RD
8705 Return_Obj_Decl :=
8706 Make_Object_Declaration (Loc,
8707 Defining_Identifier => Return_Obj_Id,
8708 Aliased_Present => True,
e4494292 8709 Object_Definition => New_Occurrence_Of (Result_Subt, Loc));
02822a92 8710
f937473f 8711 Set_No_Initialization (Return_Obj_Decl);
02822a92 8712
f937473f 8713 Insert_Action (Func_Call, Return_Obj_Decl);
02822a92 8714
7888a6ae
GD
8715 -- When the function has a controlling result, an allocation-form
8716 -- parameter must be passed indicating that the caller is allocating
8717 -- the result object. This is needed because such a function can be
8718 -- called as a dispatching operation and must be treated similarly
8719 -- to functions with unconstrained result subtypes.
8720
200b7162 8721 Add_Unconstrained_Actuals_To_Build_In_Place_Call
7888a6ae
GD
8722 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8723
d3f70b35 8724 Add_Finalization_Master_Actual_To_Build_In_Place_Call
df3e68b1 8725 (Func_Call, Function_Id);
f937473f 8726
f937473f
RD
8727 Add_Task_Actuals_To_Build_In_Place_Call
8728 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
7888a6ae
GD
8729
8730 -- Add an implicit actual to the function call that provides access
8731 -- to the caller's return object.
8732
f937473f 8733 Add_Access_Actual_To_Build_In_Place_Call
e4494292 8734 (Func_Call, Function_Id, New_Occurrence_Of (Return_Obj_Id, Loc));
f937473f
RD
8735
8736 -- When the result subtype is unconstrained, the function must allocate
8737 -- the return object in the secondary stack, so appropriate implicit
8738 -- parameters are added to the call to indicate that. A transient
8739 -- scope is established to ensure eventual cleanup of the result.
8740
8741 else
8742 -- Pass an allocation parameter indicating that the function should
8743 -- allocate its result on the secondary stack.
8744
200b7162 8745 Add_Unconstrained_Actuals_To_Build_In_Place_Call
f937473f
RD
8746 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
8747
d3f70b35 8748 Add_Finalization_Master_Actual_To_Build_In_Place_Call
df3e68b1 8749 (Func_Call, Function_Id);
f937473f 8750
f937473f
RD
8751 Add_Task_Actuals_To_Build_In_Place_Call
8752 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
7888a6ae
GD
8753
8754 -- Pass a null value to the function since no return object is
8755 -- available on the caller side.
8756
f937473f
RD
8757 Add_Access_Actual_To_Build_In_Place_Call
8758 (Func_Call, Function_Id, Empty);
f937473f 8759 end if;
02822a92
RD
8760 end Make_Build_In_Place_Call_In_Anonymous_Context;
8761
ce2798e8 8762 --------------------------------------------
02822a92 8763 -- Make_Build_In_Place_Call_In_Assignment --
ce2798e8 8764 --------------------------------------------
02822a92
RD
8765
8766 procedure Make_Build_In_Place_Call_In_Assignment
8767 (Assign : Node_Id;
8768 Function_Call : Node_Id)
8769 is
3a69b5ff
AC
8770 Lhs : constant Node_Id := Name (Assign);
8771 Func_Call : Node_Id := Function_Call;
8772 Func_Id : Entity_Id;
8773 Loc : Source_Ptr;
8774 Obj_Decl : Node_Id;
8775 Obj_Id : Entity_Id;
8776 Ptr_Typ : Entity_Id;
8777 Ptr_Typ_Decl : Node_Id;
74cab21a 8778 New_Expr : Node_Id;
3a69b5ff
AC
8779 Result_Subt : Entity_Id;
8780 Target : Node_Id;
02822a92
RD
8781
8782 begin
19590d70
GD
8783 -- Step past qualification or unchecked conversion (the latter can occur
8784 -- in cases of calls to 'Input).
8785
ac4d6407
RD
8786 if Nkind_In (Func_Call, N_Qualified_Expression,
8787 N_Unchecked_Type_Conversion)
19590d70 8788 then
02822a92
RD
8789 Func_Call := Expression (Func_Call);
8790 end if;
8791
fdce4bb7
JM
8792 -- If the call has already been processed to add build-in-place actuals
8793 -- then return. This should not normally occur in an assignment context,
8794 -- but we add the protection as a defensive measure.
8795
8796 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8797 return;
8798 end if;
8799
8800 -- Mark the call as processed as a build-in-place call
8801
8802 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8803
02822a92
RD
8804 Loc := Sloc (Function_Call);
8805
8806 if Is_Entity_Name (Name (Func_Call)) then
3a69b5ff 8807 Func_Id := Entity (Name (Func_Call));
02822a92
RD
8808
8809 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
3a69b5ff 8810 Func_Id := Etype (Name (Func_Call));
02822a92
RD
8811
8812 else
8813 raise Program_Error;
8814 end if;
8815
3a69b5ff 8816 Result_Subt := Etype (Func_Id);
02822a92 8817
f937473f
RD
8818 -- When the result subtype is unconstrained, an additional actual must
8819 -- be passed to indicate that the caller is providing the return object.
7888a6ae
GD
8820 -- This parameter must also be passed when the called function has a
8821 -- controlling result, because dispatching calls to the function needs
8822 -- to be treated effectively the same as calls to class-wide functions.
f937473f 8823
200b7162 8824 Add_Unconstrained_Actuals_To_Build_In_Place_Call
3a69b5ff 8825 (Func_Call, Func_Id, Alloc_Form => Caller_Allocation);
f937473f 8826
d3f70b35 8827 Add_Finalization_Master_Actual_To_Build_In_Place_Call
df3e68b1 8828 (Func_Call, Func_Id);
02822a92 8829
f937473f 8830 Add_Task_Actuals_To_Build_In_Place_Call
3a69b5ff 8831 (Func_Call, Func_Id, Make_Identifier (Loc, Name_uMaster));
7888a6ae
GD
8832
8833 -- Add an implicit actual to the function call that provides access to
8834 -- the caller's return object.
8835
02822a92
RD
8836 Add_Access_Actual_To_Build_In_Place_Call
8837 (Func_Call,
3a69b5ff 8838 Func_Id,
02822a92 8839 Make_Unchecked_Type_Conversion (Loc,
e4494292 8840 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
02822a92
RD
8841 Expression => Relocate_Node (Lhs)));
8842
8843 -- Create an access type designating the function's result subtype
8844
c12beea0 8845 Ptr_Typ := Make_Temporary (Loc, 'A');
02822a92
RD
8846
8847 Ptr_Typ_Decl :=
8848 Make_Full_Type_Declaration (Loc,
3a69b5ff 8849 Defining_Identifier => Ptr_Typ,
2c1b72d7 8850 Type_Definition =>
02822a92 8851 Make_Access_To_Object_Definition (Loc,
2c1b72d7 8852 All_Present => True,
02822a92 8853 Subtype_Indication =>
e4494292 8854 New_Occurrence_Of (Result_Subt, Loc)));
02822a92
RD
8855 Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
8856
8857 -- Finally, create an access object initialized to a reference to the
03e1048e
AC
8858 -- function call. We know this access value is non-null, so mark the
8859 -- entity accordingly to suppress junk access checks.
02822a92 8860
74cab21a
EB
8861 New_Expr := Make_Reference (Loc, Relocate_Node (Func_Call));
8862
8863 Obj_Id := Make_Temporary (Loc, 'R', New_Expr);
3a69b5ff 8864 Set_Etype (Obj_Id, Ptr_Typ);
74cab21a 8865 Set_Is_Known_Non_Null (Obj_Id);
02822a92 8866
3a69b5ff 8867 Obj_Decl :=
02822a92 8868 Make_Object_Declaration (Loc,
3a69b5ff 8869 Defining_Identifier => Obj_Id,
e4494292 8870 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
74cab21a 8871 Expression => New_Expr);
3a69b5ff 8872 Insert_After_And_Analyze (Ptr_Typ_Decl, Obj_Decl);
02822a92
RD
8873
8874 Rewrite (Assign, Make_Null_Statement (Loc));
3a69b5ff
AC
8875
8876 -- Retrieve the target of the assignment
8877
8878 if Nkind (Lhs) = N_Selected_Component then
8879 Target := Selector_Name (Lhs);
8880 elsif Nkind (Lhs) = N_Type_Conversion then
8881 Target := Expression (Lhs);
8882 else
8883 Target := Lhs;
8884 end if;
8885
8886 -- If we are assigning to a return object or this is an expression of
8887 -- an extension aggregate, the target should either be an identifier
8888 -- or a simple expression. All other cases imply a different scenario.
8889
8890 if Nkind (Target) in N_Has_Entity then
8891 Target := Entity (Target);
8892 else
8893 return;
8894 end if;
02822a92
RD
8895 end Make_Build_In_Place_Call_In_Assignment;
8896
8897 ----------------------------------------------------
8898 -- Make_Build_In_Place_Call_In_Object_Declaration --
8899 ----------------------------------------------------
8900
8901 procedure Make_Build_In_Place_Call_In_Object_Declaration
8902 (Object_Decl : Node_Id;
8903 Function_Call : Node_Id)
8904 is
f937473f
RD
8905 Loc : Source_Ptr;
8906 Obj_Def_Id : constant Entity_Id :=
8907 Defining_Identifier (Object_Decl);
2c17ca0a
AC
8908 Enclosing_Func : constant Entity_Id :=
8909 Enclosing_Subprogram (Obj_Def_Id);
8417f4b2
AC
8910 Call_Deref : Node_Id;
8911 Caller_Object : Node_Id;
8912 Def_Id : Entity_Id;
2c17ca0a 8913 Fmaster_Actual : Node_Id := Empty;
8417f4b2
AC
8914 Func_Call : Node_Id := Function_Call;
8915 Function_Id : Entity_Id;
8916 Pool_Actual : Node_Id;
f65c67d3 8917 Ptr_Typ : Entity_Id;
8417f4b2 8918 Ptr_Typ_Decl : Node_Id;
f937473f 8919 Pass_Caller_Acc : Boolean := False;
8c7ff9a0 8920 Res_Decl : Node_Id;
8417f4b2 8921 Result_Subt : Entity_Id;
02822a92
RD
8922
8923 begin
19590d70
GD
8924 -- Step past qualification or unchecked conversion (the latter can occur
8925 -- in cases of calls to 'Input).
8926
ac4d6407
RD
8927 if Nkind_In (Func_Call, N_Qualified_Expression,
8928 N_Unchecked_Type_Conversion)
19590d70 8929 then
02822a92
RD
8930 Func_Call := Expression (Func_Call);
8931 end if;
8932
fdce4bb7
JM
8933 -- If the call has already been processed to add build-in-place actuals
8934 -- then return. This should not normally occur in an object declaration,
8935 -- but we add the protection as a defensive measure.
8936
8937 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8938 return;
8939 end if;
8940
8941 -- Mark the call as processed as a build-in-place call
8942
8943 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8944
02822a92
RD
8945 Loc := Sloc (Function_Call);
8946
8947 if Is_Entity_Name (Name (Func_Call)) then
8948 Function_Id := Entity (Name (Func_Call));
8949
8950 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8951 Function_Id := Etype (Name (Func_Call));
8952
8953 else
8954 raise Program_Error;
8955 end if;
8956
8957 Result_Subt := Etype (Function_Id);
8958
f65c67d3
TQ
8959 -- Create an access type designating the function's result subtype. We
8960 -- use the type of the original call because it may be a call to an
8961 -- inherited operation, which the expansion has replaced with the parent
8962 -- operation that yields the parent type. Note that this access type
8963 -- must be declared before we establish a transient scope, so that it
8964 -- receives the proper accessibility level.
8965
8966 Ptr_Typ := Make_Temporary (Loc, 'A');
8967 Ptr_Typ_Decl :=
8968 Make_Full_Type_Declaration (Loc,
8969 Defining_Identifier => Ptr_Typ,
8970 Type_Definition =>
8971 Make_Access_To_Object_Definition (Loc,
8972 All_Present => True,
8973 Subtype_Indication =>
8974 New_Occurrence_Of (Etype (Function_Call), Loc)));
8975
8976 -- The access type and its accompanying object must be inserted after
8977 -- the object declaration in the constrained case, so that the function
8978 -- call can be passed access to the object. In the unconstrained case,
8979 -- or if the object declaration is for a return object, the access type
8980 -- and object must be inserted before the object, since the object
8981 -- declaration is rewritten to be a renaming of a dereference of the
8982 -- access object. Note: we need to freeze Ptr_Typ explicitly, because
8983 -- the result object is in a different (transient) scope, so won't
8984 -- cause freezing.
8985
8986 if Is_Constrained (Underlying_Type (Result_Subt))
8987 and then not Is_Return_Object (Defining_Identifier (Object_Decl))
8988 then
8989 Insert_After_And_Analyze (Object_Decl, Ptr_Typ_Decl);
8990 else
8991 Insert_Action (Object_Decl, Ptr_Typ_Decl);
8992 end if;
8993
8994 -- Force immediate freezing of Ptr_Typ because Res_Decl will be
8995 -- elaborated in an inner (transient) scope and thus won't cause
8996 -- freezing by itself.
8997
8998 declare
8999 Ptr_Typ_Freeze_Ref : constant Node_Id :=
9000 New_Occurrence_Of (Ptr_Typ, Loc);
9001 begin
9002 Set_Parent (Ptr_Typ_Freeze_Ref, Ptr_Typ_Decl);
9003 Freeze_Expression (Ptr_Typ_Freeze_Ref);
9004 end;
9005
1bb6e262
AC
9006 -- If the the object is a return object of an enclosing build-in-place
9007 -- function, then the implicit build-in-place parameters of the
9008 -- enclosing function are simply passed along to the called function.
9009 -- (Unfortunately, this won't cover the case of extension aggregates
9010 -- where the ancestor part is a build-in-place unconstrained function
9011 -- call that should be passed along the caller's parameters. Currently
9012 -- those get mishandled by reassigning the result of the call to the
9013 -- aggregate return object, when the call result should really be
9014 -- directly built in place in the aggregate and not in a temporary. ???)
9015
9016 if Is_Return_Object (Defining_Identifier (Object_Decl)) then
f937473f
RD
9017 Pass_Caller_Acc := True;
9018
1bb6e262
AC
9019 -- When the enclosing function has a BIP_Alloc_Form formal then we
9020 -- pass it along to the callee (such as when the enclosing function
9021 -- has an unconstrained or tagged result type).
f937473f 9022
1bb6e262 9023 if Needs_BIP_Alloc_Form (Enclosing_Func) then
3e452820
AC
9024 if VM_Target = No_VM and then
9025 RTE_Available (RE_Root_Storage_Pool_Ptr)
9026 then
8417f4b2 9027 Pool_Actual :=
e4494292 9028 New_Occurrence_Of (Build_In_Place_Formal
8417f4b2
AC
9029 (Enclosing_Func, BIP_Storage_Pool), Loc);
9030
9031 -- The build-in-place pool formal is not built on .NET/JVM
9032
9033 else
9034 Pool_Actual := Empty;
9035 end if;
9036
200b7162 9037 Add_Unconstrained_Actuals_To_Build_In_Place_Call
f937473f
RD
9038 (Func_Call,
9039 Function_Id,
9040 Alloc_Form_Exp =>
e4494292 9041 New_Occurrence_Of
f937473f 9042 (Build_In_Place_Formal (Enclosing_Func, BIP_Alloc_Form),
200b7162 9043 Loc),
8417f4b2 9044 Pool_Actual => Pool_Actual);
1bb6e262
AC
9045
9046 -- Otherwise, if enclosing function has a constrained result subtype,
9047 -- then caller allocation will be used.
9048
9049 else
200b7162 9050 Add_Unconstrained_Actuals_To_Build_In_Place_Call
1bb6e262 9051 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
f937473f
RD
9052 end if;
9053
2c17ca0a
AC
9054 if Needs_BIP_Finalization_Master (Enclosing_Func) then
9055 Fmaster_Actual :=
e4494292 9056 New_Occurrence_Of
2c17ca0a
AC
9057 (Build_In_Place_Formal
9058 (Enclosing_Func, BIP_Finalization_Master), Loc);
9059 end if;
9060
f937473f
RD
9061 -- Retrieve the BIPacc formal from the enclosing function and convert
9062 -- it to the access type of the callee's BIP_Object_Access formal.
9063
9064 Caller_Object :=
9065 Make_Unchecked_Type_Conversion (Loc,
9066 Subtype_Mark =>
e4494292 9067 New_Occurrence_Of
f937473f
RD
9068 (Etype
9069 (Build_In_Place_Formal (Function_Id, BIP_Object_Access)),
9070 Loc),
9071 Expression =>
e4494292 9072 New_Occurrence_Of
f937473f
RD
9073 (Build_In_Place_Formal (Enclosing_Func, BIP_Object_Access),
9074 Loc));
9075
1bb6e262
AC
9076 -- In the constrained case, add an implicit actual to the function call
9077 -- that provides access to the declared object. An unchecked conversion
9078 -- to the (specific) result type of the function is inserted to handle
9079 -- the case where the object is declared with a class-wide type.
9080
9081 elsif Is_Constrained (Underlying_Type (Result_Subt)) then
9082 Caller_Object :=
9083 Make_Unchecked_Type_Conversion (Loc,
e4494292
RD
9084 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
9085 Expression => New_Occurrence_Of (Obj_Def_Id, Loc));
1bb6e262
AC
9086
9087 -- When the function has a controlling result, an allocation-form
9088 -- parameter must be passed indicating that the caller is allocating
9089 -- the result object. This is needed because such a function can be
9090 -- called as a dispatching operation and must be treated similarly
9091 -- to functions with unconstrained result subtypes.
9092
200b7162 9093 Add_Unconstrained_Actuals_To_Build_In_Place_Call
1bb6e262
AC
9094 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
9095
f937473f
RD
9096 -- In other unconstrained cases, pass an indication to do the allocation
9097 -- on the secondary stack and set Caller_Object to Empty so that a null
9098 -- value will be passed for the caller's object address. A transient
9099 -- scope is established to ensure eventual cleanup of the result.
9100
9101 else
200b7162 9102 Add_Unconstrained_Actuals_To_Build_In_Place_Call
3e7302c3 9103 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
f937473f
RD
9104 Caller_Object := Empty;
9105
9106 Establish_Transient_Scope (Object_Decl, Sec_Stack => True);
9107 end if;
9108
2c17ca0a
AC
9109 -- Pass along any finalization master actual, which is needed in the
9110 -- case where the called function initializes a return object of an
9111 -- enclosing build-in-place function.
9112
d3f70b35 9113 Add_Finalization_Master_Actual_To_Build_In_Place_Call
2c17ca0a
AC
9114 (Func_Call => Func_Call,
9115 Func_Id => Function_Id,
9116 Master_Exp => Fmaster_Actual);
7888a6ae 9117
f937473f
RD
9118 if Nkind (Parent (Object_Decl)) = N_Extended_Return_Statement
9119 and then Has_Task (Result_Subt)
9120 then
7888a6ae
GD
9121 -- Here we're passing along the master that was passed in to this
9122 -- function.
9123
f937473f
RD
9124 Add_Task_Actuals_To_Build_In_Place_Call
9125 (Func_Call, Function_Id,
9126 Master_Actual =>
e4494292 9127 New_Occurrence_Of (Build_In_Place_Formal
af89615f 9128 (Enclosing_Func, BIP_Task_Master), Loc));
7888a6ae 9129
f937473f
RD
9130 else
9131 Add_Task_Actuals_To_Build_In_Place_Call
9132 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
9133 end if;
7888a6ae 9134
02822a92 9135 Add_Access_Actual_To_Build_In_Place_Call
f937473f 9136 (Func_Call, Function_Id, Caller_Object, Is_Access => Pass_Caller_Acc);
02822a92 9137
02822a92 9138 -- Finally, create an access object initialized to a reference to the
03e1048e
AC
9139 -- function call. We know this access value cannot be null, so mark the
9140 -- entity accordingly to suppress the access check.
02822a92 9141
f65c67d3
TQ
9142 Def_Id := Make_Temporary (Loc, 'R', Func_Call);
9143 Set_Etype (Def_Id, Ptr_Typ);
74cab21a 9144 Set_Is_Known_Non_Null (Def_Id);
c12beea0 9145
8c7ff9a0 9146 Res_Decl :=
02822a92
RD
9147 Make_Object_Declaration (Loc,
9148 Defining_Identifier => Def_Id,
f65c67d3
TQ
9149 Constant_Present => True,
9150 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
9151 Expression =>
9152 Make_Reference (Loc, Relocate_Node (Func_Call)));
9153
8c7ff9a0 9154 Insert_After_And_Analyze (Ptr_Typ_Decl, Res_Decl);
02822a92 9155
1bb6e262
AC
9156 -- If the result subtype of the called function is constrained and
9157 -- is not itself the return expression of an enclosing BIP function,
9158 -- then mark the object as having no initialization.
9159
9160 if Is_Constrained (Underlying_Type (Result_Subt))
9161 and then not Is_Return_Object (Defining_Identifier (Object_Decl))
9162 then
8c7ff9a0
AC
9163 -- The related object declaration is encased in a transient block
9164 -- because the build-in-place function call contains at least one
9165 -- nested function call that produces a controlled transient
9166 -- temporary:
9167
9168 -- Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
9169
9170 -- Since the build-in-place expansion decouples the call from the
9171 -- object declaration, the finalization machinery lacks the context
9172 -- which prompted the generation of the transient block. To resolve
9173 -- this scenario, store the build-in-place call.
9174
9175 if Scope_Is_Transient
9176 and then Node_To_Be_Wrapped = Object_Decl
9177 then
9178 Set_BIP_Initialization_Call (Obj_Def_Id, Res_Decl);
9179 end if;
9180
f937473f
RD
9181 Set_Expression (Object_Decl, Empty);
9182 Set_No_Initialization (Object_Decl);
9183
1bb6e262
AC
9184 -- In case of an unconstrained result subtype, or if the call is the
9185 -- return expression of an enclosing BIP function, rewrite the object
f937473f
RD
9186 -- declaration as an object renaming where the renamed object is a
9187 -- dereference of <function_Call>'reference:
9188 --
9189 -- Obj : Subt renames <function_call>'Ref.all;
9190
9191 else
9192 Call_Deref :=
9193 Make_Explicit_Dereference (Loc,
e4494292 9194 Prefix => New_Occurrence_Of (Def_Id, Loc));
f937473f 9195
f00c5f52 9196 Loc := Sloc (Object_Decl);
f937473f
RD
9197 Rewrite (Object_Decl,
9198 Make_Object_Renaming_Declaration (Loc,
c12beea0 9199 Defining_Identifier => Make_Temporary (Loc, 'D'),
f937473f
RD
9200 Access_Definition => Empty,
9201 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
9202 Name => Call_Deref));
9203
9204 Set_Renamed_Object (Defining_Identifier (Object_Decl), Call_Deref);
9205
9206 Analyze (Object_Decl);
9207
9208 -- Replace the internal identifier of the renaming declaration's
9209 -- entity with identifier of the original object entity. We also have
9210 -- to exchange the entities containing their defining identifiers to
9211 -- ensure the correct replacement of the object declaration by the
9212 -- object renaming declaration to avoid homograph conflicts (since
9213 -- the object declaration's defining identifier was already entered
67ce0d7e
RD
9214 -- in current scope). The Next_Entity links of the two entities also
9215 -- have to be swapped since the entities are part of the return
9216 -- scope's entity list and the list structure would otherwise be
7e8ed0a6 9217 -- corrupted. Finally, the homonym chain must be preserved as well.
67ce0d7e
RD
9218
9219 declare
9220 Renaming_Def_Id : constant Entity_Id :=
9221 Defining_Identifier (Object_Decl);
9222 Next_Entity_Temp : constant Entity_Id :=
9223 Next_Entity (Renaming_Def_Id);
9224 begin
9225 Set_Chars (Renaming_Def_Id, Chars (Obj_Def_Id));
9226
9227 -- Swap next entity links in preparation for exchanging entities
f937473f 9228
67ce0d7e
RD
9229 Set_Next_Entity (Renaming_Def_Id, Next_Entity (Obj_Def_Id));
9230 Set_Next_Entity (Obj_Def_Id, Next_Entity_Temp);
7e8ed0a6 9231 Set_Homonym (Renaming_Def_Id, Homonym (Obj_Def_Id));
67ce0d7e
RD
9232
9233 Exchange_Entities (Renaming_Def_Id, Obj_Def_Id);
f00c5f52
AC
9234
9235 -- Preserve source indication of original declaration, so that
9236 -- xref information is properly generated for the right entity.
9237
9238 Preserve_Comes_From_Source
9239 (Object_Decl, Original_Node (Object_Decl));
e4982b64
AC
9240
9241 Preserve_Comes_From_Source
9242 (Obj_Def_Id, Original_Node (Object_Decl));
9243
f00c5f52 9244 Set_Comes_From_Source (Renaming_Def_Id, False);
67ce0d7e 9245 end;
f937473f 9246 end if;
02822a92
RD
9247
9248 -- If the object entity has a class-wide Etype, then we need to change
9249 -- it to the result subtype of the function call, because otherwise the
53b308f6
AC
9250 -- object will be class-wide without an explicit initialization and
9251 -- won't be allocated properly by the back end. It seems unclean to make
9252 -- such a revision to the type at this point, and we should try to
9253 -- improve this treatment when build-in-place functions with class-wide
9254 -- results are implemented. ???
02822a92
RD
9255
9256 if Is_Class_Wide_Type (Etype (Defining_Identifier (Object_Decl))) then
9257 Set_Etype (Defining_Identifier (Object_Decl), Result_Subt);
9258 end if;
9259 end Make_Build_In_Place_Call_In_Object_Declaration;
9260
3bfb3c03
JM
9261 --------------------------------------------
9262 -- Make_CPP_Constructor_Call_In_Allocator --
9263 --------------------------------------------
9264
9265 procedure Make_CPP_Constructor_Call_In_Allocator
9266 (Allocator : Node_Id;
9267 Function_Call : Node_Id)
9268 is
9269 Loc : constant Source_Ptr := Sloc (Function_Call);
9270 Acc_Type : constant Entity_Id := Etype (Allocator);
9271 Function_Id : constant Entity_Id := Entity (Name (Function_Call));
9272 Result_Subt : constant Entity_Id := Available_View (Etype (Function_Id));
9273
9274 New_Allocator : Node_Id;
9275 Return_Obj_Access : Entity_Id;
9276 Tmp_Obj : Node_Id;
9277
9278 begin
9279 pragma Assert (Nkind (Allocator) = N_Allocator
8c7ff9a0 9280 and then Nkind (Function_Call) = N_Function_Call);
3bfb3c03 9281 pragma Assert (Convention (Function_Id) = Convention_CPP
8c7ff9a0 9282 and then Is_Constructor (Function_Id));
3bfb3c03
JM
9283 pragma Assert (Is_Constrained (Underlying_Type (Result_Subt)));
9284
9285 -- Replace the initialized allocator of form "new T'(Func (...))" with
9286 -- an uninitialized allocator of form "new T", where T is the result
9287 -- subtype of the called function. The call to the function is handled
9288 -- separately further below.
9289
9290 New_Allocator :=
9291 Make_Allocator (Loc,
e4494292 9292 Expression => New_Occurrence_Of (Result_Subt, Loc));
3bfb3c03
JM
9293 Set_No_Initialization (New_Allocator);
9294
9295 -- Copy attributes to new allocator. Note that the new allocator
9296 -- logically comes from source if the original one did, so copy the
9297 -- relevant flag. This ensures proper treatment of the restriction
9298 -- No_Implicit_Heap_Allocations in this case.
9299
9300 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
9301 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
9302 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
9303
9304 Rewrite (Allocator, New_Allocator);
9305
9306 -- Create a new access object and initialize it to the result of the
9307 -- new uninitialized allocator. Note: we do not use Allocator as the
9308 -- Related_Node of Return_Obj_Access in call to Make_Temporary below
9309 -- as this would create a sort of infinite "recursion".
9310
9311 Return_Obj_Access := Make_Temporary (Loc, 'R');
9312 Set_Etype (Return_Obj_Access, Acc_Type);
9313
9314 -- Generate:
9315 -- Rnnn : constant ptr_T := new (T);
9316 -- Init (Rnn.all,...);
9317
9318 Tmp_Obj :=
9319 Make_Object_Declaration (Loc,
9320 Defining_Identifier => Return_Obj_Access,
9321 Constant_Present => True,
e4494292 9322 Object_Definition => New_Occurrence_Of (Acc_Type, Loc),
3bfb3c03
JM
9323 Expression => Relocate_Node (Allocator));
9324 Insert_Action (Allocator, Tmp_Obj);
9325
9326 Insert_List_After_And_Analyze (Tmp_Obj,
9327 Build_Initialization_Call (Loc,
9328 Id_Ref =>
9329 Make_Explicit_Dereference (Loc,
e4494292 9330 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)),
3bfb3c03
JM
9331 Typ => Etype (Function_Id),
9332 Constructor_Ref => Function_Call));
9333
9334 -- Finally, replace the allocator node with a reference to the result of
9335 -- the function call itself (which will effectively be an access to the
9336 -- object created by the allocator).
9337
e4494292 9338 Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
3bfb3c03
JM
9339
9340 -- Ada 2005 (AI-251): If the type of the allocator is an interface then
9341 -- generate an implicit conversion to force displacement of the "this"
9342 -- pointer.
9343
9344 if Is_Interface (Designated_Type (Acc_Type)) then
9345 Rewrite (Allocator, Convert_To (Acc_Type, Relocate_Node (Allocator)));
9346 end if;
9347
9348 Analyze_And_Resolve (Allocator, Acc_Type);
9349 end Make_CPP_Constructor_Call_In_Allocator;
9350
d3f70b35
AC
9351 -----------------------------------
9352 -- Needs_BIP_Finalization_Master --
9353 -----------------------------------
8fb68c56 9354
d3f70b35
AC
9355 function Needs_BIP_Finalization_Master
9356 (Func_Id : Entity_Id) return Boolean
9357 is
df3e68b1
HK
9358 pragma Assert (Is_Build_In_Place_Function (Func_Id));
9359 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
048e5cef 9360 begin
df3e68b1
HK
9361 return
9362 not Restriction_Active (No_Finalization)
9363 and then Needs_Finalization (Func_Typ);
d3f70b35 9364 end Needs_BIP_Finalization_Master;
048e5cef 9365
1bb6e262
AC
9366 --------------------------
9367 -- Needs_BIP_Alloc_Form --
9368 --------------------------
9369
9370 function Needs_BIP_Alloc_Form (Func_Id : Entity_Id) return Boolean is
9371 pragma Assert (Is_Build_In_Place_Function (Func_Id));
9372 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
1bb6e262
AC
9373 begin
9374 return not Is_Constrained (Func_Typ) or else Is_Tagged_Type (Func_Typ);
9375 end Needs_BIP_Alloc_Form;
9376
63585f75
SB
9377 --------------------------------------
9378 -- Needs_Result_Accessibility_Level --
9379 --------------------------------------
9380
9381 function Needs_Result_Accessibility_Level
9382 (Func_Id : Entity_Id) return Boolean
9383 is
9384 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9385
9386 function Has_Unconstrained_Access_Discriminant_Component
ebf494ec
RD
9387 (Comp_Typ : Entity_Id) return Boolean;
9388 -- Returns True if any component of the type has an unconstrained access
9389 -- discriminant.
63585f75
SB
9390
9391 -----------------------------------------------------
9392 -- Has_Unconstrained_Access_Discriminant_Component --
9393 -----------------------------------------------------
9394
9395 function Has_Unconstrained_Access_Discriminant_Component
9396 (Comp_Typ : Entity_Id) return Boolean
9397 is
9398 begin
9399 if not Is_Limited_Type (Comp_Typ) then
9400 return False;
ebf494ec 9401
63585f75
SB
9402 -- Only limited types can have access discriminants with
9403 -- defaults.
9404
9405 elsif Has_Unconstrained_Access_Discriminants (Comp_Typ) then
9406 return True;
9407
9408 elsif Is_Array_Type (Comp_Typ) then
9409 return Has_Unconstrained_Access_Discriminant_Component
9410 (Underlying_Type (Component_Type (Comp_Typ)));
9411
9412 elsif Is_Record_Type (Comp_Typ) then
9413 declare
ebf494ec
RD
9414 Comp : Entity_Id;
9415
63585f75 9416 begin
ebf494ec 9417 Comp := First_Component (Comp_Typ);
63585f75
SB
9418 while Present (Comp) loop
9419 if Has_Unconstrained_Access_Discriminant_Component
9420 (Underlying_Type (Etype (Comp)))
9421 then
9422 return True;
9423 end if;
9424
9425 Next_Component (Comp);
9426 end loop;
9427 end;
9428 end if;
9429
9430 return False;
9431 end Has_Unconstrained_Access_Discriminant_Component;
9432
57a3fca9
AC
9433 Feature_Disabled : constant Boolean := True;
9434 -- Temporary
9435
63585f75
SB
9436 -- Start of processing for Needs_Result_Accessibility_Level
9437
9438 begin
ebf494ec
RD
9439 -- False if completion unavailable (how does this happen???)
9440
9441 if not Present (Func_Typ) then
9442 return False;
63585f75 9443
57a3fca9
AC
9444 elsif Feature_Disabled then
9445 return False;
9446
ebf494ec 9447 -- False if not a function, also handle enum-lit renames case
63585f75 9448
ebf494ec
RD
9449 elsif Func_Typ = Standard_Void_Type
9450 or else Is_Scalar_Type (Func_Typ)
63585f75
SB
9451 then
9452 return False;
63585f75 9453
ebf494ec 9454 -- Handle a corner case, a cross-dialect subp renaming. For example,
30168043
AC
9455 -- an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
9456 -- an Ada 2005 (or earlier) unit references predefined run-time units.
ebf494ec
RD
9457
9458 elsif Present (Alias (Func_Id)) then
9459
63585f75
SB
9460 -- Unimplemented: a cross-dialect subp renaming which does not set
9461 -- the Alias attribute (e.g., a rename of a dereference of an access
54bf19e4 9462 -- to subprogram value). ???
63585f75
SB
9463
9464 return Present (Extra_Accessibility_Of_Result (Alias (Func_Id)));
63585f75 9465
ebf494ec
RD
9466 -- Remaining cases require Ada 2012 mode
9467
9468 elsif Ada_Version < Ada_2012 then
63585f75 9469 return False;
63585f75 9470
ebf494ec 9471 elsif Ekind (Func_Typ) = E_Anonymous_Access_Type
63585f75
SB
9472 or else Is_Tagged_Type (Func_Typ)
9473 then
9474 -- In the case of, say, a null tagged record result type, the need
9475 -- for this extra parameter might not be obvious. This function
9476 -- returns True for all tagged types for compatibility reasons.
9477 -- A function with, say, a tagged null controlling result type might
9478 -- be overridden by a primitive of an extension having an access
9479 -- discriminant and the overrider and overridden must have compatible
9480 -- calling conventions (including implicitly declared parameters).
9481 -- Similarly, values of one access-to-subprogram type might designate
9482 -- both a primitive subprogram of a given type and a function
9483 -- which is, for example, not a primitive subprogram of any type.
9484 -- Again, this requires calling convention compatibility.
9485 -- It might be possible to solve these issues by introducing
9486 -- wrappers, but that is not the approach that was chosen.
9487
9488 return True;
63585f75 9489
ebf494ec 9490 elsif Has_Unconstrained_Access_Discriminants (Func_Typ) then
63585f75 9491 return True;
63585f75 9492
ebf494ec 9493 elsif Has_Unconstrained_Access_Discriminant_Component (Func_Typ) then
63585f75 9494 return True;
63585f75 9495
ebf494ec
RD
9496 -- False for all other cases
9497
9498 else
9499 return False;
9500 end if;
63585f75
SB
9501 end Needs_Result_Accessibility_Level;
9502
70482933 9503end Exp_Ch6;
This page took 5.134488 seconds and 5 git commands to generate.