This is the mail archive of the gcc-patches@gcc.gnu.org mailing list for the GCC project.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]
Other format: [Raw text]

Re: [14/n] PR85694: Rework overwidening detection


On Tue, 3 Jul 2018 at 12:02, Richard Sandiford
<richard.sandiford@arm.com> wrote:
>
> Richard Biener <richard.guenther@gmail.com> writes:
> > On Fri, Jun 29, 2018 at 1:36 PM Richard Sandiford
> > <richard.sandiford@arm.com> wrote:
> >>
> >> Richard Sandiford <richard.sandiford@arm.com> writes:
> >> > This patch is the main part of PR85694.  The aim is to recognise at least:
> >> >
> >> >   signed char *a, *b, *c;
> >> >   ...
> >> >   for (int i = 0; i < 2048; i++)
> >> >     c[i] = (a[i] + b[i]) >> 1;
> >> >
> >> > as an over-widening pattern, since the addition and shift can be done
> >> > on shorts rather than ints.  However, it ended up being a lot more
> >> > general than that.
> >> >
> >> > The current over-widening pattern detection is limited to a few simple
> >> > cases: logical ops with immediate second operands, and shifts by a
> >> > constant.  These cases are enough for common pixel-format conversion
> >> > and can be detected in a peephole way.
> >> >
> >> > The loop above requires two generalisations of the current code: support
> >> > for addition as well as logical ops, and support for non-constant second
> >> > operands.  These are harder to detect in the same peephole way, so the
> >> > patch tries to take a more global approach.
> >> >
> >> > The idea is to get information about the minimum operation width
> >> > in two ways:
> >> >
> >> > (1) by using the range information attached to the SSA_NAMEs
> >> >     (effectively a forward walk, since the range info is
> >> >     context-independent).
> >> >
> >> > (2) by back-propagating the number of output bits required by
> >> >     users of the result.
> >> >
> >> > As explained in the comments, there's a balance to be struck between
> >> > narrowing an individual operation and fitting in with the surrounding
> >> > code.  The approach is pretty conservative: if we could narrow an
> >> > operation to N bits without changing its semantics, it's OK to do that if:
> >> >
> >> > - no operations later in the chain require more than N bits; or
> >> >
> >> > - all internally-defined inputs are extended from N bits or fewer,
> >> >   and at least one of them is single-use.
> >> >
> >> > See the comments for the rationale.
> >> >
> >> > I didn't bother adding STMT_VINFO_* wrappers for the new fields
> >> > since the code seemed more readable without.
> >> >
> >> > Tested on aarch64-linux-gnu and x86_64-linux-gnu.  OK to install?
> >>
> >> Here's a version rebased on top of current trunk.  Changes from last time:
> >>
> >> - reintroduce dump_generic_expr_loc, with the obvious change to the
> >>   prototype
> >>
> >> - fix a typo in a comment
> >>
> >> - use vect_element_precision from the new version of 12/n.
> >>
> >> Tested as before.  OK to install?
> >
> > OK.
>
> Thanks.  For the record, here's what I installed (updated on top of
> Dave's recent patch, and with an obvious fix to vect-widen-mult-u8-u32.c).
>
> Richard
>
Hi,

It seems the new bb-slp-over-widen tests lack a -fdump option:
gcc.dg/vect/bb-slp-over-widen-2.c -flto -ffat-lto-objects : dump file
does not exist
UNRESOLVED: gcc.dg/vect/bb-slp-over-widen-2.c -flto -ffat-lto-objects
scan-tree-dump-times vect "basic block vectorized" 2

Christophe

>
> 2018-07-03  Richard Sandiford  <richard.sandiford@arm.com>
>
> gcc/
>         * poly-int.h (print_hex): New function.
>         * dumpfile.h (dump_dec, dump_hex): Declare.
>         * dumpfile.c (dump_dec, dump_hex): New poly_wide_int functions.
>         * tree-vectorizer.h (_stmt_vec_info): Add min_output_precision,
>         min_input_precision, operation_precision and operation_sign.
>         * tree-vect-patterns.c (vect_get_range_info): New function.
>         (vect_same_loop_or_bb_p, vect_single_imm_use)
>         (vect_operation_fits_smaller_type): Delete.
>         (vect_look_through_possible_promotion): Add an optional
>         single_use_p parameter.
>         (vect_recog_over_widening_pattern): Rewrite to use new
>         stmt_vec_info infomration.  Handle one operation at a time.
>         (vect_recog_cast_forwprop_pattern, vect_narrowable_type_p)
>         (vect_truncatable_operation_p, vect_set_operation_type)
>         (vect_set_min_input_precision): New functions.
>         (vect_determine_min_output_precision_1): Likewise.
>         (vect_determine_min_output_precision): Likewise.
>         (vect_determine_precisions_from_range): Likewise.
>         (vect_determine_precisions_from_users): Likewise.
>         (vect_determine_stmt_precisions, vect_determine_precisions): Likewise.
>         (vect_vect_recog_func_ptrs): Put over_widening first.
>         Add cast_forwprop.
>         (vect_pattern_recog): Call vect_determine_precisions.
>
> gcc/testsuite/
>         * gcc.dg/vect/vect-widen-mult-u8-u32.c: Check specifically for a
>         widen_mult pattern.
>         * gcc.dg/vect/vect-over-widen-1.c: Update the scan tests for new
>         over-widening messages.
>         * gcc.dg/vect/vect-over-widen-1-big-array.c: Likewise.
>         * gcc.dg/vect/vect-over-widen-2.c: Likewise.
>         * gcc.dg/vect/vect-over-widen-2-big-array.c: Likewise.
>         * gcc.dg/vect/vect-over-widen-3.c: Likewise.
>         * gcc.dg/vect/vect-over-widen-3-big-array.c: Likewise.
>         * gcc.dg/vect/vect-over-widen-4.c: Likewise.
>         * gcc.dg/vect/vect-over-widen-4-big-array.c: Likewise.
>         * gcc.dg/vect/bb-slp-over-widen-1.c: New test.
>         * gcc.dg/vect/bb-slp-over-widen-2.c: Likewise.
>         * gcc.dg/vect/vect-over-widen-5.c: Likewise.
>         * gcc.dg/vect/vect-over-widen-6.c: Likewise.
>         * gcc.dg/vect/vect-over-widen-7.c: Likewise.
>         * gcc.dg/vect/vect-over-widen-8.c: Likewise.
>         * gcc.dg/vect/vect-over-widen-9.c: Likewise.
>         * gcc.dg/vect/vect-over-widen-10.c: Likewise.
>         * gcc.dg/vect/vect-over-widen-11.c: Likewise.
>         * gcc.dg/vect/vect-over-widen-12.c: Likewise.
>         * gcc.dg/vect/vect-over-widen-13.c: Likewise.
>         * gcc.dg/vect/vect-over-widen-14.c: Likewise.
>         * gcc.dg/vect/vect-over-widen-15.c: Likewise.
>         * gcc.dg/vect/vect-over-widen-16.c: Likewise.
>         * gcc.dg/vect/vect-over-widen-17.c: Likewise.
>         * gcc.dg/vect/vect-over-widen-18.c: Likewise.
>         * gcc.dg/vect/vect-over-widen-19.c: Likewise.
>         * gcc.dg/vect/vect-over-widen-20.c: Likewise.
>         * gcc.dg/vect/vect-over-widen-21.c: Likewise.
> ------------------------------------------------------------------------------
>
> Index: gcc/poly-int.h
> ===================================================================
> --- gcc/poly-int.h      2018-07-03 09:01:31.075962445 +0100
> +++ gcc/poly-int.h      2018-07-03 09:02:36.563413564 +0100
> @@ -2420,6 +2420,25 @@ print_dec (const poly_int_pod<N, C> &val
>              poly_coeff_traits<C>::signedness ? SIGNED : UNSIGNED);
>  }
>
> +/* Use print_hex to print VALUE to FILE.  */
> +
> +template<unsigned int N, typename C>
> +void
> +print_hex (const poly_int_pod<N, C> &value, FILE *file)
> +{
> +  if (value.is_constant ())
> +    print_hex (value.coeffs[0], file);
> +  else
> +    {
> +      fprintf (file, "[");
> +      for (unsigned int i = 0; i < N; ++i)
> +       {
> +         print_hex (value.coeffs[i], file);
> +         fputc (i == N - 1 ? ']' : ',', file);
> +       }
> +    }
> +}
> +
>  /* Helper for calculating the distance between two points P1 and P2,
>     in cases where known_le (P1, P2).  T1 and T2 are the types of the
>     two positions, in either order.  The coefficients of P2 - P1 have
> Index: gcc/dumpfile.h
> ===================================================================
> --- gcc/dumpfile.h      2018-07-02 14:30:09.280175397 +0100
> +++ gcc/dumpfile.h      2018-07-03 09:02:36.563413564 +0100
> @@ -436,6 +436,8 @@ extern bool enable_rtl_dump_file (void);
>
>  template<unsigned int N, typename C>
>  void dump_dec (dump_flags_t, const poly_int<N, C> &);
> +extern void dump_dec (dump_flags_t, const poly_wide_int &, signop);
> +extern void dump_hex (dump_flags_t, const poly_wide_int &);
>
>  /* In tree-dump.c  */
>  extern void dump_node (const_tree, dump_flags_t, FILE *);
> Index: gcc/dumpfile.c
> ===================================================================
> --- gcc/dumpfile.c      2018-07-03 09:01:31.071962478 +0100
> +++ gcc/dumpfile.c      2018-07-03 09:02:36.563413564 +0100
> @@ -597,6 +597,28 @@ template void dump_dec (dump_flags_t, co
>  template void dump_dec (dump_flags_t, const poly_offset_int &);
>  template void dump_dec (dump_flags_t, const poly_widest_int &);
>
> +void
> +dump_dec (dump_flags_t dump_kind, const poly_wide_int &value, signop sgn)
> +{
> +  if (dump_file && (dump_kind & pflags))
> +    print_dec (value, dump_file, sgn);
> +
> +  if (alt_dump_file && (dump_kind & alt_flags))
> +    print_dec (value, alt_dump_file, sgn);
> +}
> +
> +/* Output VALUE in hexadecimal to appropriate dump streams.  */
> +
> +void
> +dump_hex (dump_flags_t dump_kind, const poly_wide_int &value)
> +{
> +  if (dump_file && (dump_kind & pflags))
> +    print_hex (value, dump_file);
> +
> +  if (alt_dump_file && (dump_kind & alt_flags))
> +    print_hex (value, alt_dump_file);
> +}
> +
>  /* The current dump scope-nesting depth.  */
>
>  static int dump_scope_depth;
> Index: gcc/tree-vectorizer.h
> ===================================================================
> --- gcc/tree-vectorizer.h       2018-07-03 09:01:31.079962411 +0100
> +++ gcc/tree-vectorizer.h       2018-07-03 09:02:36.567413531 +0100
> @@ -899,6 +899,21 @@ typedef struct _stmt_vec_info {
>
>    /* The number of scalar stmt references from active SLP instances.  */
>    unsigned int num_slp_uses;
> +
> +  /* If nonzero, the lhs of the statement could be truncated to this
> +     many bits without affecting any users of the result.  */
> +  unsigned int min_output_precision;
> +
> +  /* If nonzero, all non-boolean input operands have the same precision,
> +     and they could each be truncated to this many bits without changing
> +     the result.  */
> +  unsigned int min_input_precision;
> +
> +  /* If OPERATION_BITS is nonzero, the statement could be performed on
> +     an integer with the sign and number of bits given by OPERATION_SIGN
> +     and OPERATION_BITS without changing the result.  */
> +  unsigned int operation_precision;
> +  signop operation_sign;
>  } *stmt_vec_info;
>
>  /* Information about a gather/scatter call.  */
> Index: gcc/tree-vect-patterns.c
> ===================================================================
> --- gcc/tree-vect-patterns.c    2018-07-03 09:01:31.035962780 +0100
> +++ gcc/tree-vect-patterns.c    2018-07-03 09:02:36.567413531 +0100
> @@ -47,6 +47,40 @@ Software Foundation; either version 3, o
>  #include "omp-simd-clone.h"
>  #include "predict.h"
>
> +/* Return true if we have a useful VR_RANGE range for VAR, storing it
> +   in *MIN_VALUE and *MAX_VALUE if so.  Note the range in the dump files.  */
> +
> +static bool
> +vect_get_range_info (tree var, wide_int *min_value, wide_int *max_value)
> +{
> +  value_range_type vr_type = get_range_info (var, min_value, max_value);
> +  wide_int nonzero = get_nonzero_bits (var);
> +  signop sgn = TYPE_SIGN (TREE_TYPE (var));
> +  if (intersect_range_with_nonzero_bits (vr_type, min_value, max_value,
> +                                        nonzero, sgn) == VR_RANGE)
> +    {
> +      if (dump_enabled_p ())
> +       {
> +         dump_generic_expr_loc (MSG_NOTE, vect_location, TDF_SLIM, var);
> +         dump_printf (MSG_NOTE, " has range [");
> +         dump_hex (MSG_NOTE, *min_value);
> +         dump_printf (MSG_NOTE, ", ");
> +         dump_hex (MSG_NOTE, *max_value);
> +         dump_printf (MSG_NOTE, "]\n");
> +       }
> +      return true;
> +    }
> +  else
> +    {
> +      if (dump_enabled_p ())
> +       {
> +         dump_generic_expr_loc (MSG_NOTE, vect_location, TDF_SLIM, var);
> +         dump_printf (MSG_NOTE, " has no range info\n");
> +       }
> +      return false;
> +    }
> +}
> +
>  /* Report that we've found an instance of pattern PATTERN in
>     statement STMT.  */
>
> @@ -190,40 +224,6 @@ vect_supportable_direct_optab_p (tree ot
>    return true;
>  }
>
> -/* Check whether STMT2 is in the same loop or basic block as STMT1.
> -   Which of the two applies depends on whether we're currently doing
> -   loop-based or basic-block-based vectorization, as determined by
> -   the vinfo_for_stmt for STMT1 (which must be defined).
> -
> -   If this returns true, vinfo_for_stmt for STMT2 is guaranteed
> -   to be defined as well.  */
> -
> -static bool
> -vect_same_loop_or_bb_p (gimple *stmt1, gimple *stmt2)
> -{
> -  stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt1);
> -  return vect_stmt_in_region_p (stmt_vinfo->vinfo, stmt2);
> -}
> -
> -/* If the LHS of DEF_STMT has a single use, and that statement is
> -   in the same loop or basic block, return it.  */
> -
> -static gimple *
> -vect_single_imm_use (gimple *def_stmt)
> -{
> -  tree lhs = gimple_assign_lhs (def_stmt);
> -  use_operand_p use_p;
> -  gimple *use_stmt;
> -
> -  if (!single_imm_use (lhs, &use_p, &use_stmt))
> -    return NULL;
> -
> -  if (!vect_same_loop_or_bb_p (def_stmt, use_stmt))
> -    return NULL;
> -
> -  return use_stmt;
> -}
> -
>  /* Round bit precision PRECISION up to a full element.  */
>
>  static unsigned int
> @@ -347,7 +347,9 @@ vect_unpromoted_value::set_op (tree op_i
>     is possible to convert OP' back to OP using a possible sign change
>     followed by a possible promotion P.  Return this OP', or null if OP is
>     not a vectorizable SSA name.  If there is a promotion P, describe its
> -   input in UNPROM, otherwise describe OP' in UNPROM.
> +   input in UNPROM, otherwise describe OP' in UNPROM.  If SINGLE_USE_P
> +   is nonnull, set *SINGLE_USE_P to false if any of the SSA names involved
> +   have more than one user.
>
>     A successful return means that it is possible to go from OP' to OP
>     via UNPROM.  The cast from OP' to UNPROM is at most a sign change,
> @@ -374,7 +376,8 @@ vect_unpromoted_value::set_op (tree op_i
>
>  static tree
>  vect_look_through_possible_promotion (vec_info *vinfo, tree op,
> -                                     vect_unpromoted_value *unprom)
> +                                     vect_unpromoted_value *unprom,
> +                                     bool *single_use_p = NULL)
>  {
>    tree res = NULL_TREE;
>    tree op_type = TREE_TYPE (op);
> @@ -420,7 +423,14 @@ vect_look_through_possible_promotion (ve
>        if (!def_stmt)
>         break;
>        if (dt == vect_internal_def)
> -       caster = vinfo_for_stmt (def_stmt);
> +       {
> +         caster = vinfo_for_stmt (def_stmt);
> +         /* Ignore pattern statements, since we don't link uses for them.  */
> +         if (single_use_p
> +             && !STMT_VINFO_RELATED_STMT (caster)
> +             && !has_single_use (res))
> +           *single_use_p = false;
> +       }
>        else
>         caster = NULL;
>        gassign *assign = dyn_cast <gassign *> (def_stmt);
> @@ -1371,363 +1381,318 @@ vect_recog_widen_sum_pattern (vec<gimple
>    return pattern_stmt;
>  }
>
> +/* Recognize cases in which an operation is performed in one type WTYPE
> +   but could be done more efficiently in a narrower type NTYPE.  For example,
> +   if we have:
> +
> +     ATYPE a;  // narrower than NTYPE
> +     BTYPE b;  // narrower than NTYPE
> +     WTYPE aw = (WTYPE) a;
> +     WTYPE bw = (WTYPE) b;
> +     WTYPE res = aw + bw;  // only uses of aw and bw
> +
> +   then it would be more efficient to do:
> +
> +     NTYPE an = (NTYPE) a;
> +     NTYPE bn = (NTYPE) b;
> +     NTYPE resn = an + bn;
> +     WTYPE res = (WTYPE) resn;
> +
> +   Other situations include things like:
> +
> +     ATYPE a;  // NTYPE or narrower
> +     WTYPE aw = (WTYPE) a;
> +     WTYPE res = aw + b;
> +
> +   when only "(NTYPE) res" is significant.  In that case it's more efficient
> +   to truncate "b" and do the operation on NTYPE instead:
> +
> +     NTYPE an = (NTYPE) a;
> +     NTYPE bn = (NTYPE) b;  // truncation
> +     NTYPE resn = an + bn;
> +     WTYPE res = (WTYPE) resn;
> +
> +   All users of "res" should then use "resn" instead, making the final
> +   statement dead (not marked as relevant).  The final statement is still
> +   needed to maintain the type correctness of the IR.
> +
> +   vect_determine_precisions has already determined the minimum
> +   precison of the operation and the minimum precision required
> +   by users of the result.  */
>
> -/* Return TRUE if the operation in STMT can be performed on a smaller type.
> +static gimple *
> +vect_recog_over_widening_pattern (vec<gimple *> *stmts, tree *type_out)
> +{
> +  gassign *last_stmt = dyn_cast <gassign *> (stmts->pop ());
> +  if (!last_stmt)
> +    return NULL;
>
> -   Input:
> -   STMT - a statement to check.
> -   DEF - we support operations with two operands, one of which is constant.
> -         The other operand can be defined by a demotion operation, or by a
> -         previous statement in a sequence of over-promoted operations.  In the
> -         later case DEF is used to replace that operand.  (It is defined by a
> -         pattern statement we created for the previous statement in the
> -         sequence).
> -
> -   Input/output:
> -   NEW_TYPE - Output: a smaller type that we are trying to use.  Input: if not
> -         NULL, it's the type of DEF.
> -   STMTS - additional pattern statements.  If a pattern statement (type
> -         conversion) is created in this function, its original statement is
> -         added to STMTS.
> +  /* See whether we have found that this operation can be done on a
> +     narrower type without changing its semantics.  */
> +  stmt_vec_info last_stmt_info = vinfo_for_stmt (last_stmt);
> +  unsigned int new_precision = last_stmt_info->operation_precision;
> +  if (!new_precision)
> +    return NULL;
>
> -   Output:
> -   OP0, OP1 - if the operation fits a smaller type, OP0 and OP1 are the new
> -         operands to use in the new pattern statement for STMT (will be created
> -         in vect_recog_over_widening_pattern ()).
> -   NEW_DEF_STMT - in case DEF has to be promoted, we create two pattern
> -         statements for STMT: the first one is a type promotion and the second
> -         one is the operation itself.  We return the type promotion statement
> -        in NEW_DEF_STMT and further store it in STMT_VINFO_PATTERN_DEF_SEQ of
> -         the second pattern statement.  */
> +  vec_info *vinfo = last_stmt_info->vinfo;
> +  tree lhs = gimple_assign_lhs (last_stmt);
> +  tree type = TREE_TYPE (lhs);
> +  tree_code code = gimple_assign_rhs_code (last_stmt);
> +
> +  /* Keep the first operand of a COND_EXPR as-is: only the other two
> +     operands are interesting.  */
> +  unsigned int first_op = (code == COND_EXPR ? 2 : 1);
>
> -static bool
> -vect_operation_fits_smaller_type (gimple *stmt, tree def, tree *new_type,
> -                                 tree *op0, tree *op1, gimple **new_def_stmt,
> -                                 vec<gimple *> *stmts)
> -{
> -  enum tree_code code;
> -  tree const_oprnd, oprnd;
> -  tree interm_type = NULL_TREE, half_type, new_oprnd, type;
> -  gimple *def_stmt, *new_stmt;
> -  bool first = false;
> -  bool promotion;
> +  /* Check the operands.  */
> +  unsigned int nops = gimple_num_ops (last_stmt) - first_op;
> +  auto_vec <vect_unpromoted_value, 3> unprom (nops);
> +  unprom.quick_grow (nops);
> +  unsigned int min_precision = 0;
> +  bool single_use_p = false;
> +  for (unsigned int i = 0; i < nops; ++i)
> +    {
> +      tree op = gimple_op (last_stmt, first_op + i);
> +      if (TREE_CODE (op) == INTEGER_CST)
> +       unprom[i].set_op (op, vect_constant_def);
> +      else if (TREE_CODE (op) == SSA_NAME)
> +       {
> +         bool op_single_use_p = true;
> +         if (!vect_look_through_possible_promotion (vinfo, op, &unprom[i],
> +                                                    &op_single_use_p))
> +           return NULL;
> +         /* If:
>
> -  *op0 = NULL_TREE;
> -  *op1 = NULL_TREE;
> -  *new_def_stmt = NULL;
> +            (1) N bits of the result are needed;
> +            (2) all inputs are widened from M<N bits; and
> +            (3) one operand OP is a single-use SSA name
> +
> +            we can shift the M->N widening from OP to the output
> +            without changing the number or type of extensions involved.
> +            This then reduces the number of copies of STMT_INFO.
> +
> +            If instead of (3) more than one operand is a single-use SSA name,
> +            shifting the extension to the output is even more of a win.
> +
> +            If instead:
> +
> +            (1) N bits of the result are needed;
> +            (2) one operand OP2 is widened from M2<N bits;
> +            (3) another operand OP1 is widened from M1<M2 bits; and
> +            (4) both OP1 and OP2 are single-use
> +
> +            the choice is between:
> +
> +            (a) truncating OP2 to M1, doing the operation on M1,
> +                and then widening the result to N
> +
> +            (b) widening OP1 to M2, doing the operation on M2, and then
> +                widening the result to N
> +
> +            Both shift the M2->N widening of the inputs to the output.
> +            (a) additionally shifts the M1->M2 widening to the output;
> +            it requires fewer copies of STMT_INFO but requires an extra
> +            M2->M1 truncation.
> +
> +            Which is better will depend on the complexity and cost of
> +            STMT_INFO, which is hard to predict at this stage.  However,
> +            a clear tie-breaker in favor of (b) is the fact that the
> +            truncation in (a) increases the length of the operation chain.
> +
> +            If instead of (4) only one of OP1 or OP2 is single-use,
> +            (b) is still a win over doing the operation in N bits:
> +            it still shifts the M2->N widening on the single-use operand
> +            to the output and reduces the number of STMT_INFO copies.
> +
> +            If neither operand is single-use then operating on fewer than
> +            N bits might lead to more extensions overall.  Whether it does
> +            or not depends on global information about the vectorization
> +            region, and whether that's a good trade-off would again
> +            depend on the complexity and cost of the statements involved,
> +            as well as things like register pressure that are not normally
> +            modelled at this stage.  We therefore ignore these cases
> +            and just optimize the clear single-use wins above.
> +
> +            Thus we take the maximum precision of the unpromoted operands
> +            and record whether any operand is single-use.  */
> +         if (unprom[i].dt == vect_internal_def)
> +           {
> +             min_precision = MAX (min_precision,
> +                                  TYPE_PRECISION (unprom[i].type));
> +             single_use_p |= op_single_use_p;
> +           }
> +       }
> +    }
>
> -  if (!is_gimple_assign (stmt))
> -    return false;
> +  /* Although the operation could be done in operation_precision, we have
> +     to balance that against introducing extra truncations or extensions.
> +     Calculate the minimum precision that can be handled efficiently.
> +
> +     The loop above determined that the operation could be handled
> +     efficiently in MIN_PRECISION if SINGLE_USE_P; this would shift an
> +     extension from the inputs to the output without introducing more
> +     instructions, and would reduce the number of instructions required
> +     for STMT_INFO itself.
> +
> +     vect_determine_precisions has also determined that the result only
> +     needs min_output_precision bits.  Truncating by a factor of N times
> +     requires a tree of N - 1 instructions, so if TYPE is N times wider
> +     than min_output_precision, doing the operation in TYPE and truncating
> +     the result requires N + (N - 1) = 2N - 1 instructions per output vector.
> +     In contrast:
> +
> +     - truncating the input to a unary operation and doing the operation
> +       in the new type requires at most N - 1 + 1 = N instructions per
> +       output vector
> +
> +     - doing the same for a binary operation requires at most
> +       (N - 1) * 2 + 1 = 2N - 1 instructions per output vector
> +
> +     Both unary and binary operations require fewer instructions than
> +     this if the operands were extended from a suitable truncated form.
> +     Thus there is usually nothing to lose by doing operations in
> +     min_output_precision bits, but there can be something to gain.  */
> +  if (!single_use_p)
> +    min_precision = last_stmt_info->min_output_precision;
> +  else
> +    min_precision = MIN (min_precision, last_stmt_info->min_output_precision);
>
> -  code = gimple_assign_rhs_code (stmt);
> -  if (code != LSHIFT_EXPR && code != RSHIFT_EXPR
> -      && code != BIT_IOR_EXPR && code != BIT_XOR_EXPR && code != BIT_AND_EXPR)
> -    return false;
> +  /* Apply the minimum efficient precision we just calculated.  */
> +  if (new_precision < min_precision)
> +    new_precision = min_precision;
> +  if (new_precision >= TYPE_PRECISION (type))
> +    return NULL;
>
> -  oprnd = gimple_assign_rhs1 (stmt);
> -  const_oprnd = gimple_assign_rhs2 (stmt);
> -  type = gimple_expr_type (stmt);
> +  vect_pattern_detected ("vect_recog_over_widening_pattern", last_stmt);
>
> -  if (TREE_CODE (oprnd) != SSA_NAME
> -      || TREE_CODE (const_oprnd) != INTEGER_CST)
> -    return false;
> +  *type_out = get_vectype_for_scalar_type (type);
> +  if (!*type_out)
> +    return NULL;
>
> -  /* If oprnd has other uses besides that in stmt we cannot mark it
> -     as being part of a pattern only.  */
> -  if (!has_single_use (oprnd))
> -    return false;
> +  /* We've found a viable pattern.  Get the new type of the operation.  */
> +  bool unsigned_p = (last_stmt_info->operation_sign == UNSIGNED);
> +  tree new_type = build_nonstandard_integer_type (new_precision, unsigned_p);
> +
> +  /* We specifically don't check here whether the target supports the
> +     new operation, since it might be something that a later pattern
> +     wants to rewrite anyway.  If targets have a minimum element size
> +     for some optabs, we should pattern-match smaller ops to larger ops
> +     where beneficial.  */
> +  tree new_vectype = get_vectype_for_scalar_type (new_type);
> +  if (!new_vectype)
> +    return NULL;
>
> -  /* If we are in the middle of a sequence, we use DEF from a previous
> -     statement.  Otherwise, OPRND has to be a result of type promotion.  */
> -  if (*new_type)
> -    {
> -      half_type = *new_type;
> -      oprnd = def;
> -    }
> -  else
> +  if (dump_enabled_p ())
>      {
> -      first = true;
> -      if (!type_conversion_p (oprnd, stmt, false, &half_type, &def_stmt,
> -                             &promotion)
> -         || !promotion
> -         || !vect_same_loop_or_bb_p (stmt, def_stmt))
> -        return false;
> +      dump_printf_loc (MSG_NOTE, vect_location, "demoting ");
> +      dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
> +      dump_printf (MSG_NOTE, " to ");
> +      dump_generic_expr (MSG_NOTE, TDF_SLIM, new_type);
> +      dump_printf (MSG_NOTE, "\n");
>      }
>
> -  /* Can we perform the operation on a smaller type?  */
> -  switch (code)
> -    {
> -      case BIT_IOR_EXPR:
> -      case BIT_XOR_EXPR:
> -      case BIT_AND_EXPR:
> -        if (!int_fits_type_p (const_oprnd, half_type))
> -          {
> -            /* HALF_TYPE is not enough.  Try a bigger type if possible.  */
> -            if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4))
> -              return false;
> -
> -            interm_type = build_nonstandard_integer_type (
> -                        TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type));
> -            if (!int_fits_type_p (const_oprnd, interm_type))
> -              return false;
> -          }
> -
> -        break;
> -
> -      case LSHIFT_EXPR:
> -        /* Try intermediate type - HALF_TYPE is not enough for sure.  */
> -        if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4))
> -          return false;
> -
> -        /* Check that HALF_TYPE size + shift amount <= INTERM_TYPE size.
> -          (e.g., if the original value was char, the shift amount is at most 8
> -           if we want to use short).  */
> -        if (compare_tree_int (const_oprnd, TYPE_PRECISION (half_type)) == 1)
> -          return false;
> -
> -        interm_type = build_nonstandard_integer_type (
> -                        TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type));
> -
> -        if (!vect_supportable_shift (code, interm_type))
> -          return false;
> -
> -        break;
> -
> -      case RSHIFT_EXPR:
> -        if (vect_supportable_shift (code, half_type))
> -          break;
> -
> -        /* Try intermediate type - HALF_TYPE is not supported.  */
> -        if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4))
> -          return false;
> -
> -        interm_type = build_nonstandard_integer_type (
> -                        TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type));
> -
> -        if (!vect_supportable_shift (code, interm_type))
> -          return false;
> -
> -        break;
> -
> -      default:
> -        gcc_unreachable ();
> -    }
> -
> -  /* There are four possible cases:
> -     1. OPRND is defined by a type promotion (in that case FIRST is TRUE, it's
> -        the first statement in the sequence)
> -        a. The original, HALF_TYPE, is not enough - we replace the promotion
> -           from HALF_TYPE to TYPE with a promotion to INTERM_TYPE.
> -        b. HALF_TYPE is sufficient, OPRND is set as the RHS of the original
> -           promotion.
> -     2. OPRND is defined by a pattern statement we created.
> -        a. Its type is not sufficient for the operation, we create a new stmt:
> -           a type conversion for OPRND from HALF_TYPE to INTERM_TYPE.  We store
> -           this statement in NEW_DEF_STMT, and it is later put in
> -          STMT_VINFO_PATTERN_DEF_SEQ of the pattern statement for STMT.
> -        b. OPRND is good to use in the new statement.  */
> -  if (first)
> -    {
> -      if (interm_type)
> -        {
> -          /* Replace the original type conversion HALF_TYPE->TYPE with
> -             HALF_TYPE->INTERM_TYPE.  */
> -          if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt)))
> -            {
> -              new_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt));
> -              /* Check if the already created pattern stmt is what we need.  */
> -              if (!is_gimple_assign (new_stmt)
> -                  || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (new_stmt))
> -                  || TREE_TYPE (gimple_assign_lhs (new_stmt)) != interm_type)
> -                return false;
> -
> -             stmts->safe_push (def_stmt);
> -              oprnd = gimple_assign_lhs (new_stmt);
> -            }
> -          else
> -            {
> -              /* Create NEW_OPRND = (INTERM_TYPE) OPRND.  */
> -              oprnd = gimple_assign_rhs1 (def_stmt);
> -             new_oprnd = make_ssa_name (interm_type);
> -             new_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, oprnd);
> -              STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt)) = new_stmt;
> -              stmts->safe_push (def_stmt);
> -              oprnd = new_oprnd;
> -            }
> -        }
> -      else
> -        {
> -          /* Retrieve the operand before the type promotion.  */
> -          oprnd = gimple_assign_rhs1 (def_stmt);
> -        }
> -    }
> -  else
> -    {
> -      if (interm_type)
> -        {
> -          /* Create a type conversion HALF_TYPE->INTERM_TYPE.  */
> -         new_oprnd = make_ssa_name (interm_type);
> -         new_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, oprnd);
> -          oprnd = new_oprnd;
> -          *new_def_stmt = new_stmt;
> -        }
> +  /* Calculate the rhs operands for an operation on NEW_TYPE.  */
> +  STMT_VINFO_PATTERN_DEF_SEQ (last_stmt_info) = NULL;
> +  tree ops[3] = {};
> +  for (unsigned int i = 1; i < first_op; ++i)
> +    ops[i - 1] = gimple_op (last_stmt, i);
> +  vect_convert_inputs (last_stmt_info, nops, &ops[first_op - 1],
> +                      new_type, &unprom[0], new_vectype);
> +
> +  /* Use the operation to produce a result of type NEW_TYPE.  */
> +  tree new_var = vect_recog_temp_ssa_var (new_type, NULL);
> +  gimple *pattern_stmt = gimple_build_assign (new_var, code,
> +                                             ops[0], ops[1], ops[2]);
> +  gimple_set_location (pattern_stmt, gimple_location (last_stmt));
>
> -      /* Otherwise, OPRND is already set.  */
> +  if (dump_enabled_p ())
> +    {
> +      dump_printf_loc (MSG_NOTE, vect_location,
> +                      "created pattern stmt: ");
> +      dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
>      }
>
> -  if (interm_type)
> -    *new_type = interm_type;
> -  else
> -    *new_type = half_type;
> +  pattern_stmt = vect_convert_output (last_stmt_info, type,
> +                                     pattern_stmt, new_vectype);
>
> -  *op0 = oprnd;
> -  *op1 = fold_convert (*new_type, const_oprnd);
> -
> -  return true;
> +  stmts->safe_push (last_stmt);
> +  return pattern_stmt;
>  }
>
> +/* Recognize cases in which the input to a cast is wider than its
> +   output, and the input is fed by a widening operation.  Fold this
> +   by removing the unnecessary intermediate widening.  E.g.:
>
> -/* Try to find a statement or a sequence of statements that can be performed
> -   on a smaller type:
> +     unsigned char a;
> +     unsigned int b = (unsigned int) a;
> +     unsigned short c = (unsigned short) b;
>
> -     type x_t;
> -     TYPE x_T, res0_T, res1_T;
> -   loop:
> -     S1  x_t = *p;
> -     S2  x_T = (TYPE) x_t;
> -     S3  res0_T = op (x_T, C0);
> -     S4  res1_T = op (res0_T, C1);
> -     S5  ... = () res1_T;  - type demotion
> -
> -   where type 'TYPE' is at least double the size of type 'type', C0 and C1 are
> -   constants.
> -   Check if S3 and S4 can be done on a smaller type than 'TYPE', it can either
> -   be 'type' or some intermediate type.  For now, we expect S5 to be a type
> -   demotion operation.  We also check that S3 and S4 have only one use.  */
> +   -->
>
> -static gimple *
> -vect_recog_over_widening_pattern (vec<gimple *> *stmts, tree *type_out)
> -{
> -  gimple *stmt = stmts->pop ();
> -  gimple *pattern_stmt = NULL, *new_def_stmt, *prev_stmt = NULL,
> -        *use_stmt = NULL;
> -  tree op0, op1, vectype = NULL_TREE, use_lhs, use_type;
> -  tree var = NULL_TREE, new_type = NULL_TREE, new_oprnd;
> -  bool first;
> -  tree type = NULL;
> -
> -  first = true;
> -  while (1)
> -    {
> -      if (!vinfo_for_stmt (stmt)
> -          || STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (stmt)))
> -        return NULL;
> -
> -      new_def_stmt = NULL;
> -      if (!vect_operation_fits_smaller_type (stmt, var, &new_type,
> -                                             &op0, &op1, &new_def_stmt,
> -                                             stmts))
> -        {
> -          if (first)
> -            return NULL;
> -          else
> -            break;
> -        }
> +     unsigned short c = (unsigned short) a;
>
> -      /* STMT can be performed on a smaller type.  Check its uses.  */
> -      use_stmt = vect_single_imm_use (stmt);
> -      if (!use_stmt || !is_gimple_assign (use_stmt))
> -        return NULL;
> -
> -      /* Create pattern statement for STMT.  */
> -      vectype = get_vectype_for_scalar_type (new_type);
> -      if (!vectype)
> -        return NULL;
> -
> -      /* We want to collect all the statements for which we create pattern
> -         statetments, except for the case when the last statement in the
> -         sequence doesn't have a corresponding pattern statement.  In such
> -         case we associate the last pattern statement with the last statement
> -         in the sequence.  Therefore, we only add the original statement to
> -         the list if we know that it is not the last.  */
> -      if (prev_stmt)
> -        stmts->safe_push (prev_stmt);
> +   Although this is rare in input IR, it is an expected side-effect
> +   of the over-widening pattern above.
>
> -      var = vect_recog_temp_ssa_var (new_type, NULL);
> -      pattern_stmt
> -       = gimple_build_assign (var, gimple_assign_rhs_code (stmt), op0, op1);
> -      STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt)) = pattern_stmt;
> -      new_pattern_def_seq (vinfo_for_stmt (stmt), new_def_stmt);
> +   This is beneficial also for integer-to-float conversions, if the
> +   widened integer has more bits than the float, and if the unwidened
> +   input doesn't.  */
>
> -      if (dump_enabled_p ())
> -        {
> -          dump_printf_loc (MSG_NOTE, vect_location,
> -                           "created pattern stmt: ");
> -          dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
> -        }
> +static gimple *
> +vect_recog_cast_forwprop_pattern (vec<gimple *> *stmts, tree *type_out)
> +{
> +  /* Check for a cast, including an integer-to-float conversion.  */
> +  gassign *last_stmt = dyn_cast <gassign *> (stmts->pop ());
> +  if (!last_stmt)
> +    return NULL;
> +  tree_code code = gimple_assign_rhs_code (last_stmt);
> +  if (!CONVERT_EXPR_CODE_P (code) && code != FLOAT_EXPR)
> +    return NULL;
>
> -      type = gimple_expr_type (stmt);
> -      prev_stmt = stmt;
> -      stmt = use_stmt;
> -
> -      first = false;
> -    }
> -
> -  /* We got a sequence.  We expect it to end with a type demotion operation.
> -     Otherwise, we quit (for now).  There are three possible cases: the
> -     conversion is to NEW_TYPE (we don't do anything), the conversion is to
> -     a type bigger than NEW_TYPE and/or the signedness of USE_TYPE and
> -     NEW_TYPE differs (we create a new conversion statement).  */
> -  if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt)))
> -    {
> -      use_lhs = gimple_assign_lhs (use_stmt);
> -      use_type = TREE_TYPE (use_lhs);
> -      /* Support only type demotion or signedess change.  */
> -      if (!INTEGRAL_TYPE_P (use_type)
> -         || TYPE_PRECISION (type) <= TYPE_PRECISION (use_type))
> -        return NULL;
> +  /* Make sure that the rhs is a scalar with a natural bitsize.  */
> +  tree lhs = gimple_assign_lhs (last_stmt);
> +  if (!lhs)
> +    return NULL;
> +  tree lhs_type = TREE_TYPE (lhs);
> +  scalar_mode lhs_mode;
> +  if (VECT_SCALAR_BOOLEAN_TYPE_P (lhs_type)
> +      || !is_a <scalar_mode> (TYPE_MODE (lhs_type), &lhs_mode))
> +    return NULL;
>
> -      /* Check that NEW_TYPE is not bigger than the conversion result.  */
> -      if (TYPE_PRECISION (new_type) > TYPE_PRECISION (use_type))
> -       return NULL;
> +  /* Check for a narrowing operation (from a vector point of view).  */
> +  tree rhs = gimple_assign_rhs1 (last_stmt);
> +  tree rhs_type = TREE_TYPE (rhs);
> +  if (!INTEGRAL_TYPE_P (rhs_type)
> +      || VECT_SCALAR_BOOLEAN_TYPE_P (rhs_type)
> +      || TYPE_PRECISION (rhs_type) <= GET_MODE_BITSIZE (lhs_mode))
> +    return NULL;
>
> -      if (TYPE_UNSIGNED (new_type) != TYPE_UNSIGNED (use_type)
> -          || TYPE_PRECISION (new_type) != TYPE_PRECISION (use_type))
> -        {
> -         *type_out = get_vectype_for_scalar_type (use_type);
> -         if (!*type_out)
> -           return NULL;
> +  /* Try to find an unpromoted input.  */
> +  stmt_vec_info last_stmt_info = vinfo_for_stmt (last_stmt);
> +  vec_info *vinfo = last_stmt_info->vinfo;
> +  vect_unpromoted_value unprom;
> +  if (!vect_look_through_possible_promotion (vinfo, rhs, &unprom)
> +      || TYPE_PRECISION (unprom.type) >= TYPE_PRECISION (rhs_type))
> +    return NULL;
>
> -          /* Create NEW_TYPE->USE_TYPE conversion.  */
> -         new_oprnd = make_ssa_name (use_type);
> -         pattern_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, var);
> -          STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use_stmt)) = pattern_stmt;
> -
> -          /* We created a pattern statement for the last statement in the
> -             sequence, so we don't need to associate it with the pattern
> -             statement created for PREV_STMT.  Therefore, we add PREV_STMT
> -             to the list in order to mark it later in vect_pattern_recog_1.  */
> -          if (prev_stmt)
> -            stmts->safe_push (prev_stmt);
> -        }
> -      else
> -        {
> -          if (prev_stmt)
> -           STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (use_stmt))
> -              = STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (prev_stmt));
> +  /* If the bits above RHS_TYPE matter, make sure that they're the
> +     same when extending from UNPROM as they are when extending from RHS.  */
> +  if (!INTEGRAL_TYPE_P (lhs_type)
> +      && TYPE_SIGN (rhs_type) != TYPE_SIGN (unprom.type))
> +    return NULL;
>
> -         *type_out = vectype;
> -        }
> +  /* We can get the same result by casting UNPROM directly, to avoid
> +     the unnecessary widening and narrowing.  */
> +  vect_pattern_detected ("vect_recog_cast_forwprop_pattern", last_stmt);
>
> -      stmts->safe_push (use_stmt);
> -    }
> -  else
> -    /* TODO: support general case, create a conversion to the correct type.  */
> +  *type_out = get_vectype_for_scalar_type (lhs_type);
> +  if (!*type_out)
>      return NULL;
>
> -  /* Pattern detected.  */
> -  vect_pattern_detected ("vect_recog_over_widening_pattern", stmts->last ());
> +  tree new_var = vect_recog_temp_ssa_var (lhs_type, NULL);
> +  gimple *pattern_stmt = gimple_build_assign (new_var, code, unprom.op);
> +  gimple_set_location (pattern_stmt, gimple_location (last_stmt));
>
> +  stmts->safe_push (last_stmt);
>    return pattern_stmt;
>  }
>
> @@ -4205,6 +4170,390 @@ vect_recog_gather_scatter_pattern (vec<g
>    return pattern_stmt;
>  }
>
> +/* Return true if TYPE is a non-boolean integer type.  These are the types
> +   that we want to consider for narrowing.  */
> +
> +static bool
> +vect_narrowable_type_p (tree type)
> +{
> +  return INTEGRAL_TYPE_P (type) && !VECT_SCALAR_BOOLEAN_TYPE_P (type);
> +}
> +
> +/* Return true if the operation given by CODE can be truncated to N bits
> +   when only N bits of the output are needed.  This is only true if bit N+1
> +   of the inputs has no effect on the low N bits of the result.  */
> +
> +static bool
> +vect_truncatable_operation_p (tree_code code)
> +{
> +  switch (code)
> +    {
> +    case PLUS_EXPR:
> +    case MINUS_EXPR:
> +    case MULT_EXPR:
> +    case BIT_AND_EXPR:
> +    case BIT_IOR_EXPR:
> +    case BIT_XOR_EXPR:
> +    case COND_EXPR:
> +      return true;
> +
> +    default:
> +      return false;
> +    }
> +}
> +
> +/* Record that STMT_INFO could be changed from operating on TYPE to
> +   operating on a type with the precision and sign given by PRECISION
> +   and SIGN respectively.  PRECISION is an arbitrary bit precision;
> +   it might not be a whole number of bytes.  */
> +
> +static void
> +vect_set_operation_type (stmt_vec_info stmt_info, tree type,
> +                        unsigned int precision, signop sign)
> +{
> +  /* Round the precision up to a whole number of bytes.  */
> +  precision = vect_element_precision (precision);
> +  if (precision < TYPE_PRECISION (type)
> +      && (!stmt_info->operation_precision
> +         || stmt_info->operation_precision > precision))
> +    {
> +      stmt_info->operation_precision = precision;
> +      stmt_info->operation_sign = sign;
> +    }
> +}
> +
> +/* Record that STMT_INFO only requires MIN_INPUT_PRECISION from its
> +   non-boolean inputs, all of which have type TYPE.  MIN_INPUT_PRECISION
> +   is an arbitrary bit precision; it might not be a whole number of bytes.  */
> +
> +static void
> +vect_set_min_input_precision (stmt_vec_info stmt_info, tree type,
> +                             unsigned int min_input_precision)
> +{
> +  /* This operation in isolation only requires the inputs to have
> +     MIN_INPUT_PRECISION of precision,  However, that doesn't mean
> +     that MIN_INPUT_PRECISION is a natural precision for the chain
> +     as a whole.  E.g. consider something like:
> +
> +        unsigned short *x, *y;
> +        *y = ((*x & 0xf0) >> 4) | (*y << 4);
> +
> +     The right shift can be done on unsigned chars, and only requires the
> +     result of "*x & 0xf0" to be done on unsigned chars.  But taking that
> +     approach would mean turning a natural chain of single-vector unsigned
> +     short operations into one that truncates "*x" and then extends
> +     "(*x & 0xf0) >> 4", with two vectors for each unsigned short
> +     operation and one vector for each unsigned char operation.
> +     This would be a significant pessimization.
> +
> +     Instead only propagate the maximum of this precision and the precision
> +     required by the users of the result.  This means that we don't pessimize
> +     the case above but continue to optimize things like:
> +
> +        unsigned char *y;
> +        unsigned short *x;
> +        *y = ((*x & 0xf0) >> 4) | (*y << 4);
> +
> +     Here we would truncate two vectors of *x to a single vector of
> +     unsigned chars and use single-vector unsigned char operations for
> +     everything else, rather than doing two unsigned short copies of
> +     "(*x & 0xf0) >> 4" and then truncating the result.  */
> +  min_input_precision = MAX (min_input_precision,
> +                            stmt_info->min_output_precision);
> +
> +  if (min_input_precision < TYPE_PRECISION (type)
> +      && (!stmt_info->min_input_precision
> +         || stmt_info->min_input_precision > min_input_precision))
> +    stmt_info->min_input_precision = min_input_precision;
> +}
> +
> +/* Subroutine of vect_determine_min_output_precision.  Return true if
> +   we can calculate a reduced number of output bits for STMT_INFO,
> +   whose result is LHS.  */
> +
> +static bool
> +vect_determine_min_output_precision_1 (stmt_vec_info stmt_info, tree lhs)
> +{
> +  /* Take the maximum precision required by users of the result.  */
> +  unsigned int precision = 0;
> +  imm_use_iterator iter;
> +  use_operand_p use;
> +  FOR_EACH_IMM_USE_FAST (use, iter, lhs)
> +    {
> +      gimple *use_stmt = USE_STMT (use);
> +      if (is_gimple_debug (use_stmt))
> +       continue;
> +      if (!vect_stmt_in_region_p (stmt_info->vinfo, use_stmt))
> +       return false;
> +      stmt_vec_info use_stmt_info = vinfo_for_stmt (use_stmt);
> +      if (!use_stmt_info->min_input_precision)
> +       return false;
> +      precision = MAX (precision, use_stmt_info->min_input_precision);
> +    }
> +
> +  if (dump_enabled_p ())
> +    {
> +      dump_printf_loc (MSG_NOTE, vect_location, "only the low %d bits of ",
> +                      precision);
> +      dump_generic_expr (MSG_NOTE, TDF_SLIM, lhs);
> +      dump_printf (MSG_NOTE, " are significant\n");
> +    }
> +  stmt_info->min_output_precision = precision;
> +  return true;
> +}
> +
> +/* Calculate min_output_precision for STMT_INFO.  */
> +
> +static void
> +vect_determine_min_output_precision (stmt_vec_info stmt_info)
> +{
> +  /* We're only interested in statements with a narrowable result.  */
> +  tree lhs = gimple_get_lhs (stmt_info->stmt);
> +  if (!lhs
> +      || TREE_CODE (lhs) != SSA_NAME
> +      || !vect_narrowable_type_p (TREE_TYPE (lhs)))
> +    return;
> +
> +  if (!vect_determine_min_output_precision_1 (stmt_info, lhs))
> +    stmt_info->min_output_precision = TYPE_PRECISION (TREE_TYPE (lhs));
> +}
> +
> +/* Use range information to decide whether STMT (described by STMT_INFO)
> +   could be done in a narrower type.  This is effectively a forward
> +   propagation, since it uses context-independent information that applies
> +   to all users of an SSA name.  */
> +
> +static void
> +vect_determine_precisions_from_range (stmt_vec_info stmt_info, gassign *stmt)
> +{
> +  tree lhs = gimple_assign_lhs (stmt);
> +  if (!lhs || TREE_CODE (lhs) != SSA_NAME)
> +    return;
> +
> +  tree type = TREE_TYPE (lhs);
> +  if (!vect_narrowable_type_p (type))
> +    return;
> +
> +  /* First see whether we have any useful range information for the result.  */
> +  unsigned int precision = TYPE_PRECISION (type);
> +  signop sign = TYPE_SIGN (type);
> +  wide_int min_value, max_value;
> +  if (!vect_get_range_info (lhs, &min_value, &max_value))
> +    return;
> +
> +  tree_code code = gimple_assign_rhs_code (stmt);
> +  unsigned int nops = gimple_num_ops (stmt);
> +
> +  if (!vect_truncatable_operation_p (code))
> +    /* Check that all relevant input operands are compatible, and update
> +       [MIN_VALUE, MAX_VALUE] to include their ranges.  */
> +    for (unsigned int i = 1; i < nops; ++i)
> +      {
> +       tree op = gimple_op (stmt, i);
> +       if (TREE_CODE (op) == INTEGER_CST)
> +         {
> +           /* Don't require the integer to have RHS_TYPE (which it might
> +              not for things like shift amounts, etc.), but do require it
> +              to fit the type.  */
> +           if (!int_fits_type_p (op, type))
> +             return;
> +
> +           min_value = wi::min (min_value, wi::to_wide (op, precision), sign);
> +           max_value = wi::max (max_value, wi::to_wide (op, precision), sign);
> +         }
> +       else if (TREE_CODE (op) == SSA_NAME)
> +         {
> +           /* Ignore codes that don't take uniform arguments.  */
> +           if (!types_compatible_p (TREE_TYPE (op), type))
> +             return;
> +
> +           wide_int op_min_value, op_max_value;
> +           if (!vect_get_range_info (op, &op_min_value, &op_max_value))
> +             return;
> +
> +           min_value = wi::min (min_value, op_min_value, sign);
> +           max_value = wi::max (max_value, op_max_value, sign);
> +         }
> +       else
> +         return;
> +      }
> +
> +  /* Try to switch signed types for unsigned types if we can.
> +     This is better for two reasons.  First, unsigned ops tend
> +     to be cheaper than signed ops.  Second, it means that we can
> +     handle things like:
> +
> +       signed char c;
> +       int res = (int) c & 0xff00; // range [0x0000, 0xff00]
> +
> +     as:
> +
> +       signed char c;
> +       unsigned short res_1 = (unsigned short) c & 0xff00;
> +       int res = (int) res_1;
> +
> +     where the intermediate result res_1 has unsigned rather than
> +     signed type.  */
> +  if (sign == SIGNED && !wi::neg_p (min_value))
> +    sign = UNSIGNED;
> +
> +  /* See what precision is required for MIN_VALUE and MAX_VALUE.  */
> +  unsigned int precision1 = wi::min_precision (min_value, sign);
> +  unsigned int precision2 = wi::min_precision (max_value, sign);
> +  unsigned int value_precision = MAX (precision1, precision2);
> +  if (value_precision >= precision)
> +    return;
> +
> +  if (dump_enabled_p ())
> +    {
> +      dump_printf_loc (MSG_NOTE, vect_location, "can narrow to %s:%d"
> +                      " without loss of precision: ",
> +                      sign == SIGNED ? "signed" : "unsigned",
> +                      value_precision);
> +      dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
> +    }
> +
> +  vect_set_operation_type (stmt_info, type, value_precision, sign);
> +  vect_set_min_input_precision (stmt_info, type, value_precision);
> +}
> +
> +/* Use information about the users of STMT's result to decide whether
> +   STMT (described by STMT_INFO) could be done in a narrower type.
> +   This is effectively a backward propagation.  */
> +
> +static void
> +vect_determine_precisions_from_users (stmt_vec_info stmt_info, gassign *stmt)
> +{
> +  tree_code code = gimple_assign_rhs_code (stmt);
> +  unsigned int opno = (code == COND_EXPR ? 2 : 1);
> +  tree type = TREE_TYPE (gimple_op (stmt, opno));
> +  if (!vect_narrowable_type_p (type))
> +    return;
> +
> +  unsigned int precision = TYPE_PRECISION (type);
> +  unsigned int operation_precision, min_input_precision;
> +  switch (code)
> +    {
> +    CASE_CONVERT:
> +      /* Only the bits that contribute to the output matter.  Don't change
> +        the precision of the operation itself.  */
> +      operation_precision = precision;
> +      min_input_precision = stmt_info->min_output_precision;
> +      break;
> +
> +    case LSHIFT_EXPR:
> +    case RSHIFT_EXPR:
> +      {
> +       tree shift = gimple_assign_rhs2 (stmt);
> +       if (TREE_CODE (shift) != INTEGER_CST
> +           || !wi::ltu_p (wi::to_widest (shift), precision))
> +         return;
> +       unsigned int const_shift = TREE_INT_CST_LOW (shift);
> +       if (code == LSHIFT_EXPR)
> +         {
> +           /* We need CONST_SHIFT fewer bits of the input.  */
> +           operation_precision = stmt_info->min_output_precision;
> +           min_input_precision = (MAX (operation_precision, const_shift)
> +                                   - const_shift);
> +         }
> +       else
> +         {
> +           /* We need CONST_SHIFT extra bits to do the operation.  */
> +           operation_precision = (stmt_info->min_output_precision
> +                                  + const_shift);
> +           min_input_precision = operation_precision;
> +         }
> +       break;
> +      }
> +
> +    default:
> +      if (vect_truncatable_operation_p (code))
> +       {
> +         /* Input bit N has no effect on output bits N-1 and lower.  */
> +         operation_precision = stmt_info->min_output_precision;
> +         min_input_precision = operation_precision;
> +         break;
> +       }
> +      return;
> +    }
> +
> +  if (operation_precision < precision)
> +    {
> +      if (dump_enabled_p ())
> +       {
> +         dump_printf_loc (MSG_NOTE, vect_location, "can narrow to %s:%d"
> +                          " without affecting users: ",
> +                          TYPE_UNSIGNED (type) ? "unsigned" : "signed",
> +                          operation_precision);
> +         dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
> +       }
> +      vect_set_operation_type (stmt_info, type, operation_precision,
> +                              TYPE_SIGN (type));
> +    }
> +  vect_set_min_input_precision (stmt_info, type, min_input_precision);
> +}
> +
> +/* Handle vect_determine_precisions for STMT_INFO, given that we
> +   have already done so for the users of its result.  */
> +
> +void
> +vect_determine_stmt_precisions (stmt_vec_info stmt_info)
> +{
> +  vect_determine_min_output_precision (stmt_info);
> +  if (gassign *stmt = dyn_cast <gassign *> (stmt_info->stmt))
> +    {
> +      vect_determine_precisions_from_range (stmt_info, stmt);
> +      vect_determine_precisions_from_users (stmt_info, stmt);
> +    }
> +}
> +
> +/* Walk backwards through the vectorizable region to determine the
> +   values of these fields:
> +
> +   - min_output_precision
> +   - min_input_precision
> +   - operation_precision
> +   - operation_sign.  */
> +
> +void
> +vect_determine_precisions (vec_info *vinfo)
> +{
> +  DUMP_VECT_SCOPE ("vect_determine_precisions");
> +
> +  if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
> +    {
> +      struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
> +      basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
> +      unsigned int nbbs = loop->num_nodes;
> +
> +      for (unsigned int i = 0; i < nbbs; i++)
> +       {
> +         basic_block bb = bbs[nbbs - i - 1];
> +         for (gimple_stmt_iterator si = gsi_last_bb (bb);
> +              !gsi_end_p (si); gsi_prev (&si))
> +           vect_determine_stmt_precisions (vinfo_for_stmt (gsi_stmt (si)));
> +       }
> +    }
> +  else
> +    {
> +      bb_vec_info bb_vinfo = as_a <bb_vec_info> (vinfo);
> +      gimple_stmt_iterator si = bb_vinfo->region_end;
> +      gimple *stmt;
> +      do
> +       {
> +         if (!gsi_stmt (si))
> +           si = gsi_last_bb (bb_vinfo->bb);
> +         else
> +           gsi_prev (&si);
> +         stmt = gsi_stmt (si);
> +         stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
> +         if (stmt_info && STMT_VINFO_VECTORIZABLE (stmt_info))
> +           vect_determine_stmt_precisions (stmt_info);
> +       }
> +      while (stmt != gsi_stmt (bb_vinfo->region_begin));
> +    }
> +}
> +
>  typedef gimple *(*vect_recog_func_ptr) (vec<gimple *> *, tree *);
>
>  struct vect_recog_func
> @@ -4217,13 +4566,14 @@ struct vect_recog_func
>     taken which means usually the more complex one needs to preceed the
>     less comples onex (widen_sum only after dot_prod or sad for example).  */
>  static vect_recog_func vect_vect_recog_func_ptrs[] = {
> +  { vect_recog_over_widening_pattern, "over_widening" },
> +  { vect_recog_cast_forwprop_pattern, "cast_forwprop" },
>    { vect_recog_widen_mult_pattern, "widen_mult" },
>    { vect_recog_dot_prod_pattern, "dot_prod" },
>    { vect_recog_sad_pattern, "sad" },
>    { vect_recog_widen_sum_pattern, "widen_sum" },
>    { vect_recog_pow_pattern, "pow" },
>    { vect_recog_widen_shift_pattern, "widen_shift" },
> -  { vect_recog_over_widening_pattern, "over_widening" },
>    { vect_recog_rotate_pattern, "rotate" },
>    { vect_recog_vector_vector_shift_pattern, "vector_vector_shift" },
>    { vect_recog_divmod_pattern, "divmod" },
> @@ -4502,6 +4852,8 @@ vect_pattern_recog (vec_info *vinfo)
>    unsigned int i, j;
>    auto_vec<gimple *, 1> stmts_to_replace;
>
> +  vect_determine_precisions (vinfo);
> +
>    DUMP_VECT_SCOPE ("vect_pattern_recog");
>
>    if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
> Index: gcc/testsuite/gcc.dg/vect/vect-widen-mult-u8-u32.c
> ===================================================================
> --- gcc/testsuite/gcc.dg/vect/vect-widen-mult-u8-u32.c  2016-11-11 17:07:36.776796115 +0000
> +++ gcc/testsuite/gcc.dg/vect/vect-widen-mult-u8-u32.c  2018-07-03 09:02:36.567413531 +0100
> @@ -43,5 +43,5 @@ int main (void)
>
>  /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" { target { vect_widen_mult_qi_to_hi || vect_unpack } } } } */
>  /* { dg-final { scan-tree-dump-times "vect_recog_widen_mult_pattern: detected" 1 "vect" { target vect_widen_mult_qi_to_hi_pattern } } } */
> -/* { dg-final { scan-tree-dump-times "pattern recognized" 1 "vect" { target vect_widen_mult_qi_to_hi_pattern } } } */
> +/* { dg-final { scan-tree-dump-times "widen_mult pattern recognized" 1 "vect" { target vect_widen_mult_qi_to_hi_pattern } } } */
>
> Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-1.c
> ===================================================================
> --- gcc/testsuite/gcc.dg/vect/vect-over-widen-1.c       2018-07-03 09:01:31.075962445 +0100
> +++ gcc/testsuite/gcc.dg/vect/vect-over-widen-1.c       2018-07-03 09:02:36.563413564 +0100
> @@ -62,8 +62,9 @@ int main (void)
>  }
>
>  /* { dg-final { scan-tree-dump-times "vect_recog_widen_shift_pattern: detected" 2 "vect" { target vect_widen_shift } } } */
> -/* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 2 "vect" { target vect_widen_shift } } } */
> -/* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 4 "vect" { target { { ! vect_sizes_32B_16B } && { ! vect_widen_shift } } } } } */
> -/* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 8 "vect" { target vect_sizes_32B_16B } } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 3} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 3} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 8} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 5} "vect" } } */
>  /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */
>
> Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-1-big-array.c
> ===================================================================
> --- gcc/testsuite/gcc.dg/vect/vect-over-widen-1-big-array.c     2018-07-03 09:01:31.075962445 +0100
> +++ gcc/testsuite/gcc.dg/vect/vect-over-widen-1-big-array.c     2018-07-03 09:02:36.563413564 +0100
> @@ -58,7 +58,9 @@ int main (void)
>  }
>
>  /* { dg-final { scan-tree-dump-times "vect_recog_widen_shift_pattern: detected" 2 "vect" { target vect_widen_shift } } } */
> -/* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 2 "vect" { target vect_widen_shift } } } */
> -/* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 4 "vect" { target { ! vect_widen_shift } } } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 3} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 3} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 8} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 5} "vect" } } */
>  /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */
>
> Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-2.c
> ===================================================================
> --- gcc/testsuite/gcc.dg/vect/vect-over-widen-2.c       2018-07-03 09:01:31.075962445 +0100
> +++ gcc/testsuite/gcc.dg/vect/vect-over-widen-2.c       2018-07-03 09:02:36.563413564 +0100
> @@ -57,7 +57,12 @@ int main (void)
>    return 0;
>  }
>
> -/* Final value stays in int, so no over-widening is detected at the moment.  */
> -/* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 0 "vect" } } */
> +/* This is an over-widening even though the final result is still an int.
> +   It's better to do one vector of ops on chars and then widen than to
> +   widen and then do 4 vectors of ops on ints.  */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 3} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 3} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 8} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 5} "vect" } } */
>  /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */
>
> Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-2-big-array.c
> ===================================================================
> --- gcc/testsuite/gcc.dg/vect/vect-over-widen-2-big-array.c     2018-07-03 09:01:31.075962445 +0100
> +++ gcc/testsuite/gcc.dg/vect/vect-over-widen-2-big-array.c     2018-07-03 09:02:36.563413564 +0100
> @@ -57,7 +57,12 @@ int main (void)
>    return 0;
>  }
>
> -/* Final value stays in int, so no over-widening is detected at the moment.  */
> -/* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 0 "vect" } } */
> +/* This is an over-widening even though the final result is still an int.
> +   It's better to do one vector of ops on chars and then widen than to
> +   widen and then do 4 vectors of ops on ints.  */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 3} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 3} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 8} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 5} "vect" } } */
>  /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */
>
> Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-3.c
> ===================================================================
> --- gcc/testsuite/gcc.dg/vect/vect-over-widen-3.c       2018-07-03 09:01:31.075962445 +0100
> +++ gcc/testsuite/gcc.dg/vect/vect-over-widen-3.c       2018-07-03 09:02:36.563413564 +0100
> @@ -57,6 +57,9 @@ int main (void)
>    return 0;
>  }
>
> -/* { dg-final { scan-tree-dump "vect_recog_over_widening_pattern: detected" "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 3} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 3} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 8} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 9} "vect" } } */
>  /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */
>
> Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-3-big-array.c
> ===================================================================
> --- gcc/testsuite/gcc.dg/vect/vect-over-widen-3-big-array.c     2018-07-03 09:01:31.075962445 +0100
> +++ gcc/testsuite/gcc.dg/vect/vect-over-widen-3-big-array.c     2018-07-03 09:02:36.563413564 +0100
> @@ -59,7 +59,9 @@ int main (void)
>    return 0;
>  }
>
> -/* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 2 "vect" { target { ! vect_widen_shift } } } } */
> -/* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 1 "vect" { target vect_widen_shift } } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 3} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 3} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 8} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 9} "vect" } } */
>  /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */
>
> Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-4.c
> ===================================================================
> --- gcc/testsuite/gcc.dg/vect/vect-over-widen-4.c       2018-07-03 09:01:31.075962445 +0100
> +++ gcc/testsuite/gcc.dg/vect/vect-over-widen-4.c       2018-07-03 09:02:36.563413564 +0100
> @@ -66,8 +66,9 @@ int main (void)
>  }
>
>  /* { dg-final { scan-tree-dump-times "vect_recog_widen_shift_pattern: detected" 2 "vect" { target vect_widen_shift } } } */
> -/* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 2 "vect" { target vect_widen_shift } } } */
> -/* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 4 "vect" { target { { ! vect_sizes_32B_16B } && { ! vect_widen_shift } } } } } */
> -/* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 8 "vect" { target vect_sizes_32B_16B } } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 3} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 3} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 8} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 5} "vect" } } */
>  /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */
>
> Index: gcc/testsuite/gcc.dg/vect/vect-over-widen-4-big-array.c
> ===================================================================
> --- gcc/testsuite/gcc.dg/vect/vect-over-widen-4-big-array.c     2018-07-03 09:01:31.075962445 +0100
> +++ gcc/testsuite/gcc.dg/vect/vect-over-widen-4-big-array.c     2018-07-03 09:02:36.563413564 +0100
> @@ -62,7 +62,9 @@ int main (void)
>  }
>
>  /* { dg-final { scan-tree-dump-times "vect_recog_widen_shift_pattern: detected" 2 "vect" { target vect_widen_shift } } } */
> -/* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 2 "vect" { target vect_widen_shift } } } */
> -/* { dg-final { scan-tree-dump-times "vect_recog_over_widening_pattern: detected" 4 "vect" { target { ! vect_widen_shift } } } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 3} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 3} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* << 8} "vect" } } */
> +/* { dg-final { scan-tree-dump {vect_recog_over_widening_pattern: detected:[^\n]* >> 5} "vect" } } */
>  /* { dg-final { scan-tree-dump-times "vectorized 1 loops" 1 "vect" } } */
>
> Index: gcc/testsuite/gcc.dg/vect/bb-slp-over-widen-1.c
> ===================================================================
> --- /dev/null   2018-06-13 14:36:57.192460992 +0100
> +++ gcc/testsuite/gcc.dg/vect/bb-slp-over-widen-1.c     2018-07-03 09:02:36.563413564 +0100
> @@ -0,0 +1,66 @@
> +/* { dg-require-effective-target vect_int } */
> +/* { dg-require-effective-target vect_shift } */
> +/* { dg-require-effective-target vect_pack_trunc } */
> +/* { dg-require-effective-target vect_unpack } */
> +
> +#include "tree-vect.h"
> +
> +/* Deliberate use of signed >>.  */
> +#define DEF_LOOP(SIGNEDNESS)                   \
> +  void __attribute__ ((noipa))                 \
> +  f_##SIGNEDNESS (SIGNEDNESS char *restrict a, \
> +                 SIGNEDNESS char *restrict b,  \
> +                 SIGNEDNESS char *restrict c)  \
> +  {                                            \
> +    a[0] = (b[0] + c[0]) >> 1;                 \
> +    a[1] = (b[1] + c[1]) >> 1;                 \
> +    a[2] = (b[2] + c[2]) >> 1;                 \
> +    a[3] = (b[3] + c[3]) >> 1;                 \
> +    a[4] = (b[4] + c[4]) >> 1;                 \
> +    a[5] = (b[5] + c[5]) >> 1;                 \
> +    a[6] = (b[6] + c[6]) >> 1;                 \
> +    a[7] = (b[7] + c[7]) >> 1;                 \
> +    a[8] = (b[8] + c[8]) >> 1;                 \
> +    a[9] = (b[9] + c[9]) >> 1;                 \
> +    a[10] = (b[10] + c[10]) >> 1;              \
> +    a[11] = (b[11] + c[11]) >> 1;              \
> +    a[12] = (b[12] + c[12]) >> 1;              \
> +    a[13] = (b[13] + c[13]) >> 1;              \
> +    a[14] = (b[14] + c[14]) >> 1;              \
> +    a[15] = (b[15] + c[15]) >> 1;              \
> +  }
> +
> +DEF_LOOP (signed)
> +DEF_LOOP (unsigned)
> +
> +#define N 16
> +
> +#define TEST_LOOP(SIGNEDNESS, BASE_B, BASE_C)          \
> +  {                                                    \
> +    SIGNEDNESS char a[N], b[N], c[N];                  \
> +    for (int i = 0; i < N; ++i)


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]