libstdc++
stl_vector.h
Go to the documentation of this file.
1 // Vector implementation -*- C++ -*-
2 
3 // Copyright (C) 2001-2021 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /*
26  *
27  * Copyright (c) 1994
28  * Hewlett-Packard Company
29  *
30  * Permission to use, copy, modify, distribute and sell this software
31  * and its documentation for any purpose is hereby granted without fee,
32  * provided that the above copyright notice appear in all copies and
33  * that both that copyright notice and this permission notice appear
34  * in supporting documentation. Hewlett-Packard Company makes no
35  * representations about the suitability of this software for any
36  * purpose. It is provided "as is" without express or implied warranty.
37  *
38  *
39  * Copyright (c) 1996
40  * Silicon Graphics Computer Systems, Inc.
41  *
42  * Permission to use, copy, modify, distribute and sell this software
43  * and its documentation for any purpose is hereby granted without fee,
44  * provided that the above copyright notice appear in all copies and
45  * that both that copyright notice and this permission notice appear
46  * in supporting documentation. Silicon Graphics makes no
47  * representations about the suitability of this software for any
48  * purpose. It is provided "as is" without express or implied warranty.
49  */
50 
51 /** @file bits/stl_vector.h
52  * This is an internal header file, included by other library headers.
53  * Do not attempt to use it directly. @headername{vector}
54  */
55 
56 #ifndef _STL_VECTOR_H
57 #define _STL_VECTOR_H 1
58 
60 #include <bits/functexcept.h>
61 #include <bits/concept_check.h>
62 #if __cplusplus >= 201103L
63 #include <initializer_list>
64 #endif
65 #if __cplusplus > 201703L
66 # include <compare>
67 #endif
68 
69 #include <debug/assertions.h>
70 
71 #if _GLIBCXX_SANITIZE_STD_ALLOCATOR && _GLIBCXX_SANITIZE_VECTOR
72 extern "C" void
73 __sanitizer_annotate_contiguous_container(const void*, const void*,
74  const void*, const void*);
75 #endif
76 
77 namespace std _GLIBCXX_VISIBILITY(default)
78 {
79 _GLIBCXX_BEGIN_NAMESPACE_VERSION
80 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
81 
82  /// See bits/stl_deque.h's _Deque_base for an explanation.
83  template<typename _Tp, typename _Alloc>
84  struct _Vector_base
85  {
87  rebind<_Tp>::other _Tp_alloc_type;
88  typedef typename __gnu_cxx::__alloc_traits<_Tp_alloc_type>::pointer
89  pointer;
90 
91  struct _Vector_impl_data
92  {
93  pointer _M_start;
94  pointer _M_finish;
95  pointer _M_end_of_storage;
96 
97  _Vector_impl_data() _GLIBCXX_NOEXCEPT
98  : _M_start(), _M_finish(), _M_end_of_storage()
99  { }
100 
101 #if __cplusplus >= 201103L
102  _Vector_impl_data(_Vector_impl_data&& __x) noexcept
103  : _M_start(__x._M_start), _M_finish(__x._M_finish),
104  _M_end_of_storage(__x._M_end_of_storage)
105  { __x._M_start = __x._M_finish = __x._M_end_of_storage = pointer(); }
106 #endif
107 
108  void
109  _M_copy_data(_Vector_impl_data const& __x) _GLIBCXX_NOEXCEPT
110  {
111  _M_start = __x._M_start;
112  _M_finish = __x._M_finish;
113  _M_end_of_storage = __x._M_end_of_storage;
114  }
115 
116  void
117  _M_swap_data(_Vector_impl_data& __x) _GLIBCXX_NOEXCEPT
118  {
119  // Do not use std::swap(_M_start, __x._M_start), etc as it loses
120  // information used by TBAA.
121  _Vector_impl_data __tmp;
122  __tmp._M_copy_data(*this);
123  _M_copy_data(__x);
124  __x._M_copy_data(__tmp);
125  }
126  };
127 
128  struct _Vector_impl
129  : public _Tp_alloc_type, public _Vector_impl_data
130  {
131  _Vector_impl() _GLIBCXX_NOEXCEPT_IF(
133  : _Tp_alloc_type()
134  { }
135 
136  _Vector_impl(_Tp_alloc_type const& __a) _GLIBCXX_NOEXCEPT
137  : _Tp_alloc_type(__a)
138  { }
139 
140 #if __cplusplus >= 201103L
141  // Not defaulted, to enforce noexcept(true) even when
142  // !is_nothrow_move_constructible<_Tp_alloc_type>.
143  _Vector_impl(_Vector_impl&& __x) noexcept
144  : _Tp_alloc_type(std::move(__x)), _Vector_impl_data(std::move(__x))
145  { }
146 
147  _Vector_impl(_Tp_alloc_type&& __a) noexcept
148  : _Tp_alloc_type(std::move(__a))
149  { }
150 
151  _Vector_impl(_Tp_alloc_type&& __a, _Vector_impl&& __rv) noexcept
152  : _Tp_alloc_type(std::move(__a)), _Vector_impl_data(std::move(__rv))
153  { }
154 #endif
155 
156 #if _GLIBCXX_SANITIZE_STD_ALLOCATOR && _GLIBCXX_SANITIZE_VECTOR
157  template<typename = _Tp_alloc_type>
158  struct _Asan
159  {
161  ::size_type size_type;
162 
163  static void _S_shrink(_Vector_impl&, size_type) { }
164  static void _S_on_dealloc(_Vector_impl&) { }
165 
166  typedef _Vector_impl& _Reinit;
167 
168  struct _Grow
169  {
170  _Grow(_Vector_impl&, size_type) { }
171  void _M_grew(size_type) { }
172  };
173  };
174 
175  // Enable ASan annotations for memory obtained from std::allocator.
176  template<typename _Up>
177  struct _Asan<allocator<_Up> >
178  {
180  ::size_type size_type;
181 
182  // Adjust ASan annotation for [_M_start, _M_end_of_storage) to
183  // mark end of valid region as __curr instead of __prev.
184  static void
185  _S_adjust(_Vector_impl& __impl, pointer __prev, pointer __curr)
186  {
187  __sanitizer_annotate_contiguous_container(__impl._M_start,
188  __impl._M_end_of_storage, __prev, __curr);
189  }
190 
191  static void
192  _S_grow(_Vector_impl& __impl, size_type __n)
193  { _S_adjust(__impl, __impl._M_finish, __impl._M_finish + __n); }
194 
195  static void
196  _S_shrink(_Vector_impl& __impl, size_type __n)
197  { _S_adjust(__impl, __impl._M_finish + __n, __impl._M_finish); }
198 
199  static void
200  _S_on_dealloc(_Vector_impl& __impl)
201  {
202  if (__impl._M_start)
203  _S_adjust(__impl, __impl._M_finish, __impl._M_end_of_storage);
204  }
205 
206  // Used on reallocation to tell ASan unused capacity is invalid.
207  struct _Reinit
208  {
209  explicit _Reinit(_Vector_impl& __impl) : _M_impl(__impl)
210  {
211  // Mark unused capacity as valid again before deallocating it.
212  _S_on_dealloc(_M_impl);
213  }
214 
215  ~_Reinit()
216  {
217  // Mark unused capacity as invalid after reallocation.
218  if (_M_impl._M_start)
219  _S_adjust(_M_impl, _M_impl._M_end_of_storage,
220  _M_impl._M_finish);
221  }
222 
223  _Vector_impl& _M_impl;
224 
225 #if __cplusplus >= 201103L
226  _Reinit(const _Reinit&) = delete;
227  _Reinit& operator=(const _Reinit&) = delete;
228 #endif
229  };
230 
231  // Tell ASan when unused capacity is initialized to be valid.
232  struct _Grow
233  {
234  _Grow(_Vector_impl& __impl, size_type __n)
235  : _M_impl(__impl), _M_n(__n)
236  { _S_grow(_M_impl, __n); }
237 
238  ~_Grow() { if (_M_n) _S_shrink(_M_impl, _M_n); }
239 
240  void _M_grew(size_type __n) { _M_n -= __n; }
241 
242 #if __cplusplus >= 201103L
243  _Grow(const _Grow&) = delete;
244  _Grow& operator=(const _Grow&) = delete;
245 #endif
246  private:
247  _Vector_impl& _M_impl;
248  size_type _M_n;
249  };
250  };
251 
252 #define _GLIBCXX_ASAN_ANNOTATE_REINIT \
253  typename _Base::_Vector_impl::template _Asan<>::_Reinit const \
254  __attribute__((__unused__)) __reinit_guard(this->_M_impl)
255 #define _GLIBCXX_ASAN_ANNOTATE_GROW(n) \
256  typename _Base::_Vector_impl::template _Asan<>::_Grow \
257  __attribute__((__unused__)) __grow_guard(this->_M_impl, (n))
258 #define _GLIBCXX_ASAN_ANNOTATE_GREW(n) __grow_guard._M_grew(n)
259 #define _GLIBCXX_ASAN_ANNOTATE_SHRINK(n) \
260  _Base::_Vector_impl::template _Asan<>::_S_shrink(this->_M_impl, n)
261 #define _GLIBCXX_ASAN_ANNOTATE_BEFORE_DEALLOC \
262  _Base::_Vector_impl::template _Asan<>::_S_on_dealloc(this->_M_impl)
263 #else // ! (_GLIBCXX_SANITIZE_STD_ALLOCATOR && _GLIBCXX_SANITIZE_VECTOR)
264 #define _GLIBCXX_ASAN_ANNOTATE_REINIT
265 #define _GLIBCXX_ASAN_ANNOTATE_GROW(n)
266 #define _GLIBCXX_ASAN_ANNOTATE_GREW(n)
267 #define _GLIBCXX_ASAN_ANNOTATE_SHRINK(n)
268 #define _GLIBCXX_ASAN_ANNOTATE_BEFORE_DEALLOC
269 #endif // _GLIBCXX_SANITIZE_STD_ALLOCATOR && _GLIBCXX_SANITIZE_VECTOR
270  };
271 
272  public:
273  typedef _Alloc allocator_type;
274 
275  _Tp_alloc_type&
276  _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT
277  { return this->_M_impl; }
278 
279  const _Tp_alloc_type&
280  _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
281  { return this->_M_impl; }
282 
283  allocator_type
284  get_allocator() const _GLIBCXX_NOEXCEPT
285  { return allocator_type(_M_get_Tp_allocator()); }
286 
287 #if __cplusplus >= 201103L
288  _Vector_base() = default;
289 #else
290  _Vector_base() { }
291 #endif
292 
293  _Vector_base(const allocator_type& __a) _GLIBCXX_NOEXCEPT
294  : _M_impl(__a) { }
295 
296  // Kept for ABI compatibility.
297 #if !_GLIBCXX_INLINE_VERSION
298  _Vector_base(size_t __n)
299  : _M_impl()
300  { _M_create_storage(__n); }
301 #endif
302 
303  _Vector_base(size_t __n, const allocator_type& __a)
304  : _M_impl(__a)
305  { _M_create_storage(__n); }
306 
307 #if __cplusplus >= 201103L
308  _Vector_base(_Vector_base&&) = default;
309 
310  // Kept for ABI compatibility.
311 # if !_GLIBCXX_INLINE_VERSION
312  _Vector_base(_Tp_alloc_type&& __a) noexcept
313  : _M_impl(std::move(__a)) { }
314 
315  _Vector_base(_Vector_base&& __x, const allocator_type& __a)
316  : _M_impl(__a)
317  {
318  if (__x.get_allocator() == __a)
319  this->_M_impl._M_swap_data(__x._M_impl);
320  else
321  {
322  size_t __n = __x._M_impl._M_finish - __x._M_impl._M_start;
323  _M_create_storage(__n);
324  }
325  }
326 # endif
327 
328  _Vector_base(const allocator_type& __a, _Vector_base&& __x)
329  : _M_impl(_Tp_alloc_type(__a), std::move(__x._M_impl))
330  { }
331 #endif
332 
333  ~_Vector_base() _GLIBCXX_NOEXCEPT
334  {
335  _M_deallocate(_M_impl._M_start,
336  _M_impl._M_end_of_storage - _M_impl._M_start);
337  }
338 
339  public:
340  _Vector_impl _M_impl;
341 
342  pointer
343  _M_allocate(size_t __n)
344  {
346  return __n != 0 ? _Tr::allocate(_M_impl, __n) : pointer();
347  }
348 
349  void
350  _M_deallocate(pointer __p, size_t __n)
351  {
353  if (__p)
354  _Tr::deallocate(_M_impl, __p, __n);
355  }
356 
357  protected:
358  void
359  _M_create_storage(size_t __n)
360  {
361  this->_M_impl._M_start = this->_M_allocate(__n);
362  this->_M_impl._M_finish = this->_M_impl._M_start;
363  this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
364  }
365  };
366 
367  /**
368  * @brief A standard container which offers fixed time access to
369  * individual elements in any order.
370  *
371  * @ingroup sequences
372  *
373  * @tparam _Tp Type of element.
374  * @tparam _Alloc Allocator type, defaults to allocator<_Tp>.
375  *
376  * Meets the requirements of a <a href="tables.html#65">container</a>, a
377  * <a href="tables.html#66">reversible container</a>, and a
378  * <a href="tables.html#67">sequence</a>, including the
379  * <a href="tables.html#68">optional sequence requirements</a> with the
380  * %exception of @c push_front and @c pop_front.
381  *
382  * In some terminology a %vector can be described as a dynamic
383  * C-style array, it offers fast and efficient access to individual
384  * elements in any order and saves the user from worrying about
385  * memory and size allocation. Subscripting ( @c [] ) access is
386  * also provided as with C-style arrays.
387  */
388  template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
389  class vector : protected _Vector_base<_Tp, _Alloc>
390  {
391 #ifdef _GLIBCXX_CONCEPT_CHECKS
392  // Concept requirements.
393  typedef typename _Alloc::value_type _Alloc_value_type;
394 # if __cplusplus < 201103L
395  __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
396 # endif
397  __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
398 #endif
399 
400 #if __cplusplus >= 201103L
401  static_assert(is_same<typename remove_cv<_Tp>::type, _Tp>::value,
402  "std::vector must have a non-const, non-volatile value_type");
403 # if __cplusplus > 201703L || defined __STRICT_ANSI__
405  "std::vector must have the same value_type as its allocator");
406 # endif
407 #endif
408 
410  typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
412 
413  public:
414  typedef _Tp value_type;
415  typedef typename _Base::pointer pointer;
416  typedef typename _Alloc_traits::const_pointer const_pointer;
417  typedef typename _Alloc_traits::reference reference;
418  typedef typename _Alloc_traits::const_reference const_reference;
419  typedef __gnu_cxx::__normal_iterator<pointer, vector> iterator;
420  typedef __gnu_cxx::__normal_iterator<const_pointer, vector>
421  const_iterator;
424  typedef size_t size_type;
425  typedef ptrdiff_t difference_type;
426  typedef _Alloc allocator_type;
427 
428  private:
429 #if __cplusplus >= 201103L
430  static constexpr bool
431  _S_nothrow_relocate(true_type)
432  {
433  return noexcept(std::__relocate_a(std::declval<pointer>(),
434  std::declval<pointer>(),
435  std::declval<pointer>(),
436  std::declval<_Tp_alloc_type&>()));
437  }
438 
439  static constexpr bool
440  _S_nothrow_relocate(false_type)
441  { return false; }
442 
443  static constexpr bool
444  _S_use_relocate()
445  {
446  // Instantiating std::__relocate_a might cause an error outside the
447  // immediate context (in __relocate_object_a's noexcept-specifier),
448  // so only do it if we know the type can be move-inserted into *this.
449  return _S_nothrow_relocate(__is_move_insertable<_Tp_alloc_type>{});
450  }
451 
452  static pointer
453  _S_do_relocate(pointer __first, pointer __last, pointer __result,
454  _Tp_alloc_type& __alloc, true_type) noexcept
455  {
456  return std::__relocate_a(__first, __last, __result, __alloc);
457  }
458 
459  static pointer
460  _S_do_relocate(pointer, pointer, pointer __result,
461  _Tp_alloc_type&, false_type) noexcept
462  { return __result; }
463 
464  static pointer
465  _S_relocate(pointer __first, pointer __last, pointer __result,
466  _Tp_alloc_type& __alloc) noexcept
467  {
468  using __do_it = __bool_constant<_S_use_relocate()>;
469  return _S_do_relocate(__first, __last, __result, __alloc, __do_it{});
470  }
471 #endif // C++11
472 
473  protected:
474  using _Base::_M_allocate;
475  using _Base::_M_deallocate;
476  using _Base::_M_impl;
477  using _Base::_M_get_Tp_allocator;
478 
479  public:
480  // [23.2.4.1] construct/copy/destroy
481  // (assign() and get_allocator() are also listed in this section)
482 
483  /**
484  * @brief Creates a %vector with no elements.
485  */
486 #if __cplusplus >= 201103L
487  vector() = default;
488 #else
489  vector() { }
490 #endif
491 
492  /**
493  * @brief Creates a %vector with no elements.
494  * @param __a An allocator object.
495  */
496  explicit
497  vector(const allocator_type& __a) _GLIBCXX_NOEXCEPT
498  : _Base(__a) { }
499 
500 #if __cplusplus >= 201103L
501  /**
502  * @brief Creates a %vector with default constructed elements.
503  * @param __n The number of elements to initially create.
504  * @param __a An allocator.
505  *
506  * This constructor fills the %vector with @a __n default
507  * constructed elements.
508  */
509  explicit
510  vector(size_type __n, const allocator_type& __a = allocator_type())
511  : _Base(_S_check_init_len(__n, __a), __a)
512  { _M_default_initialize(__n); }
513 
514  /**
515  * @brief Creates a %vector with copies of an exemplar element.
516  * @param __n The number of elements to initially create.
517  * @param __value An element to copy.
518  * @param __a An allocator.
519  *
520  * This constructor fills the %vector with @a __n copies of @a __value.
521  */
522  vector(size_type __n, const value_type& __value,
523  const allocator_type& __a = allocator_type())
524  : _Base(_S_check_init_len(__n, __a), __a)
525  { _M_fill_initialize(__n, __value); }
526 #else
527  /**
528  * @brief Creates a %vector with copies of an exemplar element.
529  * @param __n The number of elements to initially create.
530  * @param __value An element to copy.
531  * @param __a An allocator.
532  *
533  * This constructor fills the %vector with @a __n copies of @a __value.
534  */
535  explicit
536  vector(size_type __n, const value_type& __value = value_type(),
537  const allocator_type& __a = allocator_type())
538  : _Base(_S_check_init_len(__n, __a), __a)
539  { _M_fill_initialize(__n, __value); }
540 #endif
541 
542  /**
543  * @brief %Vector copy constructor.
544  * @param __x A %vector of identical element and allocator types.
545  *
546  * All the elements of @a __x are copied, but any unused capacity in
547  * @a __x will not be copied
548  * (i.e. capacity() == size() in the new %vector).
549  *
550  * The newly-created %vector uses a copy of the allocator object used
551  * by @a __x (unless the allocator traits dictate a different object).
552  */
553  vector(const vector& __x)
554  : _Base(__x.size(),
555  _Alloc_traits::_S_select_on_copy(__x._M_get_Tp_allocator()))
556  {
557  this->_M_impl._M_finish =
558  std::__uninitialized_copy_a(__x.begin(), __x.end(),
559  this->_M_impl._M_start,
560  _M_get_Tp_allocator());
561  }
562 
563 #if __cplusplus >= 201103L
564  /**
565  * @brief %Vector move constructor.
566  *
567  * The newly-created %vector contains the exact contents of the
568  * moved instance.
569  * The contents of the moved instance are a valid, but unspecified
570  * %vector.
571  */
572  vector(vector&&) noexcept = default;
573 
574  /// Copy constructor with alternative allocator
575  vector(const vector& __x, const allocator_type& __a)
576  : _Base(__x.size(), __a)
577  {
578  this->_M_impl._M_finish =
579  std::__uninitialized_copy_a(__x.begin(), __x.end(),
580  this->_M_impl._M_start,
581  _M_get_Tp_allocator());
582  }
583 
584  private:
585  vector(vector&& __rv, const allocator_type& __m, true_type) noexcept
586  : _Base(__m, std::move(__rv))
587  { }
588 
589  vector(vector&& __rv, const allocator_type& __m, false_type)
590  : _Base(__m)
591  {
592  if (__rv.get_allocator() == __m)
593  this->_M_impl._M_swap_data(__rv._M_impl);
594  else if (!__rv.empty())
595  {
596  this->_M_create_storage(__rv.size());
597  this->_M_impl._M_finish =
598  std::__uninitialized_move_a(__rv.begin(), __rv.end(),
599  this->_M_impl._M_start,
600  _M_get_Tp_allocator());
601  __rv.clear();
602  }
603  }
604 
605  public:
606  /// Move constructor with alternative allocator
607  vector(vector&& __rv, const allocator_type& __m)
608  noexcept( noexcept(
609  vector(std::declval<vector&&>(), std::declval<const allocator_type&>(),
610  std::declval<typename _Alloc_traits::is_always_equal>())) )
611  : vector(std::move(__rv), __m, typename _Alloc_traits::is_always_equal{})
612  { }
613 
614  /**
615  * @brief Builds a %vector from an initializer list.
616  * @param __l An initializer_list.
617  * @param __a An allocator.
618  *
619  * Create a %vector consisting of copies of the elements in the
620  * initializer_list @a __l.
621  *
622  * This will call the element type's copy constructor N times
623  * (where N is @a __l.size()) and do no memory reallocation.
624  */
626  const allocator_type& __a = allocator_type())
627  : _Base(__a)
628  {
629  _M_range_initialize(__l.begin(), __l.end(),
631  }
632 #endif
633 
634  /**
635  * @brief Builds a %vector from a range.
636  * @param __first An input iterator.
637  * @param __last An input iterator.
638  * @param __a An allocator.
639  *
640  * Create a %vector consisting of copies of the elements from
641  * [first,last).
642  *
643  * If the iterators are forward, bidirectional, or
644  * random-access, then this will call the elements' copy
645  * constructor N times (where N is distance(first,last)) and do
646  * no memory reallocation. But if only input iterators are
647  * used, then this will do at most 2N calls to the copy
648  * constructor, and logN memory reallocations.
649  */
650 #if __cplusplus >= 201103L
651  template<typename _InputIterator,
652  typename = std::_RequireInputIter<_InputIterator>>
653  vector(_InputIterator __first, _InputIterator __last,
654  const allocator_type& __a = allocator_type())
655  : _Base(__a)
656  {
657  _M_range_initialize(__first, __last,
658  std::__iterator_category(__first));
659  }
660 #else
661  template<typename _InputIterator>
662  vector(_InputIterator __first, _InputIterator __last,
663  const allocator_type& __a = allocator_type())
664  : _Base(__a)
665  {
666  // Check whether it's an integral type. If so, it's not an iterator.
667  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
668  _M_initialize_dispatch(__first, __last, _Integral());
669  }
670 #endif
671 
672  /**
673  * The dtor only erases the elements, and note that if the
674  * elements themselves are pointers, the pointed-to memory is
675  * not touched in any way. Managing the pointer is the user's
676  * responsibility.
677  */
678  ~vector() _GLIBCXX_NOEXCEPT
679  {
680  std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
681  _M_get_Tp_allocator());
682  _GLIBCXX_ASAN_ANNOTATE_BEFORE_DEALLOC;
683  }
684 
685  /**
686  * @brief %Vector assignment operator.
687  * @param __x A %vector of identical element and allocator types.
688  *
689  * All the elements of @a __x are copied, but any unused capacity in
690  * @a __x will not be copied.
691  *
692  * Whether the allocator is copied depends on the allocator traits.
693  */
694  vector&
695  operator=(const vector& __x);
696 
697 #if __cplusplus >= 201103L
698  /**
699  * @brief %Vector move assignment operator.
700  * @param __x A %vector of identical element and allocator types.
701  *
702  * The contents of @a __x are moved into this %vector (without copying,
703  * if the allocators permit it).
704  * Afterwards @a __x is a valid, but unspecified %vector.
705  *
706  * Whether the allocator is moved depends on the allocator traits.
707  */
708  vector&
709  operator=(vector&& __x) noexcept(_Alloc_traits::_S_nothrow_move())
710  {
711  constexpr bool __move_storage =
712  _Alloc_traits::_S_propagate_on_move_assign()
713  || _Alloc_traits::_S_always_equal();
714  _M_move_assign(std::move(__x), __bool_constant<__move_storage>());
715  return *this;
716  }
717 
718  /**
719  * @brief %Vector list assignment operator.
720  * @param __l An initializer_list.
721  *
722  * This function fills a %vector with copies of the elements in the
723  * initializer list @a __l.
724  *
725  * Note that the assignment completely changes the %vector and
726  * that the resulting %vector's size is the same as the number
727  * of elements assigned.
728  */
729  vector&
731  {
732  this->_M_assign_aux(__l.begin(), __l.end(),
734  return *this;
735  }
736 #endif
737 
738  /**
739  * @brief Assigns a given value to a %vector.
740  * @param __n Number of elements to be assigned.
741  * @param __val Value to be assigned.
742  *
743  * This function fills a %vector with @a __n copies of the given
744  * value. Note that the assignment completely changes the
745  * %vector and that the resulting %vector's size is the same as
746  * the number of elements assigned.
747  */
748  void
749  assign(size_type __n, const value_type& __val)
750  { _M_fill_assign(__n, __val); }
751 
752  /**
753  * @brief Assigns a range to a %vector.
754  * @param __first An input iterator.
755  * @param __last An input iterator.
756  *
757  * This function fills a %vector with copies of the elements in the
758  * range [__first,__last).
759  *
760  * Note that the assignment completely changes the %vector and
761  * that the resulting %vector's size is the same as the number
762  * of elements assigned.
763  */
764 #if __cplusplus >= 201103L
765  template<typename _InputIterator,
766  typename = std::_RequireInputIter<_InputIterator>>
767  void
768  assign(_InputIterator __first, _InputIterator __last)
769  { _M_assign_dispatch(__first, __last, __false_type()); }
770 #else
771  template<typename _InputIterator>
772  void
773  assign(_InputIterator __first, _InputIterator __last)
774  {
775  // Check whether it's an integral type. If so, it's not an iterator.
776  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
777  _M_assign_dispatch(__first, __last, _Integral());
778  }
779 #endif
780 
781 #if __cplusplus >= 201103L
782  /**
783  * @brief Assigns an initializer list to a %vector.
784  * @param __l An initializer_list.
785  *
786  * This function fills a %vector with copies of the elements in the
787  * initializer list @a __l.
788  *
789  * Note that the assignment completely changes the %vector and
790  * that the resulting %vector's size is the same as the number
791  * of elements assigned.
792  */
793  void
795  {
796  this->_M_assign_aux(__l.begin(), __l.end(),
798  }
799 #endif
800 
801  /// Get a copy of the memory allocation object.
802  using _Base::get_allocator;
803 
804  // iterators
805  /**
806  * Returns a read/write iterator that points to the first
807  * element in the %vector. Iteration is done in ordinary
808  * element order.
809  */
810  iterator
811  begin() _GLIBCXX_NOEXCEPT
812  { return iterator(this->_M_impl._M_start); }
813 
814  /**
815  * Returns a read-only (constant) iterator that points to the
816  * first element in the %vector. Iteration is done in ordinary
817  * element order.
818  */
819  const_iterator
820  begin() const _GLIBCXX_NOEXCEPT
821  { return const_iterator(this->_M_impl._M_start); }
822 
823  /**
824  * Returns a read/write iterator that points one past the last
825  * element in the %vector. Iteration is done in ordinary
826  * element order.
827  */
828  iterator
829  end() _GLIBCXX_NOEXCEPT
830  { return iterator(this->_M_impl._M_finish); }
831 
832  /**
833  * Returns a read-only (constant) iterator that points one past
834  * the last element in the %vector. Iteration is done in
835  * ordinary element order.
836  */
837  const_iterator
838  end() const _GLIBCXX_NOEXCEPT
839  { return const_iterator(this->_M_impl._M_finish); }
840 
841  /**
842  * Returns a read/write reverse iterator that points to the
843  * last element in the %vector. Iteration is done in reverse
844  * element order.
845  */
847  rbegin() _GLIBCXX_NOEXCEPT
848  { return reverse_iterator(end()); }
849 
850  /**
851  * Returns a read-only (constant) reverse iterator that points
852  * to the last element in the %vector. Iteration is done in
853  * reverse element order.
854  */
855  const_reverse_iterator
856  rbegin() const _GLIBCXX_NOEXCEPT
857  { return const_reverse_iterator(end()); }
858 
859  /**
860  * Returns a read/write reverse iterator that points to one
861  * before the first element in the %vector. Iteration is done
862  * in reverse element order.
863  */
865  rend() _GLIBCXX_NOEXCEPT
866  { return reverse_iterator(begin()); }
867 
868  /**
869  * Returns a read-only (constant) reverse iterator that points
870  * to one before the first element in the %vector. Iteration
871  * is done in reverse element order.
872  */
873  const_reverse_iterator
874  rend() const _GLIBCXX_NOEXCEPT
875  { return const_reverse_iterator(begin()); }
876 
877 #if __cplusplus >= 201103L
878  /**
879  * Returns a read-only (constant) iterator that points to the
880  * first element in the %vector. Iteration is done in ordinary
881  * element order.
882  */
883  const_iterator
884  cbegin() const noexcept
885  { return const_iterator(this->_M_impl._M_start); }
886 
887  /**
888  * Returns a read-only (constant) iterator that points one past
889  * the last element in the %vector. Iteration is done in
890  * ordinary element order.
891  */
892  const_iterator
893  cend() const noexcept
894  { return const_iterator(this->_M_impl._M_finish); }
895 
896  /**
897  * Returns a read-only (constant) reverse iterator that points
898  * to the last element in the %vector. Iteration is done in
899  * reverse element order.
900  */
901  const_reverse_iterator
902  crbegin() const noexcept
903  { return const_reverse_iterator(end()); }
904 
905  /**
906  * Returns a read-only (constant) reverse iterator that points
907  * to one before the first element in the %vector. Iteration
908  * is done in reverse element order.
909  */
910  const_reverse_iterator
911  crend() const noexcept
912  { return const_reverse_iterator(begin()); }
913 #endif
914 
915  // [23.2.4.2] capacity
916  /** Returns the number of elements in the %vector. */
917  size_type
918  size() const _GLIBCXX_NOEXCEPT
919  { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }
920 
921  /** Returns the size() of the largest possible %vector. */
922  size_type
923  max_size() const _GLIBCXX_NOEXCEPT
924  { return _S_max_size(_M_get_Tp_allocator()); }
925 
926 #if __cplusplus >= 201103L
927  /**
928  * @brief Resizes the %vector to the specified number of elements.
929  * @param __new_size Number of elements the %vector should contain.
930  *
931  * This function will %resize the %vector to the specified
932  * number of elements. If the number is smaller than the
933  * %vector's current size the %vector is truncated, otherwise
934  * default constructed elements are appended.
935  */
936  void
937  resize(size_type __new_size)
938  {
939  if (__new_size > size())
940  _M_default_append(__new_size - size());
941  else if (__new_size < size())
942  _M_erase_at_end(this->_M_impl._M_start + __new_size);
943  }
944 
945  /**
946  * @brief Resizes the %vector to the specified number of elements.
947  * @param __new_size Number of elements the %vector should contain.
948  * @param __x Data with which new elements should be populated.
949  *
950  * This function will %resize the %vector to the specified
951  * number of elements. If the number is smaller than the
952  * %vector's current size the %vector is truncated, otherwise
953  * the %vector is extended and new elements are populated with
954  * given data.
955  */
956  void
957  resize(size_type __new_size, const value_type& __x)
958  {
959  if (__new_size > size())
960  _M_fill_insert(end(), __new_size - size(), __x);
961  else if (__new_size < size())
962  _M_erase_at_end(this->_M_impl._M_start + __new_size);
963  }
964 #else
965  /**
966  * @brief Resizes the %vector to the specified number of elements.
967  * @param __new_size Number of elements the %vector should contain.
968  * @param __x Data with which new elements should be populated.
969  *
970  * This function will %resize the %vector to the specified
971  * number of elements. If the number is smaller than the
972  * %vector's current size the %vector is truncated, otherwise
973  * the %vector is extended and new elements are populated with
974  * given data.
975  */
976  void
977  resize(size_type __new_size, value_type __x = value_type())
978  {
979  if (__new_size > size())
980  _M_fill_insert(end(), __new_size - size(), __x);
981  else if (__new_size < size())
982  _M_erase_at_end(this->_M_impl._M_start + __new_size);
983  }
984 #endif
985 
986 #if __cplusplus >= 201103L
987  /** A non-binding request to reduce capacity() to size(). */
988  void
990  { _M_shrink_to_fit(); }
991 #endif
992 
993  /**
994  * Returns the total number of elements that the %vector can
995  * hold before needing to allocate more memory.
996  */
997  size_type
998  capacity() const _GLIBCXX_NOEXCEPT
999  { return size_type(this->_M_impl._M_end_of_storage
1000  - this->_M_impl._M_start); }
1001 
1002  /**
1003  * Returns true if the %vector is empty. (Thus begin() would
1004  * equal end().)
1005  */
1006  _GLIBCXX_NODISCARD bool
1007  empty() const _GLIBCXX_NOEXCEPT
1008  { return begin() == end(); }
1009 
1010  /**
1011  * @brief Attempt to preallocate enough memory for specified number of
1012  * elements.
1013  * @param __n Number of elements required.
1014  * @throw std::length_error If @a n exceeds @c max_size().
1015  *
1016  * This function attempts to reserve enough memory for the
1017  * %vector to hold the specified number of elements. If the
1018  * number requested is more than max_size(), length_error is
1019  * thrown.
1020  *
1021  * The advantage of this function is that if optimal code is a
1022  * necessity and the user can determine the number of elements
1023  * that will be required, the user can reserve the memory in
1024  * %advance, and thus prevent a possible reallocation of memory
1025  * and copying of %vector data.
1026  */
1027  void
1028  reserve(size_type __n);
1029 
1030  // element access
1031  /**
1032  * @brief Subscript access to the data contained in the %vector.
1033  * @param __n The index of the element for which data should be
1034  * accessed.
1035  * @return Read/write reference to data.
1036  *
1037  * This operator allows for easy, array-style, data access.
1038  * Note that data access with this operator is unchecked and
1039  * out_of_range lookups are not defined. (For checked lookups
1040  * see at().)
1041  */
1042  reference
1043  operator[](size_type __n) _GLIBCXX_NOEXCEPT
1044  {
1045  __glibcxx_requires_subscript(__n);
1046  return *(this->_M_impl._M_start + __n);
1047  }
1048 
1049  /**
1050  * @brief Subscript access to the data contained in the %vector.
1051  * @param __n The index of the element for which data should be
1052  * accessed.
1053  * @return Read-only (constant) reference to data.
1054  *
1055  * This operator allows for easy, array-style, data access.
1056  * Note that data access with this operator is unchecked and
1057  * out_of_range lookups are not defined. (For checked lookups
1058  * see at().)
1059  */
1060  const_reference
1061  operator[](size_type __n) const _GLIBCXX_NOEXCEPT
1062  {
1063  __glibcxx_requires_subscript(__n);
1064  return *(this->_M_impl._M_start + __n);
1065  }
1066 
1067  protected:
1068  /// Safety check used only from at().
1069  void
1070  _M_range_check(size_type __n) const
1071  {
1072  if (__n >= this->size())
1073  __throw_out_of_range_fmt(__N("vector::_M_range_check: __n "
1074  "(which is %zu) >= this->size() "
1075  "(which is %zu)"),
1076  __n, this->size());
1077  }
1078 
1079  public:
1080  /**
1081  * @brief Provides access to the data contained in the %vector.
1082  * @param __n The index of the element for which data should be
1083  * accessed.
1084  * @return Read/write reference to data.
1085  * @throw std::out_of_range If @a __n is an invalid index.
1086  *
1087  * This function provides for safer data access. The parameter
1088  * is first checked that it is in the range of the vector. The
1089  * function throws out_of_range if the check fails.
1090  */
1091  reference
1092  at(size_type __n)
1093  {
1094  _M_range_check(__n);
1095  return (*this)[__n];
1096  }
1097 
1098  /**
1099  * @brief Provides access to the data contained in the %vector.
1100  * @param __n The index of the element for which data should be
1101  * accessed.
1102  * @return Read-only (constant) reference to data.
1103  * @throw std::out_of_range If @a __n is an invalid index.
1104  *
1105  * This function provides for safer data access. The parameter
1106  * is first checked that it is in the range of the vector. The
1107  * function throws out_of_range if the check fails.
1108  */
1109  const_reference
1110  at(size_type __n) const
1111  {
1112  _M_range_check(__n);
1113  return (*this)[__n];
1114  }
1115 
1116  /**
1117  * Returns a read/write reference to the data at the first
1118  * element of the %vector.
1119  */
1120  reference
1121  front() _GLIBCXX_NOEXCEPT
1122  {
1123  __glibcxx_requires_nonempty();
1124  return *begin();
1125  }
1126 
1127  /**
1128  * Returns a read-only (constant) reference to the data at the first
1129  * element of the %vector.
1130  */
1131  const_reference
1132  front() const _GLIBCXX_NOEXCEPT
1133  {
1134  __glibcxx_requires_nonempty();
1135  return *begin();
1136  }
1137 
1138  /**
1139  * Returns a read/write reference to the data at the last
1140  * element of the %vector.
1141  */
1142  reference
1143  back() _GLIBCXX_NOEXCEPT
1144  {
1145  __glibcxx_requires_nonempty();
1146  return *(end() - 1);
1147  }
1148 
1149  /**
1150  * Returns a read-only (constant) reference to the data at the
1151  * last element of the %vector.
1152  */
1153  const_reference
1154  back() const _GLIBCXX_NOEXCEPT
1155  {
1156  __glibcxx_requires_nonempty();
1157  return *(end() - 1);
1158  }
1159 
1160  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1161  // DR 464. Suggestion for new member functions in standard containers.
1162  // data access
1163  /**
1164  * Returns a pointer such that [data(), data() + size()) is a valid
1165  * range. For a non-empty %vector, data() == &front().
1166  */
1167  _Tp*
1168  data() _GLIBCXX_NOEXCEPT
1169  { return _M_data_ptr(this->_M_impl._M_start); }
1170 
1171  const _Tp*
1172  data() const _GLIBCXX_NOEXCEPT
1173  { return _M_data_ptr(this->_M_impl._M_start); }
1174 
1175  // [23.2.4.3] modifiers
1176  /**
1177  * @brief Add data to the end of the %vector.
1178  * @param __x Data to be added.
1179  *
1180  * This is a typical stack operation. The function creates an
1181  * element at the end of the %vector and assigns the given data
1182  * to it. Due to the nature of a %vector this operation can be
1183  * done in constant time if the %vector has preallocated space
1184  * available.
1185  */
1186  void
1187  push_back(const value_type& __x)
1188  {
1189  if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
1190  {
1191  _GLIBCXX_ASAN_ANNOTATE_GROW(1);
1192  _Alloc_traits::construct(this->_M_impl, this->_M_impl._M_finish,
1193  __x);
1194  ++this->_M_impl._M_finish;
1195  _GLIBCXX_ASAN_ANNOTATE_GREW(1);
1196  }
1197  else
1198  _M_realloc_insert(end(), __x);
1199  }
1200 
1201 #if __cplusplus >= 201103L
1202  void
1203  push_back(value_type&& __x)
1204  { emplace_back(std::move(__x)); }
1205 
1206  template<typename... _Args>
1207 #if __cplusplus > 201402L
1208  reference
1209 #else
1210  void
1211 #endif
1212  emplace_back(_Args&&... __args);
1213 #endif
1214 
1215  /**
1216  * @brief Removes last element.
1217  *
1218  * This is a typical stack operation. It shrinks the %vector by one.
1219  *
1220  * Note that no data is returned, and if the last element's
1221  * data is needed, it should be retrieved before pop_back() is
1222  * called.
1223  */
1224  void
1225  pop_back() _GLIBCXX_NOEXCEPT
1226  {
1227  __glibcxx_requires_nonempty();
1228  --this->_M_impl._M_finish;
1229  _Alloc_traits::destroy(this->_M_impl, this->_M_impl._M_finish);
1230  _GLIBCXX_ASAN_ANNOTATE_SHRINK(1);
1231  }
1232 
1233 #if __cplusplus >= 201103L
1234  /**
1235  * @brief Inserts an object in %vector before specified iterator.
1236  * @param __position A const_iterator into the %vector.
1237  * @param __args Arguments.
1238  * @return An iterator that points to the inserted data.
1239  *
1240  * This function will insert an object of type T constructed
1241  * with T(std::forward<Args>(args)...) before the specified location.
1242  * Note that this kind of operation could be expensive for a %vector
1243  * and if it is frequently used the user should consider using
1244  * std::list.
1245  */
1246  template<typename... _Args>
1247  iterator
1248  emplace(const_iterator __position, _Args&&... __args)
1249  { return _M_emplace_aux(__position, std::forward<_Args>(__args)...); }
1250 
1251  /**
1252  * @brief Inserts given value into %vector before specified iterator.
1253  * @param __position A const_iterator into the %vector.
1254  * @param __x Data to be inserted.
1255  * @return An iterator that points to the inserted data.
1256  *
1257  * This function will insert a copy of the given value before
1258  * the specified location. Note that this kind of operation
1259  * could be expensive for a %vector and if it is frequently
1260  * used the user should consider using std::list.
1261  */
1262  iterator
1263  insert(const_iterator __position, const value_type& __x);
1264 #else
1265  /**
1266  * @brief Inserts given value into %vector before specified iterator.
1267  * @param __position An iterator into the %vector.
1268  * @param __x Data to be inserted.
1269  * @return An iterator that points to the inserted data.
1270  *
1271  * This function will insert a copy of the given value before
1272  * the specified location. Note that this kind of operation
1273  * could be expensive for a %vector and if it is frequently
1274  * used the user should consider using std::list.
1275  */
1276  iterator
1277  insert(iterator __position, const value_type& __x);
1278 #endif
1279 
1280 #if __cplusplus >= 201103L
1281  /**
1282  * @brief Inserts given rvalue into %vector before specified iterator.
1283  * @param __position A const_iterator into the %vector.
1284  * @param __x Data to be inserted.
1285  * @return An iterator that points to the inserted data.
1286  *
1287  * This function will insert a copy of the given rvalue before
1288  * the specified location. Note that this kind of operation
1289  * could be expensive for a %vector and if it is frequently
1290  * used the user should consider using std::list.
1291  */
1292  iterator
1293  insert(const_iterator __position, value_type&& __x)
1294  { return _M_insert_rval(__position, std::move(__x)); }
1295 
1296  /**
1297  * @brief Inserts an initializer_list into the %vector.
1298  * @param __position An iterator into the %vector.
1299  * @param __l An initializer_list.
1300  *
1301  * This function will insert copies of the data in the
1302  * initializer_list @a l into the %vector before the location
1303  * specified by @a position.
1304  *
1305  * Note that this kind of operation could be expensive for a
1306  * %vector and if it is frequently used the user should
1307  * consider using std::list.
1308  */
1309  iterator
1310  insert(const_iterator __position, initializer_list<value_type> __l)
1311  {
1312  auto __offset = __position - cbegin();
1313  _M_range_insert(begin() + __offset, __l.begin(), __l.end(),
1315  return begin() + __offset;
1316  }
1317 #endif
1318 
1319 #if __cplusplus >= 201103L
1320  /**
1321  * @brief Inserts a number of copies of given data into the %vector.
1322  * @param __position A const_iterator into the %vector.
1323  * @param __n Number of elements to be inserted.
1324  * @param __x Data to be inserted.
1325  * @return An iterator that points to the inserted data.
1326  *
1327  * This function will insert a specified number of copies of
1328  * the given data before the location specified by @a position.
1329  *
1330  * Note that this kind of operation could be expensive for a
1331  * %vector and if it is frequently used the user should
1332  * consider using std::list.
1333  */
1334  iterator
1335  insert(const_iterator __position, size_type __n, const value_type& __x)
1336  {
1337  difference_type __offset = __position - cbegin();
1338  _M_fill_insert(begin() + __offset, __n, __x);
1339  return begin() + __offset;
1340  }
1341 #else
1342  /**
1343  * @brief Inserts a number of copies of given data into the %vector.
1344  * @param __position An iterator into the %vector.
1345  * @param __n Number of elements to be inserted.
1346  * @param __x Data to be inserted.
1347  *
1348  * This function will insert a specified number of copies of
1349  * the given data before the location specified by @a position.
1350  *
1351  * Note that this kind of operation could be expensive for a
1352  * %vector and if it is frequently used the user should
1353  * consider using std::list.
1354  */
1355  void
1356  insert(iterator __position, size_type __n, const value_type& __x)
1357  { _M_fill_insert(__position, __n, __x); }
1358 #endif
1359 
1360 #if __cplusplus >= 201103L
1361  /**
1362  * @brief Inserts a range into the %vector.
1363  * @param __position A const_iterator into the %vector.
1364  * @param __first An input iterator.
1365  * @param __last An input iterator.
1366  * @return An iterator that points to the inserted data.
1367  *
1368  * This function will insert copies of the data in the range
1369  * [__first,__last) into the %vector before the location specified
1370  * by @a pos.
1371  *
1372  * Note that this kind of operation could be expensive for a
1373  * %vector and if it is frequently used the user should
1374  * consider using std::list.
1375  */
1376  template<typename _InputIterator,
1377  typename = std::_RequireInputIter<_InputIterator>>
1378  iterator
1379  insert(const_iterator __position, _InputIterator __first,
1380  _InputIterator __last)
1381  {
1382  difference_type __offset = __position - cbegin();
1383  _M_insert_dispatch(begin() + __offset,
1384  __first, __last, __false_type());
1385  return begin() + __offset;
1386  }
1387 #else
1388  /**
1389  * @brief Inserts a range into the %vector.
1390  * @param __position An iterator into the %vector.
1391  * @param __first An input iterator.
1392  * @param __last An input iterator.
1393  *
1394  * This function will insert copies of the data in the range
1395  * [__first,__last) into the %vector before the location specified
1396  * by @a pos.
1397  *
1398  * Note that this kind of operation could be expensive for a
1399  * %vector and if it is frequently used the user should
1400  * consider using std::list.
1401  */
1402  template<typename _InputIterator>
1403  void
1404  insert(iterator __position, _InputIterator __first,
1405  _InputIterator __last)
1406  {
1407  // Check whether it's an integral type. If so, it's not an iterator.
1408  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1409  _M_insert_dispatch(__position, __first, __last, _Integral());
1410  }
1411 #endif
1412 
1413  /**
1414  * @brief Remove element at given position.
1415  * @param __position Iterator pointing to element to be erased.
1416  * @return An iterator pointing to the next element (or end()).
1417  *
1418  * This function will erase the element at the given position and thus
1419  * shorten the %vector by one.
1420  *
1421  * Note This operation could be expensive and if it is
1422  * frequently used the user should consider using std::list.
1423  * The user is also cautioned that this function only erases
1424  * the element, and that if the element is itself a pointer,
1425  * the pointed-to memory is not touched in any way. Managing
1426  * the pointer is the user's responsibility.
1427  */
1428  iterator
1429 #if __cplusplus >= 201103L
1430  erase(const_iterator __position)
1431  { return _M_erase(begin() + (__position - cbegin())); }
1432 #else
1433  erase(iterator __position)
1434  { return _M_erase(__position); }
1435 #endif
1436 
1437  /**
1438  * @brief Remove a range of elements.
1439  * @param __first Iterator pointing to the first element to be erased.
1440  * @param __last Iterator pointing to one past the last element to be
1441  * erased.
1442  * @return An iterator pointing to the element pointed to by @a __last
1443  * prior to erasing (or end()).
1444  *
1445  * This function will erase the elements in the range
1446  * [__first,__last) and shorten the %vector accordingly.
1447  *
1448  * Note This operation could be expensive and if it is
1449  * frequently used the user should consider using std::list.
1450  * The user is also cautioned that this function only erases
1451  * the elements, and that if the elements themselves are
1452  * pointers, the pointed-to memory is not touched in any way.
1453  * Managing the pointer is the user's responsibility.
1454  */
1455  iterator
1456 #if __cplusplus >= 201103L
1457  erase(const_iterator __first, const_iterator __last)
1458  {
1459  const auto __beg = begin();
1460  const auto __cbeg = cbegin();
1461  return _M_erase(__beg + (__first - __cbeg), __beg + (__last - __cbeg));
1462  }
1463 #else
1464  erase(iterator __first, iterator __last)
1465  { return _M_erase(__first, __last); }
1466 #endif
1467 
1468  /**
1469  * @brief Swaps data with another %vector.
1470  * @param __x A %vector of the same element and allocator types.
1471  *
1472  * This exchanges the elements between two vectors in constant time.
1473  * (Three pointers, so it should be quite fast.)
1474  * Note that the global std::swap() function is specialized such that
1475  * std::swap(v1,v2) will feed to this function.
1476  *
1477  * Whether the allocators are swapped depends on the allocator traits.
1478  */
1479  void
1480  swap(vector& __x) _GLIBCXX_NOEXCEPT
1481  {
1482 #if __cplusplus >= 201103L
1483  __glibcxx_assert(_Alloc_traits::propagate_on_container_swap::value
1484  || _M_get_Tp_allocator() == __x._M_get_Tp_allocator());
1485 #endif
1486  this->_M_impl._M_swap_data(__x._M_impl);
1487  _Alloc_traits::_S_on_swap(_M_get_Tp_allocator(),
1488  __x._M_get_Tp_allocator());
1489  }
1490 
1491  /**
1492  * Erases all the elements. Note that this function only erases the
1493  * elements, and that if the elements themselves are pointers, the
1494  * pointed-to memory is not touched in any way. Managing the pointer is
1495  * the user's responsibility.
1496  */
1497  void
1498  clear() _GLIBCXX_NOEXCEPT
1499  { _M_erase_at_end(this->_M_impl._M_start); }
1500 
1501  protected:
1502  /**
1503  * Memory expansion handler. Uses the member allocation function to
1504  * obtain @a n bytes of memory, and then copies [first,last) into it.
1505  */
1506  template<typename _ForwardIterator>
1507  pointer
1508  _M_allocate_and_copy(size_type __n,
1509  _ForwardIterator __first, _ForwardIterator __last)
1510  {
1511  pointer __result = this->_M_allocate(__n);
1512  __try
1513  {
1514  std::__uninitialized_copy_a(__first, __last, __result,
1515  _M_get_Tp_allocator());
1516  return __result;
1517  }
1518  __catch(...)
1519  {
1520  _M_deallocate(__result, __n);
1521  __throw_exception_again;
1522  }
1523  }
1524 
1525 
1526  // Internal constructor functions follow.
1527 
1528  // Called by the range constructor to implement [23.1.1]/9
1529 
1530 #if __cplusplus < 201103L
1531  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1532  // 438. Ambiguity in the "do the right thing" clause
1533  template<typename _Integer>
1534  void
1535  _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
1536  {
1537  this->_M_impl._M_start = _M_allocate(_S_check_init_len(
1538  static_cast<size_type>(__n), _M_get_Tp_allocator()));
1539  this->_M_impl._M_end_of_storage =
1540  this->_M_impl._M_start + static_cast<size_type>(__n);
1541  _M_fill_initialize(static_cast<size_type>(__n), __value);
1542  }
1543 
1544  // Called by the range constructor to implement [23.1.1]/9
1545  template<typename _InputIterator>
1546  void
1547  _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1548  __false_type)
1549  {
1550  _M_range_initialize(__first, __last,
1551  std::__iterator_category(__first));
1552  }
1553 #endif
1554 
1555  // Called by the second initialize_dispatch above
1556  template<typename _InputIterator>
1557  void
1558  _M_range_initialize(_InputIterator __first, _InputIterator __last,
1560  {
1561  __try {
1562  for (; __first != __last; ++__first)
1563 #if __cplusplus >= 201103L
1564  emplace_back(*__first);
1565 #else
1566  push_back(*__first);
1567 #endif
1568  } __catch(...) {
1569  clear();
1570  __throw_exception_again;
1571  }
1572  }
1573 
1574  // Called by the second initialize_dispatch above
1575  template<typename _ForwardIterator>
1576  void
1577  _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
1579  {
1580  const size_type __n = std::distance(__first, __last);
1581  this->_M_impl._M_start
1582  = this->_M_allocate(_S_check_init_len(__n, _M_get_Tp_allocator()));
1583  this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
1584  this->_M_impl._M_finish =
1585  std::__uninitialized_copy_a(__first, __last,
1586  this->_M_impl._M_start,
1587  _M_get_Tp_allocator());
1588  }
1589 
1590  // Called by the first initialize_dispatch above and by the
1591  // vector(n,value,a) constructor.
1592  void
1593  _M_fill_initialize(size_type __n, const value_type& __value)
1594  {
1595  this->_M_impl._M_finish =
1596  std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
1597  _M_get_Tp_allocator());
1598  }
1599 
1600 #if __cplusplus >= 201103L
1601  // Called by the vector(n) constructor.
1602  void
1603  _M_default_initialize(size_type __n)
1604  {
1605  this->_M_impl._M_finish =
1606  std::__uninitialized_default_n_a(this->_M_impl._M_start, __n,
1607  _M_get_Tp_allocator());
1608  }
1609 #endif
1610 
1611  // Internal assign functions follow. The *_aux functions do the actual
1612  // assignment work for the range versions.
1613 
1614  // Called by the range assign to implement [23.1.1]/9
1615 
1616  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1617  // 438. Ambiguity in the "do the right thing" clause
1618  template<typename _Integer>
1619  void
1620  _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1621  { _M_fill_assign(__n, __val); }
1622 
1623  // Called by the range assign to implement [23.1.1]/9
1624  template<typename _InputIterator>
1625  void
1626  _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1627  __false_type)
1628  { _M_assign_aux(__first, __last, std::__iterator_category(__first)); }
1629 
1630  // Called by the second assign_dispatch above
1631  template<typename _InputIterator>
1632  void
1633  _M_assign_aux(_InputIterator __first, _InputIterator __last,
1635 
1636  // Called by the second assign_dispatch above
1637  template<typename _ForwardIterator>
1638  void
1639  _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1641 
1642  // Called by assign(n,t), and the range assign when it turns out
1643  // to be the same thing.
1644  void
1645  _M_fill_assign(size_type __n, const value_type& __val);
1646 
1647  // Internal insert functions follow.
1648 
1649  // Called by the range insert to implement [23.1.1]/9
1650 
1651  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1652  // 438. Ambiguity in the "do the right thing" clause
1653  template<typename _Integer>
1654  void
1655  _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
1656  __true_type)
1657  { _M_fill_insert(__pos, __n, __val); }
1658 
1659  // Called by the range insert to implement [23.1.1]/9
1660  template<typename _InputIterator>
1661  void
1662  _M_insert_dispatch(iterator __pos, _InputIterator __first,
1663  _InputIterator __last, __false_type)
1664  {
1665  _M_range_insert(__pos, __first, __last,
1666  std::__iterator_category(__first));
1667  }
1668 
1669  // Called by the second insert_dispatch above
1670  template<typename _InputIterator>
1671  void
1672  _M_range_insert(iterator __pos, _InputIterator __first,
1673  _InputIterator __last, std::input_iterator_tag);
1674 
1675  // Called by the second insert_dispatch above
1676  template<typename _ForwardIterator>
1677  void
1678  _M_range_insert(iterator __pos, _ForwardIterator __first,
1679  _ForwardIterator __last, std::forward_iterator_tag);
1680 
1681  // Called by insert(p,n,x), and the range insert when it turns out to be
1682  // the same thing.
1683  void
1684  _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1685 
1686 #if __cplusplus >= 201103L
1687  // Called by resize(n).
1688  void
1689  _M_default_append(size_type __n);
1690 
1691  bool
1692  _M_shrink_to_fit();
1693 #endif
1694 
1695 #if __cplusplus < 201103L
1696  // Called by insert(p,x)
1697  void
1698  _M_insert_aux(iterator __position, const value_type& __x);
1699 
1700  void
1701  _M_realloc_insert(iterator __position, const value_type& __x);
1702 #else
1703  // A value_type object constructed with _Alloc_traits::construct()
1704  // and destroyed with _Alloc_traits::destroy().
1705  struct _Temporary_value
1706  {
1707  template<typename... _Args>
1708  explicit
1709  _Temporary_value(vector* __vec, _Args&&... __args) : _M_this(__vec)
1710  {
1711  _Alloc_traits::construct(_M_this->_M_impl, _M_ptr(),
1712  std::forward<_Args>(__args)...);
1713  }
1714 
1715  ~_Temporary_value()
1716  { _Alloc_traits::destroy(_M_this->_M_impl, _M_ptr()); }
1717 
1718  value_type&
1719  _M_val() { return *_M_ptr(); }
1720 
1721  private:
1722  _Tp*
1723  _M_ptr() { return reinterpret_cast<_Tp*>(&__buf); }
1724 
1725  vector* _M_this;
1726  typename aligned_storage<sizeof(_Tp), alignof(_Tp)>::type __buf;
1727  };
1728 
1729  // Called by insert(p,x) and other functions when insertion needs to
1730  // reallocate or move existing elements. _Arg is either _Tp& or _Tp.
1731  template<typename _Arg>
1732  void
1733  _M_insert_aux(iterator __position, _Arg&& __arg);
1734 
1735  template<typename... _Args>
1736  void
1737  _M_realloc_insert(iterator __position, _Args&&... __args);
1738 
1739  // Either move-construct at the end, or forward to _M_insert_aux.
1740  iterator
1741  _M_insert_rval(const_iterator __position, value_type&& __v);
1742 
1743  // Try to emplace at the end, otherwise forward to _M_insert_aux.
1744  template<typename... _Args>
1745  iterator
1746  _M_emplace_aux(const_iterator __position, _Args&&... __args);
1747 
1748  // Emplacing an rvalue of the correct type can use _M_insert_rval.
1749  iterator
1750  _M_emplace_aux(const_iterator __position, value_type&& __v)
1751  { return _M_insert_rval(__position, std::move(__v)); }
1752 #endif
1753 
1754  // Called by _M_fill_insert, _M_insert_aux etc.
1755  size_type
1756  _M_check_len(size_type __n, const char* __s) const
1757  {
1758  if (max_size() - size() < __n)
1759  __throw_length_error(__N(__s));
1760 
1761  const size_type __len = size() + (std::max)(size(), __n);
1762  return (__len < size() || __len > max_size()) ? max_size() : __len;
1763  }
1764 
1765  // Called by constructors to check initial size.
1766  static size_type
1767  _S_check_init_len(size_type __n, const allocator_type& __a)
1768  {
1769  if (__n > _S_max_size(_Tp_alloc_type(__a)))
1770  __throw_length_error(
1771  __N("cannot create std::vector larger than max_size()"));
1772  return __n;
1773  }
1774 
1775  static size_type
1776  _S_max_size(const _Tp_alloc_type& __a) _GLIBCXX_NOEXCEPT
1777  {
1778  // std::distance(begin(), end()) cannot be greater than PTRDIFF_MAX,
1779  // and realistically we can't store more than PTRDIFF_MAX/sizeof(T)
1780  // (even if std::allocator_traits::max_size says we can).
1781  const size_t __diffmax
1782  = __gnu_cxx::__numeric_traits<ptrdiff_t>::__max / sizeof(_Tp);
1783  const size_t __allocmax = _Alloc_traits::max_size(__a);
1784  return (std::min)(__diffmax, __allocmax);
1785  }
1786 
1787  // Internal erase functions follow.
1788 
1789  // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
1790  // _M_assign_aux.
1791  void
1792  _M_erase_at_end(pointer __pos) _GLIBCXX_NOEXCEPT
1793  {
1794  if (size_type __n = this->_M_impl._M_finish - __pos)
1795  {
1796  std::_Destroy(__pos, this->_M_impl._M_finish,
1797  _M_get_Tp_allocator());
1798  this->_M_impl._M_finish = __pos;
1799  _GLIBCXX_ASAN_ANNOTATE_SHRINK(__n);
1800  }
1801  }
1802 
1803  iterator
1804  _M_erase(iterator __position);
1805 
1806  iterator
1807  _M_erase(iterator __first, iterator __last);
1808 
1809 #if __cplusplus >= 201103L
1810  private:
1811  // Constant-time move assignment when source object's memory can be
1812  // moved, either because the source's allocator will move too
1813  // or because the allocators are equal.
1814  void
1815  _M_move_assign(vector&& __x, true_type) noexcept
1816  {
1817  vector __tmp(get_allocator());
1818  this->_M_impl._M_swap_data(__x._M_impl);
1819  __tmp._M_impl._M_swap_data(__x._M_impl);
1820  std::__alloc_on_move(_M_get_Tp_allocator(), __x._M_get_Tp_allocator());
1821  }
1822 
1823  // Do move assignment when it might not be possible to move source
1824  // object's memory, resulting in a linear-time operation.
1825  void
1826  _M_move_assign(vector&& __x, false_type)
1827  {
1828  if (__x._M_get_Tp_allocator() == this->_M_get_Tp_allocator())
1829  _M_move_assign(std::move(__x), true_type());
1830  else
1831  {
1832  // The rvalue's allocator cannot be moved and is not equal,
1833  // so we need to individually move each element.
1834  this->_M_assign_aux(std::make_move_iterator(__x.begin()),
1835  std::make_move_iterator(__x.end()),
1837  __x.clear();
1838  }
1839  }
1840 #endif
1841 
1842  template<typename _Up>
1843  _Up*
1844  _M_data_ptr(_Up* __ptr) const _GLIBCXX_NOEXCEPT
1845  { return __ptr; }
1846 
1847 #if __cplusplus >= 201103L
1848  template<typename _Ptr>
1850  _M_data_ptr(_Ptr __ptr) const
1851  { return empty() ? nullptr : std::__to_address(__ptr); }
1852 #else
1853  template<typename _Up>
1854  _Up*
1855  _M_data_ptr(_Up* __ptr) _GLIBCXX_NOEXCEPT
1856  { return __ptr; }
1857 
1858  template<typename _Ptr>
1859  value_type*
1860  _M_data_ptr(_Ptr __ptr)
1861  { return empty() ? (value_type*)0 : __ptr.operator->(); }
1862 
1863  template<typename _Ptr>
1864  const value_type*
1865  _M_data_ptr(_Ptr __ptr) const
1866  { return empty() ? (const value_type*)0 : __ptr.operator->(); }
1867 #endif
1868  };
1869 
1870 #if __cpp_deduction_guides >= 201606
1871  template<typename _InputIterator, typename _ValT
1872  = typename iterator_traits<_InputIterator>::value_type,
1873  typename _Allocator = allocator<_ValT>,
1874  typename = _RequireInputIter<_InputIterator>,
1875  typename = _RequireAllocator<_Allocator>>
1876  vector(_InputIterator, _InputIterator, _Allocator = _Allocator())
1877  -> vector<_ValT, _Allocator>;
1878 #endif
1879 
1880  /**
1881  * @brief Vector equality comparison.
1882  * @param __x A %vector.
1883  * @param __y A %vector of the same type as @a __x.
1884  * @return True iff the size and elements of the vectors are equal.
1885  *
1886  * This is an equivalence relation. It is linear in the size of the
1887  * vectors. Vectors are considered equivalent if their sizes are equal,
1888  * and if corresponding elements compare equal.
1889  */
1890  template<typename _Tp, typename _Alloc>
1891  inline bool
1892  operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1893  { return (__x.size() == __y.size()
1894  && std::equal(__x.begin(), __x.end(), __y.begin())); }
1895 
1896 #if __cpp_lib_three_way_comparison
1897  /**
1898  * @brief Vector ordering relation.
1899  * @param __x A `vector`.
1900  * @param __y A `vector` of the same type as `__x`.
1901  * @return A value indicating whether `__x` is less than, equal to,
1902  * greater than, or incomparable with `__y`.
1903  *
1904  * See `std::lexicographical_compare_three_way()` for how the determination
1905  * is made. This operator is used to synthesize relational operators like
1906  * `<` and `>=` etc.
1907  */
1908  template<typename _Tp, typename _Alloc>
1909  inline __detail::__synth3way_t<_Tp>
1910  operator<=>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1911  {
1912  return std::lexicographical_compare_three_way(__x.begin(), __x.end(),
1913  __y.begin(), __y.end(),
1914  __detail::__synth3way);
1915  }
1916 #else
1917  /**
1918  * @brief Vector ordering relation.
1919  * @param __x A %vector.
1920  * @param __y A %vector of the same type as @a __x.
1921  * @return True iff @a __x is lexicographically less than @a __y.
1922  *
1923  * This is a total ordering relation. It is linear in the size of the
1924  * vectors. The elements must be comparable with @c <.
1925  *
1926  * See std::lexicographical_compare() for how the determination is made.
1927  */
1928  template<typename _Tp, typename _Alloc>
1929  inline bool
1930  operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1931  { return std::lexicographical_compare(__x.begin(), __x.end(),
1932  __y.begin(), __y.end()); }
1933 
1934  /// Based on operator==
1935  template<typename _Tp, typename _Alloc>
1936  inline bool
1937  operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1938  { return !(__x == __y); }
1939 
1940  /// Based on operator<
1941  template<typename _Tp, typename _Alloc>
1942  inline bool
1943  operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1944  { return __y < __x; }
1945 
1946  /// Based on operator<
1947  template<typename _Tp, typename _Alloc>
1948  inline bool
1949  operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1950  { return !(__y < __x); }
1951 
1952  /// Based on operator<
1953  template<typename _Tp, typename _Alloc>
1954  inline bool
1955  operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1956  { return !(__x < __y); }
1957 #endif // three-way comparison
1958 
1959  /// See std::vector::swap().
1960  template<typename _Tp, typename _Alloc>
1961  inline void
1963  _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
1964  { __x.swap(__y); }
1965 
1966 _GLIBCXX_END_NAMESPACE_CONTAINER
1967 
1968 #if __cplusplus >= 201703L
1969  namespace __detail::__variant
1970  {
1971  template<typename> struct _Never_valueless_alt; // see <variant>
1972 
1973  // Provide the strong exception-safety guarantee when emplacing a
1974  // vector into a variant, but only if move assignment cannot throw.
1975  template<typename _Tp, typename _Alloc>
1976  struct _Never_valueless_alt<_GLIBCXX_STD_C::vector<_Tp, _Alloc>>
1977  : std::is_nothrow_move_assignable<_GLIBCXX_STD_C::vector<_Tp, _Alloc>>
1978  { };
1979  } // namespace __detail::__variant
1980 #endif // C++17
1981 
1982 _GLIBCXX_END_NAMESPACE_VERSION
1983 } // namespace std
1984 
1985 #endif /* _STL_VECTOR_H */
integral_constant< bool, true > true_type
The type used as a compile-time boolean with true value.
Definition: type_traits:83
integral_constant< bool, false > false_type
The type used as a compile-time boolean with false value.
Definition: type_traits:86
constexpr std::remove_reference< _Tp >::type && move(_Tp &&__t) noexcept
Convert a value to an rvalue.
Definition: move.h:104
void swap(any &__x, any &__y) noexcept
Exchange the states of two any objects.
Definition: any:422
constexpr const _Tp & max(const _Tp &, const _Tp &)
This does what you think it does.
Definition: stl_algobase.h:254
constexpr const _Tp & min(const _Tp &, const _Tp &)
This does what you think it does.
Definition: stl_algobase.h:230
constexpr iterator_traits< _Iter >::iterator_category __iterator_category(const _Iter &)
ISO C++ entities toplevel namespace is std.
void _Destroy(_ForwardIterator __first, _ForwardIterator __last, _Allocator &__alloc)
initializer_list
integral_constant
Definition: type_traits:66
is_same
Definition: type_traits:1410
is_nothrow_default_constructible
Definition: type_traits:1033
is_nothrow_move_assignable
Definition: type_traits:1185
The standard allocator, as per C++03 [20.4.1].
Definition: allocator.h:141
__detected_or_t< __get_first_arg_t< _Ptr >, __element_type, _Ptr > element_type
The type pointed to.
Definition: ptr_traits.h:105
Marking input iterators.
Forward iterators support a superset of input iterator operations.
Random-access iterators support a superset of bidirectional iterator operations.
Common iterator class.
See bits/stl_deque.h's _Deque_base for an explanation.
Definition: stl_vector.h:85
A standard container which offers fixed time access to individual elements in any order.
Definition: stl_vector.h:390
vector(const vector &__x)
Vector copy constructor.
Definition: stl_vector.h:553
vector(initializer_list< value_type > __l, const allocator_type &__a=allocator_type())
Builds a vector from an initializer list.
Definition: stl_vector.h:625
void resize(size_type __new_size)
Resizes the vector to the specified number of elements.
Definition: stl_vector.h:937
reference at(size_type __n)
Provides access to the data contained in the vector.
Definition: stl_vector.h:1092
vector()=default
Creates a vector with no elements.
iterator insert(const_iterator __position, initializer_list< value_type > __l)
Inserts an initializer_list into the vector.
Definition: stl_vector.h:1310
const_reference front() const noexcept
Definition: stl_vector.h:1132
iterator erase(const_iterator __position)
Remove element at given position.
Definition: stl_vector.h:1430
reverse_iterator rbegin() noexcept
Definition: stl_vector.h:847
pointer _M_allocate_and_copy(size_type __n, _ForwardIterator __first, _ForwardIterator __last)
Definition: stl_vector.h:1508
bool empty() const noexcept
Definition: stl_vector.h:1007
const_reverse_iterator crbegin() const noexcept
Definition: stl_vector.h:902
iterator insert(const_iterator __position, _InputIterator __first, _InputIterator __last)
Inserts a range into the vector.
Definition: stl_vector.h:1379
vector & operator=(vector &&__x) noexcept(_Alloc_traits::_S_nothrow_move())
Vector move assignment operator.
Definition: stl_vector.h:709
reference front() noexcept
Definition: stl_vector.h:1121
iterator insert(const_iterator __position, size_type __n, const value_type &__x)
Inserts a number of copies of given data into the vector.
Definition: stl_vector.h:1335
allocator_type get_allocator() const noexcept
Get a copy of the memory allocation object.
Definition: stl_vector.h:284
void shrink_to_fit()
Definition: stl_vector.h:989
vector(size_type __n, const value_type &__value, const allocator_type &__a=allocator_type())
Creates a vector with copies of an exemplar element.
Definition: stl_vector.h:522
reverse_iterator rend() noexcept
Definition: stl_vector.h:865
void resize(size_type __new_size, const value_type &__x)
Resizes the vector to the specified number of elements.
Definition: stl_vector.h:957
void clear() noexcept
Definition: stl_vector.h:1498
vector & operator=(initializer_list< value_type > __l)
Vector list assignment operator.
Definition: stl_vector.h:730
vector(size_type __n, const allocator_type &__a=allocator_type())
Creates a vector with default constructed elements.
Definition: stl_vector.h:510
void push_back(const value_type &__x)
Add data to the end of the vector.
Definition: stl_vector.h:1187
~vector() noexcept
Definition: stl_vector.h:678
const_reference operator[](size_type __n) const noexcept
Subscript access to the data contained in the vector.
Definition: stl_vector.h:1061
size_type max_size() const noexcept
Definition: stl_vector.h:923
const_reverse_iterator crend() const noexcept
Definition: stl_vector.h:911
iterator insert(const_iterator __position, value_type &&__x)
Inserts given rvalue into vector before specified iterator.
Definition: stl_vector.h:1293
void _M_range_check(size_type __n) const
Safety check used only from at().
Definition: stl_vector.h:1070
void reserve(size_type __n)
Attempt to preallocate enough memory for specified number of elements.
Definition: vector.tcc:67
vector(_InputIterator __first, _InputIterator __last, const allocator_type &__a=allocator_type())
Builds a vector from a range.
Definition: stl_vector.h:653
const_iterator begin() const noexcept
Definition: stl_vector.h:820
void assign(size_type __n, const value_type &__val)
Assigns a given value to a vector.
Definition: stl_vector.h:749
void swap(vector &__x) noexcept
Swaps data with another vector.
Definition: stl_vector.h:1480
void pop_back() noexcept
Removes last element.
Definition: stl_vector.h:1225
vector & operator=(const vector &__x)
Vector assignment operator.
Definition: vector.tcc:199
const_reverse_iterator rend() const noexcept
Definition: stl_vector.h:874
const_iterator cbegin() const noexcept
Definition: stl_vector.h:884
const_reference at(size_type __n) const
Provides access to the data contained in the vector.
Definition: stl_vector.h:1110
const_iterator cend() const noexcept
Definition: stl_vector.h:893
iterator erase(const_iterator __first, const_iterator __last)
Remove a range of elements.
Definition: stl_vector.h:1457
vector(vector &&) noexcept=default
Vector move constructor.
vector(const allocator_type &__a) noexcept
Creates a vector with no elements.
Definition: stl_vector.h:497
iterator emplace(const_iterator __position, _Args &&... __args)
Inserts an object in vector before specified iterator.
Definition: stl_vector.h:1248
_Tp * data() noexcept
Definition: stl_vector.h:1168
const_reverse_iterator rbegin() const noexcept
Definition: stl_vector.h:856
iterator begin() noexcept
Definition: stl_vector.h:811
reference back() noexcept
Definition: stl_vector.h:1143
void assign(_InputIterator __first, _InputIterator __last)
Assigns a range to a vector.
Definition: stl_vector.h:768
void assign(initializer_list< value_type > __l)
Assigns an initializer list to a vector.
Definition: stl_vector.h:794
iterator insert(const_iterator __position, const value_type &__x)
Inserts given value into vector before specified iterator.
Definition: vector.tcc:132
const_reference back() const noexcept
Definition: stl_vector.h:1154
const_iterator end() const noexcept
Definition: stl_vector.h:838
iterator end() noexcept
Definition: stl_vector.h:829
vector(vector &&__rv, const allocator_type &__m) noexcept(noexcept(vector(std::declval< vector && >(), std::declval< const allocator_type & >(), std::declval< typename _Alloc_traits::is_always_equal >())))
Move constructor with alternative allocator.
Definition: stl_vector.h:607
size_type size() const noexcept
Definition: stl_vector.h:918
size_type capacity() const noexcept
Definition: stl_vector.h:998
reference operator[](size_type __n) noexcept
Subscript access to the data contained in the vector.
Definition: stl_vector.h:1043
Uniform interface to C++98 and C++11 allocators.
static constexpr size_type max_size(const _Tp_alloc_type &__a) noexcept
The maximum supported allocation size.