]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/exp_ch6.adb
Add a testcase for PR middle-end/47383.
[gcc.git] / gcc / ada / exp_ch6.adb
CommitLineData
01aef5ad 1------------------------------------------------------------------------------
70482933
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- E X P _ C H 6 --
6-- --
7-- B o d y --
8-- --
ab027d28 9-- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
70482933
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
23-- --
24------------------------------------------------------------------------------
25
26with Atree; use Atree;
27with Checks; use Checks;
28with Debug; use Debug;
29with Einfo; use Einfo;
30with Errout; use Errout;
31with Elists; use Elists;
f937473f 32with Exp_Atag; use Exp_Atag;
70482933
RK
33with Exp_Ch2; use Exp_Ch2;
34with Exp_Ch3; use Exp_Ch3;
35with Exp_Ch7; use Exp_Ch7;
36with Exp_Ch9; use Exp_Ch9;
70482933
RK
37with Exp_Dbug; use Exp_Dbug;
38with Exp_Disp; use Exp_Disp;
39with Exp_Dist; use Exp_Dist;
40with Exp_Intr; use Exp_Intr;
41with Exp_Pakd; use Exp_Pakd;
42with Exp_Tss; use Exp_Tss;
43with Exp_Util; use Exp_Util;
c986420e 44with Exp_VFpt; use Exp_VFpt;
fbf5a39b 45with Fname; use Fname;
70482933 46with Freeze; use Freeze;
70482933
RK
47with Inline; use Inline;
48with Lib; use Lib;
7888a6ae 49with Namet; use Namet;
70482933
RK
50with Nlists; use Nlists;
51with Nmake; use Nmake;
52with Opt; use Opt;
53with Restrict; use Restrict;
6e937c1c 54with Rident; use Rident;
70482933
RK
55with Rtsfind; use Rtsfind;
56with Sem; use Sem;
a4100e55 57with Sem_Aux; use Sem_Aux;
70482933
RK
58with Sem_Ch6; use Sem_Ch6;
59with Sem_Ch8; use Sem_Ch8;
60with Sem_Ch12; use Sem_Ch12;
61with Sem_Ch13; use Sem_Ch13;
02822a92 62with Sem_Eval; use Sem_Eval;
70482933
RK
63with Sem_Disp; use Sem_Disp;
64with Sem_Dist; use Sem_Dist;
758c442c 65with Sem_Mech; use Sem_Mech;
70482933 66with Sem_Res; use Sem_Res;
d06b3b1d 67with Sem_SCIL; use Sem_SCIL;
70482933
RK
68with Sem_Util; use Sem_Util;
69with Sinfo; use Sinfo;
70with Snames; use Snames;
71with Stand; use Stand;
2b3d67a5 72with Targparm; use Targparm;
70482933
RK
73with Tbuild; use Tbuild;
74with Uintp; use Uintp;
75with Validsw; use Validsw;
76
77package body Exp_Ch6 is
78
79 -----------------------
80 -- Local Subprograms --
81 -----------------------
82
02822a92
RD
83 procedure Add_Access_Actual_To_Build_In_Place_Call
84 (Function_Call : Node_Id;
85 Function_Id : Entity_Id;
f937473f
RD
86 Return_Object : Node_Id;
87 Is_Access : Boolean := False);
02822a92
RD
88 -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
89 -- object name given by Return_Object and add the attribute to the end of
90 -- the actual parameter list associated with the build-in-place function
f937473f
RD
91 -- call denoted by Function_Call. However, if Is_Access is True, then
92 -- Return_Object is already an access expression, in which case it's passed
93 -- along directly to the build-in-place function. Finally, if Return_Object
94 -- is empty, then pass a null literal as the actual.
95
96 procedure Add_Alloc_Form_Actual_To_Build_In_Place_Call
97 (Function_Call : Node_Id;
98 Function_Id : Entity_Id;
99 Alloc_Form : BIP_Allocation_Form := Unspecified;
100 Alloc_Form_Exp : Node_Id := Empty);
101 -- Ada 2005 (AI-318-02): Add an actual indicating the form of allocation,
102 -- if any, to be done by a build-in-place function. If Alloc_Form_Exp is
103 -- present, then use it, otherwise pass a literal corresponding to the
104 -- Alloc_Form parameter (which must not be Unspecified in that case).
105
106 procedure Add_Extra_Actual_To_Call
107 (Subprogram_Call : Node_Id;
108 Extra_Formal : Entity_Id;
109 Extra_Actual : Node_Id);
110 -- Adds Extra_Actual as a named parameter association for the formal
111 -- Extra_Formal in Subprogram_Call.
112
df3e68b1
HK
113 procedure Add_Collection_Actual_To_Build_In_Place_Call
114 (Func_Call : Node_Id;
115 Func_Id : Entity_Id;
116 Ptr_Typ : Entity_Id := Empty);
117 -- Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
118 -- finalization actions, add an actual parameter which is a pointer to the
119 -- finalization collection of the caller. If Ptr_Typ is left Empty, this
120 -- will result in an automatic "null" value for the actual.
f937473f
RD
121
122 procedure Add_Task_Actuals_To_Build_In_Place_Call
123 (Function_Call : Node_Id;
124 Function_Id : Entity_Id;
125 Master_Actual : Node_Id);
126 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
127 -- contains tasks, add two actual parameters: the master, and a pointer to
128 -- the caller's activation chain. Master_Actual is the actual parameter
129 -- expression to pass for the master. In most cases, this is the current
130 -- master (_master). The two exceptions are: If the function call is the
131 -- initialization expression for an allocator, we pass the master of the
6dfc5592
RD
132 -- access type. If the function call is the initialization expression for a
133 -- return object, we pass along the master passed in by the caller. The
134 -- activation chain to pass is always the local one. Note: Master_Actual
dd386db0 135 -- can be Empty, but only if there are no tasks.
02822a92 136
70482933
RK
137 procedure Check_Overriding_Operation (Subp : Entity_Id);
138 -- Subp is a dispatching operation. Check whether it may override an
139 -- inherited private operation, in which case its DT entry is that of
140 -- the hidden operation, not the one it may have received earlier.
141 -- This must be done before emitting the code to set the corresponding
142 -- DT to the address of the subprogram. The actual placement of Subp in
143 -- the proper place in the list of primitive operations is done in
144 -- Declare_Inherited_Private_Subprograms, which also has to deal with
145 -- implicit operations. This duplication is unavoidable for now???
146
147 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
148 -- This procedure is called only if the subprogram body N, whose spec
149 -- has the given entity Spec, contains a parameterless recursive call.
150 -- It attempts to generate runtime code to detect if this a case of
151 -- infinite recursion.
152 --
153 -- The body is scanned to determine dependencies. If the only external
154 -- dependencies are on a small set of scalar variables, then the values
155 -- of these variables are captured on entry to the subprogram, and if
156 -- the values are not changed for the call, we know immediately that
157 -- we have an infinite recursion.
158
159 procedure Expand_Actuals (N : Node_Id; Subp : Entity_Id);
f4d379b8
HK
160 -- For each actual of an in-out or out parameter which is a numeric
161 -- (view) conversion of the form T (A), where A denotes a variable,
162 -- we insert the declaration:
70482933 163 --
f4d379b8 164 -- Temp : T[ := T (A)];
70482933
RK
165 --
166 -- prior to the call. Then we replace the actual with a reference to Temp,
167 -- and append the assignment:
168 --
fbf5a39b 169 -- A := TypeA (Temp);
70482933 170 --
1c6b973a
AC
171 -- after the call. Here TypeA is the actual type of variable A. For out
172 -- parameters, the initial declaration has no expression. If A is not an
173 -- entity name, we generate instead:
70482933 174 --
fbf5a39b 175 -- Var : TypeA renames A;
70482933
RK
176 -- Temp : T := Var; -- omitting expression for out parameter.
177 -- ...
fbf5a39b 178 -- Var := TypeA (Temp);
70482933
RK
179 --
180 -- For other in-out parameters, we emit the required constraint checks
181 -- before and/or after the call.
fbf5a39b 182 --
1c6b973a
AC
183 -- For all parameter modes, actuals that denote components and slices of
184 -- packed arrays are expanded into suitable temporaries.
f44fe430
RD
185 --
186 -- For non-scalar objects that are possibly unaligned, add call by copy
187 -- code (copy in for IN and IN OUT, copy out for OUT and IN OUT).
70482933 188
df3e68b1
HK
189 procedure Expand_Ctrl_Function_Call (N : Node_Id);
190 -- N is a function call which returns a controlled object. Transform the
191 -- call into a temporary which retrieves the returned object from the
192 -- secondary stack using 'reference.
193
70482933
RK
194 procedure Expand_Inlined_Call
195 (N : Node_Id;
196 Subp : Entity_Id;
197 Orig_Subp : Entity_Id);
198 -- If called subprogram can be inlined by the front-end, retrieve the
199 -- analyzed body, replace formals with actuals and expand call in place.
200 -- Generate thunks for actuals that are expressions, and insert the
201 -- corresponding constant declarations before the call. If the original
202 -- call is to a derived operation, the return type is the one of the
203 -- derived operation, but the body is that of the original, so return
204 -- expressions in the body must be converted to the desired type (which
205 -- is simply not noted in the tree without inline expansion).
206
2b3d67a5
AC
207 procedure Expand_Non_Function_Return (N : Node_Id);
208 -- Called by Expand_N_Simple_Return_Statement in case we're returning from
209 -- a procedure body, entry body, accept statement, or extended return
210 -- statement. Note that all non-function returns are simple return
211 -- statements.
212
70482933
RK
213 function Expand_Protected_Object_Reference
214 (N : Node_Id;
02822a92 215 Scop : Entity_Id) return Node_Id;
70482933
RK
216
217 procedure Expand_Protected_Subprogram_Call
218 (N : Node_Id;
219 Subp : Entity_Id;
220 Scop : Entity_Id);
221 -- A call to a protected subprogram within the protected object may appear
222 -- as a regular call. The list of actuals must be expanded to contain a
223 -- reference to the object itself, and the call becomes a call to the
224 -- corresponding protected subprogram.
225
8dbf3473
AC
226 function Is_Null_Procedure (Subp : Entity_Id) return Boolean;
227 -- Predicate to recognize stubbed procedures and null procedures, which
228 -- can be inlined unconditionally in all cases.
229
2b3d67a5
AC
230 procedure Expand_Simple_Function_Return (N : Node_Id);
231 -- Expand simple return from function. In the case where we are returning
232 -- from a function body this is called by Expand_N_Simple_Return_Statement.
233
02822a92
RD
234 ----------------------------------------------
235 -- Add_Access_Actual_To_Build_In_Place_Call --
236 ----------------------------------------------
237
238 procedure Add_Access_Actual_To_Build_In_Place_Call
239 (Function_Call : Node_Id;
240 Function_Id : Entity_Id;
f937473f
RD
241 Return_Object : Node_Id;
242 Is_Access : Boolean := False)
02822a92
RD
243 is
244 Loc : constant Source_Ptr := Sloc (Function_Call);
245 Obj_Address : Node_Id;
f937473f 246 Obj_Acc_Formal : Entity_Id;
02822a92
RD
247
248 begin
f937473f 249 -- Locate the implicit access parameter in the called function
02822a92 250
f937473f 251 Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
02822a92 252
f937473f
RD
253 -- If no return object is provided, then pass null
254
255 if not Present (Return_Object) then
256 Obj_Address := Make_Null (Loc);
7888a6ae 257 Set_Parent (Obj_Address, Function_Call);
02822a92 258
f937473f
RD
259 -- If Return_Object is already an expression of an access type, then use
260 -- it directly, since it must be an access value denoting the return
261 -- object, and couldn't possibly be the return object itself.
262
263 elsif Is_Access then
264 Obj_Address := Return_Object;
7888a6ae 265 Set_Parent (Obj_Address, Function_Call);
02822a92
RD
266
267 -- Apply Unrestricted_Access to caller's return object
268
f937473f
RD
269 else
270 Obj_Address :=
271 Make_Attribute_Reference (Loc,
272 Prefix => Return_Object,
273 Attribute_Name => Name_Unrestricted_Access);
7888a6ae
GD
274
275 Set_Parent (Return_Object, Obj_Address);
276 Set_Parent (Obj_Address, Function_Call);
f937473f 277 end if;
02822a92
RD
278
279 Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
280
281 -- Build the parameter association for the new actual and add it to the
282 -- end of the function's actuals.
283
f937473f
RD
284 Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
285 end Add_Access_Actual_To_Build_In_Place_Call;
286
287 --------------------------------------------------
288 -- Add_Alloc_Form_Actual_To_Build_In_Place_Call --
289 --------------------------------------------------
290
291 procedure Add_Alloc_Form_Actual_To_Build_In_Place_Call
292 (Function_Call : Node_Id;
293 Function_Id : Entity_Id;
294 Alloc_Form : BIP_Allocation_Form := Unspecified;
295 Alloc_Form_Exp : Node_Id := Empty)
296 is
297 Loc : constant Source_Ptr := Sloc (Function_Call);
298 Alloc_Form_Actual : Node_Id;
299 Alloc_Form_Formal : Node_Id;
300
301 begin
7888a6ae
GD
302 -- The allocation form generally doesn't need to be passed in the case
303 -- of a constrained result subtype, since normally the caller performs
304 -- the allocation in that case. However this formal is still needed in
305 -- the case where the function has a tagged result, because generally
306 -- such functions can be called in a dispatching context and such calls
307 -- must be handled like calls to class-wide functions.
308
309 if Is_Constrained (Underlying_Type (Etype (Function_Id)))
310 and then not Is_Tagged_Type (Underlying_Type (Etype (Function_Id)))
311 then
312 return;
313 end if;
314
f937473f
RD
315 -- Locate the implicit allocation form parameter in the called function.
316 -- Maybe it would be better for each implicit formal of a build-in-place
317 -- function to have a flag or a Uint attribute to identify it. ???
318
319 Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
320
321 if Present (Alloc_Form_Exp) then
322 pragma Assert (Alloc_Form = Unspecified);
323
324 Alloc_Form_Actual := Alloc_Form_Exp;
325
326 else
327 pragma Assert (Alloc_Form /= Unspecified);
328
329 Alloc_Form_Actual :=
330 Make_Integer_Literal (Loc,
331 Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
332 end if;
333
334 Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
335
336 -- Build the parameter association for the new actual and add it to the
337 -- end of the function's actuals.
338
339 Add_Extra_Actual_To_Call
340 (Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
341 end Add_Alloc_Form_Actual_To_Build_In_Place_Call;
342
df3e68b1
HK
343 --------------------------------------------------
344 -- Add_Collection_Actual_To_Build_In_Place_Call --
345 --------------------------------------------------
346
347 procedure Add_Collection_Actual_To_Build_In_Place_Call
348 (Func_Call : Node_Id;
349 Func_Id : Entity_Id;
350 Ptr_Typ : Entity_Id := Empty)
351 is
352 begin
353 if not Needs_BIP_Collection (Func_Id) then
354 return;
355 end if;
356
357 declare
358 Formal : constant Entity_Id :=
359 Build_In_Place_Formal (Func_Id, BIP_Collection);
360 Loc : constant Source_Ptr := Sloc (Func_Call);
361
362 Actual : Node_Id;
363 Desig_Typ : Entity_Id;
364
365 begin
366 -- Case where the context does not require an actual collection
367
368 if No (Ptr_Typ) then
369 Actual := Make_Null (Loc);
370
371 else
372 Desig_Typ := Directly_Designated_Type (Ptr_Typ);
373
374 -- Check for a library-level access type whose designated type has
375 -- supressed finalization. Such an access types lack a collection.
376 -- Pass a null actual to the callee in order to signal a missing
377 -- collection.
378
379 if Is_Library_Level_Entity (Ptr_Typ)
380 and then Finalize_Storage_Only (Desig_Typ)
381 then
382 Actual := Make_Null (Loc);
383
384 -- Types in need of finalization actions
385
386 elsif Needs_Finalization (Desig_Typ) then
387
388 -- The general mechanism of creating finalization collections
389 -- for anonymous access types is disabled by default, otherwise
390 -- collections will pop all over the place. Such types use
391 -- context-specific collections.
392
393 if Ekind (Ptr_Typ) = E_Anonymous_Access_Type
394 and then No (Associated_Collection (Ptr_Typ))
395 then
396 Build_Finalization_Collection
397 (Typ => Ptr_Typ,
398 Ins_Node => Associated_Node_For_Itype (Ptr_Typ),
399 Encl_Scope => Scope (Ptr_Typ));
400 end if;
401
402 -- Access-to-controlled types should always have a collection
403
404 pragma Assert (Present (Associated_Collection (Ptr_Typ)));
405
406 Actual :=
407 Make_Attribute_Reference (Loc,
408 Prefix =>
409 New_Reference_To (Associated_Collection (Ptr_Typ), Loc),
410 Attribute_Name => Name_Unrestricted_Access);
411
412 -- Tagged types
413
414 else
415 Actual := Make_Null (Loc);
416 end if;
417 end if;
418
419 Analyze_And_Resolve (Actual, Etype (Formal));
420
421 -- Build the parameter association for the new actual and add it to
422 -- the end of the function's actuals.
423
424 Add_Extra_Actual_To_Call (Func_Call, Formal, Actual);
425 end;
426 end Add_Collection_Actual_To_Build_In_Place_Call;
427
f937473f
RD
428 ------------------------------
429 -- Add_Extra_Actual_To_Call --
430 ------------------------------
431
432 procedure Add_Extra_Actual_To_Call
433 (Subprogram_Call : Node_Id;
434 Extra_Formal : Entity_Id;
435 Extra_Actual : Node_Id)
436 is
437 Loc : constant Source_Ptr := Sloc (Subprogram_Call);
438 Param_Assoc : Node_Id;
439
440 begin
02822a92
RD
441 Param_Assoc :=
442 Make_Parameter_Association (Loc,
f937473f
RD
443 Selector_Name => New_Occurrence_Of (Extra_Formal, Loc),
444 Explicit_Actual_Parameter => Extra_Actual);
02822a92 445
f937473f
RD
446 Set_Parent (Param_Assoc, Subprogram_Call);
447 Set_Parent (Extra_Actual, Param_Assoc);
02822a92 448
f937473f
RD
449 if Present (Parameter_Associations (Subprogram_Call)) then
450 if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
02822a92
RD
451 N_Parameter_Association
452 then
f937473f
RD
453
454 -- Find last named actual, and append
455
456 declare
457 L : Node_Id;
458 begin
459 L := First_Actual (Subprogram_Call);
460 while Present (L) loop
461 if No (Next_Actual (L)) then
462 Set_Next_Named_Actual (Parent (L), Extra_Actual);
463 exit;
464 end if;
465 Next_Actual (L);
466 end loop;
467 end;
468
02822a92 469 else
f937473f 470 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
02822a92
RD
471 end if;
472
f937473f 473 Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
02822a92
RD
474
475 else
f937473f
RD
476 Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
477 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
02822a92 478 end if;
f937473f
RD
479 end Add_Extra_Actual_To_Call;
480
f937473f
RD
481 ---------------------------------------------
482 -- Add_Task_Actuals_To_Build_In_Place_Call --
483 ---------------------------------------------
484
485 procedure Add_Task_Actuals_To_Build_In_Place_Call
486 (Function_Call : Node_Id;
487 Function_Id : Entity_Id;
488 Master_Actual : Node_Id)
f937473f 489 is
44bf8eb0
AC
490 Loc : constant Source_Ptr := Sloc (Function_Call);
491 Actual : Node_Id := Master_Actual;
6dfc5592 492
f937473f
RD
493 begin
494 -- No such extra parameters are needed if there are no tasks
495
496 if not Has_Task (Etype (Function_Id)) then
497 return;
498 end if;
499
44bf8eb0
AC
500 -- Use a dummy _master actual in case of No_Task_Hierarchy
501
502 if Restriction_Active (No_Task_Hierarchy) then
503 Actual := New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc);
504 end if;
505
f937473f
RD
506 -- The master
507
508 declare
509 Master_Formal : Node_Id;
510 begin
511 -- Locate implicit master parameter in the called function
512
513 Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Master);
514
44bf8eb0 515 Analyze_And_Resolve (Actual, Etype (Master_Formal));
f937473f
RD
516
517 -- Build the parameter association for the new actual and add it to
518 -- the end of the function's actuals.
519
520 Add_Extra_Actual_To_Call
44bf8eb0 521 (Function_Call, Master_Formal, Actual);
f937473f
RD
522 end;
523
524 -- The activation chain
525
526 declare
527 Activation_Chain_Actual : Node_Id;
528 Activation_Chain_Formal : Node_Id;
75a64833 529
f937473f
RD
530 begin
531 -- Locate implicit activation chain parameter in the called function
532
533 Activation_Chain_Formal := Build_In_Place_Formal
534 (Function_Id, BIP_Activation_Chain);
535
536 -- Create the actual which is a pointer to the current activation
537 -- chain
538
539 Activation_Chain_Actual :=
540 Make_Attribute_Reference (Loc,
541 Prefix => Make_Identifier (Loc, Name_uChain),
542 Attribute_Name => Name_Unrestricted_Access);
543
544 Analyze_And_Resolve
545 (Activation_Chain_Actual, Etype (Activation_Chain_Formal));
546
547 -- Build the parameter association for the new actual and add it to
548 -- the end of the function's actuals.
549
550 Add_Extra_Actual_To_Call
551 (Function_Call, Activation_Chain_Formal, Activation_Chain_Actual);
552 end;
553 end Add_Task_Actuals_To_Build_In_Place_Call;
554
555 -----------------------
556 -- BIP_Formal_Suffix --
557 -----------------------
558
559 function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
560 begin
561 case Kind is
562 when BIP_Alloc_Form =>
563 return "BIPalloc";
df3e68b1
HK
564 when BIP_Collection =>
565 return "BIPcollection";
f937473f
RD
566 when BIP_Master =>
567 return "BIPmaster";
568 when BIP_Activation_Chain =>
569 return "BIPactivationchain";
570 when BIP_Object_Access =>
571 return "BIPaccess";
572 end case;
573 end BIP_Formal_Suffix;
574
575 ---------------------------
576 -- Build_In_Place_Formal --
577 ---------------------------
578
579 function Build_In_Place_Formal
580 (Func : Entity_Id;
581 Kind : BIP_Formal_Kind) return Entity_Id
582 is
583 Extra_Formal : Entity_Id := Extra_Formals (Func);
584
585 begin
586 -- Maybe it would be better for each implicit formal of a build-in-place
587 -- function to have a flag or a Uint attribute to identify it. ???
588
589 loop
19590d70 590 pragma Assert (Present (Extra_Formal));
f937473f
RD
591 exit when
592 Chars (Extra_Formal) =
593 New_External_Name (Chars (Func), BIP_Formal_Suffix (Kind));
594 Next_Formal_With_Extras (Extra_Formal);
595 end loop;
596
f937473f
RD
597 return Extra_Formal;
598 end Build_In_Place_Formal;
02822a92 599
c9a4817d
RD
600 --------------------------------
601 -- Check_Overriding_Operation --
602 --------------------------------
70482933
RK
603
604 procedure Check_Overriding_Operation (Subp : Entity_Id) is
605 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
606 Op_List : constant Elist_Id := Primitive_Operations (Typ);
607 Op_Elmt : Elmt_Id;
608 Prim_Op : Entity_Id;
609 Par_Op : Entity_Id;
610
611 begin
612 if Is_Derived_Type (Typ)
613 and then not Is_Private_Type (Typ)
614 and then In_Open_Scopes (Scope (Etype (Typ)))
d347f572 615 and then Is_Base_Type (Typ)
70482933 616 then
2f1b20a9
ES
617 -- Subp overrides an inherited private operation if there is an
618 -- inherited operation with a different name than Subp (see
619 -- Derive_Subprogram) whose Alias is a hidden subprogram with the
620 -- same name as Subp.
70482933
RK
621
622 Op_Elmt := First_Elmt (Op_List);
623 while Present (Op_Elmt) loop
624 Prim_Op := Node (Op_Elmt);
625 Par_Op := Alias (Prim_Op);
626
627 if Present (Par_Op)
628 and then not Comes_From_Source (Prim_Op)
629 and then Chars (Prim_Op) /= Chars (Par_Op)
630 and then Chars (Par_Op) = Chars (Subp)
631 and then Is_Hidden (Par_Op)
632 and then Type_Conformant (Prim_Op, Subp)
633 then
634 Set_DT_Position (Subp, DT_Position (Prim_Op));
635 end if;
636
637 Next_Elmt (Op_Elmt);
638 end loop;
639 end if;
640 end Check_Overriding_Operation;
641
642 -------------------------------
643 -- Detect_Infinite_Recursion --
644 -------------------------------
645
646 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
647 Loc : constant Source_Ptr := Sloc (N);
648
fbf5a39b 649 Var_List : constant Elist_Id := New_Elmt_List;
70482933
RK
650 -- List of globals referenced by body of procedure
651
fbf5a39b 652 Call_List : constant Elist_Id := New_Elmt_List;
70482933
RK
653 -- List of recursive calls in body of procedure
654
fbf5a39b 655 Shad_List : constant Elist_Id := New_Elmt_List;
2f1b20a9
ES
656 -- List of entity id's for entities created to capture the value of
657 -- referenced globals on entry to the procedure.
70482933
RK
658
659 Scop : constant Uint := Scope_Depth (Spec);
2f1b20a9
ES
660 -- This is used to record the scope depth of the current procedure, so
661 -- that we can identify global references.
70482933
RK
662
663 Max_Vars : constant := 4;
664 -- Do not test more than four global variables
665
666 Count_Vars : Natural := 0;
667 -- Count variables found so far
668
669 Var : Entity_Id;
670 Elm : Elmt_Id;
671 Ent : Entity_Id;
672 Call : Elmt_Id;
673 Decl : Node_Id;
674 Test : Node_Id;
675 Elm1 : Elmt_Id;
676 Elm2 : Elmt_Id;
677 Last : Node_Id;
678
679 function Process (Nod : Node_Id) return Traverse_Result;
680 -- Function to traverse the subprogram body (using Traverse_Func)
681
682 -------------
683 -- Process --
684 -------------
685
686 function Process (Nod : Node_Id) return Traverse_Result is
687 begin
688 -- Procedure call
689
690 if Nkind (Nod) = N_Procedure_Call_Statement then
691
692 -- Case of one of the detected recursive calls
693
694 if Is_Entity_Name (Name (Nod))
695 and then Has_Recursive_Call (Entity (Name (Nod)))
696 and then Entity (Name (Nod)) = Spec
697 then
698 Append_Elmt (Nod, Call_List);
699 return Skip;
700
701 -- Any other procedure call may have side effects
702
703 else
704 return Abandon;
705 end if;
706
707 -- A call to a pure function can always be ignored
708
709 elsif Nkind (Nod) = N_Function_Call
710 and then Is_Entity_Name (Name (Nod))
711 and then Is_Pure (Entity (Name (Nod)))
712 then
713 return Skip;
714
715 -- Case of an identifier reference
716
717 elsif Nkind (Nod) = N_Identifier then
718 Ent := Entity (Nod);
719
720 -- If no entity, then ignore the reference
721
722 -- Not clear why this can happen. To investigate, remove this
723 -- test and look at the crash that occurs here in 3401-004 ???
724
725 if No (Ent) then
726 return Skip;
727
728 -- Ignore entities with no Scope, again not clear how this
729 -- can happen, to investigate, look at 4108-008 ???
730
731 elsif No (Scope (Ent)) then
732 return Skip;
733
734 -- Ignore the reference if not to a more global object
735
736 elsif Scope_Depth (Scope (Ent)) >= Scop then
737 return Skip;
738
739 -- References to types, exceptions and constants are always OK
740
741 elsif Is_Type (Ent)
742 or else Ekind (Ent) = E_Exception
743 or else Ekind (Ent) = E_Constant
744 then
745 return Skip;
746
747 -- If other than a non-volatile scalar variable, we have some
748 -- kind of global reference (e.g. to a function) that we cannot
749 -- deal with so we forget the attempt.
750
751 elsif Ekind (Ent) /= E_Variable
752 or else not Is_Scalar_Type (Etype (Ent))
fbf5a39b 753 or else Treat_As_Volatile (Ent)
70482933
RK
754 then
755 return Abandon;
756
757 -- Otherwise we have a reference to a global scalar
758
759 else
760 -- Loop through global entities already detected
761
762 Elm := First_Elmt (Var_List);
763 loop
764 -- If not detected before, record this new global reference
765
766 if No (Elm) then
767 Count_Vars := Count_Vars + 1;
768
769 if Count_Vars <= Max_Vars then
770 Append_Elmt (Entity (Nod), Var_List);
771 else
772 return Abandon;
773 end if;
774
775 exit;
776
777 -- If recorded before, ignore
778
779 elsif Node (Elm) = Entity (Nod) then
780 return Skip;
781
782 -- Otherwise keep looking
783
784 else
785 Next_Elmt (Elm);
786 end if;
787 end loop;
788
789 return Skip;
790 end if;
791
792 -- For all other node kinds, recursively visit syntactic children
793
794 else
795 return OK;
796 end if;
797 end Process;
798
02822a92 799 function Traverse_Body is new Traverse_Func (Process);
70482933
RK
800
801 -- Start of processing for Detect_Infinite_Recursion
802
803 begin
2f1b20a9
ES
804 -- Do not attempt detection in No_Implicit_Conditional mode, since we
805 -- won't be able to generate the code to handle the recursion in any
806 -- case.
70482933 807
6e937c1c 808 if Restriction_Active (No_Implicit_Conditionals) then
70482933
RK
809 return;
810 end if;
811
812 -- Otherwise do traversal and quit if we get abandon signal
813
814 if Traverse_Body (N) = Abandon then
815 return;
816
2f1b20a9
ES
817 -- We must have a call, since Has_Recursive_Call was set. If not just
818 -- ignore (this is only an error check, so if we have a funny situation,
819 -- due to bugs or errors, we do not want to bomb!)
70482933
RK
820
821 elsif Is_Empty_Elmt_List (Call_List) then
822 return;
823 end if;
824
825 -- Here is the case where we detect recursion at compile time
826
2f1b20a9
ES
827 -- Push our current scope for analyzing the declarations and code that
828 -- we will insert for the checking.
70482933 829
7888a6ae 830 Push_Scope (Spec);
70482933 831
2f1b20a9
ES
832 -- This loop builds temporary variables for each of the referenced
833 -- globals, so that at the end of the loop the list Shad_List contains
834 -- these temporaries in one-to-one correspondence with the elements in
835 -- Var_List.
70482933
RK
836
837 Last := Empty;
838 Elm := First_Elmt (Var_List);
839 while Present (Elm) loop
840 Var := Node (Elm);
c12beea0 841 Ent := Make_Temporary (Loc, 'S');
70482933
RK
842 Append_Elmt (Ent, Shad_List);
843
2f1b20a9
ES
844 -- Insert a declaration for this temporary at the start of the
845 -- declarations for the procedure. The temporaries are declared as
846 -- constant objects initialized to the current values of the
847 -- corresponding temporaries.
70482933
RK
848
849 Decl :=
850 Make_Object_Declaration (Loc,
851 Defining_Identifier => Ent,
852 Object_Definition => New_Occurrence_Of (Etype (Var), Loc),
853 Constant_Present => True,
854 Expression => New_Occurrence_Of (Var, Loc));
855
856 if No (Last) then
857 Prepend (Decl, Declarations (N));
858 else
859 Insert_After (Last, Decl);
860 end if;
861
862 Last := Decl;
863 Analyze (Decl);
864 Next_Elmt (Elm);
865 end loop;
866
867 -- Loop through calls
868
869 Call := First_Elmt (Call_List);
870 while Present (Call) loop
871
872 -- Build a predicate expression of the form
873
874 -- True
875 -- and then global1 = temp1
876 -- and then global2 = temp2
877 -- ...
878
879 -- This predicate determines if any of the global values
880 -- referenced by the procedure have changed since the
881 -- current call, if not an infinite recursion is assured.
882
883 Test := New_Occurrence_Of (Standard_True, Loc);
884
885 Elm1 := First_Elmt (Var_List);
886 Elm2 := First_Elmt (Shad_List);
887 while Present (Elm1) loop
888 Test :=
889 Make_And_Then (Loc,
890 Left_Opnd => Test,
891 Right_Opnd =>
892 Make_Op_Eq (Loc,
893 Left_Opnd => New_Occurrence_Of (Node (Elm1), Loc),
894 Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
895
896 Next_Elmt (Elm1);
897 Next_Elmt (Elm2);
898 end loop;
899
900 -- Now we replace the call with the sequence
901
902 -- if no-changes (see above) then
903 -- raise Storage_Error;
904 -- else
905 -- original-call
906 -- end if;
907
908 Rewrite (Node (Call),
909 Make_If_Statement (Loc,
910 Condition => Test,
911 Then_Statements => New_List (
07fc65c4
GB
912 Make_Raise_Storage_Error (Loc,
913 Reason => SE_Infinite_Recursion)),
70482933
RK
914
915 Else_Statements => New_List (
916 Relocate_Node (Node (Call)))));
917
918 Analyze (Node (Call));
919
920 Next_Elmt (Call);
921 end loop;
922
923 -- Remove temporary scope stack entry used for analysis
924
925 Pop_Scope;
926 end Detect_Infinite_Recursion;
927
928 --------------------
929 -- Expand_Actuals --
930 --------------------
931
932 procedure Expand_Actuals (N : Node_Id; Subp : Entity_Id) is
933 Loc : constant Source_Ptr := Sloc (N);
934 Actual : Node_Id;
935 Formal : Entity_Id;
936 N_Node : Node_Id;
937 Post_Call : List_Id;
938 E_Formal : Entity_Id;
939
940 procedure Add_Call_By_Copy_Code;
fbf5a39b
AC
941 -- For cases where the parameter must be passed by copy, this routine
942 -- generates a temporary variable into which the actual is copied and
943 -- then passes this as the parameter. For an OUT or IN OUT parameter,
944 -- an assignment is also generated to copy the result back. The call
945 -- also takes care of any constraint checks required for the type
946 -- conversion case (on both the way in and the way out).
70482933 947
f44fe430
RD
948 procedure Add_Simple_Call_By_Copy_Code;
949 -- This is similar to the above, but is used in cases where we know
950 -- that all that is needed is to simply create a temporary and copy
951 -- the value in and out of the temporary.
70482933
RK
952
953 procedure Check_Fortran_Logical;
954 -- A value of type Logical that is passed through a formal parameter
955 -- must be normalized because .TRUE. usually does not have the same
956 -- representation as True. We assume that .FALSE. = False = 0.
957 -- What about functions that return a logical type ???
958
758c442c
GD
959 function Is_Legal_Copy return Boolean;
960 -- Check that an actual can be copied before generating the temporary
961 -- to be used in the call. If the actual is of a by_reference type then
962 -- the program is illegal (this can only happen in the presence of
963 -- rep. clauses that force an incorrect alignment). If the formal is
964 -- a by_reference parameter imposed by a DEC pragma, emit a warning to
965 -- the effect that this might lead to unaligned arguments.
966
70482933
RK
967 function Make_Var (Actual : Node_Id) return Entity_Id;
968 -- Returns an entity that refers to the given actual parameter,
969 -- Actual (not including any type conversion). If Actual is an
970 -- entity name, then this entity is returned unchanged, otherwise
971 -- a renaming is created to provide an entity for the actual.
972
973 procedure Reset_Packed_Prefix;
974 -- The expansion of a packed array component reference is delayed in
975 -- the context of a call. Now we need to complete the expansion, so we
976 -- unmark the analyzed bits in all prefixes.
977
978 ---------------------------
979 -- Add_Call_By_Copy_Code --
980 ---------------------------
981
982 procedure Add_Call_By_Copy_Code is
cc335f43
AC
983 Expr : Node_Id;
984 Init : Node_Id;
985 Temp : Entity_Id;
f44fe430 986 Indic : Node_Id;
cc335f43 987 Var : Entity_Id;
0da2c8ac 988 F_Typ : constant Entity_Id := Etype (Formal);
cc335f43
AC
989 V_Typ : Entity_Id;
990 Crep : Boolean;
70482933
RK
991
992 begin
758c442c
GD
993 if not Is_Legal_Copy then
994 return;
995 end if;
996
b086849e 997 Temp := Make_Temporary (Loc, 'T', Actual);
70482933 998
f44fe430
RD
999 -- Use formal type for temp, unless formal type is an unconstrained
1000 -- array, in which case we don't have to worry about bounds checks,
758c442c 1001 -- and we use the actual type, since that has appropriate bounds.
f44fe430
RD
1002
1003 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1004 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1005 else
1006 Indic := New_Occurrence_Of (Etype (Formal), Loc);
1007 end if;
1008
70482933
RK
1009 if Nkind (Actual) = N_Type_Conversion then
1010 V_Typ := Etype (Expression (Actual));
19f0526a
AC
1011
1012 -- If the formal is an (in-)out parameter, capture the name
1013 -- of the variable in order to build the post-call assignment.
81a5b587
AC
1014
1015 Var := Make_Var (Expression (Actual));
19f0526a 1016
08aa9a4a 1017 Crep := not Same_Representation
0da2c8ac 1018 (F_Typ, Etype (Expression (Actual)));
08aa9a4a 1019
70482933
RK
1020 else
1021 V_Typ := Etype (Actual);
1022 Var := Make_Var (Actual);
1023 Crep := False;
1024 end if;
1025
1026 -- Setup initialization for case of in out parameter, or an out
1027 -- parameter where the formal is an unconstrained array (in the
1028 -- latter case, we have to pass in an object with bounds).
1029
cc335f43
AC
1030 -- If this is an out parameter, the initial copy is wasteful, so as
1031 -- an optimization for the one-dimensional case we extract the
1032 -- bounds of the actual and build an uninitialized temporary of the
1033 -- right size.
1034
70482933 1035 if Ekind (Formal) = E_In_Out_Parameter
0da2c8ac 1036 or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
70482933
RK
1037 then
1038 if Nkind (Actual) = N_Type_Conversion then
1039 if Conversion_OK (Actual) then
0da2c8ac 1040 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
70482933 1041 else
0da2c8ac 1042 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
70482933 1043 end if;
cc335f43
AC
1044
1045 elsif Ekind (Formal) = E_Out_Parameter
0da2c8ac
AC
1046 and then Is_Array_Type (F_Typ)
1047 and then Number_Dimensions (F_Typ) = 1
1048 and then not Has_Non_Null_Base_Init_Proc (F_Typ)
cc335f43
AC
1049 then
1050 -- Actual is a one-dimensional array or slice, and the type
1051 -- requires no initialization. Create a temporary of the
f44fe430 1052 -- right size, but do not copy actual into it (optimization).
cc335f43
AC
1053
1054 Init := Empty;
1055 Indic :=
1056 Make_Subtype_Indication (Loc,
1057 Subtype_Mark =>
0da2c8ac 1058 New_Occurrence_Of (F_Typ, Loc),
cc335f43
AC
1059 Constraint =>
1060 Make_Index_Or_Discriminant_Constraint (Loc,
1061 Constraints => New_List (
1062 Make_Range (Loc,
1063 Low_Bound =>
1064 Make_Attribute_Reference (Loc,
1065 Prefix => New_Occurrence_Of (Var, Loc),
70f91180 1066 Attribute_Name => Name_First),
cc335f43
AC
1067 High_Bound =>
1068 Make_Attribute_Reference (Loc,
1069 Prefix => New_Occurrence_Of (Var, Loc),
1070 Attribute_Name => Name_Last)))));
1071
70482933
RK
1072 else
1073 Init := New_Occurrence_Of (Var, Loc);
1074 end if;
1075
1076 -- An initialization is created for packed conversions as
1077 -- actuals for out parameters to enable Make_Object_Declaration
1078 -- to determine the proper subtype for N_Node. Note that this
1079 -- is wasteful because the extra copying on the call side is
1080 -- not required for such out parameters. ???
1081
1082 elsif Ekind (Formal) = E_Out_Parameter
1083 and then Nkind (Actual) = N_Type_Conversion
0da2c8ac 1084 and then (Is_Bit_Packed_Array (F_Typ)
70482933
RK
1085 or else
1086 Is_Bit_Packed_Array (Etype (Expression (Actual))))
1087 then
1088 if Conversion_OK (Actual) then
f44fe430 1089 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
70482933 1090 else
f44fe430 1091 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
70482933 1092 end if;
2e071734
AC
1093
1094 elsif Ekind (Formal) = E_In_Parameter then
02822a92
RD
1095
1096 -- Handle the case in which the actual is a type conversion
1097
1098 if Nkind (Actual) = N_Type_Conversion then
1099 if Conversion_OK (Actual) then
1100 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1101 else
1102 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1103 end if;
1104 else
1105 Init := New_Occurrence_Of (Var, Loc);
1106 end if;
2e071734 1107
70482933
RK
1108 else
1109 Init := Empty;
1110 end if;
1111
1112 N_Node :=
1113 Make_Object_Declaration (Loc,
1114 Defining_Identifier => Temp,
cc335f43 1115 Object_Definition => Indic,
f44fe430 1116 Expression => Init);
70482933
RK
1117 Set_Assignment_OK (N_Node);
1118 Insert_Action (N, N_Node);
1119
1120 -- Now, normally the deal here is that we use the defining
1121 -- identifier created by that object declaration. There is
1122 -- one exception to this. In the change of representation case
1123 -- the above declaration will end up looking like:
1124
1125 -- temp : type := identifier;
1126
1127 -- And in this case we might as well use the identifier directly
1128 -- and eliminate the temporary. Note that the analysis of the
1129 -- declaration was not a waste of time in that case, since it is
1130 -- what generated the necessary change of representation code. If
1131 -- the change of representation introduced additional code, as in
1132 -- a fixed-integer conversion, the expression is not an identifier
1133 -- and must be kept.
1134
1135 if Crep
1136 and then Present (Expression (N_Node))
1137 and then Is_Entity_Name (Expression (N_Node))
1138 then
1139 Temp := Entity (Expression (N_Node));
1140 Rewrite (N_Node, Make_Null_Statement (Loc));
1141 end if;
1142
fbf5a39b 1143 -- For IN parameter, all we do is to replace the actual
70482933 1144
fbf5a39b
AC
1145 if Ekind (Formal) = E_In_Parameter then
1146 Rewrite (Actual, New_Reference_To (Temp, Loc));
1147 Analyze (Actual);
1148
1149 -- Processing for OUT or IN OUT parameter
1150
1151 else
c8ef728f
ES
1152 -- Kill current value indications for the temporary variable we
1153 -- created, since we just passed it as an OUT parameter.
1154
1155 Kill_Current_Values (Temp);
75ba322d 1156 Set_Is_Known_Valid (Temp, False);
c8ef728f 1157
fbf5a39b
AC
1158 -- If type conversion, use reverse conversion on exit
1159
1160 if Nkind (Actual) = N_Type_Conversion then
1161 if Conversion_OK (Actual) then
1162 Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1163 else
1164 Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1165 end if;
70482933 1166 else
fbf5a39b 1167 Expr := New_Occurrence_Of (Temp, Loc);
70482933 1168 end if;
70482933 1169
fbf5a39b
AC
1170 Rewrite (Actual, New_Reference_To (Temp, Loc));
1171 Analyze (Actual);
70482933 1172
d766cee3
RD
1173 -- If the actual is a conversion of a packed reference, it may
1174 -- already have been expanded by Remove_Side_Effects, and the
1175 -- resulting variable is a temporary which does not designate
1176 -- the proper out-parameter, which may not be addressable. In
1177 -- that case, generate an assignment to the original expression
b0159fbe 1178 -- (before expansion of the packed reference) so that the proper
d766cee3 1179 -- expansion of assignment to a packed component can take place.
70482933 1180
d766cee3
RD
1181 declare
1182 Obj : Node_Id;
1183 Lhs : Node_Id;
1184
1185 begin
1186 if Is_Renaming_Of_Object (Var)
1187 and then Nkind (Renamed_Object (Var)) = N_Selected_Component
1188 and then Is_Entity_Name (Prefix (Renamed_Object (Var)))
1189 and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
1190 = N_Indexed_Component
1191 and then
1192 Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
1193 then
1194 Obj := Renamed_Object (Var);
1195 Lhs :=
1196 Make_Selected_Component (Loc,
1197 Prefix =>
1198 New_Copy_Tree (Original_Node (Prefix (Obj))),
1199 Selector_Name => New_Copy (Selector_Name (Obj)));
1200 Reset_Analyzed_Flags (Lhs);
1201
1202 else
1203 Lhs := New_Occurrence_Of (Var, Loc);
1204 end if;
1205
1206 Set_Assignment_OK (Lhs);
1207
1208 Append_To (Post_Call,
1209 Make_Assignment_Statement (Loc,
1210 Name => Lhs,
1211 Expression => Expr));
1212 end;
fbf5a39b 1213 end if;
70482933
RK
1214 end Add_Call_By_Copy_Code;
1215
1216 ----------------------------------
f44fe430 1217 -- Add_Simple_Call_By_Copy_Code --
70482933
RK
1218 ----------------------------------
1219
f44fe430 1220 procedure Add_Simple_Call_By_Copy_Code is
70482933 1221 Temp : Entity_Id;
758c442c 1222 Decl : Node_Id;
70482933
RK
1223 Incod : Node_Id;
1224 Outcod : Node_Id;
1225 Lhs : Node_Id;
1226 Rhs : Node_Id;
f44fe430
RD
1227 Indic : Node_Id;
1228 F_Typ : constant Entity_Id := Etype (Formal);
70482933
RK
1229
1230 begin
758c442c
GD
1231 if not Is_Legal_Copy then
1232 return;
1233 end if;
1234
f44fe430
RD
1235 -- Use formal type for temp, unless formal type is an unconstrained
1236 -- array, in which case we don't have to worry about bounds checks,
758c442c 1237 -- and we use the actual type, since that has appropriate bounds.
f44fe430
RD
1238
1239 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1240 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1241 else
1242 Indic := New_Occurrence_Of (Etype (Formal), Loc);
1243 end if;
70482933
RK
1244
1245 -- Prepare to generate code
1246
f44fe430
RD
1247 Reset_Packed_Prefix;
1248
b086849e 1249 Temp := Make_Temporary (Loc, 'T', Actual);
70482933
RK
1250 Incod := Relocate_Node (Actual);
1251 Outcod := New_Copy_Tree (Incod);
1252
1253 -- Generate declaration of temporary variable, initializing it
c73ae90f 1254 -- with the input parameter unless we have an OUT formal or
758c442c 1255 -- this is an initialization call.
70482933 1256
c73ae90f
GD
1257 -- If the formal is an out parameter with discriminants, the
1258 -- discriminants must be captured even if the rest of the object
1259 -- is in principle uninitialized, because the discriminants may
1260 -- be read by the called subprogram.
1261
70482933
RK
1262 if Ekind (Formal) = E_Out_Parameter then
1263 Incod := Empty;
758c442c 1264
c73ae90f
GD
1265 if Has_Discriminants (Etype (Formal)) then
1266 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1267 end if;
1268
758c442c 1269 elsif Inside_Init_Proc then
c73ae90f
GD
1270
1271 -- Could use a comment here to match comment below ???
1272
758c442c
GD
1273 if Nkind (Actual) /= N_Selected_Component
1274 or else
1275 not Has_Discriminant_Dependent_Constraint
1276 (Entity (Selector_Name (Actual)))
1277 then
1278 Incod := Empty;
1279
c73ae90f
GD
1280 -- Otherwise, keep the component in order to generate the proper
1281 -- actual subtype, that depends on enclosing discriminants.
758c442c 1282
c73ae90f 1283 else
758c442c
GD
1284 null;
1285 end if;
70482933
RK
1286 end if;
1287
758c442c 1288 Decl :=
70482933
RK
1289 Make_Object_Declaration (Loc,
1290 Defining_Identifier => Temp,
f44fe430 1291 Object_Definition => Indic,
758c442c
GD
1292 Expression => Incod);
1293
1294 if Inside_Init_Proc
1295 and then No (Incod)
1296 then
1297 -- If the call is to initialize a component of a composite type,
1298 -- and the component does not depend on discriminants, use the
1299 -- actual type of the component. This is required in case the
1300 -- component is constrained, because in general the formal of the
1301 -- initialization procedure will be unconstrained. Note that if
1302 -- the component being initialized is constrained by an enclosing
1303 -- discriminant, the presence of the initialization in the
1304 -- declaration will generate an expression for the actual subtype.
1305
1306 Set_No_Initialization (Decl);
1307 Set_Object_Definition (Decl,
1308 New_Occurrence_Of (Etype (Actual), Loc));
1309 end if;
1310
1311 Insert_Action (N, Decl);
70482933
RK
1312
1313 -- The actual is simply a reference to the temporary
1314
1315 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1316
1317 -- Generate copy out if OUT or IN OUT parameter
1318
1319 if Ekind (Formal) /= E_In_Parameter then
1320 Lhs := Outcod;
1321 Rhs := New_Occurrence_Of (Temp, Loc);
1322
1323 -- Deal with conversion
1324
1325 if Nkind (Lhs) = N_Type_Conversion then
1326 Lhs := Expression (Lhs);
1327 Rhs := Convert_To (Etype (Actual), Rhs);
1328 end if;
1329
1330 Append_To (Post_Call,
1331 Make_Assignment_Statement (Loc,
1332 Name => Lhs,
1333 Expression => Rhs));
f44fe430 1334 Set_Assignment_OK (Name (Last (Post_Call)));
70482933 1335 end if;
f44fe430 1336 end Add_Simple_Call_By_Copy_Code;
70482933
RK
1337
1338 ---------------------------
1339 -- Check_Fortran_Logical --
1340 ---------------------------
1341
1342 procedure Check_Fortran_Logical is
fbf5a39b 1343 Logical : constant Entity_Id := Etype (Formal);
70482933
RK
1344 Var : Entity_Id;
1345
1346 -- Note: this is very incomplete, e.g. it does not handle arrays
1347 -- of logical values. This is really not the right approach at all???)
1348
1349 begin
1350 if Convention (Subp) = Convention_Fortran
1351 and then Root_Type (Etype (Formal)) = Standard_Boolean
1352 and then Ekind (Formal) /= E_In_Parameter
1353 then
1354 Var := Make_Var (Actual);
1355 Append_To (Post_Call,
1356 Make_Assignment_Statement (Loc,
1357 Name => New_Occurrence_Of (Var, Loc),
1358 Expression =>
1359 Unchecked_Convert_To (
1360 Logical,
1361 Make_Op_Ne (Loc,
1362 Left_Opnd => New_Occurrence_Of (Var, Loc),
1363 Right_Opnd =>
1364 Unchecked_Convert_To (
1365 Logical,
1366 New_Occurrence_Of (Standard_False, Loc))))));
1367 end if;
1368 end Check_Fortran_Logical;
1369
758c442c
GD
1370 -------------------
1371 -- Is_Legal_Copy --
1372 -------------------
1373
1374 function Is_Legal_Copy return Boolean is
1375 begin
1376 -- An attempt to copy a value of such a type can only occur if
1377 -- representation clauses give the actual a misaligned address.
1378
1379 if Is_By_Reference_Type (Etype (Formal)) then
1380 Error_Msg_N
1381 ("misaligned actual cannot be passed by reference", Actual);
1382 return False;
1383
1384 -- For users of Starlet, we assume that the specification of by-
7888a6ae 1385 -- reference mechanism is mandatory. This may lead to unaligned
758c442c
GD
1386 -- objects but at least for DEC legacy code it is known to work.
1387 -- The warning will alert users of this code that a problem may
1388 -- be lurking.
1389
1390 elsif Mechanism (Formal) = By_Reference
1391 and then Is_Valued_Procedure (Scope (Formal))
1392 then
1393 Error_Msg_N
1394 ("by_reference actual may be misaligned?", Actual);
1395 return False;
1396
1397 else
1398 return True;
1399 end if;
1400 end Is_Legal_Copy;
1401
70482933
RK
1402 --------------
1403 -- Make_Var --
1404 --------------
1405
1406 function Make_Var (Actual : Node_Id) return Entity_Id is
1407 Var : Entity_Id;
1408
1409 begin
1410 if Is_Entity_Name (Actual) then
1411 return Entity (Actual);
1412
1413 else
b086849e 1414 Var := Make_Temporary (Loc, 'T', Actual);
70482933
RK
1415
1416 N_Node :=
1417 Make_Object_Renaming_Declaration (Loc,
1418 Defining_Identifier => Var,
1419 Subtype_Mark =>
1420 New_Occurrence_Of (Etype (Actual), Loc),
1421 Name => Relocate_Node (Actual));
1422
1423 Insert_Action (N, N_Node);
1424 return Var;
1425 end if;
1426 end Make_Var;
1427
1428 -------------------------
1429 -- Reset_Packed_Prefix --
1430 -------------------------
1431
1432 procedure Reset_Packed_Prefix is
1433 Pfx : Node_Id := Actual;
70482933
RK
1434 begin
1435 loop
1436 Set_Analyzed (Pfx, False);
ac4d6407
RD
1437 exit when
1438 not Nkind_In (Pfx, N_Selected_Component, N_Indexed_Component);
70482933
RK
1439 Pfx := Prefix (Pfx);
1440 end loop;
1441 end Reset_Packed_Prefix;
1442
1443 -- Start of processing for Expand_Actuals
1444
1445 begin
70482933
RK
1446 Post_Call := New_List;
1447
2f1b20a9
ES
1448 Formal := First_Formal (Subp);
1449 Actual := First_Actual (N);
70482933
RK
1450 while Present (Formal) loop
1451 E_Formal := Etype (Formal);
1452
1453 if Is_Scalar_Type (E_Formal)
1454 or else Nkind (Actual) = N_Slice
1455 then
1456 Check_Fortran_Logical;
1457
1458 -- RM 6.4.1 (11)
1459
1460 elsif Ekind (Formal) /= E_Out_Parameter then
1461
1462 -- The unusual case of the current instance of a protected type
1463 -- requires special handling. This can only occur in the context
1464 -- of a call within the body of a protected operation.
1465
1466 if Is_Entity_Name (Actual)
1467 and then Ekind (Entity (Actual)) = E_Protected_Type
1468 and then In_Open_Scopes (Entity (Actual))
1469 then
1470 if Scope (Subp) /= Entity (Actual) then
1471 Error_Msg_N ("operation outside protected type may not "
1472 & "call back its protected operations?", Actual);
1473 end if;
1474
1475 Rewrite (Actual,
1476 Expand_Protected_Object_Reference (N, Entity (Actual)));
1477 end if;
1478
02822a92
RD
1479 -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
1480 -- build-in-place function, then a temporary return object needs
1481 -- to be created and access to it must be passed to the function.
f937473f
RD
1482 -- Currently we limit such functions to those with inherently
1483 -- limited result subtypes, but eventually we plan to expand the
1484 -- functions that are treated as build-in-place to include other
1485 -- composite result types.
02822a92 1486
95eb8b69 1487 if Is_Build_In_Place_Function_Call (Actual) then
02822a92
RD
1488 Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
1489 end if;
1490
70482933
RK
1491 Apply_Constraint_Check (Actual, E_Formal);
1492
1493 -- Out parameter case. No constraint checks on access type
1494 -- RM 6.4.1 (13)
1495
1496 elsif Is_Access_Type (E_Formal) then
1497 null;
1498
1499 -- RM 6.4.1 (14)
1500
1501 elsif Has_Discriminants (Base_Type (E_Formal))
1502 or else Has_Non_Null_Base_Init_Proc (E_Formal)
1503 then
1504 Apply_Constraint_Check (Actual, E_Formal);
1505
1506 -- RM 6.4.1 (15)
1507
1508 else
1509 Apply_Constraint_Check (Actual, Base_Type (E_Formal));
1510 end if;
1511
1512 -- Processing for IN-OUT and OUT parameters
1513
1514 if Ekind (Formal) /= E_In_Parameter then
1515
1516 -- For type conversions of arrays, apply length/range checks
1517
1518 if Is_Array_Type (E_Formal)
1519 and then Nkind (Actual) = N_Type_Conversion
1520 then
1521 if Is_Constrained (E_Formal) then
1522 Apply_Length_Check (Expression (Actual), E_Formal);
1523 else
1524 Apply_Range_Check (Expression (Actual), E_Formal);
1525 end if;
1526 end if;
1527
1528 -- If argument is a type conversion for a type that is passed
1529 -- by copy, then we must pass the parameter by copy.
1530
1531 if Nkind (Actual) = N_Type_Conversion
1532 and then
1533 (Is_Numeric_Type (E_Formal)
1534 or else Is_Access_Type (E_Formal)
1535 or else Is_Enumeration_Type (E_Formal)
1536 or else Is_Bit_Packed_Array (Etype (Formal))
1537 or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
1538
1539 -- Also pass by copy if change of representation
1540
1541 or else not Same_Representation
1542 (Etype (Formal),
1543 Etype (Expression (Actual))))
1544 then
1545 Add_Call_By_Copy_Code;
1546
1547 -- References to components of bit packed arrays are expanded
1548 -- at this point, rather than at the point of analysis of the
1549 -- actuals, to handle the expansion of the assignment to
1550 -- [in] out parameters.
1551
1552 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
f44fe430
RD
1553 Add_Simple_Call_By_Copy_Code;
1554
02822a92
RD
1555 -- If a non-scalar actual is possibly bit-aligned, we need a copy
1556 -- because the back-end cannot cope with such objects. In other
1557 -- cases where alignment forces a copy, the back-end generates
1558 -- it properly. It should not be generated unconditionally in the
1559 -- front-end because it does not know precisely the alignment
1560 -- requirements of the target, and makes too conservative an
1561 -- estimate, leading to superfluous copies or spurious errors
1562 -- on by-reference parameters.
f44fe430 1563
02822a92
RD
1564 elsif Nkind (Actual) = N_Selected_Component
1565 and then
1566 Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
f44fe430
RD
1567 and then not Represented_As_Scalar (Etype (Formal))
1568 then
1569 Add_Simple_Call_By_Copy_Code;
70482933
RK
1570
1571 -- References to slices of bit packed arrays are expanded
1572
1573 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
1574 Add_Call_By_Copy_Code;
1575
fbf5a39b
AC
1576 -- References to possibly unaligned slices of arrays are expanded
1577
1578 elsif Is_Possibly_Unaligned_Slice (Actual) then
1579 Add_Call_By_Copy_Code;
1580
7888a6ae 1581 -- Deal with access types where the actual subtype and the
70482933
RK
1582 -- formal subtype are not the same, requiring a check.
1583
638e383e 1584 -- It is necessary to exclude tagged types because of "downward
70f91180 1585 -- conversion" errors.
70482933
RK
1586
1587 elsif Is_Access_Type (E_Formal)
1588 and then not Same_Type (E_Formal, Etype (Actual))
1589 and then not Is_Tagged_Type (Designated_Type (E_Formal))
1590 then
1591 Add_Call_By_Copy_Code;
1592
faf3cf91
ES
1593 -- If the actual is not a scalar and is marked for volatile
1594 -- treatment, whereas the formal is not volatile, then pass
1595 -- by copy unless it is a by-reference type.
1596
0386aad1
AC
1597 -- Note: we use Is_Volatile here rather than Treat_As_Volatile,
1598 -- because this is the enforcement of a language rule that applies
1599 -- only to "real" volatile variables, not e.g. to the address
1600 -- clause overlay case.
1601
70482933 1602 elsif Is_Entity_Name (Actual)
0386aad1 1603 and then Is_Volatile (Entity (Actual))
faf3cf91 1604 and then not Is_By_Reference_Type (Etype (Actual))
70482933 1605 and then not Is_Scalar_Type (Etype (Entity (Actual)))
0386aad1 1606 and then not Is_Volatile (E_Formal)
70482933
RK
1607 then
1608 Add_Call_By_Copy_Code;
1609
1610 elsif Nkind (Actual) = N_Indexed_Component
1611 and then Is_Entity_Name (Prefix (Actual))
1612 and then Has_Volatile_Components (Entity (Prefix (Actual)))
1613 then
1614 Add_Call_By_Copy_Code;
d79e621a
GD
1615
1616 -- Add call-by-copy code for the case of scalar out parameters
1617 -- when it is not known at compile time that the subtype of the
c2369146
AC
1618 -- formal is a subrange of the subtype of the actual (or vice
1619 -- versa for in out parameters), in order to get range checks
1620 -- on such actuals. (Maybe this case should be handled earlier
1621 -- in the if statement???)
d79e621a
GD
1622
1623 elsif Is_Scalar_Type (E_Formal)
c2369146
AC
1624 and then
1625 (not In_Subrange_Of (E_Formal, Etype (Actual))
1626 or else
1627 (Ekind (Formal) = E_In_Out_Parameter
1628 and then not In_Subrange_Of (Etype (Actual), E_Formal)))
d79e621a
GD
1629 then
1630 -- Perhaps the setting back to False should be done within
1631 -- Add_Call_By_Copy_Code, since it could get set on other
1632 -- cases occurring above???
1633
1634 if Do_Range_Check (Actual) then
1635 Set_Do_Range_Check (Actual, False);
1636 end if;
1637
1638 Add_Call_By_Copy_Code;
70482933
RK
1639 end if;
1640
fbf5a39b 1641 -- Processing for IN parameters
70482933
RK
1642
1643 else
fbf5a39b
AC
1644 -- For IN parameters is in the packed array case, we expand an
1645 -- indexed component (the circuit in Exp_Ch4 deliberately left
1646 -- indexed components appearing as actuals untouched, so that
1647 -- the special processing above for the OUT and IN OUT cases
1648 -- could be performed. We could make the test in Exp_Ch4 more
1649 -- complex and have it detect the parameter mode, but it is
f44fe430 1650 -- easier simply to handle all cases here.)
fbf5a39b 1651
70482933
RK
1652 if Nkind (Actual) = N_Indexed_Component
1653 and then Is_Packed (Etype (Prefix (Actual)))
1654 then
1655 Reset_Packed_Prefix;
1656 Expand_Packed_Element_Reference (Actual);
1657
0386aad1
AC
1658 -- If we have a reference to a bit packed array, we copy it, since
1659 -- the actual must be byte aligned.
70482933 1660
fbf5a39b 1661 -- Is this really necessary in all cases???
70482933 1662
fbf5a39b 1663 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
f44fe430
RD
1664 Add_Simple_Call_By_Copy_Code;
1665
1666 -- If a non-scalar actual is possibly unaligned, we need a copy
1667
1668 elsif Is_Possibly_Unaligned_Object (Actual)
1669 and then not Represented_As_Scalar (Etype (Formal))
1670 then
1671 Add_Simple_Call_By_Copy_Code;
70482933 1672
fbf5a39b
AC
1673 -- Similarly, we have to expand slices of packed arrays here
1674 -- because the result must be byte aligned.
70482933 1675
fbf5a39b
AC
1676 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
1677 Add_Call_By_Copy_Code;
70482933 1678
fbf5a39b
AC
1679 -- Only processing remaining is to pass by copy if this is a
1680 -- reference to a possibly unaligned slice, since the caller
1681 -- expects an appropriately aligned argument.
70482933 1682
fbf5a39b
AC
1683 elsif Is_Possibly_Unaligned_Slice (Actual) then
1684 Add_Call_By_Copy_Code;
fb468a94
AC
1685
1686 -- An unusual case: a current instance of an enclosing task can be
1687 -- an actual, and must be replaced by a reference to self.
1688
1689 elsif Is_Entity_Name (Actual)
1690 and then Is_Task_Type (Entity (Actual))
1691 then
1692 if In_Open_Scopes (Entity (Actual)) then
1693 Rewrite (Actual,
1694 (Make_Function_Call (Loc,
1695 Name => New_Reference_To (RTE (RE_Self), Loc))));
1696 Analyze (Actual);
1697
1698 -- A task type cannot otherwise appear as an actual
1699
1700 else
1701 raise Program_Error;
1702 end if;
70482933
RK
1703 end if;
1704 end if;
1705
1706 Next_Formal (Formal);
1707 Next_Actual (Actual);
1708 end loop;
1709
1710 -- Find right place to put post call stuff if it is present
1711
1712 if not Is_Empty_List (Post_Call) then
1713
2f1b20a9
ES
1714 -- If call is not a list member, it must be the triggering statement
1715 -- of a triggering alternative or an entry call alternative, and we
1716 -- can add the post call stuff to the corresponding statement list.
70482933
RK
1717
1718 if not Is_List_Member (N) then
1719 declare
1720 P : constant Node_Id := Parent (N);
1721
1722 begin
ac4d6407
RD
1723 pragma Assert (Nkind_In (P, N_Triggering_Alternative,
1724 N_Entry_Call_Alternative));
70482933
RK
1725
1726 if Is_Non_Empty_List (Statements (P)) then
1727 Insert_List_Before_And_Analyze
1728 (First (Statements (P)), Post_Call);
1729 else
1730 Set_Statements (P, Post_Call);
1731 end if;
1732 end;
1733
1734 -- Otherwise, normal case where N is in a statement sequence,
1735 -- just put the post-call stuff after the call statement.
1736
1737 else
1738 Insert_Actions_After (N, Post_Call);
1739 end if;
1740 end if;
1741
98f01d53 1742 -- The call node itself is re-analyzed in Expand_Call
70482933
RK
1743
1744 end Expand_Actuals;
1745
1746 -----------------
1747 -- Expand_Call --
1748 -----------------
1749
1750 -- This procedure handles expansion of function calls and procedure call
1751 -- statements (i.e. it serves as the body for Expand_N_Function_Call and
70f91180 1752 -- Expand_N_Procedure_Call_Statement). Processing for calls includes:
70482933 1753
70f91180 1754 -- Replace call to Raise_Exception by Raise_Exception_Always if possible
70482933
RK
1755 -- Provide values of actuals for all formals in Extra_Formals list
1756 -- Replace "call" to enumeration literal function by literal itself
1757 -- Rewrite call to predefined operator as operator
1758 -- Replace actuals to in-out parameters that are numeric conversions,
1759 -- with explicit assignment to temporaries before and after the call.
1760 -- Remove optional actuals if First_Optional_Parameter specified.
1761
1762 -- Note that the list of actuals has been filled with default expressions
1763 -- during semantic analysis of the call. Only the extra actuals required
1764 -- for the 'Constrained attribute and for accessibility checks are added
1765 -- at this point.
1766
1767 procedure Expand_Call (N : Node_Id) is
1768 Loc : constant Source_Ptr := Sloc (N);
6dfc5592 1769 Call_Node : Node_Id := N;
70482933 1770 Extra_Actuals : List_Id := No_List;
fdce4bb7 1771 Prev : Node_Id := Empty;
758c442c 1772
70482933
RK
1773 procedure Add_Actual_Parameter (Insert_Param : Node_Id);
1774 -- Adds one entry to the end of the actual parameter list. Used for
2f1b20a9
ES
1775 -- default parameters and for extra actuals (for Extra_Formals). The
1776 -- argument is an N_Parameter_Association node.
70482933
RK
1777
1778 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
2f1b20a9
ES
1779 -- Adds an extra actual to the list of extra actuals. Expr is the
1780 -- expression for the value of the actual, EF is the entity for the
1781 -- extra formal.
70482933
RK
1782
1783 function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
1784 -- Within an instance, a type derived from a non-tagged formal derived
70f91180
RD
1785 -- type inherits from the original parent, not from the actual. The
1786 -- current derivation mechanism has the derived type inherit from the
1787 -- actual, which is only correct outside of the instance. If the
1788 -- subprogram is inherited, we test for this particular case through a
1789 -- convoluted tree traversal before setting the proper subprogram to be
1790 -- called.
70482933 1791
df3e68b1
HK
1792 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean;
1793 -- Determine whether Subp denotes a non-dispatching call to a Deep
1794 -- routine.
1795
dd386db0
AC
1796 function New_Value (From : Node_Id) return Node_Id;
1797 -- From is the original Expression. New_Value is equivalent to a call
1798 -- to Duplicate_Subexpr with an explicit dereference when From is an
1799 -- access parameter.
1800
70482933
RK
1801 --------------------------
1802 -- Add_Actual_Parameter --
1803 --------------------------
1804
1805 procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
1806 Actual_Expr : constant Node_Id :=
1807 Explicit_Actual_Parameter (Insert_Param);
1808
1809 begin
1810 -- Case of insertion is first named actual
1811
1812 if No (Prev) or else
1813 Nkind (Parent (Prev)) /= N_Parameter_Association
1814 then
6dfc5592
RD
1815 Set_Next_Named_Actual
1816 (Insert_Param, First_Named_Actual (Call_Node));
1817 Set_First_Named_Actual (Call_Node, Actual_Expr);
70482933
RK
1818
1819 if No (Prev) then
6dfc5592
RD
1820 if No (Parameter_Associations (Call_Node)) then
1821 Set_Parameter_Associations (Call_Node, New_List);
1822 Append (Insert_Param, Parameter_Associations (Call_Node));
70482933
RK
1823 end if;
1824 else
1825 Insert_After (Prev, Insert_Param);
1826 end if;
1827
1828 -- Case of insertion is not first named actual
1829
1830 else
1831 Set_Next_Named_Actual
1832 (Insert_Param, Next_Named_Actual (Parent (Prev)));
1833 Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
6dfc5592 1834 Append (Insert_Param, Parameter_Associations (Call_Node));
70482933
RK
1835 end if;
1836
1837 Prev := Actual_Expr;
1838 end Add_Actual_Parameter;
1839
1840 ----------------------
1841 -- Add_Extra_Actual --
1842 ----------------------
1843
1844 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
1845 Loc : constant Source_Ptr := Sloc (Expr);
1846
1847 begin
1848 if Extra_Actuals = No_List then
1849 Extra_Actuals := New_List;
6dfc5592 1850 Set_Parent (Extra_Actuals, Call_Node);
70482933
RK
1851 end if;
1852
1853 Append_To (Extra_Actuals,
1854 Make_Parameter_Association (Loc,
9d983bbf
AC
1855 Selector_Name => Make_Identifier (Loc, Chars (EF)),
1856 Explicit_Actual_Parameter => Expr));
70482933
RK
1857
1858 Analyze_And_Resolve (Expr, Etype (EF));
75a64833 1859
6dfc5592 1860 if Nkind (Call_Node) = N_Function_Call then
75a64833
AC
1861 Set_Is_Accessibility_Actual (Parent (Expr));
1862 end if;
70482933
RK
1863 end Add_Extra_Actual;
1864
1865 ---------------------------
1866 -- Inherited_From_Formal --
1867 ---------------------------
1868
1869 function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
1870 Par : Entity_Id;
1871 Gen_Par : Entity_Id;
1872 Gen_Prim : Elist_Id;
1873 Elmt : Elmt_Id;
1874 Indic : Node_Id;
1875
1876 begin
1877 -- If the operation is inherited, it is attached to the corresponding
1878 -- type derivation. If the parent in the derivation is a generic
1879 -- actual, it is a subtype of the actual, and we have to recover the
1880 -- original derived type declaration to find the proper parent.
1881
1882 if Nkind (Parent (S)) /= N_Full_Type_Declaration
fbf5a39b 1883 or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
2f1b20a9
ES
1884 or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
1885 N_Derived_Type_Definition
fbf5a39b 1886 or else not In_Instance
70482933
RK
1887 then
1888 return Empty;
1889
1890 else
1891 Indic :=
e27b834b
AC
1892 Subtype_Indication
1893 (Type_Definition (Original_Node (Parent (S))));
70482933
RK
1894
1895 if Nkind (Indic) = N_Subtype_Indication then
1896 Par := Entity (Subtype_Mark (Indic));
1897 else
1898 Par := Entity (Indic);
1899 end if;
1900 end if;
1901
1902 if not Is_Generic_Actual_Type (Par)
1903 or else Is_Tagged_Type (Par)
1904 or else Nkind (Parent (Par)) /= N_Subtype_Declaration
1905 or else not In_Open_Scopes (Scope (Par))
70482933
RK
1906 then
1907 return Empty;
70482933
RK
1908 else
1909 Gen_Par := Generic_Parent_Type (Parent (Par));
1910 end if;
1911
7888a6ae
GD
1912 -- If the actual has no generic parent type, the formal is not
1913 -- a formal derived type, so nothing to inherit.
1914
1915 if No (Gen_Par) then
1916 return Empty;
1917 end if;
1918
2f1b20a9
ES
1919 -- If the generic parent type is still the generic type, this is a
1920 -- private formal, not a derived formal, and there are no operations
1921 -- inherited from the formal.
fbf5a39b
AC
1922
1923 if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
1924 return Empty;
1925 end if;
1926
70482933 1927 Gen_Prim := Collect_Primitive_Operations (Gen_Par);
70482933 1928
2f1b20a9 1929 Elmt := First_Elmt (Gen_Prim);
70482933
RK
1930 while Present (Elmt) loop
1931 if Chars (Node (Elmt)) = Chars (S) then
1932 declare
1933 F1 : Entity_Id;
1934 F2 : Entity_Id;
70482933 1935
2f1b20a9 1936 begin
70482933
RK
1937 F1 := First_Formal (S);
1938 F2 := First_Formal (Node (Elmt));
70482933
RK
1939 while Present (F1)
1940 and then Present (F2)
1941 loop
70482933
RK
1942 if Etype (F1) = Etype (F2)
1943 or else Etype (F2) = Gen_Par
1944 then
1945 Next_Formal (F1);
1946 Next_Formal (F2);
1947 else
1948 Next_Elmt (Elmt);
1949 exit; -- not the right subprogram
1950 end if;
1951
1952 return Node (Elmt);
1953 end loop;
1954 end;
1955
1956 else
1957 Next_Elmt (Elmt);
1958 end if;
1959 end loop;
1960
1961 raise Program_Error;
1962 end Inherited_From_Formal;
1963
df3e68b1
HK
1964 -------------------------
1965 -- Is_Direct_Deep_Call --
1966 -------------------------
1967
1968 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean is
1969 begin
1970 if Is_TSS (Subp, TSS_Deep_Adjust)
1971 or else Is_TSS (Subp, TSS_Deep_Finalize)
1972 or else Is_TSS (Subp, TSS_Deep_Initialize)
1973 then
1974 declare
1975 Actual : Node_Id;
1976 Formal : Node_Id;
1977
1978 begin
1979 Actual := First (Parameter_Associations (N));
1980 Formal := First_Formal (Subp);
1981 while Present (Actual)
1982 and then Present (Formal)
1983 loop
1984 if Nkind (Actual) = N_Identifier
1985 and then Is_Controlling_Actual (Actual)
1986 and then Etype (Actual) = Etype (Formal)
1987 then
1988 return True;
1989 end if;
1990
1991 Next (Actual);
1992 Next_Formal (Formal);
1993 end loop;
1994 end;
1995 end if;
1996
1997 return False;
1998 end Is_Direct_Deep_Call;
1999
dd386db0
AC
2000 ---------------
2001 -- New_Value --
2002 ---------------
2003
2004 function New_Value (From : Node_Id) return Node_Id is
2005 Res : constant Node_Id := Duplicate_Subexpr (From);
2006 begin
2007 if Is_Access_Type (Etype (From)) then
2008 return
2009 Make_Explicit_Dereference (Sloc (From),
2010 Prefix => Res);
2011 else
2012 return Res;
2013 end if;
2014 end New_Value;
2015
fdce4bb7
JM
2016 -- Local variables
2017
deb8dacc
HK
2018 Curr_S : constant Entity_Id := Current_Scope;
2019 Remote : constant Boolean := Is_Remote_Call (Call_Node);
fdce4bb7
JM
2020 Actual : Node_Id;
2021 Formal : Entity_Id;
2022 Orig_Subp : Entity_Id := Empty;
2023 Param_Count : Natural := 0;
2024 Parent_Formal : Entity_Id;
2025 Parent_Subp : Entity_Id;
2026 Scop : Entity_Id;
2027 Subp : Entity_Id;
2028
e27b834b 2029 Prev_Orig : Node_Id;
fdce4bb7
JM
2030 -- Original node for an actual, which may have been rewritten. If the
2031 -- actual is a function call that has been transformed from a selected
2032 -- component, the original node is unanalyzed. Otherwise, it carries
2033 -- semantic information used to generate additional actuals.
2034
2035 CW_Interface_Formals_Present : Boolean := False;
2036
70482933
RK
2037 -- Start of processing for Expand_Call
2038
2039 begin
07fc65c4
GB
2040 -- Ignore if previous error
2041
6dfc5592
RD
2042 if Nkind (Call_Node) in N_Has_Etype
2043 and then Etype (Call_Node) = Any_Type
2044 then
07fc65c4
GB
2045 return;
2046 end if;
2047
70482933
RK
2048 -- Call using access to subprogram with explicit dereference
2049
6dfc5592
RD
2050 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
2051 Subp := Etype (Name (Call_Node));
70482933
RK
2052 Parent_Subp := Empty;
2053
2054 -- Case of call to simple entry, where the Name is a selected component
2055 -- whose prefix is the task, and whose selector name is the entry name
2056
6dfc5592
RD
2057 elsif Nkind (Name (Call_Node)) = N_Selected_Component then
2058 Subp := Entity (Selector_Name (Name (Call_Node)));
70482933
RK
2059 Parent_Subp := Empty;
2060
2061 -- Case of call to member of entry family, where Name is an indexed
2062 -- component, with the prefix being a selected component giving the
2063 -- task and entry family name, and the index being the entry index.
2064
6dfc5592
RD
2065 elsif Nkind (Name (Call_Node)) = N_Indexed_Component then
2066 Subp := Entity (Selector_Name (Prefix (Name (Call_Node))));
70482933
RK
2067 Parent_Subp := Empty;
2068
2069 -- Normal case
2070
2071 else
6dfc5592 2072 Subp := Entity (Name (Call_Node));
70482933
RK
2073 Parent_Subp := Alias (Subp);
2074
2075 -- Replace call to Raise_Exception by call to Raise_Exception_Always
2076 -- if we can tell that the first parameter cannot possibly be null.
70f91180 2077 -- This improves efficiency by avoiding a run-time test.
70482933 2078
7888a6ae
GD
2079 -- We do not do this if Raise_Exception_Always does not exist, which
2080 -- can happen in configurable run time profiles which provide only a
70f91180 2081 -- Raise_Exception.
7888a6ae
GD
2082
2083 if Is_RTE (Subp, RE_Raise_Exception)
2084 and then RTE_Available (RE_Raise_Exception_Always)
70482933
RK
2085 then
2086 declare
3cae7f14
RD
2087 FA : constant Node_Id :=
2088 Original_Node (First_Actual (Call_Node));
2089
70482933
RK
2090 begin
2091 -- The case we catch is where the first argument is obtained
2f1b20a9
ES
2092 -- using the Identity attribute (which must always be
2093 -- non-null).
70482933
RK
2094
2095 if Nkind (FA) = N_Attribute_Reference
2096 and then Attribute_Name (FA) = Name_Identity
2097 then
2098 Subp := RTE (RE_Raise_Exception_Always);
6dfc5592 2099 Set_Name (Call_Node, New_Occurrence_Of (Subp, Loc));
70482933
RK
2100 end if;
2101 end;
2102 end if;
2103
2104 if Ekind (Subp) = E_Entry then
2105 Parent_Subp := Empty;
2106 end if;
2107 end if;
2108
deb8dacc
HK
2109 -- Detect the following code in Ada.Finalization.Heap_Management only
2110 -- on .NET/JVM targets:
2111 --
2112 -- procedure Finalize (Collection : in out Finalization_Collection) is
2113 -- begin
2114 -- . . .
2115 -- begin
2116 -- Finalize (Curr_Ptr.all);
2117 --
2118 -- Since .NET/JVM compilers lack address arithmetic and Deep_Finalize
2119 -- cannot be named in library or user code, the compiler has to install
2120 -- a kludge and transform the call to Finalize into Deep_Finalize.
2121
2122 if VM_Target /= No_VM
2123 and then Chars (Subp) = Name_Finalize
2124 and then Ekind (Curr_S) = E_Block
2125 and then Ekind (Scope (Curr_S)) = E_Procedure
2126 and then Chars (Scope (Curr_S)) = Name_Finalize
2127 and then Etype (First_Formal (Scope (Curr_S))) =
2128 RTE (RE_Finalization_Collection)
2129 then
2130 declare
2131 Deep_Fin : constant Entity_Id :=
2132 Find_Prim_Op (RTE (RE_Root_Controlled),
2133 TSS_Deep_Finalize);
2134 begin
2135 -- Since Root_Controlled is a tagged type, the compiler should
2136 -- always generate Deep_Finalize for it.
2137
2138 pragma Assert (Present (Deep_Fin));
2139
2140 -- Generate:
2141 -- Deep_Finalize (Curr_Ptr.all);
2142
2143 Rewrite (N,
2144 Make_Procedure_Call_Statement (Loc,
2145 Name =>
2146 New_Reference_To (Deep_Fin, Loc),
2147 Parameter_Associations =>
2148 New_Copy_List_Tree (Parameter_Associations (N))));
2149
2150 Analyze (N);
2151 return;
2152 end;
2153 end if;
2154
f4d379b8
HK
2155 -- Ada 2005 (AI-345): We have a procedure call as a triggering
2156 -- alternative in an asynchronous select or as an entry call in
2157 -- a conditional or timed select. Check whether the procedure call
2158 -- is a renaming of an entry and rewrite it as an entry call.
2159
0791fbe9 2160 if Ada_Version >= Ada_2005
6dfc5592 2161 and then Nkind (Call_Node) = N_Procedure_Call_Statement
f4d379b8 2162 and then
6dfc5592 2163 ((Nkind (Parent (Call_Node)) = N_Triggering_Alternative
3cae7f14 2164 and then Triggering_Statement (Parent (Call_Node)) = Call_Node)
f4d379b8 2165 or else
6dfc5592 2166 (Nkind (Parent (Call_Node)) = N_Entry_Call_Alternative
3cae7f14 2167 and then Entry_Call_Statement (Parent (Call_Node)) = Call_Node))
f4d379b8
HK
2168 then
2169 declare
2170 Ren_Decl : Node_Id;
2171 Ren_Root : Entity_Id := Subp;
2172
2173 begin
2174 -- This may be a chain of renamings, find the root
2175
2176 if Present (Alias (Ren_Root)) then
2177 Ren_Root := Alias (Ren_Root);
2178 end if;
2179
2180 if Present (Original_Node (Parent (Parent (Ren_Root)))) then
2181 Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
2182
2183 if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
6dfc5592 2184 Rewrite (Call_Node,
f4d379b8
HK
2185 Make_Entry_Call_Statement (Loc,
2186 Name =>
2187 New_Copy_Tree (Name (Ren_Decl)),
2188 Parameter_Associations =>
6dfc5592
RD
2189 New_Copy_List_Tree
2190 (Parameter_Associations (Call_Node))));
f4d379b8
HK
2191
2192 return;
2193 end if;
2194 end if;
2195 end;
2196 end if;
2197
e27b834b
AC
2198 -- First step, compute extra actuals, corresponding to any Extra_Formals
2199 -- present. Note that we do not access Extra_Formals directly, instead
2200 -- we simply note the presence of the extra formals as we process the
2201 -- regular formals collecting corresponding actuals in Extra_Actuals.
70482933 2202
c2369146
AC
2203 -- We also generate any required range checks for actuals for in formals
2204 -- as we go through the loop, since this is a convenient place to do it.
2205 -- (Though it seems that this would be better done in Expand_Actuals???)
fbf5a39b 2206
fdce4bb7 2207 Formal := First_Formal (Subp);
6dfc5592 2208 Actual := First_Actual (Call_Node);
fdce4bb7 2209 Param_Count := 1;
70482933 2210 while Present (Formal) loop
fbf5a39b 2211
d79e621a 2212 -- Generate range check if required
fbf5a39b 2213
d79e621a 2214 if Do_Range_Check (Actual)
c2369146 2215 and then Ekind (Formal) = E_In_Parameter
d79e621a
GD
2216 then
2217 Set_Do_Range_Check (Actual, False);
2218 Generate_Range_Check
2219 (Actual, Etype (Formal), CE_Range_Check_Failed);
2220 end if;
fbf5a39b
AC
2221
2222 -- Prepare to examine current entry
2223
70482933
RK
2224 Prev := Actual;
2225 Prev_Orig := Original_Node (Prev);
2226
758c442c 2227 -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
2f1b20a9 2228 -- to expand it in a further round.
758c442c
GD
2229
2230 CW_Interface_Formals_Present :=
2231 CW_Interface_Formals_Present
2232 or else
2233 (Ekind (Etype (Formal)) = E_Class_Wide_Type
2234 and then Is_Interface (Etype (Etype (Formal))))
2235 or else
2236 (Ekind (Etype (Formal)) = E_Anonymous_Access_Type
2237 and then Is_Interface (Directly_Designated_Type
2238 (Etype (Etype (Formal)))));
2239
2240 -- Create possible extra actual for constrained case. Usually, the
2241 -- extra actual is of the form actual'constrained, but since this
2242 -- attribute is only available for unconstrained records, TRUE is
2243 -- expanded if the type of the formal happens to be constrained (for
2244 -- instance when this procedure is inherited from an unconstrained
2245 -- record to a constrained one) or if the actual has no discriminant
2246 -- (its type is constrained). An exception to this is the case of a
2247 -- private type without discriminants. In this case we pass FALSE
2248 -- because the object has underlying discriminants with defaults.
70482933
RK
2249
2250 if Present (Extra_Constrained (Formal)) then
2251 if Ekind (Etype (Prev)) in Private_Kind
2252 and then not Has_Discriminants (Base_Type (Etype (Prev)))
2253 then
01aef5ad
GD
2254 Add_Extra_Actual
2255 (New_Occurrence_Of (Standard_False, Loc),
2256 Extra_Constrained (Formal));
70482933
RK
2257
2258 elsif Is_Constrained (Etype (Formal))
2259 or else not Has_Discriminants (Etype (Prev))
2260 then
01aef5ad
GD
2261 Add_Extra_Actual
2262 (New_Occurrence_Of (Standard_True, Loc),
2263 Extra_Constrained (Formal));
70482933 2264
5d09245e
AC
2265 -- Do not produce extra actuals for Unchecked_Union parameters.
2266 -- Jump directly to the end of the loop.
2267
2268 elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
2269 goto Skip_Extra_Actual_Generation;
2270
70482933
RK
2271 else
2272 -- If the actual is a type conversion, then the constrained
2273 -- test applies to the actual, not the target type.
2274
2275 declare
2f1b20a9 2276 Act_Prev : Node_Id;
70482933
RK
2277
2278 begin
2f1b20a9
ES
2279 -- Test for unchecked conversions as well, which can occur
2280 -- as out parameter actuals on calls to stream procedures.
70482933 2281
2f1b20a9 2282 Act_Prev := Prev;
ac4d6407
RD
2283 while Nkind_In (Act_Prev, N_Type_Conversion,
2284 N_Unchecked_Type_Conversion)
fbf5a39b 2285 loop
70482933 2286 Act_Prev := Expression (Act_Prev);
fbf5a39b 2287 end loop;
70482933 2288
3563739b
AC
2289 -- If the expression is a conversion of a dereference, this
2290 -- is internally generated code that manipulates addresses,
2291 -- e.g. when building interface tables. No check should
2292 -- occur in this case, and the discriminated object is not
2293 -- directly a hand.
f4d379b8
HK
2294
2295 if not Comes_From_Source (Actual)
2296 and then Nkind (Actual) = N_Unchecked_Type_Conversion
2297 and then Nkind (Act_Prev) = N_Explicit_Dereference
2298 then
2299 Add_Extra_Actual
2300 (New_Occurrence_Of (Standard_False, Loc),
2301 Extra_Constrained (Formal));
2302
2303 else
2304 Add_Extra_Actual
2305 (Make_Attribute_Reference (Sloc (Prev),
2306 Prefix =>
2307 Duplicate_Subexpr_No_Checks
2308 (Act_Prev, Name_Req => True),
2309 Attribute_Name => Name_Constrained),
2310 Extra_Constrained (Formal));
2311 end if;
70482933
RK
2312 end;
2313 end if;
2314 end if;
2315
2316 -- Create possible extra actual for accessibility level
2317
2318 if Present (Extra_Accessibility (Formal)) then
7888a6ae
GD
2319
2320 -- Ada 2005 (AI-252): If the actual was rewritten as an Access
2321 -- attribute, then the original actual may be an aliased object
2322 -- occurring as the prefix in a call using "Object.Operation"
2323 -- notation. In that case we must pass the level of the object,
2324 -- so Prev_Orig is reset to Prev and the attribute will be
2325 -- processed by the code for Access attributes further below.
2326
2327 if Prev_Orig /= Prev
2328 and then Nkind (Prev) = N_Attribute_Reference
2329 and then
2330 Get_Attribute_Id (Attribute_Name (Prev)) = Attribute_Access
2331 and then Is_Aliased_View (Prev_Orig)
2332 then
2333 Prev_Orig := Prev;
2334 end if;
2335
9d983bbf
AC
2336 -- Ada 2005 (AI-251): Thunks must propagate the extra actuals of
2337 -- accessibility levels.
fdce4bb7
JM
2338
2339 if Ekind (Current_Scope) in Subprogram_Kind
2340 and then Is_Thunk (Current_Scope)
2341 then
2342 declare
2343 Parm_Ent : Entity_Id;
2344
2345 begin
2346 if Is_Controlling_Actual (Actual) then
2347
2348 -- Find the corresponding actual of the thunk
2349
2350 Parm_Ent := First_Entity (Current_Scope);
2351 for J in 2 .. Param_Count loop
2352 Next_Entity (Parm_Ent);
2353 end loop;
2354
2355 else pragma Assert (Is_Entity_Name (Actual));
2356 Parm_Ent := Entity (Actual);
2357 end if;
2358
2359 Add_Extra_Actual
2360 (New_Occurrence_Of (Extra_Accessibility (Parm_Ent), Loc),
2361 Extra_Accessibility (Formal));
2362 end;
2363
2364 elsif Is_Entity_Name (Prev_Orig) then
70482933 2365
d766cee3
RD
2366 -- When passing an access parameter, or a renaming of an access
2367 -- parameter, as the actual to another access parameter we need
2368 -- to pass along the actual's own access level parameter. This
2369 -- is done if we are within the scope of the formal access
2370 -- parameter (if this is an inlined body the extra formal is
2371 -- irrelevant).
2372
2373 if (Is_Formal (Entity (Prev_Orig))
2374 or else
2375 (Present (Renamed_Object (Entity (Prev_Orig)))
2376 and then
2377 Is_Entity_Name (Renamed_Object (Entity (Prev_Orig)))
2378 and then
2379 Is_Formal
2380 (Entity (Renamed_Object (Entity (Prev_Orig))))))
70482933
RK
2381 and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
2382 and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
2383 then
2384 declare
2385 Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
2386
2387 begin
2388 pragma Assert (Present (Parm_Ent));
2389
2390 if Present (Extra_Accessibility (Parm_Ent)) then
f4d379b8
HK
2391 Add_Extra_Actual
2392 (New_Occurrence_Of
2393 (Extra_Accessibility (Parm_Ent), Loc),
2394 Extra_Accessibility (Formal));
70482933
RK
2395
2396 -- If the actual access parameter does not have an
2397 -- associated extra formal providing its scope level,
2398 -- then treat the actual as having library-level
2399 -- accessibility.
2400
2401 else
f4d379b8
HK
2402 Add_Extra_Actual
2403 (Make_Integer_Literal (Loc,
01aef5ad 2404 Intval => Scope_Depth (Standard_Standard)),
f4d379b8 2405 Extra_Accessibility (Formal));
70482933
RK
2406 end if;
2407 end;
2408
7888a6ae
GD
2409 -- The actual is a normal access value, so just pass the level
2410 -- of the actual's access type.
70482933
RK
2411
2412 else
f4d379b8
HK
2413 Add_Extra_Actual
2414 (Make_Integer_Literal (Loc,
01aef5ad 2415 Intval => Type_Access_Level (Etype (Prev_Orig))),
f4d379b8 2416 Extra_Accessibility (Formal));
70482933
RK
2417 end if;
2418
01aef5ad
GD
2419 -- If the actual is an access discriminant, then pass the level
2420 -- of the enclosing object (RM05-3.10.2(12.4/2)).
2421
2422 elsif Nkind (Prev_Orig) = N_Selected_Component
2423 and then Ekind (Entity (Selector_Name (Prev_Orig))) =
2424 E_Discriminant
2425 and then Ekind (Etype (Entity (Selector_Name (Prev_Orig)))) =
2426 E_Anonymous_Access_Type
2427 then
2428 Add_Extra_Actual
2429 (Make_Integer_Literal (Loc,
2430 Intval => Object_Access_Level (Prefix (Prev_Orig))),
2431 Extra_Accessibility (Formal));
2432
2433 -- All other cases
fdce4bb7 2434
70482933
RK
2435 else
2436 case Nkind (Prev_Orig) is
2437
2438 when N_Attribute_Reference =>
70482933
RK
2439 case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
2440
75a64833 2441 -- For X'Access, pass on the level of the prefix X
70482933
RK
2442
2443 when Attribute_Access =>
75a64833
AC
2444 Add_Extra_Actual
2445 (Make_Integer_Literal (Loc,
2446 Intval =>
2447 Object_Access_Level
2448 (Prefix (Prev_Orig))),
bac7206d 2449 Extra_Accessibility (Formal));
70482933
RK
2450
2451 -- Treat the unchecked attributes as library-level
2452
2453 when Attribute_Unchecked_Access |
2454 Attribute_Unrestricted_Access =>
01aef5ad
GD
2455 Add_Extra_Actual
2456 (Make_Integer_Literal (Loc,
2457 Intval => Scope_Depth (Standard_Standard)),
2458 Extra_Accessibility (Formal));
70482933
RK
2459
2460 -- No other cases of attributes returning access
9d983bbf 2461 -- values that can be passed to access parameters.
70482933
RK
2462
2463 when others =>
2464 raise Program_Error;
2465
2466 end case;
2467
92a745f3
TQ
2468 -- For allocators we pass the level of the execution of the
2469 -- called subprogram, which is one greater than the current
2470 -- scope level.
70482933
RK
2471
2472 when N_Allocator =>
01aef5ad
GD
2473 Add_Extra_Actual
2474 (Make_Integer_Literal (Loc,
2475 Intval => Scope_Depth (Current_Scope) + 1),
2476 Extra_Accessibility (Formal));
70482933 2477
8ca3bf91
GD
2478 -- For other cases we simply pass the level of the actual's
2479 -- access type. The type is retrieved from Prev rather than
61549759 2480 -- Prev_Orig, because in some cases Prev_Orig denotes an
8ca3bf91 2481 -- original expression that has not been analyzed.
70482933
RK
2482
2483 when others =>
01aef5ad
GD
2484 Add_Extra_Actual
2485 (Make_Integer_Literal (Loc,
8ca3bf91 2486 Intval => Type_Access_Level (Etype (Prev))),
01aef5ad 2487 Extra_Accessibility (Formal));
70482933
RK
2488 end case;
2489 end if;
2490 end if;
2491
2f1b20a9 2492 -- Perform the check of 4.6(49) that prevents a null value from being
b3f48fd4
AC
2493 -- passed as an actual to an access parameter. Note that the check
2494 -- is elided in the common cases of passing an access attribute or
2f1b20a9
ES
2495 -- access parameter as an actual. Also, we currently don't enforce
2496 -- this check for expander-generated actuals and when -gnatdj is set.
70482933 2497
0791fbe9 2498 if Ada_Version >= Ada_2005 then
70482933 2499
b3f48fd4
AC
2500 -- Ada 2005 (AI-231): Check null-excluding access types. Note that
2501 -- the intent of 6.4.1(13) is that null-exclusion checks should
2502 -- not be done for 'out' parameters, even though it refers only
308e6f3a 2503 -- to constraint checks, and a null_exclusion is not a constraint.
b3f48fd4 2504 -- Note that AI05-0196-1 corrects this mistake in the RM.
70482933 2505
2f1b20a9
ES
2506 if Is_Access_Type (Etype (Formal))
2507 and then Can_Never_Be_Null (Etype (Formal))
b3f48fd4 2508 and then Ekind (Formal) /= E_Out_Parameter
2f1b20a9 2509 and then Nkind (Prev) /= N_Raise_Constraint_Error
d766cee3 2510 and then (Known_Null (Prev)
2f1b20a9
ES
2511 or else not Can_Never_Be_Null (Etype (Prev)))
2512 then
2513 Install_Null_Excluding_Check (Prev);
2514 end if;
70482933 2515
0791fbe9 2516 -- Ada_Version < Ada_2005
70482933 2517
2f1b20a9
ES
2518 else
2519 if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
2520 or else Access_Checks_Suppressed (Subp)
2521 then
2522 null;
70482933 2523
2f1b20a9
ES
2524 elsif Debug_Flag_J then
2525 null;
70482933 2526
2f1b20a9
ES
2527 elsif not Comes_From_Source (Prev) then
2528 null;
70482933 2529
2f1b20a9
ES
2530 elsif Is_Entity_Name (Prev)
2531 and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
2532 then
2533 null;
2820d220 2534
ac4d6407 2535 elsif Nkind_In (Prev, N_Allocator, N_Attribute_Reference) then
2f1b20a9
ES
2536 null;
2537
2538 -- Suppress null checks when passing to access parameters of Java
7888a6ae
GD
2539 -- and CIL subprograms. (Should this be done for other foreign
2540 -- conventions as well ???)
2f1b20a9 2541
7888a6ae
GD
2542 elsif Convention (Subp) = Convention_Java
2543 or else Convention (Subp) = Convention_CIL
2544 then
2f1b20a9
ES
2545 null;
2546
2547 else
2548 Install_Null_Excluding_Check (Prev);
2549 end if;
70482933
RK
2550 end if;
2551
fbf5a39b
AC
2552 -- Perform appropriate validity checks on parameters that
2553 -- are entities.
70482933
RK
2554
2555 if Validity_Checks_On then
6cdb2c6e
AC
2556 if (Ekind (Formal) = E_In_Parameter
2557 and then Validity_Check_In_Params)
2558 or else
2559 (Ekind (Formal) = E_In_Out_Parameter
2560 and then Validity_Check_In_Out_Params)
70482933 2561 then
7888a6ae
GD
2562 -- If the actual is an indexed component of a packed type (or
2563 -- is an indexed or selected component whose prefix recursively
2564 -- meets this condition), it has not been expanded yet. It will
2565 -- be copied in the validity code that follows, and has to be
2566 -- expanded appropriately, so reanalyze it.
08aa9a4a 2567
7888a6ae
GD
2568 -- What we do is just to unset analyzed bits on prefixes till
2569 -- we reach something that does not have a prefix.
2570
2571 declare
2572 Nod : Node_Id;
2573
2574 begin
2575 Nod := Actual;
ac4d6407
RD
2576 while Nkind_In (Nod, N_Indexed_Component,
2577 N_Selected_Component)
7888a6ae
GD
2578 loop
2579 Set_Analyzed (Nod, False);
2580 Nod := Prefix (Nod);
2581 end loop;
2582 end;
08aa9a4a 2583
70482933 2584 Ensure_Valid (Actual);
70482933
RK
2585 end if;
2586 end if;
2587
2588 -- For IN OUT and OUT parameters, ensure that subscripts are valid
2589 -- since this is a left side reference. We only do this for calls
2590 -- from the source program since we assume that compiler generated
2591 -- calls explicitly generate any required checks. We also need it
b3f48fd4
AC
2592 -- only if we are doing standard validity checks, since clearly it is
2593 -- not needed if validity checks are off, and in subscript validity
2594 -- checking mode, all indexed components are checked with a call
2595 -- directly from Expand_N_Indexed_Component.
70482933 2596
6dfc5592 2597 if Comes_From_Source (Call_Node)
70482933
RK
2598 and then Ekind (Formal) /= E_In_Parameter
2599 and then Validity_Checks_On
2600 and then Validity_Check_Default
2601 and then not Validity_Check_Subscripts
2602 then
2603 Check_Valid_Lvalue_Subscripts (Actual);
2604 end if;
2605
c8ef728f
ES
2606 -- Mark any scalar OUT parameter that is a simple variable as no
2607 -- longer known to be valid (unless the type is always valid). This
2608 -- reflects the fact that if an OUT parameter is never set in a
2609 -- procedure, then it can become invalid on the procedure return.
fbf5a39b
AC
2610
2611 if Ekind (Formal) = E_Out_Parameter
2612 and then Is_Entity_Name (Actual)
2613 and then Ekind (Entity (Actual)) = E_Variable
2614 and then not Is_Known_Valid (Etype (Actual))
2615 then
2616 Set_Is_Known_Valid (Entity (Actual), False);
2617 end if;
2618
c8ef728f
ES
2619 -- For an OUT or IN OUT parameter, if the actual is an entity, then
2620 -- clear current values, since they can be clobbered. We are probably
2621 -- doing this in more places than we need to, but better safe than
2622 -- sorry when it comes to retaining bad current values!
fbf5a39b
AC
2623
2624 if Ekind (Formal) /= E_In_Parameter
2625 and then Is_Entity_Name (Actual)
67ce0d7e 2626 and then Present (Entity (Actual))
fbf5a39b 2627 then
67ce0d7e
RD
2628 declare
2629 Ent : constant Entity_Id := Entity (Actual);
2630 Sav : Node_Id;
2631
2632 begin
ac4d6407
RD
2633 -- For an OUT or IN OUT parameter that is an assignable entity,
2634 -- we do not want to clobber the Last_Assignment field, since
2635 -- if it is set, it was precisely because it is indeed an OUT
75ba322d
AC
2636 -- or IN OUT parameter! We do reset the Is_Known_Valid flag
2637 -- since the subprogram could have returned in invalid value.
ac4d6407
RD
2638
2639 if (Ekind (Formal) = E_Out_Parameter
2640 or else
2641 Ekind (Formal) = E_In_Out_Parameter)
67ce0d7e
RD
2642 and then Is_Assignable (Ent)
2643 then
2644 Sav := Last_Assignment (Ent);
2645 Kill_Current_Values (Ent);
2646 Set_Last_Assignment (Ent, Sav);
75ba322d 2647 Set_Is_Known_Valid (Ent, False);
67ce0d7e
RD
2648
2649 -- For all other cases, just kill the current values
2650
2651 else
2652 Kill_Current_Values (Ent);
2653 end if;
2654 end;
fbf5a39b
AC
2655 end if;
2656
70482933
RK
2657 -- If the formal is class wide and the actual is an aggregate, force
2658 -- evaluation so that the back end who does not know about class-wide
2659 -- type, does not generate a temporary of the wrong size.
2660
2661 if not Is_Class_Wide_Type (Etype (Formal)) then
2662 null;
2663
2664 elsif Nkind (Actual) = N_Aggregate
2665 or else (Nkind (Actual) = N_Qualified_Expression
2666 and then Nkind (Expression (Actual)) = N_Aggregate)
2667 then
2668 Force_Evaluation (Actual);
2669 end if;
2670
2671 -- In a remote call, if the formal is of a class-wide type, check
2672 -- that the actual meets the requirements described in E.4(18).
2673
7888a6ae 2674 if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
70482933 2675 Insert_Action (Actual,
7888a6ae
GD
2676 Make_Transportable_Check (Loc,
2677 Duplicate_Subexpr_Move_Checks (Actual)));
70482933
RK
2678 end if;
2679
5d09245e
AC
2680 -- This label is required when skipping extra actual generation for
2681 -- Unchecked_Union parameters.
2682
2683 <<Skip_Extra_Actual_Generation>>
2684
fdce4bb7 2685 Param_Count := Param_Count + 1;
70482933
RK
2686 Next_Actual (Actual);
2687 Next_Formal (Formal);
2688 end loop;
2689
c8ef728f
ES
2690 -- If we are expanding a rhs of an assignment we need to check if tag
2691 -- propagation is needed. You might expect this processing to be in
2692 -- Analyze_Assignment but has to be done earlier (bottom-up) because the
2693 -- assignment might be transformed to a declaration for an unconstrained
2694 -- value if the expression is classwide.
70482933 2695
6dfc5592
RD
2696 if Nkind (Call_Node) = N_Function_Call
2697 and then Is_Tag_Indeterminate (Call_Node)
2698 and then Is_Entity_Name (Name (Call_Node))
70482933
RK
2699 then
2700 declare
2701 Ass : Node_Id := Empty;
2702
2703 begin
6dfc5592
RD
2704 if Nkind (Parent (Call_Node)) = N_Assignment_Statement then
2705 Ass := Parent (Call_Node);
70482933 2706
6dfc5592 2707 elsif Nkind (Parent (Call_Node)) = N_Qualified_Expression
3cae7f14
RD
2708 and then Nkind (Parent (Parent (Call_Node))) =
2709 N_Assignment_Statement
70482933 2710 then
6dfc5592 2711 Ass := Parent (Parent (Call_Node));
02822a92 2712
6dfc5592 2713 elsif Nkind (Parent (Call_Node)) = N_Explicit_Dereference
3cae7f14
RD
2714 and then Nkind (Parent (Parent (Call_Node))) =
2715 N_Assignment_Statement
02822a92 2716 then
6dfc5592 2717 Ass := Parent (Parent (Call_Node));
70482933
RK
2718 end if;
2719
2720 if Present (Ass)
2721 and then Is_Class_Wide_Type (Etype (Name (Ass)))
2722 then
6dfc5592
RD
2723 if Is_Access_Type (Etype (Call_Node)) then
2724 if Designated_Type (Etype (Call_Node)) /=
02822a92
RD
2725 Root_Type (Etype (Name (Ass)))
2726 then
2727 Error_Msg_NE
2728 ("tag-indeterminate expression "
d766cee3 2729 & " must have designated type& (RM 5.2 (6))",
3cae7f14 2730 Call_Node, Root_Type (Etype (Name (Ass))));
02822a92 2731 else
6dfc5592 2732 Propagate_Tag (Name (Ass), Call_Node);
02822a92
RD
2733 end if;
2734
6dfc5592 2735 elsif Etype (Call_Node) /= Root_Type (Etype (Name (Ass))) then
fbf5a39b
AC
2736 Error_Msg_NE
2737 ("tag-indeterminate expression must have type&"
6dfc5592
RD
2738 & "(RM 5.2 (6))",
2739 Call_Node, Root_Type (Etype (Name (Ass))));
02822a92 2740
fbf5a39b 2741 else
6dfc5592 2742 Propagate_Tag (Name (Ass), Call_Node);
fbf5a39b
AC
2743 end if;
2744
2745 -- The call will be rewritten as a dispatching call, and
2746 -- expanded as such.
2747
70482933
RK
2748 return;
2749 end if;
2750 end;
2751 end if;
2752
758c442c
GD
2753 -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
2754 -- it to point to the correct secondary virtual table
2755
6dfc5592 2756 if Nkind_In (Call_Node, N_Function_Call, N_Procedure_Call_Statement)
758c442c
GD
2757 and then CW_Interface_Formals_Present
2758 then
6dfc5592 2759 Expand_Interface_Actuals (Call_Node);
758c442c
GD
2760 end if;
2761
70482933
RK
2762 -- Deals with Dispatch_Call if we still have a call, before expanding
2763 -- extra actuals since this will be done on the re-analysis of the
b3f48fd4
AC
2764 -- dispatching call. Note that we do not try to shorten the actual list
2765 -- for a dispatching call, it would not make sense to do so. Expansion
2766 -- of dispatching calls is suppressed when VM_Target, because the VM
2767 -- back-ends directly handle the generation of dispatching calls and
2768 -- would have to undo any expansion to an indirect call.
70482933 2769
6dfc5592
RD
2770 if Nkind_In (Call_Node, N_Function_Call, N_Procedure_Call_Statement)
2771 and then Present (Controlling_Argument (Call_Node))
70482933 2772 then
6dfc5592 2773 declare
dd386db0 2774 Call_Typ : constant Entity_Id := Etype (Call_Node);
6dfc5592
RD
2775 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
2776 Eq_Prim_Op : Entity_Id := Empty;
dd386db0
AC
2777 New_Call : Node_Id;
2778 Param : Node_Id;
2779 Prev_Call : Node_Id;
fbf5a39b 2780
6dfc5592
RD
2781 begin
2782 if not Is_Limited_Type (Typ) then
2783 Eq_Prim_Op := Find_Prim_Op (Typ, Name_Op_Eq);
2784 end if;
fbf5a39b 2785
6dfc5592
RD
2786 if Tagged_Type_Expansion then
2787 Expand_Dispatching_Call (Call_Node);
70f91180 2788
6dfc5592
RD
2789 -- The following return is worrisome. Is it really OK to skip
2790 -- all remaining processing in this procedure ???
5a1ccfb1 2791
6dfc5592 2792 return;
5a1ccfb1 2793
6dfc5592
RD
2794 -- VM targets
2795
2796 else
2797 Apply_Tag_Checks (Call_Node);
2798
dd386db0
AC
2799 -- If this is a dispatching "=", we must first compare the
2800 -- tags so we generate: x.tag = y.tag and then x = y
2801
2802 if Subp = Eq_Prim_Op then
2803
2804 -- Mark the node as analyzed to avoid reanalizing this
2805 -- dispatching call (which would cause a never-ending loop)
2806
2807 Prev_Call := Relocate_Node (Call_Node);
2808 Set_Analyzed (Prev_Call);
2809
2810 Param := First_Actual (Call_Node);
2811 New_Call :=
2812 Make_And_Then (Loc,
2813 Left_Opnd =>
2814 Make_Op_Eq (Loc,
2815 Left_Opnd =>
2816 Make_Selected_Component (Loc,
2817 Prefix => New_Value (Param),
2818 Selector_Name =>
2819 New_Reference_To (First_Tag_Component (Typ),
2820 Loc)),
2821
2822 Right_Opnd =>
2823 Make_Selected_Component (Loc,
2824 Prefix =>
2825 Unchecked_Convert_To (Typ,
2826 New_Value (Next_Actual (Param))),
2827 Selector_Name =>
2828 New_Reference_To
2829 (First_Tag_Component (Typ), Loc))),
2830 Right_Opnd => Prev_Call);
2831
2832 Rewrite (Call_Node, New_Call);
2833
2834 Analyze_And_Resolve
2835 (Call_Node, Call_Typ, Suppress => All_Checks);
2836 end if;
2837
6dfc5592
RD
2838 -- Expansion of a dispatching call results in an indirect call,
2839 -- which in turn causes current values to be killed (see
2840 -- Resolve_Call), so on VM targets we do the call here to
2841 -- ensure consistent warnings between VM and non-VM targets.
2842
2843 Kill_Current_Values;
2844 end if;
2845
2846 -- If this is a dispatching "=" then we must update the reference
2847 -- to the call node because we generated:
2848 -- x.tag = y.tag and then x = y
2849
dd386db0 2850 if Subp = Eq_Prim_Op then
6dfc5592
RD
2851 Call_Node := Right_Opnd (Call_Node);
2852 end if;
2853 end;
70f91180 2854 end if;
70482933
RK
2855
2856 -- Similarly, expand calls to RCI subprograms on which pragma
2857 -- All_Calls_Remote applies. The rewriting will be reanalyzed
b3f48fd4
AC
2858 -- later. Do this only when the call comes from source since we
2859 -- do not want such a rewriting to occur in expanded code.
70482933 2860
6dfc5592
RD
2861 if Is_All_Remote_Call (Call_Node) then
2862 Expand_All_Calls_Remote_Subprogram_Call (Call_Node);
70482933
RK
2863
2864 -- Similarly, do not add extra actuals for an entry call whose entity
2865 -- is a protected procedure, or for an internal protected subprogram
2866 -- call, because it will be rewritten as a protected subprogram call
2867 -- and reanalyzed (see Expand_Protected_Subprogram_Call).
2868
2869 elsif Is_Protected_Type (Scope (Subp))
2870 and then (Ekind (Subp) = E_Procedure
2871 or else Ekind (Subp) = E_Function)
2872 then
2873 null;
2874
2875 -- During that loop we gathered the extra actuals (the ones that
2876 -- correspond to Extra_Formals), so now they can be appended.
2877
2878 else
2879 while Is_Non_Empty_List (Extra_Actuals) loop
2880 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
2881 end loop;
2882 end if;
2883
b3f48fd4
AC
2884 -- At this point we have all the actuals, so this is the point at which
2885 -- the various expansion activities for actuals is carried out.
f44fe430 2886
6dfc5592 2887 Expand_Actuals (Call_Node, Subp);
70482933 2888
b3f48fd4
AC
2889 -- If the subprogram is a renaming, or if it is inherited, replace it in
2890 -- the call with the name of the actual subprogram being called. If this
2891 -- is a dispatching call, the run-time decides what to call. The Alias
2892 -- attribute does not apply to entries.
70482933 2893
6dfc5592
RD
2894 if Nkind (Call_Node) /= N_Entry_Call_Statement
2895 and then No (Controlling_Argument (Call_Node))
70482933 2896 and then Present (Parent_Subp)
df3e68b1 2897 and then not Is_Direct_Deep_Call (Subp)
70482933
RK
2898 then
2899 if Present (Inherited_From_Formal (Subp)) then
2900 Parent_Subp := Inherited_From_Formal (Subp);
2901 else
b81a5940 2902 Parent_Subp := Ultimate_Alias (Parent_Subp);
70482933
RK
2903 end if;
2904
c8ef728f
ES
2905 -- The below setting of Entity is suspect, see F109-018 discussion???
2906
6dfc5592 2907 Set_Entity (Name (Call_Node), Parent_Subp);
70482933 2908
f937473f 2909 if Is_Abstract_Subprogram (Parent_Subp)
70482933
RK
2910 and then not In_Instance
2911 then
2912 Error_Msg_NE
6dfc5592
RD
2913 ("cannot call abstract subprogram &!",
2914 Name (Call_Node), Parent_Subp);
70482933
RK
2915 end if;
2916
d4817e3f
HK
2917 -- Inspect all formals of derived subprogram Subp. Compare parameter
2918 -- types with the parent subprogram and check whether an actual may
2919 -- need a type conversion to the corresponding formal of the parent
2920 -- subprogram.
70482933 2921
d4817e3f 2922 -- Not clear whether intrinsic subprograms need such conversions. ???
70482933
RK
2923
2924 if not Is_Intrinsic_Subprogram (Parent_Subp)
2925 or else Is_Generic_Instance (Parent_Subp)
2926 then
d4817e3f
HK
2927 declare
2928 procedure Convert (Act : Node_Id; Typ : Entity_Id);
2929 -- Rewrite node Act as a type conversion of Act to Typ. Analyze
2930 -- and resolve the newly generated construct.
70482933 2931
d4817e3f
HK
2932 -------------
2933 -- Convert --
2934 -------------
70482933 2935
d4817e3f
HK
2936 procedure Convert (Act : Node_Id; Typ : Entity_Id) is
2937 begin
2938 Rewrite (Act, OK_Convert_To (Typ, Relocate_Node (Act)));
2939 Analyze (Act);
2940 Resolve (Act, Typ);
2941 end Convert;
2942
2943 -- Local variables
2944
2945 Actual_Typ : Entity_Id;
2946 Formal_Typ : Entity_Id;
2947 Parent_Typ : Entity_Id;
2948
2949 begin
6dfc5592 2950 Actual := First_Actual (Call_Node);
d4817e3f
HK
2951 Formal := First_Formal (Subp);
2952 Parent_Formal := First_Formal (Parent_Subp);
2953 while Present (Formal) loop
2954 Actual_Typ := Etype (Actual);
2955 Formal_Typ := Etype (Formal);
2956 Parent_Typ := Etype (Parent_Formal);
2957
2958 -- For an IN parameter of a scalar type, the parent formal
2959 -- type and derived formal type differ or the parent formal
2960 -- type and actual type do not match statically.
2961
2962 if Is_Scalar_Type (Formal_Typ)
2963 and then Ekind (Formal) = E_In_Parameter
2964 and then Formal_Typ /= Parent_Typ
2965 and then
2966 not Subtypes_Statically_Match (Parent_Typ, Actual_Typ)
2967 and then not Raises_Constraint_Error (Actual)
2968 then
2969 Convert (Actual, Parent_Typ);
2970 Enable_Range_Check (Actual);
2971
d79e621a
GD
2972 -- If the actual has been marked as requiring a range
2973 -- check, then generate it here.
2974
2975 if Do_Range_Check (Actual) then
2976 Set_Do_Range_Check (Actual, False);
2977 Generate_Range_Check
2978 (Actual, Etype (Formal), CE_Range_Check_Failed);
2979 end if;
2980
d4817e3f
HK
2981 -- For access types, the parent formal type and actual type
2982 -- differ.
2983
2984 elsif Is_Access_Type (Formal_Typ)
2985 and then Base_Type (Parent_Typ) /= Base_Type (Actual_Typ)
70482933 2986 then
d4817e3f
HK
2987 if Ekind (Formal) /= E_In_Parameter then
2988 Convert (Actual, Parent_Typ);
2989
2990 elsif Ekind (Parent_Typ) = E_Anonymous_Access_Type
2991 and then Designated_Type (Parent_Typ) /=
2992 Designated_Type (Actual_Typ)
2993 and then not Is_Controlling_Formal (Formal)
2994 then
2995 -- This unchecked conversion is not necessary unless
2996 -- inlining is enabled, because in that case the type
2997 -- mismatch may become visible in the body about to be
2998 -- inlined.
2999
3000 Rewrite (Actual,
3001 Unchecked_Convert_To (Parent_Typ,
3002 Relocate_Node (Actual)));
d4817e3f
HK
3003 Analyze (Actual);
3004 Resolve (Actual, Parent_Typ);
3005 end if;
70482933 3006
d4817e3f
HK
3007 -- For array and record types, the parent formal type and
3008 -- derived formal type have different sizes or pragma Pack
3009 -- status.
70482933 3010
d4817e3f
HK
3011 elsif ((Is_Array_Type (Formal_Typ)
3012 and then Is_Array_Type (Parent_Typ))
3013 or else
3014 (Is_Record_Type (Formal_Typ)
3015 and then Is_Record_Type (Parent_Typ)))
3016 and then
3017 (Esize (Formal_Typ) /= Esize (Parent_Typ)
3018 or else Has_Pragma_Pack (Formal_Typ) /=
3019 Has_Pragma_Pack (Parent_Typ))
3020 then
3021 Convert (Actual, Parent_Typ);
70482933 3022 end if;
70482933 3023
d4817e3f
HK
3024 Next_Actual (Actual);
3025 Next_Formal (Formal);
3026 Next_Formal (Parent_Formal);
3027 end loop;
3028 end;
70482933
RK
3029 end if;
3030
3031 Orig_Subp := Subp;
3032 Subp := Parent_Subp;
3033 end if;
3034
8a36a0cc
AC
3035 -- Check for violation of No_Abort_Statements
3036
273adcdf
AC
3037 if Restriction_Check_Required (No_Abort_Statements)
3038 and then Is_RTE (Subp, RE_Abort_Task)
3039 then
6dfc5592 3040 Check_Restriction (No_Abort_Statements, Call_Node);
8a36a0cc
AC
3041
3042 -- Check for violation of No_Dynamic_Attachment
3043
273adcdf
AC
3044 elsif Restriction_Check_Required (No_Dynamic_Attachment)
3045 and then RTU_Loaded (Ada_Interrupts)
8a36a0cc
AC
3046 and then (Is_RTE (Subp, RE_Is_Reserved) or else
3047 Is_RTE (Subp, RE_Is_Attached) or else
3048 Is_RTE (Subp, RE_Current_Handler) or else
3049 Is_RTE (Subp, RE_Attach_Handler) or else
3050 Is_RTE (Subp, RE_Exchange_Handler) or else
3051 Is_RTE (Subp, RE_Detach_Handler) or else
3052 Is_RTE (Subp, RE_Reference))
3053 then
6dfc5592 3054 Check_Restriction (No_Dynamic_Attachment, Call_Node);
fbf5a39b
AC
3055 end if;
3056
8a36a0cc
AC
3057 -- Deal with case where call is an explicit dereference
3058
6dfc5592 3059 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
70482933
RK
3060
3061 -- Handle case of access to protected subprogram type
3062
f937473f 3063 if Is_Access_Protected_Subprogram_Type
6dfc5592 3064 (Base_Type (Etype (Prefix (Name (Call_Node)))))
70482933 3065 then
b3f48fd4
AC
3066 -- If this is a call through an access to protected operation, the
3067 -- prefix has the form (object'address, operation'access). Rewrite
3068 -- as a for other protected calls: the object is the 1st parameter
3069 -- of the list of actuals.
70482933
RK
3070
3071 declare
3072 Call : Node_Id;
3073 Parm : List_Id;
3074 Nam : Node_Id;
3075 Obj : Node_Id;
6dfc5592 3076 Ptr : constant Node_Id := Prefix (Name (Call_Node));
fbf5a39b
AC
3077
3078 T : constant Entity_Id :=
3079 Equivalent_Type (Base_Type (Etype (Ptr)));
3080
3081 D_T : constant Entity_Id :=
3082 Designated_Type (Base_Type (Etype (Ptr)));
70482933
RK
3083
3084 begin
f44fe430
RD
3085 Obj :=
3086 Make_Selected_Component (Loc,
3087 Prefix => Unchecked_Convert_To (T, Ptr),
3088 Selector_Name =>
3089 New_Occurrence_Of (First_Entity (T), Loc));
3090
3091 Nam :=
3092 Make_Selected_Component (Loc,
3093 Prefix => Unchecked_Convert_To (T, Ptr),
3094 Selector_Name =>
3095 New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
70482933 3096
02822a92
RD
3097 Nam :=
3098 Make_Explicit_Dereference (Loc,
3099 Prefix => Nam);
70482933 3100
6dfc5592
RD
3101 if Present (Parameter_Associations (Call_Node)) then
3102 Parm := Parameter_Associations (Call_Node);
70482933
RK
3103 else
3104 Parm := New_List;
3105 end if;
3106
3107 Prepend (Obj, Parm);
3108
3109 if Etype (D_T) = Standard_Void_Type then
02822a92
RD
3110 Call :=
3111 Make_Procedure_Call_Statement (Loc,
3112 Name => Nam,
3113 Parameter_Associations => Parm);
70482933 3114 else
02822a92
RD
3115 Call :=
3116 Make_Function_Call (Loc,
3117 Name => Nam,
3118 Parameter_Associations => Parm);
70482933
RK
3119 end if;
3120
6dfc5592 3121 Set_First_Named_Actual (Call, First_Named_Actual (Call_Node));
70482933
RK
3122 Set_Etype (Call, Etype (D_T));
3123
3124 -- We do not re-analyze the call to avoid infinite recursion.
3125 -- We analyze separately the prefix and the object, and set
3126 -- the checks on the prefix that would otherwise be emitted
3127 -- when resolving a call.
3128
6dfc5592 3129 Rewrite (Call_Node, Call);
70482933
RK
3130 Analyze (Nam);
3131 Apply_Access_Check (Nam);
3132 Analyze (Obj);
3133 return;
3134 end;
3135 end if;
3136 end if;
3137
3138 -- If this is a call to an intrinsic subprogram, then perform the
3139 -- appropriate expansion to the corresponding tree node and we
3140 -- are all done (since after that the call is gone!)
3141
98f01d53
AC
3142 -- In the case where the intrinsic is to be processed by the back end,
3143 -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
b3f48fd4
AC
3144 -- since the idea in this case is to pass the call unchanged. If the
3145 -- intrinsic is an inherited unchecked conversion, and the derived type
3146 -- is the target type of the conversion, we must retain it as the return
3147 -- type of the expression. Otherwise the expansion below, which uses the
3148 -- parent operation, will yield the wrong type.
98f01d53 3149
70482933 3150 if Is_Intrinsic_Subprogram (Subp) then
6dfc5592 3151 Expand_Intrinsic_Call (Call_Node, Subp);
d766cee3 3152
6dfc5592 3153 if Nkind (Call_Node) = N_Unchecked_Type_Conversion
d766cee3
RD
3154 and then Parent_Subp /= Orig_Subp
3155 and then Etype (Parent_Subp) /= Etype (Orig_Subp)
3156 then
6dfc5592 3157 Set_Etype (Call_Node, Etype (Orig_Subp));
d766cee3
RD
3158 end if;
3159
70482933
RK
3160 return;
3161 end if;
3162
b29def53
AC
3163 if Ekind_In (Subp, E_Function, E_Procedure) then
3164
26a43556 3165 -- We perform two simple optimization on calls:
8dbf3473 3166
3563739b 3167 -- a) replace calls to null procedures unconditionally;
26a43556 3168
3563739b 3169 -- b) for To_Address, just do an unchecked conversion. Not only is
26a43556
AC
3170 -- this efficient, but it also avoids order of elaboration problems
3171 -- when address clauses are inlined (address expression elaborated
3172 -- at the wrong point).
3173
3174 -- We perform these optimization regardless of whether we are in the
3175 -- main unit or in a unit in the context of the main unit, to ensure
3176 -- that tree generated is the same in both cases, for Inspector use.
3177
3178 if Is_RTE (Subp, RE_To_Address) then
6dfc5592 3179 Rewrite (Call_Node,
26a43556 3180 Unchecked_Convert_To
6dfc5592 3181 (RTE (RE_Address), Relocate_Node (First_Actual (Call_Node))));
26a43556
AC
3182 return;
3183
3184 elsif Is_Null_Procedure (Subp) then
6dfc5592 3185 Rewrite (Call_Node, Make_Null_Statement (Loc));
8dbf3473
AC
3186 return;
3187 end if;
3188
70482933
RK
3189 if Is_Inlined (Subp) then
3190
a41ea816 3191 Inlined_Subprogram : declare
fbf5a39b
AC
3192 Bod : Node_Id;
3193 Must_Inline : Boolean := False;
3194 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
5b4994bc 3195 Scop : constant Entity_Id := Scope (Subp);
70482933 3196
a41ea816 3197 function In_Unfrozen_Instance return Boolean;
26a43556
AC
3198 -- If the subprogram comes from an instance in the same unit,
3199 -- and the instance is not yet frozen, inlining might trigger
3200 -- order-of-elaboration problems in gigi.
a41ea816
AC
3201
3202 --------------------------
3203 -- In_Unfrozen_Instance --
3204 --------------------------
3205
3206 function In_Unfrozen_Instance return Boolean is
2f1b20a9 3207 S : Entity_Id;
a41ea816
AC
3208
3209 begin
2f1b20a9 3210 S := Scop;
a41ea816
AC
3211 while Present (S)
3212 and then S /= Standard_Standard
3213 loop
3214 if Is_Generic_Instance (S)
3215 and then Present (Freeze_Node (S))
3216 and then not Analyzed (Freeze_Node (S))
3217 then
3218 return True;
3219 end if;
3220
3221 S := Scope (S);
3222 end loop;
3223
3224 return False;
3225 end In_Unfrozen_Instance;
3226
3227 -- Start of processing for Inlined_Subprogram
3228
70482933 3229 begin
2f1b20a9
ES
3230 -- Verify that the body to inline has already been seen, and
3231 -- that if the body is in the current unit the inlining does
3232 -- not occur earlier. This avoids order-of-elaboration problems
3233 -- in the back end.
3234
3235 -- This should be documented in sinfo/einfo ???
70482933 3236
fbf5a39b
AC
3237 if No (Spec)
3238 or else Nkind (Spec) /= N_Subprogram_Declaration
3239 or else No (Body_To_Inline (Spec))
70482933 3240 then
fbf5a39b
AC
3241 Must_Inline := False;
3242
26a43556
AC
3243 -- If this an inherited function that returns a private type,
3244 -- do not inline if the full view is an unconstrained array,
3245 -- because such calls cannot be inlined.
5b4994bc
AC
3246
3247 elsif Present (Orig_Subp)
3248 and then Is_Array_Type (Etype (Orig_Subp))
3249 and then not Is_Constrained (Etype (Orig_Subp))
3250 then
3251 Must_Inline := False;
3252
a41ea816 3253 elsif In_Unfrozen_Instance then
5b4994bc
AC
3254 Must_Inline := False;
3255
fbf5a39b
AC
3256 else
3257 Bod := Body_To_Inline (Spec);
3258
6dfc5592
RD
3259 if (In_Extended_Main_Code_Unit (Call_Node)
3260 or else In_Extended_Main_Code_Unit (Parent (Call_Node))
ac4d6407 3261 or else Has_Pragma_Inline_Always (Subp))
fbf5a39b
AC
3262 and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
3263 or else
3264 Earlier_In_Extended_Unit (Sloc (Bod), Loc))
3265 then
3266 Must_Inline := True;
3267
3268 -- If we are compiling a package body that is not the main
3269 -- unit, it must be for inlining/instantiation purposes,
3270 -- in which case we inline the call to insure that the same
3271 -- temporaries are generated when compiling the body by
3272 -- itself. Otherwise link errors can occur.
3273
2820d220
AC
3274 -- If the function being called is itself in the main unit,
3275 -- we cannot inline, because there is a risk of double
3276 -- elaboration and/or circularity: the inlining can make
3277 -- visible a private entity in the body of the main unit,
3278 -- that gigi will see before its sees its proper definition.
3279
6dfc5592 3280 elsif not (In_Extended_Main_Code_Unit (Call_Node))
fbf5a39b
AC
3281 and then In_Package_Body
3282 then
2820d220 3283 Must_Inline := not In_Extended_Main_Source_Unit (Subp);
fbf5a39b
AC
3284 end if;
3285 end if;
3286
3287 if Must_Inline then
6dfc5592 3288 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
70482933
RK
3289
3290 else
fbf5a39b 3291 -- Let the back end handle it
70482933
RK
3292
3293 Add_Inlined_Body (Subp);
3294
3295 if Front_End_Inlining
3296 and then Nkind (Spec) = N_Subprogram_Declaration
6dfc5592 3297 and then (In_Extended_Main_Code_Unit (Call_Node))
70482933
RK
3298 and then No (Body_To_Inline (Spec))
3299 and then not Has_Completion (Subp)
3300 and then In_Same_Extended_Unit (Sloc (Spec), Loc)
70482933 3301 then
fbf5a39b 3302 Cannot_Inline
6dfc5592 3303 ("cannot inline& (body not seen yet)?", Call_Node, Subp);
70482933
RK
3304 end if;
3305 end if;
a41ea816 3306 end Inlined_Subprogram;
70482933
RK
3307 end if;
3308 end if;
3309
26a43556
AC
3310 -- Check for protected subprogram. This is either an intra-object call,
3311 -- or a protected function call. Protected procedure calls are rewritten
3312 -- as entry calls and handled accordingly.
70482933 3313
26a43556
AC
3314 -- In Ada 2005, this may be an indirect call to an access parameter that
3315 -- is an access_to_subprogram. In that case the anonymous type has a
3316 -- scope that is a protected operation, but the call is a regular one.
6f76a257 3317 -- In either case do not expand call if subprogram is eliminated.
c8ef728f 3318
70482933
RK
3319 Scop := Scope (Subp);
3320
6dfc5592 3321 if Nkind (Call_Node) /= N_Entry_Call_Statement
70482933 3322 and then Is_Protected_Type (Scop)
c8ef728f 3323 and then Ekind (Subp) /= E_Subprogram_Type
6f76a257 3324 and then not Is_Eliminated (Subp)
70482933 3325 then
26a43556
AC
3326 -- If the call is an internal one, it is rewritten as a call to the
3327 -- corresponding unprotected subprogram.
70482933 3328
6dfc5592 3329 Expand_Protected_Subprogram_Call (Call_Node, Subp, Scop);
70482933
RK
3330 end if;
3331
df3e68b1
HK
3332 -- Functions returning controlled objects need special attention. If
3333 -- the return type is limited, then the context is initialization and
3334 -- different processing applies. If the call is to a protected function,
3335 -- the expansion above will call Expand_Call recursively. Otherwise the
3336 -- function call is transformed into a temporary which obtains the
3337 -- result from the secondary stack.
70482933 3338
c768e988 3339 if Needs_Finalization (Etype (Subp)) then
40f07b4b 3340 if not Is_Immutably_Limited_Type (Etype (Subp))
c768e988
AC
3341 and then
3342 (No (First_Formal (Subp))
3343 or else
3344 not Is_Concurrent_Record_Type (Etype (First_Formal (Subp))))
3345 then
6dfc5592 3346 Expand_Ctrl_Function_Call (Call_Node);
c768e988
AC
3347
3348 -- Build-in-place function calls which appear in anonymous contexts
3349 -- need a transient scope to ensure the proper finalization of the
3350 -- intermediate result after its use.
3351
6dfc5592
RD
3352 elsif Is_Build_In_Place_Function_Call (Call_Node)
3353 and then Nkind_In (Parent (Call_Node), N_Attribute_Reference,
c768e988
AC
3354 N_Function_Call,
3355 N_Indexed_Component,
3356 N_Object_Renaming_Declaration,
3357 N_Procedure_Call_Statement,
3358 N_Selected_Component,
3359 N_Slice)
3360 then
6dfc5592 3361 Establish_Transient_Scope (Call_Node, Sec_Stack => True);
c768e988 3362 end if;
70482933
RK
3363 end if;
3364
26a43556
AC
3365 -- Test for First_Optional_Parameter, and if so, truncate parameter list
3366 -- if there are optional parameters at the trailing end.
3367 -- Note: we never delete procedures for call via a pointer.
70482933
RK
3368
3369 if (Ekind (Subp) = E_Procedure or else Ekind (Subp) = E_Function)
3370 and then Present (First_Optional_Parameter (Subp))
3371 then
3372 declare
3373 Last_Keep_Arg : Node_Id;
3374
3375 begin
26a43556
AC
3376 -- Last_Keep_Arg will hold the last actual that should be kept.
3377 -- If it remains empty at the end, it means that all parameters
3378 -- are optional.
70482933
RK
3379
3380 Last_Keep_Arg := Empty;
3381
26a43556
AC
3382 -- Find first optional parameter, must be present since we checked
3383 -- the validity of the parameter before setting it.
70482933
RK
3384
3385 Formal := First_Formal (Subp);
6dfc5592 3386 Actual := First_Actual (Call_Node);
70482933
RK
3387 while Formal /= First_Optional_Parameter (Subp) loop
3388 Last_Keep_Arg := Actual;
3389 Next_Formal (Formal);
3390 Next_Actual (Actual);
3391 end loop;
3392
fbf5a39b
AC
3393 -- We have Formal and Actual pointing to the first potentially
3394 -- droppable argument. We can drop all the trailing arguments
3395 -- whose actual matches the default. Note that we know that all
3396 -- remaining formals have defaults, because we checked that this
3397 -- requirement was met before setting First_Optional_Parameter.
70482933
RK
3398
3399 -- We use Fully_Conformant_Expressions to check for identity
3400 -- between formals and actuals, which may miss some cases, but
3401 -- on the other hand, this is only an optimization (if we fail
3402 -- to truncate a parameter it does not affect functionality).
3403 -- So if the default is 3 and the actual is 1+2, we consider
3404 -- them unequal, which hardly seems worrisome.
3405
3406 while Present (Formal) loop
3407 if not Fully_Conformant_Expressions
3408 (Actual, Default_Value (Formal))
3409 then
3410 Last_Keep_Arg := Actual;
3411 end if;
3412
3413 Next_Formal (Formal);
3414 Next_Actual (Actual);
3415 end loop;
3416
3417 -- If no arguments, delete entire list, this is the easy case
3418
3419 if No (Last_Keep_Arg) then
6dfc5592
RD
3420 Set_Parameter_Associations (Call_Node, No_List);
3421 Set_First_Named_Actual (Call_Node, Empty);
70482933
RK
3422
3423 -- Case where at the last retained argument is positional. This
3424 -- is also an easy case, since the retained arguments are already
3425 -- in the right form, and we don't need to worry about the order
3426 -- of arguments that get eliminated.
3427
3428 elsif Is_List_Member (Last_Keep_Arg) then
3429 while Present (Next (Last_Keep_Arg)) loop
ac4d6407 3430 Discard_Node (Remove_Next (Last_Keep_Arg));
70482933
RK
3431 end loop;
3432
6dfc5592 3433 Set_First_Named_Actual (Call_Node, Empty);
70482933
RK
3434
3435 -- This is the annoying case where the last retained argument
3436 -- is a named parameter. Since the original arguments are not
3437 -- in declaration order, we may have to delete some fairly
3438 -- random collection of arguments.
3439
3440 else
3441 declare
3442 Temp : Node_Id;
3443 Passoc : Node_Id;
fbf5a39b 3444
70482933
RK
3445 begin
3446 -- First step, remove all the named parameters from the
3447 -- list (they are still chained using First_Named_Actual
3448 -- and Next_Named_Actual, so we have not lost them!)
3449
6dfc5592 3450 Temp := First (Parameter_Associations (Call_Node));
70482933
RK
3451
3452 -- Case of all parameters named, remove them all
3453
3454 if Nkind (Temp) = N_Parameter_Association then
6dfc5592
RD
3455 -- Suppress warnings to avoid warning on possible
3456 -- infinite loop (because Call_Node is not modified).
3457
3458 pragma Warnings (Off);
3459 while Is_Non_Empty_List
3460 (Parameter_Associations (Call_Node))
3461 loop
3462 Temp :=
3463 Remove_Head (Parameter_Associations (Call_Node));
70482933 3464 end loop;
6dfc5592 3465 pragma Warnings (On);
70482933
RK
3466
3467 -- Case of mixed positional/named, remove named parameters
3468
3469 else
3470 while Nkind (Next (Temp)) /= N_Parameter_Association loop
3471 Next (Temp);
3472 end loop;
3473
3474 while Present (Next (Temp)) loop
7888a6ae 3475 Remove (Next (Temp));
70482933
RK
3476 end loop;
3477 end if;
3478
3479 -- Now we loop through the named parameters, till we get
3480 -- to the last one to be retained, adding them to the list.
3481 -- Note that the Next_Named_Actual list does not need to be
3482 -- touched since we are only reordering them on the actual
3483 -- parameter association list.
3484
6dfc5592 3485 Passoc := Parent (First_Named_Actual (Call_Node));
70482933
RK
3486 loop
3487 Temp := Relocate_Node (Passoc);
3488 Append_To
6dfc5592 3489 (Parameter_Associations (Call_Node), Temp);
70482933
RK
3490 exit when
3491 Last_Keep_Arg = Explicit_Actual_Parameter (Passoc);
3492 Passoc := Parent (Next_Named_Actual (Passoc));
3493 end loop;
3494
3495 Set_Next_Named_Actual (Temp, Empty);
3496
3497 loop
3498 Temp := Next_Named_Actual (Passoc);
3499 exit when No (Temp);
3500 Set_Next_Named_Actual
3501 (Passoc, Next_Named_Actual (Parent (Temp)));
70482933
RK
3502 end loop;
3503 end;
811c6a85 3504
70482933
RK
3505 end if;
3506 end;
3507 end if;
70482933
RK
3508 end Expand_Call;
3509
df3e68b1
HK
3510 -------------------------------
3511 -- Expand_Ctrl_Function_Call --
3512 -------------------------------
3513
3514 procedure Expand_Ctrl_Function_Call (N : Node_Id) is
3515 begin
3516 -- Optimization, if the returned value (which is on the sec-stack) is
3517 -- returned again, no need to copy/readjust/finalize, we can just pass
3518 -- the value thru (see Expand_N_Simple_Return_Statement), and thus no
3519 -- attachment is needed
3520
3521 if Nkind (Parent (N)) = N_Simple_Return_Statement then
3522 return;
3523 end if;
3524
3525 -- Resolution is now finished, make sure we don't start analysis again
3526 -- because of the duplication.
3527
3528 Set_Analyzed (N);
3529
3530 -- A function which returns a controlled object uses the secondary
3531 -- stack. Rewrite the call into a temporary which obtains the result of
3532 -- the function using 'reference.
3533
3534 Remove_Side_Effects (N);
3535 end Expand_Ctrl_Function_Call;
3536
70482933
RK
3537 --------------------------
3538 -- Expand_Inlined_Call --
3539 --------------------------
3540
3541 procedure Expand_Inlined_Call
3542 (N : Node_Id;
3543 Subp : Entity_Id;
3544 Orig_Subp : Entity_Id)
3545 is
fbf5a39b
AC
3546 Loc : constant Source_Ptr := Sloc (N);
3547 Is_Predef : constant Boolean :=
3548 Is_Predefined_File_Name
3549 (Unit_File_Name (Get_Source_Unit (Subp)));
3550 Orig_Bod : constant Node_Id :=
3551 Body_To_Inline (Unit_Declaration_Node (Subp));
3552
70482933
RK
3553 Blk : Node_Id;
3554 Bod : Node_Id;
3555 Decl : Node_Id;
c8ef728f 3556 Decls : constant List_Id := New_List;
70482933
RK
3557 Exit_Lab : Entity_Id := Empty;
3558 F : Entity_Id;
3559 A : Node_Id;
3560 Lab_Decl : Node_Id;
3561 Lab_Id : Node_Id;
3562 New_A : Node_Id;
3563 Num_Ret : Int := 0;
70482933
RK
3564 Ret_Type : Entity_Id;
3565 Targ : Node_Id;
c8ef728f 3566 Targ1 : Node_Id;
70482933
RK
3567 Temp : Entity_Id;
3568 Temp_Typ : Entity_Id;
3569
3e2399ba
AC
3570 Return_Object : Entity_Id := Empty;
3571 -- Entity in declaration in an extended_return_statement
3572
c8ef728f
ES
3573 Is_Unc : constant Boolean :=
3574 Is_Array_Type (Etype (Subp))
3575 and then not Is_Constrained (Etype (Subp));
26a43556
AC
3576 -- If the type returned by the function is unconstrained and the call
3577 -- can be inlined, special processing is required.
c8ef728f 3578
70482933 3579 procedure Make_Exit_Label;
26a43556 3580 -- Build declaration for exit label to be used in Return statements,
c12beea0
RD
3581 -- sets Exit_Lab (the label node) and Lab_Decl (corresponding implicit
3582 -- declaration). Does nothing if Exit_Lab already set.
70482933
RK
3583
3584 function Process_Formals (N : Node_Id) return Traverse_Result;
26a43556
AC
3585 -- Replace occurrence of a formal with the corresponding actual, or the
3586 -- thunk generated for it.
70482933 3587
fbf5a39b 3588 function Process_Sloc (Nod : Node_Id) return Traverse_Result;
26a43556
AC
3589 -- If the call being expanded is that of an internal subprogram, set the
3590 -- sloc of the generated block to that of the call itself, so that the
3591 -- expansion is skipped by the "next" command in gdb.
fbf5a39b 3592 -- Same processing for a subprogram in a predefined file, e.g.
26a43556
AC
3593 -- Ada.Tags. If Debug_Generated_Code is true, suppress this change to
3594 -- simplify our own development.
fbf5a39b 3595
70482933
RK
3596 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id);
3597 -- If the function body is a single expression, replace call with
3598 -- expression, else insert block appropriately.
3599
3600 procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id);
3601 -- If procedure body has no local variables, inline body without
02822a92 3602 -- creating block, otherwise rewrite call with block.
70482933 3603
5453d5bd
AC
3604 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean;
3605 -- Determine whether a formal parameter is used only once in Orig_Bod
3606
70482933
RK
3607 ---------------------
3608 -- Make_Exit_Label --
3609 ---------------------
3610
3611 procedure Make_Exit_Label is
c12beea0 3612 Lab_Ent : Entity_Id;
70482933 3613 begin
70482933 3614 if No (Exit_Lab) then
c12beea0
RD
3615 Lab_Ent := Make_Temporary (Loc, 'L');
3616 Lab_Id := New_Reference_To (Lab_Ent, Loc);
70482933 3617 Exit_Lab := Make_Label (Loc, Lab_Id);
70482933
RK
3618 Lab_Decl :=
3619 Make_Implicit_Label_Declaration (Loc,
c12beea0 3620 Defining_Identifier => Lab_Ent,
70482933
RK
3621 Label_Construct => Exit_Lab);
3622 end if;
3623 end Make_Exit_Label;
3624
3625 ---------------------
3626 -- Process_Formals --
3627 ---------------------
3628
3629 function Process_Formals (N : Node_Id) return Traverse_Result is
3630 A : Entity_Id;
3631 E : Entity_Id;
3632 Ret : Node_Id;
3633
3634 begin
3635 if Is_Entity_Name (N)
3636 and then Present (Entity (N))
3637 then
3638 E := Entity (N);
3639
3640 if Is_Formal (E)
3641 and then Scope (E) = Subp
3642 then
3643 A := Renamed_Object (E);
3644
02822a92
RD
3645 -- Rewrite the occurrence of the formal into an occurrence of
3646 -- the actual. Also establish visibility on the proper view of
3647 -- the actual's subtype for the body's context (if the actual's
3648 -- subtype is private at the call point but its full view is
3649 -- visible to the body, then the inlined tree here must be
3650 -- analyzed with the full view).
3651
70482933
RK
3652 if Is_Entity_Name (A) then
3653 Rewrite (N, New_Occurrence_Of (Entity (A), Loc));
02822a92 3654 Check_Private_View (N);
70482933
RK
3655
3656 elsif Nkind (A) = N_Defining_Identifier then
3657 Rewrite (N, New_Occurrence_Of (A, Loc));
02822a92 3658 Check_Private_View (N);
70482933 3659
d766cee3
RD
3660 -- Numeric literal
3661
3662 else
70482933
RK
3663 Rewrite (N, New_Copy (A));
3664 end if;
3665 end if;
3e2399ba
AC
3666 return Skip;
3667
3668 elsif Is_Entity_Name (N)
9f5b6c7f 3669 and then Present (Return_Object)
3e2399ba
AC
3670 and then Chars (N) = Chars (Return_Object)
3671 then
3672 -- Occurrence within an extended return statement. The return
3673 -- object is local to the body been inlined, and thus the generic
3674 -- copy is not analyzed yet, so we match by name, and replace it
3675 -- with target of call.
3676
3677 if Nkind (Targ) = N_Defining_Identifier then
3678 Rewrite (N, New_Occurrence_Of (Targ, Loc));
3679 else
3680 Rewrite (N, New_Copy_Tree (Targ));
3681 end if;
70482933
RK
3682
3683 return Skip;
3684
d766cee3 3685 elsif Nkind (N) = N_Simple_Return_Statement then
70482933
RK
3686 if No (Expression (N)) then
3687 Make_Exit_Label;
d766cee3 3688 Rewrite (N,
3e2399ba 3689 Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
70482933
RK
3690
3691 else
3692 if Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
3693 and then Nkind (Parent (Parent (N))) = N_Subprogram_Body
3694 then
fbf5a39b 3695 -- Function body is a single expression. No need for
70482933 3696 -- exit label.
fbf5a39b 3697
70482933
RK
3698 null;
3699
3700 else
3701 Num_Ret := Num_Ret + 1;
3702 Make_Exit_Label;
3703 end if;
3704
3705 -- Because of the presence of private types, the views of the
3706 -- expression and the context may be different, so place an
3707 -- unchecked conversion to the context type to avoid spurious
8fc789c8 3708 -- errors, e.g. when the expression is a numeric literal and
70482933
RK
3709 -- the context is private. If the expression is an aggregate,
3710 -- use a qualified expression, because an aggregate is not a
3711 -- legal argument of a conversion.
3712
ac4d6407 3713 if Nkind_In (Expression (N), N_Aggregate, N_Null) then
70482933
RK
3714 Ret :=
3715 Make_Qualified_Expression (Sloc (N),
3716 Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
3717 Expression => Relocate_Node (Expression (N)));
3718 else
3719 Ret :=
3720 Unchecked_Convert_To
3721 (Ret_Type, Relocate_Node (Expression (N)));
3722 end if;
3723
3724 if Nkind (Targ) = N_Defining_Identifier then
3725 Rewrite (N,
3726 Make_Assignment_Statement (Loc,
3727 Name => New_Occurrence_Of (Targ, Loc),
3728 Expression => Ret));
3729 else
3730 Rewrite (N,
3731 Make_Assignment_Statement (Loc,
3732 Name => New_Copy (Targ),
3733 Expression => Ret));
3734 end if;
3735
3736 Set_Assignment_OK (Name (N));
3737
3738 if Present (Exit_Lab) then
3739 Insert_After (N,
3740 Make_Goto_Statement (Loc,
3741 Name => New_Copy (Lab_Id)));
3742 end if;
3743 end if;
3744
3745 return OK;
3746
3e2399ba
AC
3747 elsif Nkind (N) = N_Extended_Return_Statement then
3748
3749 -- An extended return becomes a block whose first statement is
3750 -- the assignment of the initial expression of the return object
3751 -- to the target of the call itself.
3752
3753 declare
3754 Return_Decl : constant Entity_Id :=
3755 First (Return_Object_Declarations (N));
3756 Assign : Node_Id;
3757
3758 begin
3759 Return_Object := Defining_Identifier (Return_Decl);
3760
3761 if Present (Expression (Return_Decl)) then
3762 if Nkind (Targ) = N_Defining_Identifier then
3763 Assign :=
3764 Make_Assignment_Statement (Loc,
3765 Name => New_Occurrence_Of (Targ, Loc),
3766 Expression => Expression (Return_Decl));
3767 else
3768 Assign :=
3769 Make_Assignment_Statement (Loc,
3770 Name => New_Copy (Targ),
3771 Expression => Expression (Return_Decl));
3772 end if;
3773
3774 Set_Assignment_OK (Name (Assign));
3775 Prepend (Assign,
3776 Statements (Handled_Statement_Sequence (N)));
3777 end if;
3778
3779 Rewrite (N,
3780 Make_Block_Statement (Loc,
3781 Handled_Statement_Sequence =>
3782 Handled_Statement_Sequence (N)));
3783
3784 return OK;
3785 end;
3786
fbf5a39b
AC
3787 -- Remove pragma Unreferenced since it may refer to formals that
3788 -- are not visible in the inlined body, and in any case we will
3789 -- not be posting warnings on the inlined body so it is unneeded.
3790
3791 elsif Nkind (N) = N_Pragma
1923d2d6 3792 and then Pragma_Name (N) = Name_Unreferenced
fbf5a39b
AC
3793 then
3794 Rewrite (N, Make_Null_Statement (Sloc (N)));
3795 return OK;
3796
70482933
RK
3797 else
3798 return OK;
3799 end if;
3800 end Process_Formals;
3801
3802 procedure Replace_Formals is new Traverse_Proc (Process_Formals);
3803
fbf5a39b
AC
3804 ------------------
3805 -- Process_Sloc --
3806 ------------------
3807
3808 function Process_Sloc (Nod : Node_Id) return Traverse_Result is
3809 begin
3810 if not Debug_Generated_Code then
3811 Set_Sloc (Nod, Sloc (N));
3812 Set_Comes_From_Source (Nod, False);
3813 end if;
3814
3815 return OK;
3816 end Process_Sloc;
3817
3818 procedure Reset_Slocs is new Traverse_Proc (Process_Sloc);
3819
70482933
RK
3820 ---------------------------
3821 -- Rewrite_Function_Call --
3822 ---------------------------
3823
3824 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id) is
fbf5a39b
AC
3825 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
3826 Fst : constant Node_Id := First (Statements (HSS));
70482933
RK
3827
3828 begin
70482933
RK
3829 -- Optimize simple case: function body is a single return statement,
3830 -- which has been expanded into an assignment.
3831
3832 if Is_Empty_List (Declarations (Blk))
3833 and then Nkind (Fst) = N_Assignment_Statement
3834 and then No (Next (Fst))
3835 then
3836
3837 -- The function call may have been rewritten as the temporary
3838 -- that holds the result of the call, in which case remove the
3839 -- now useless declaration.
3840
3841 if Nkind (N) = N_Identifier
3842 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
3843 then
3844 Rewrite (Parent (Entity (N)), Make_Null_Statement (Loc));
3845 end if;
3846
3847 Rewrite (N, Expression (Fst));
3848
3849 elsif Nkind (N) = N_Identifier
3850 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
3851 then
98f01d53 3852 -- The block assigns the result of the call to the temporary
70482933
RK
3853
3854 Insert_After (Parent (Entity (N)), Blk);
3855
3856 elsif Nkind (Parent (N)) = N_Assignment_Statement
c8ef728f
ES
3857 and then
3858 (Is_Entity_Name (Name (Parent (N)))
3859 or else
3860 (Nkind (Name (Parent (N))) = N_Explicit_Dereference
3861 and then Is_Entity_Name (Prefix (Name (Parent (N))))))
70482933 3862 then
fbf5a39b 3863 -- Replace assignment with the block
70482933 3864
30c20106
AC
3865 declare
3866 Original_Assignment : constant Node_Id := Parent (N);
7324bf49
AC
3867
3868 begin
2f1b20a9
ES
3869 -- Preserve the original assignment node to keep the complete
3870 -- assignment subtree consistent enough for Analyze_Assignment
3871 -- to proceed (specifically, the original Lhs node must still
3872 -- have an assignment statement as its parent).
7324bf49 3873
2f1b20a9
ES
3874 -- We cannot rely on Original_Node to go back from the block
3875 -- node to the assignment node, because the assignment might
3876 -- already be a rewrite substitution.
30c20106 3877
7324bf49 3878 Discard_Node (Relocate_Node (Original_Assignment));
30c20106
AC
3879 Rewrite (Original_Assignment, Blk);
3880 end;
70482933
RK
3881
3882 elsif Nkind (Parent (N)) = N_Object_Declaration then
3883 Set_Expression (Parent (N), Empty);
3884 Insert_After (Parent (N), Blk);
c8ef728f
ES
3885
3886 elsif Is_Unc then
3887 Insert_Before (Parent (N), Blk);
70482933
RK
3888 end if;
3889 end Rewrite_Function_Call;
3890
3891 ----------------------------
3892 -- Rewrite_Procedure_Call --
3893 ----------------------------
3894
3895 procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id) is
fbf5a39b 3896 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
70482933 3897 begin
02822a92
RD
3898 -- If there is a transient scope for N, this will be the scope of the
3899 -- actions for N, and the statements in Blk need to be within this
3900 -- scope. For example, they need to have visibility on the constant
3901 -- declarations created for the formals.
3902
3903 -- If N needs no transient scope, and if there are no declarations in
3904 -- the inlined body, we can do a little optimization and insert the
3905 -- statements for the body directly after N, and rewrite N to a
3906 -- null statement, instead of rewriting N into a full-blown block
3907 -- statement.
3908
3909 if not Scope_Is_Transient
3910 and then Is_Empty_List (Declarations (Blk))
3911 then
70482933
RK
3912 Insert_List_After (N, Statements (HSS));
3913 Rewrite (N, Make_Null_Statement (Loc));
3914 else
3915 Rewrite (N, Blk);
3916 end if;
3917 end Rewrite_Procedure_Call;
3918
5453d5bd
AC
3919 -------------------------
3920 -- Formal_Is_Used_Once --
02822a92 3921 -------------------------
5453d5bd
AC
3922
3923 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean is
3924 Use_Counter : Int := 0;
3925
3926 function Count_Uses (N : Node_Id) return Traverse_Result;
3927 -- Traverse the tree and count the uses of the formal parameter.
3928 -- In this case, for optimization purposes, we do not need to
3929 -- continue the traversal once more than one use is encountered.
3930
cc335f43
AC
3931 ----------------
3932 -- Count_Uses --
3933 ----------------
3934
5453d5bd
AC
3935 function Count_Uses (N : Node_Id) return Traverse_Result is
3936 begin
5453d5bd
AC
3937 -- The original node is an identifier
3938
3939 if Nkind (N) = N_Identifier
3940 and then Present (Entity (N))
3941
2f1b20a9 3942 -- Original node's entity points to the one in the copied body
5453d5bd
AC
3943
3944 and then Nkind (Entity (N)) = N_Identifier
3945 and then Present (Entity (Entity (N)))
3946
3947 -- The entity of the copied node is the formal parameter
3948
3949 and then Entity (Entity (N)) = Formal
3950 then
3951 Use_Counter := Use_Counter + 1;
3952
3953 if Use_Counter > 1 then
3954
3955 -- Denote more than one use and abandon the traversal
3956
3957 Use_Counter := 2;
3958 return Abandon;
3959
3960 end if;
3961 end if;
3962
3963 return OK;
3964 end Count_Uses;
3965
3966 procedure Count_Formal_Uses is new Traverse_Proc (Count_Uses);
3967
3968 -- Start of processing for Formal_Is_Used_Once
3969
3970 begin
5453d5bd
AC
3971 Count_Formal_Uses (Orig_Bod);
3972 return Use_Counter = 1;
5453d5bd
AC
3973 end Formal_Is_Used_Once;
3974
70482933
RK
3975 -- Start of processing for Expand_Inlined_Call
3976
3977 begin
8dbf3473 3978
f44fe430
RD
3979 -- Check for an illegal attempt to inline a recursive procedure. If the
3980 -- subprogram has parameters this is detected when trying to supply a
3981 -- binding for parameters that already have one. For parameterless
3982 -- subprograms this must be done explicitly.
3983
3984 if In_Open_Scopes (Subp) then
3985 Error_Msg_N ("call to recursive subprogram cannot be inlined?", N);
3986 Set_Is_Inlined (Subp, False);
3987 return;
3988 end if;
3989
2ccf2fb3
ES
3990 if Nkind (Orig_Bod) = N_Defining_Identifier
3991 or else Nkind (Orig_Bod) = N_Defining_Operator_Symbol
3992 then
8a45b58c
RD
3993 -- Subprogram is renaming_as_body. Calls occurring after the renaming
3994 -- can be replaced with calls to the renamed entity directly, because
3995 -- the subprograms are subtype conformant. If the renamed subprogram
3996 -- is an inherited operation, we must redo the expansion because
3997 -- implicit conversions may be needed. Similarly, if the renamed
3998 -- entity is inlined, expand the call for further optimizations.
70482933
RK
3999
4000 Set_Name (N, New_Occurrence_Of (Orig_Bod, Loc));
f44fe430 4001
676e8420 4002 if Present (Alias (Orig_Bod)) or else Is_Inlined (Orig_Bod) then
f44fe430
RD
4003 Expand_Call (N);
4004 end if;
4005
70482933
RK
4006 return;
4007 end if;
4008
4009 -- Use generic machinery to copy body of inlined subprogram, as if it
4010 -- were an instantiation, resetting source locations appropriately, so
4011 -- that nested inlined calls appear in the main unit.
4012
4013 Save_Env (Subp, Empty);
fbf5a39b 4014 Set_Copied_Sloc_For_Inlined_Body (N, Defining_Entity (Orig_Bod));
70482933 4015
fbf5a39b 4016 Bod := Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
70482933
RK
4017 Blk :=
4018 Make_Block_Statement (Loc,
4019 Declarations => Declarations (Bod),
4020 Handled_Statement_Sequence => Handled_Statement_Sequence (Bod));
4021
4022 if No (Declarations (Bod)) then
4023 Set_Declarations (Blk, New_List);
4024 end if;
4025
c8ef728f 4026 -- For the unconstrained case, capture the name of the local
02822a92
RD
4027 -- variable that holds the result. This must be the first declaration
4028 -- in the block, because its bounds cannot depend on local variables.
4029 -- Otherwise there is no way to declare the result outside of the
4030 -- block. Needless to say, in general the bounds will depend on the
4031 -- actuals in the call.
c8ef728f
ES
4032
4033 if Is_Unc then
02822a92 4034 Targ1 := Defining_Identifier (First (Declarations (Blk)));
c8ef728f
ES
4035 end if;
4036
98f01d53 4037 -- If this is a derived function, establish the proper return type
70482933
RK
4038
4039 if Present (Orig_Subp)
4040 and then Orig_Subp /= Subp
4041 then
4042 Ret_Type := Etype (Orig_Subp);
4043 else
4044 Ret_Type := Etype (Subp);
4045 end if;
4046
70482933
RK
4047 -- Create temporaries for the actuals that are expressions, or that
4048 -- are scalars and require copying to preserve semantics.
4049
2f1b20a9
ES
4050 F := First_Formal (Subp);
4051 A := First_Actual (N);
70482933 4052 while Present (F) loop
70482933 4053 if Present (Renamed_Object (F)) then
2f1b20a9 4054 Error_Msg_N ("cannot inline call to recursive subprogram", N);
70482933
RK
4055 return;
4056 end if;
4057
4058 -- If the argument may be a controlling argument in a call within
f44fe430
RD
4059 -- the inlined body, we must preserve its classwide nature to insure
4060 -- that dynamic dispatching take place subsequently. If the formal
4061 -- has a constraint it must be preserved to retain the semantics of
4062 -- the body.
70482933
RK
4063
4064 if Is_Class_Wide_Type (Etype (F))
4065 or else (Is_Access_Type (Etype (F))
4066 and then
4067 Is_Class_Wide_Type (Designated_Type (Etype (F))))
4068 then
4069 Temp_Typ := Etype (F);
4070
4071 elsif Base_Type (Etype (F)) = Base_Type (Etype (A))
4072 and then Etype (F) /= Base_Type (Etype (F))
4073 then
4074 Temp_Typ := Etype (F);
4075
4076 else
4077 Temp_Typ := Etype (A);
4078 end if;
4079
5b4994bc
AC
4080 -- If the actual is a simple name or a literal, no need to
4081 -- create a temporary, object can be used directly.
70482933 4082
7888a6ae
GD
4083 -- If the actual is a literal and the formal has its address taken,
4084 -- we cannot pass the literal itself as an argument, so its value
4085 -- must be captured in a temporary.
4086
fbf5a39b
AC
4087 if (Is_Entity_Name (A)
4088 and then
4089 (not Is_Scalar_Type (Etype (A))
4090 or else Ekind (Entity (A)) = E_Enumeration_Literal))
4091
5453d5bd
AC
4092 -- When the actual is an identifier and the corresponding formal
4093 -- is used only once in the original body, the formal can be
4094 -- substituted directly with the actual parameter.
4095
4096 or else (Nkind (A) = N_Identifier
4097 and then Formal_Is_Used_Once (F))
4098
7888a6ae 4099 or else
ac4d6407
RD
4100 (Nkind_In (A, N_Real_Literal,
4101 N_Integer_Literal,
4102 N_Character_Literal)
4103 and then not Address_Taken (F))
70482933 4104 then
fbf5a39b
AC
4105 if Etype (F) /= Etype (A) then
4106 Set_Renamed_Object
4107 (F, Unchecked_Convert_To (Etype (F), Relocate_Node (A)));
4108 else
4109 Set_Renamed_Object (F, A);
4110 end if;
4111
4112 else
c12beea0 4113 Temp := Make_Temporary (Loc, 'C');
70482933
RK
4114
4115 -- If the actual for an in/in-out parameter is a view conversion,
4116 -- make it into an unchecked conversion, given that an untagged
4117 -- type conversion is not a proper object for a renaming.
fbf5a39b 4118
70482933
RK
4119 -- In-out conversions that involve real conversions have already
4120 -- been transformed in Expand_Actuals.
4121
4122 if Nkind (A) = N_Type_Conversion
fbf5a39b 4123 and then Ekind (F) /= E_In_Parameter
70482933 4124 then
02822a92
RD
4125 New_A :=
4126 Make_Unchecked_Type_Conversion (Loc,
4127 Subtype_Mark => New_Occurrence_Of (Etype (F), Loc),
4128 Expression => Relocate_Node (Expression (A)));
70482933
RK
4129
4130 elsif Etype (F) /= Etype (A) then
4131 New_A := Unchecked_Convert_To (Etype (F), Relocate_Node (A));
4132 Temp_Typ := Etype (F);
4133
4134 else
4135 New_A := Relocate_Node (A);
4136 end if;
4137
4138 Set_Sloc (New_A, Sloc (N));
4139
02822a92
RD
4140 -- If the actual has a by-reference type, it cannot be copied, so
4141 -- its value is captured in a renaming declaration. Otherwise
7888a6ae 4142 -- declare a local constant initialized with the actual.
02822a92 4143
4a3b249c
RD
4144 -- We also use a renaming declaration for expressions of an array
4145 -- type that is not bit-packed, both for efficiency reasons and to
4146 -- respect the semantics of the call: in most cases the original
4147 -- call will pass the parameter by reference, and thus the inlined
4148 -- code will have the same semantics.
bafc9e1d 4149
70482933
RK
4150 if Ekind (F) = E_In_Parameter
4151 and then not Is_Limited_Type (Etype (A))
02822a92 4152 and then not Is_Tagged_Type (Etype (A))
bafc9e1d
AC
4153 and then
4154 (not Is_Array_Type (Etype (A))
f66d46ec 4155 or else not Is_Object_Reference (A)
bafc9e1d 4156 or else Is_Bit_Packed_Array (Etype (A)))
70482933
RK
4157 then
4158 Decl :=
4159 Make_Object_Declaration (Loc,
4160 Defining_Identifier => Temp,
4161 Constant_Present => True,
4162 Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
4163 Expression => New_A);
4164 else
4165 Decl :=
4166 Make_Object_Renaming_Declaration (Loc,
4167 Defining_Identifier => Temp,
4168 Subtype_Mark => New_Occurrence_Of (Temp_Typ, Loc),
4169 Name => New_A);
4170 end if;
4171
c8ef728f 4172 Append (Decl, Decls);
70482933 4173 Set_Renamed_Object (F, Temp);
70482933
RK
4174 end if;
4175
4176 Next_Formal (F);
4177 Next_Actual (A);
4178 end loop;
4179
4180 -- Establish target of function call. If context is not assignment or
4181 -- declaration, create a temporary as a target. The declaration for
4182 -- the temporary may be subsequently optimized away if the body is a
4183 -- single expression, or if the left-hand side of the assignment is
c8ef728f 4184 -- simple enough, i.e. an entity or an explicit dereference of one.
70482933
RK
4185
4186 if Ekind (Subp) = E_Function then
4187 if Nkind (Parent (N)) = N_Assignment_Statement
4188 and then Is_Entity_Name (Name (Parent (N)))
4189 then
4190 Targ := Name (Parent (N));
4191
c8ef728f
ES
4192 elsif Nkind (Parent (N)) = N_Assignment_Statement
4193 and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
4194 and then Is_Entity_Name (Prefix (Name (Parent (N))))
4195 then
4196 Targ := Name (Parent (N));
4197
3e2399ba
AC
4198 elsif Nkind (Parent (N)) = N_Object_Declaration
4199 and then Is_Limited_Type (Etype (Subp))
4200 then
4201 Targ := Defining_Identifier (Parent (N));
4202
70482933 4203 else
98f01d53 4204 -- Replace call with temporary and create its declaration
70482933 4205
c12beea0 4206 Temp := Make_Temporary (Loc, 'C');
758c442c 4207 Set_Is_Internal (Temp);
70482933 4208
30783513 4209 -- For the unconstrained case, the generated temporary has the
4a3b249c
RD
4210 -- same constrained declaration as the result variable. It may
4211 -- eventually be possible to remove that temporary and use the
4212 -- result variable directly.
c8ef728f
ES
4213
4214 if Is_Unc then
4215 Decl :=
4216 Make_Object_Declaration (Loc,
4217 Defining_Identifier => Temp,
4218 Object_Definition =>
4219 New_Copy_Tree (Object_Definition (Parent (Targ1))));
4220
4221 Replace_Formals (Decl);
4222
4223 else
4224 Decl :=
4225 Make_Object_Declaration (Loc,
4226 Defining_Identifier => Temp,
4227 Object_Definition =>
4228 New_Occurrence_Of (Ret_Type, Loc));
4229
4230 Set_Etype (Temp, Ret_Type);
4231 end if;
70482933
RK
4232
4233 Set_No_Initialization (Decl);
c8ef728f 4234 Append (Decl, Decls);
70482933
RK
4235 Rewrite (N, New_Occurrence_Of (Temp, Loc));
4236 Targ := Temp;
4237 end if;
4238 end if;
4239
c8ef728f
ES
4240 Insert_Actions (N, Decls);
4241
98f01d53 4242 -- Traverse the tree and replace formals with actuals or their thunks.
70482933
RK
4243 -- Attach block to tree before analysis and rewriting.
4244
4245 Replace_Formals (Blk);
4246 Set_Parent (Blk, N);
4247
fbf5a39b
AC
4248 if not Comes_From_Source (Subp)
4249 or else Is_Predef
4250 then
4251 Reset_Slocs (Blk);
4252 end if;
4253
70482933
RK
4254 if Present (Exit_Lab) then
4255
4256 -- If the body was a single expression, the single return statement
4257 -- and the corresponding label are useless.
4258
4259 if Num_Ret = 1
4260 and then
4261 Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
4262 N_Goto_Statement
4263 then
4264 Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
4265 else
4266 Append (Lab_Decl, (Declarations (Blk)));
4267 Append (Exit_Lab, Statements (Handled_Statement_Sequence (Blk)));
4268 end if;
4269 end if;
4270
4271 -- Analyze Blk with In_Inlined_Body set, to avoid spurious errors on
4a3b249c 4272 -- conflicting private views that Gigi would ignore. If this is a
fbf5a39b
AC
4273 -- predefined unit, analyze with checks off, as is done in the non-
4274 -- inlined run-time units.
70482933
RK
4275
4276 declare
4277 I_Flag : constant Boolean := In_Inlined_Body;
4278
4279 begin
4280 In_Inlined_Body := True;
fbf5a39b
AC
4281
4282 if Is_Predef then
4283 declare
4284 Style : constant Boolean := Style_Check;
4285 begin
4286 Style_Check := False;
4287 Analyze (Blk, Suppress => All_Checks);
4288 Style_Check := Style;
4289 end;
4290
4291 else
4292 Analyze (Blk);
4293 end if;
4294
70482933
RK
4295 In_Inlined_Body := I_Flag;
4296 end;
4297
4298 if Ekind (Subp) = E_Procedure then
4299 Rewrite_Procedure_Call (N, Blk);
4300 else
4301 Rewrite_Function_Call (N, Blk);
c8ef728f
ES
4302
4303 -- For the unconstrained case, the replacement of the call has been
4304 -- made prior to the complete analysis of the generated declarations.
4305 -- Propagate the proper type now.
4306
4307 if Is_Unc then
4308 if Nkind (N) = N_Identifier then
4309 Set_Etype (N, Etype (Entity (N)));
4310 else
4311 Set_Etype (N, Etype (Targ1));
4312 end if;
4313 end if;
70482933
RK
4314 end if;
4315
4316 Restore_Env;
4317
98f01d53 4318 -- Cleanup mapping between formals and actuals for other expansions
70482933
RK
4319
4320 F := First_Formal (Subp);
70482933
RK
4321 while Present (F) loop
4322 Set_Renamed_Object (F, Empty);
4323 Next_Formal (F);
4324 end loop;
4325 end Expand_Inlined_Call;
4326
2b3d67a5
AC
4327 ----------------------------------------
4328 -- Expand_N_Extended_Return_Statement --
4329 ----------------------------------------
4330
4331 -- If there is a Handled_Statement_Sequence, we rewrite this:
4332
4333 -- return Result : T := <expression> do
4334 -- <handled_seq_of_stms>
4335 -- end return;
4336
4337 -- to be:
4338
4339 -- declare
4340 -- Result : T := <expression>;
4341 -- begin
4342 -- <handled_seq_of_stms>
4343 -- return Result;
4344 -- end;
4345
4346 -- Otherwise (no Handled_Statement_Sequence), we rewrite this:
4347
4348 -- return Result : T := <expression>;
4349
4350 -- to be:
4351
4352 -- return <expression>;
4353
4354 -- unless it's build-in-place or there's no <expression>, in which case
4355 -- we generate:
4356
4357 -- declare
4358 -- Result : T := <expression>;
4359 -- begin
4360 -- return Result;
4361 -- end;
4362
4363 -- Note that this case could have been written by the user as an extended
4364 -- return statement, or could have been transformed to this from a simple
4365 -- return statement.
4366
4367 -- That is, we need to have a reified return object if there are statements
4368 -- (which might refer to it) or if we're doing build-in-place (so we can
4369 -- set its address to the final resting place or if there is no expression
4370 -- (in which case default initial values might need to be set).
4371
4372 procedure Expand_N_Extended_Return_Statement (N : Node_Id) is
4373 Loc : constant Source_Ptr := Sloc (N);
4374
df3e68b1
HK
4375 Par_Func : constant Entity_Id :=
4376 Return_Applies_To (Return_Statement_Entity (N));
4377 Ret_Obj_Id : constant Entity_Id :=
4378 First_Entity (Return_Statement_Entity (N));
4379 Ret_Obj_Decl : constant Node_Id := Parent (Ret_Obj_Id);
4380
4381 Is_Build_In_Place : constant Boolean :=
4382 Is_Build_In_Place_Function (Par_Func);
4383
4384 Exp : Node_Id;
4385 HSS : Node_Id;
4386 Result : Node_Id;
4387 Return_Stmt : Node_Id;
4388 Stmts : List_Id;
4389
4390 function Build_Heap_Allocator
4391 (Temp_Id : Entity_Id;
4392 Temp_Typ : Entity_Id;
4393 Func_Id : Entity_Id;
4394 Ret_Typ : Entity_Id;
4395 Alloc_Expr : Node_Id) return Node_Id;
4396 -- Create the statements necessary to allocate a return object on the
4397 -- caller's collection. The collection is available through implicit
4398 -- parameter BIPcollection.
4399 --
4400 -- if BIPcollection /= null then
4401 -- declare
4402 -- type Ptr_Typ is access Ret_Typ;
4403 -- for Ptr_Typ'Storage_Pool use
4404 -- Base_Pool (BIPcollection.all).all;
4405 -- Local : Ptr_Typ;
4406 --
4407 -- begin
4408 -- procedure Allocate (...) is
4409 -- begin
4410 -- Ada.Finalization.Heap_Management.Allocate (...);
4411 -- end Allocate;
4412 --
4413 -- Local := <Alloc_Expr>;
4414 -- Temp_Id := Temp_Typ (Local);
4415 -- end;
4416 -- end if;
4417 --
4418 -- Temp_Id is the temporary which is used to reference the internally
4419 -- created object in all allocation forms. Temp_Typ is the type of the
4420 -- temporary. Func_Id is the enclosing function. Ret_Typ is the return
4421 -- type of Func_Id. Alloc_Expr is the actual allocator.
2b3d67a5 4422
2b3d67a5
AC
4423 function Move_Activation_Chain return Node_Id;
4424 -- Construct a call to System.Tasking.Stages.Move_Activation_Chain
4425 -- with parameters:
4426 -- From current activation chain
4427 -- To activation chain passed in by the caller
4428 -- New_Master master passed in by the caller
4429
df3e68b1
HK
4430 --------------------------
4431 -- Build_Heap_Allocator --
4432 --------------------------
4433
4434 function Build_Heap_Allocator
4435 (Temp_Id : Entity_Id;
4436 Temp_Typ : Entity_Id;
4437 Func_Id : Entity_Id;
4438 Ret_Typ : Entity_Id;
4439 Alloc_Expr : Node_Id) return Node_Id
4440 is
4441 begin
4442 -- Processing for build-in-place object allocation. This is disabled
4443 -- on .NET/JVM because pools are not supported.
4444
4445 if VM_Target = No_VM
4446 and then Is_Build_In_Place_Function (Func_Id)
4447 and then Needs_Finalization (Ret_Typ)
4448 then
4449 declare
4450 Collect : constant Entity_Id :=
4451 Build_In_Place_Formal (Func_Id, BIP_Collection);
4452 Decls : constant List_Id := New_List;
4453 Stmts : constant List_Id := New_List;
4454
4455 Local_Id : Entity_Id;
4456 Pool_Id : Entity_Id;
4457 Ptr_Typ : Entity_Id;
4458
4459 begin
4460 -- Generate:
4461 -- Pool_Id renames Base_Pool (BIPcollection.all).all;
4462
4463 Pool_Id := Make_Temporary (Loc, 'P');
4464
4465 Append_To (Decls,
4466 Make_Object_Renaming_Declaration (Loc,
4467 Defining_Identifier => Pool_Id,
4468 Subtype_Mark =>
4469 New_Reference_To (RTE (RE_Root_Storage_Pool), Loc),
4470 Name =>
4471 Make_Explicit_Dereference (Loc,
4472 Prefix =>
4473 Make_Function_Call (Loc,
4474 Name =>
4475 New_Reference_To (RTE (RE_Base_Pool), Loc),
4476
4477 Parameter_Associations => New_List (
4478 Make_Explicit_Dereference (Loc,
4479 Prefix =>
4480 New_Reference_To (Collect, Loc)))))));
4481
4482 -- Create an access type which uses the storage pool of the
4483 -- caller's collection. This additional type is necessary
4484 -- because the collection cannot be associated with the type
4485 -- of the temporary. Otherwise the secondary stack allocation
4486 -- will fail.
4487
4488 -- Generate:
4489 -- type Ptr_Typ is access Ret_Typ;
4490
4491 Ptr_Typ := Make_Temporary (Loc, 'P');
4492
4493 Append_To (Decls,
4494 Make_Full_Type_Declaration (Loc,
4495 Defining_Identifier => Ptr_Typ,
4496 Type_Definition =>
4497 Make_Access_To_Object_Definition (Loc,
4498 Subtype_Indication =>
4499 New_Reference_To (Ret_Typ, Loc))));
4500
4501 -- Perform minor decoration in order to set the collection and
4502 -- the storage pool attributes.
4503
4504 Set_Ekind (Ptr_Typ, E_Access_Type);
4505 Set_Associated_Collection (Ptr_Typ, Collect);
4506 Set_Associated_Storage_Pool (Ptr_Typ, Pool_Id);
4507
4508 -- Create the temporary, generate:
4509 --
4510 -- Local_Id : Ptr_Typ;
4511
4512 Local_Id := Make_Temporary (Loc, 'T');
4513
4514 Append_To (Decls,
4515 Make_Object_Declaration (Loc,
4516 Defining_Identifier => Local_Id,
4517 Object_Definition =>
4518 New_Reference_To (Ptr_Typ, Loc)));
4519
4520 -- Allocate the object, generate:
4521 --
4522 -- Local_Id := <Alloc_Expr>;
4523
4524 Append_To (Stmts,
4525 Make_Assignment_Statement (Loc,
4526 Name =>
4527 New_Reference_To (Local_Id, Loc),
4528 Expression => Alloc_Expr));
4529
4530 -- Generate:
4531 -- Temp_Id := Temp_Typ (Local_Id);
4532
4533 Append_To (Stmts,
4534 Make_Assignment_Statement (Loc,
4535 Name =>
4536 New_Reference_To (Temp_Id, Loc),
4537 Expression =>
4538 Unchecked_Convert_To (Temp_Typ,
4539 New_Reference_To (Local_Id, Loc))));
4540
4541 -- Wrap the allocation in a block. This is further conditioned
4542 -- by checking the caller collection at runtime. A null value
4543 -- indicates a non-existent collection, most likely due to a
4544 -- Finalize_Storage_Only allocation.
4545
4546 -- Generate:
4547 -- if BIPcollection /= null then
4548 -- declare
4549 -- <Decls>
4550 -- begin
4551 -- <Stmts>
4552 -- end;
4553 -- end if;
4554
4555 return
4556 Make_If_Statement (Loc,
4557 Condition =>
4558 Make_Op_Ne (Loc,
4559 Left_Opnd =>
4560 New_Reference_To (Collect, Loc),
4561 Right_Opnd =>
4562 Make_Null (Loc)),
4563
4564 Then_Statements => New_List (
4565 Make_Block_Statement (Loc,
4566 Declarations => Decls,
4567 Handled_Statement_Sequence =>
4568 Make_Handled_Sequence_Of_Statements (Loc,
4569 Statements => Stmts))));
4570 end;
4571
4572 -- For all other cases, generate:
4573 --
4574 -- Temp_Id := <Alloc_Expr>;
4575
4576 else
4577 return
4578 Make_Assignment_Statement (Loc,
4579 Name =>
4580 New_Reference_To (Temp_Id, Loc),
4581 Expression => Alloc_Expr);
4582 end if;
4583 end Build_Heap_Allocator;
2b3d67a5 4584
2b3d67a5
AC
4585 ---------------------------
4586 -- Move_Activation_Chain --
4587 ---------------------------
4588
4589 function Move_Activation_Chain return Node_Id is
df3e68b1
HK
4590 Chain_Formal : constant Entity_Id :=
4591 Build_In_Place_Formal
4592 (Par_Func, BIP_Activation_Chain);
4593 To : constant Node_Id :=
4594 New_Reference_To (Chain_Formal, Loc);
4595 Master_Formal : constant Entity_Id :=
4596 Build_In_Place_Formal (Par_Func, BIP_Master);
4597 New_Master : constant Node_Id :=
4598 New_Reference_To (Master_Formal, Loc);
4599
4600 Chain_Id : Entity_Id;
4601 From : Node_Id;
2b3d67a5
AC
4602
4603 begin
df3e68b1
HK
4604 Chain_Id := First_Entity (Return_Statement_Entity (N));
4605 while Chars (Chain_Id) /= Name_uChain loop
4606 Chain_Id := Next_Entity (Chain_Id);
2b3d67a5
AC
4607 end loop;
4608
4609 From :=
4610 Make_Attribute_Reference (Loc,
df3e68b1
HK
4611 Prefix =>
4612 New_Reference_To (Chain_Id, Loc),
2b3d67a5
AC
4613 Attribute_Name => Name_Unrestricted_Access);
4614 -- ??? Not clear why "Make_Identifier (Loc, Name_uChain)" doesn't
df3e68b1 4615 -- work, instead of "New_Reference_To (Chain_Id, Loc)" above.
2b3d67a5
AC
4616
4617 return
4618 Make_Procedure_Call_Statement (Loc,
df3e68b1
HK
4619 Name =>
4620 New_Reference_To (RTE (RE_Move_Activation_Chain), Loc),
2b3d67a5
AC
4621 Parameter_Associations => New_List (From, To, New_Master));
4622 end Move_Activation_Chain;
4623
df3e68b1 4624 -- Start of processing for Expand_N_Extended_Return_Statement
2b3d67a5 4625
df3e68b1
HK
4626 begin
4627 if Nkind (Ret_Obj_Decl) = N_Object_Declaration then
4628 Exp := Expression (Ret_Obj_Decl);
4629 else
4630 Exp := Empty;
4631 end if;
2b3d67a5 4632
df3e68b1 4633 HSS := Handled_Statement_Sequence (N);
2b3d67a5 4634
df3e68b1
HK
4635 -- If the returned object needs finalization actions, the function must
4636 -- perform the appropriate cleanup should it fail to return. The state
4637 -- of the function itself is tracked through a flag which is coupled
4638 -- with the scope finalizer. There is one flag per each return object
4639 -- in case of multiple returns.
2b3d67a5 4640
df3e68b1
HK
4641 if Is_Build_In_Place
4642 and then Needs_Finalization (Etype (Ret_Obj_Id))
4643 then
4644 declare
4645 Flag_Decl : Node_Id;
4646 Flag_Id : Entity_Id;
4647 Func_Bod : Node_Id;
2b3d67a5 4648
df3e68b1
HK
4649 begin
4650 -- Recover the function body
2b3d67a5 4651
df3e68b1
HK
4652 Func_Bod := Unit_Declaration_Node (Par_Func);
4653 if Nkind (Func_Bod) = N_Subprogram_Declaration then
4654 Func_Bod := Parent (Parent (Corresponding_Body (Func_Bod)));
4655 end if;
2b3d67a5 4656
df3e68b1 4657 -- Create a flag to track the function state
2b3d67a5 4658
df3e68b1
HK
4659 Flag_Id := Make_Temporary (Loc, 'F');
4660 Set_Return_Flag (Ret_Obj_Id, Flag_Id);
2b3d67a5 4661
df3e68b1
HK
4662 -- Insert the flag at the beginning of the function declarations,
4663 -- generate:
4664 -- Fnn : Boolean := False;
2b3d67a5 4665
df3e68b1
HK
4666 Flag_Decl :=
4667 Make_Object_Declaration (Loc,
4668 Defining_Identifier => Flag_Id,
4669 Object_Definition =>
4670 New_Reference_To (Standard_Boolean, Loc),
4671 Expression =>
4672 New_Reference_To (Standard_False, Loc));
2b3d67a5 4673
df3e68b1
HK
4674 Prepend_To (Declarations (Func_Bod), Flag_Decl);
4675 Analyze (Flag_Decl);
4676 end;
4677 end if;
2b3d67a5
AC
4678
4679 -- Build a simple_return_statement that returns the return object when
4680 -- there is a statement sequence, or no expression, or the result will
4681 -- be built in place. Note however that we currently do this for all
4682 -- composite cases, even though nonlimited composite results are not yet
4683 -- built in place (though we plan to do so eventually).
4684
df3e68b1
HK
4685 if Present (HSS)
4686 or else Is_Composite_Type (Etype (Par_Func))
2b3d67a5
AC
4687 or else No (Exp)
4688 then
df3e68b1
HK
4689 if No (HSS) then
4690 Stmts := New_List;
2b3d67a5
AC
4691
4692 -- If the extended return has a handled statement sequence, then wrap
4693 -- it in a block and use the block as the first statement.
4694
4695 else
df3e68b1
HK
4696 Stmts := New_List (
4697 Make_Block_Statement (Loc,
4698 Declarations => New_List,
4699 Handled_Statement_Sequence => HSS));
2b3d67a5
AC
4700 end if;
4701
df3e68b1
HK
4702 -- If the result type contains tasks, we call Move_Activation_Chain.
4703 -- Later, the cleanup code will call Complete_Master, which will
4704 -- terminate any unactivated tasks belonging to the return statement
4705 -- master. But Move_Activation_Chain updates their master to be that
4706 -- of the caller, so they will not be terminated unless the return
4707 -- statement completes unsuccessfully due to exception, abort, goto,
4708 -- or exit. As a formality, we test whether the function requires the
4709 -- result to be built in place, though that's necessarily true for
4710 -- the case of result types with task parts.
2b3d67a5
AC
4711
4712 if Is_Build_In_Place
df3e68b1 4713 and Has_Task (Etype (Par_Func))
2b3d67a5 4714 then
df3e68b1 4715 Append_To (Stmts, Move_Activation_Chain);
2b3d67a5
AC
4716 end if;
4717
df3e68b1
HK
4718 -- Update the state of the function right before the object is
4719 -- returned.
4720
4721 if Is_Build_In_Place
4722 and then Needs_Finalization (Etype (Ret_Obj_Id))
4723 then
4724 declare
4725 Flag_Id : constant Entity_Id := Return_Flag (Ret_Obj_Id);
4726
4727 begin
4728 -- Generate:
4729 -- Fnn := True;
4730
4731 Append_To (Stmts,
4732 Make_Assignment_Statement (Loc,
4733 Name =>
4734 New_Reference_To (Flag_Id, Loc),
4735 Expression =>
4736 New_Reference_To (Standard_True, Loc)));
4737 end;
2b3d67a5
AC
4738 end if;
4739
4740 -- Build a simple_return_statement that returns the return object
4741
df3e68b1 4742 Return_Stmt :=
2b3d67a5 4743 Make_Simple_Return_Statement (Loc,
df3e68b1
HK
4744 Expression =>
4745 New_Occurrence_Of (Ret_Obj_Id, Loc));
4746 Append_To (Stmts, Return_Stmt);
2b3d67a5 4747
df3e68b1 4748 HSS := Make_Handled_Sequence_Of_Statements (Loc, Stmts);
2b3d67a5
AC
4749 end if;
4750
df3e68b1 4751 -- Case where we build a return statement block
2b3d67a5 4752
df3e68b1 4753 if Present (HSS) then
2b3d67a5
AC
4754 Result :=
4755 Make_Block_Statement (Loc,
4756 Declarations => Return_Object_Declarations (N),
df3e68b1 4757 Handled_Statement_Sequence => HSS);
2b3d67a5
AC
4758
4759 -- We set the entity of the new block statement to be that of the
4760 -- return statement. This is necessary so that various fields, such
4761 -- as Finalization_Chain_Entity carry over from the return statement
4762 -- to the block. Note that this block is unusual, in that its entity
4763 -- is an E_Return_Statement rather than an E_Block.
4764
4765 Set_Identifier
4766 (Result, New_Occurrence_Of (Return_Statement_Entity (N), Loc));
4767
4768 -- If the object decl was already rewritten as a renaming, then
4769 -- we don't want to do the object allocation and transformation of
4770 -- of the return object declaration to a renaming. This case occurs
4771 -- when the return object is initialized by a call to another
4772 -- build-in-place function, and that function is responsible for the
4773 -- allocation of the return object.
4774
4775 if Is_Build_In_Place
df3e68b1 4776 and then Nkind (Ret_Obj_Decl) = N_Object_Renaming_Declaration
2b3d67a5 4777 then
df3e68b1
HK
4778 pragma Assert
4779 (Nkind (Original_Node (Ret_Obj_Decl)) = N_Object_Declaration
4780 and then Is_Build_In_Place_Function_Call
4781 (Expression (Original_Node (Ret_Obj_Decl))));
4782
4783 -- Return the build-in-place result by reference
2b3d67a5 4784
df3e68b1 4785 Set_By_Ref (Return_Stmt);
2b3d67a5
AC
4786
4787 elsif Is_Build_In_Place then
4788
4789 -- Locate the implicit access parameter associated with the
4790 -- caller-supplied return object and convert the return
4791 -- statement's return object declaration to a renaming of a
4792 -- dereference of the access parameter. If the return object's
4793 -- declaration includes an expression that has not already been
4794 -- expanded as separate assignments, then add an assignment
4795 -- statement to ensure the return object gets initialized.
4796
df3e68b1
HK
4797 -- declare
4798 -- Result : T [:= <expression>];
4799 -- begin
4800 -- ...
2b3d67a5
AC
4801
4802 -- is converted to
4803
df3e68b1
HK
4804 -- declare
4805 -- Result : T renames FuncRA.all;
4806 -- [Result := <expression;]
4807 -- begin
4808 -- ...
2b3d67a5
AC
4809
4810 declare
4811 Return_Obj_Id : constant Entity_Id :=
df3e68b1 4812 Defining_Identifier (Ret_Obj_Decl);
2b3d67a5
AC
4813 Return_Obj_Typ : constant Entity_Id := Etype (Return_Obj_Id);
4814 Return_Obj_Expr : constant Node_Id :=
df3e68b1
HK
4815 Expression (Ret_Obj_Decl);
4816 Result_Subt : constant Entity_Id := Etype (Par_Func);
2b3d67a5
AC
4817 Constr_Result : constant Boolean :=
4818 Is_Constrained (Result_Subt);
4819 Obj_Alloc_Formal : Entity_Id;
4820 Object_Access : Entity_Id;
4821 Obj_Acc_Deref : Node_Id;
4822 Init_Assignment : Node_Id := Empty;
4823
4824 begin
4825 -- Build-in-place results must be returned by reference
4826
df3e68b1 4827 Set_By_Ref (Return_Stmt);
2b3d67a5
AC
4828
4829 -- Retrieve the implicit access parameter passed by the caller
4830
4831 Object_Access :=
df3e68b1 4832 Build_In_Place_Formal (Par_Func, BIP_Object_Access);
2b3d67a5
AC
4833
4834 -- If the return object's declaration includes an expression
4835 -- and the declaration isn't marked as No_Initialization, then
4836 -- we need to generate an assignment to the object and insert
4837 -- it after the declaration before rewriting it as a renaming
4838 -- (otherwise we'll lose the initialization). The case where
4839 -- the result type is an interface (or class-wide interface)
4840 -- is also excluded because the context of the function call
4841 -- must be unconstrained, so the initialization will always
4842 -- be done as part of an allocator evaluation (storage pool
4843 -- or secondary stack), never to a constrained target object
4844 -- passed in by the caller. Besides the assignment being
4845 -- unneeded in this case, it avoids problems with trying to
4846 -- generate a dispatching assignment when the return expression
4847 -- is a nonlimited descendant of a limited interface (the
4848 -- interface has no assignment operation).
4849
4850 if Present (Return_Obj_Expr)
df3e68b1 4851 and then not No_Initialization (Ret_Obj_Decl)
2b3d67a5
AC
4852 and then not Is_Interface (Return_Obj_Typ)
4853 then
4854 Init_Assignment :=
4855 Make_Assignment_Statement (Loc,
df3e68b1
HK
4856 Name =>
4857 New_Reference_To (Return_Obj_Id, Loc),
4858 Expression =>
4859 Relocate_Node (Return_Obj_Expr));
4860
2b3d67a5
AC
4861 Set_Etype (Name (Init_Assignment), Etype (Return_Obj_Id));
4862 Set_Assignment_OK (Name (Init_Assignment));
4863 Set_No_Ctrl_Actions (Init_Assignment);
4864
4865 Set_Parent (Name (Init_Assignment), Init_Assignment);
4866 Set_Parent (Expression (Init_Assignment), Init_Assignment);
4867
df3e68b1 4868 Set_Expression (Ret_Obj_Decl, Empty);
2b3d67a5
AC
4869
4870 if Is_Class_Wide_Type (Etype (Return_Obj_Id))
4871 and then not Is_Class_Wide_Type
4872 (Etype (Expression (Init_Assignment)))
4873 then
4874 Rewrite (Expression (Init_Assignment),
4875 Make_Type_Conversion (Loc,
4876 Subtype_Mark =>
df3e68b1 4877 New_Occurrence_Of (Etype (Return_Obj_Id), Loc),
2b3d67a5
AC
4878 Expression =>
4879 Relocate_Node (Expression (Init_Assignment))));
4880 end if;
4881
4882 -- In the case of functions where the calling context can
4883 -- determine the form of allocation needed, initialization
4884 -- is done with each part of the if statement that handles
4885 -- the different forms of allocation (this is true for
4886 -- unconstrained and tagged result subtypes).
4887
4888 if Constr_Result
4889 and then not Is_Tagged_Type (Underlying_Type (Result_Subt))
4890 then
df3e68b1 4891 Insert_After (Ret_Obj_Decl, Init_Assignment);
2b3d67a5
AC
4892 end if;
4893 end if;
4894
4895 -- When the function's subtype is unconstrained, a run-time
4896 -- test is needed to determine the form of allocation to use
4897 -- for the return object. The function has an implicit formal
4898 -- parameter indicating this. If the BIP_Alloc_Form formal has
4899 -- the value one, then the caller has passed access to an
4900 -- existing object for use as the return object. If the value
4901 -- is two, then the return object must be allocated on the
4902 -- secondary stack. Otherwise, the object must be allocated in
4903 -- a storage pool (currently only supported for the global
4904 -- heap, user-defined storage pools TBD ???). We generate an
4905 -- if statement to test the implicit allocation formal and
4906 -- initialize a local access value appropriately, creating
4907 -- allocators in the secondary stack and global heap cases.
4908 -- The special formal also exists and must be tested when the
4909 -- function has a tagged result, even when the result subtype
4910 -- is constrained, because in general such functions can be
4911 -- called in dispatching contexts and must be handled similarly
4912 -- to functions with a class-wide result.
4913
4914 if not Constr_Result
4915 or else Is_Tagged_Type (Underlying_Type (Result_Subt))
4916 then
4917 Obj_Alloc_Formal :=
df3e68b1 4918 Build_In_Place_Formal (Par_Func, BIP_Alloc_Form);
2b3d67a5
AC
4919
4920 declare
4921 Ref_Type : Entity_Id;
4922 Ptr_Type_Decl : Node_Id;
4923 Alloc_Obj_Id : Entity_Id;
4924 Alloc_Obj_Decl : Node_Id;
4925 Alloc_If_Stmt : Node_Id;
2b3d67a5 4926 Heap_Allocator : Node_Id;
df3e68b1 4927 SS_Allocator : Node_Id;
2b3d67a5
AC
4928
4929 begin
4930 -- Reuse the itype created for the function's implicit
4931 -- access formal. This avoids the need to create a new
4932 -- access type here, plus it allows assigning the access
4933 -- formal directly without applying a conversion.
4934
df3e68b1 4935 -- Ref_Type := Etype (Object_Access);
2b3d67a5
AC
4936
4937 -- Create an access type designating the function's
4938 -- result subtype.
4939
4940 Ref_Type := Make_Temporary (Loc, 'A');
4941
4942 Ptr_Type_Decl :=
4943 Make_Full_Type_Declaration (Loc,
4944 Defining_Identifier => Ref_Type,
4945 Type_Definition =>
4946 Make_Access_To_Object_Definition (Loc,
4947 All_Present => True,
4948 Subtype_Indication =>
4949 New_Reference_To (Return_Obj_Typ, Loc)));
4950
df3e68b1 4951 Insert_Before (Ret_Obj_Decl, Ptr_Type_Decl);
2b3d67a5
AC
4952
4953 -- Create an access object that will be initialized to an
4954 -- access value denoting the return object, either coming
4955 -- from an implicit access value passed in by the caller
4956 -- or from the result of an allocator.
4957
4958 Alloc_Obj_Id := Make_Temporary (Loc, 'R');
4959 Set_Etype (Alloc_Obj_Id, Ref_Type);
4960
4961 Alloc_Obj_Decl :=
4962 Make_Object_Declaration (Loc,
4963 Defining_Identifier => Alloc_Obj_Id,
df3e68b1
HK
4964 Object_Definition =>
4965 New_Reference_To (Ref_Type, Loc));
2b3d67a5 4966
df3e68b1 4967 Insert_Before (Ret_Obj_Decl, Alloc_Obj_Decl);
2b3d67a5
AC
4968
4969 -- Create allocators for both the secondary stack and
4970 -- global heap. If there's an initialization expression,
4971 -- then create these as initialized allocators.
4972
4973 if Present (Return_Obj_Expr)
df3e68b1 4974 and then not No_Initialization (Ret_Obj_Decl)
2b3d67a5
AC
4975 then
4976 -- Always use the type of the expression for the
4977 -- qualified expression, rather than the result type.
4978 -- In general we cannot always use the result type
4979 -- for the allocator, because the expression might be
4980 -- of a specific type, such as in the case of an
4981 -- aggregate or even a nonlimited object when the
4982 -- result type is a limited class-wide interface type.
4983
4984 Heap_Allocator :=
4985 Make_Allocator (Loc,
4986 Expression =>
4987 Make_Qualified_Expression (Loc,
4988 Subtype_Mark =>
4989 New_Reference_To
4990 (Etype (Return_Obj_Expr), Loc),
4991 Expression =>
4992 New_Copy_Tree (Return_Obj_Expr)));
4993
4994 else
4995 -- If the function returns a class-wide type we cannot
4996 -- use the return type for the allocator. Instead we
4997 -- use the type of the expression, which must be an
4998 -- aggregate of a definite type.
4999
5000 if Is_Class_Wide_Type (Return_Obj_Typ) then
5001 Heap_Allocator :=
5002 Make_Allocator (Loc,
5003 Expression =>
5004 New_Reference_To
5005 (Etype (Return_Obj_Expr), Loc));
5006 else
5007 Heap_Allocator :=
5008 Make_Allocator (Loc,
5009 Expression =>
5010 New_Reference_To (Return_Obj_Typ, Loc));
5011 end if;
5012
5013 -- If the object requires default initialization then
5014 -- that will happen later following the elaboration of
5015 -- the object renaming. If we don't turn it off here
5016 -- then the object will be default initialized twice.
5017
5018 Set_No_Initialization (Heap_Allocator);
5019 end if;
5020
5021 -- If the No_Allocators restriction is active, then only
5022 -- an allocator for secondary stack allocation is needed.
5023 -- It's OK for such allocators to have Comes_From_Source
5024 -- set to False, because gigi knows not to flag them as
5025 -- being a violation of No_Implicit_Heap_Allocations.
5026
5027 if Restriction_Active (No_Allocators) then
5028 SS_Allocator := Heap_Allocator;
5029 Heap_Allocator := Make_Null (Loc);
5030
5031 -- Otherwise the heap allocator may be needed, so we make
5032 -- another allocator for secondary stack allocation.
5033
5034 else
5035 SS_Allocator := New_Copy_Tree (Heap_Allocator);
5036
5037 -- The heap allocator is marked Comes_From_Source
5038 -- since it corresponds to an explicit user-written
5039 -- allocator (that is, it will only be executed on
5040 -- behalf of callers that call the function as
5041 -- initialization for such an allocator). This
5042 -- prevents errors when No_Implicit_Heap_Allocations
5043 -- is in force.
5044
5045 Set_Comes_From_Source (Heap_Allocator, True);
5046 end if;
5047
5048 -- The allocator is returned on the secondary stack. We
5049 -- don't do this on VM targets, since the SS is not used.
5050
5051 if VM_Target = No_VM then
5052 Set_Storage_Pool (SS_Allocator, RTE (RE_SS_Pool));
5053 Set_Procedure_To_Call
5054 (SS_Allocator, RTE (RE_SS_Allocate));
5055
5056 -- The allocator is returned on the secondary stack,
5057 -- so indicate that the function return, as well as
5058 -- the block that encloses the allocator, must not
5059 -- release it. The flags must be set now because the
5060 -- decision to use the secondary stack is done very
5061 -- late in the course of expanding the return
5062 -- statement, past the point where these flags are
5063 -- normally set.
5064
df3e68b1 5065 Set_Sec_Stack_Needed_For_Return (Par_Func);
2b3d67a5
AC
5066 Set_Sec_Stack_Needed_For_Return
5067 (Return_Statement_Entity (N));
df3e68b1 5068 Set_Uses_Sec_Stack (Par_Func);
2b3d67a5
AC
5069 Set_Uses_Sec_Stack (Return_Statement_Entity (N));
5070 end if;
5071
5072 -- Create an if statement to test the BIP_Alloc_Form
5073 -- formal and initialize the access object to either the
5074 -- BIP_Object_Access formal (BIP_Alloc_Form = 0), the
5075 -- result of allocating the object in the secondary stack
5076 -- (BIP_Alloc_Form = 1), or else an allocator to create
5077 -- the return object in the heap (BIP_Alloc_Form = 2).
5078
5079 -- ??? An unchecked type conversion must be made in the
5080 -- case of assigning the access object formal to the
5081 -- local access object, because a normal conversion would
5082 -- be illegal in some cases (such as converting access-
5083 -- to-unconstrained to access-to-constrained), but the
5084 -- the unchecked conversion will presumably fail to work
5085 -- right in just such cases. It's not clear at all how to
5086 -- handle this. ???
5087
5088 Alloc_If_Stmt :=
5089 Make_If_Statement (Loc,
df3e68b1 5090 Condition =>
2b3d67a5
AC
5091 Make_Op_Eq (Loc,
5092 Left_Opnd =>
5093 New_Reference_To (Obj_Alloc_Formal, Loc),
5094 Right_Opnd =>
5095 Make_Integer_Literal (Loc,
5096 UI_From_Int (BIP_Allocation_Form'Pos
5097 (Caller_Allocation)))),
df3e68b1
HK
5098
5099 Then_Statements => New_List (
5100 Make_Assignment_Statement (Loc,
5101 Name =>
5102 New_Reference_To (Alloc_Obj_Id, Loc),
5103 Expression =>
5104 Make_Unchecked_Type_Conversion (Loc,
5105 Subtype_Mark =>
5106 New_Reference_To (Ref_Type, Loc),
5107 Expression =>
5108 New_Reference_To (Object_Access, Loc)))),
5109
5110 Elsif_Parts => New_List (
5111 Make_Elsif_Part (Loc,
5112 Condition =>
5113 Make_Op_Eq (Loc,
5114 Left_Opnd =>
5115 New_Reference_To (Obj_Alloc_Formal, Loc),
5116 Right_Opnd =>
5117 Make_Integer_Literal (Loc,
5118 UI_From_Int (BIP_Allocation_Form'Pos
2b3d67a5 5119 (Secondary_Stack)))),
df3e68b1
HK
5120
5121 Then_Statements => New_List (
5122 Make_Assignment_Statement (Loc,
5123 Name =>
5124 New_Reference_To (Alloc_Obj_Id, Loc),
5125 Expression => SS_Allocator)))),
5126
5127 Else_Statements => New_List (
5128 Build_Heap_Allocator
5129 (Temp_Id => Alloc_Obj_Id,
5130 Temp_Typ => Ref_Type,
5131 Func_Id => Par_Func,
5132 Ret_Typ => Return_Obj_Typ,
5133 Alloc_Expr => Heap_Allocator)));
2b3d67a5
AC
5134
5135 -- If a separate initialization assignment was created
5136 -- earlier, append that following the assignment of the
5137 -- implicit access formal to the access object, to ensure
5138 -- that the return object is initialized in that case.
5139 -- In this situation, the target of the assignment must
5140 -- be rewritten to denote a dereference of the access to
5141 -- the return object passed in by the caller.
5142
5143 if Present (Init_Assignment) then
5144 Rewrite (Name (Init_Assignment),
5145 Make_Explicit_Dereference (Loc,
df3e68b1
HK
5146 Prefix =>
5147 New_Reference_To (Alloc_Obj_Id, Loc)));
5148
2b3d67a5
AC
5149 Set_Etype
5150 (Name (Init_Assignment), Etype (Return_Obj_Id));
5151
5152 Append_To
5153 (Then_Statements (Alloc_If_Stmt),
5154 Init_Assignment);
5155 end if;
5156
df3e68b1 5157 Insert_Before (Ret_Obj_Decl, Alloc_If_Stmt);
2b3d67a5
AC
5158
5159 -- Remember the local access object for use in the
5160 -- dereference of the renaming created below.
5161
5162 Object_Access := Alloc_Obj_Id;
5163 end;
5164 end if;
5165
5166 -- Replace the return object declaration with a renaming of a
5167 -- dereference of the access value designating the return
5168 -- object.
5169
5170 Obj_Acc_Deref :=
5171 Make_Explicit_Dereference (Loc,
df3e68b1
HK
5172 Prefix =>
5173 New_Reference_To (Object_Access, Loc));
2b3d67a5 5174
df3e68b1 5175 Rewrite (Ret_Obj_Decl,
2b3d67a5
AC
5176 Make_Object_Renaming_Declaration (Loc,
5177 Defining_Identifier => Return_Obj_Id,
df3e68b1
HK
5178 Access_Definition => Empty,
5179 Subtype_Mark =>
5180 New_Occurrence_Of (Return_Obj_Typ, Loc),
5181 Name => Obj_Acc_Deref));
2b3d67a5
AC
5182
5183 Set_Renamed_Object (Return_Obj_Id, Obj_Acc_Deref);
5184 end;
5185 end if;
5186
5187 -- Case where we do not build a block
5188
5189 else
df3e68b1
HK
5190 -- We're about to drop Return_Object_Declarations on the floor, so
5191 -- we need to insert it, in case it got expanded into useful code.
2b3d67a5
AC
5192 -- Remove side effects from expression, which may be duplicated in
5193 -- subsequent checks (see Expand_Simple_Function_Return).
5194
df3e68b1 5195 Insert_List_Before (N, Return_Object_Declarations (N));
2b3d67a5
AC
5196 Remove_Side_Effects (Exp);
5197
5198 -- Build simple_return_statement that returns the expression directly
5199
df3e68b1
HK
5200 Return_Stmt := Make_Simple_Return_Statement (Loc, Expression => Exp);
5201 Result := Return_Stmt;
2b3d67a5
AC
5202 end if;
5203
5204 -- Set the flag to prevent infinite recursion
5205
df3e68b1 5206 Set_Comes_From_Extended_Return_Statement (Return_Stmt);
2b3d67a5
AC
5207
5208 Rewrite (N, Result);
5209 Analyze (N);
5210 end Expand_N_Extended_Return_Statement;
5211
70482933
RK
5212 ----------------------------
5213 -- Expand_N_Function_Call --
5214 ----------------------------
5215
5216 procedure Expand_N_Function_Call (N : Node_Id) is
70482933 5217 begin
ac4d6407 5218 Expand_Call (N);
c986420e 5219
4a3b249c
RD
5220 -- If the return value of a foreign compiled function is VAX Float, then
5221 -- expand the return (adjusts the location of the return value on
5222 -- Alpha/VMS, no-op everywhere else).
612c5336 5223 -- Comes_From_Source intercepts recursive expansion.
2acde248 5224
c986420e
DR
5225 if Vax_Float (Etype (N))
5226 and then Nkind (N) = N_Function_Call
c986420e
DR
5227 and then Present (Name (N))
5228 and then Present (Entity (Name (N)))
5229 and then Has_Foreign_Convention (Entity (Name (N)))
612c5336 5230 and then Comes_From_Source (Parent (N))
c986420e
DR
5231 then
5232 Expand_Vax_Foreign_Return (N);
5233 end if;
70482933
RK
5234 end Expand_N_Function_Call;
5235
5236 ---------------------------------------
5237 -- Expand_N_Procedure_Call_Statement --
5238 ---------------------------------------
5239
5240 procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
5241 begin
5242 Expand_Call (N);
5243 end Expand_N_Procedure_Call_Statement;
5244
2b3d67a5
AC
5245 --------------------------------------
5246 -- Expand_N_Simple_Return_Statement --
5247 --------------------------------------
5248
5249 procedure Expand_N_Simple_Return_Statement (N : Node_Id) is
5250 begin
5251 -- Defend against previous errors (i.e. the return statement calls a
5252 -- function that is not available in configurable runtime).
5253
5254 if Present (Expression (N))
5255 and then Nkind (Expression (N)) = N_Empty
5256 then
5257 return;
5258 end if;
5259
5260 -- Distinguish the function and non-function cases:
5261
5262 case Ekind (Return_Applies_To (Return_Statement_Entity (N))) is
5263
5264 when E_Function |
5265 E_Generic_Function =>
5266 Expand_Simple_Function_Return (N);
5267
5268 when E_Procedure |
5269 E_Generic_Procedure |
5270 E_Entry |
5271 E_Entry_Family |
5272 E_Return_Statement =>
5273 Expand_Non_Function_Return (N);
5274
5275 when others =>
5276 raise Program_Error;
5277 end case;
5278
5279 exception
5280 when RE_Not_Available =>
5281 return;
5282 end Expand_N_Simple_Return_Statement;
5283
70482933
RK
5284 ------------------------------
5285 -- Expand_N_Subprogram_Body --
5286 ------------------------------
5287
4a3b249c
RD
5288 -- Add poll call if ATC polling is enabled, unless the body will be inlined
5289 -- by the back-end.
70482933 5290
7888a6ae 5291 -- Add dummy push/pop label nodes at start and end to clear any local
4a3b249c 5292 -- exception indications if local-exception-to-goto optimization is active.
7888a6ae 5293
f44fe430
RD
5294 -- Add return statement if last statement in body is not a return statement
5295 -- (this makes things easier on Gigi which does not want to have to handle
5296 -- a missing return).
70482933
RK
5297
5298 -- Add call to Activate_Tasks if body is a task activator
5299
5300 -- Deal with possible detection of infinite recursion
5301
5302 -- Eliminate body completely if convention stubbed
5303
5304 -- Encode entity names within body, since we will not need to reference
5305 -- these entities any longer in the front end.
5306
5307 -- Initialize scalar out parameters if Initialize/Normalize_Scalars
5308
c9a4817d 5309 -- Reset Pure indication if any parameter has root type System.Address
199c6a10
AC
5310 -- or has any parameters of limited types, where limited means that the
5311 -- run-time view is limited (i.e. the full type is limited).
c9a4817d 5312
12e0c41c
AC
5313 -- Wrap thread body
5314
70482933
RK
5315 procedure Expand_N_Subprogram_Body (N : Node_Id) is
5316 Loc : constant Source_Ptr := Sloc (N);
5317 H : constant Node_Id := Handled_Statement_Sequence (N);
c9a4817d 5318 Body_Id : Entity_Id;
70482933 5319 Except_H : Node_Id;
70482933 5320 L : List_Id;
70f91180 5321 Spec_Id : Entity_Id;
70482933
RK
5322
5323 procedure Add_Return (S : List_Id);
5324 -- Append a return statement to the statement sequence S if the last
5325 -- statement is not already a return or a goto statement. Note that
4a3b249c
RD
5326 -- the latter test is not critical, it does not matter if we add a few
5327 -- extra returns, since they get eliminated anyway later on.
70482933
RK
5328
5329 ----------------
5330 -- Add_Return --
5331 ----------------
5332
5333 procedure Add_Return (S : List_Id) is
7888a6ae
GD
5334 Last_Stm : Node_Id;
5335 Loc : Source_Ptr;
12e0c41c
AC
5336
5337 begin
7888a6ae
GD
5338 -- Get last statement, ignoring any Pop_xxx_Label nodes, which are
5339 -- not relevant in this context since they are not executable.
12e0c41c 5340
7888a6ae
GD
5341 Last_Stm := Last (S);
5342 while Nkind (Last_Stm) in N_Pop_xxx_Label loop
5343 Prev (Last_Stm);
5344 end loop;
12e0c41c 5345
7888a6ae 5346 -- Now insert return unless last statement is a transfer
12e0c41c 5347
7888a6ae 5348 if not Is_Transfer (Last_Stm) then
12e0c41c 5349
7888a6ae
GD
5350 -- The source location for the return is the end label of the
5351 -- procedure if present. Otherwise use the sloc of the last
5352 -- statement in the list. If the list comes from a generated
5353 -- exception handler and we are not debugging generated code,
5354 -- all the statements within the handler are made invisible
5355 -- to the debugger.
12e0c41c 5356
7888a6ae
GD
5357 if Nkind (Parent (S)) = N_Exception_Handler
5358 and then not Comes_From_Source (Parent (S))
5359 then
5360 Loc := Sloc (Last_Stm);
12e0c41c 5361
7888a6ae
GD
5362 elsif Present (End_Label (H)) then
5363 Loc := Sloc (End_Label (H));
12e0c41c 5364
7888a6ae
GD
5365 else
5366 Loc := Sloc (Last_Stm);
5367 end if;
12e0c41c 5368
5334d18f
BD
5369 declare
5370 Rtn : constant Node_Id := Make_Simple_Return_Statement (Loc);
5371
5372 begin
4a3b249c
RD
5373 -- Append return statement, and set analyzed manually. We can't
5374 -- call Analyze on this return since the scope is wrong.
5334d18f
BD
5375
5376 -- Note: it almost works to push the scope and then do the
4a3b249c 5377 -- Analyze call, but something goes wrong in some weird cases
5334d18f
BD
5378 -- and it is not worth worrying about ???
5379
5380 Append_To (S, Rtn);
5381 Set_Analyzed (Rtn);
5382
5383 -- Call _Postconditions procedure if appropriate. We need to
5384 -- do this explicitly because we did not analyze the generated
5385 -- return statement above, so the call did not get inserted.
5386
5387 if Ekind (Spec_Id) = E_Procedure
5388 and then Has_Postconditions (Spec_Id)
5389 then
5390 pragma Assert (Present (Postcondition_Proc (Spec_Id)));
5391 Insert_Action (Rtn,
5392 Make_Procedure_Call_Statement (Loc,
5393 Name =>
5394 New_Reference_To (Postcondition_Proc (Spec_Id), Loc)));
5395 end if;
5396 end;
12e0c41c 5397 end if;
7888a6ae 5398 end Add_Return;
12e0c41c 5399
70482933
RK
5400 -- Start of processing for Expand_N_Subprogram_Body
5401
5402 begin
ab027d28
RD
5403 -- If this is the main compilation unit, and we are generating code for
5404 -- VM targets, we now generate the Type Specific Data record of all the
5405 -- enclosing tagged type declarations.
9732e886 5406
e8374e7a
AC
5407 -- If the runtime package Ada_Tags has not been loaded then this
5408 -- subprogram does not have tagged type declarations and there is no
5409 -- need to search for tagged types to generate their TSDs.
5410
9732e886
JM
5411 if not Tagged_Type_Expansion
5412 and then Unit (Cunit (Main_Unit)) = N
e8374e7a 5413 and then RTU_Loaded (Ada_Tags)
9732e886
JM
5414 then
5415 Build_VM_TSDs (N);
5416 end if;
5417
4a3b249c
RD
5418 -- Set L to either the list of declarations if present, or to the list
5419 -- of statements if no declarations are present. This is used to insert
5420 -- new stuff at the start.
70482933
RK
5421
5422 if Is_Non_Empty_List (Declarations (N)) then
5423 L := Declarations (N);
5424 else
7888a6ae
GD
5425 L := Statements (H);
5426 end if;
5427
5428 -- If local-exception-to-goto optimization active, insert dummy push
5429 -- statements at start, and dummy pop statements at end.
5430
5431 if (Debug_Flag_Dot_G
5432 or else Restriction_Active (No_Exception_Propagation))
5433 and then Is_Non_Empty_List (L)
5434 then
5435 declare
5436 FS : constant Node_Id := First (L);
5437 FL : constant Source_Ptr := Sloc (FS);
5438 LS : Node_Id;
5439 LL : Source_Ptr;
5440
5441 begin
5442 -- LS points to either last statement, if statements are present
5443 -- or to the last declaration if there are no statements present.
5444 -- It is the node after which the pop's are generated.
5445
5446 if Is_Non_Empty_List (Statements (H)) then
5447 LS := Last (Statements (H));
5448 else
5449 LS := Last (L);
5450 end if;
5451
5452 LL := Sloc (LS);
5453
5454 Insert_List_Before_And_Analyze (FS, New_List (
5455 Make_Push_Constraint_Error_Label (FL),
5456 Make_Push_Program_Error_Label (FL),
5457 Make_Push_Storage_Error_Label (FL)));
5458
5459 Insert_List_After_And_Analyze (LS, New_List (
5460 Make_Pop_Constraint_Error_Label (LL),
5461 Make_Pop_Program_Error_Label (LL),
5462 Make_Pop_Storage_Error_Label (LL)));
5463 end;
70482933
RK
5464 end if;
5465
70482933
RK
5466 -- Find entity for subprogram
5467
c9a4817d
RD
5468 Body_Id := Defining_Entity (N);
5469
70482933
RK
5470 if Present (Corresponding_Spec (N)) then
5471 Spec_Id := Corresponding_Spec (N);
5472 else
c9a4817d
RD
5473 Spec_Id := Body_Id;
5474 end if;
5475
7888a6ae
GD
5476 -- Need poll on entry to subprogram if polling enabled. We only do this
5477 -- for non-empty subprograms, since it does not seem necessary to poll
4a3b249c 5478 -- for a dummy null subprogram.
c885d7a1
AC
5479
5480 if Is_Non_Empty_List (L) then
4a3b249c
RD
5481
5482 -- Do not add a polling call if the subprogram is to be inlined by
5483 -- the back-end, to avoid repeated calls with multiple inlinings.
5484
c885d7a1
AC
5485 if Is_Inlined (Spec_Id)
5486 and then Front_End_Inlining
5487 and then Optimization_Level > 1
5488 then
5489 null;
5490 else
5491 Generate_Poll_Call (First (L));
5492 end if;
5493 end if;
5494
4a3b249c
RD
5495 -- If this is a Pure function which has any parameters whose root type
5496 -- is System.Address, reset the Pure indication, since it will likely
5497 -- cause incorrect code to be generated as the parameter is probably
5498 -- a pointer, and the fact that the same pointer is passed does not mean
5499 -- that the same value is being referenced.
91b1417d
AC
5500
5501 -- Note that if the programmer gave an explicit Pure_Function pragma,
5502 -- then we believe the programmer, and leave the subprogram Pure.
5503
4a3b249c
RD
5504 -- This code should probably be at the freeze point, so that it happens
5505 -- even on a -gnatc (or more importantly -gnatt) compile, so that the
5506 -- semantic tree has Is_Pure set properly ???
c9a4817d
RD
5507
5508 if Is_Pure (Spec_Id)
5509 and then Is_Subprogram (Spec_Id)
5510 and then not Has_Pragma_Pure_Function (Spec_Id)
5511 then
5512 declare
2f1b20a9 5513 F : Entity_Id;
c9a4817d
RD
5514
5515 begin
2f1b20a9 5516 F := First_Formal (Spec_Id);
c9a4817d 5517 while Present (F) loop
e5dc610e 5518 if Is_Descendent_Of_Address (Etype (F))
199c6a10
AC
5519
5520 -- Note that this test is being made in the body of the
5521 -- subprogram, not the spec, so we are testing the full
5522 -- type for being limited here, as required.
5523
e5dc610e
AC
5524 or else Is_Limited_Type (Etype (F))
5525 then
c9a4817d
RD
5526 Set_Is_Pure (Spec_Id, False);
5527
5528 if Spec_Id /= Body_Id then
5529 Set_Is_Pure (Body_Id, False);
5530 end if;
5531
5532 exit;
5533 end if;
5534
5535 Next_Formal (F);
5536 end loop;
5537 end;
70482933
RK
5538 end if;
5539
5540 -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
5541
5542 if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
5543 declare
2f1b20a9 5544 F : Entity_Id;
70482933
RK
5545
5546 begin
70482933
RK
5547 -- Loop through formals
5548
2f1b20a9 5549 F := First_Formal (Spec_Id);
70482933
RK
5550 while Present (F) loop
5551 if Is_Scalar_Type (Etype (F))
5552 and then Ekind (F) = E_Out_Parameter
5553 then
70f91180
RD
5554 Check_Restriction (No_Default_Initialization, F);
5555
02822a92
RD
5556 -- Insert the initialization. We turn off validity checks
5557 -- for this assignment, since we do not want any check on
5558 -- the initial value itself (which may well be invalid).
5559
70482933
RK
5560 Insert_Before_And_Analyze (First (L),
5561 Make_Assignment_Statement (Loc,
02822a92 5562 Name => New_Occurrence_Of (F, Loc),
70f91180 5563 Expression => Get_Simple_Init_Val (Etype (F), N)),
02822a92 5564 Suppress => Validity_Check);
70482933
RK
5565 end if;
5566
5567 Next_Formal (F);
5568 end loop;
70482933
RK
5569 end;
5570 end if;
5571
5572 -- Clear out statement list for stubbed procedure
5573
5574 if Present (Corresponding_Spec (N)) then
5575 Set_Elaboration_Flag (N, Spec_Id);
5576
5577 if Convention (Spec_Id) = Convention_Stubbed
5578 or else Is_Eliminated (Spec_Id)
5579 then
5580 Set_Declarations (N, Empty_List);
5581 Set_Handled_Statement_Sequence (N,
5582 Make_Handled_Sequence_Of_Statements (Loc,
5583 Statements => New_List (
5584 Make_Null_Statement (Loc))));
5585 return;
5586 end if;
5587 end if;
5588
70f91180
RD
5589 -- Create a set of discriminals for the next protected subprogram body
5590
5591 if Is_List_Member (N)
5592 and then Present (Parent (List_Containing (N)))
5593 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5594 and then Present (Next_Protected_Operation (N))
5595 then
5596 Set_Discriminals (Parent (Base_Type (Scope (Spec_Id))));
5597 end if;
5598
4a3b249c
RD
5599 -- Returns_By_Ref flag is normally set when the subprogram is frozen but
5600 -- subprograms with no specs are not frozen.
70482933
RK
5601
5602 declare
5603 Typ : constant Entity_Id := Etype (Spec_Id);
5604 Utyp : constant Entity_Id := Underlying_Type (Typ);
5605
5606 begin
5607 if not Acts_As_Spec (N)
5608 and then Nkind (Parent (Parent (Spec_Id))) /=
5609 N_Subprogram_Body_Stub
5610 then
5611 null;
5612
40f07b4b 5613 elsif Is_Immutably_Limited_Type (Typ) then
70482933
RK
5614 Set_Returns_By_Ref (Spec_Id);
5615
048e5cef 5616 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
70482933
RK
5617 Set_Returns_By_Ref (Spec_Id);
5618 end if;
5619 end;
5620
4a3b249c
RD
5621 -- For a procedure, we add a return for all possible syntactic ends of
5622 -- the subprogram.
70482933 5623
b29def53 5624 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure) then
70482933
RK
5625 Add_Return (Statements (H));
5626
5627 if Present (Exception_Handlers (H)) then
5628 Except_H := First_Non_Pragma (Exception_Handlers (H));
70482933
RK
5629 while Present (Except_H) loop
5630 Add_Return (Statements (Except_H));
5631 Next_Non_Pragma (Except_H);
5632 end loop;
5633 end if;
5634
98f01d53
AC
5635 -- For a function, we must deal with the case where there is at least
5636 -- one missing return. What we do is to wrap the entire body of the
5637 -- function in a block:
70482933
RK
5638
5639 -- begin
5640 -- ...
5641 -- end;
5642
5643 -- becomes
5644
5645 -- begin
5646 -- begin
5647 -- ...
5648 -- end;
5649
5650 -- raise Program_Error;
5651 -- end;
5652
4a3b249c
RD
5653 -- This approach is necessary because the raise must be signalled to the
5654 -- caller, not handled by any local handler (RM 6.4(11)).
70482933 5655
4a3b249c
RD
5656 -- Note: we do not need to analyze the constructed sequence here, since
5657 -- it has no handler, and an attempt to analyze the handled statement
5658 -- sequence twice is risky in various ways (e.g. the issue of expanding
5659 -- cleanup actions twice).
70482933
RK
5660
5661 elsif Has_Missing_Return (Spec_Id) then
5662 declare
5663 Hloc : constant Source_Ptr := Sloc (H);
5664 Blok : constant Node_Id :=
5665 Make_Block_Statement (Hloc,
5666 Handled_Statement_Sequence => H);
5667 Rais : constant Node_Id :=
07fc65c4
GB
5668 Make_Raise_Program_Error (Hloc,
5669 Reason => PE_Missing_Return);
70482933
RK
5670
5671 begin
5672 Set_Handled_Statement_Sequence (N,
5673 Make_Handled_Sequence_Of_Statements (Hloc,
5674 Statements => New_List (Blok, Rais)));
5675
7888a6ae 5676 Push_Scope (Spec_Id);
70482933
RK
5677 Analyze (Blok);
5678 Analyze (Rais);
5679 Pop_Scope;
5680 end;
5681 end if;
5682
70482933
RK
5683 -- If subprogram contains a parameterless recursive call, then we may
5684 -- have an infinite recursion, so see if we can generate code to check
5685 -- for this possibility if storage checks are not suppressed.
5686
5687 if Ekind (Spec_Id) = E_Procedure
5688 and then Has_Recursive_Call (Spec_Id)
5689 and then not Storage_Checks_Suppressed (Spec_Id)
5690 then
5691 Detect_Infinite_Recursion (N, Spec_Id);
5692 end if;
5693
70482933
RK
5694 -- Set to encode entity names in package body before gigi is called
5695
5696 Qualify_Entity_Names (N);
5697 end Expand_N_Subprogram_Body;
5698
5699 -----------------------------------
5700 -- Expand_N_Subprogram_Body_Stub --
5701 -----------------------------------
5702
5703 procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
5704 begin
5705 if Present (Corresponding_Body (N)) then
5706 Expand_N_Subprogram_Body (
5707 Unit_Declaration_Node (Corresponding_Body (N)));
5708 end if;
70482933
RK
5709 end Expand_N_Subprogram_Body_Stub;
5710
5711 -------------------------------------
5712 -- Expand_N_Subprogram_Declaration --
5713 -------------------------------------
5714
70482933
RK
5715 -- If the declaration appears within a protected body, it is a private
5716 -- operation of the protected type. We must create the corresponding
5717 -- protected subprogram an associated formals. For a normal protected
5718 -- operation, this is done when expanding the protected type declaration.
5719
758c442c
GD
5720 -- If the declaration is for a null procedure, emit null body
5721
70482933 5722 procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
fbf5a39b
AC
5723 Loc : constant Source_Ptr := Sloc (N);
5724 Subp : constant Entity_Id := Defining_Entity (N);
5725 Scop : constant Entity_Id := Scope (Subp);
5726 Prot_Decl : Node_Id;
5727 Prot_Bod : Node_Id;
5728 Prot_Id : Entity_Id;
70482933
RK
5729
5730 begin
2ba431e5
YM
5731 -- In SPARK, subprogram declarations are only allowed in package
5732 -- specifications.
7ff2d234 5733
fe5d3068
YM
5734 if Nkind (Parent (N)) /= N_Package_Specification then
5735 if Nkind (Parent (N)) = N_Compilation_Unit then
2ba431e5 5736 Check_SPARK_Restriction
fe5d3068
YM
5737 ("subprogram declaration is not a library item", N);
5738
5739 elsif Present (Next (N))
7ff2d234
AC
5740 and then Nkind (Next (N)) = N_Pragma
5741 and then Get_Pragma_Id (Pragma_Name (Next (N))) = Pragma_Import
5742 then
2ba431e5 5743 -- In SPARK, subprogram declarations are also permitted in
7ff2d234
AC
5744 -- declarative parts when immediately followed by a corresponding
5745 -- pragma Import. We only check here that there is some pragma
5746 -- Import.
5747
5748 null;
5749 else
2ba431e5 5750 Check_SPARK_Restriction
fe5d3068 5751 ("subprogram declaration is not allowed here", N);
7ff2d234
AC
5752 end if;
5753 end if;
5754
2f1b20a9
ES
5755 -- Deal with case of protected subprogram. Do not generate protected
5756 -- operation if operation is flagged as eliminated.
70482933
RK
5757
5758 if Is_List_Member (N)
5759 and then Present (Parent (List_Containing (N)))
5760 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
5761 and then Is_Protected_Type (Scop)
5762 then
6871ba5f
AC
5763 if No (Protected_Body_Subprogram (Subp))
5764 and then not Is_Eliminated (Subp)
5765 then
fbf5a39b 5766 Prot_Decl :=
70482933
RK
5767 Make_Subprogram_Declaration (Loc,
5768 Specification =>
5769 Build_Protected_Sub_Specification
2f1b20a9 5770 (N, Scop, Unprotected_Mode));
70482933
RK
5771
5772 -- The protected subprogram is declared outside of the protected
5773 -- body. Given that the body has frozen all entities so far, we
fbf5a39b 5774 -- analyze the subprogram and perform freezing actions explicitly.
19590d70
GD
5775 -- including the generation of an explicit freeze node, to ensure
5776 -- that gigi has the proper order of elaboration.
fbf5a39b
AC
5777 -- If the body is a subunit, the insertion point is before the
5778 -- stub in the parent.
70482933
RK
5779
5780 Prot_Bod := Parent (List_Containing (N));
5781
5782 if Nkind (Parent (Prot_Bod)) = N_Subunit then
5783 Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
5784 end if;
5785
fbf5a39b
AC
5786 Insert_Before (Prot_Bod, Prot_Decl);
5787 Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
19590d70 5788 Set_Has_Delayed_Freeze (Prot_Id);
70482933 5789
7888a6ae 5790 Push_Scope (Scope (Scop));
fbf5a39b 5791 Analyze (Prot_Decl);
6b958cec 5792 Freeze_Before (N, Prot_Id);
fbf5a39b 5793 Set_Protected_Body_Subprogram (Subp, Prot_Id);
47bfea3a
AC
5794
5795 -- Create protected operation as well. Even though the operation
5796 -- is only accessible within the body, it is possible to make it
5797 -- available outside of the protected object by using 'Access to
3d923671 5798 -- provide a callback, so build protected version in all cases.
47bfea3a
AC
5799
5800 Prot_Decl :=
3d923671
AC
5801 Make_Subprogram_Declaration (Loc,
5802 Specification =>
5803 Build_Protected_Sub_Specification (N, Scop, Protected_Mode));
47bfea3a
AC
5804 Insert_Before (Prot_Bod, Prot_Decl);
5805 Analyze (Prot_Decl);
5806
70482933
RK
5807 Pop_Scope;
5808 end if;
758c442c 5809
e1f3cb58
AC
5810 -- Ada 2005 (AI-348): Generate body for a null procedure.
5811 -- In most cases this is superfluous because calls to it
5812 -- will be automatically inlined, but we definitely need
5813 -- the body if preconditions for the procedure are present.
02822a92 5814
758c442c
GD
5815 elsif Nkind (Specification (N)) = N_Procedure_Specification
5816 and then Null_Present (Specification (N))
5817 then
5818 declare
e1f3cb58 5819 Bod : constant Node_Id := Body_To_Inline (N);
d6533e74 5820
758c442c 5821 begin
e1f3cb58
AC
5822 Set_Has_Completion (Subp, False);
5823 Append_Freeze_Action (Subp, Bod);
c73ae90f 5824
e1f3cb58
AC
5825 -- The body now contains raise statements, so calls to it will
5826 -- not be inlined.
c73ae90f 5827
e1f3cb58 5828 Set_Is_Inlined (Subp, False);
758c442c 5829 end;
70482933
RK
5830 end if;
5831 end Expand_N_Subprogram_Declaration;
5832
2b3d67a5
AC
5833 --------------------------------
5834 -- Expand_Non_Function_Return --
5835 --------------------------------
5836
5837 procedure Expand_Non_Function_Return (N : Node_Id) is
5838 pragma Assert (No (Expression (N)));
5839
5840 Loc : constant Source_Ptr := Sloc (N);
5841 Scope_Id : Entity_Id :=
5842 Return_Applies_To (Return_Statement_Entity (N));
5843 Kind : constant Entity_Kind := Ekind (Scope_Id);
5844 Call : Node_Id;
5845 Acc_Stat : Node_Id;
5846 Goto_Stat : Node_Id;
5847 Lab_Node : Node_Id;
5848
5849 begin
5850 -- Call _Postconditions procedure if procedure with active
5851 -- postconditions. Here, we use the Postcondition_Proc attribute, which
5852 -- is needed for implicitly-generated returns. Functions never
5853 -- have implicitly-generated returns, and there's no room for
5854 -- Postcondition_Proc in E_Function, so we look up the identifier
5855 -- Name_uPostconditions for function returns (see
5856 -- Expand_Simple_Function_Return).
5857
5858 if Ekind (Scope_Id) = E_Procedure
5859 and then Has_Postconditions (Scope_Id)
5860 then
5861 pragma Assert (Present (Postcondition_Proc (Scope_Id)));
5862 Insert_Action (N,
5863 Make_Procedure_Call_Statement (Loc,
5864 Name => New_Reference_To (Postcondition_Proc (Scope_Id), Loc)));
5865 end if;
5866
5867 -- If it is a return from a procedure do no extra steps
5868
5869 if Kind = E_Procedure or else Kind = E_Generic_Procedure then
5870 return;
5871
5872 -- If it is a nested return within an extended one, replace it with a
5873 -- return of the previously declared return object.
5874
5875 elsif Kind = E_Return_Statement then
5876 Rewrite (N,
5877 Make_Simple_Return_Statement (Loc,
5878 Expression =>
5879 New_Occurrence_Of (First_Entity (Scope_Id), Loc)));
5880 Set_Comes_From_Extended_Return_Statement (N);
5881 Set_Return_Statement_Entity (N, Scope_Id);
5882 Expand_Simple_Function_Return (N);
5883 return;
5884 end if;
5885
5886 pragma Assert (Is_Entry (Scope_Id));
5887
5888 -- Look at the enclosing block to see whether the return is from an
5889 -- accept statement or an entry body.
5890
5891 for J in reverse 0 .. Scope_Stack.Last loop
5892 Scope_Id := Scope_Stack.Table (J).Entity;
5893 exit when Is_Concurrent_Type (Scope_Id);
5894 end loop;
5895
5896 -- If it is a return from accept statement it is expanded as call to
5897 -- RTS Complete_Rendezvous and a goto to the end of the accept body.
5898
5899 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
5900 -- Expand_N_Accept_Alternative in exp_ch9.adb)
5901
5902 if Is_Task_Type (Scope_Id) then
5903
5904 Call :=
5905 Make_Procedure_Call_Statement (Loc,
5906 Name => New_Reference_To (RTE (RE_Complete_Rendezvous), Loc));
5907 Insert_Before (N, Call);
5908 -- why not insert actions here???
5909 Analyze (Call);
5910
5911 Acc_Stat := Parent (N);
5912 while Nkind (Acc_Stat) /= N_Accept_Statement loop
5913 Acc_Stat := Parent (Acc_Stat);
5914 end loop;
5915
5916 Lab_Node := Last (Statements
5917 (Handled_Statement_Sequence (Acc_Stat)));
5918
5919 Goto_Stat := Make_Goto_Statement (Loc,
5920 Name => New_Occurrence_Of
5921 (Entity (Identifier (Lab_Node)), Loc));
5922
5923 Set_Analyzed (Goto_Stat);
5924
5925 Rewrite (N, Goto_Stat);
5926 Analyze (N);
5927
5928 -- If it is a return from an entry body, put a Complete_Entry_Body call
5929 -- in front of the return.
5930
5931 elsif Is_Protected_Type (Scope_Id) then
5932 Call :=
5933 Make_Procedure_Call_Statement (Loc,
5934 Name =>
5935 New_Reference_To (RTE (RE_Complete_Entry_Body), Loc),
5936 Parameter_Associations => New_List (
5937 Make_Attribute_Reference (Loc,
5938 Prefix =>
5939 New_Reference_To
5940 (Find_Protection_Object (Current_Scope), Loc),
5941 Attribute_Name =>
5942 Name_Unchecked_Access)));
5943
5944 Insert_Before (N, Call);
5945 Analyze (Call);
5946 end if;
5947 end Expand_Non_Function_Return;
5948
70482933
RK
5949 ---------------------------------------
5950 -- Expand_Protected_Object_Reference --
5951 ---------------------------------------
5952
5953 function Expand_Protected_Object_Reference
5954 (N : Node_Id;
02822a92 5955 Scop : Entity_Id) return Node_Id
70482933
RK
5956 is
5957 Loc : constant Source_Ptr := Sloc (N);
5958 Corr : Entity_Id;
5959 Rec : Node_Id;
5960 Param : Entity_Id;
5961 Proc : Entity_Id;
5962
5963 begin
7675ad4f 5964 Rec := Make_Identifier (Loc, Name_uObject);
70482933
RK
5965 Set_Etype (Rec, Corresponding_Record_Type (Scop));
5966
2f1b20a9
ES
5967 -- Find enclosing protected operation, and retrieve its first parameter,
5968 -- which denotes the enclosing protected object. If the enclosing
5969 -- operation is an entry, we are immediately within the protected body,
5970 -- and we can retrieve the object from the service entries procedure. A
16b05213 5971 -- barrier function has the same signature as an entry. A barrier
2f1b20a9
ES
5972 -- function is compiled within the protected object, but unlike
5973 -- protected operations its never needs locks, so that its protected
5974 -- body subprogram points to itself.
70482933
RK
5975
5976 Proc := Current_Scope;
70482933
RK
5977 while Present (Proc)
5978 and then Scope (Proc) /= Scop
5979 loop
5980 Proc := Scope (Proc);
5981 end loop;
5982
5983 Corr := Protected_Body_Subprogram (Proc);
5984
5985 if No (Corr) then
5986
5987 -- Previous error left expansion incomplete.
5988 -- Nothing to do on this call.
5989
5990 return Empty;
5991 end if;
5992
5993 Param :=
5994 Defining_Identifier
5995 (First (Parameter_Specifications (Parent (Corr))));
5996
5997 if Is_Subprogram (Proc)
5998 and then Proc /= Corr
5999 then
98f01d53 6000 -- Protected function or procedure
70482933
RK
6001
6002 Set_Entity (Rec, Param);
6003
2f1b20a9
ES
6004 -- Rec is a reference to an entity which will not be in scope when
6005 -- the call is reanalyzed, and needs no further analysis.
70482933
RK
6006
6007 Set_Analyzed (Rec);
6008
6009 else
2f1b20a9
ES
6010 -- Entry or barrier function for entry body. The first parameter of
6011 -- the entry body procedure is pointer to the object. We create a
6012 -- local variable of the proper type, duplicating what is done to
6013 -- define _object later on.
70482933
RK
6014
6015 declare
c12beea0
RD
6016 Decls : List_Id;
6017 Obj_Ptr : constant Entity_Id := Make_Temporary (Loc, 'T');
fbf5a39b 6018
70482933
RK
6019 begin
6020 Decls := New_List (
6021 Make_Full_Type_Declaration (Loc,
6022 Defining_Identifier => Obj_Ptr,
6023 Type_Definition =>
6024 Make_Access_To_Object_Definition (Loc,
6025 Subtype_Indication =>
6026 New_Reference_To
c12beea0 6027 (Corresponding_Record_Type (Scop), Loc))));
70482933
RK
6028
6029 Insert_Actions (N, Decls);
6b958cec 6030 Freeze_Before (N, Obj_Ptr);
70482933
RK
6031
6032 Rec :=
6033 Make_Explicit_Dereference (Loc,
6034 Unchecked_Convert_To (Obj_Ptr,
6035 New_Occurrence_Of (Param, Loc)));
6036
2f1b20a9 6037 -- Analyze new actual. Other actuals in calls are already analyzed
7888a6ae 6038 -- and the list of actuals is not reanalyzed after rewriting.
70482933
RK
6039
6040 Set_Parent (Rec, N);
6041 Analyze (Rec);
6042 end;
6043 end if;
6044
6045 return Rec;
6046 end Expand_Protected_Object_Reference;
6047
6048 --------------------------------------
6049 -- Expand_Protected_Subprogram_Call --
6050 --------------------------------------
6051
6052 procedure Expand_Protected_Subprogram_Call
6053 (N : Node_Id;
6054 Subp : Entity_Id;
6055 Scop : Entity_Id)
6056 is
6057 Rec : Node_Id;
6058
6059 begin
6060 -- If the protected object is not an enclosing scope, this is
6061 -- an inter-object function call. Inter-object procedure
6062 -- calls are expanded by Exp_Ch9.Build_Simple_Entry_Call.
6063 -- The call is intra-object only if the subprogram being
6064 -- called is in the protected body being compiled, and if the
6065 -- protected object in the call is statically the enclosing type.
6066 -- The object may be an component of some other data structure,
6067 -- in which case this must be handled as an inter-object call.
6068
6069 if not In_Open_Scopes (Scop)
6070 or else not Is_Entity_Name (Name (N))
6071 then
6072 if Nkind (Name (N)) = N_Selected_Component then
6073 Rec := Prefix (Name (N));
6074
6075 else
6076 pragma Assert (Nkind (Name (N)) = N_Indexed_Component);
6077 Rec := Prefix (Prefix (Name (N)));
6078 end if;
6079
6080 Build_Protected_Subprogram_Call (N,
6081 Name => New_Occurrence_Of (Subp, Sloc (N)),
6082 Rec => Convert_Concurrent (Rec, Etype (Rec)),
6083 External => True);
6084
6085 else
6086 Rec := Expand_Protected_Object_Reference (N, Scop);
6087
6088 if No (Rec) then
6089 return;
6090 end if;
6091
6092 Build_Protected_Subprogram_Call (N,
6093 Name => Name (N),
6094 Rec => Rec,
6095 External => False);
6096
6097 end if;
6098
70482933
RK
6099 -- If it is a function call it can appear in elaboration code and
6100 -- the called entity must be frozen here.
6101
6102 if Ekind (Subp) = E_Function then
6103 Freeze_Expression (Name (N));
6104 end if;
811c6a85
AC
6105
6106 -- Analyze and resolve the new call. The actuals have already been
b0159fbe 6107 -- resolved, but expansion of a function call will add extra actuals
811c6a85
AC
6108 -- if needed. Analysis of a procedure call already includes resolution.
6109
6110 Analyze (N);
6111
6112 if Ekind (Subp) = E_Function then
6113 Resolve (N, Etype (Subp));
6114 end if;
70482933
RK
6115 end Expand_Protected_Subprogram_Call;
6116
2b3d67a5
AC
6117 -----------------------------------
6118 -- Expand_Simple_Function_Return --
6119 -----------------------------------
6120
6121 -- The "simple" comes from the syntax rule simple_return_statement.
6122 -- The semantics are not at all simple!
6123
6124 procedure Expand_Simple_Function_Return (N : Node_Id) is
6125 Loc : constant Source_Ptr := Sloc (N);
6126
6127 Scope_Id : constant Entity_Id :=
6128 Return_Applies_To (Return_Statement_Entity (N));
6129 -- The function we are returning from
6130
6131 R_Type : constant Entity_Id := Etype (Scope_Id);
6132 -- The result type of the function
6133
6134 Utyp : constant Entity_Id := Underlying_Type (R_Type);
6135
6136 Exp : constant Node_Id := Expression (N);
6137 pragma Assert (Present (Exp));
6138
6139 Exptyp : constant Entity_Id := Etype (Exp);
6140 -- The type of the expression (not necessarily the same as R_Type)
6141
6142 Subtype_Ind : Node_Id;
6143 -- If the result type of the function is class-wide and the
6144 -- expression has a specific type, then we use the expression's
6145 -- type as the type of the return object. In cases where the
6146 -- expression is an aggregate that is built in place, this avoids
6147 -- the need for an expensive conversion of the return object to
6148 -- the specific type on assignments to the individual components.
6149
6150 begin
6151 if Is_Class_Wide_Type (R_Type)
6152 and then not Is_Class_Wide_Type (Etype (Exp))
6153 then
6154 Subtype_Ind := New_Occurrence_Of (Etype (Exp), Loc);
6155 else
6156 Subtype_Ind := New_Occurrence_Of (R_Type, Loc);
6157 end if;
6158
6159 -- For the case of a simple return that does not come from an extended
6160 -- return, in the case of Ada 2005 where we are returning a limited
6161 -- type, we rewrite "return <expression>;" to be:
6162
6163 -- return _anon_ : <return_subtype> := <expression>
6164
6165 -- The expansion produced by Expand_N_Extended_Return_Statement will
6166 -- contain simple return statements (for example, a block containing
6167 -- simple return of the return object), which brings us back here with
6168 -- Comes_From_Extended_Return_Statement set. The reason for the barrier
6169 -- checking for a simple return that does not come from an extended
6170 -- return is to avoid this infinite recursion.
6171
6172 -- The reason for this design is that for Ada 2005 limited returns, we
6173 -- need to reify the return object, so we can build it "in place", and
6174 -- we need a block statement to hang finalization and tasking stuff.
6175
6176 -- ??? In order to avoid disruption, we avoid translating to extended
6177 -- return except in the cases where we really need to (Ada 2005 for
6178 -- inherently limited). We might prefer to do this translation in all
6179 -- cases (except perhaps for the case of Ada 95 inherently limited),
6180 -- in order to fully exercise the Expand_N_Extended_Return_Statement
6181 -- code. This would also allow us to do the build-in-place optimization
6182 -- for efficiency even in cases where it is semantically not required.
6183
6184 -- As before, we check the type of the return expression rather than the
6185 -- return type of the function, because the latter may be a limited
6186 -- class-wide interface type, which is not a limited type, even though
6187 -- the type of the expression may be.
6188
6189 if not Comes_From_Extended_Return_Statement (N)
6190 and then Is_Immutably_Limited_Type (Etype (Expression (N)))
0791fbe9 6191 and then Ada_Version >= Ada_2005
2b3d67a5
AC
6192 and then not Debug_Flag_Dot_L
6193 then
6194 declare
6195 Return_Object_Entity : constant Entity_Id :=
6196 Make_Temporary (Loc, 'R', Exp);
6197 Obj_Decl : constant Node_Id :=
6198 Make_Object_Declaration (Loc,
6199 Defining_Identifier => Return_Object_Entity,
6200 Object_Definition => Subtype_Ind,
6201 Expression => Exp);
6202
6203 Ext : constant Node_Id := Make_Extended_Return_Statement (Loc,
6204 Return_Object_Declarations => New_List (Obj_Decl));
6205 -- Do not perform this high-level optimization if the result type
6206 -- is an interface because the "this" pointer must be displaced.
6207
6208 begin
6209 Rewrite (N, Ext);
6210 Analyze (N);
6211 return;
6212 end;
6213 end if;
6214
6215 -- Here we have a simple return statement that is part of the expansion
6216 -- of an extended return statement (either written by the user, or
6217 -- generated by the above code).
6218
6219 -- Always normalize C/Fortran boolean result. This is not always needed,
6220 -- but it seems a good idea to minimize the passing around of non-
6221 -- normalized values, and in any case this handles the processing of
6222 -- barrier functions for protected types, which turn the condition into
6223 -- a return statement.
6224
6225 if Is_Boolean_Type (Exptyp)
6226 and then Nonzero_Is_True (Exptyp)
6227 then
6228 Adjust_Condition (Exp);
6229 Adjust_Result_Type (Exp, Exptyp);
6230 end if;
6231
6232 -- Do validity check if enabled for returns
6233
6234 if Validity_Checks_On
6235 and then Validity_Check_Returns
6236 then
6237 Ensure_Valid (Exp);
6238 end if;
6239
6240 -- Check the result expression of a scalar function against the subtype
6241 -- of the function by inserting a conversion. This conversion must
6242 -- eventually be performed for other classes of types, but for now it's
6243 -- only done for scalars.
6244 -- ???
6245
6246 if Is_Scalar_Type (Exptyp) then
6247 Rewrite (Exp, Convert_To (R_Type, Exp));
6248
6249 -- The expression is resolved to ensure that the conversion gets
6250 -- expanded to generate a possible constraint check.
6251
6252 Analyze_And_Resolve (Exp, R_Type);
6253 end if;
6254
6255 -- Deal with returning variable length objects and controlled types
6256
6257 -- Nothing to do if we are returning by reference, or this is not a
6258 -- type that requires special processing (indicated by the fact that
6259 -- it requires a cleanup scope for the secondary stack case).
6260
6261 if Is_Immutably_Limited_Type (Exptyp)
6262 or else Is_Limited_Interface (Exptyp)
6263 then
6264 null;
6265
6266 elsif not Requires_Transient_Scope (R_Type) then
6267
6268 -- Mutable records with no variable length components are not
6269 -- returned on the sec-stack, so we need to make sure that the
6270 -- backend will only copy back the size of the actual value, and not
6271 -- the maximum size. We create an actual subtype for this purpose.
6272
6273 declare
6274 Ubt : constant Entity_Id := Underlying_Type (Base_Type (Exptyp));
6275 Decl : Node_Id;
6276 Ent : Entity_Id;
6277 begin
6278 if Has_Discriminants (Ubt)
6279 and then not Is_Constrained (Ubt)
6280 and then not Has_Unchecked_Union (Ubt)
6281 then
6282 Decl := Build_Actual_Subtype (Ubt, Exp);
6283 Ent := Defining_Identifier (Decl);
6284 Insert_Action (Exp, Decl);
6285 Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
6286 Analyze_And_Resolve (Exp);
6287 end if;
6288 end;
6289
6290 -- Here if secondary stack is used
6291
6292 else
6293 -- Make sure that no surrounding block will reclaim the secondary
6294 -- stack on which we are going to put the result. Not only may this
6295 -- introduce secondary stack leaks but worse, if the reclamation is
6296 -- done too early, then the result we are returning may get
6297 -- clobbered.
6298
6299 declare
6300 S : Entity_Id;
6301 begin
6302 S := Current_Scope;
6303 while Ekind (S) = E_Block or else Ekind (S) = E_Loop loop
6304 Set_Sec_Stack_Needed_For_Return (S, True);
6305 S := Enclosing_Dynamic_Scope (S);
6306 end loop;
6307 end;
6308
6309 -- Optimize the case where the result is a function call. In this
6310 -- case either the result is already on the secondary stack, or is
6311 -- already being returned with the stack pointer depressed and no
6312 -- further processing is required except to set the By_Ref flag to
6313 -- ensure that gigi does not attempt an extra unnecessary copy.
6314 -- (actually not just unnecessary but harmfully wrong in the case
6315 -- of a controlled type, where gigi does not know how to do a copy).
6316 -- To make up for a gcc 2.8.1 deficiency (???), we perform
6317 -- the copy for array types if the constrained status of the
6318 -- target type is different from that of the expression.
6319
6320 if Requires_Transient_Scope (Exptyp)
6321 and then
6322 (not Is_Array_Type (Exptyp)
6323 or else Is_Constrained (Exptyp) = Is_Constrained (R_Type)
6324 or else CW_Or_Has_Controlled_Part (Utyp))
6325 and then Nkind (Exp) = N_Function_Call
6326 then
6327 Set_By_Ref (N);
6328
6329 -- Remove side effects from the expression now so that other parts
6330 -- of the expander do not have to reanalyze this node without this
6331 -- optimization
6332
6333 Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
6334
6335 -- For controlled types, do the allocation on the secondary stack
6336 -- manually in order to call adjust at the right time:
6337
6338 -- type Anon1 is access R_Type;
6339 -- for Anon1'Storage_pool use ss_pool;
6340 -- Anon2 : anon1 := new R_Type'(expr);
6341 -- return Anon2.all;
6342
6343 -- We do the same for classwide types that are not potentially
6344 -- controlled (by the virtue of restriction No_Finalization) because
6345 -- gigi is not able to properly allocate class-wide types.
6346
6347 elsif CW_Or_Has_Controlled_Part (Utyp) then
6348 declare
6349 Loc : constant Source_Ptr := Sloc (N);
6350 Acc_Typ : constant Entity_Id := Make_Temporary (Loc, 'A');
6351 Alloc_Node : Node_Id;
6352 Temp : Entity_Id;
6353
6354 begin
6355 Set_Ekind (Acc_Typ, E_Access_Type);
6356
6357 Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
6358
6359 -- This is an allocator for the secondary stack, and it's fine
6360 -- to have Comes_From_Source set False on it, as gigi knows not
6361 -- to flag it as a violation of No_Implicit_Heap_Allocations.
6362
6363 Alloc_Node :=
6364 Make_Allocator (Loc,
6365 Expression =>
6366 Make_Qualified_Expression (Loc,
6367 Subtype_Mark => New_Reference_To (Etype (Exp), Loc),
6368 Expression => Relocate_Node (Exp)));
6369
6370 -- We do not want discriminant checks on the declaration,
6371 -- given that it gets its value from the allocator.
6372
6373 Set_No_Initialization (Alloc_Node);
6374
6375 Temp := Make_Temporary (Loc, 'R', Alloc_Node);
6376
6377 Insert_List_Before_And_Analyze (N, New_List (
6378 Make_Full_Type_Declaration (Loc,
6379 Defining_Identifier => Acc_Typ,
6380 Type_Definition =>
6381 Make_Access_To_Object_Definition (Loc,
6382 Subtype_Indication => Subtype_Ind)),
6383
6384 Make_Object_Declaration (Loc,
6385 Defining_Identifier => Temp,
6386 Object_Definition => New_Reference_To (Acc_Typ, Loc),
6387 Expression => Alloc_Node)));
6388
6389 Rewrite (Exp,
6390 Make_Explicit_Dereference (Loc,
6391 Prefix => New_Reference_To (Temp, Loc)));
6392
6393 Analyze_And_Resolve (Exp, R_Type);
6394 end;
6395
6396 -- Otherwise use the gigi mechanism to allocate result on the
6397 -- secondary stack.
6398
6399 else
6400 Check_Restriction (No_Secondary_Stack, N);
6401 Set_Storage_Pool (N, RTE (RE_SS_Pool));
6402
6403 -- If we are generating code for the VM do not use
6404 -- SS_Allocate since everything is heap-allocated anyway.
6405
6406 if VM_Target = No_VM then
6407 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
6408 end if;
6409 end if;
6410 end if;
6411
6412 -- Implement the rules of 6.5(8-10), which require a tag check in the
6413 -- case of a limited tagged return type, and tag reassignment for
6414 -- nonlimited tagged results. These actions are needed when the return
6415 -- type is a specific tagged type and the result expression is a
6416 -- conversion or a formal parameter, because in that case the tag of the
6417 -- expression might differ from the tag of the specific result type.
6418
6419 if Is_Tagged_Type (Utyp)
6420 and then not Is_Class_Wide_Type (Utyp)
6421 and then (Nkind_In (Exp, N_Type_Conversion,
6422 N_Unchecked_Type_Conversion)
6423 or else (Is_Entity_Name (Exp)
6424 and then Ekind (Entity (Exp)) in Formal_Kind))
6425 then
6426 -- When the return type is limited, perform a check that the
6427 -- tag of the result is the same as the tag of the return type.
6428
6429 if Is_Limited_Type (R_Type) then
6430 Insert_Action (Exp,
6431 Make_Raise_Constraint_Error (Loc,
6432 Condition =>
6433 Make_Op_Ne (Loc,
6434 Left_Opnd =>
6435 Make_Selected_Component (Loc,
7675ad4f
AC
6436 Prefix => Duplicate_Subexpr (Exp),
6437 Selector_Name => Make_Identifier (Loc, Name_uTag)),
2b3d67a5
AC
6438 Right_Opnd =>
6439 Make_Attribute_Reference (Loc,
6440 Prefix => New_Occurrence_Of (Base_Type (Utyp), Loc),
6441 Attribute_Name => Name_Tag)),
6442 Reason => CE_Tag_Check_Failed));
6443
6444 -- If the result type is a specific nonlimited tagged type, then we
6445 -- have to ensure that the tag of the result is that of the result
6446 -- type. This is handled by making a copy of the expression in the
6447 -- case where it might have a different tag, namely when the
6448 -- expression is a conversion or a formal parameter. We create a new
6449 -- object of the result type and initialize it from the expression,
6450 -- which will implicitly force the tag to be set appropriately.
6451
6452 else
6453 declare
6454 ExpR : constant Node_Id := Relocate_Node (Exp);
6455 Result_Id : constant Entity_Id :=
6456 Make_Temporary (Loc, 'R', ExpR);
6457 Result_Exp : constant Node_Id :=
6458 New_Reference_To (Result_Id, Loc);
6459 Result_Obj : constant Node_Id :=
6460 Make_Object_Declaration (Loc,
6461 Defining_Identifier => Result_Id,
6462 Object_Definition =>
6463 New_Reference_To (R_Type, Loc),
6464 Constant_Present => True,
6465 Expression => ExpR);
6466
6467 begin
6468 Set_Assignment_OK (Result_Obj);
6469 Insert_Action (Exp, Result_Obj);
6470
6471 Rewrite (Exp, Result_Exp);
6472 Analyze_And_Resolve (Exp, R_Type);
6473 end;
6474 end if;
6475
6476 -- Ada 2005 (AI-344): If the result type is class-wide, then insert
6477 -- a check that the level of the return expression's underlying type
6478 -- is not deeper than the level of the master enclosing the function.
6479 -- Always generate the check when the type of the return expression
6480 -- is class-wide, when it's a type conversion, or when it's a formal
6481 -- parameter. Otherwise, suppress the check in the case where the
6482 -- return expression has a specific type whose level is known not to
6483 -- be statically deeper than the function's result type.
6484
6485 -- Note: accessibility check is skipped in the VM case, since there
6486 -- does not seem to be any practical way to implement this check.
6487
0791fbe9 6488 elsif Ada_Version >= Ada_2005
2b3d67a5
AC
6489 and then Tagged_Type_Expansion
6490 and then Is_Class_Wide_Type (R_Type)
6491 and then not Scope_Suppress (Accessibility_Check)
6492 and then
6493 (Is_Class_Wide_Type (Etype (Exp))
6494 or else Nkind_In (Exp, N_Type_Conversion,
6495 N_Unchecked_Type_Conversion)
6496 or else (Is_Entity_Name (Exp)
6497 and then Ekind (Entity (Exp)) in Formal_Kind)
6498 or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
6499 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))
6500 then
6501 declare
6502 Tag_Node : Node_Id;
6503
6504 begin
6505 -- Ada 2005 (AI-251): In class-wide interface objects we displace
6506 -- "this" to reference the base of the object --- required to get
6507 -- access to the TSD of the object.
6508
6509 if Is_Class_Wide_Type (Etype (Exp))
6510 and then Is_Interface (Etype (Exp))
6511 and then Nkind (Exp) = N_Explicit_Dereference
6512 then
6513 Tag_Node :=
6514 Make_Explicit_Dereference (Loc,
6515 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6516 Make_Function_Call (Loc,
6517 Name => New_Reference_To (RTE (RE_Base_Address), Loc),
6518 Parameter_Associations => New_List (
6519 Unchecked_Convert_To (RTE (RE_Address),
6520 Duplicate_Subexpr (Prefix (Exp)))))));
6521 else
6522 Tag_Node :=
6523 Make_Attribute_Reference (Loc,
6524 Prefix => Duplicate_Subexpr (Exp),
6525 Attribute_Name => Name_Tag);
6526 end if;
6527
6528 Insert_Action (Exp,
6529 Make_Raise_Program_Error (Loc,
6530 Condition =>
6531 Make_Op_Gt (Loc,
6532 Left_Opnd =>
6533 Build_Get_Access_Level (Loc, Tag_Node),
6534 Right_Opnd =>
6535 Make_Integer_Literal (Loc,
6536 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))),
6537 Reason => PE_Accessibility_Check_Failed));
6538 end;
6539
6540 -- AI05-0073: If function has a controlling access result, check that
6541 -- the tag of the return value, if it is not null, matches designated
6542 -- type of return type.
6543 -- The return expression is referenced twice in the code below, so
6544 -- it must be made free of side effects. Given that different compilers
6545 -- may evaluate these parameters in different order, both occurrences
6546 -- perform a copy.
6547
6548 elsif Ekind (R_Type) = E_Anonymous_Access_Type
6549 and then Has_Controlling_Result (Scope_Id)
6550 then
6551 Insert_Action (N,
6552 Make_Raise_Constraint_Error (Loc,
6553 Condition =>
6554 Make_And_Then (Loc,
6555 Left_Opnd =>
6556 Make_Op_Ne (Loc,
6557 Left_Opnd => Duplicate_Subexpr (Exp),
6558 Right_Opnd => Make_Null (Loc)),
6559 Right_Opnd => Make_Op_Ne (Loc,
6560 Left_Opnd =>
6561 Make_Selected_Component (Loc,
6562 Prefix => Duplicate_Subexpr (Exp),
7675ad4f 6563 Selector_Name => Make_Identifier (Loc, Name_uTag)),
2b3d67a5
AC
6564 Right_Opnd =>
6565 Make_Attribute_Reference (Loc,
6566 Prefix =>
6567 New_Occurrence_Of (Designated_Type (R_Type), Loc),
6568 Attribute_Name => Name_Tag))),
6569 Reason => CE_Tag_Check_Failed),
6570 Suppress => All_Checks);
6571 end if;
6572
6573 -- If we are returning an object that may not be bit-aligned, then copy
6574 -- the value into a temporary first. This copy may need to expand to a
6575 -- loop of component operations.
6576
6577 if Is_Possibly_Unaligned_Slice (Exp)
6578 or else Is_Possibly_Unaligned_Object (Exp)
6579 then
6580 declare
6581 ExpR : constant Node_Id := Relocate_Node (Exp);
6582 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
6583 begin
6584 Insert_Action (Exp,
6585 Make_Object_Declaration (Loc,
6586 Defining_Identifier => Tnn,
6587 Constant_Present => True,
6588 Object_Definition => New_Occurrence_Of (R_Type, Loc),
6589 Expression => ExpR),
6590 Suppress => All_Checks);
6591 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6592 end;
6593 end if;
6594
6595 -- Generate call to postcondition checks if they are present
6596
6597 if Ekind (Scope_Id) = E_Function
6598 and then Has_Postconditions (Scope_Id)
6599 then
6600 -- We are going to reference the returned value twice in this case,
6601 -- once in the call to _Postconditions, and once in the actual return
6602 -- statement, but we can't have side effects happening twice, and in
6603 -- any case for efficiency we don't want to do the computation twice.
6604
6605 -- If the returned expression is an entity name, we don't need to
6606 -- worry since it is efficient and safe to reference it twice, that's
6607 -- also true for literals other than string literals, and for the
6608 -- case of X.all where X is an entity name.
6609
6610 if Is_Entity_Name (Exp)
6611 or else Nkind_In (Exp, N_Character_Literal,
6612 N_Integer_Literal,
6613 N_Real_Literal)
6614 or else (Nkind (Exp) = N_Explicit_Dereference
6615 and then Is_Entity_Name (Prefix (Exp)))
6616 then
6617 null;
6618
6619 -- Otherwise we are going to need a temporary to capture the value
6620
6621 else
6622 declare
6623 ExpR : constant Node_Id := Relocate_Node (Exp);
6624 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
6625
6626 begin
6627 -- For a complex expression of an elementary type, capture
6628 -- value in the temporary and use it as the reference.
6629
6630 if Is_Elementary_Type (R_Type) then
6631 Insert_Action (Exp,
6632 Make_Object_Declaration (Loc,
6633 Defining_Identifier => Tnn,
6634 Constant_Present => True,
6635 Object_Definition => New_Occurrence_Of (R_Type, Loc),
6636 Expression => ExpR),
6637 Suppress => All_Checks);
6638
6639 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6640
6641 -- If we have something we can rename, generate a renaming of
6642 -- the object and replace the expression with a reference
6643
6644 elsif Is_Object_Reference (Exp) then
6645 Insert_Action (Exp,
6646 Make_Object_Renaming_Declaration (Loc,
6647 Defining_Identifier => Tnn,
6648 Subtype_Mark => New_Occurrence_Of (R_Type, Loc),
6649 Name => ExpR),
6650 Suppress => All_Checks);
6651
6652 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6653
6654 -- Otherwise we have something like a string literal or an
6655 -- aggregate. We could copy the value, but that would be
6656 -- inefficient. Instead we make a reference to the value and
6657 -- capture this reference with a renaming, the expression is
6658 -- then replaced by a dereference of this renaming.
6659
6660 else
6661 -- For now, copy the value, since the code below does not
6662 -- seem to work correctly ???
6663
6664 Insert_Action (Exp,
6665 Make_Object_Declaration (Loc,
6666 Defining_Identifier => Tnn,
6667 Constant_Present => True,
6668 Object_Definition => New_Occurrence_Of (R_Type, Loc),
6669 Expression => Relocate_Node (Exp)),
6670 Suppress => All_Checks);
6671
6672 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
6673
6674 -- Insert_Action (Exp,
6675 -- Make_Object_Renaming_Declaration (Loc,
6676 -- Defining_Identifier => Tnn,
6677 -- Access_Definition =>
6678 -- Make_Access_Definition (Loc,
6679 -- All_Present => True,
6680 -- Subtype_Mark => New_Occurrence_Of (R_Type, Loc)),
6681 -- Name =>
6682 -- Make_Reference (Loc,
6683 -- Prefix => Relocate_Node (Exp))),
6684 -- Suppress => All_Checks);
6685
6686 -- Rewrite (Exp,
6687 -- Make_Explicit_Dereference (Loc,
6688 -- Prefix => New_Occurrence_Of (Tnn, Loc)));
6689 end if;
6690 end;
6691 end if;
6692
6693 -- Generate call to _postconditions
6694
6695 Insert_Action (Exp,
6696 Make_Procedure_Call_Statement (Loc,
6697 Name => Make_Identifier (Loc, Name_uPostconditions),
6698 Parameter_Associations => New_List (Duplicate_Subexpr (Exp))));
6699 end if;
6700
6701 -- Ada 2005 (AI-251): If this return statement corresponds with an
6702 -- simple return statement associated with an extended return statement
6703 -- and the type of the returned object is an interface then generate an
6704 -- implicit conversion to force displacement of the "this" pointer.
6705
0791fbe9 6706 if Ada_Version >= Ada_2005
2b3d67a5
AC
6707 and then Comes_From_Extended_Return_Statement (N)
6708 and then Nkind (Expression (N)) = N_Identifier
6709 and then Is_Interface (Utyp)
6710 and then Utyp /= Underlying_Type (Exptyp)
6711 then
6712 Rewrite (Exp, Convert_To (Utyp, Relocate_Node (Exp)));
6713 Analyze_And_Resolve (Exp);
6714 end if;
6715 end Expand_Simple_Function_Return;
6716
02822a92
RD
6717 --------------------------------
6718 -- Is_Build_In_Place_Function --
6719 --------------------------------
70482933 6720
02822a92
RD
6721 function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
6722 begin
5087048c
AC
6723 -- This function is called from Expand_Subtype_From_Expr during
6724 -- semantic analysis, even when expansion is off. In those cases
6725 -- the build_in_place expansion will not take place.
b0256cb6
AC
6726
6727 if not Expander_Active then
6728 return False;
6729 end if;
6730
02822a92 6731 -- For now we test whether E denotes a function or access-to-function
f937473f
RD
6732 -- type whose result subtype is inherently limited. Later this test may
6733 -- be revised to allow composite nonlimited types. Functions with a
6734 -- foreign convention or whose result type has a foreign convention
02822a92
RD
6735 -- never qualify.
6736
b29def53 6737 if Ekind_In (E, E_Function, E_Generic_Function)
02822a92
RD
6738 or else (Ekind (E) = E_Subprogram_Type
6739 and then Etype (E) /= Standard_Void_Type)
6740 then
f937473f
RD
6741 -- Note: If you have Convention (C) on an inherently limited type,
6742 -- you're on your own. That is, the C code will have to be carefully
6743 -- written to know about the Ada conventions.
6744
02822a92
RD
6745 if Has_Foreign_Convention (E)
6746 or else Has_Foreign_Convention (Etype (E))
3ca505dc 6747 then
02822a92 6748 return False;
c8ef728f 6749
2a31c32b
AC
6750 -- In Ada 2005 all functions with an inherently limited return type
6751 -- must be handled using a build-in-place profile, including the case
6752 -- of a function with a limited interface result, where the function
6753 -- may return objects of nonlimited descendants.
7888a6ae 6754
02822a92 6755 else
40f07b4b 6756 return Is_Immutably_Limited_Type (Etype (E))
0791fbe9 6757 and then Ada_Version >= Ada_2005
f937473f 6758 and then not Debug_Flag_Dot_L;
c8ef728f
ES
6759 end if;
6760
02822a92
RD
6761 else
6762 return False;
6763 end if;
6764 end Is_Build_In_Place_Function;
f4d379b8 6765
02822a92
RD
6766 -------------------------------------
6767 -- Is_Build_In_Place_Function_Call --
6768 -------------------------------------
f4d379b8 6769
02822a92
RD
6770 function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
6771 Exp_Node : Node_Id := N;
6772 Function_Id : Entity_Id;
f4d379b8 6773
02822a92 6774 begin
19590d70
GD
6775 -- Step past qualification or unchecked conversion (the latter can occur
6776 -- in cases of calls to 'Input).
6777
ac4d6407
RD
6778 if Nkind_In
6779 (Exp_Node, N_Qualified_Expression, N_Unchecked_Type_Conversion)
19590d70 6780 then
02822a92
RD
6781 Exp_Node := Expression (N);
6782 end if;
758c442c 6783
02822a92
RD
6784 if Nkind (Exp_Node) /= N_Function_Call then
6785 return False;
3ca505dc 6786
02822a92
RD
6787 else
6788 if Is_Entity_Name (Name (Exp_Node)) then
6789 Function_Id := Entity (Name (Exp_Node));
758c442c 6790
02822a92
RD
6791 elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
6792 Function_Id := Etype (Name (Exp_Node));
6793 end if;
758c442c 6794
02822a92
RD
6795 return Is_Build_In_Place_Function (Function_Id);
6796 end if;
6797 end Is_Build_In_Place_Function_Call;
758c442c 6798
02822a92
RD
6799 -----------------------
6800 -- Freeze_Subprogram --
6801 -----------------------
758c442c 6802
02822a92
RD
6803 procedure Freeze_Subprogram (N : Node_Id) is
6804 Loc : constant Source_Ptr := Sloc (N);
3ca505dc 6805
02822a92
RD
6806 procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
6807 -- (Ada 2005): Register a predefined primitive in all the secondary
6808 -- dispatch tables of its primitive type.
3ca505dc 6809
f4d379b8
HK
6810 ----------------------------------
6811 -- Register_Predefined_DT_Entry --
6812 ----------------------------------
6813
6814 procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
6815 Iface_DT_Ptr : Elmt_Id;
02822a92 6816 Tagged_Typ : Entity_Id;
f4d379b8 6817 Thunk_Id : Entity_Id;
7888a6ae 6818 Thunk_Code : Node_Id;
f4d379b8
HK
6819
6820 begin
02822a92 6821 Tagged_Typ := Find_Dispatching_Type (Prim);
f4d379b8 6822
02822a92 6823 if No (Access_Disp_Table (Tagged_Typ))
ce2b6ba5 6824 or else not Has_Interfaces (Tagged_Typ)
c8ef728f 6825 or else not RTE_Available (RE_Interface_Tag)
f937473f 6826 or else Restriction_Active (No_Dispatching_Calls)
f4d379b8
HK
6827 then
6828 return;
6829 end if;
6830
1923d2d6
JM
6831 -- Skip the first two access-to-dispatch-table pointers since they
6832 -- leads to the primary dispatch table (predefined DT and user
6833 -- defined DT). We are only concerned with the secondary dispatch
6834 -- table pointers. Note that the access-to- dispatch-table pointer
6835 -- corresponds to the first implemented interface retrieved below.
f4d379b8 6836
02822a92 6837 Iface_DT_Ptr :=
1923d2d6 6838 Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Tagged_Typ))));
f937473f 6839
7888a6ae 6840 while Present (Iface_DT_Ptr)
df3e68b1 6841 and then Ekind (Node (Iface_DT_Ptr)) = E_Constant
7888a6ae 6842 loop
ac4d6407 6843 pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
d766cee3 6844 Expand_Interface_Thunk (Prim, Thunk_Id, Thunk_Code);
7888a6ae
GD
6845
6846 if Present (Thunk_Code) then
ac4d6407 6847 Insert_Actions_After (N, New_List (
7888a6ae
GD
6848 Thunk_Code,
6849
6850 Build_Set_Predefined_Prim_Op_Address (Loc,
1923d2d6
JM
6851 Tag_Node =>
6852 New_Reference_To (Node (Next_Elmt (Iface_DT_Ptr)), Loc),
7888a6ae
GD
6853 Position => DT_Position (Prim),
6854 Address_Node =>
70f91180 6855 Unchecked_Convert_To (RTE (RE_Prim_Ptr),
1923d2d6
JM
6856 Make_Attribute_Reference (Loc,
6857 Prefix => New_Reference_To (Thunk_Id, Loc),
6858 Attribute_Name => Name_Unrestricted_Access))),
ac4d6407
RD
6859
6860 Build_Set_Predefined_Prim_Op_Address (Loc,
1923d2d6
JM
6861 Tag_Node =>
6862 New_Reference_To
6863 (Node (Next_Elmt (Next_Elmt (Next_Elmt (Iface_DT_Ptr)))),
6864 Loc),
ac4d6407
RD
6865 Position => DT_Position (Prim),
6866 Address_Node =>
70f91180 6867 Unchecked_Convert_To (RTE (RE_Prim_Ptr),
1923d2d6
JM
6868 Make_Attribute_Reference (Loc,
6869 Prefix => New_Reference_To (Prim, Loc),
6870 Attribute_Name => Name_Unrestricted_Access)))));
7888a6ae 6871 end if;
f4d379b8 6872
1923d2d6
JM
6873 -- Skip the tag of the predefined primitives dispatch table
6874
6875 Next_Elmt (Iface_DT_Ptr);
6876 pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
6877
6878 -- Skip the tag of the no-thunks dispatch table
6879
6880 Next_Elmt (Iface_DT_Ptr);
6881 pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
6882
6883 -- Skip the tag of the predefined primitives no-thunks dispatch
df3e68b1 6884 -- table.
1923d2d6 6885
ac4d6407
RD
6886 Next_Elmt (Iface_DT_Ptr);
6887 pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
6888
f4d379b8 6889 Next_Elmt (Iface_DT_Ptr);
f4d379b8
HK
6890 end loop;
6891 end Register_Predefined_DT_Entry;
6892
7888a6ae 6893 -- Local variables
3ca505dc 6894
df3e68b1 6895 Subp : constant Entity_Id := Entity (N);
3ca505dc 6896
ac4d6407
RD
6897 -- Start of processing for Freeze_Subprogram
6898
7888a6ae 6899 begin
d766cee3
RD
6900 -- We suppress the initialization of the dispatch table entry when
6901 -- VM_Target because the dispatching mechanism is handled internally
6902 -- by the VM.
6903
6904 if Is_Dispatching_Operation (Subp)
6905 and then not Is_Abstract_Subprogram (Subp)
6906 and then Present (DTC_Entity (Subp))
6907 and then Present (Scope (DTC_Entity (Subp)))
1f110335 6908 and then Tagged_Type_Expansion
d766cee3
RD
6909 and then not Restriction_Active (No_Dispatching_Calls)
6910 and then RTE_Available (RE_Tag)
6911 then
7888a6ae 6912 declare
d766cee3 6913 Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
c8ef728f 6914
7888a6ae 6915 begin
8fc789c8 6916 -- Handle private overridden primitives
c8ef728f 6917
d766cee3
RD
6918 if not Is_CPP_Class (Typ) then
6919 Check_Overriding_Operation (Subp);
7888a6ae 6920 end if;
c8ef728f 6921
d766cee3
RD
6922 -- We assume that imported CPP primitives correspond with objects
6923 -- whose constructor is in the CPP side; therefore we don't need
6924 -- to generate code to register them in the dispatch table.
c8ef728f 6925
d766cee3
RD
6926 if Is_CPP_Class (Typ) then
6927 null;
3ca505dc 6928
d766cee3
RD
6929 -- Handle CPP primitives found in derivations of CPP_Class types.
6930 -- These primitives must have been inherited from some parent, and
6931 -- there is no need to register them in the dispatch table because
6932 -- Build_Inherit_Prims takes care of the initialization of these
6933 -- slots.
3ca505dc 6934
d766cee3
RD
6935 elsif Is_Imported (Subp)
6936 and then (Convention (Subp) = Convention_CPP
6937 or else Convention (Subp) = Convention_C)
6938 then
6939 null;
6940
6941 -- Generate code to register the primitive in non statically
6942 -- allocated dispatch tables
6943
bfae1846
AC
6944 elsif not Building_Static_DT (Scope (DTC_Entity (Subp))) then
6945
d766cee3
RD
6946 -- When a primitive is frozen, enter its name in its dispatch
6947 -- table slot.
f4d379b8 6948
d766cee3 6949 if not Is_Interface (Typ)
ce2b6ba5 6950 or else Present (Interface_Alias (Subp))
d766cee3
RD
6951 then
6952 if Is_Predefined_Dispatching_Operation (Subp) then
6953 Register_Predefined_DT_Entry (Subp);
7888a6ae 6954 end if;
d766cee3 6955
991395ab
AC
6956 Insert_Actions_After (N,
6957 Register_Primitive (Loc, Prim => Subp));
7888a6ae
GD
6958 end if;
6959 end if;
6960 end;
70482933
RK
6961 end if;
6962
7888a6ae
GD
6963 -- Mark functions that return by reference. Note that it cannot be part
6964 -- of the normal semantic analysis of the spec since the underlying
6965 -- returned type may not be known yet (for private types).
70482933 6966
d766cee3
RD
6967 declare
6968 Typ : constant Entity_Id := Etype (Subp);
6969 Utyp : constant Entity_Id := Underlying_Type (Typ);
6970 begin
40f07b4b 6971 if Is_Immutably_Limited_Type (Typ) then
d766cee3 6972 Set_Returns_By_Ref (Subp);
048e5cef 6973 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
d766cee3
RD
6974 Set_Returns_By_Ref (Subp);
6975 end if;
6976 end;
70482933
RK
6977 end Freeze_Subprogram;
6978
8dbf3473
AC
6979 -----------------------
6980 -- Is_Null_Procedure --
6981 -----------------------
6982
6983 function Is_Null_Procedure (Subp : Entity_Id) return Boolean is
6984 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
6985
6986 begin
6987 if Ekind (Subp) /= E_Procedure then
6988 return False;
6989
6990 -- Check if this is a declared null procedure
6991
6992 elsif Nkind (Decl) = N_Subprogram_Declaration then
e1f3cb58
AC
6993 if not Null_Present (Specification (Decl)) then
6994 return False;
8dbf3473
AC
6995
6996 elsif No (Body_To_Inline (Decl)) then
6997 return False;
6998
6999 -- Check if the body contains only a null statement, followed by
7000 -- the return statement added during expansion.
7001
7002 else
7003 declare
7004 Orig_Bod : constant Node_Id := Body_To_Inline (Decl);
7005
7006 Stat : Node_Id;
7007 Stat2 : Node_Id;
7008
7009 begin
7010 if Nkind (Orig_Bod) /= N_Subprogram_Body then
7011 return False;
7012 else
327503f1
JM
7013 -- We must skip SCIL nodes because they are currently
7014 -- implemented as special N_Null_Statement nodes.
7015
8dbf3473 7016 Stat :=
327503f1 7017 First_Non_SCIL_Node
8dbf3473 7018 (Statements (Handled_Statement_Sequence (Orig_Bod)));
327503f1 7019 Stat2 := Next_Non_SCIL_Node (Stat);
8dbf3473
AC
7020
7021 return
e1f3cb58
AC
7022 Is_Empty_List (Declarations (Orig_Bod))
7023 and then Nkind (Stat) = N_Null_Statement
7024 and then
8dbf3473
AC
7025 (No (Stat2)
7026 or else
7027 (Nkind (Stat2) = N_Simple_Return_Statement
7028 and then No (Next (Stat2))));
7029 end if;
7030 end;
7031 end if;
7032
7033 else
7034 return False;
7035 end if;
7036 end Is_Null_Procedure;
7037
02822a92
RD
7038 -------------------------------------------
7039 -- Make_Build_In_Place_Call_In_Allocator --
7040 -------------------------------------------
7041
7042 procedure Make_Build_In_Place_Call_In_Allocator
7043 (Allocator : Node_Id;
7044 Function_Call : Node_Id)
7045 is
7046 Loc : Source_Ptr;
7047 Func_Call : Node_Id := Function_Call;
7048 Function_Id : Entity_Id;
7049 Result_Subt : Entity_Id;
7050 Acc_Type : constant Entity_Id := Etype (Allocator);
7051 New_Allocator : Node_Id;
7052 Return_Obj_Access : Entity_Id;
7053
7054 begin
19590d70
GD
7055 -- Step past qualification or unchecked conversion (the latter can occur
7056 -- in cases of calls to 'Input).
7057
ac4d6407
RD
7058 if Nkind_In (Func_Call,
7059 N_Qualified_Expression,
7060 N_Unchecked_Type_Conversion)
19590d70 7061 then
02822a92
RD
7062 Func_Call := Expression (Func_Call);
7063 end if;
7064
fdce4bb7
JM
7065 -- If the call has already been processed to add build-in-place actuals
7066 -- then return. This should not normally occur in an allocator context,
7067 -- but we add the protection as a defensive measure.
7068
7069 if Is_Expanded_Build_In_Place_Call (Func_Call) then
7070 return;
7071 end if;
7072
7073 -- Mark the call as processed as a build-in-place call
7074
7075 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
7076
02822a92
RD
7077 Loc := Sloc (Function_Call);
7078
7079 if Is_Entity_Name (Name (Func_Call)) then
7080 Function_Id := Entity (Name (Func_Call));
7081
7082 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
7083 Function_Id := Etype (Name (Func_Call));
7084
7085 else
7086 raise Program_Error;
7087 end if;
7088
7089 Result_Subt := Etype (Function_Id);
7090
f937473f
RD
7091 -- When the result subtype is constrained, the return object must be
7092 -- allocated on the caller side, and access to it is passed to the
7093 -- function.
02822a92 7094
7888a6ae
GD
7095 -- Here and in related routines, we must examine the full view of the
7096 -- type, because the view at the point of call may differ from that
7097 -- that in the function body, and the expansion mechanism depends on
7098 -- the characteristics of the full view.
7099
7100 if Is_Constrained (Underlying_Type (Result_Subt)) then
02822a92 7101
f937473f
RD
7102 -- Replace the initialized allocator of form "new T'(Func (...))"
7103 -- with an uninitialized allocator of form "new T", where T is the
7104 -- result subtype of the called function. The call to the function
7105 -- is handled separately further below.
02822a92 7106
f937473f 7107 New_Allocator :=
fad0600d
AC
7108 Make_Allocator (Loc,
7109 Expression => New_Reference_To (Result_Subt, Loc));
7110 Set_No_Initialization (New_Allocator);
7111
7112 -- Copy attributes to new allocator. Note that the new allocator
7113 -- logically comes from source if the original one did, so copy the
7114 -- relevant flag. This ensures proper treatment of the restriction
7115 -- No_Implicit_Heap_Allocations in this case.
02822a92 7116
fad0600d 7117 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
f937473f 7118 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
fad0600d 7119 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
02822a92 7120
f937473f 7121 Rewrite (Allocator, New_Allocator);
02822a92 7122
f937473f 7123 -- Create a new access object and initialize it to the result of the
b0b7b57d 7124 -- new uninitialized allocator. Note: we do not use Allocator as the
f104fca1
AC
7125 -- Related_Node of Return_Obj_Access in call to Make_Temporary below
7126 -- as this would create a sort of infinite "recursion".
02822a92 7127
f104fca1 7128 Return_Obj_Access := Make_Temporary (Loc, 'R');
f937473f
RD
7129 Set_Etype (Return_Obj_Access, Acc_Type);
7130
7131 Insert_Action (Allocator,
7132 Make_Object_Declaration (Loc,
7133 Defining_Identifier => Return_Obj_Access,
7134 Object_Definition => New_Reference_To (Acc_Type, Loc),
7135 Expression => Relocate_Node (Allocator)));
7136
7888a6ae
GD
7137 -- When the function has a controlling result, an allocation-form
7138 -- parameter must be passed indicating that the caller is allocating
7139 -- the result object. This is needed because such a function can be
7140 -- called as a dispatching operation and must be treated similarly
7141 -- to functions with unconstrained result subtypes.
7142
7143 Add_Alloc_Form_Actual_To_Build_In_Place_Call
7144 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
7145
df3e68b1 7146 Add_Collection_Actual_To_Build_In_Place_Call
7888a6ae
GD
7147 (Func_Call, Function_Id, Acc_Type);
7148
7149 Add_Task_Actuals_To_Build_In_Place_Call
7150 (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type));
7151
f937473f
RD
7152 -- Add an implicit actual to the function call that provides access
7153 -- to the allocated object. An unchecked conversion to the (specific)
7154 -- result subtype of the function is inserted to handle cases where
7155 -- the access type of the allocator has a class-wide designated type.
7156
f937473f
RD
7157 Add_Access_Actual_To_Build_In_Place_Call
7158 (Func_Call,
7159 Function_Id,
7160 Make_Unchecked_Type_Conversion (Loc,
7161 Subtype_Mark => New_Reference_To (Result_Subt, Loc),
7162 Expression =>
7163 Make_Explicit_Dereference (Loc,
7164 Prefix => New_Reference_To (Return_Obj_Access, Loc))));
7165
7166 -- When the result subtype is unconstrained, the function itself must
7167 -- perform the allocation of the return object, so we pass parameters
7168 -- indicating that. We don't yet handle the case where the allocation
7169 -- must be done in a user-defined storage pool, which will require
7170 -- passing another actual or two to provide allocation/deallocation
7171 -- operations. ???
7172
7173 else
7174 -- Pass an allocation parameter indicating that the function should
7175 -- allocate its result on the heap.
7176
7177 Add_Alloc_Form_Actual_To_Build_In_Place_Call
7178 (Func_Call, Function_Id, Alloc_Form => Global_Heap);
7179
df3e68b1 7180 Add_Collection_Actual_To_Build_In_Place_Call
7888a6ae 7181 (Func_Call, Function_Id, Acc_Type);
f937473f 7182
f937473f
RD
7183 Add_Task_Actuals_To_Build_In_Place_Call
7184 (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type));
7888a6ae
GD
7185
7186 -- The caller does not provide the return object in this case, so we
7187 -- have to pass null for the object access actual.
7188
f937473f
RD
7189 Add_Access_Actual_To_Build_In_Place_Call
7190 (Func_Call, Function_Id, Return_Object => Empty);
7191 end if;
02822a92 7192
df3e68b1
HK
7193 -- If the build-in-place function call returns a controlled object, the
7194 -- finalization collection will require a reference to routine Finalize_
7195 -- Address of the designated type. Setting this attribute is done in the
7196 -- same manner to expansion of allocators.
7197
7198 if Needs_Finalization (Result_Subt) then
7199
7200 -- Controlled types with supressed finalization do not need to
7201 -- associate the address of their Finalize_Address primitives with a
7202 -- collection since they do not need a collection to begin with.
7203
7204 if Is_Library_Level_Entity (Acc_Type)
7205 and then Finalize_Storage_Only (Result_Subt)
7206 then
7207 null;
7208
7209 else
7210 Insert_Action (Allocator,
7211 Make_Set_Finalize_Address_Ptr_Call (Loc,
7212 Typ => Etype (Function_Id),
7213 Ptr_Typ => Acc_Type));
7214 end if;
7215 end if;
7216
02822a92
RD
7217 -- Finally, replace the allocator node with a reference to the result
7218 -- of the function call itself (which will effectively be an access
7219 -- to the object created by the allocator).
7220
7221 Rewrite (Allocator, Make_Reference (Loc, Relocate_Node (Function_Call)));
7222 Analyze_And_Resolve (Allocator, Acc_Type);
7223 end Make_Build_In_Place_Call_In_Allocator;
7224
7225 ---------------------------------------------------
7226 -- Make_Build_In_Place_Call_In_Anonymous_Context --
7227 ---------------------------------------------------
7228
7229 procedure Make_Build_In_Place_Call_In_Anonymous_Context
7230 (Function_Call : Node_Id)
7231 is
7232 Loc : Source_Ptr;
7233 Func_Call : Node_Id := Function_Call;
7234 Function_Id : Entity_Id;
7235 Result_Subt : Entity_Id;
7236 Return_Obj_Id : Entity_Id;
7237 Return_Obj_Decl : Entity_Id;
7238
7239 begin
19590d70
GD
7240 -- Step past qualification or unchecked conversion (the latter can occur
7241 -- in cases of calls to 'Input).
7242
ac4d6407
RD
7243 if Nkind_In (Func_Call, N_Qualified_Expression,
7244 N_Unchecked_Type_Conversion)
19590d70 7245 then
02822a92
RD
7246 Func_Call := Expression (Func_Call);
7247 end if;
7248
fdce4bb7
JM
7249 -- If the call has already been processed to add build-in-place actuals
7250 -- then return. One place this can occur is for calls to build-in-place
7251 -- functions that occur within a call to a protected operation, where
7252 -- due to rewriting and expansion of the protected call there can be
7253 -- more than one call to Expand_Actuals for the same set of actuals.
7254
7255 if Is_Expanded_Build_In_Place_Call (Func_Call) then
7256 return;
7257 end if;
7258
7259 -- Mark the call as processed as a build-in-place call
7260
7261 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
7262
02822a92
RD
7263 Loc := Sloc (Function_Call);
7264
7265 if Is_Entity_Name (Name (Func_Call)) then
7266 Function_Id := Entity (Name (Func_Call));
7267
7268 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
7269 Function_Id := Etype (Name (Func_Call));
7270
7271 else
7272 raise Program_Error;
7273 end if;
7274
7275 Result_Subt := Etype (Function_Id);
7276
df3e68b1
HK
7277 -- If the build-in-place function returns a controlled object, then the
7278 -- object needs to be finalized immediately after the context. Since
7279 -- this case produces a transient scope, the servicing finalizer needs
7280 -- to name the returned object. Create a temporary which is initialized
7281 -- with the function call:
7282 --
7283 -- Temp_Id : Func_Type := BIP_Func_Call;
7284 --
7285 -- The initialization expression of the temporary will be rewritten by
7286 -- the expander using the appropriate mechanism in Make_Build_In_Place_
7287 -- Call_In_Object_Declaration.
7288
7289 if Needs_Finalization (Result_Subt) then
7290 declare
7291 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'R');
7292 Temp_Decl : Node_Id;
7293
7294 begin
7295 -- Reset the guard on the function call since the following does
7296 -- not perform actual call expansion.
7297
7298 Set_Is_Expanded_Build_In_Place_Call (Func_Call, False);
7299
7300 Temp_Decl :=
7301 Make_Object_Declaration (Loc,
7302 Defining_Identifier => Temp_Id,
7303 Object_Definition =>
7304 New_Reference_To (Result_Subt, Loc),
7305 Expression =>
7306 New_Copy_Tree (Function_Call));
7307
7308 Insert_Action (Function_Call, Temp_Decl);
7309
7310 Rewrite (Function_Call, New_Reference_To (Temp_Id, Loc));
7311 Analyze (Function_Call);
7312 end;
7313
f937473f
RD
7314 -- When the result subtype is constrained, an object of the subtype is
7315 -- declared and an access value designating it is passed as an actual.
02822a92 7316
df3e68b1 7317 elsif Is_Constrained (Underlying_Type (Result_Subt)) then
02822a92 7318
f937473f
RD
7319 -- Create a temporary object to hold the function result
7320
c12beea0 7321 Return_Obj_Id := Make_Temporary (Loc, 'R');
f937473f 7322 Set_Etype (Return_Obj_Id, Result_Subt);
02822a92 7323
f937473f
RD
7324 Return_Obj_Decl :=
7325 Make_Object_Declaration (Loc,
7326 Defining_Identifier => Return_Obj_Id,
7327 Aliased_Present => True,
7328 Object_Definition => New_Reference_To (Result_Subt, Loc));
02822a92 7329
f937473f 7330 Set_No_Initialization (Return_Obj_Decl);
02822a92 7331
f937473f 7332 Insert_Action (Func_Call, Return_Obj_Decl);
02822a92 7333
7888a6ae
GD
7334 -- When the function has a controlling result, an allocation-form
7335 -- parameter must be passed indicating that the caller is allocating
7336 -- the result object. This is needed because such a function can be
7337 -- called as a dispatching operation and must be treated similarly
7338 -- to functions with unconstrained result subtypes.
7339
7340 Add_Alloc_Form_Actual_To_Build_In_Place_Call
7341 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
7342
df3e68b1
HK
7343 Add_Collection_Actual_To_Build_In_Place_Call
7344 (Func_Call, Function_Id);
f937473f 7345
f937473f
RD
7346 Add_Task_Actuals_To_Build_In_Place_Call
7347 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
7888a6ae
GD
7348
7349 -- Add an implicit actual to the function call that provides access
7350 -- to the caller's return object.
7351
f937473f
RD
7352 Add_Access_Actual_To_Build_In_Place_Call
7353 (Func_Call, Function_Id, New_Reference_To (Return_Obj_Id, Loc));
7354
7355 -- When the result subtype is unconstrained, the function must allocate
7356 -- the return object in the secondary stack, so appropriate implicit
7357 -- parameters are added to the call to indicate that. A transient
7358 -- scope is established to ensure eventual cleanup of the result.
7359
7360 else
7361 -- Pass an allocation parameter indicating that the function should
7362 -- allocate its result on the secondary stack.
7363
7364 Add_Alloc_Form_Actual_To_Build_In_Place_Call
7365 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
7366
df3e68b1
HK
7367 Add_Collection_Actual_To_Build_In_Place_Call
7368 (Func_Call, Function_Id);
f937473f 7369
f937473f
RD
7370 Add_Task_Actuals_To_Build_In_Place_Call
7371 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
7888a6ae
GD
7372
7373 -- Pass a null value to the function since no return object is
7374 -- available on the caller side.
7375
f937473f
RD
7376 Add_Access_Actual_To_Build_In_Place_Call
7377 (Func_Call, Function_Id, Empty);
f937473f 7378 end if;
02822a92
RD
7379 end Make_Build_In_Place_Call_In_Anonymous_Context;
7380
ce2798e8 7381 --------------------------------------------
02822a92 7382 -- Make_Build_In_Place_Call_In_Assignment --
ce2798e8 7383 --------------------------------------------
02822a92
RD
7384
7385 procedure Make_Build_In_Place_Call_In_Assignment
7386 (Assign : Node_Id;
7387 Function_Call : Node_Id)
7388 is
3a69b5ff
AC
7389 Lhs : constant Node_Id := Name (Assign);
7390 Func_Call : Node_Id := Function_Call;
7391 Func_Id : Entity_Id;
7392 Loc : Source_Ptr;
7393 Obj_Decl : Node_Id;
7394 Obj_Id : Entity_Id;
7395 Ptr_Typ : Entity_Id;
7396 Ptr_Typ_Decl : Node_Id;
7397 Result_Subt : Entity_Id;
7398 Target : Node_Id;
02822a92
RD
7399
7400 begin
19590d70
GD
7401 -- Step past qualification or unchecked conversion (the latter can occur
7402 -- in cases of calls to 'Input).
7403
ac4d6407
RD
7404 if Nkind_In (Func_Call, N_Qualified_Expression,
7405 N_Unchecked_Type_Conversion)
19590d70 7406 then
02822a92
RD
7407 Func_Call := Expression (Func_Call);
7408 end if;
7409
fdce4bb7
JM
7410 -- If the call has already been processed to add build-in-place actuals
7411 -- then return. This should not normally occur in an assignment context,
7412 -- but we add the protection as a defensive measure.
7413
7414 if Is_Expanded_Build_In_Place_Call (Func_Call) then
7415 return;
7416 end if;
7417
7418 -- Mark the call as processed as a build-in-place call
7419
7420 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
7421
02822a92
RD
7422 Loc := Sloc (Function_Call);
7423
7424 if Is_Entity_Name (Name (Func_Call)) then
3a69b5ff 7425 Func_Id := Entity (Name (Func_Call));
02822a92
RD
7426
7427 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
3a69b5ff 7428 Func_Id := Etype (Name (Func_Call));
02822a92
RD
7429
7430 else
7431 raise Program_Error;
7432 end if;
7433
3a69b5ff 7434 Result_Subt := Etype (Func_Id);
02822a92 7435
f937473f
RD
7436 -- When the result subtype is unconstrained, an additional actual must
7437 -- be passed to indicate that the caller is providing the return object.
7888a6ae
GD
7438 -- This parameter must also be passed when the called function has a
7439 -- controlling result, because dispatching calls to the function needs
7440 -- to be treated effectively the same as calls to class-wide functions.
f937473f 7441
7888a6ae 7442 Add_Alloc_Form_Actual_To_Build_In_Place_Call
3a69b5ff 7443 (Func_Call, Func_Id, Alloc_Form => Caller_Allocation);
f937473f 7444
df3e68b1
HK
7445 Add_Collection_Actual_To_Build_In_Place_Call
7446 (Func_Call, Func_Id);
02822a92 7447
f937473f 7448 Add_Task_Actuals_To_Build_In_Place_Call
3a69b5ff 7449 (Func_Call, Func_Id, Make_Identifier (Loc, Name_uMaster));
7888a6ae
GD
7450
7451 -- Add an implicit actual to the function call that provides access to
7452 -- the caller's return object.
7453
02822a92
RD
7454 Add_Access_Actual_To_Build_In_Place_Call
7455 (Func_Call,
3a69b5ff 7456 Func_Id,
02822a92
RD
7457 Make_Unchecked_Type_Conversion (Loc,
7458 Subtype_Mark => New_Reference_To (Result_Subt, Loc),
7459 Expression => Relocate_Node (Lhs)));
7460
7461 -- Create an access type designating the function's result subtype
7462
c12beea0 7463 Ptr_Typ := Make_Temporary (Loc, 'A');
02822a92
RD
7464
7465 Ptr_Typ_Decl :=
7466 Make_Full_Type_Declaration (Loc,
3a69b5ff 7467 Defining_Identifier => Ptr_Typ,
02822a92
RD
7468 Type_Definition =>
7469 Make_Access_To_Object_Definition (Loc,
7470 All_Present => True,
7471 Subtype_Indication =>
7472 New_Reference_To (Result_Subt, Loc)));
02822a92
RD
7473 Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
7474
7475 -- Finally, create an access object initialized to a reference to the
7476 -- function call.
7477
c12beea0 7478 Obj_Id := Make_Temporary (Loc, 'R');
3a69b5ff 7479 Set_Etype (Obj_Id, Ptr_Typ);
02822a92 7480
3a69b5ff 7481 Obj_Decl :=
02822a92 7482 Make_Object_Declaration (Loc,
3a69b5ff
AC
7483 Defining_Identifier => Obj_Id,
7484 Object_Definition =>
7485 New_Reference_To (Ptr_Typ, Loc),
7486 Expression =>
7487 Make_Reference (Loc,
7488 Prefix => Relocate_Node (Func_Call)));
7489 Insert_After_And_Analyze (Ptr_Typ_Decl, Obj_Decl);
02822a92
RD
7490
7491 Rewrite (Assign, Make_Null_Statement (Loc));
3a69b5ff
AC
7492
7493 -- Retrieve the target of the assignment
7494
7495 if Nkind (Lhs) = N_Selected_Component then
7496 Target := Selector_Name (Lhs);
7497 elsif Nkind (Lhs) = N_Type_Conversion then
7498 Target := Expression (Lhs);
7499 else
7500 Target := Lhs;
7501 end if;
7502
7503 -- If we are assigning to a return object or this is an expression of
7504 -- an extension aggregate, the target should either be an identifier
7505 -- or a simple expression. All other cases imply a different scenario.
7506
7507 if Nkind (Target) in N_Has_Entity then
7508 Target := Entity (Target);
7509 else
7510 return;
7511 end if;
02822a92
RD
7512 end Make_Build_In_Place_Call_In_Assignment;
7513
7514 ----------------------------------------------------
7515 -- Make_Build_In_Place_Call_In_Object_Declaration --
7516 ----------------------------------------------------
7517
7518 procedure Make_Build_In_Place_Call_In_Object_Declaration
7519 (Object_Decl : Node_Id;
7520 Function_Call : Node_Id)
7521 is
f937473f
RD
7522 Loc : Source_Ptr;
7523 Obj_Def_Id : constant Entity_Id :=
7524 Defining_Identifier (Object_Decl);
7888a6ae 7525
f937473f
RD
7526 Func_Call : Node_Id := Function_Call;
7527 Function_Id : Entity_Id;
7528 Result_Subt : Entity_Id;
7529 Caller_Object : Node_Id;
7530 Call_Deref : Node_Id;
7531 Ref_Type : Entity_Id;
7532 Ptr_Typ_Decl : Node_Id;
7533 Def_Id : Entity_Id;
7534 New_Expr : Node_Id;
7535 Enclosing_Func : Entity_Id;
7536 Pass_Caller_Acc : Boolean := False;
02822a92
RD
7537
7538 begin
19590d70
GD
7539 -- Step past qualification or unchecked conversion (the latter can occur
7540 -- in cases of calls to 'Input).
7541
ac4d6407
RD
7542 if Nkind_In (Func_Call, N_Qualified_Expression,
7543 N_Unchecked_Type_Conversion)
19590d70 7544 then
02822a92
RD
7545 Func_Call := Expression (Func_Call);
7546 end if;
7547
fdce4bb7
JM
7548 -- If the call has already been processed to add build-in-place actuals
7549 -- then return. This should not normally occur in an object declaration,
7550 -- but we add the protection as a defensive measure.
7551
7552 if Is_Expanded_Build_In_Place_Call (Func_Call) then
7553 return;
7554 end if;
7555
7556 -- Mark the call as processed as a build-in-place call
7557
7558 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
7559
02822a92
RD
7560 Loc := Sloc (Function_Call);
7561
7562 if Is_Entity_Name (Name (Func_Call)) then
7563 Function_Id := Entity (Name (Func_Call));
7564
7565 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
7566 Function_Id := Etype (Name (Func_Call));
7567
7568 else
7569 raise Program_Error;
7570 end if;
7571
7572 Result_Subt := Etype (Function_Id);
7573
f937473f
RD
7574 -- In the constrained case, add an implicit actual to the function call
7575 -- that provides access to the declared object. An unchecked conversion
7576 -- to the (specific) result type of the function is inserted to handle
7577 -- the case where the object is declared with a class-wide type.
7578
7888a6ae 7579 if Is_Constrained (Underlying_Type (Result_Subt)) then
f937473f
RD
7580 Caller_Object :=
7581 Make_Unchecked_Type_Conversion (Loc,
7582 Subtype_Mark => New_Reference_To (Result_Subt, Loc),
7583 Expression => New_Reference_To (Obj_Def_Id, Loc));
02822a92 7584
7888a6ae
GD
7585 -- When the function has a controlling result, an allocation-form
7586 -- parameter must be passed indicating that the caller is allocating
7587 -- the result object. This is needed because such a function can be
7588 -- called as a dispatching operation and must be treated similarly
7589 -- to functions with unconstrained result subtypes.
7590
7591 Add_Alloc_Form_Actual_To_Build_In_Place_Call
7592 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
7593
f937473f
RD
7594 -- If the function's result subtype is unconstrained and the object is
7595 -- a return object of an enclosing build-in-place function, then the
7596 -- implicit build-in-place parameters of the enclosing function must be
ce14c577
AC
7597 -- passed along to the called function. (Unfortunately, this won't cover
7598 -- the case of extension aggregates where the ancestor part is a build-
7599 -- in-place unconstrained function call that should be passed along the
7600 -- caller's parameters. Currently those get mishandled by reassigning
7601 -- the result of the call to the aggregate return object, when the call
7602 -- result should really be directly built in place in the aggregate and
7603 -- not built in a temporary. ???)
7604
7605 elsif Is_Return_Object (Defining_Identifier (Object_Decl)) then
f937473f
RD
7606 Pass_Caller_Acc := True;
7607
7608 Enclosing_Func := Enclosing_Subprogram (Obj_Def_Id);
7609
7610 -- If the enclosing function has a constrained result type, then
7611 -- caller allocation will be used.
7612
7613 if Is_Constrained (Etype (Enclosing_Func)) then
7614 Add_Alloc_Form_Actual_To_Build_In_Place_Call
7615 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
7616
7617 -- Otherwise, when the enclosing function has an unconstrained result
7618 -- type, the BIP_Alloc_Form formal of the enclosing function must be
7888a6ae 7619 -- passed along to the callee.
f937473f
RD
7620
7621 else
7622 Add_Alloc_Form_Actual_To_Build_In_Place_Call
7623 (Func_Call,
7624 Function_Id,
7625 Alloc_Form_Exp =>
7626 New_Reference_To
7627 (Build_In_Place_Formal (Enclosing_Func, BIP_Alloc_Form),
7628 Loc));
7629 end if;
7630
7631 -- Retrieve the BIPacc formal from the enclosing function and convert
7632 -- it to the access type of the callee's BIP_Object_Access formal.
7633
7634 Caller_Object :=
7635 Make_Unchecked_Type_Conversion (Loc,
7636 Subtype_Mark =>
7637 New_Reference_To
7638 (Etype
7639 (Build_In_Place_Formal (Function_Id, BIP_Object_Access)),
7640 Loc),
7641 Expression =>
7642 New_Reference_To
7643 (Build_In_Place_Formal (Enclosing_Func, BIP_Object_Access),
7644 Loc));
7645
7646 -- In other unconstrained cases, pass an indication to do the allocation
7647 -- on the secondary stack and set Caller_Object to Empty so that a null
7648 -- value will be passed for the caller's object address. A transient
7649 -- scope is established to ensure eventual cleanup of the result.
7650
7651 else
7652 Add_Alloc_Form_Actual_To_Build_In_Place_Call
7653 (Func_Call,
7654 Function_Id,
7655 Alloc_Form => Secondary_Stack);
7656 Caller_Object := Empty;
7657
7658 Establish_Transient_Scope (Object_Decl, Sec_Stack => True);
7659 end if;
7660
df3e68b1
HK
7661 Add_Collection_Actual_To_Build_In_Place_Call
7662 (Func_Call, Function_Id);
7888a6ae 7663
f937473f
RD
7664 if Nkind (Parent (Object_Decl)) = N_Extended_Return_Statement
7665 and then Has_Task (Result_Subt)
7666 then
7667 Enclosing_Func := Enclosing_Subprogram (Obj_Def_Id);
7888a6ae
GD
7668
7669 -- Here we're passing along the master that was passed in to this
7670 -- function.
7671
f937473f
RD
7672 Add_Task_Actuals_To_Build_In_Place_Call
7673 (Func_Call, Function_Id,
7674 Master_Actual =>
7675 New_Reference_To
7676 (Build_In_Place_Formal (Enclosing_Func, BIP_Master), Loc));
7888a6ae 7677
f937473f
RD
7678 else
7679 Add_Task_Actuals_To_Build_In_Place_Call
7680 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
7681 end if;
7888a6ae 7682
02822a92 7683 Add_Access_Actual_To_Build_In_Place_Call
f937473f 7684 (Func_Call, Function_Id, Caller_Object, Is_Access => Pass_Caller_Acc);
02822a92 7685
b0b7b57d
AC
7686 -- Create an access type designating the function's result subtype. We
7687 -- use the type of the original expression because it may be a call to
7688 -- an inherited operation, which the expansion has replaced with the
7689 -- parent operation that yields the parent type.
02822a92 7690
c12beea0 7691 Ref_Type := Make_Temporary (Loc, 'A');
02822a92
RD
7692
7693 Ptr_Typ_Decl :=
7694 Make_Full_Type_Declaration (Loc,
7695 Defining_Identifier => Ref_Type,
7696 Type_Definition =>
7697 Make_Access_To_Object_Definition (Loc,
7698 All_Present => True,
7699 Subtype_Indication =>
b0b7b57d 7700 New_Reference_To (Etype (Function_Call), Loc)));
02822a92 7701
f937473f
RD
7702 -- The access type and its accompanying object must be inserted after
7703 -- the object declaration in the constrained case, so that the function
7704 -- call can be passed access to the object. In the unconstrained case,
7705 -- the access type and object must be inserted before the object, since
7706 -- the object declaration is rewritten to be a renaming of a dereference
7707 -- of the access object.
7708
7888a6ae 7709 if Is_Constrained (Underlying_Type (Result_Subt)) then
f937473f
RD
7710 Insert_After_And_Analyze (Object_Decl, Ptr_Typ_Decl);
7711 else
4f6e2c24 7712 Insert_Action (Object_Decl, Ptr_Typ_Decl);
f937473f 7713 end if;
02822a92
RD
7714
7715 -- Finally, create an access object initialized to a reference to the
7716 -- function call.
7717
02822a92
RD
7718 New_Expr :=
7719 Make_Reference (Loc,
7720 Prefix => Relocate_Node (Func_Call));
7721
c12beea0
RD
7722 Def_Id := Make_Temporary (Loc, 'R', New_Expr);
7723 Set_Etype (Def_Id, Ref_Type);
7724
02822a92
RD
7725 Insert_After_And_Analyze (Ptr_Typ_Decl,
7726 Make_Object_Declaration (Loc,
7727 Defining_Identifier => Def_Id,
7728 Object_Definition => New_Reference_To (Ref_Type, Loc),
7729 Expression => New_Expr));
7730
7888a6ae 7731 if Is_Constrained (Underlying_Type (Result_Subt)) then
f937473f
RD
7732 Set_Expression (Object_Decl, Empty);
7733 Set_No_Initialization (Object_Decl);
7734
7735 -- In case of an unconstrained result subtype, rewrite the object
7736 -- declaration as an object renaming where the renamed object is a
7737 -- dereference of <function_Call>'reference:
7738 --
7739 -- Obj : Subt renames <function_call>'Ref.all;
7740
7741 else
7742 Call_Deref :=
7743 Make_Explicit_Dereference (Loc,
7744 Prefix => New_Reference_To (Def_Id, Loc));
7745
f00c5f52 7746 Loc := Sloc (Object_Decl);
f937473f
RD
7747 Rewrite (Object_Decl,
7748 Make_Object_Renaming_Declaration (Loc,
c12beea0 7749 Defining_Identifier => Make_Temporary (Loc, 'D'),
f937473f
RD
7750 Access_Definition => Empty,
7751 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
7752 Name => Call_Deref));
7753
7754 Set_Renamed_Object (Defining_Identifier (Object_Decl), Call_Deref);
7755
7756 Analyze (Object_Decl);
7757
7758 -- Replace the internal identifier of the renaming declaration's
7759 -- entity with identifier of the original object entity. We also have
7760 -- to exchange the entities containing their defining identifiers to
7761 -- ensure the correct replacement of the object declaration by the
7762 -- object renaming declaration to avoid homograph conflicts (since
7763 -- the object declaration's defining identifier was already entered
67ce0d7e
RD
7764 -- in current scope). The Next_Entity links of the two entities also
7765 -- have to be swapped since the entities are part of the return
7766 -- scope's entity list and the list structure would otherwise be
7e8ed0a6 7767 -- corrupted. Finally, the homonym chain must be preserved as well.
67ce0d7e
RD
7768
7769 declare
7770 Renaming_Def_Id : constant Entity_Id :=
7771 Defining_Identifier (Object_Decl);
7772 Next_Entity_Temp : constant Entity_Id :=
7773 Next_Entity (Renaming_Def_Id);
7774 begin
7775 Set_Chars (Renaming_Def_Id, Chars (Obj_Def_Id));
7776
7777 -- Swap next entity links in preparation for exchanging entities
f937473f 7778
67ce0d7e
RD
7779 Set_Next_Entity (Renaming_Def_Id, Next_Entity (Obj_Def_Id));
7780 Set_Next_Entity (Obj_Def_Id, Next_Entity_Temp);
7e8ed0a6 7781 Set_Homonym (Renaming_Def_Id, Homonym (Obj_Def_Id));
67ce0d7e
RD
7782
7783 Exchange_Entities (Renaming_Def_Id, Obj_Def_Id);
f00c5f52
AC
7784
7785 -- Preserve source indication of original declaration, so that
7786 -- xref information is properly generated for the right entity.
7787
7788 Preserve_Comes_From_Source
7789 (Object_Decl, Original_Node (Object_Decl));
7790 Set_Comes_From_Source (Obj_Def_Id, True);
7791 Set_Comes_From_Source (Renaming_Def_Id, False);
67ce0d7e 7792 end;
f937473f 7793 end if;
02822a92
RD
7794
7795 -- If the object entity has a class-wide Etype, then we need to change
7796 -- it to the result subtype of the function call, because otherwise the
53b308f6
AC
7797 -- object will be class-wide without an explicit initialization and
7798 -- won't be allocated properly by the back end. It seems unclean to make
7799 -- such a revision to the type at this point, and we should try to
7800 -- improve this treatment when build-in-place functions with class-wide
7801 -- results are implemented. ???
02822a92
RD
7802
7803 if Is_Class_Wide_Type (Etype (Defining_Identifier (Object_Decl))) then
7804 Set_Etype (Defining_Identifier (Object_Decl), Result_Subt);
7805 end if;
7806 end Make_Build_In_Place_Call_In_Object_Declaration;
7807
8fb68c56 7808 --------------------------
df3e68b1 7809 -- Needs_BIP_Collection --
8fb68c56
RD
7810 --------------------------
7811
df3e68b1
HK
7812 function Needs_BIP_Collection (Func_Id : Entity_Id) return Boolean is
7813 pragma Assert (Is_Build_In_Place_Function (Func_Id));
7814 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
8fb68c56 7815
048e5cef 7816 begin
df3e68b1
HK
7817 return
7818 not Restriction_Active (No_Finalization)
7819 and then Needs_Finalization (Func_Typ);
7820 end Needs_BIP_Collection;
048e5cef 7821
70482933 7822end Exp_Ch6;
This page took 3.750357 seconds and 5 git commands to generate.