]> gcc.gnu.org Git - gcc.git/blob - gcc/dwarf2cfi.cc
Merge branch 'master' into devel/modula-2.
[gcc.git] / gcc / dwarf2cfi.cc
1 /* Dwarf2 Call Frame Information helper routines.
2 Copyright (C) 1992-2022 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "target.h"
24 #include "function.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "tree-pass.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "emit-rtl.h"
31 #include "stor-layout.h"
32 #include "cfgbuild.h"
33 #include "dwarf2out.h"
34 #include "dwarf2asm.h"
35 #include "common/common-target.h"
36
37 #include "except.h" /* expand_builtin_dwarf_sp_column */
38 #include "profile-count.h" /* For expr.h */
39 #include "expr.h" /* init_return_column_size */
40 #include "output.h" /* asm_out_file */
41 #include "debug.h" /* dwarf2out_do_frame, dwarf2out_do_cfi_asm */
42 #include "flags.h" /* dwarf_debuginfo_p */
43
44 /* ??? Poison these here until it can be done generically. They've been
45 totally replaced in this file; make sure it stays that way. */
46 #undef DWARF2_UNWIND_INFO
47 #undef DWARF2_FRAME_INFO
48 #if (GCC_VERSION >= 3000)
49 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
50 #endif
51
52 #ifndef INCOMING_RETURN_ADDR_RTX
53 #define INCOMING_RETURN_ADDR_RTX (gcc_unreachable (), NULL_RTX)
54 #endif
55
56 #ifndef DEFAULT_INCOMING_FRAME_SP_OFFSET
57 #define DEFAULT_INCOMING_FRAME_SP_OFFSET INCOMING_FRAME_SP_OFFSET
58 #endif
59 \f
60 /* A collected description of an entire row of the abstract CFI table. */
61 struct GTY(()) dw_cfi_row
62 {
63 /* The expression that computes the CFA, expressed in two different ways.
64 The CFA member for the simple cases, and the full CFI expression for
65 the complex cases. The later will be a DW_CFA_cfa_expression. */
66 dw_cfa_location cfa;
67 dw_cfi_ref cfa_cfi;
68
69 /* The expressions for any register column that is saved. */
70 cfi_vec reg_save;
71
72 /* True if the register window is saved. */
73 bool window_save;
74
75 /* True if the return address is in a mangled state. */
76 bool ra_mangled;
77 };
78
79 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
80 struct GTY(()) reg_saved_in_data {
81 rtx orig_reg;
82 rtx saved_in_reg;
83 };
84
85
86 /* Since we no longer have a proper CFG, we're going to create a facsimile
87 of one on the fly while processing the frame-related insns.
88
89 We create dw_trace_info structures for each extended basic block beginning
90 and ending at a "save point". Save points are labels, barriers, certain
91 notes, and of course the beginning and end of the function.
92
93 As we encounter control transfer insns, we propagate the "current"
94 row state across the edges to the starts of traces. When checking is
95 enabled, we validate that we propagate the same data from all sources.
96
97 All traces are members of the TRACE_INFO array, in the order in which
98 they appear in the instruction stream.
99
100 All save points are present in the TRACE_INDEX hash, mapping the insn
101 starting a trace to the dw_trace_info describing the trace. */
102
103 struct dw_trace_info
104 {
105 /* The insn that begins the trace. */
106 rtx_insn *head;
107
108 /* The row state at the beginning and end of the trace. */
109 dw_cfi_row *beg_row, *end_row;
110
111 /* Tracking for DW_CFA_GNU_args_size. The "true" sizes are those we find
112 while scanning insns. However, the args_size value is irrelevant at
113 any point except can_throw_internal_p insns. Therefore the "delay"
114 sizes the values that must actually be emitted for this trace. */
115 poly_int64_pod beg_true_args_size, end_true_args_size;
116 poly_int64_pod beg_delay_args_size, end_delay_args_size;
117
118 /* The first EH insn in the trace, where beg_delay_args_size must be set. */
119 rtx_insn *eh_head;
120
121 /* The following variables contain data used in interpreting frame related
122 expressions. These are not part of the "real" row state as defined by
123 Dwarf, but it seems like they need to be propagated into a trace in case
124 frame related expressions have been sunk. */
125 /* ??? This seems fragile. These variables are fragments of a larger
126 expression. If we do not keep the entire expression together, we risk
127 not being able to put it together properly. Consider forcing targets
128 to generate self-contained expressions and dropping all of the magic
129 interpretation code in this file. Or at least refusing to shrink wrap
130 any frame related insn that doesn't contain a complete expression. */
131
132 /* The register used for saving registers to the stack, and its offset
133 from the CFA. */
134 dw_cfa_location cfa_store;
135
136 /* A temporary register holding an integral value used in adjusting SP
137 or setting up the store_reg. The "offset" field holds the integer
138 value, not an offset. */
139 dw_cfa_location cfa_temp;
140
141 /* A set of registers saved in other registers. This is the inverse of
142 the row->reg_save info, if the entry is a DW_CFA_register. This is
143 implemented as a flat array because it normally contains zero or 1
144 entry, depending on the target. IA-64 is the big spender here, using
145 a maximum of 5 entries. */
146 vec<reg_saved_in_data> regs_saved_in_regs;
147
148 /* An identifier for this trace. Used only for debugging dumps. */
149 unsigned id;
150
151 /* True if this trace immediately follows NOTE_INSN_SWITCH_TEXT_SECTIONS. */
152 bool switch_sections;
153
154 /* True if we've seen different values incoming to beg_true_args_size. */
155 bool args_size_undefined;
156
157 /* True if we've seen an insn with a REG_ARGS_SIZE note before EH_HEAD. */
158 bool args_size_defined_for_eh;
159 };
160
161
162 /* Hashtable helpers. */
163
164 struct trace_info_hasher : nofree_ptr_hash <dw_trace_info>
165 {
166 static inline hashval_t hash (const dw_trace_info *);
167 static inline bool equal (const dw_trace_info *, const dw_trace_info *);
168 };
169
170 inline hashval_t
171 trace_info_hasher::hash (const dw_trace_info *ti)
172 {
173 return INSN_UID (ti->head);
174 }
175
176 inline bool
177 trace_info_hasher::equal (const dw_trace_info *a, const dw_trace_info *b)
178 {
179 return a->head == b->head;
180 }
181
182
183 /* The variables making up the pseudo-cfg, as described above. */
184 static vec<dw_trace_info> trace_info;
185 static vec<dw_trace_info *> trace_work_list;
186 static hash_table<trace_info_hasher> *trace_index;
187
188 /* A vector of call frame insns for the CIE. */
189 cfi_vec cie_cfi_vec;
190
191 /* The state of the first row of the FDE table, which includes the
192 state provided by the CIE. */
193 static GTY(()) dw_cfi_row *cie_cfi_row;
194
195 static GTY(()) reg_saved_in_data *cie_return_save;
196
197 static GTY(()) unsigned long dwarf2out_cfi_label_num;
198
199 /* The insn after which a new CFI note should be emitted. */
200 static rtx_insn *add_cfi_insn;
201
202 /* When non-null, add_cfi will add the CFI to this vector. */
203 static cfi_vec *add_cfi_vec;
204
205 /* The current instruction trace. */
206 static dw_trace_info *cur_trace;
207
208 /* The current, i.e. most recently generated, row of the CFI table. */
209 static dw_cfi_row *cur_row;
210
211 /* A copy of the current CFA, for use during the processing of a
212 single insn. */
213 static dw_cfa_location *cur_cfa;
214
215 /* We delay emitting a register save until either (a) we reach the end
216 of the prologue or (b) the register is clobbered. This clusters
217 register saves so that there are fewer pc advances. */
218
219 struct queued_reg_save {
220 rtx reg;
221 rtx saved_reg;
222 poly_int64_pod cfa_offset;
223 };
224
225
226 static vec<queued_reg_save> queued_reg_saves;
227
228 /* True if any CFI directives were emitted at the current insn. */
229 static bool any_cfis_emitted;
230
231 /* Short-hand for commonly used register numbers. */
232 static struct cfa_reg dw_stack_pointer_regnum;
233 static struct cfa_reg dw_frame_pointer_regnum;
234 \f
235 /* Hook used by __throw. */
236
237 rtx
238 expand_builtin_dwarf_sp_column (void)
239 {
240 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
241 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
242 }
243
244 /* MEM is a memory reference for the register size table, each element of
245 which has mode MODE. Initialize column C as a return address column. */
246
247 static void
248 init_return_column_size (scalar_int_mode mode, rtx mem, unsigned int c)
249 {
250 HOST_WIDE_INT offset = c * GET_MODE_SIZE (mode);
251 HOST_WIDE_INT size = GET_MODE_SIZE (Pmode);
252 emit_move_insn (adjust_address (mem, mode, offset),
253 gen_int_mode (size, mode));
254 }
255
256 /* Datastructure used by expand_builtin_init_dwarf_reg_sizes and
257 init_one_dwarf_reg_size to communicate on what has been done by the
258 latter. */
259
260 struct init_one_dwarf_reg_state
261 {
262 /* Whether the dwarf return column was initialized. */
263 bool wrote_return_column;
264
265 /* For each hard register REGNO, whether init_one_dwarf_reg_size
266 was given REGNO to process already. */
267 bool processed_regno [FIRST_PSEUDO_REGISTER];
268
269 };
270
271 /* Helper for expand_builtin_init_dwarf_reg_sizes. Generate code to
272 initialize the dwarf register size table entry corresponding to register
273 REGNO in REGMODE. TABLE is the table base address, SLOTMODE is the mode to
274 use for the size entry to initialize, and INIT_STATE is the communication
275 datastructure conveying what we're doing to our caller. */
276
277 static
278 void init_one_dwarf_reg_size (int regno, machine_mode regmode,
279 rtx table, machine_mode slotmode,
280 init_one_dwarf_reg_state *init_state)
281 {
282 const unsigned int dnum = DWARF_FRAME_REGNUM (regno);
283 const unsigned int rnum = DWARF2_FRAME_REG_OUT (dnum, 1);
284 const unsigned int dcol = DWARF_REG_TO_UNWIND_COLUMN (rnum);
285
286 poly_int64 slotoffset = dcol * GET_MODE_SIZE (slotmode);
287 poly_int64 regsize = GET_MODE_SIZE (regmode);
288
289 init_state->processed_regno[regno] = true;
290
291 if (rnum >= DWARF_FRAME_REGISTERS)
292 return;
293
294 if (dnum == DWARF_FRAME_RETURN_COLUMN)
295 {
296 if (regmode == VOIDmode)
297 return;
298 init_state->wrote_return_column = true;
299 }
300
301 /* ??? When is this true? Should it be a test based on DCOL instead? */
302 if (maybe_lt (slotoffset, 0))
303 return;
304
305 emit_move_insn (adjust_address (table, slotmode, slotoffset),
306 gen_int_mode (regsize, slotmode));
307 }
308
309 /* Generate code to initialize the dwarf register size table located
310 at the provided ADDRESS. */
311
312 void
313 expand_builtin_init_dwarf_reg_sizes (tree address)
314 {
315 unsigned int i;
316 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (char_type_node);
317 rtx addr = expand_normal (address);
318 rtx mem = gen_rtx_MEM (BLKmode, addr);
319
320 init_one_dwarf_reg_state init_state;
321
322 memset ((char *)&init_state, 0, sizeof (init_state));
323
324 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
325 {
326 machine_mode save_mode;
327 rtx span;
328
329 /* No point in processing a register multiple times. This could happen
330 with register spans, e.g. when a reg is first processed as a piece of
331 a span, then as a register on its own later on. */
332
333 if (init_state.processed_regno[i])
334 continue;
335
336 save_mode = targetm.dwarf_frame_reg_mode (i);
337 span = targetm.dwarf_register_span (gen_rtx_REG (save_mode, i));
338
339 if (!span)
340 init_one_dwarf_reg_size (i, save_mode, mem, mode, &init_state);
341 else
342 {
343 for (int si = 0; si < XVECLEN (span, 0); si++)
344 {
345 rtx reg = XVECEXP (span, 0, si);
346
347 init_one_dwarf_reg_size
348 (REGNO (reg), GET_MODE (reg), mem, mode, &init_state);
349 }
350 }
351 }
352
353 if (!init_state.wrote_return_column)
354 init_return_column_size (mode, mem, DWARF_FRAME_RETURN_COLUMN);
355
356 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
357 init_return_column_size (mode, mem, DWARF_ALT_FRAME_RETURN_COLUMN);
358 #endif
359
360 targetm.init_dwarf_reg_sizes_extra (address);
361 }
362
363 \f
364 static dw_trace_info *
365 get_trace_info (rtx_insn *insn)
366 {
367 dw_trace_info dummy;
368 dummy.head = insn;
369 return trace_index->find_with_hash (&dummy, INSN_UID (insn));
370 }
371
372 static bool
373 save_point_p (rtx_insn *insn)
374 {
375 /* Labels, except those that are really jump tables. */
376 if (LABEL_P (insn))
377 return inside_basic_block_p (insn);
378
379 /* We split traces at the prologue/epilogue notes because those
380 are points at which the unwind info is usually stable. This
381 makes it easier to find spots with identical unwind info so
382 that we can use remember/restore_state opcodes. */
383 if (NOTE_P (insn))
384 switch (NOTE_KIND (insn))
385 {
386 case NOTE_INSN_PROLOGUE_END:
387 case NOTE_INSN_EPILOGUE_BEG:
388 return true;
389 }
390
391 return false;
392 }
393
394 /* Divide OFF by DWARF_CIE_DATA_ALIGNMENT, asserting no remainder. */
395
396 static inline HOST_WIDE_INT
397 div_data_align (HOST_WIDE_INT off)
398 {
399 HOST_WIDE_INT r = off / DWARF_CIE_DATA_ALIGNMENT;
400 gcc_assert (r * DWARF_CIE_DATA_ALIGNMENT == off);
401 return r;
402 }
403
404 /* Return true if we need a signed version of a given opcode
405 (e.g. DW_CFA_offset_extended_sf vs DW_CFA_offset_extended). */
406
407 static inline bool
408 need_data_align_sf_opcode (HOST_WIDE_INT off)
409 {
410 return DWARF_CIE_DATA_ALIGNMENT < 0 ? off > 0 : off < 0;
411 }
412
413 /* Return a pointer to a newly allocated Call Frame Instruction. */
414
415 static inline dw_cfi_ref
416 new_cfi (void)
417 {
418 dw_cfi_ref cfi = ggc_alloc<dw_cfi_node> ();
419
420 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
421 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
422
423 return cfi;
424 }
425
426 /* Return a newly allocated CFI row, with no defined data. */
427
428 static dw_cfi_row *
429 new_cfi_row (void)
430 {
431 dw_cfi_row *row = ggc_cleared_alloc<dw_cfi_row> ();
432
433 row->cfa.reg.set_by_dwreg (INVALID_REGNUM);
434
435 return row;
436 }
437
438 /* Return a copy of an existing CFI row. */
439
440 static dw_cfi_row *
441 copy_cfi_row (dw_cfi_row *src)
442 {
443 dw_cfi_row *dst = ggc_alloc<dw_cfi_row> ();
444
445 *dst = *src;
446 dst->reg_save = vec_safe_copy (src->reg_save);
447
448 return dst;
449 }
450
451 /* Return a copy of an existing CFA location. */
452
453 static dw_cfa_location *
454 copy_cfa (dw_cfa_location *src)
455 {
456 dw_cfa_location *dst = ggc_alloc<dw_cfa_location> ();
457 *dst = *src;
458 return dst;
459 }
460
461 /* Generate a new label for the CFI info to refer to. */
462
463 static char *
464 dwarf2out_cfi_label (void)
465 {
466 int num = dwarf2out_cfi_label_num++;
467 char label[20];
468
469 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", num);
470
471 return xstrdup (label);
472 }
473
474 /* Add CFI either to the current insn stream or to a vector, or both. */
475
476 static void
477 add_cfi (dw_cfi_ref cfi)
478 {
479 any_cfis_emitted = true;
480
481 if (add_cfi_insn != NULL)
482 {
483 add_cfi_insn = emit_note_after (NOTE_INSN_CFI, add_cfi_insn);
484 NOTE_CFI (add_cfi_insn) = cfi;
485 }
486
487 if (add_cfi_vec != NULL)
488 vec_safe_push (*add_cfi_vec, cfi);
489 }
490
491 static void
492 add_cfi_args_size (poly_int64 size)
493 {
494 /* We don't yet have a representation for polynomial sizes. */
495 HOST_WIDE_INT const_size = size.to_constant ();
496
497 dw_cfi_ref cfi = new_cfi ();
498
499 /* While we can occasionally have args_size < 0 internally, this state
500 should not persist at a point we actually need an opcode. */
501 gcc_assert (const_size >= 0);
502
503 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
504 cfi->dw_cfi_oprnd1.dw_cfi_offset = const_size;
505
506 add_cfi (cfi);
507 }
508
509 static void
510 add_cfi_restore (unsigned reg)
511 {
512 dw_cfi_ref cfi = new_cfi ();
513
514 cfi->dw_cfi_opc = (reg & ~0x3f ? DW_CFA_restore_extended : DW_CFA_restore);
515 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
516
517 add_cfi (cfi);
518 }
519
520 /* Perform ROW->REG_SAVE[COLUMN] = CFI. CFI may be null, indicating
521 that the register column is no longer saved. */
522
523 static void
524 update_row_reg_save (dw_cfi_row *row, unsigned column, dw_cfi_ref cfi)
525 {
526 if (vec_safe_length (row->reg_save) <= column)
527 vec_safe_grow_cleared (row->reg_save, column + 1, true);
528 (*row->reg_save)[column] = cfi;
529 }
530
531 /* This function fills in aa dw_cfa_location structure from a dwarf location
532 descriptor sequence. */
533
534 static void
535 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_node *loc)
536 {
537 struct dw_loc_descr_node *ptr;
538 cfa->offset = 0;
539 cfa->base_offset = 0;
540 cfa->indirect = 0;
541 cfa->reg.set_by_dwreg (INVALID_REGNUM);
542
543 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
544 {
545 enum dwarf_location_atom op = ptr->dw_loc_opc;
546
547 switch (op)
548 {
549 case DW_OP_reg0:
550 case DW_OP_reg1:
551 case DW_OP_reg2:
552 case DW_OP_reg3:
553 case DW_OP_reg4:
554 case DW_OP_reg5:
555 case DW_OP_reg6:
556 case DW_OP_reg7:
557 case DW_OP_reg8:
558 case DW_OP_reg9:
559 case DW_OP_reg10:
560 case DW_OP_reg11:
561 case DW_OP_reg12:
562 case DW_OP_reg13:
563 case DW_OP_reg14:
564 case DW_OP_reg15:
565 case DW_OP_reg16:
566 case DW_OP_reg17:
567 case DW_OP_reg18:
568 case DW_OP_reg19:
569 case DW_OP_reg20:
570 case DW_OP_reg21:
571 case DW_OP_reg22:
572 case DW_OP_reg23:
573 case DW_OP_reg24:
574 case DW_OP_reg25:
575 case DW_OP_reg26:
576 case DW_OP_reg27:
577 case DW_OP_reg28:
578 case DW_OP_reg29:
579 case DW_OP_reg30:
580 case DW_OP_reg31:
581 cfa->reg.set_by_dwreg (op - DW_OP_reg0);
582 break;
583 case DW_OP_regx:
584 cfa->reg.set_by_dwreg (ptr->dw_loc_oprnd1.v.val_int);
585 break;
586 case DW_OP_breg0:
587 case DW_OP_breg1:
588 case DW_OP_breg2:
589 case DW_OP_breg3:
590 case DW_OP_breg4:
591 case DW_OP_breg5:
592 case DW_OP_breg6:
593 case DW_OP_breg7:
594 case DW_OP_breg8:
595 case DW_OP_breg9:
596 case DW_OP_breg10:
597 case DW_OP_breg11:
598 case DW_OP_breg12:
599 case DW_OP_breg13:
600 case DW_OP_breg14:
601 case DW_OP_breg15:
602 case DW_OP_breg16:
603 case DW_OP_breg17:
604 case DW_OP_breg18:
605 case DW_OP_breg19:
606 case DW_OP_breg20:
607 case DW_OP_breg21:
608 case DW_OP_breg22:
609 case DW_OP_breg23:
610 case DW_OP_breg24:
611 case DW_OP_breg25:
612 case DW_OP_breg26:
613 case DW_OP_breg27:
614 case DW_OP_breg28:
615 case DW_OP_breg29:
616 case DW_OP_breg30:
617 case DW_OP_breg31:
618 case DW_OP_bregx:
619 if (cfa->reg.reg == INVALID_REGNUM)
620 {
621 unsigned regno
622 = (op == DW_OP_bregx
623 ? ptr->dw_loc_oprnd1.v.val_int : op - DW_OP_breg0);
624 cfa->reg.set_by_dwreg (regno);
625 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
626 }
627 else
628 {
629 /* Handle case when span can cover multiple registers. We
630 only support the simple case of consecutive registers
631 all with the same size. DWARF that we are dealing with
632 will look something like:
633 <DW_OP_bregx: (r49) 0; DW_OP_const1u: 32; DW_OP_shl;
634 DW_OP_bregx: (r48) 0; DW_OP_plus> */
635
636 unsigned regno
637 = (op == DW_OP_bregx
638 ? ptr->dw_loc_oprnd1.v.val_int : op - DW_OP_breg0);
639 gcc_assert (regno == cfa->reg.reg - 1);
640 cfa->reg.span++;
641 /* From all the consecutive registers used, we want to set
642 cfa->reg.reg to lower number register. */
643 cfa->reg.reg = regno;
644 /* The offset was the shift value. Use it to get the
645 span_width and then set it to 0. */
646 cfa->reg.span_width = cfa->offset.to_constant () / 8;
647 cfa->offset = 0;
648 }
649 break;
650 case DW_OP_deref:
651 cfa->indirect = 1;
652 break;
653 case DW_OP_shl:
654 break;
655 case DW_OP_lit0:
656 case DW_OP_lit1:
657 case DW_OP_lit2:
658 case DW_OP_lit3:
659 case DW_OP_lit4:
660 case DW_OP_lit5:
661 case DW_OP_lit6:
662 case DW_OP_lit7:
663 case DW_OP_lit8:
664 case DW_OP_lit9:
665 case DW_OP_lit10:
666 case DW_OP_lit11:
667 case DW_OP_lit12:
668 case DW_OP_lit13:
669 case DW_OP_lit14:
670 case DW_OP_lit15:
671 case DW_OP_lit16:
672 case DW_OP_lit17:
673 case DW_OP_lit18:
674 case DW_OP_lit19:
675 case DW_OP_lit20:
676 case DW_OP_lit21:
677 case DW_OP_lit22:
678 case DW_OP_lit23:
679 case DW_OP_lit24:
680 case DW_OP_lit25:
681 case DW_OP_lit26:
682 case DW_OP_lit27:
683 case DW_OP_lit28:
684 case DW_OP_lit29:
685 case DW_OP_lit30:
686 case DW_OP_lit31:
687 gcc_assert (known_eq (cfa->offset, 0));
688 cfa->offset = op - DW_OP_lit0;
689 break;
690 case DW_OP_const1u:
691 case DW_OP_const1s:
692 case DW_OP_const2u:
693 case DW_OP_const2s:
694 case DW_OP_const4s:
695 case DW_OP_const8s:
696 case DW_OP_constu:
697 case DW_OP_consts:
698 gcc_assert (known_eq (cfa->offset, 0));
699 cfa->offset = ptr->dw_loc_oprnd1.v.val_int;
700 break;
701 case DW_OP_minus:
702 cfa->offset = -cfa->offset;
703 break;
704 case DW_OP_plus:
705 /* The offset is already in place. */
706 break;
707 case DW_OP_plus_uconst:
708 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
709 break;
710 default:
711 gcc_unreachable ();
712 }
713 }
714 }
715
716 /* Find the previous value for the CFA, iteratively. CFI is the opcode
717 to interpret, *LOC will be updated as necessary, *REMEMBER is used for
718 one level of remember/restore state processing. */
719
720 void
721 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc, dw_cfa_location *remember)
722 {
723 switch (cfi->dw_cfi_opc)
724 {
725 case DW_CFA_def_cfa_offset:
726 case DW_CFA_def_cfa_offset_sf:
727 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
728 break;
729 case DW_CFA_def_cfa_register:
730 loc->reg.set_by_dwreg (cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
731 break;
732 case DW_CFA_def_cfa:
733 case DW_CFA_def_cfa_sf:
734 loc->reg.set_by_dwreg (cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
735 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
736 break;
737 case DW_CFA_def_cfa_expression:
738 if (cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc)
739 *loc = *cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc;
740 else
741 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
742 break;
743
744 case DW_CFA_remember_state:
745 gcc_assert (!remember->in_use);
746 *remember = *loc;
747 remember->in_use = 1;
748 break;
749 case DW_CFA_restore_state:
750 gcc_assert (remember->in_use);
751 *loc = *remember;
752 remember->in_use = 0;
753 break;
754
755 default:
756 break;
757 }
758 }
759
760 /* Determine if two dw_cfa_location structures define the same data. */
761
762 bool
763 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
764 {
765 return (loc1->reg == loc2->reg
766 && known_eq (loc1->offset, loc2->offset)
767 && loc1->indirect == loc2->indirect
768 && (loc1->indirect == 0
769 || known_eq (loc1->base_offset, loc2->base_offset)));
770 }
771
772 /* Determine if two CFI operands are identical. */
773
774 static bool
775 cfi_oprnd_equal_p (enum dw_cfi_oprnd_type t, dw_cfi_oprnd *a, dw_cfi_oprnd *b)
776 {
777 switch (t)
778 {
779 case dw_cfi_oprnd_unused:
780 return true;
781 case dw_cfi_oprnd_reg_num:
782 return a->dw_cfi_reg_num == b->dw_cfi_reg_num;
783 case dw_cfi_oprnd_offset:
784 return a->dw_cfi_offset == b->dw_cfi_offset;
785 case dw_cfi_oprnd_addr:
786 return (a->dw_cfi_addr == b->dw_cfi_addr
787 || strcmp (a->dw_cfi_addr, b->dw_cfi_addr) == 0);
788 case dw_cfi_oprnd_loc:
789 return loc_descr_equal_p (a->dw_cfi_loc, b->dw_cfi_loc);
790 case dw_cfi_oprnd_cfa_loc:
791 /* If any of them is NULL, don't dereference either. */
792 if (!a->dw_cfi_cfa_loc || !b->dw_cfi_cfa_loc)
793 return a->dw_cfi_cfa_loc == b->dw_cfi_cfa_loc;
794 return cfa_equal_p (a->dw_cfi_cfa_loc, b->dw_cfi_cfa_loc);
795 }
796 gcc_unreachable ();
797 }
798
799 /* Determine if two CFI entries are identical. */
800
801 static bool
802 cfi_equal_p (dw_cfi_ref a, dw_cfi_ref b)
803 {
804 enum dwarf_call_frame_info opc;
805
806 /* Make things easier for our callers, including missing operands. */
807 if (a == b)
808 return true;
809 if (a == NULL || b == NULL)
810 return false;
811
812 /* Obviously, the opcodes must match. */
813 opc = a->dw_cfi_opc;
814 if (opc != b->dw_cfi_opc)
815 return false;
816
817 /* Compare the two operands, re-using the type of the operands as
818 already exposed elsewhere. */
819 return (cfi_oprnd_equal_p (dw_cfi_oprnd1_desc (opc),
820 &a->dw_cfi_oprnd1, &b->dw_cfi_oprnd1)
821 && cfi_oprnd_equal_p (dw_cfi_oprnd2_desc (opc),
822 &a->dw_cfi_oprnd2, &b->dw_cfi_oprnd2));
823 }
824
825 /* Determine if two CFI_ROW structures are identical. */
826
827 static bool
828 cfi_row_equal_p (dw_cfi_row *a, dw_cfi_row *b)
829 {
830 size_t i, n_a, n_b, n_max;
831
832 if (a->cfa_cfi)
833 {
834 if (!cfi_equal_p (a->cfa_cfi, b->cfa_cfi))
835 return false;
836 }
837 else if (!cfa_equal_p (&a->cfa, &b->cfa))
838 return false;
839
840 n_a = vec_safe_length (a->reg_save);
841 n_b = vec_safe_length (b->reg_save);
842 n_max = MAX (n_a, n_b);
843
844 for (i = 0; i < n_max; ++i)
845 {
846 dw_cfi_ref r_a = NULL, r_b = NULL;
847
848 if (i < n_a)
849 r_a = (*a->reg_save)[i];
850 if (i < n_b)
851 r_b = (*b->reg_save)[i];
852
853 if (!cfi_equal_p (r_a, r_b))
854 return false;
855 }
856
857 if (a->window_save != b->window_save)
858 return false;
859
860 if (a->ra_mangled != b->ra_mangled)
861 return false;
862
863 return true;
864 }
865
866 /* The CFA is now calculated from NEW_CFA. Consider OLD_CFA in determining
867 what opcode to emit. Returns the CFI opcode to effect the change, or
868 NULL if NEW_CFA == OLD_CFA. */
869
870 static dw_cfi_ref
871 def_cfa_0 (dw_cfa_location *old_cfa, dw_cfa_location *new_cfa)
872 {
873 dw_cfi_ref cfi;
874
875 /* If nothing changed, no need to issue any call frame instructions. */
876 if (cfa_equal_p (old_cfa, new_cfa))
877 return NULL;
878
879 cfi = new_cfi ();
880
881 HOST_WIDE_INT const_offset;
882 if (new_cfa->reg == old_cfa->reg
883 && new_cfa->reg.span == 1
884 && !new_cfa->indirect
885 && !old_cfa->indirect
886 && new_cfa->offset.is_constant (&const_offset))
887 {
888 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
889 the CFA register did not change but the offset did. The data
890 factoring for DW_CFA_def_cfa_offset_sf happens in output_cfi, or
891 in the assembler via the .cfi_def_cfa_offset directive. */
892 if (const_offset < 0)
893 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
894 else
895 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
896 cfi->dw_cfi_oprnd1.dw_cfi_offset = const_offset;
897 }
898 else if (new_cfa->offset.is_constant ()
899 && known_eq (new_cfa->offset, old_cfa->offset)
900 && old_cfa->reg.reg != INVALID_REGNUM
901 && new_cfa->reg.span == 1
902 && !new_cfa->indirect
903 && !old_cfa->indirect)
904 {
905 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
906 indicating the CFA register has changed to <register> but the
907 offset has not changed. This requires the old CFA to have
908 been set as a register plus offset rather than a general
909 DW_CFA_def_cfa_expression. */
910 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
911 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg.reg;
912 }
913 else if (new_cfa->indirect == 0
914 && new_cfa->offset.is_constant (&const_offset)
915 && new_cfa->reg.span == 1)
916 {
917 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
918 indicating the CFA register has changed to <register> with
919 the specified offset. The data factoring for DW_CFA_def_cfa_sf
920 happens in output_cfi, or in the assembler via the .cfi_def_cfa
921 directive. */
922 if (const_offset < 0)
923 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
924 else
925 cfi->dw_cfi_opc = DW_CFA_def_cfa;
926 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = new_cfa->reg.reg;
927 cfi->dw_cfi_oprnd2.dw_cfi_offset = const_offset;
928 }
929 else
930 {
931 /* Construct a DW_CFA_def_cfa_expression instruction to
932 calculate the CFA using a full location expression since no
933 register-offset pair is available. */
934 struct dw_loc_descr_node *loc_list;
935
936 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
937 loc_list = build_cfa_loc (new_cfa, 0);
938 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
939 if (!new_cfa->offset.is_constant ()
940 || !new_cfa->base_offset.is_constant ())
941 /* It's hard to reconstruct the CFA location for a polynomial
942 expression, so just cache it instead. */
943 cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc = copy_cfa (new_cfa);
944 else
945 cfi->dw_cfi_oprnd2.dw_cfi_cfa_loc = NULL;
946 }
947
948 return cfi;
949 }
950
951 /* Similarly, but take OLD_CFA from CUR_ROW, and update it after the fact. */
952
953 static void
954 def_cfa_1 (dw_cfa_location *new_cfa)
955 {
956 dw_cfi_ref cfi;
957
958 if (cur_trace->cfa_store.reg == new_cfa->reg && new_cfa->indirect == 0)
959 cur_trace->cfa_store.offset = new_cfa->offset;
960
961 cfi = def_cfa_0 (&cur_row->cfa, new_cfa);
962 if (cfi)
963 {
964 cur_row->cfa = *new_cfa;
965 cur_row->cfa_cfi = (cfi->dw_cfi_opc == DW_CFA_def_cfa_expression
966 ? cfi : NULL);
967
968 add_cfi (cfi);
969 }
970 }
971
972 /* Add the CFI for saving a register. REG is the CFA column number.
973 If SREG is INVALID_REGISTER, the register is saved at OFFSET from the CFA;
974 otherwise it is saved in SREG. */
975
976 static void
977 reg_save (unsigned int reg, struct cfa_reg sreg, poly_int64 offset)
978 {
979 dw_fde_ref fde = cfun ? cfun->fde : NULL;
980 dw_cfi_ref cfi = new_cfi ();
981
982 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
983
984 if (sreg.reg == INVALID_REGNUM)
985 {
986 HOST_WIDE_INT const_offset;
987 /* When stack is aligned, store REG using DW_CFA_expression with FP. */
988 if (fde && fde->stack_realign)
989 {
990 cfi->dw_cfi_opc = DW_CFA_expression;
991 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
992 cfi->dw_cfi_oprnd2.dw_cfi_loc
993 = build_cfa_aligned_loc (&cur_row->cfa, offset,
994 fde->stack_realignment);
995 }
996 else if (offset.is_constant (&const_offset))
997 {
998 if (need_data_align_sf_opcode (const_offset))
999 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
1000 else if (reg & ~0x3f)
1001 cfi->dw_cfi_opc = DW_CFA_offset_extended;
1002 else
1003 cfi->dw_cfi_opc = DW_CFA_offset;
1004 cfi->dw_cfi_oprnd2.dw_cfi_offset = const_offset;
1005 }
1006 else
1007 {
1008 cfi->dw_cfi_opc = DW_CFA_expression;
1009 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
1010 cfi->dw_cfi_oprnd2.dw_cfi_loc
1011 = build_cfa_loc (&cur_row->cfa, offset);
1012 }
1013 }
1014 else if (sreg.reg == reg)
1015 {
1016 /* While we could emit something like DW_CFA_same_value or
1017 DW_CFA_restore, we never expect to see something like that
1018 in a prologue. This is more likely to be a bug. A backend
1019 can always bypass this by using REG_CFA_RESTORE directly. */
1020 gcc_unreachable ();
1021 }
1022 else if (sreg.span > 1)
1023 {
1024 cfi->dw_cfi_opc = DW_CFA_expression;
1025 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
1026 cfi->dw_cfi_oprnd2.dw_cfi_loc = build_span_loc (sreg);
1027 }
1028 else
1029 {
1030 cfi->dw_cfi_opc = DW_CFA_register;
1031 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg.reg;
1032 }
1033
1034 add_cfi (cfi);
1035 update_row_reg_save (cur_row, reg, cfi);
1036 }
1037
1038 /* A subroutine of scan_trace. Check INSN for a REG_ARGS_SIZE note
1039 and adjust data structures to match. */
1040
1041 static void
1042 notice_args_size (rtx_insn *insn)
1043 {
1044 poly_int64 args_size, delta;
1045 rtx note;
1046
1047 note = find_reg_note (insn, REG_ARGS_SIZE, NULL);
1048 if (note == NULL)
1049 return;
1050
1051 if (!cur_trace->eh_head)
1052 cur_trace->args_size_defined_for_eh = true;
1053
1054 args_size = get_args_size (note);
1055 delta = args_size - cur_trace->end_true_args_size;
1056 if (known_eq (delta, 0))
1057 return;
1058
1059 cur_trace->end_true_args_size = args_size;
1060
1061 /* If the CFA is computed off the stack pointer, then we must adjust
1062 the computation of the CFA as well. */
1063 if (cur_cfa->reg == dw_stack_pointer_regnum)
1064 {
1065 gcc_assert (!cur_cfa->indirect);
1066
1067 /* Convert a change in args_size (always a positive in the
1068 direction of stack growth) to a change in stack pointer. */
1069 if (!STACK_GROWS_DOWNWARD)
1070 delta = -delta;
1071
1072 cur_cfa->offset += delta;
1073 }
1074 }
1075
1076 /* A subroutine of scan_trace. INSN is can_throw_internal. Update the
1077 data within the trace related to EH insns and args_size. */
1078
1079 static void
1080 notice_eh_throw (rtx_insn *insn)
1081 {
1082 poly_int64 args_size = cur_trace->end_true_args_size;
1083 if (cur_trace->eh_head == NULL)
1084 {
1085 cur_trace->eh_head = insn;
1086 cur_trace->beg_delay_args_size = args_size;
1087 cur_trace->end_delay_args_size = args_size;
1088 }
1089 else if (maybe_ne (cur_trace->end_delay_args_size, args_size))
1090 {
1091 cur_trace->end_delay_args_size = args_size;
1092
1093 /* ??? If the CFA is the stack pointer, search backward for the last
1094 CFI note and insert there. Given that the stack changed for the
1095 args_size change, there *must* be such a note in between here and
1096 the last eh insn. */
1097 add_cfi_args_size (args_size);
1098 }
1099 }
1100
1101 /* Short-hand inline for the very common D_F_R (REGNO (x)) operation. */
1102 /* ??? This ought to go into dwarf2out.h, except that dwarf2out.h is
1103 used in places where rtl is prohibited. */
1104
1105 static inline unsigned
1106 dwf_regno (const_rtx reg)
1107 {
1108 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
1109 return DWARF_FRAME_REGNUM (REGNO (reg));
1110 }
1111
1112 /* Like dwf_regno, but when the value can span multiple registers. */
1113
1114 static struct cfa_reg
1115 dwf_cfa_reg (rtx reg)
1116 {
1117 struct cfa_reg result;
1118
1119 result.reg = dwf_regno (reg);
1120 result.span = 1;
1121 result.span_width = 0;
1122
1123 rtx span = targetm.dwarf_register_span (reg);
1124 if (span)
1125 {
1126 /* We only support the simple case of consecutive registers all with the
1127 same size. */
1128 result.span = XVECLEN (span, 0);
1129 result.span_width = GET_MODE_SIZE (GET_MODE (XVECEXP (span, 0, 0)))
1130 .to_constant ();
1131
1132 if (CHECKING_P)
1133 {
1134 /* Ensure that the above assumption is accurate. */
1135 for (unsigned int i = 0; i < result.span; i++)
1136 {
1137 gcc_assert (GET_MODE_SIZE (GET_MODE (XVECEXP (span, 0, i)))
1138 .to_constant () == result.span_width);
1139 gcc_assert (REG_P (XVECEXP (span, 0, i)));
1140 gcc_assert (dwf_regno (XVECEXP (span, 0, i)) == result.reg + i);
1141 }
1142 }
1143 }
1144
1145 return result;
1146 }
1147
1148 /* More efficient comparisons that don't call targetm.dwarf_register_span
1149 unnecessarily. These cfa_reg vs. rtx comparisons should be done at
1150 least for call-saved REGs that might not be CFA related (like stack
1151 pointer, hard frame pointer or DRAP registers are), in other cases it is
1152 just a compile time and memory optimization. */
1153
1154 static bool
1155 operator== (cfa_reg &cfa, rtx reg)
1156 {
1157 unsigned int regno = dwf_regno (reg);
1158 if (cfa.reg != regno)
1159 return false;
1160 struct cfa_reg other = dwf_cfa_reg (reg);
1161 return cfa == other;
1162 }
1163
1164 static inline bool
1165 operator!= (cfa_reg &cfa, rtx reg)
1166 {
1167 return !(cfa == reg);
1168 }
1169
1170 /* Compare X and Y for equivalence. The inputs may be REGs or PC_RTX. */
1171
1172 static bool
1173 compare_reg_or_pc (rtx x, rtx y)
1174 {
1175 if (REG_P (x) && REG_P (y))
1176 return REGNO (x) == REGNO (y);
1177 return x == y;
1178 }
1179
1180 /* Record SRC as being saved in DEST. DEST may be null to delete an
1181 existing entry. SRC may be a register or PC_RTX. */
1182
1183 static void
1184 record_reg_saved_in_reg (rtx dest, rtx src)
1185 {
1186 reg_saved_in_data *elt;
1187 size_t i;
1188
1189 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, elt)
1190 if (compare_reg_or_pc (elt->orig_reg, src))
1191 {
1192 if (dest == NULL)
1193 cur_trace->regs_saved_in_regs.unordered_remove (i);
1194 else
1195 elt->saved_in_reg = dest;
1196 return;
1197 }
1198
1199 if (dest == NULL)
1200 return;
1201
1202 reg_saved_in_data e = {src, dest};
1203 cur_trace->regs_saved_in_regs.safe_push (e);
1204 }
1205
1206 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1207 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1208
1209 static void
1210 queue_reg_save (rtx reg, rtx sreg, poly_int64 offset)
1211 {
1212 queued_reg_save *q;
1213 queued_reg_save e = {reg, sreg, offset};
1214 size_t i;
1215
1216 /* Duplicates waste space, but it's also necessary to remove them
1217 for correctness, since the queue gets output in reverse order. */
1218 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
1219 if (compare_reg_or_pc (q->reg, reg))
1220 {
1221 *q = e;
1222 return;
1223 }
1224
1225 queued_reg_saves.safe_push (e);
1226 }
1227
1228 /* Output all the entries in QUEUED_REG_SAVES. */
1229
1230 static void
1231 dwarf2out_flush_queued_reg_saves (void)
1232 {
1233 queued_reg_save *q;
1234 size_t i;
1235
1236 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
1237 {
1238 unsigned int reg;
1239 struct cfa_reg sreg;
1240
1241 record_reg_saved_in_reg (q->saved_reg, q->reg);
1242
1243 if (q->reg == pc_rtx)
1244 reg = DWARF_FRAME_RETURN_COLUMN;
1245 else
1246 reg = dwf_regno (q->reg);
1247 if (q->saved_reg)
1248 sreg = dwf_cfa_reg (q->saved_reg);
1249 else
1250 sreg.set_by_dwreg (INVALID_REGNUM);
1251 reg_save (reg, sreg, q->cfa_offset);
1252 }
1253
1254 queued_reg_saves.truncate (0);
1255 }
1256
1257 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1258 location for? Or, does it clobber a register which we've previously
1259 said that some other register is saved in, and for which we now
1260 have a new location for? */
1261
1262 static bool
1263 clobbers_queued_reg_save (const_rtx insn)
1264 {
1265 queued_reg_save *q;
1266 size_t iq;
1267
1268 FOR_EACH_VEC_ELT (queued_reg_saves, iq, q)
1269 {
1270 size_t ir;
1271 reg_saved_in_data *rir;
1272
1273 if (modified_in_p (q->reg, insn))
1274 return true;
1275
1276 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, ir, rir)
1277 if (compare_reg_or_pc (q->reg, rir->orig_reg)
1278 && modified_in_p (rir->saved_in_reg, insn))
1279 return true;
1280 }
1281
1282 return false;
1283 }
1284
1285 /* What register, if any, is currently saved in REG? */
1286
1287 static rtx
1288 reg_saved_in (rtx reg)
1289 {
1290 unsigned int regn = REGNO (reg);
1291 queued_reg_save *q;
1292 reg_saved_in_data *rir;
1293 size_t i;
1294
1295 FOR_EACH_VEC_ELT (queued_reg_saves, i, q)
1296 if (q->saved_reg && regn == REGNO (q->saved_reg))
1297 return q->reg;
1298
1299 FOR_EACH_VEC_ELT (cur_trace->regs_saved_in_regs, i, rir)
1300 if (regn == REGNO (rir->saved_in_reg))
1301 return rir->orig_reg;
1302
1303 return NULL_RTX;
1304 }
1305
1306 /* A subroutine of dwarf2out_frame_debug, process a REG_DEF_CFA note. */
1307
1308 static void
1309 dwarf2out_frame_debug_def_cfa (rtx pat)
1310 {
1311 memset (cur_cfa, 0, sizeof (*cur_cfa));
1312
1313 pat = strip_offset (pat, &cur_cfa->offset);
1314 if (MEM_P (pat))
1315 {
1316 cur_cfa->indirect = 1;
1317 pat = strip_offset (XEXP (pat, 0), &cur_cfa->base_offset);
1318 }
1319 /* ??? If this fails, we could be calling into the _loc functions to
1320 define a full expression. So far no port does that. */
1321 gcc_assert (REG_P (pat));
1322 cur_cfa->reg = dwf_cfa_reg (pat);
1323 }
1324
1325 /* A subroutine of dwarf2out_frame_debug, process a REG_ADJUST_CFA note. */
1326
1327 static void
1328 dwarf2out_frame_debug_adjust_cfa (rtx pat)
1329 {
1330 rtx src, dest;
1331
1332 gcc_assert (GET_CODE (pat) == SET);
1333 dest = XEXP (pat, 0);
1334 src = XEXP (pat, 1);
1335
1336 switch (GET_CODE (src))
1337 {
1338 case PLUS:
1339 gcc_assert (cur_cfa->reg == XEXP (src, 0));
1340 cur_cfa->offset -= rtx_to_poly_int64 (XEXP (src, 1));
1341 break;
1342
1343 case REG:
1344 break;
1345
1346 default:
1347 gcc_unreachable ();
1348 }
1349
1350 cur_cfa->reg = dwf_cfa_reg (dest);
1351 gcc_assert (cur_cfa->indirect == 0);
1352 }
1353
1354 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_OFFSET note. */
1355
1356 static void
1357 dwarf2out_frame_debug_cfa_offset (rtx set)
1358 {
1359 poly_int64 offset;
1360 rtx src, addr, span;
1361 unsigned int sregno;
1362
1363 src = XEXP (set, 1);
1364 addr = XEXP (set, 0);
1365 gcc_assert (MEM_P (addr));
1366 addr = XEXP (addr, 0);
1367
1368 /* As documented, only consider extremely simple addresses. */
1369 switch (GET_CODE (addr))
1370 {
1371 case REG:
1372 gcc_assert (cur_cfa->reg == addr);
1373 offset = -cur_cfa->offset;
1374 break;
1375 case PLUS:
1376 gcc_assert (cur_cfa->reg == XEXP (addr, 0));
1377 offset = rtx_to_poly_int64 (XEXP (addr, 1)) - cur_cfa->offset;
1378 break;
1379 default:
1380 gcc_unreachable ();
1381 }
1382
1383 if (src == pc_rtx)
1384 {
1385 span = NULL;
1386 sregno = DWARF_FRAME_RETURN_COLUMN;
1387 }
1388 else
1389 {
1390 span = targetm.dwarf_register_span (src);
1391 sregno = dwf_regno (src);
1392 }
1393
1394 /* ??? We'd like to use queue_reg_save, but we need to come up with
1395 a different flushing heuristic for epilogues. */
1396 struct cfa_reg invalid;
1397 invalid.set_by_dwreg (INVALID_REGNUM);
1398 if (!span)
1399 reg_save (sregno, invalid, offset);
1400 else
1401 {
1402 /* We have a PARALLEL describing where the contents of SRC live.
1403 Adjust the offset for each piece of the PARALLEL. */
1404 poly_int64 span_offset = offset;
1405
1406 gcc_assert (GET_CODE (span) == PARALLEL);
1407
1408 const int par_len = XVECLEN (span, 0);
1409 for (int par_index = 0; par_index < par_len; par_index++)
1410 {
1411 rtx elem = XVECEXP (span, 0, par_index);
1412 sregno = dwf_regno (src);
1413 reg_save (sregno, invalid, span_offset);
1414 span_offset += GET_MODE_SIZE (GET_MODE (elem));
1415 }
1416 }
1417 }
1418
1419 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_REGISTER note. */
1420
1421 static void
1422 dwarf2out_frame_debug_cfa_register (rtx set)
1423 {
1424 rtx src, dest;
1425 unsigned sregno;
1426 struct cfa_reg dregno;
1427
1428 src = XEXP (set, 1);
1429 dest = XEXP (set, 0);
1430
1431 record_reg_saved_in_reg (dest, src);
1432 if (src == pc_rtx)
1433 sregno = DWARF_FRAME_RETURN_COLUMN;
1434 else
1435 sregno = dwf_regno (src);
1436
1437 dregno = dwf_cfa_reg (dest);
1438
1439 /* ??? We'd like to use queue_reg_save, but we need to come up with
1440 a different flushing heuristic for epilogues. */
1441 reg_save (sregno, dregno, 0);
1442 }
1443
1444 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_EXPRESSION note. */
1445
1446 static void
1447 dwarf2out_frame_debug_cfa_expression (rtx set)
1448 {
1449 rtx src, dest, span;
1450 dw_cfi_ref cfi = new_cfi ();
1451 unsigned regno;
1452
1453 dest = SET_DEST (set);
1454 src = SET_SRC (set);
1455
1456 gcc_assert (REG_P (src));
1457 gcc_assert (MEM_P (dest));
1458
1459 span = targetm.dwarf_register_span (src);
1460 gcc_assert (!span);
1461
1462 regno = dwf_regno (src);
1463
1464 cfi->dw_cfi_opc = DW_CFA_expression;
1465 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = regno;
1466 cfi->dw_cfi_oprnd2.dw_cfi_loc
1467 = mem_loc_descriptor (XEXP (dest, 0), get_address_mode (dest),
1468 GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED);
1469
1470 /* ??? We'd like to use queue_reg_save, were the interface different,
1471 and, as above, we could manage flushing for epilogues. */
1472 add_cfi (cfi);
1473 update_row_reg_save (cur_row, regno, cfi);
1474 }
1475
1476 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_VAL_EXPRESSION
1477 note. */
1478
1479 static void
1480 dwarf2out_frame_debug_cfa_val_expression (rtx set)
1481 {
1482 rtx dest = SET_DEST (set);
1483 gcc_assert (REG_P (dest));
1484
1485 rtx span = targetm.dwarf_register_span (dest);
1486 gcc_assert (!span);
1487
1488 rtx src = SET_SRC (set);
1489 dw_cfi_ref cfi = new_cfi ();
1490 cfi->dw_cfi_opc = DW_CFA_val_expression;
1491 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = dwf_regno (dest);
1492 cfi->dw_cfi_oprnd2.dw_cfi_loc
1493 = mem_loc_descriptor (src, GET_MODE (src),
1494 GET_MODE (dest), VAR_INIT_STATUS_INITIALIZED);
1495 add_cfi (cfi);
1496 update_row_reg_save (cur_row, dwf_regno (dest), cfi);
1497 }
1498
1499 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_RESTORE note. */
1500
1501 static void
1502 dwarf2out_frame_debug_cfa_restore (rtx reg)
1503 {
1504 gcc_assert (REG_P (reg));
1505
1506 rtx span = targetm.dwarf_register_span (reg);
1507 if (!span)
1508 {
1509 unsigned int regno = dwf_regno (reg);
1510 add_cfi_restore (regno);
1511 update_row_reg_save (cur_row, regno, NULL);
1512 }
1513 else
1514 {
1515 /* We have a PARALLEL describing where the contents of REG live.
1516 Restore the register for each piece of the PARALLEL. */
1517 gcc_assert (GET_CODE (span) == PARALLEL);
1518
1519 const int par_len = XVECLEN (span, 0);
1520 for (int par_index = 0; par_index < par_len; par_index++)
1521 {
1522 reg = XVECEXP (span, 0, par_index);
1523 gcc_assert (REG_P (reg));
1524 unsigned int regno = dwf_regno (reg);
1525 add_cfi_restore (regno);
1526 update_row_reg_save (cur_row, regno, NULL);
1527 }
1528 }
1529 }
1530
1531 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_WINDOW_SAVE.
1532
1533 ??? Perhaps we should note in the CIE where windows are saved (instead
1534 of assuming 0(cfa)) and what registers are in the window. */
1535
1536 static void
1537 dwarf2out_frame_debug_cfa_window_save (void)
1538 {
1539 dw_cfi_ref cfi = new_cfi ();
1540
1541 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
1542 add_cfi (cfi);
1543 cur_row->window_save = true;
1544 }
1545
1546 /* A subroutine of dwarf2out_frame_debug, process a REG_CFA_TOGGLE_RA_MANGLE.
1547 Note: DW_CFA_GNU_window_save dwarf opcode is reused for toggling RA mangle
1548 state, this is a target specific operation on AArch64 and can only be used
1549 on other targets if they don't use the window save operation otherwise. */
1550
1551 static void
1552 dwarf2out_frame_debug_cfa_toggle_ra_mangle (void)
1553 {
1554 dw_cfi_ref cfi = new_cfi ();
1555
1556 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
1557 add_cfi (cfi);
1558 cur_row->ra_mangled = !cur_row->ra_mangled;
1559 }
1560
1561 /* Record call frame debugging information for an expression EXPR,
1562 which either sets SP or FP (adjusting how we calculate the frame
1563 address) or saves a register to the stack or another register.
1564 LABEL indicates the address of EXPR.
1565
1566 This function encodes a state machine mapping rtxes to actions on
1567 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1568 users need not read the source code.
1569
1570 The High-Level Picture
1571
1572 Changes in the register we use to calculate the CFA: Currently we
1573 assume that if you copy the CFA register into another register, we
1574 should take the other one as the new CFA register; this seems to
1575 work pretty well. If it's wrong for some target, it's simple
1576 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1577
1578 Changes in the register we use for saving registers to the stack:
1579 This is usually SP, but not always. Again, we deduce that if you
1580 copy SP into another register (and SP is not the CFA register),
1581 then the new register is the one we will be using for register
1582 saves. This also seems to work.
1583
1584 Register saves: There's not much guesswork about this one; if
1585 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1586 register save, and the register used to calculate the destination
1587 had better be the one we think we're using for this purpose.
1588 It's also assumed that a copy from a call-saved register to another
1589 register is saving that register if RTX_FRAME_RELATED_P is set on
1590 that instruction. If the copy is from a call-saved register to
1591 the *same* register, that means that the register is now the same
1592 value as in the caller.
1593
1594 Except: If the register being saved is the CFA register, and the
1595 offset is nonzero, we are saving the CFA, so we assume we have to
1596 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1597 the intent is to save the value of SP from the previous frame.
1598
1599 In addition, if a register has previously been saved to a different
1600 register,
1601
1602 Invariants / Summaries of Rules
1603
1604 cfa current rule for calculating the CFA. It usually
1605 consists of a register and an offset. This is
1606 actually stored in *cur_cfa, but abbreviated
1607 for the purposes of this documentation.
1608 cfa_store register used by prologue code to save things to the stack
1609 cfa_store.offset is the offset from the value of
1610 cfa_store.reg to the actual CFA
1611 cfa_temp register holding an integral value. cfa_temp.offset
1612 stores the value, which will be used to adjust the
1613 stack pointer. cfa_temp is also used like cfa_store,
1614 to track stores to the stack via fp or a temp reg.
1615
1616 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1617 with cfa.reg as the first operand changes the cfa.reg and its
1618 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1619 cfa_temp.offset.
1620
1621 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1622 expression yielding a constant. This sets cfa_temp.reg
1623 and cfa_temp.offset.
1624
1625 Rule 5: Create a new register cfa_store used to save items to the
1626 stack.
1627
1628 Rules 10-14: Save a register to the stack. Define offset as the
1629 difference of the original location and cfa_store's
1630 location (or cfa_temp's location if cfa_temp is used).
1631
1632 Rules 16-20: If AND operation happens on sp in prologue, we assume
1633 stack is realigned. We will use a group of DW_OP_XXX
1634 expressions to represent the location of the stored
1635 register instead of CFA+offset.
1636
1637 The Rules
1638
1639 "{a,b}" indicates a choice of a xor b.
1640 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1641
1642 Rule 1:
1643 (set <reg1> <reg2>:cfa.reg)
1644 effects: cfa.reg = <reg1>
1645 cfa.offset unchanged
1646 cfa_temp.reg = <reg1>
1647 cfa_temp.offset = cfa.offset
1648
1649 Rule 2:
1650 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1651 {<const_int>,<reg>:cfa_temp.reg}))
1652 effects: cfa.reg = sp if fp used
1653 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1654 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1655 if cfa_store.reg==sp
1656
1657 Rule 3:
1658 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1659 effects: cfa.reg = fp
1660 cfa_offset += +/- <const_int>
1661
1662 Rule 4:
1663 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1664 constraints: <reg1> != fp
1665 <reg1> != sp
1666 effects: cfa.reg = <reg1>
1667 cfa_temp.reg = <reg1>
1668 cfa_temp.offset = cfa.offset
1669
1670 Rule 5:
1671 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1672 constraints: <reg1> != fp
1673 <reg1> != sp
1674 effects: cfa_store.reg = <reg1>
1675 cfa_store.offset = cfa.offset - cfa_temp.offset
1676
1677 Rule 6:
1678 (set <reg> <const_int>)
1679 effects: cfa_temp.reg = <reg>
1680 cfa_temp.offset = <const_int>
1681
1682 Rule 7:
1683 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1684 effects: cfa_temp.reg = <reg1>
1685 cfa_temp.offset |= <const_int>
1686
1687 Rule 8:
1688 (set <reg> (high <exp>))
1689 effects: none
1690
1691 Rule 9:
1692 (set <reg> (lo_sum <exp> <const_int>))
1693 effects: cfa_temp.reg = <reg>
1694 cfa_temp.offset = <const_int>
1695
1696 Rule 10:
1697 (set (mem ({pre,post}_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1698 effects: cfa_store.offset -= <const_int>
1699 cfa.offset = cfa_store.offset if cfa.reg == sp
1700 cfa.reg = sp
1701 cfa.base_offset = -cfa_store.offset
1702
1703 Rule 11:
1704 (set (mem ({pre_inc,pre_dec,post_dec} sp:cfa_store.reg)) <reg>)
1705 effects: cfa_store.offset += -/+ mode_size(mem)
1706 cfa.offset = cfa_store.offset if cfa.reg == sp
1707 cfa.reg = sp
1708 cfa.base_offset = -cfa_store.offset
1709
1710 Rule 12:
1711 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1712
1713 <reg2>)
1714 effects: cfa.reg = <reg1>
1715 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1716
1717 Rule 13:
1718 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1719 effects: cfa.reg = <reg1>
1720 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1721
1722 Rule 14:
1723 (set (mem (post_inc <reg1>:cfa_temp <const_int>)) <reg2>)
1724 effects: cfa.reg = <reg1>
1725 cfa.base_offset = -cfa_temp.offset
1726 cfa_temp.offset -= mode_size(mem)
1727
1728 Rule 15:
1729 (set <reg> {unspec, unspec_volatile})
1730 effects: target-dependent
1731
1732 Rule 16:
1733 (set sp (and: sp <const_int>))
1734 constraints: cfa_store.reg == sp
1735 effects: cfun->fde.stack_realign = 1
1736 cfa_store.offset = 0
1737 fde->drap_reg = cfa.reg if cfa.reg != sp and cfa.reg != fp
1738
1739 Rule 17:
1740 (set (mem ({pre_inc, pre_dec} sp)) (mem (plus (cfa.reg) (const_int))))
1741 effects: cfa_store.offset += -/+ mode_size(mem)
1742
1743 Rule 18:
1744 (set (mem ({pre_inc, pre_dec} sp)) fp)
1745 constraints: fde->stack_realign == 1
1746 effects: cfa_store.offset = 0
1747 cfa.reg != HARD_FRAME_POINTER_REGNUM
1748
1749 Rule 19:
1750 (set (mem ({pre_inc, pre_dec} sp)) cfa.reg)
1751 constraints: fde->stack_realign == 1
1752 && cfa.offset == 0
1753 && cfa.indirect == 0
1754 && cfa.reg != HARD_FRAME_POINTER_REGNUM
1755 effects: Use DW_CFA_def_cfa_expression to define cfa
1756 cfa.reg == fde->drap_reg */
1757
1758 static void
1759 dwarf2out_frame_debug_expr (rtx expr)
1760 {
1761 rtx src, dest, span;
1762 poly_int64 offset;
1763 dw_fde_ref fde;
1764
1765 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1766 the PARALLEL independently. The first element is always processed if
1767 it is a SET. This is for backward compatibility. Other elements
1768 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1769 flag is set in them. */
1770 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1771 {
1772 int par_index;
1773 int limit = XVECLEN (expr, 0);
1774 rtx elem;
1775
1776 /* PARALLELs have strict read-modify-write semantics, so we
1777 ought to evaluate every rvalue before changing any lvalue.
1778 It's cumbersome to do that in general, but there's an
1779 easy approximation that is enough for all current users:
1780 handle register saves before register assignments. */
1781 if (GET_CODE (expr) == PARALLEL)
1782 for (par_index = 0; par_index < limit; par_index++)
1783 {
1784 elem = XVECEXP (expr, 0, par_index);
1785 if (GET_CODE (elem) == SET
1786 && MEM_P (SET_DEST (elem))
1787 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1788 dwarf2out_frame_debug_expr (elem);
1789 }
1790
1791 for (par_index = 0; par_index < limit; par_index++)
1792 {
1793 elem = XVECEXP (expr, 0, par_index);
1794 if (GET_CODE (elem) == SET
1795 && (!MEM_P (SET_DEST (elem)) || GET_CODE (expr) == SEQUENCE)
1796 && (RTX_FRAME_RELATED_P (elem) || par_index == 0))
1797 dwarf2out_frame_debug_expr (elem);
1798 }
1799 return;
1800 }
1801
1802 gcc_assert (GET_CODE (expr) == SET);
1803
1804 src = SET_SRC (expr);
1805 dest = SET_DEST (expr);
1806
1807 if (REG_P (src))
1808 {
1809 rtx rsi = reg_saved_in (src);
1810 if (rsi)
1811 src = rsi;
1812 }
1813
1814 fde = cfun->fde;
1815
1816 switch (GET_CODE (dest))
1817 {
1818 case REG:
1819 switch (GET_CODE (src))
1820 {
1821 /* Setting FP from SP. */
1822 case REG:
1823 if (cur_cfa->reg == src)
1824 {
1825 /* Rule 1 */
1826 /* Update the CFA rule wrt SP or FP. Make sure src is
1827 relative to the current CFA register.
1828
1829 We used to require that dest be either SP or FP, but the
1830 ARM copies SP to a temporary register, and from there to
1831 FP. So we just rely on the backends to only set
1832 RTX_FRAME_RELATED_P on appropriate insns. */
1833 cur_cfa->reg = dwf_cfa_reg (dest);
1834 cur_trace->cfa_temp.reg = cur_cfa->reg;
1835 cur_trace->cfa_temp.offset = cur_cfa->offset;
1836 }
1837 else
1838 {
1839 /* Saving a register in a register. */
1840 gcc_assert (!fixed_regs [REGNO (dest)]
1841 /* For the SPARC and its register window. */
1842 || (dwf_regno (src) == DWARF_FRAME_RETURN_COLUMN));
1843
1844 /* After stack is aligned, we can only save SP in FP
1845 if drap register is used. In this case, we have
1846 to restore stack pointer with the CFA value and we
1847 don't generate this DWARF information. */
1848 if (fde
1849 && fde->stack_realign
1850 && REGNO (src) == STACK_POINTER_REGNUM)
1851 {
1852 gcc_assert (REGNO (dest) == HARD_FRAME_POINTER_REGNUM
1853 && fde->drap_reg != INVALID_REGNUM
1854 && cur_cfa->reg != src
1855 && fde->rule18);
1856 fde->rule18 = 0;
1857 /* The save of hard frame pointer has been deferred
1858 until this point when Rule 18 applied. Emit it now. */
1859 queue_reg_save (dest, NULL_RTX, 0);
1860 /* And as the instruction modifies the hard frame pointer,
1861 flush the queue as well. */
1862 dwarf2out_flush_queued_reg_saves ();
1863 }
1864 else
1865 queue_reg_save (src, dest, 0);
1866 }
1867 break;
1868
1869 case PLUS:
1870 case MINUS:
1871 case LO_SUM:
1872 if (dest == stack_pointer_rtx)
1873 {
1874 /* Rule 2 */
1875 /* Adjusting SP. */
1876 if (REG_P (XEXP (src, 1)))
1877 {
1878 gcc_assert (cur_trace->cfa_temp.reg == XEXP (src, 1));
1879 offset = cur_trace->cfa_temp.offset;
1880 }
1881 else if (!poly_int_rtx_p (XEXP (src, 1), &offset))
1882 gcc_unreachable ();
1883
1884 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1885 {
1886 /* Restoring SP from FP in the epilogue. */
1887 gcc_assert (cur_cfa->reg == dw_frame_pointer_regnum);
1888 cur_cfa->reg = dw_stack_pointer_regnum;
1889 }
1890 else if (GET_CODE (src) == LO_SUM)
1891 /* Assume we've set the source reg of the LO_SUM from sp. */
1892 ;
1893 else
1894 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1895
1896 if (GET_CODE (src) != MINUS)
1897 offset = -offset;
1898 if (cur_cfa->reg == dw_stack_pointer_regnum)
1899 cur_cfa->offset += offset;
1900 if (cur_trace->cfa_store.reg == dw_stack_pointer_regnum)
1901 cur_trace->cfa_store.offset += offset;
1902 }
1903 else if (dest == hard_frame_pointer_rtx)
1904 {
1905 /* Rule 3 */
1906 /* Either setting the FP from an offset of the SP,
1907 or adjusting the FP */
1908 gcc_assert (frame_pointer_needed);
1909
1910 gcc_assert (REG_P (XEXP (src, 0))
1911 && cur_cfa->reg == XEXP (src, 0));
1912 offset = rtx_to_poly_int64 (XEXP (src, 1));
1913 if (GET_CODE (src) != MINUS)
1914 offset = -offset;
1915 cur_cfa->offset += offset;
1916 cur_cfa->reg = dw_frame_pointer_regnum;
1917 }
1918 else
1919 {
1920 gcc_assert (GET_CODE (src) != MINUS);
1921
1922 /* Rule 4 */
1923 if (REG_P (XEXP (src, 0))
1924 && cur_cfa->reg == XEXP (src, 0)
1925 && poly_int_rtx_p (XEXP (src, 1), &offset))
1926 {
1927 /* Setting a temporary CFA register that will be copied
1928 into the FP later on. */
1929 offset = -offset;
1930 cur_cfa->offset += offset;
1931 cur_cfa->reg = dwf_cfa_reg (dest);
1932 /* Or used to save regs to the stack. */
1933 cur_trace->cfa_temp.reg = cur_cfa->reg;
1934 cur_trace->cfa_temp.offset = cur_cfa->offset;
1935 }
1936
1937 /* Rule 5 */
1938 else if (REG_P (XEXP (src, 0))
1939 && cur_trace->cfa_temp.reg == XEXP (src, 0)
1940 && XEXP (src, 1) == stack_pointer_rtx)
1941 {
1942 /* Setting a scratch register that we will use instead
1943 of SP for saving registers to the stack. */
1944 gcc_assert (cur_cfa->reg == dw_stack_pointer_regnum);
1945 cur_trace->cfa_store.reg = dwf_cfa_reg (dest);
1946 cur_trace->cfa_store.offset
1947 = cur_cfa->offset - cur_trace->cfa_temp.offset;
1948 }
1949
1950 /* Rule 9 */
1951 else if (GET_CODE (src) == LO_SUM
1952 && poly_int_rtx_p (XEXP (src, 1),
1953 &cur_trace->cfa_temp.offset))
1954 cur_trace->cfa_temp.reg = dwf_cfa_reg (dest);
1955 else
1956 gcc_unreachable ();
1957 }
1958 break;
1959
1960 /* Rule 6 */
1961 case CONST_INT:
1962 case CONST_POLY_INT:
1963 cur_trace->cfa_temp.reg = dwf_cfa_reg (dest);
1964 cur_trace->cfa_temp.offset = rtx_to_poly_int64 (src);
1965 break;
1966
1967 /* Rule 7 */
1968 case IOR:
1969 gcc_assert (REG_P (XEXP (src, 0))
1970 && cur_trace->cfa_temp.reg == XEXP (src, 0)
1971 && CONST_INT_P (XEXP (src, 1)));
1972
1973 cur_trace->cfa_temp.reg = dwf_cfa_reg (dest);
1974 if (!can_ior_p (cur_trace->cfa_temp.offset, INTVAL (XEXP (src, 1)),
1975 &cur_trace->cfa_temp.offset))
1976 /* The target shouldn't generate this kind of CFI note if we
1977 can't represent it. */
1978 gcc_unreachable ();
1979 break;
1980
1981 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1982 which will fill in all of the bits. */
1983 /* Rule 8 */
1984 case HIGH:
1985 break;
1986
1987 /* Rule 15 */
1988 case UNSPEC:
1989 case UNSPEC_VOLATILE:
1990 /* All unspecs should be represented by REG_CFA_* notes. */
1991 gcc_unreachable ();
1992 return;
1993
1994 /* Rule 16 */
1995 case AND:
1996 /* If this AND operation happens on stack pointer in prologue,
1997 we assume the stack is realigned and we extract the
1998 alignment. */
1999 if (fde && XEXP (src, 0) == stack_pointer_rtx)
2000 {
2001 /* We interpret reg_save differently with stack_realign set.
2002 Thus we must flush whatever we have queued first. */
2003 dwarf2out_flush_queued_reg_saves ();
2004
2005 gcc_assert (cur_trace->cfa_store.reg
2006 == XEXP (src, 0));
2007 fde->stack_realign = 1;
2008 fde->stack_realignment = INTVAL (XEXP (src, 1));
2009 cur_trace->cfa_store.offset = 0;
2010
2011 if (cur_cfa->reg != dw_stack_pointer_regnum
2012 && cur_cfa->reg != dw_frame_pointer_regnum)
2013 {
2014 gcc_assert (cur_cfa->reg.span == 1);
2015 fde->drap_reg = cur_cfa->reg.reg;
2016 }
2017 }
2018 return;
2019
2020 default:
2021 gcc_unreachable ();
2022 }
2023 break;
2024
2025 case MEM:
2026
2027 /* Saving a register to the stack. Make sure dest is relative to the
2028 CFA register. */
2029 switch (GET_CODE (XEXP (dest, 0)))
2030 {
2031 /* Rule 10 */
2032 /* With a push. */
2033 case PRE_MODIFY:
2034 case POST_MODIFY:
2035 /* We can't handle variable size modifications. */
2036 offset = -rtx_to_poly_int64 (XEXP (XEXP (XEXP (dest, 0), 1), 1));
2037
2038 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
2039 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
2040
2041 cur_trace->cfa_store.offset += offset;
2042 if (cur_cfa->reg == dw_stack_pointer_regnum)
2043 cur_cfa->offset = cur_trace->cfa_store.offset;
2044
2045 if (GET_CODE (XEXP (dest, 0)) == POST_MODIFY)
2046 offset -= cur_trace->cfa_store.offset;
2047 else
2048 offset = -cur_trace->cfa_store.offset;
2049 break;
2050
2051 /* Rule 11 */
2052 case PRE_INC:
2053 case PRE_DEC:
2054 case POST_DEC:
2055 offset = GET_MODE_SIZE (GET_MODE (dest));
2056 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
2057 offset = -offset;
2058
2059 gcc_assert ((REGNO (XEXP (XEXP (dest, 0), 0))
2060 == STACK_POINTER_REGNUM)
2061 && cur_trace->cfa_store.reg == dw_stack_pointer_regnum);
2062
2063 cur_trace->cfa_store.offset += offset;
2064
2065 /* Rule 18: If stack is aligned, we will use FP as a
2066 reference to represent the address of the stored
2067 regiser. */
2068 if (fde
2069 && fde->stack_realign
2070 && REG_P (src)
2071 && REGNO (src) == HARD_FRAME_POINTER_REGNUM)
2072 {
2073 gcc_assert (cur_cfa->reg != dw_frame_pointer_regnum);
2074 cur_trace->cfa_store.offset = 0;
2075 fde->rule18 = 1;
2076 }
2077
2078 if (cur_cfa->reg == dw_stack_pointer_regnum)
2079 cur_cfa->offset = cur_trace->cfa_store.offset;
2080
2081 if (GET_CODE (XEXP (dest, 0)) == POST_DEC)
2082 offset += -cur_trace->cfa_store.offset;
2083 else
2084 offset = -cur_trace->cfa_store.offset;
2085 break;
2086
2087 /* Rule 12 */
2088 /* With an offset. */
2089 case PLUS:
2090 case MINUS:
2091 case LO_SUM:
2092 {
2093 struct cfa_reg regno;
2094
2095 gcc_assert (REG_P (XEXP (XEXP (dest, 0), 0)));
2096 offset = rtx_to_poly_int64 (XEXP (XEXP (dest, 0), 1));
2097 if (GET_CODE (XEXP (dest, 0)) == MINUS)
2098 offset = -offset;
2099
2100 regno = dwf_cfa_reg (XEXP (XEXP (dest, 0), 0));
2101
2102 if (cur_cfa->reg == regno)
2103 offset -= cur_cfa->offset;
2104 else if (cur_trace->cfa_store.reg == regno)
2105 offset -= cur_trace->cfa_store.offset;
2106 else
2107 {
2108 gcc_assert (cur_trace->cfa_temp.reg == regno);
2109 offset -= cur_trace->cfa_temp.offset;
2110 }
2111 }
2112 break;
2113
2114 /* Rule 13 */
2115 /* Without an offset. */
2116 case REG:
2117 {
2118 struct cfa_reg regno = dwf_cfa_reg (XEXP (dest, 0));
2119
2120 if (cur_cfa->reg == regno)
2121 offset = -cur_cfa->offset;
2122 else if (cur_trace->cfa_store.reg == regno)
2123 offset = -cur_trace->cfa_store.offset;
2124 else
2125 {
2126 gcc_assert (cur_trace->cfa_temp.reg == regno);
2127 offset = -cur_trace->cfa_temp.offset;
2128 }
2129 }
2130 break;
2131
2132 /* Rule 14 */
2133 case POST_INC:
2134 gcc_assert (cur_trace->cfa_temp.reg == XEXP (XEXP (dest, 0), 0));
2135 offset = -cur_trace->cfa_temp.offset;
2136 cur_trace->cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
2137 break;
2138
2139 default:
2140 gcc_unreachable ();
2141 }
2142
2143 /* Rule 17 */
2144 /* If the source operand of this MEM operation is a memory,
2145 we only care how much stack grew. */
2146 if (MEM_P (src))
2147 break;
2148
2149 if (REG_P (src)
2150 && REGNO (src) != STACK_POINTER_REGNUM
2151 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
2152 && cur_cfa->reg == src)
2153 {
2154 /* We're storing the current CFA reg into the stack. */
2155
2156 if (known_eq (cur_cfa->offset, 0))
2157 {
2158 /* Rule 19 */
2159 /* If stack is aligned, putting CFA reg into stack means
2160 we can no longer use reg + offset to represent CFA.
2161 Here we use DW_CFA_def_cfa_expression instead. The
2162 result of this expression equals to the original CFA
2163 value. */
2164 if (fde
2165 && fde->stack_realign
2166 && cur_cfa->indirect == 0
2167 && cur_cfa->reg != dw_frame_pointer_regnum)
2168 {
2169 gcc_assert (fde->drap_reg == cur_cfa->reg.reg);
2170
2171 cur_cfa->indirect = 1;
2172 cur_cfa->reg = dw_frame_pointer_regnum;
2173 cur_cfa->base_offset = offset;
2174 cur_cfa->offset = 0;
2175
2176 fde->drap_reg_saved = 1;
2177 break;
2178 }
2179
2180 /* If the source register is exactly the CFA, assume
2181 we're saving SP like any other register; this happens
2182 on the ARM. */
2183 queue_reg_save (stack_pointer_rtx, NULL_RTX, offset);
2184 break;
2185 }
2186 else
2187 {
2188 /* Otherwise, we'll need to look in the stack to
2189 calculate the CFA. */
2190 rtx x = XEXP (dest, 0);
2191
2192 if (!REG_P (x))
2193 x = XEXP (x, 0);
2194 gcc_assert (REG_P (x));
2195
2196 cur_cfa->reg = dwf_cfa_reg (x);
2197 cur_cfa->base_offset = offset;
2198 cur_cfa->indirect = 1;
2199 break;
2200 }
2201 }
2202
2203 if (REG_P (src))
2204 span = targetm.dwarf_register_span (src);
2205 else
2206 span = NULL;
2207
2208 if (!span)
2209 {
2210 if (fde->rule18)
2211 /* Just verify the hard frame pointer save when doing dynamic
2212 realignment uses expected offset. The actual queue_reg_save
2213 needs to be deferred until the instruction that sets
2214 hard frame pointer to stack pointer, see PR99334 for
2215 details. */
2216 gcc_assert (known_eq (offset, 0));
2217 else
2218 queue_reg_save (src, NULL_RTX, offset);
2219 }
2220 else
2221 {
2222 /* We have a PARALLEL describing where the contents of SRC live.
2223 Queue register saves for each piece of the PARALLEL. */
2224 poly_int64 span_offset = offset;
2225
2226 gcc_assert (GET_CODE (span) == PARALLEL);
2227
2228 const int par_len = XVECLEN (span, 0);
2229 for (int par_index = 0; par_index < par_len; par_index++)
2230 {
2231 rtx elem = XVECEXP (span, 0, par_index);
2232 queue_reg_save (elem, NULL_RTX, span_offset);
2233 span_offset += GET_MODE_SIZE (GET_MODE (elem));
2234 }
2235 }
2236 break;
2237
2238 default:
2239 gcc_unreachable ();
2240 }
2241 }
2242
2243 /* Record call frame debugging information for INSN, which either sets
2244 SP or FP (adjusting how we calculate the frame address) or saves a
2245 register to the stack. */
2246
2247 static void
2248 dwarf2out_frame_debug (rtx_insn *insn)
2249 {
2250 rtx note, n, pat;
2251 bool handled_one = false;
2252
2253 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2254 switch (REG_NOTE_KIND (note))
2255 {
2256 case REG_FRAME_RELATED_EXPR:
2257 pat = XEXP (note, 0);
2258 goto do_frame_expr;
2259
2260 case REG_CFA_DEF_CFA:
2261 dwarf2out_frame_debug_def_cfa (XEXP (note, 0));
2262 handled_one = true;
2263 break;
2264
2265 case REG_CFA_ADJUST_CFA:
2266 n = XEXP (note, 0);
2267 if (n == NULL)
2268 {
2269 n = PATTERN (insn);
2270 if (GET_CODE (n) == PARALLEL)
2271 n = XVECEXP (n, 0, 0);
2272 }
2273 dwarf2out_frame_debug_adjust_cfa (n);
2274 handled_one = true;
2275 break;
2276
2277 case REG_CFA_OFFSET:
2278 n = XEXP (note, 0);
2279 if (n == NULL)
2280 n = single_set (insn);
2281 dwarf2out_frame_debug_cfa_offset (n);
2282 handled_one = true;
2283 break;
2284
2285 case REG_CFA_REGISTER:
2286 n = XEXP (note, 0);
2287 if (n == NULL)
2288 {
2289 n = PATTERN (insn);
2290 if (GET_CODE (n) == PARALLEL)
2291 n = XVECEXP (n, 0, 0);
2292 }
2293 dwarf2out_frame_debug_cfa_register (n);
2294 handled_one = true;
2295 break;
2296
2297 case REG_CFA_EXPRESSION:
2298 case REG_CFA_VAL_EXPRESSION:
2299 n = XEXP (note, 0);
2300 if (n == NULL)
2301 n = single_set (insn);
2302
2303 if (REG_NOTE_KIND (note) == REG_CFA_EXPRESSION)
2304 dwarf2out_frame_debug_cfa_expression (n);
2305 else
2306 dwarf2out_frame_debug_cfa_val_expression (n);
2307
2308 handled_one = true;
2309 break;
2310
2311 case REG_CFA_RESTORE:
2312 n = XEXP (note, 0);
2313 if (n == NULL)
2314 {
2315 n = PATTERN (insn);
2316 if (GET_CODE (n) == PARALLEL)
2317 n = XVECEXP (n, 0, 0);
2318 n = XEXP (n, 0);
2319 }
2320 dwarf2out_frame_debug_cfa_restore (n);
2321 handled_one = true;
2322 break;
2323
2324 case REG_CFA_SET_VDRAP:
2325 n = XEXP (note, 0);
2326 if (REG_P (n))
2327 {
2328 dw_fde_ref fde = cfun->fde;
2329 if (fde)
2330 {
2331 gcc_assert (fde->vdrap_reg == INVALID_REGNUM);
2332 if (REG_P (n))
2333 fde->vdrap_reg = dwf_regno (n);
2334 }
2335 }
2336 handled_one = true;
2337 break;
2338
2339 case REG_CFA_TOGGLE_RA_MANGLE:
2340 dwarf2out_frame_debug_cfa_toggle_ra_mangle ();
2341 handled_one = true;
2342 break;
2343
2344 case REG_CFA_WINDOW_SAVE:
2345 dwarf2out_frame_debug_cfa_window_save ();
2346 handled_one = true;
2347 break;
2348
2349 case REG_CFA_FLUSH_QUEUE:
2350 /* The actual flush happens elsewhere. */
2351 handled_one = true;
2352 break;
2353
2354 default:
2355 break;
2356 }
2357
2358 if (!handled_one)
2359 {
2360 pat = PATTERN (insn);
2361 do_frame_expr:
2362 dwarf2out_frame_debug_expr (pat);
2363
2364 /* Check again. A parallel can save and update the same register.
2365 We could probably check just once, here, but this is safer than
2366 removing the check at the start of the function. */
2367 if (clobbers_queued_reg_save (pat))
2368 dwarf2out_flush_queued_reg_saves ();
2369 }
2370 }
2371
2372 /* Emit CFI info to change the state from OLD_ROW to NEW_ROW. */
2373
2374 static void
2375 change_cfi_row (dw_cfi_row *old_row, dw_cfi_row *new_row)
2376 {
2377 size_t i, n_old, n_new, n_max;
2378 dw_cfi_ref cfi;
2379
2380 if (new_row->cfa_cfi && !cfi_equal_p (old_row->cfa_cfi, new_row->cfa_cfi))
2381 add_cfi (new_row->cfa_cfi);
2382 else
2383 {
2384 cfi = def_cfa_0 (&old_row->cfa, &new_row->cfa);
2385 if (cfi)
2386 add_cfi (cfi);
2387 }
2388
2389 n_old = vec_safe_length (old_row->reg_save);
2390 n_new = vec_safe_length (new_row->reg_save);
2391 n_max = MAX (n_old, n_new);
2392
2393 for (i = 0; i < n_max; ++i)
2394 {
2395 dw_cfi_ref r_old = NULL, r_new = NULL;
2396
2397 if (i < n_old)
2398 r_old = (*old_row->reg_save)[i];
2399 if (i < n_new)
2400 r_new = (*new_row->reg_save)[i];
2401
2402 if (r_old == r_new)
2403 ;
2404 else if (r_new == NULL)
2405 add_cfi_restore (i);
2406 else if (!cfi_equal_p (r_old, r_new))
2407 add_cfi (r_new);
2408 }
2409
2410 if (!old_row->window_save && new_row->window_save)
2411 {
2412 dw_cfi_ref cfi = new_cfi ();
2413
2414 gcc_assert (!old_row->ra_mangled && !new_row->ra_mangled);
2415 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
2416 add_cfi (cfi);
2417 }
2418
2419 if (old_row->ra_mangled != new_row->ra_mangled)
2420 {
2421 dw_cfi_ref cfi = new_cfi ();
2422
2423 gcc_assert (!old_row->window_save && !new_row->window_save);
2424 /* DW_CFA_GNU_window_save is reused for toggling RA mangle state. */
2425 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
2426 add_cfi (cfi);
2427 }
2428 }
2429
2430 /* Examine CFI and return true if a cfi label and set_loc is needed
2431 beforehand. Even when generating CFI assembler instructions, we
2432 still have to add the cfi to the list so that lookup_cfa_1 works
2433 later on. When -g2 and above we even need to force emitting of
2434 CFI labels and add to list a DW_CFA_set_loc for convert_cfa_to_fb_loc_list
2435 purposes. If we're generating DWARF3 output we use DW_OP_call_frame_cfa
2436 and so don't use convert_cfa_to_fb_loc_list. */
2437
2438 static bool
2439 cfi_label_required_p (dw_cfi_ref cfi)
2440 {
2441 if (!dwarf2out_do_cfi_asm ())
2442 return true;
2443
2444 if (dwarf_version == 2
2445 && debug_info_level > DINFO_LEVEL_TERSE
2446 && dwarf_debuginfo_p ())
2447 {
2448 switch (cfi->dw_cfi_opc)
2449 {
2450 case DW_CFA_def_cfa_offset:
2451 case DW_CFA_def_cfa_offset_sf:
2452 case DW_CFA_def_cfa_register:
2453 case DW_CFA_def_cfa:
2454 case DW_CFA_def_cfa_sf:
2455 case DW_CFA_def_cfa_expression:
2456 case DW_CFA_restore_state:
2457 return true;
2458 default:
2459 return false;
2460 }
2461 }
2462 return false;
2463 }
2464
2465 /* Walk the function, looking for NOTE_INSN_CFI notes. Add the CFIs to the
2466 function's FDE, adding CFI labels and set_loc/advance_loc opcodes as
2467 necessary. */
2468 static void
2469 add_cfis_to_fde (void)
2470 {
2471 dw_fde_ref fde = cfun->fde;
2472 rtx_insn *insn, *next;
2473
2474 for (insn = get_insns (); insn; insn = next)
2475 {
2476 next = NEXT_INSN (insn);
2477
2478 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
2479 fde->dw_fde_switch_cfi_index = vec_safe_length (fde->dw_fde_cfi);
2480
2481 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2482 {
2483 bool required = cfi_label_required_p (NOTE_CFI (insn));
2484 while (next)
2485 if (NOTE_P (next) && NOTE_KIND (next) == NOTE_INSN_CFI)
2486 {
2487 required |= cfi_label_required_p (NOTE_CFI (next));
2488 next = NEXT_INSN (next);
2489 }
2490 else if (active_insn_p (next)
2491 || (NOTE_P (next) && (NOTE_KIND (next)
2492 == NOTE_INSN_SWITCH_TEXT_SECTIONS)))
2493 break;
2494 else
2495 next = NEXT_INSN (next);
2496 if (required)
2497 {
2498 int num = dwarf2out_cfi_label_num;
2499 const char *label = dwarf2out_cfi_label ();
2500 dw_cfi_ref xcfi;
2501
2502 /* Set the location counter to the new label. */
2503 xcfi = new_cfi ();
2504 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
2505 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
2506 vec_safe_push (fde->dw_fde_cfi, xcfi);
2507
2508 rtx_note *tmp = emit_note_before (NOTE_INSN_CFI_LABEL, insn);
2509 NOTE_LABEL_NUMBER (tmp) = num;
2510 }
2511
2512 do
2513 {
2514 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_CFI)
2515 vec_safe_push (fde->dw_fde_cfi, NOTE_CFI (insn));
2516 insn = NEXT_INSN (insn);
2517 }
2518 while (insn != next);
2519 }
2520 }
2521 }
2522
2523 static void dump_cfi_row (FILE *f, dw_cfi_row *row);
2524
2525 /* If LABEL is the start of a trace, then initialize the state of that
2526 trace from CUR_TRACE and CUR_ROW. */
2527
2528 static void
2529 maybe_record_trace_start (rtx_insn *start, rtx_insn *origin)
2530 {
2531 dw_trace_info *ti;
2532
2533 ti = get_trace_info (start);
2534 gcc_assert (ti != NULL);
2535
2536 if (dump_file)
2537 {
2538 fprintf (dump_file, " saw edge from trace %u to %u (via %s %d)\n",
2539 cur_trace->id, ti->id,
2540 (origin ? rtx_name[(int) GET_CODE (origin)] : "fallthru"),
2541 (origin ? INSN_UID (origin) : 0));
2542 }
2543
2544 poly_int64 args_size = cur_trace->end_true_args_size;
2545 if (ti->beg_row == NULL)
2546 {
2547 /* This is the first time we've encountered this trace. Propagate
2548 state across the edge and push the trace onto the work list. */
2549 ti->beg_row = copy_cfi_row (cur_row);
2550 ti->beg_true_args_size = args_size;
2551
2552 ti->cfa_store = cur_trace->cfa_store;
2553 ti->cfa_temp = cur_trace->cfa_temp;
2554 ti->regs_saved_in_regs = cur_trace->regs_saved_in_regs.copy ();
2555
2556 trace_work_list.safe_push (ti);
2557
2558 if (dump_file)
2559 fprintf (dump_file, "\tpush trace %u to worklist\n", ti->id);
2560 }
2561 else
2562 {
2563
2564 /* We ought to have the same state incoming to a given trace no
2565 matter how we arrive at the trace. Anything else means we've
2566 got some kind of optimization error. */
2567 #if CHECKING_P
2568 if (!cfi_row_equal_p (cur_row, ti->beg_row))
2569 {
2570 if (dump_file)
2571 {
2572 fprintf (dump_file, "Inconsistent CFI state!\n");
2573 fprintf (dump_file, "SHOULD have:\n");
2574 dump_cfi_row (dump_file, ti->beg_row);
2575 fprintf (dump_file, "DO have:\n");
2576 dump_cfi_row (dump_file, cur_row);
2577 }
2578
2579 gcc_unreachable ();
2580 }
2581 #endif
2582
2583 /* The args_size is allowed to conflict if it isn't actually used. */
2584 if (maybe_ne (ti->beg_true_args_size, args_size))
2585 ti->args_size_undefined = true;
2586 }
2587 }
2588
2589 /* Similarly, but handle the args_size and CFA reset across EH
2590 and non-local goto edges. */
2591
2592 static void
2593 maybe_record_trace_start_abnormal (rtx_insn *start, rtx_insn *origin)
2594 {
2595 poly_int64 save_args_size, delta;
2596 dw_cfa_location save_cfa;
2597
2598 save_args_size = cur_trace->end_true_args_size;
2599 if (known_eq (save_args_size, 0))
2600 {
2601 maybe_record_trace_start (start, origin);
2602 return;
2603 }
2604
2605 delta = -save_args_size;
2606 cur_trace->end_true_args_size = 0;
2607
2608 save_cfa = cur_row->cfa;
2609 if (cur_row->cfa.reg == dw_stack_pointer_regnum)
2610 {
2611 /* Convert a change in args_size (always a positive in the
2612 direction of stack growth) to a change in stack pointer. */
2613 if (!STACK_GROWS_DOWNWARD)
2614 delta = -delta;
2615
2616 cur_row->cfa.offset += delta;
2617 }
2618
2619 maybe_record_trace_start (start, origin);
2620
2621 cur_trace->end_true_args_size = save_args_size;
2622 cur_row->cfa = save_cfa;
2623 }
2624
2625 /* Propagate CUR_TRACE state to the destinations implied by INSN. */
2626 /* ??? Sadly, this is in large part a duplicate of make_edges. */
2627
2628 static void
2629 create_trace_edges (rtx_insn *insn)
2630 {
2631 rtx tmp;
2632 int i, n;
2633
2634 if (JUMP_P (insn))
2635 {
2636 rtx_jump_table_data *table;
2637
2638 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
2639 return;
2640
2641 if (tablejump_p (insn, NULL, &table))
2642 {
2643 rtvec vec = table->get_labels ();
2644
2645 n = GET_NUM_ELEM (vec);
2646 for (i = 0; i < n; ++i)
2647 {
2648 rtx_insn *lab = as_a <rtx_insn *> (XEXP (RTVEC_ELT (vec, i), 0));
2649 maybe_record_trace_start (lab, insn);
2650 }
2651
2652 /* Handle casesi dispatch insns. */
2653 if ((tmp = tablejump_casesi_pattern (insn)) != NULL_RTX)
2654 {
2655 rtx_insn * lab = label_ref_label (XEXP (SET_SRC (tmp), 2));
2656 maybe_record_trace_start (lab, insn);
2657 }
2658 }
2659 else if (computed_jump_p (insn))
2660 {
2661 rtx_insn *temp;
2662 unsigned int i;
2663 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, temp)
2664 maybe_record_trace_start (temp, insn);
2665 }
2666 else if (returnjump_p (insn))
2667 ;
2668 else if ((tmp = extract_asm_operands (PATTERN (insn))) != NULL)
2669 {
2670 n = ASM_OPERANDS_LABEL_LENGTH (tmp);
2671 for (i = 0; i < n; ++i)
2672 {
2673 rtx_insn *lab =
2674 as_a <rtx_insn *> (XEXP (ASM_OPERANDS_LABEL (tmp, i), 0));
2675 maybe_record_trace_start (lab, insn);
2676 }
2677 }
2678 else
2679 {
2680 rtx_insn *lab = JUMP_LABEL_AS_INSN (insn);
2681 gcc_assert (lab != NULL);
2682 maybe_record_trace_start (lab, insn);
2683 }
2684 }
2685 else if (CALL_P (insn))
2686 {
2687 /* Sibling calls don't have edges inside this function. */
2688 if (SIBLING_CALL_P (insn))
2689 return;
2690
2691 /* Process non-local goto edges. */
2692 if (can_nonlocal_goto (insn))
2693 for (rtx_insn_list *lab = nonlocal_goto_handler_labels;
2694 lab;
2695 lab = lab->next ())
2696 maybe_record_trace_start_abnormal (lab->insn (), insn);
2697 }
2698 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
2699 {
2700 int i, n = seq->len ();
2701 for (i = 0; i < n; ++i)
2702 create_trace_edges (seq->insn (i));
2703 return;
2704 }
2705
2706 /* Process EH edges. */
2707 if (CALL_P (insn) || cfun->can_throw_non_call_exceptions)
2708 {
2709 eh_landing_pad lp = get_eh_landing_pad_from_rtx (insn);
2710 if (lp)
2711 maybe_record_trace_start_abnormal (lp->landing_pad, insn);
2712 }
2713 }
2714
2715 /* A subroutine of scan_trace. Do what needs to be done "after" INSN. */
2716
2717 static void
2718 scan_insn_after (rtx_insn *insn)
2719 {
2720 if (RTX_FRAME_RELATED_P (insn))
2721 dwarf2out_frame_debug (insn);
2722 notice_args_size (insn);
2723 }
2724
2725 /* Scan the trace beginning at INSN and create the CFI notes for the
2726 instructions therein. */
2727
2728 static void
2729 scan_trace (dw_trace_info *trace, bool entry)
2730 {
2731 rtx_insn *prev, *insn = trace->head;
2732 dw_cfa_location this_cfa;
2733
2734 if (dump_file)
2735 fprintf (dump_file, "Processing trace %u : start at %s %d\n",
2736 trace->id, rtx_name[(int) GET_CODE (insn)],
2737 INSN_UID (insn));
2738
2739 trace->end_row = copy_cfi_row (trace->beg_row);
2740 trace->end_true_args_size = trace->beg_true_args_size;
2741
2742 cur_trace = trace;
2743 cur_row = trace->end_row;
2744
2745 this_cfa = cur_row->cfa;
2746 cur_cfa = &this_cfa;
2747
2748 /* If the current function starts with a non-standard incoming frame
2749 sp offset, emit a note before the first instruction. */
2750 if (entry
2751 && DEFAULT_INCOMING_FRAME_SP_OFFSET != INCOMING_FRAME_SP_OFFSET)
2752 {
2753 add_cfi_insn = insn;
2754 gcc_assert (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_DELETED);
2755 this_cfa.offset = INCOMING_FRAME_SP_OFFSET;
2756 def_cfa_1 (&this_cfa);
2757 }
2758
2759 for (prev = insn, insn = NEXT_INSN (insn);
2760 insn;
2761 prev = insn, insn = NEXT_INSN (insn))
2762 {
2763 rtx_insn *control;
2764
2765 /* Do everything that happens "before" the insn. */
2766 add_cfi_insn = prev;
2767
2768 /* Notice the end of a trace. */
2769 if (BARRIER_P (insn))
2770 {
2771 /* Don't bother saving the unneeded queued registers at all. */
2772 queued_reg_saves.truncate (0);
2773 break;
2774 }
2775 if (save_point_p (insn))
2776 {
2777 /* Propagate across fallthru edges. */
2778 dwarf2out_flush_queued_reg_saves ();
2779 maybe_record_trace_start (insn, NULL);
2780 break;
2781 }
2782
2783 if (DEBUG_INSN_P (insn) || !inside_basic_block_p (insn))
2784 continue;
2785
2786 /* Handle all changes to the row state. Sequences require special
2787 handling for the positioning of the notes. */
2788 if (rtx_sequence *pat = dyn_cast <rtx_sequence *> (PATTERN (insn)))
2789 {
2790 rtx_insn *elt;
2791 int i, n = pat->len ();
2792
2793 control = pat->insn (0);
2794 if (can_throw_internal (control))
2795 notice_eh_throw (control);
2796 dwarf2out_flush_queued_reg_saves ();
2797
2798 if (JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control))
2799 {
2800 /* ??? Hopefully multiple delay slots are not annulled. */
2801 gcc_assert (n == 2);
2802 gcc_assert (!RTX_FRAME_RELATED_P (control));
2803 gcc_assert (!find_reg_note (control, REG_ARGS_SIZE, NULL));
2804
2805 elt = pat->insn (1);
2806
2807 if (INSN_FROM_TARGET_P (elt))
2808 {
2809 cfi_vec save_row_reg_save;
2810
2811 /* If ELT is an instruction from target of an annulled
2812 branch, the effects are for the target only and so
2813 the args_size and CFA along the current path
2814 shouldn't change. */
2815 add_cfi_insn = NULL;
2816 poly_int64 restore_args_size = cur_trace->end_true_args_size;
2817 cur_cfa = &cur_row->cfa;
2818 save_row_reg_save = vec_safe_copy (cur_row->reg_save);
2819
2820 scan_insn_after (elt);
2821
2822 /* ??? Should we instead save the entire row state? */
2823 gcc_assert (!queued_reg_saves.length ());
2824
2825 create_trace_edges (control);
2826
2827 cur_trace->end_true_args_size = restore_args_size;
2828 cur_row->cfa = this_cfa;
2829 cur_row->reg_save = save_row_reg_save;
2830 cur_cfa = &this_cfa;
2831 }
2832 else
2833 {
2834 /* If ELT is a annulled branch-taken instruction (i.e.
2835 executed only when branch is not taken), the args_size
2836 and CFA should not change through the jump. */
2837 create_trace_edges (control);
2838
2839 /* Update and continue with the trace. */
2840 add_cfi_insn = insn;
2841 scan_insn_after (elt);
2842 def_cfa_1 (&this_cfa);
2843 }
2844 continue;
2845 }
2846
2847 /* The insns in the delay slot should all be considered to happen
2848 "before" a call insn. Consider a call with a stack pointer
2849 adjustment in the delay slot. The backtrace from the callee
2850 should include the sp adjustment. Unfortunately, that leaves
2851 us with an unavoidable unwinding error exactly at the call insn
2852 itself. For jump insns we'd prefer to avoid this error by
2853 placing the notes after the sequence. */
2854 if (JUMP_P (control))
2855 add_cfi_insn = insn;
2856
2857 for (i = 1; i < n; ++i)
2858 {
2859 elt = pat->insn (i);
2860 scan_insn_after (elt);
2861 }
2862
2863 /* Make sure any register saves are visible at the jump target. */
2864 dwarf2out_flush_queued_reg_saves ();
2865 any_cfis_emitted = false;
2866
2867 /* However, if there is some adjustment on the call itself, e.g.
2868 a call_pop, that action should be considered to happen after
2869 the call returns. */
2870 add_cfi_insn = insn;
2871 scan_insn_after (control);
2872 }
2873 else
2874 {
2875 /* Flush data before calls and jumps, and of course if necessary. */
2876 if (can_throw_internal (insn))
2877 {
2878 notice_eh_throw (insn);
2879 dwarf2out_flush_queued_reg_saves ();
2880 }
2881 else if (!NONJUMP_INSN_P (insn)
2882 || clobbers_queued_reg_save (insn)
2883 || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2884 dwarf2out_flush_queued_reg_saves ();
2885 any_cfis_emitted = false;
2886
2887 add_cfi_insn = insn;
2888 scan_insn_after (insn);
2889 control = insn;
2890 }
2891
2892 /* Between frame-related-p and args_size we might have otherwise
2893 emitted two cfa adjustments. Do it now. */
2894 def_cfa_1 (&this_cfa);
2895
2896 /* Minimize the number of advances by emitting the entire queue
2897 once anything is emitted. */
2898 if (any_cfis_emitted
2899 || find_reg_note (insn, REG_CFA_FLUSH_QUEUE, NULL))
2900 dwarf2out_flush_queued_reg_saves ();
2901
2902 /* Note that a test for control_flow_insn_p does exactly the
2903 same tests as are done to actually create the edges. So
2904 always call the routine and let it not create edges for
2905 non-control-flow insns. */
2906 create_trace_edges (control);
2907 }
2908
2909 gcc_assert (!cfun->fde || !cfun->fde->rule18);
2910 add_cfi_insn = NULL;
2911 cur_row = NULL;
2912 cur_trace = NULL;
2913 cur_cfa = NULL;
2914 }
2915
2916 /* Scan the function and create the initial set of CFI notes. */
2917
2918 static void
2919 create_cfi_notes (void)
2920 {
2921 dw_trace_info *ti;
2922
2923 gcc_checking_assert (!queued_reg_saves.exists ());
2924 gcc_checking_assert (!trace_work_list.exists ());
2925
2926 /* Always begin at the entry trace. */
2927 ti = &trace_info[0];
2928 scan_trace (ti, true);
2929
2930 while (!trace_work_list.is_empty ())
2931 {
2932 ti = trace_work_list.pop ();
2933 scan_trace (ti, false);
2934 }
2935
2936 queued_reg_saves.release ();
2937 trace_work_list.release ();
2938 }
2939
2940 /* Return the insn before the first NOTE_INSN_CFI after START. */
2941
2942 static rtx_insn *
2943 before_next_cfi_note (rtx_insn *start)
2944 {
2945 rtx_insn *prev = start;
2946 while (start)
2947 {
2948 if (NOTE_P (start) && NOTE_KIND (start) == NOTE_INSN_CFI)
2949 return prev;
2950 prev = start;
2951 start = NEXT_INSN (start);
2952 }
2953 gcc_unreachable ();
2954 }
2955
2956 /* Insert CFI notes between traces to properly change state between them. */
2957
2958 static void
2959 connect_traces (void)
2960 {
2961 unsigned i, n;
2962 dw_trace_info *prev_ti, *ti;
2963
2964 /* ??? Ideally, we should have both queued and processed every trace.
2965 However the current representation of constant pools on various targets
2966 is indistinguishable from unreachable code. Assume for the moment that
2967 we can simply skip over such traces. */
2968 /* ??? Consider creating a DATA_INSN rtx code to indicate that
2969 these are not "real" instructions, and should not be considered.
2970 This could be generically useful for tablejump data as well. */
2971 /* Remove all unprocessed traces from the list. */
2972 unsigned ix, ix2;
2973 VEC_ORDERED_REMOVE_IF_FROM_TO (trace_info, ix, ix2, ti, 1,
2974 trace_info.length (), ti->beg_row == NULL);
2975 FOR_EACH_VEC_ELT (trace_info, ix, ti)
2976 gcc_assert (ti->end_row != NULL);
2977
2978 /* Work from the end back to the beginning. This lets us easily insert
2979 remember/restore_state notes in the correct order wrt other notes. */
2980 n = trace_info.length ();
2981 prev_ti = &trace_info[n - 1];
2982 for (i = n - 1; i > 0; --i)
2983 {
2984 dw_cfi_row *old_row;
2985
2986 ti = prev_ti;
2987 prev_ti = &trace_info[i - 1];
2988
2989 add_cfi_insn = ti->head;
2990
2991 /* In dwarf2out_switch_text_section, we'll begin a new FDE
2992 for the portion of the function in the alternate text
2993 section. The row state at the very beginning of that
2994 new FDE will be exactly the row state from the CIE. */
2995 if (ti->switch_sections)
2996 old_row = cie_cfi_row;
2997 else
2998 {
2999 old_row = prev_ti->end_row;
3000 /* If there's no change from the previous end state, fine. */
3001 if (cfi_row_equal_p (old_row, ti->beg_row))
3002 ;
3003 /* Otherwise check for the common case of sharing state with
3004 the beginning of an epilogue, but not the end. Insert
3005 remember/restore opcodes in that case. */
3006 else if (cfi_row_equal_p (prev_ti->beg_row, ti->beg_row))
3007 {
3008 dw_cfi_ref cfi;
3009
3010 /* Note that if we blindly insert the remember at the
3011 start of the trace, we can wind up increasing the
3012 size of the unwind info due to extra advance opcodes.
3013 Instead, put the remember immediately before the next
3014 state change. We know there must be one, because the
3015 state at the beginning and head of the trace differ. */
3016 add_cfi_insn = before_next_cfi_note (prev_ti->head);
3017 cfi = new_cfi ();
3018 cfi->dw_cfi_opc = DW_CFA_remember_state;
3019 add_cfi (cfi);
3020
3021 add_cfi_insn = ti->head;
3022 cfi = new_cfi ();
3023 cfi->dw_cfi_opc = DW_CFA_restore_state;
3024 add_cfi (cfi);
3025
3026 /* If the target unwinder does not save the CFA as part of the
3027 register state, we need to restore it separately. */
3028 if (targetm.asm_out.should_restore_cfa_state ()
3029 && (cfi = def_cfa_0 (&old_row->cfa, &ti->beg_row->cfa)))
3030 add_cfi (cfi);
3031
3032 old_row = prev_ti->beg_row;
3033 }
3034 /* Otherwise, we'll simply change state from the previous end. */
3035 }
3036
3037 change_cfi_row (old_row, ti->beg_row);
3038
3039 if (dump_file && add_cfi_insn != ti->head)
3040 {
3041 rtx_insn *note;
3042
3043 fprintf (dump_file, "Fixup between trace %u and %u:\n",
3044 prev_ti->id, ti->id);
3045
3046 note = ti->head;
3047 do
3048 {
3049 note = NEXT_INSN (note);
3050 gcc_assert (NOTE_P (note) && NOTE_KIND (note) == NOTE_INSN_CFI);
3051 output_cfi_directive (dump_file, NOTE_CFI (note));
3052 }
3053 while (note != add_cfi_insn);
3054 }
3055 }
3056
3057 /* Connect args_size between traces that have can_throw_internal insns. */
3058 if (cfun->eh->lp_array)
3059 {
3060 poly_int64 prev_args_size = 0;
3061
3062 for (i = 0; i < n; ++i)
3063 {
3064 ti = &trace_info[i];
3065
3066 if (ti->switch_sections)
3067 prev_args_size = 0;
3068
3069 if (ti->eh_head == NULL)
3070 continue;
3071
3072 /* We require either the incoming args_size values to match or the
3073 presence of an insn setting it before the first EH insn. */
3074 gcc_assert (!ti->args_size_undefined || ti->args_size_defined_for_eh);
3075
3076 /* In the latter case, we force the creation of a CFI note. */
3077 if (ti->args_size_undefined
3078 || maybe_ne (ti->beg_delay_args_size, prev_args_size))
3079 {
3080 /* ??? Search back to previous CFI note. */
3081 add_cfi_insn = PREV_INSN (ti->eh_head);
3082 add_cfi_args_size (ti->beg_delay_args_size);
3083 }
3084
3085 prev_args_size = ti->end_delay_args_size;
3086 }
3087 }
3088 }
3089
3090 /* Set up the pseudo-cfg of instruction traces, as described at the
3091 block comment at the top of the file. */
3092
3093 static void
3094 create_pseudo_cfg (void)
3095 {
3096 bool saw_barrier, switch_sections;
3097 dw_trace_info ti;
3098 rtx_insn *insn;
3099 unsigned i;
3100
3101 /* The first trace begins at the start of the function,
3102 and begins with the CIE row state. */
3103 trace_info.create (16);
3104 memset (&ti, 0, sizeof (ti));
3105 ti.head = get_insns ();
3106 ti.beg_row = cie_cfi_row;
3107 ti.cfa_store = cie_cfi_row->cfa;
3108 ti.cfa_temp.reg.set_by_dwreg (INVALID_REGNUM);
3109 trace_info.quick_push (ti);
3110
3111 if (cie_return_save)
3112 ti.regs_saved_in_regs.safe_push (*cie_return_save);
3113
3114 /* Walk all the insns, collecting start of trace locations. */
3115 saw_barrier = false;
3116 switch_sections = false;
3117 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3118 {
3119 if (BARRIER_P (insn))
3120 saw_barrier = true;
3121 else if (NOTE_P (insn)
3122 && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
3123 {
3124 /* We should have just seen a barrier. */
3125 gcc_assert (saw_barrier);
3126 switch_sections = true;
3127 }
3128 /* Watch out for save_point notes between basic blocks.
3129 In particular, a note after a barrier. Do not record these,
3130 delaying trace creation until the label. */
3131 else if (save_point_p (insn)
3132 && (LABEL_P (insn) || !saw_barrier))
3133 {
3134 memset (&ti, 0, sizeof (ti));
3135 ti.head = insn;
3136 ti.switch_sections = switch_sections;
3137 ti.id = trace_info.length ();
3138 trace_info.safe_push (ti);
3139
3140 saw_barrier = false;
3141 switch_sections = false;
3142 }
3143 }
3144
3145 /* Create the trace index after we've finished building trace_info,
3146 avoiding stale pointer problems due to reallocation. */
3147 trace_index
3148 = new hash_table<trace_info_hasher> (trace_info.length ());
3149 dw_trace_info *tp;
3150 FOR_EACH_VEC_ELT (trace_info, i, tp)
3151 {
3152 dw_trace_info **slot;
3153
3154 if (dump_file)
3155 fprintf (dump_file, "Creating trace %u : start at %s %d%s\n", tp->id,
3156 rtx_name[(int) GET_CODE (tp->head)], INSN_UID (tp->head),
3157 tp->switch_sections ? " (section switch)" : "");
3158
3159 slot = trace_index->find_slot_with_hash (tp, INSN_UID (tp->head), INSERT);
3160 gcc_assert (*slot == NULL);
3161 *slot = tp;
3162 }
3163 }
3164
3165 /* Record the initial position of the return address. RTL is
3166 INCOMING_RETURN_ADDR_RTX. */
3167
3168 static void
3169 initial_return_save (rtx rtl)
3170 {
3171 struct cfa_reg reg;
3172 reg.set_by_dwreg (INVALID_REGNUM);
3173 poly_int64 offset = 0;
3174
3175 switch (GET_CODE (rtl))
3176 {
3177 case REG:
3178 /* RA is in a register. */
3179 reg = dwf_cfa_reg (rtl);
3180 break;
3181
3182 case MEM:
3183 /* RA is on the stack. */
3184 rtl = XEXP (rtl, 0);
3185 switch (GET_CODE (rtl))
3186 {
3187 case REG:
3188 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
3189 offset = 0;
3190 break;
3191
3192 case PLUS:
3193 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
3194 offset = rtx_to_poly_int64 (XEXP (rtl, 1));
3195 break;
3196
3197 case MINUS:
3198 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
3199 offset = -rtx_to_poly_int64 (XEXP (rtl, 1));
3200 break;
3201
3202 default:
3203 gcc_unreachable ();
3204 }
3205
3206 break;
3207
3208 case PLUS:
3209 /* The return address is at some offset from any value we can
3210 actually load. For instance, on the SPARC it is in %i7+8. Just
3211 ignore the offset for now; it doesn't matter for unwinding frames. */
3212 gcc_assert (CONST_INT_P (XEXP (rtl, 1)));
3213 initial_return_save (XEXP (rtl, 0));
3214 return;
3215
3216 default:
3217 gcc_unreachable ();
3218 }
3219
3220 if (reg.reg != DWARF_FRAME_RETURN_COLUMN)
3221 {
3222 if (reg.reg != INVALID_REGNUM)
3223 record_reg_saved_in_reg (rtl, pc_rtx);
3224 reg_save (DWARF_FRAME_RETURN_COLUMN, reg, offset - cur_row->cfa.offset);
3225 }
3226 }
3227
3228 static void
3229 create_cie_data (void)
3230 {
3231 dw_cfa_location loc;
3232 dw_trace_info cie_trace;
3233
3234 dw_stack_pointer_regnum = dwf_cfa_reg (stack_pointer_rtx);
3235
3236 memset (&cie_trace, 0, sizeof (cie_trace));
3237 cur_trace = &cie_trace;
3238
3239 add_cfi_vec = &cie_cfi_vec;
3240 cie_cfi_row = cur_row = new_cfi_row ();
3241
3242 /* On entry, the Canonical Frame Address is at SP. */
3243 memset (&loc, 0, sizeof (loc));
3244 loc.reg = dw_stack_pointer_regnum;
3245 /* create_cie_data is called just once per TU, and when using .cfi_startproc
3246 is even done by the assembler rather than the compiler. If the target
3247 has different incoming frame sp offsets depending on what kind of
3248 function it is, use a single constant offset for the target and
3249 if needed, adjust before the first instruction in insn stream. */
3250 loc.offset = DEFAULT_INCOMING_FRAME_SP_OFFSET;
3251 def_cfa_1 (&loc);
3252
3253 if (targetm.debug_unwind_info () == UI_DWARF2
3254 || targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
3255 {
3256 initial_return_save (INCOMING_RETURN_ADDR_RTX);
3257
3258 /* For a few targets, we have the return address incoming into a
3259 register, but choose a different return column. This will result
3260 in a DW_CFA_register for the return, and an entry in
3261 regs_saved_in_regs to match. If the target later stores that
3262 return address register to the stack, we want to be able to emit
3263 the DW_CFA_offset against the return column, not the intermediate
3264 save register. Save the contents of regs_saved_in_regs so that
3265 we can re-initialize it at the start of each function. */
3266 switch (cie_trace.regs_saved_in_regs.length ())
3267 {
3268 case 0:
3269 break;
3270 case 1:
3271 cie_return_save = ggc_alloc<reg_saved_in_data> ();
3272 *cie_return_save = cie_trace.regs_saved_in_regs[0];
3273 cie_trace.regs_saved_in_regs.release ();
3274 break;
3275 default:
3276 gcc_unreachable ();
3277 }
3278 }
3279
3280 add_cfi_vec = NULL;
3281 cur_row = NULL;
3282 cur_trace = NULL;
3283 }
3284
3285 /* Annotate the function with NOTE_INSN_CFI notes to record the CFI
3286 state at each location within the function. These notes will be
3287 emitted during pass_final. */
3288
3289 static unsigned int
3290 execute_dwarf2_frame (void)
3291 {
3292 /* Different HARD_FRAME_POINTER_REGNUM might coexist in the same file. */
3293 dw_frame_pointer_regnum = dwf_cfa_reg (hard_frame_pointer_rtx);
3294
3295 /* The first time we're called, compute the incoming frame state. */
3296 if (cie_cfi_vec == NULL)
3297 create_cie_data ();
3298
3299 dwarf2out_alloc_current_fde ();
3300
3301 create_pseudo_cfg ();
3302
3303 /* Do the work. */
3304 create_cfi_notes ();
3305 connect_traces ();
3306 add_cfis_to_fde ();
3307
3308 /* Free all the data we allocated. */
3309 {
3310 size_t i;
3311 dw_trace_info *ti;
3312
3313 FOR_EACH_VEC_ELT (trace_info, i, ti)
3314 ti->regs_saved_in_regs.release ();
3315 }
3316 trace_info.release ();
3317
3318 delete trace_index;
3319 trace_index = NULL;
3320
3321 return 0;
3322 }
3323 \f
3324 /* Convert a DWARF call frame info. operation to its string name */
3325
3326 static const char *
3327 dwarf_cfi_name (unsigned int cfi_opc)
3328 {
3329 const char *name = get_DW_CFA_name (cfi_opc);
3330
3331 if (name != NULL)
3332 return name;
3333
3334 return "DW_CFA_<unknown>";
3335 }
3336
3337 /* This routine will generate the correct assembly data for a location
3338 description based on a cfi entry with a complex address. */
3339
3340 static void
3341 output_cfa_loc (dw_cfi_ref cfi, int for_eh)
3342 {
3343 dw_loc_descr_ref loc;
3344 unsigned long size;
3345
3346 if (cfi->dw_cfi_opc == DW_CFA_expression
3347 || cfi->dw_cfi_opc == DW_CFA_val_expression)
3348 {
3349 unsigned r =
3350 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3351 dw2_asm_output_data (1, r, NULL);
3352 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
3353 }
3354 else
3355 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3356
3357 /* Output the size of the block. */
3358 size = size_of_locs (loc);
3359 dw2_asm_output_data_uleb128 (size, NULL);
3360
3361 /* Now output the operations themselves. */
3362 output_loc_sequence (loc, for_eh);
3363 }
3364
3365 /* Similar, but used for .cfi_escape. */
3366
3367 static void
3368 output_cfa_loc_raw (dw_cfi_ref cfi)
3369 {
3370 dw_loc_descr_ref loc;
3371 unsigned long size;
3372
3373 if (cfi->dw_cfi_opc == DW_CFA_expression
3374 || cfi->dw_cfi_opc == DW_CFA_val_expression)
3375 {
3376 unsigned r =
3377 DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3378 fprintf (asm_out_file, "%#x,", r);
3379 loc = cfi->dw_cfi_oprnd2.dw_cfi_loc;
3380 }
3381 else
3382 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3383
3384 /* Output the size of the block. */
3385 size = size_of_locs (loc);
3386 dw2_asm_output_data_uleb128_raw (size);
3387 fputc (',', asm_out_file);
3388
3389 /* Now output the operations themselves. */
3390 output_loc_sequence_raw (loc);
3391 }
3392
3393 /* Output a Call Frame Information opcode and its operand(s). */
3394
3395 void
3396 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
3397 {
3398 unsigned long r;
3399 HOST_WIDE_INT off;
3400
3401 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
3402 dw2_asm_output_data (1, (cfi->dw_cfi_opc
3403 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
3404 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
3405 ((unsigned HOST_WIDE_INT)
3406 cfi->dw_cfi_oprnd1.dw_cfi_offset));
3407 else if (cfi->dw_cfi_opc == DW_CFA_offset)
3408 {
3409 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3410 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3411 "DW_CFA_offset, column %#lx", r);
3412 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3413 dw2_asm_output_data_uleb128 (off, NULL);
3414 }
3415 else if (cfi->dw_cfi_opc == DW_CFA_restore)
3416 {
3417 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3418 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
3419 "DW_CFA_restore, column %#lx", r);
3420 }
3421 else
3422 {
3423 dw2_asm_output_data (1, cfi->dw_cfi_opc,
3424 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
3425
3426 switch (cfi->dw_cfi_opc)
3427 {
3428 case DW_CFA_set_loc:
3429 if (for_eh)
3430 dw2_asm_output_encoded_addr_rtx (
3431 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
3432 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
3433 false, NULL);
3434 else
3435 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
3436 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
3437 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3438 break;
3439
3440 case DW_CFA_advance_loc1:
3441 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3442 fde->dw_fde_current_label, NULL);
3443 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3444 break;
3445
3446 case DW_CFA_advance_loc2:
3447 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3448 fde->dw_fde_current_label, NULL);
3449 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3450 break;
3451
3452 case DW_CFA_advance_loc4:
3453 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3454 fde->dw_fde_current_label, NULL);
3455 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3456 break;
3457
3458 case DW_CFA_MIPS_advance_loc8:
3459 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
3460 fde->dw_fde_current_label, NULL);
3461 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
3462 break;
3463
3464 case DW_CFA_offset_extended:
3465 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3466 dw2_asm_output_data_uleb128 (r, NULL);
3467 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3468 dw2_asm_output_data_uleb128 (off, NULL);
3469 break;
3470
3471 case DW_CFA_def_cfa:
3472 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3473 dw2_asm_output_data_uleb128 (r, NULL);
3474 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
3475 break;
3476
3477 case DW_CFA_offset_extended_sf:
3478 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3479 dw2_asm_output_data_uleb128 (r, NULL);
3480 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3481 dw2_asm_output_data_sleb128 (off, NULL);
3482 break;
3483
3484 case DW_CFA_def_cfa_sf:
3485 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3486 dw2_asm_output_data_uleb128 (r, NULL);
3487 off = div_data_align (cfi->dw_cfi_oprnd2.dw_cfi_offset);
3488 dw2_asm_output_data_sleb128 (off, NULL);
3489 break;
3490
3491 case DW_CFA_restore_extended:
3492 case DW_CFA_undefined:
3493 case DW_CFA_same_value:
3494 case DW_CFA_def_cfa_register:
3495 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3496 dw2_asm_output_data_uleb128 (r, NULL);
3497 break;
3498
3499 case DW_CFA_register:
3500 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
3501 dw2_asm_output_data_uleb128 (r, NULL);
3502 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
3503 dw2_asm_output_data_uleb128 (r, NULL);
3504 break;
3505
3506 case DW_CFA_def_cfa_offset:
3507 case DW_CFA_GNU_args_size:
3508 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
3509 break;
3510
3511 case DW_CFA_def_cfa_offset_sf:
3512 off = div_data_align (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3513 dw2_asm_output_data_sleb128 (off, NULL);
3514 break;
3515
3516 case DW_CFA_GNU_window_save:
3517 break;
3518
3519 case DW_CFA_def_cfa_expression:
3520 case DW_CFA_expression:
3521 case DW_CFA_val_expression:
3522 output_cfa_loc (cfi, for_eh);
3523 break;
3524
3525 case DW_CFA_GNU_negative_offset_extended:
3526 /* Obsoleted by DW_CFA_offset_extended_sf. */
3527 gcc_unreachable ();
3528
3529 default:
3530 break;
3531 }
3532 }
3533 }
3534
3535 /* Similar, but do it via assembler directives instead. */
3536
3537 void
3538 output_cfi_directive (FILE *f, dw_cfi_ref cfi)
3539 {
3540 unsigned long r, r2;
3541
3542 switch (cfi->dw_cfi_opc)
3543 {
3544 case DW_CFA_advance_loc:
3545 case DW_CFA_advance_loc1:
3546 case DW_CFA_advance_loc2:
3547 case DW_CFA_advance_loc4:
3548 case DW_CFA_MIPS_advance_loc8:
3549 case DW_CFA_set_loc:
3550 /* Should only be created in a code path not followed when emitting
3551 via directives. The assembler is going to take care of this for
3552 us. But this routines is also used for debugging dumps, so
3553 print something. */
3554 gcc_assert (f != asm_out_file);
3555 fprintf (f, "\t.cfi_advance_loc\n");
3556 break;
3557
3558 case DW_CFA_offset:
3559 case DW_CFA_offset_extended:
3560 case DW_CFA_offset_extended_sf:
3561 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3562 fprintf (f, "\t.cfi_offset %lu, " HOST_WIDE_INT_PRINT_DEC"\n",
3563 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3564 break;
3565
3566 case DW_CFA_restore:
3567 case DW_CFA_restore_extended:
3568 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3569 fprintf (f, "\t.cfi_restore %lu\n", r);
3570 break;
3571
3572 case DW_CFA_undefined:
3573 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3574 fprintf (f, "\t.cfi_undefined %lu\n", r);
3575 break;
3576
3577 case DW_CFA_same_value:
3578 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3579 fprintf (f, "\t.cfi_same_value %lu\n", r);
3580 break;
3581
3582 case DW_CFA_def_cfa:
3583 case DW_CFA_def_cfa_sf:
3584 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3585 fprintf (f, "\t.cfi_def_cfa %lu, " HOST_WIDE_INT_PRINT_DEC"\n",
3586 r, cfi->dw_cfi_oprnd2.dw_cfi_offset);
3587 break;
3588
3589 case DW_CFA_def_cfa_register:
3590 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3591 fprintf (f, "\t.cfi_def_cfa_register %lu\n", r);
3592 break;
3593
3594 case DW_CFA_register:
3595 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, 1);
3596 r2 = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, 1);
3597 fprintf (f, "\t.cfi_register %lu, %lu\n", r, r2);
3598 break;
3599
3600 case DW_CFA_def_cfa_offset:
3601 case DW_CFA_def_cfa_offset_sf:
3602 fprintf (f, "\t.cfi_def_cfa_offset "
3603 HOST_WIDE_INT_PRINT_DEC"\n",
3604 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3605 break;
3606
3607 case DW_CFA_remember_state:
3608 fprintf (f, "\t.cfi_remember_state\n");
3609 break;
3610 case DW_CFA_restore_state:
3611 fprintf (f, "\t.cfi_restore_state\n");
3612 break;
3613
3614 case DW_CFA_GNU_args_size:
3615 if (f == asm_out_file)
3616 {
3617 fprintf (f, "\t.cfi_escape %#x,", DW_CFA_GNU_args_size);
3618 dw2_asm_output_data_uleb128_raw (cfi->dw_cfi_oprnd1.dw_cfi_offset);
3619 if (flag_debug_asm)
3620 fprintf (f, "\t%s args_size " HOST_WIDE_INT_PRINT_DEC,
3621 ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_offset);
3622 fputc ('\n', f);
3623 }
3624 else
3625 {
3626 fprintf (f, "\t.cfi_GNU_args_size " HOST_WIDE_INT_PRINT_DEC "\n",
3627 cfi->dw_cfi_oprnd1.dw_cfi_offset);
3628 }
3629 break;
3630
3631 case DW_CFA_GNU_window_save:
3632 fprintf (f, "\t.cfi_window_save\n");
3633 break;
3634
3635 case DW_CFA_def_cfa_expression:
3636 case DW_CFA_expression:
3637 case DW_CFA_val_expression:
3638 if (f != asm_out_file)
3639 {
3640 fprintf (f, "\t.cfi_%scfa_%sexpression ...\n",
3641 cfi->dw_cfi_opc == DW_CFA_def_cfa_expression ? "def_" : "",
3642 cfi->dw_cfi_opc == DW_CFA_val_expression ? "val_" : "");
3643 break;
3644 }
3645 fprintf (f, "\t.cfi_escape %#x,", cfi->dw_cfi_opc);
3646 output_cfa_loc_raw (cfi);
3647 fputc ('\n', f);
3648 break;
3649
3650 default:
3651 gcc_unreachable ();
3652 }
3653 }
3654
3655 void
3656 dwarf2out_emit_cfi (dw_cfi_ref cfi)
3657 {
3658 if (dwarf2out_do_cfi_asm ())
3659 output_cfi_directive (asm_out_file, cfi);
3660 }
3661
3662 static void
3663 dump_cfi_row (FILE *f, dw_cfi_row *row)
3664 {
3665 dw_cfi_ref cfi;
3666 unsigned i;
3667
3668 cfi = row->cfa_cfi;
3669 if (!cfi)
3670 {
3671 dw_cfa_location dummy;
3672 memset (&dummy, 0, sizeof (dummy));
3673 dummy.reg.set_by_dwreg (INVALID_REGNUM);
3674 cfi = def_cfa_0 (&dummy, &row->cfa);
3675 }
3676 output_cfi_directive (f, cfi);
3677
3678 FOR_EACH_VEC_SAFE_ELT (row->reg_save, i, cfi)
3679 if (cfi)
3680 output_cfi_directive (f, cfi);
3681 }
3682
3683 void debug_cfi_row (dw_cfi_row *row);
3684
3685 void
3686 debug_cfi_row (dw_cfi_row *row)
3687 {
3688 dump_cfi_row (stderr, row);
3689 }
3690 \f
3691
3692 /* Save the result of dwarf2out_do_frame across PCH.
3693 This variable is tri-state, with 0 unset, >0 true, <0 false. */
3694 static GTY(()) signed char saved_do_cfi_asm = 0;
3695
3696 /* Decide whether to emit EH frame unwind information for the current
3697 translation unit. */
3698
3699 bool
3700 dwarf2out_do_eh_frame (void)
3701 {
3702 return
3703 (flag_unwind_tables || flag_exceptions)
3704 && targetm_common.except_unwind_info (&global_options) == UI_DWARF2;
3705 }
3706
3707 /* Decide whether we want to emit frame unwind information for the current
3708 translation unit. */
3709
3710 bool
3711 dwarf2out_do_frame (void)
3712 {
3713 /* We want to emit correct CFA location expressions or lists, so we
3714 have to return true if we're going to generate debug info, even if
3715 we're not going to output frame or unwind info. */
3716 if (dwarf_debuginfo_p () || dwarf_based_debuginfo_p ())
3717 return true;
3718
3719 if (saved_do_cfi_asm > 0)
3720 return true;
3721
3722 if (targetm.debug_unwind_info () == UI_DWARF2)
3723 return true;
3724
3725 if (dwarf2out_do_eh_frame ())
3726 return true;
3727
3728 return false;
3729 }
3730
3731 /* Decide whether to emit frame unwind via assembler directives. */
3732
3733 bool
3734 dwarf2out_do_cfi_asm (void)
3735 {
3736 int enc;
3737
3738 if (saved_do_cfi_asm != 0)
3739 return saved_do_cfi_asm > 0;
3740
3741 /* Assume failure for a moment. */
3742 saved_do_cfi_asm = -1;
3743
3744 if (!flag_dwarf2_cfi_asm || !dwarf2out_do_frame ())
3745 return false;
3746 if (!HAVE_GAS_CFI_PERSONALITY_DIRECTIVE)
3747 return false;
3748
3749 /* Make sure the personality encoding is one the assembler can support.
3750 In particular, aligned addresses can't be handled. */
3751 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,/*global=*/1);
3752 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3753 return false;
3754 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,/*global=*/0);
3755 if ((enc & 0x70) != 0 && (enc & 0x70) != DW_EH_PE_pcrel)
3756 return false;
3757
3758 /* If we can't get the assembler to emit only .debug_frame, and we don't need
3759 dwarf2 unwind info for exceptions, then emit .debug_frame by hand. */
3760 if (!HAVE_GAS_CFI_SECTIONS_DIRECTIVE && !dwarf2out_do_eh_frame ())
3761 return false;
3762
3763 /* Success! */
3764 saved_do_cfi_asm = 1;
3765 return true;
3766 }
3767
3768 namespace {
3769
3770 const pass_data pass_data_dwarf2_frame =
3771 {
3772 RTL_PASS, /* type */
3773 "dwarf2", /* name */
3774 OPTGROUP_NONE, /* optinfo_flags */
3775 TV_FINAL, /* tv_id */
3776 0, /* properties_required */
3777 0, /* properties_provided */
3778 0, /* properties_destroyed */
3779 0, /* todo_flags_start */
3780 0, /* todo_flags_finish */
3781 };
3782
3783 class pass_dwarf2_frame : public rtl_opt_pass
3784 {
3785 public:
3786 pass_dwarf2_frame (gcc::context *ctxt)
3787 : rtl_opt_pass (pass_data_dwarf2_frame, ctxt)
3788 {}
3789
3790 /* opt_pass methods: */
3791 bool gate (function *) final override;
3792 unsigned int execute (function *) final override
3793 {
3794 return execute_dwarf2_frame ();
3795 }
3796
3797 }; // class pass_dwarf2_frame
3798
3799 bool
3800 pass_dwarf2_frame::gate (function *)
3801 {
3802 /* Targets which still implement the prologue in assembler text
3803 cannot use the generic dwarf2 unwinding. */
3804 if (!targetm.have_prologue ())
3805 return false;
3806
3807 /* ??? What to do for UI_TARGET unwinding? They might be able to benefit
3808 from the optimized shrink-wrapping annotations that we will compute.
3809 For now, only produce the CFI notes for dwarf2. */
3810 return dwarf2out_do_frame ();
3811 }
3812
3813 } // anon namespace
3814
3815 rtl_opt_pass *
3816 make_pass_dwarf2_frame (gcc::context *ctxt)
3817 {
3818 return new pass_dwarf2_frame (ctxt);
3819 }
3820
3821 #include "gt-dwarf2cfi.h"
This page took 0.223446 seconds and 5 git commands to generate.