]> gcc.gnu.org Git - gcc.git/blob - gcc/ada/sem_disp.adb
exp_ch9.adb (Build_Corresponding_Record): Propagate type invariants to the correspond...
[gcc.git] / gcc / ada / sem_disp.adb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ D I S P --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
25
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Elists; use Elists;
29 with Einfo; use Einfo;
30 with Exp_Disp; use Exp_Disp;
31 with Exp_Util; use Exp_Util;
32 with Exp_Ch7; use Exp_Ch7;
33 with Exp_Tss; use Exp_Tss;
34 with Errout; use Errout;
35 with Lib.Xref; use Lib.Xref;
36 with Namet; use Namet;
37 with Nlists; use Nlists;
38 with Nmake; use Nmake;
39 with Opt; use Opt;
40 with Output; use Output;
41 with Restrict; use Restrict;
42 with Rident; use Rident;
43 with Sem; use Sem;
44 with Sem_Aux; use Sem_Aux;
45 with Sem_Ch3; use Sem_Ch3;
46 with Sem_Ch6; use Sem_Ch6;
47 with Sem_Ch8; use Sem_Ch8;
48 with Sem_Eval; use Sem_Eval;
49 with Sem_Type; use Sem_Type;
50 with Sem_Util; use Sem_Util;
51 with Snames; use Snames;
52 with Sinfo; use Sinfo;
53 with Targparm; use Targparm;
54 with Tbuild; use Tbuild;
55 with Uintp; use Uintp;
56
57 package body Sem_Disp is
58
59 -----------------------
60 -- Local Subprograms --
61 -----------------------
62
63 procedure Add_Dispatching_Operation
64 (Tagged_Type : Entity_Id;
65 New_Op : Entity_Id);
66 -- Add New_Op in the list of primitive operations of Tagged_Type
67
68 function Check_Controlling_Type
69 (T : Entity_Id;
70 Subp : Entity_Id) return Entity_Id;
71 -- T is the tagged type of a formal parameter or the result of Subp.
72 -- If the subprogram has a controlling parameter or result that matches
73 -- the type, then returns the tagged type of that parameter or result
74 -- (returning the designated tagged type in the case of an access
75 -- parameter); otherwise returns empty.
76
77 function Find_Hidden_Overridden_Primitive (S : Entity_Id) return Entity_Id;
78 -- [Ada 2012:AI-0125] Find an inherited hidden primitive of the dispatching
79 -- type of S that has the same name of S, a type-conformant profile, an
80 -- original corresponding operation O that is a primitive of a visible
81 -- ancestor of the dispatching type of S and O is visible at the point of
82 -- of declaration of S. If the entity is found the Alias of S is set to the
83 -- original corresponding operation S and its Overridden_Operation is set
84 -- to the found entity; otherwise return Empty.
85 --
86 -- This routine does not search for non-hidden primitives since they are
87 -- covered by the normal Ada 2005 rules.
88
89 function Is_Inherited_Public_Operation (Op : Entity_Id) return Boolean;
90 -- Check whether a primitive operation is inherited from an operation
91 -- declared in the visible part of its package.
92
93 -------------------------------
94 -- Add_Dispatching_Operation --
95 -------------------------------
96
97 procedure Add_Dispatching_Operation
98 (Tagged_Type : Entity_Id;
99 New_Op : Entity_Id)
100 is
101 List : constant Elist_Id := Primitive_Operations (Tagged_Type);
102
103 begin
104 -- The dispatching operation may already be on the list, if it is the
105 -- wrapper for an inherited function of a null extension (see Exp_Ch3
106 -- for the construction of function wrappers). The list of primitive
107 -- operations must not contain duplicates.
108
109 Append_Unique_Elmt (New_Op, List);
110 end Add_Dispatching_Operation;
111
112 ---------------------------
113 -- Covers_Some_Interface --
114 ---------------------------
115
116 function Covers_Some_Interface (Prim : Entity_Id) return Boolean is
117 Tagged_Type : constant Entity_Id := Find_Dispatching_Type (Prim);
118 Elmt : Elmt_Id;
119 E : Entity_Id;
120
121 begin
122 pragma Assert (Is_Dispatching_Operation (Prim));
123
124 -- Although this is a dispatching primitive we must check if its
125 -- dispatching type is available because it may be the primitive
126 -- of a private type not defined as tagged in its partial view.
127
128 if Present (Tagged_Type) and then Has_Interfaces (Tagged_Type) then
129
130 -- If the tagged type is frozen then the internal entities associated
131 -- with interfaces are available in the list of primitives of the
132 -- tagged type and can be used to speed up this search.
133
134 if Is_Frozen (Tagged_Type) then
135 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
136 while Present (Elmt) loop
137 E := Node (Elmt);
138
139 if Present (Interface_Alias (E))
140 and then Alias (E) = Prim
141 then
142 return True;
143 end if;
144
145 Next_Elmt (Elmt);
146 end loop;
147
148 -- Otherwise we must collect all the interface primitives and check
149 -- if the Prim will override some interface primitive.
150
151 else
152 declare
153 Ifaces_List : Elist_Id;
154 Iface_Elmt : Elmt_Id;
155 Iface : Entity_Id;
156 Iface_Prim : Entity_Id;
157
158 begin
159 Collect_Interfaces (Tagged_Type, Ifaces_List);
160 Iface_Elmt := First_Elmt (Ifaces_List);
161 while Present (Iface_Elmt) loop
162 Iface := Node (Iface_Elmt);
163
164 Elmt := First_Elmt (Primitive_Operations (Iface));
165 while Present (Elmt) loop
166 Iface_Prim := Node (Elmt);
167
168 if Chars (Iface) = Chars (Prim)
169 and then Is_Interface_Conformant
170 (Tagged_Type, Iface_Prim, Prim)
171 then
172 return True;
173 end if;
174
175 Next_Elmt (Elmt);
176 end loop;
177
178 Next_Elmt (Iface_Elmt);
179 end loop;
180 end;
181 end if;
182 end if;
183
184 return False;
185 end Covers_Some_Interface;
186
187 -------------------------------
188 -- Check_Controlling_Formals --
189 -------------------------------
190
191 procedure Check_Controlling_Formals
192 (Typ : Entity_Id;
193 Subp : Entity_Id)
194 is
195 Formal : Entity_Id;
196 Ctrl_Type : Entity_Id;
197
198 begin
199 Formal := First_Formal (Subp);
200 while Present (Formal) loop
201 Ctrl_Type := Check_Controlling_Type (Etype (Formal), Subp);
202
203 if Present (Ctrl_Type) then
204
205 -- When controlling type is concurrent and declared within a
206 -- generic or inside an instance use corresponding record type.
207
208 if Is_Concurrent_Type (Ctrl_Type)
209 and then Present (Corresponding_Record_Type (Ctrl_Type))
210 then
211 Ctrl_Type := Corresponding_Record_Type (Ctrl_Type);
212 end if;
213
214 if Ctrl_Type = Typ then
215 Set_Is_Controlling_Formal (Formal);
216
217 -- Ada 2005 (AI-231): Anonymous access types that are used in
218 -- controlling parameters exclude null because it is necessary
219 -- to read the tag to dispatch, and null has no tag.
220
221 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
222 Set_Can_Never_Be_Null (Etype (Formal));
223 Set_Is_Known_Non_Null (Etype (Formal));
224 end if;
225
226 -- Check that the parameter's nominal subtype statically
227 -- matches the first subtype.
228
229 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
230 if not Subtypes_Statically_Match
231 (Typ, Designated_Type (Etype (Formal)))
232 then
233 Error_Msg_N
234 ("parameter subtype does not match controlling type",
235 Formal);
236 end if;
237
238 elsif not Subtypes_Statically_Match (Typ, Etype (Formal)) then
239 Error_Msg_N
240 ("parameter subtype does not match controlling type",
241 Formal);
242 end if;
243
244 if Present (Default_Value (Formal)) then
245
246 -- In Ada 2005, access parameters can have defaults
247
248 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type
249 and then Ada_Version < Ada_2005
250 then
251 Error_Msg_N
252 ("default not allowed for controlling access parameter",
253 Default_Value (Formal));
254
255 elsif not Is_Tag_Indeterminate (Default_Value (Formal)) then
256 Error_Msg_N
257 ("default expression must be a tag indeterminate" &
258 " function call", Default_Value (Formal));
259 end if;
260 end if;
261
262 elsif Comes_From_Source (Subp) then
263 Error_Msg_N
264 ("operation can be dispatching in only one type", Subp);
265 end if;
266 end if;
267
268 Next_Formal (Formal);
269 end loop;
270
271 if Ekind_In (Subp, E_Function, E_Generic_Function) then
272 Ctrl_Type := Check_Controlling_Type (Etype (Subp), Subp);
273
274 if Present (Ctrl_Type) then
275 if Ctrl_Type = Typ then
276 Set_Has_Controlling_Result (Subp);
277
278 -- Check that result subtype statically matches first subtype
279 -- (Ada 2005): Subp may have a controlling access result.
280
281 if Subtypes_Statically_Match (Typ, Etype (Subp))
282 or else (Ekind (Etype (Subp)) = E_Anonymous_Access_Type
283 and then
284 Subtypes_Statically_Match
285 (Typ, Designated_Type (Etype (Subp))))
286 then
287 null;
288
289 else
290 Error_Msg_N
291 ("result subtype does not match controlling type", Subp);
292 end if;
293
294 elsif Comes_From_Source (Subp) then
295 Error_Msg_N
296 ("operation can be dispatching in only one type", Subp);
297 end if;
298 end if;
299 end if;
300 end Check_Controlling_Formals;
301
302 ----------------------------
303 -- Check_Controlling_Type --
304 ----------------------------
305
306 function Check_Controlling_Type
307 (T : Entity_Id;
308 Subp : Entity_Id) return Entity_Id
309 is
310 Tagged_Type : Entity_Id := Empty;
311
312 begin
313 if Is_Tagged_Type (T) then
314 if Is_First_Subtype (T) then
315 Tagged_Type := T;
316 else
317 Tagged_Type := Base_Type (T);
318 end if;
319
320 elsif Ekind (T) = E_Anonymous_Access_Type
321 and then Is_Tagged_Type (Designated_Type (T))
322 then
323 if Ekind (Designated_Type (T)) /= E_Incomplete_Type then
324 if Is_First_Subtype (Designated_Type (T)) then
325 Tagged_Type := Designated_Type (T);
326 else
327 Tagged_Type := Base_Type (Designated_Type (T));
328 end if;
329
330 -- Ada 2005: an incomplete type can be tagged. An operation with an
331 -- access parameter of the type is dispatching.
332
333 elsif Scope (Designated_Type (T)) = Current_Scope then
334 Tagged_Type := Designated_Type (T);
335
336 -- Ada 2005 (AI-50217)
337
338 elsif From_Limited_With (Designated_Type (T))
339 and then Present (Non_Limited_View (Designated_Type (T)))
340 and then Scope (Designated_Type (T)) = Scope (Subp)
341 then
342 if Is_First_Subtype (Non_Limited_View (Designated_Type (T))) then
343 Tagged_Type := Non_Limited_View (Designated_Type (T));
344 else
345 Tagged_Type := Base_Type (Non_Limited_View
346 (Designated_Type (T)));
347 end if;
348 end if;
349 end if;
350
351 if No (Tagged_Type) or else Is_Class_Wide_Type (Tagged_Type) then
352 return Empty;
353
354 -- The dispatching type and the primitive operation must be defined in
355 -- the same scope, except in the case of internal operations and formal
356 -- abstract subprograms.
357
358 elsif ((Scope (Subp) = Scope (Tagged_Type) or else Is_Internal (Subp))
359 and then (not Is_Generic_Type (Tagged_Type)
360 or else not Comes_From_Source (Subp)))
361 or else
362 (Is_Formal_Subprogram (Subp) and then Is_Abstract_Subprogram (Subp))
363 or else
364 (Nkind (Parent (Parent (Subp))) = N_Subprogram_Renaming_Declaration
365 and then
366 Present (Corresponding_Formal_Spec (Parent (Parent (Subp))))
367 and then
368 Is_Abstract_Subprogram (Subp))
369 then
370 return Tagged_Type;
371
372 else
373 return Empty;
374 end if;
375 end Check_Controlling_Type;
376
377 ----------------------------
378 -- Check_Dispatching_Call --
379 ----------------------------
380
381 procedure Check_Dispatching_Call (N : Node_Id) is
382 Loc : constant Source_Ptr := Sloc (N);
383 Actual : Node_Id;
384 Formal : Entity_Id;
385 Control : Node_Id := Empty;
386 Func : Entity_Id;
387 Subp_Entity : Entity_Id;
388 Indeterm_Ancestor_Call : Boolean := False;
389 Indeterm_Ctrl_Type : Entity_Id;
390
391 Static_Tag : Node_Id := Empty;
392 -- If a controlling formal has a statically tagged actual, the tag of
393 -- this actual is to be used for any tag-indeterminate actual.
394
395 procedure Check_Direct_Call;
396 -- In the case when the controlling actual is a class-wide type whose
397 -- root type's completion is a task or protected type, the call is in
398 -- fact direct. This routine detects the above case and modifies the
399 -- call accordingly.
400
401 procedure Check_Dispatching_Context;
402 -- If the call is tag-indeterminate and the entity being called is
403 -- abstract, verify that the context is a call that will eventually
404 -- provide a tag for dispatching, or has provided one already.
405
406 -----------------------
407 -- Check_Direct_Call --
408 -----------------------
409
410 procedure Check_Direct_Call is
411 Typ : Entity_Id := Etype (Control);
412
413 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean;
414 -- Determine whether an entity denotes a user-defined equality
415
416 ------------------------------
417 -- Is_User_Defined_Equality --
418 ------------------------------
419
420 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean is
421 begin
422 return
423 Ekind (Id) = E_Function
424 and then Chars (Id) = Name_Op_Eq
425 and then Comes_From_Source (Id)
426
427 -- Internally generated equalities have a full type declaration
428 -- as their parent.
429
430 and then Nkind (Parent (Id)) = N_Function_Specification;
431 end Is_User_Defined_Equality;
432
433 -- Start of processing for Check_Direct_Call
434
435 begin
436 -- Predefined primitives do not receive wrappers since they are built
437 -- from scratch for the corresponding record of synchronized types.
438 -- Equality is in general predefined, but is excluded from the check
439 -- when it is user-defined.
440
441 if Is_Predefined_Dispatching_Operation (Subp_Entity)
442 and then not Is_User_Defined_Equality (Subp_Entity)
443 then
444 return;
445 end if;
446
447 if Is_Class_Wide_Type (Typ) then
448 Typ := Root_Type (Typ);
449 end if;
450
451 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
452 Typ := Full_View (Typ);
453 end if;
454
455 if Is_Concurrent_Type (Typ)
456 and then
457 Present (Corresponding_Record_Type (Typ))
458 then
459 Typ := Corresponding_Record_Type (Typ);
460
461 -- The concurrent record's list of primitives should contain a
462 -- wrapper for the entity of the call, retrieve it.
463
464 declare
465 Prim : Entity_Id;
466 Prim_Elmt : Elmt_Id;
467 Wrapper_Found : Boolean := False;
468
469 begin
470 Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
471 while Present (Prim_Elmt) loop
472 Prim := Node (Prim_Elmt);
473
474 if Is_Primitive_Wrapper (Prim)
475 and then Wrapped_Entity (Prim) = Subp_Entity
476 then
477 Wrapper_Found := True;
478 exit;
479 end if;
480
481 Next_Elmt (Prim_Elmt);
482 end loop;
483
484 -- A primitive declared between two views should have a
485 -- corresponding wrapper.
486
487 pragma Assert (Wrapper_Found);
488
489 -- Modify the call by setting the proper entity
490
491 Set_Entity (Name (N), Prim);
492 end;
493 end if;
494 end Check_Direct_Call;
495
496 -------------------------------
497 -- Check_Dispatching_Context --
498 -------------------------------
499
500 procedure Check_Dispatching_Context is
501 Subp : constant Entity_Id := Entity (Name (N));
502 Typ : constant Entity_Id := Etype (Subp);
503 Par : Node_Id;
504
505 procedure Abstract_Context_Error;
506 -- Error for abstract call dispatching on result is not dispatching
507
508 ----------------------------
509 -- Abstract_Context_Error --
510 ----------------------------
511
512 procedure Abstract_Context_Error is
513 begin
514 if Ekind (Subp) = E_Function then
515 Error_Msg_N
516 ("call to abstract function must be dispatching", N);
517
518 -- This error can occur for a procedure in the case of a call to
519 -- an abstract formal procedure with a statically tagged operand.
520
521 else
522 Error_Msg_N
523 ("call to abstract procedure must be dispatching",
524 N);
525 end if;
526 end Abstract_Context_Error;
527
528 -- Start of processing for Check_Dispatching_Context
529
530 begin
531 if Is_Abstract_Subprogram (Subp)
532 and then No (Controlling_Argument (N))
533 then
534 if Present (Alias (Subp))
535 and then not Is_Abstract_Subprogram (Alias (Subp))
536 and then No (DTC_Entity (Subp))
537 then
538 -- Private overriding of inherited abstract operation, call is
539 -- legal.
540
541 Set_Entity (Name (N), Alias (Subp));
542 return;
543
544 -- An obscure special case: a null procedure may have a class-
545 -- wide pre/postcondition that includes a call to an abstract
546 -- subp. Calls within the expression may not have been rewritten
547 -- as dispatching calls yet, because the null body appears in
548 -- the current declarative part. The expression will be properly
549 -- rewritten/reanalyzed when the postcondition procedure is built.
550
551 -- Similarly, if this is a pre/postcondition for an abstract
552 -- subprogram, it may call another abstract function which is
553 -- a primitive of an abstract type. The call is non-dispatching
554 -- but will be legal in overridings of the operation.
555
556 elsif In_Spec_Expression
557 and then Is_Subprogram (Current_Scope)
558 and then
559 ((Nkind (Parent (Current_Scope)) = N_Procedure_Specification
560 and then Null_Present (Parent (Current_Scope)))
561 or else Is_Abstract_Subprogram (Current_Scope))
562 then
563 null;
564
565 elsif Ekind (Current_Scope) = E_Function
566 and then Nkind (Unit_Declaration_Node (Current_Scope)) =
567 N_Generic_Subprogram_Declaration
568 then
569 null;
570
571 else
572 -- We need to determine whether the context of the call
573 -- provides a tag to make the call dispatching. This requires
574 -- the call to be the actual in an enclosing call, and that
575 -- actual must be controlling. If the call is an operand of
576 -- equality, the other operand must not ve abstract.
577
578 if not Is_Tagged_Type (Typ)
579 and then not
580 (Ekind (Typ) = E_Anonymous_Access_Type
581 and then Is_Tagged_Type (Designated_Type (Typ)))
582 then
583 Abstract_Context_Error;
584 return;
585 end if;
586
587 Par := Parent (N);
588
589 if Nkind (Par) = N_Parameter_Association then
590 Par := Parent (Par);
591 end if;
592
593 while Present (Par) loop
594 if Nkind_In (Par, N_Function_Call,
595 N_Procedure_Call_Statement)
596 and then Is_Entity_Name (Name (Par))
597 then
598 declare
599 A : Node_Id;
600 F : Entity_Id;
601
602 begin
603 -- Find formal for which call is the actual.
604
605 F := First_Formal (Entity (Name (Par)));
606 A := First_Actual (Par);
607 while Present (F) loop
608 if Is_Controlling_Formal (F)
609 and then (N = A or else Parent (N) = A)
610 then
611 return;
612 end if;
613
614 Next_Formal (F);
615 Next_Actual (A);
616 end loop;
617
618 Error_Msg_N
619 ("call to abstract function must be dispatching", N);
620 return;
621 end;
622
623 -- For equalitiy operators, one of the operands must be
624 -- statically or dynamically tagged.
625
626 elsif Nkind_In (Par, N_Op_Eq, N_Op_Ne) then
627 if N = Right_Opnd (Par)
628 and then Is_Tag_Indeterminate (Left_Opnd (Par))
629 then
630 Abstract_Context_Error;
631
632 elsif N = Left_Opnd (Par)
633 and then Is_Tag_Indeterminate (Right_Opnd (Par))
634 then
635 Abstract_Context_Error;
636 end if;
637
638 return;
639
640 elsif Nkind (Par) = N_Assignment_Statement then
641 return;
642
643 elsif Nkind (Par) = N_Qualified_Expression
644 or else Nkind (Par) = N_Unchecked_Type_Conversion
645 then
646 Par := Parent (Par);
647
648 else
649 Abstract_Context_Error;
650 return;
651 end if;
652 end loop;
653 end if;
654 end if;
655 end Check_Dispatching_Context;
656
657 -- Start of processing for Check_Dispatching_Call
658
659 begin
660 -- Find a controlling argument, if any
661
662 if Present (Parameter_Associations (N)) then
663 Subp_Entity := Entity (Name (N));
664
665 Actual := First_Actual (N);
666 Formal := First_Formal (Subp_Entity);
667 while Present (Actual) loop
668 Control := Find_Controlling_Arg (Actual);
669 exit when Present (Control);
670
671 -- Check for the case where the actual is a tag-indeterminate call
672 -- whose result type is different than the tagged type associated
673 -- with the containing call, but is an ancestor of the type.
674
675 if Is_Controlling_Formal (Formal)
676 and then Is_Tag_Indeterminate (Actual)
677 and then Base_Type (Etype (Actual)) /= Base_Type (Etype (Formal))
678 and then Is_Ancestor (Etype (Actual), Etype (Formal))
679 then
680 Indeterm_Ancestor_Call := True;
681 Indeterm_Ctrl_Type := Etype (Formal);
682
683 -- If the formal is controlling but the actual is not, the type
684 -- of the actual is statically known, and may be used as the
685 -- controlling tag for some other tag-indeterminate actual.
686
687 elsif Is_Controlling_Formal (Formal)
688 and then Is_Entity_Name (Actual)
689 and then Is_Tagged_Type (Etype (Actual))
690 then
691 Static_Tag := Actual;
692 end if;
693
694 Next_Actual (Actual);
695 Next_Formal (Formal);
696 end loop;
697
698 -- If the call doesn't have a controlling actual but does have an
699 -- indeterminate actual that requires dispatching treatment, then an
700 -- object is needed that will serve as the controlling argument for
701 -- a dispatching call on the indeterminate actual. This can only
702 -- occur in the unusual situation of a default actual given by
703 -- a tag-indeterminate call and where the type of the call is an
704 -- ancestor of the type associated with a containing call to an
705 -- inherited operation (see AI-239).
706
707 -- Rather than create an object of the tagged type, which would
708 -- be problematic for various reasons (default initialization,
709 -- discriminants), the tag of the containing call's associated
710 -- tagged type is directly used to control the dispatching.
711
712 if No (Control)
713 and then Indeterm_Ancestor_Call
714 and then No (Static_Tag)
715 then
716 Control :=
717 Make_Attribute_Reference (Loc,
718 Prefix => New_Occurrence_Of (Indeterm_Ctrl_Type, Loc),
719 Attribute_Name => Name_Tag);
720
721 Analyze (Control);
722 end if;
723
724 if Present (Control) then
725
726 -- Verify that no controlling arguments are statically tagged
727
728 if Debug_Flag_E then
729 Write_Str ("Found Dispatching call");
730 Write_Int (Int (N));
731 Write_Eol;
732 end if;
733
734 Actual := First_Actual (N);
735 while Present (Actual) loop
736 if Actual /= Control then
737
738 if not Is_Controlling_Actual (Actual) then
739 null; -- Can be anything
740
741 elsif Is_Dynamically_Tagged (Actual) then
742 null; -- Valid parameter
743
744 elsif Is_Tag_Indeterminate (Actual) then
745
746 -- The tag is inherited from the enclosing call (the node
747 -- we are currently analyzing). Explicitly expand the
748 -- actual, since the previous call to Expand (from
749 -- Resolve_Call) had no way of knowing about the
750 -- required dispatching.
751
752 Propagate_Tag (Control, Actual);
753
754 else
755 Error_Msg_N
756 ("controlling argument is not dynamically tagged",
757 Actual);
758 return;
759 end if;
760 end if;
761
762 Next_Actual (Actual);
763 end loop;
764
765 -- Mark call as a dispatching call
766
767 Set_Controlling_Argument (N, Control);
768 Check_Restriction (No_Dispatching_Calls, N);
769
770 -- The dispatching call may need to be converted into a direct
771 -- call in certain cases.
772
773 Check_Direct_Call;
774
775 -- If there is a statically tagged actual and a tag-indeterminate
776 -- call to a function of the ancestor (such as that provided by a
777 -- default), then treat this as a dispatching call and propagate
778 -- the tag to the tag-indeterminate call(s).
779
780 elsif Present (Static_Tag) and then Indeterm_Ancestor_Call then
781 Control :=
782 Make_Attribute_Reference (Loc,
783 Prefix =>
784 New_Occurrence_Of (Etype (Static_Tag), Loc),
785 Attribute_Name => Name_Tag);
786
787 Analyze (Control);
788
789 Actual := First_Actual (N);
790 Formal := First_Formal (Subp_Entity);
791 while Present (Actual) loop
792 if Is_Tag_Indeterminate (Actual)
793 and then Is_Controlling_Formal (Formal)
794 then
795 Propagate_Tag (Control, Actual);
796 end if;
797
798 Next_Actual (Actual);
799 Next_Formal (Formal);
800 end loop;
801
802 Check_Dispatching_Context;
803
804 else
805 -- The call is not dispatching, so check that there aren't any
806 -- tag-indeterminate abstract calls left.
807
808 Actual := First_Actual (N);
809 while Present (Actual) loop
810 if Is_Tag_Indeterminate (Actual) then
811
812 -- Function call case
813
814 if Nkind (Original_Node (Actual)) = N_Function_Call then
815 Func := Entity (Name (Original_Node (Actual)));
816
817 -- If the actual is an attribute then it can't be abstract
818 -- (the only current case of a tag-indeterminate attribute
819 -- is the stream Input attribute).
820
821 elsif
822 Nkind (Original_Node (Actual)) = N_Attribute_Reference
823 then
824 Func := Empty;
825
826 -- Only other possibility is a qualified expression whose
827 -- constituent expression is itself a call.
828
829 else
830 Func :=
831 Entity (Name
832 (Original_Node
833 (Expression (Original_Node (Actual)))));
834 end if;
835
836 if Present (Func) and then Is_Abstract_Subprogram (Func) then
837 Error_Msg_N
838 ("call to abstract function must be dispatching", N);
839 end if;
840 end if;
841
842 Next_Actual (Actual);
843 end loop;
844
845 Check_Dispatching_Context;
846 end if;
847
848 else
849 -- If dispatching on result, the enclosing call, if any, will
850 -- determine the controlling argument. Otherwise this is the
851 -- primitive operation of the root type.
852
853 Check_Dispatching_Context;
854 end if;
855 end Check_Dispatching_Call;
856
857 ---------------------------------
858 -- Check_Dispatching_Operation --
859 ---------------------------------
860
861 procedure Check_Dispatching_Operation (Subp, Old_Subp : Entity_Id) is
862 Tagged_Type : Entity_Id;
863 Has_Dispatching_Parent : Boolean := False;
864 Body_Is_Last_Primitive : Boolean := False;
865 Ovr_Subp : Entity_Id := Empty;
866
867 begin
868 if not Ekind_In (Subp, E_Procedure, E_Function) then
869 return;
870 end if;
871
872 Set_Is_Dispatching_Operation (Subp, False);
873 Tagged_Type := Find_Dispatching_Type (Subp);
874
875 -- Ada 2005 (AI-345): Use the corresponding record (if available).
876 -- Required because primitives of concurrent types are attached
877 -- to the corresponding record (not to the concurrent type).
878
879 if Ada_Version >= Ada_2005
880 and then Present (Tagged_Type)
881 and then Is_Concurrent_Type (Tagged_Type)
882 and then Present (Corresponding_Record_Type (Tagged_Type))
883 then
884 Tagged_Type := Corresponding_Record_Type (Tagged_Type);
885 end if;
886
887 -- (AI-345): The task body procedure is not a primitive of the tagged
888 -- type
889
890 if Present (Tagged_Type)
891 and then Is_Concurrent_Record_Type (Tagged_Type)
892 and then Present (Corresponding_Concurrent_Type (Tagged_Type))
893 and then Is_Task_Type (Corresponding_Concurrent_Type (Tagged_Type))
894 and then Subp = Get_Task_Body_Procedure
895 (Corresponding_Concurrent_Type (Tagged_Type))
896 then
897 return;
898 end if;
899
900 -- If Subp is derived from a dispatching operation then it should
901 -- always be treated as dispatching. In this case various checks
902 -- below will be bypassed. Makes sure that late declarations for
903 -- inherited private subprograms are treated as dispatching, even
904 -- if the associated tagged type is already frozen.
905
906 Has_Dispatching_Parent :=
907 Present (Alias (Subp))
908 and then Is_Dispatching_Operation (Alias (Subp));
909
910 if No (Tagged_Type) then
911
912 -- Ada 2005 (AI-251): Check that Subp is not a primitive associated
913 -- with an abstract interface type unless the interface acts as a
914 -- parent type in a derivation. If the interface type is a formal
915 -- type then the operation is not primitive and therefore legal.
916
917 declare
918 E : Entity_Id;
919 Typ : Entity_Id;
920
921 begin
922 E := First_Entity (Subp);
923 while Present (E) loop
924
925 -- For an access parameter, check designated type
926
927 if Ekind (Etype (E)) = E_Anonymous_Access_Type then
928 Typ := Designated_Type (Etype (E));
929 else
930 Typ := Etype (E);
931 end if;
932
933 if Comes_From_Source (Subp)
934 and then Is_Interface (Typ)
935 and then not Is_Class_Wide_Type (Typ)
936 and then not Is_Derived_Type (Typ)
937 and then not Is_Generic_Type (Typ)
938 and then not In_Instance
939 then
940 Error_Msg_N ("??declaration of& is too late!", Subp);
941 Error_Msg_NE -- CODEFIX??
942 ("\??spec should appear immediately after declaration "
943 & "of & !", Subp, Typ);
944 exit;
945 end if;
946
947 Next_Entity (E);
948 end loop;
949
950 -- In case of functions check also the result type
951
952 if Ekind (Subp) = E_Function then
953 if Is_Access_Type (Etype (Subp)) then
954 Typ := Designated_Type (Etype (Subp));
955 else
956 Typ := Etype (Subp);
957 end if;
958
959 -- The following should be better commented, especially since
960 -- we just added several new conditions here ???
961
962 if Comes_From_Source (Subp)
963 and then Is_Interface (Typ)
964 and then not Is_Class_Wide_Type (Typ)
965 and then not Is_Derived_Type (Typ)
966 and then not Is_Generic_Type (Typ)
967 and then not In_Instance
968 then
969 Error_Msg_N ("??declaration of& is too late!", Subp);
970 Error_Msg_NE
971 ("\??spec should appear immediately after declaration "
972 & "of & !", Subp, Typ);
973 end if;
974 end if;
975 end;
976
977 return;
978
979 -- The subprograms build internally after the freezing point (such as
980 -- init procs, interface thunks, type support subprograms, and Offset
981 -- to top functions for accessing interface components in variable
982 -- size tagged types) are not primitives.
983
984 elsif Is_Frozen (Tagged_Type)
985 and then not Comes_From_Source (Subp)
986 and then not Has_Dispatching_Parent
987 then
988 -- Complete decoration of internally built subprograms that override
989 -- a dispatching primitive. These entities correspond with the
990 -- following cases:
991
992 -- 1. Ada 2005 (AI-391): Wrapper functions built by the expander
993 -- to override functions of nonabstract null extensions. These
994 -- primitives were added to the list of primitives of the tagged
995 -- type by Make_Controlling_Function_Wrappers. However, attribute
996 -- Is_Dispatching_Operation must be set to true.
997
998 -- 2. Ada 2005 (AI-251): Wrapper procedures of null interface
999 -- primitives.
1000
1001 -- 3. Subprograms associated with stream attributes (built by
1002 -- New_Stream_Subprogram)
1003
1004 if Present (Old_Subp)
1005 and then Present (Overridden_Operation (Subp))
1006 and then Is_Dispatching_Operation (Old_Subp)
1007 then
1008 pragma Assert
1009 ((Ekind (Subp) = E_Function
1010 and then Is_Dispatching_Operation (Old_Subp)
1011 and then Is_Null_Extension (Base_Type (Etype (Subp))))
1012 or else
1013 (Ekind (Subp) = E_Procedure
1014 and then Is_Dispatching_Operation (Old_Subp)
1015 and then Present (Alias (Old_Subp))
1016 and then Is_Null_Interface_Primitive
1017 (Ultimate_Alias (Old_Subp)))
1018 or else Get_TSS_Name (Subp) = TSS_Stream_Read
1019 or else Get_TSS_Name (Subp) = TSS_Stream_Write);
1020
1021 Check_Controlling_Formals (Tagged_Type, Subp);
1022 Override_Dispatching_Operation (Tagged_Type, Old_Subp, Subp);
1023 Set_Is_Dispatching_Operation (Subp);
1024 end if;
1025
1026 return;
1027
1028 -- The operation may be a child unit, whose scope is the defining
1029 -- package, but which is not a primitive operation of the type.
1030
1031 elsif Is_Child_Unit (Subp) then
1032 return;
1033
1034 -- If the subprogram is not defined in a package spec, the only case
1035 -- where it can be a dispatching op is when it overrides an operation
1036 -- before the freezing point of the type.
1037
1038 elsif ((not Is_Package_Or_Generic_Package (Scope (Subp)))
1039 or else In_Package_Body (Scope (Subp)))
1040 and then not Has_Dispatching_Parent
1041 then
1042 if not Comes_From_Source (Subp)
1043 or else (Present (Old_Subp) and then not Is_Frozen (Tagged_Type))
1044 then
1045 null;
1046
1047 -- If the type is already frozen, the overriding is not allowed
1048 -- except when Old_Subp is not a dispatching operation (which can
1049 -- occur when Old_Subp was inherited by an untagged type). However,
1050 -- a body with no previous spec freezes the type *after* its
1051 -- declaration, and therefore is a legal overriding (unless the type
1052 -- has already been frozen). Only the first such body is legal.
1053
1054 elsif Present (Old_Subp)
1055 and then Is_Dispatching_Operation (Old_Subp)
1056 then
1057 if Comes_From_Source (Subp)
1058 and then
1059 (Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Body
1060 or else Nkind (Unit_Declaration_Node (Subp)) in N_Body_Stub)
1061 then
1062 declare
1063 Subp_Body : constant Node_Id := Unit_Declaration_Node (Subp);
1064 Decl_Item : Node_Id;
1065
1066 begin
1067 -- ??? The checks here for whether the type has been frozen
1068 -- prior to the new body are not complete. It's not simple
1069 -- to check frozenness at this point since the body has
1070 -- already caused the type to be prematurely frozen in
1071 -- Analyze_Declarations, but we're forced to recheck this
1072 -- here because of the odd rule interpretation that allows
1073 -- the overriding if the type wasn't frozen prior to the
1074 -- body. The freezing action should probably be delayed
1075 -- until after the spec is seen, but that's a tricky
1076 -- change to the delicate freezing code.
1077
1078 -- Look at each declaration following the type up until the
1079 -- new subprogram body. If any of the declarations is a body
1080 -- then the type has been frozen already so the overriding
1081 -- primitive is illegal.
1082
1083 Decl_Item := Next (Parent (Tagged_Type));
1084 while Present (Decl_Item)
1085 and then (Decl_Item /= Subp_Body)
1086 loop
1087 if Comes_From_Source (Decl_Item)
1088 and then (Nkind (Decl_Item) in N_Proper_Body
1089 or else Nkind (Decl_Item) in N_Body_Stub)
1090 then
1091 Error_Msg_N ("overriding of& is too late!", Subp);
1092 Error_Msg_N
1093 ("\spec should appear immediately after the type!",
1094 Subp);
1095 exit;
1096 end if;
1097
1098 Next (Decl_Item);
1099 end loop;
1100
1101 -- If the subprogram doesn't follow in the list of
1102 -- declarations including the type then the type has
1103 -- definitely been frozen already and the body is illegal.
1104
1105 if No (Decl_Item) then
1106 Error_Msg_N ("overriding of& is too late!", Subp);
1107 Error_Msg_N
1108 ("\spec should appear immediately after the type!",
1109 Subp);
1110
1111 elsif Is_Frozen (Subp) then
1112
1113 -- The subprogram body declares a primitive operation.
1114 -- If the subprogram is already frozen, we must update
1115 -- its dispatching information explicitly here. The
1116 -- information is taken from the overridden subprogram.
1117 -- We must also generate a cross-reference entry because
1118 -- references to other primitives were already created
1119 -- when type was frozen.
1120
1121 Body_Is_Last_Primitive := True;
1122
1123 if Present (DTC_Entity (Old_Subp)) then
1124 Set_DTC_Entity (Subp, DTC_Entity (Old_Subp));
1125 Set_DT_Position_Value (Subp, DT_Position (Old_Subp));
1126
1127 if not Restriction_Active (No_Dispatching_Calls) then
1128 if Building_Static_DT (Tagged_Type) then
1129
1130 -- If the static dispatch table has not been
1131 -- built then there is nothing else to do now;
1132 -- otherwise we notify that we cannot build the
1133 -- static dispatch table.
1134
1135 if Has_Dispatch_Table (Tagged_Type) then
1136 Error_Msg_N
1137 ("overriding of& is too late for building "
1138 & " static dispatch tables!", Subp);
1139 Error_Msg_N
1140 ("\spec should appear immediately after "
1141 & "the type!", Subp);
1142 end if;
1143
1144 -- No code required to register primitives in VM
1145 -- targets
1146
1147 elsif VM_Target /= No_VM then
1148 null;
1149
1150 else
1151 Insert_Actions_After (Subp_Body,
1152 Register_Primitive (Sloc (Subp_Body),
1153 Prim => Subp));
1154 end if;
1155
1156 -- Indicate that this is an overriding operation,
1157 -- and replace the overridden entry in the list of
1158 -- primitive operations, which is used for xref
1159 -- generation subsequently.
1160
1161 Generate_Reference (Tagged_Type, Subp, 'P', False);
1162 Override_Dispatching_Operation
1163 (Tagged_Type, Old_Subp, Subp);
1164 end if;
1165 end if;
1166 end if;
1167 end;
1168
1169 else
1170 Error_Msg_N ("overriding of& is too late!", Subp);
1171 Error_Msg_N
1172 ("\subprogram spec should appear immediately after the type!",
1173 Subp);
1174 end if;
1175
1176 -- If the type is not frozen yet and we are not in the overriding
1177 -- case it looks suspiciously like an attempt to define a primitive
1178 -- operation, which requires the declaration to be in a package spec
1179 -- (3.2.3(6)). Only report cases where the type and subprogram are
1180 -- in the same declaration list (by checking the enclosing parent
1181 -- declarations), to avoid spurious warnings on subprograms in
1182 -- instance bodies when the type is declared in the instance spec
1183 -- but hasn't been frozen by the instance body.
1184
1185 elsif not Is_Frozen (Tagged_Type)
1186 and then In_Same_List (Parent (Tagged_Type), Parent (Parent (Subp)))
1187 then
1188 Error_Msg_N
1189 ("??not dispatching (must be defined in a package spec)", Subp);
1190 return;
1191
1192 -- When the type is frozen, it is legitimate to define a new
1193 -- non-primitive operation.
1194
1195 else
1196 return;
1197 end if;
1198
1199 -- Now, we are sure that the scope is a package spec. If the subprogram
1200 -- is declared after the freezing point of the type that's an error
1201
1202 elsif Is_Frozen (Tagged_Type) and then not Has_Dispatching_Parent then
1203 Error_Msg_N ("this primitive operation is declared too late", Subp);
1204 Error_Msg_NE
1205 ("??no primitive operations for& after this line",
1206 Freeze_Node (Tagged_Type),
1207 Tagged_Type);
1208 return;
1209 end if;
1210
1211 Check_Controlling_Formals (Tagged_Type, Subp);
1212
1213 Ovr_Subp := Old_Subp;
1214
1215 -- [Ada 2012:AI-0125]: Search for inherited hidden primitive that may be
1216 -- overridden by Subp. This only applies to source subprograms, and
1217 -- their declaration must carry an explicit overriding indicator.
1218
1219 if No (Ovr_Subp)
1220 and then Ada_Version >= Ada_2012
1221 and then Comes_From_Source (Subp)
1222 and then
1223 Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
1224 then
1225 Ovr_Subp := Find_Hidden_Overridden_Primitive (Subp);
1226
1227 -- Verify that the proper overriding indicator has been supplied.
1228
1229 if Present (Ovr_Subp)
1230 and then
1231 not Must_Override (Specification (Unit_Declaration_Node (Subp)))
1232 then
1233 Error_Msg_NE ("missing overriding indicator for&", Subp, Subp);
1234 end if;
1235 end if;
1236
1237 -- Now it should be a correct primitive operation, put it in the list
1238
1239 if Present (Ovr_Subp) then
1240
1241 -- If the type has interfaces we complete this check after we set
1242 -- attribute Is_Dispatching_Operation.
1243
1244 Check_Subtype_Conformant (Subp, Ovr_Subp);
1245
1246 -- A primitive operation with the name of a primitive controlled
1247 -- operation does not override a non-visible overriding controlled
1248 -- operation, i.e. one declared in a private part when the full
1249 -- view of a type is controlled. Conversely, it will override a
1250 -- visible operation that may be declared in a partial view when
1251 -- the full view is controlled.
1252
1253 if Nam_In (Chars (Subp), Name_Initialize, Name_Adjust, Name_Finalize)
1254 and then Is_Controlled (Tagged_Type)
1255 and then not Is_Visibly_Controlled (Tagged_Type)
1256 and then not Is_Inherited_Public_Operation (Ovr_Subp)
1257 then
1258 Set_Overridden_Operation (Subp, Empty);
1259
1260 -- If the subprogram specification carries an overriding
1261 -- indicator, no need for the warning: it is either redundant,
1262 -- or else an error will be reported.
1263
1264 if Nkind (Parent (Subp)) = N_Procedure_Specification
1265 and then
1266 (Must_Override (Parent (Subp))
1267 or else Must_Not_Override (Parent (Subp)))
1268 then
1269 null;
1270
1271 -- Here we need the warning
1272
1273 else
1274 Error_Msg_NE
1275 ("operation does not override inherited&??", Subp, Subp);
1276 end if;
1277
1278 else
1279 Override_Dispatching_Operation (Tagged_Type, Ovr_Subp, Subp);
1280
1281 -- Ada 2005 (AI-251): In case of late overriding of a primitive
1282 -- that covers abstract interface subprograms we must register it
1283 -- in all the secondary dispatch tables associated with abstract
1284 -- interfaces. We do this now only if not building static tables,
1285 -- nor when the expander is inactive (we avoid trying to register
1286 -- primitives in semantics-only mode, since the type may not have
1287 -- an associated dispatch table). Otherwise the patch code is
1288 -- emitted after those tables are built, to prevent access before
1289 -- elaboration in gigi.
1290
1291 if Body_Is_Last_Primitive and then Expander_Active then
1292 declare
1293 Subp_Body : constant Node_Id := Unit_Declaration_Node (Subp);
1294 Elmt : Elmt_Id;
1295 Prim : Node_Id;
1296
1297 begin
1298 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
1299 while Present (Elmt) loop
1300 Prim := Node (Elmt);
1301
1302 -- No code required to register primitives in VM targets
1303
1304 if Present (Alias (Prim))
1305 and then Present (Interface_Alias (Prim))
1306 and then Alias (Prim) = Subp
1307 and then not Building_Static_DT (Tagged_Type)
1308 and then VM_Target = No_VM
1309 then
1310 Insert_Actions_After (Subp_Body,
1311 Register_Primitive (Sloc (Subp_Body), Prim => Prim));
1312 end if;
1313
1314 Next_Elmt (Elmt);
1315 end loop;
1316
1317 -- Redisplay the contents of the updated dispatch table
1318
1319 if Debug_Flag_ZZ then
1320 Write_Str ("Late overriding: ");
1321 Write_DT (Tagged_Type);
1322 end if;
1323 end;
1324 end if;
1325 end if;
1326
1327 -- If the tagged type is a concurrent type then we must be compiling
1328 -- with no code generation (we are either compiling a generic unit or
1329 -- compiling under -gnatc mode) because we have previously tested that
1330 -- no serious errors has been reported. In this case we do not add the
1331 -- primitive to the list of primitives of Tagged_Type but we leave the
1332 -- primitive decorated as a dispatching operation to be able to analyze
1333 -- and report errors associated with the Object.Operation notation.
1334
1335 elsif Is_Concurrent_Type (Tagged_Type) then
1336 pragma Assert (not Expander_Active);
1337 null;
1338
1339 -- If no old subprogram, then we add this as a dispatching operation,
1340 -- but we avoid doing this if an error was posted, to prevent annoying
1341 -- cascaded errors.
1342
1343 elsif not Error_Posted (Subp) then
1344 Add_Dispatching_Operation (Tagged_Type, Subp);
1345 end if;
1346
1347 Set_Is_Dispatching_Operation (Subp, True);
1348
1349 -- Ada 2005 (AI-251): If the type implements interfaces we must check
1350 -- subtype conformance against all the interfaces covered by this
1351 -- primitive.
1352
1353 if Present (Ovr_Subp)
1354 and then Has_Interfaces (Tagged_Type)
1355 then
1356 declare
1357 Ifaces_List : Elist_Id;
1358 Iface_Elmt : Elmt_Id;
1359 Iface_Prim_Elmt : Elmt_Id;
1360 Iface_Prim : Entity_Id;
1361 Ret_Typ : Entity_Id;
1362
1363 begin
1364 Collect_Interfaces (Tagged_Type, Ifaces_List);
1365
1366 Iface_Elmt := First_Elmt (Ifaces_List);
1367 while Present (Iface_Elmt) loop
1368 if not Is_Ancestor (Node (Iface_Elmt), Tagged_Type) then
1369 Iface_Prim_Elmt :=
1370 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
1371 while Present (Iface_Prim_Elmt) loop
1372 Iface_Prim := Node (Iface_Prim_Elmt);
1373
1374 if Is_Interface_Conformant
1375 (Tagged_Type, Iface_Prim, Subp)
1376 then
1377 -- Handle procedures, functions whose return type
1378 -- matches, or functions not returning interfaces
1379
1380 if Ekind (Subp) = E_Procedure
1381 or else Etype (Iface_Prim) = Etype (Subp)
1382 or else not Is_Interface (Etype (Iface_Prim))
1383 then
1384 Check_Subtype_Conformant
1385 (New_Id => Subp,
1386 Old_Id => Iface_Prim,
1387 Err_Loc => Subp,
1388 Skip_Controlling_Formals => True);
1389
1390 -- Handle functions returning interfaces
1391
1392 elsif Implements_Interface
1393 (Etype (Subp), Etype (Iface_Prim))
1394 then
1395 -- Temporarily force both entities to return the
1396 -- same type. Required because Subtype_Conformant
1397 -- does not handle this case.
1398
1399 Ret_Typ := Etype (Iface_Prim);
1400 Set_Etype (Iface_Prim, Etype (Subp));
1401
1402 Check_Subtype_Conformant
1403 (New_Id => Subp,
1404 Old_Id => Iface_Prim,
1405 Err_Loc => Subp,
1406 Skip_Controlling_Formals => True);
1407
1408 Set_Etype (Iface_Prim, Ret_Typ);
1409 end if;
1410 end if;
1411
1412 Next_Elmt (Iface_Prim_Elmt);
1413 end loop;
1414 end if;
1415
1416 Next_Elmt (Iface_Elmt);
1417 end loop;
1418 end;
1419 end if;
1420
1421 if not Body_Is_Last_Primitive then
1422 Set_DT_Position_Value (Subp, No_Uint);
1423
1424 elsif Has_Controlled_Component (Tagged_Type)
1425 and then Nam_In (Chars (Subp), Name_Initialize,
1426 Name_Adjust,
1427 Name_Finalize,
1428 Name_Finalize_Address)
1429 then
1430 declare
1431 F_Node : constant Node_Id := Freeze_Node (Tagged_Type);
1432 Decl : Node_Id;
1433 Old_P : Entity_Id;
1434 Old_Bod : Node_Id;
1435 Old_Spec : Entity_Id;
1436
1437 C_Names : constant array (1 .. 4) of Name_Id :=
1438 (Name_Initialize,
1439 Name_Adjust,
1440 Name_Finalize,
1441 Name_Finalize_Address);
1442
1443 D_Names : constant array (1 .. 4) of TSS_Name_Type :=
1444 (TSS_Deep_Initialize,
1445 TSS_Deep_Adjust,
1446 TSS_Deep_Finalize,
1447 TSS_Finalize_Address);
1448
1449 begin
1450 -- Remove previous controlled function which was constructed and
1451 -- analyzed when the type was frozen. This requires removing the
1452 -- body of the redefined primitive, as well as its specification
1453 -- if needed (there is no spec created for Deep_Initialize, see
1454 -- exp_ch3.adb). We must also dismantle the exception information
1455 -- that may have been generated for it when front end zero-cost
1456 -- tables are enabled.
1457
1458 for J in D_Names'Range loop
1459 Old_P := TSS (Tagged_Type, D_Names (J));
1460
1461 if Present (Old_P)
1462 and then Chars (Subp) = C_Names (J)
1463 then
1464 Old_Bod := Unit_Declaration_Node (Old_P);
1465 Remove (Old_Bod);
1466 Set_Is_Eliminated (Old_P);
1467 Set_Scope (Old_P, Scope (Current_Scope));
1468
1469 if Nkind (Old_Bod) = N_Subprogram_Body
1470 and then Present (Corresponding_Spec (Old_Bod))
1471 then
1472 Old_Spec := Corresponding_Spec (Old_Bod);
1473 Set_Has_Completion (Old_Spec, False);
1474 end if;
1475 end if;
1476 end loop;
1477
1478 Build_Late_Proc (Tagged_Type, Chars (Subp));
1479
1480 -- The new operation is added to the actions of the freeze node
1481 -- for the type, but this node has already been analyzed, so we
1482 -- must retrieve and analyze explicitly the new body.
1483
1484 if Present (F_Node)
1485 and then Present (Actions (F_Node))
1486 then
1487 Decl := Last (Actions (F_Node));
1488 Analyze (Decl);
1489 end if;
1490 end;
1491 end if;
1492 end Check_Dispatching_Operation;
1493
1494 ------------------------------------------
1495 -- Check_Operation_From_Incomplete_Type --
1496 ------------------------------------------
1497
1498 procedure Check_Operation_From_Incomplete_Type
1499 (Subp : Entity_Id;
1500 Typ : Entity_Id)
1501 is
1502 Full : constant Entity_Id := Full_View (Typ);
1503 Parent_Typ : constant Entity_Id := Etype (Full);
1504 Old_Prim : constant Elist_Id := Primitive_Operations (Parent_Typ);
1505 New_Prim : constant Elist_Id := Primitive_Operations (Full);
1506 Op1, Op2 : Elmt_Id;
1507 Prev : Elmt_Id := No_Elmt;
1508
1509 function Derives_From (Parent_Subp : Entity_Id) return Boolean;
1510 -- Check that Subp has profile of an operation derived from Parent_Subp.
1511 -- Subp must have a parameter or result type that is Typ or an access
1512 -- parameter or access result type that designates Typ.
1513
1514 ------------------
1515 -- Derives_From --
1516 ------------------
1517
1518 function Derives_From (Parent_Subp : Entity_Id) return Boolean is
1519 F1, F2 : Entity_Id;
1520
1521 begin
1522 if Chars (Parent_Subp) /= Chars (Subp) then
1523 return False;
1524 end if;
1525
1526 -- Check that the type of controlling formals is derived from the
1527 -- parent subprogram's controlling formal type (or designated type
1528 -- if the formal type is an anonymous access type).
1529
1530 F1 := First_Formal (Parent_Subp);
1531 F2 := First_Formal (Subp);
1532 while Present (F1) and then Present (F2) loop
1533 if Ekind (Etype (F1)) = E_Anonymous_Access_Type then
1534 if Ekind (Etype (F2)) /= E_Anonymous_Access_Type then
1535 return False;
1536 elsif Designated_Type (Etype (F1)) = Parent_Typ
1537 and then Designated_Type (Etype (F2)) /= Full
1538 then
1539 return False;
1540 end if;
1541
1542 elsif Ekind (Etype (F2)) = E_Anonymous_Access_Type then
1543 return False;
1544
1545 elsif Etype (F1) = Parent_Typ and then Etype (F2) /= Full then
1546 return False;
1547 end if;
1548
1549 Next_Formal (F1);
1550 Next_Formal (F2);
1551 end loop;
1552
1553 -- Check that a controlling result type is derived from the parent
1554 -- subprogram's result type (or designated type if the result type
1555 -- is an anonymous access type).
1556
1557 if Ekind (Parent_Subp) = E_Function then
1558 if Ekind (Subp) /= E_Function then
1559 return False;
1560
1561 elsif Ekind (Etype (Parent_Subp)) = E_Anonymous_Access_Type then
1562 if Ekind (Etype (Subp)) /= E_Anonymous_Access_Type then
1563 return False;
1564
1565 elsif Designated_Type (Etype (Parent_Subp)) = Parent_Typ
1566 and then Designated_Type (Etype (Subp)) /= Full
1567 then
1568 return False;
1569 end if;
1570
1571 elsif Ekind (Etype (Subp)) = E_Anonymous_Access_Type then
1572 return False;
1573
1574 elsif Etype (Parent_Subp) = Parent_Typ
1575 and then Etype (Subp) /= Full
1576 then
1577 return False;
1578 end if;
1579
1580 elsif Ekind (Subp) = E_Function then
1581 return False;
1582 end if;
1583
1584 return No (F1) and then No (F2);
1585 end Derives_From;
1586
1587 -- Start of processing for Check_Operation_From_Incomplete_Type
1588
1589 begin
1590 -- The operation may override an inherited one, or may be a new one
1591 -- altogether. The inherited operation will have been hidden by the
1592 -- current one at the point of the type derivation, so it does not
1593 -- appear in the list of primitive operations of the type. We have to
1594 -- find the proper place of insertion in the list of primitive opera-
1595 -- tions by iterating over the list for the parent type.
1596
1597 Op1 := First_Elmt (Old_Prim);
1598 Op2 := First_Elmt (New_Prim);
1599 while Present (Op1) and then Present (Op2) loop
1600 if Derives_From (Node (Op1)) then
1601 if No (Prev) then
1602
1603 -- Avoid adding it to the list of primitives if already there
1604
1605 if Node (Op2) /= Subp then
1606 Prepend_Elmt (Subp, New_Prim);
1607 end if;
1608
1609 else
1610 Insert_Elmt_After (Subp, Prev);
1611 end if;
1612
1613 return;
1614 end if;
1615
1616 Prev := Op2;
1617 Next_Elmt (Op1);
1618 Next_Elmt (Op2);
1619 end loop;
1620
1621 -- Operation is a new primitive
1622
1623 Append_Elmt (Subp, New_Prim);
1624 end Check_Operation_From_Incomplete_Type;
1625
1626 ---------------------------------------
1627 -- Check_Operation_From_Private_View --
1628 ---------------------------------------
1629
1630 procedure Check_Operation_From_Private_View (Subp, Old_Subp : Entity_Id) is
1631 Tagged_Type : Entity_Id;
1632
1633 begin
1634 if Is_Dispatching_Operation (Alias (Subp)) then
1635 Set_Scope (Subp, Current_Scope);
1636 Tagged_Type := Find_Dispatching_Type (Subp);
1637
1638 -- Add Old_Subp to primitive operations if not already present
1639
1640 if Present (Tagged_Type) and then Is_Tagged_Type (Tagged_Type) then
1641 Append_Unique_Elmt (Old_Subp, Primitive_Operations (Tagged_Type));
1642
1643 -- If Old_Subp isn't already marked as dispatching then this is
1644 -- the case of an operation of an untagged private type fulfilled
1645 -- by a tagged type that overrides an inherited dispatching
1646 -- operation, so we set the necessary dispatching attributes here.
1647
1648 if not Is_Dispatching_Operation (Old_Subp) then
1649
1650 -- If the untagged type has no discriminants, and the full
1651 -- view is constrained, there will be a spurious mismatch of
1652 -- subtypes on the controlling arguments, because the tagged
1653 -- type is the internal base type introduced in the derivation.
1654 -- Use the original type to verify conformance, rather than the
1655 -- base type.
1656
1657 if not Comes_From_Source (Tagged_Type)
1658 and then Has_Discriminants (Tagged_Type)
1659 then
1660 declare
1661 Formal : Entity_Id;
1662
1663 begin
1664 Formal := First_Formal (Old_Subp);
1665 while Present (Formal) loop
1666 if Tagged_Type = Base_Type (Etype (Formal)) then
1667 Tagged_Type := Etype (Formal);
1668 end if;
1669
1670 Next_Formal (Formal);
1671 end loop;
1672 end;
1673
1674 if Tagged_Type = Base_Type (Etype (Old_Subp)) then
1675 Tagged_Type := Etype (Old_Subp);
1676 end if;
1677 end if;
1678
1679 Check_Controlling_Formals (Tagged_Type, Old_Subp);
1680 Set_Is_Dispatching_Operation (Old_Subp, True);
1681 Set_DT_Position_Value (Old_Subp, No_Uint);
1682 end if;
1683
1684 -- If the old subprogram is an explicit renaming of some other
1685 -- entity, it is not overridden by the inherited subprogram.
1686 -- Otherwise, update its alias and other attributes.
1687
1688 if Present (Alias (Old_Subp))
1689 and then Nkind (Unit_Declaration_Node (Old_Subp)) /=
1690 N_Subprogram_Renaming_Declaration
1691 then
1692 Set_Alias (Old_Subp, Alias (Subp));
1693
1694 -- The derived subprogram should inherit the abstractness of
1695 -- the parent subprogram (except in the case of a function
1696 -- returning the type). This sets the abstractness properly
1697 -- for cases where a private extension may have inherited an
1698 -- abstract operation, but the full type is derived from a
1699 -- descendant type and inherits a nonabstract version.
1700
1701 if Etype (Subp) /= Tagged_Type then
1702 Set_Is_Abstract_Subprogram
1703 (Old_Subp, Is_Abstract_Subprogram (Alias (Subp)));
1704 end if;
1705 end if;
1706 end if;
1707 end if;
1708 end Check_Operation_From_Private_View;
1709
1710 --------------------------
1711 -- Find_Controlling_Arg --
1712 --------------------------
1713
1714 function Find_Controlling_Arg (N : Node_Id) return Node_Id is
1715 Orig_Node : constant Node_Id := Original_Node (N);
1716 Typ : Entity_Id;
1717
1718 begin
1719 if Nkind (Orig_Node) = N_Qualified_Expression then
1720 return Find_Controlling_Arg (Expression (Orig_Node));
1721 end if;
1722
1723 -- Dispatching on result case. If expansion is disabled, the node still
1724 -- has the structure of a function call. However, if the function name
1725 -- is an operator and the call was given in infix form, the original
1726 -- node has no controlling result and we must examine the current node.
1727
1728 if Nkind (N) = N_Function_Call
1729 and then Present (Controlling_Argument (N))
1730 and then Has_Controlling_Result (Entity (Name (N)))
1731 then
1732 return Controlling_Argument (N);
1733
1734 -- If expansion is enabled, the call may have been transformed into
1735 -- an indirect call, and we need to recover the original node.
1736
1737 elsif Nkind (Orig_Node) = N_Function_Call
1738 and then Present (Controlling_Argument (Orig_Node))
1739 and then Has_Controlling_Result (Entity (Name (Orig_Node)))
1740 then
1741 return Controlling_Argument (Orig_Node);
1742
1743 -- Type conversions are dynamically tagged if the target type, or its
1744 -- designated type, are classwide. An interface conversion expands into
1745 -- a dereference, so test must be performed on the original node.
1746
1747 elsif Nkind (Orig_Node) = N_Type_Conversion
1748 and then Nkind (N) = N_Explicit_Dereference
1749 and then Is_Controlling_Actual (N)
1750 then
1751 declare
1752 Target_Type : constant Entity_Id :=
1753 Entity (Subtype_Mark (Orig_Node));
1754
1755 begin
1756 if Is_Class_Wide_Type (Target_Type) then
1757 return N;
1758
1759 elsif Is_Access_Type (Target_Type)
1760 and then Is_Class_Wide_Type (Designated_Type (Target_Type))
1761 then
1762 return N;
1763
1764 else
1765 return Empty;
1766 end if;
1767 end;
1768
1769 -- Normal case
1770
1771 elsif Is_Controlling_Actual (N)
1772 or else
1773 (Nkind (Parent (N)) = N_Qualified_Expression
1774 and then Is_Controlling_Actual (Parent (N)))
1775 then
1776 Typ := Etype (N);
1777
1778 if Is_Access_Type (Typ) then
1779
1780 -- In the case of an Access attribute, use the type of the prefix,
1781 -- since in the case of an actual for an access parameter, the
1782 -- attribute's type may be of a specific designated type, even
1783 -- though the prefix type is class-wide.
1784
1785 if Nkind (N) = N_Attribute_Reference then
1786 Typ := Etype (Prefix (N));
1787
1788 -- An allocator is dispatching if the type of qualified expression
1789 -- is class_wide, in which case this is the controlling type.
1790
1791 elsif Nkind (Orig_Node) = N_Allocator
1792 and then Nkind (Expression (Orig_Node)) = N_Qualified_Expression
1793 then
1794 Typ := Etype (Expression (Orig_Node));
1795 else
1796 Typ := Designated_Type (Typ);
1797 end if;
1798 end if;
1799
1800 if Is_Class_Wide_Type (Typ)
1801 or else
1802 (Nkind (Parent (N)) = N_Qualified_Expression
1803 and then Is_Access_Type (Etype (N))
1804 and then Is_Class_Wide_Type (Designated_Type (Etype (N))))
1805 then
1806 return N;
1807 end if;
1808 end if;
1809
1810 return Empty;
1811 end Find_Controlling_Arg;
1812
1813 ---------------------------
1814 -- Find_Dispatching_Type --
1815 ---------------------------
1816
1817 function Find_Dispatching_Type (Subp : Entity_Id) return Entity_Id is
1818 A_Formal : Entity_Id;
1819 Formal : Entity_Id;
1820 Ctrl_Type : Entity_Id;
1821
1822 begin
1823 if Ekind_In (Subp, E_Function, E_Procedure)
1824 and then Present (DTC_Entity (Subp))
1825 then
1826 return Scope (DTC_Entity (Subp));
1827
1828 -- For subprograms internally generated by derivations of tagged types
1829 -- use the alias subprogram as a reference to locate the dispatching
1830 -- type of Subp.
1831
1832 elsif not Comes_From_Source (Subp)
1833 and then Present (Alias (Subp))
1834 and then Is_Dispatching_Operation (Alias (Subp))
1835 then
1836 if Ekind (Alias (Subp)) = E_Function
1837 and then Has_Controlling_Result (Alias (Subp))
1838 then
1839 return Check_Controlling_Type (Etype (Subp), Subp);
1840
1841 else
1842 Formal := First_Formal (Subp);
1843 A_Formal := First_Formal (Alias (Subp));
1844 while Present (A_Formal) loop
1845 if Is_Controlling_Formal (A_Formal) then
1846 return Check_Controlling_Type (Etype (Formal), Subp);
1847 end if;
1848
1849 Next_Formal (Formal);
1850 Next_Formal (A_Formal);
1851 end loop;
1852
1853 pragma Assert (False);
1854 return Empty;
1855 end if;
1856
1857 -- General case
1858
1859 else
1860 Formal := First_Formal (Subp);
1861 while Present (Formal) loop
1862 Ctrl_Type := Check_Controlling_Type (Etype (Formal), Subp);
1863
1864 if Present (Ctrl_Type) then
1865 return Ctrl_Type;
1866 end if;
1867
1868 Next_Formal (Formal);
1869 end loop;
1870
1871 -- The subprogram may also be dispatching on result
1872
1873 if Present (Etype (Subp)) then
1874 return Check_Controlling_Type (Etype (Subp), Subp);
1875 end if;
1876 end if;
1877
1878 pragma Assert (not Is_Dispatching_Operation (Subp));
1879 return Empty;
1880 end Find_Dispatching_Type;
1881
1882 --------------------------------------
1883 -- Find_Hidden_Overridden_Primitive --
1884 --------------------------------------
1885
1886 function Find_Hidden_Overridden_Primitive (S : Entity_Id) return Entity_Id
1887 is
1888 Tag_Typ : constant Entity_Id := Find_Dispatching_Type (S);
1889 Elmt : Elmt_Id;
1890 Orig_Prim : Entity_Id;
1891 Prim : Entity_Id;
1892 Vis_List : Elist_Id;
1893
1894 begin
1895 -- This Ada 2012 rule applies only for type extensions or private
1896 -- extensions, where the parent type is not in a parent unit, and
1897 -- where an operation is never declared but still inherited.
1898
1899 if No (Tag_Typ)
1900 or else not Is_Record_Type (Tag_Typ)
1901 or else Etype (Tag_Typ) = Tag_Typ
1902 or else In_Open_Scopes (Scope (Etype (Tag_Typ)))
1903 then
1904 return Empty;
1905 end if;
1906
1907 -- Collect the list of visible ancestor of the tagged type
1908
1909 Vis_List := Visible_Ancestors (Tag_Typ);
1910
1911 Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
1912 while Present (Elmt) loop
1913 Prim := Node (Elmt);
1914
1915 -- Find an inherited hidden dispatching primitive with the name of S
1916 -- and a type-conformant profile.
1917
1918 if Present (Alias (Prim))
1919 and then Is_Hidden (Alias (Prim))
1920 and then Find_Dispatching_Type (Alias (Prim)) /= Tag_Typ
1921 and then Primitive_Names_Match (S, Prim)
1922 and then Type_Conformant (S, Prim)
1923 then
1924 declare
1925 Vis_Ancestor : Elmt_Id;
1926 Elmt : Elmt_Id;
1927
1928 begin
1929 -- The original corresponding operation of Prim must be an
1930 -- operation of a visible ancestor of the dispatching type S,
1931 -- and the original corresponding operation of S2 must be
1932 -- visible.
1933
1934 Orig_Prim := Original_Corresponding_Operation (Prim);
1935
1936 if Orig_Prim /= Prim
1937 and then Is_Immediately_Visible (Orig_Prim)
1938 then
1939 Vis_Ancestor := First_Elmt (Vis_List);
1940 while Present (Vis_Ancestor) loop
1941 Elmt :=
1942 First_Elmt (Primitive_Operations (Node (Vis_Ancestor)));
1943 while Present (Elmt) loop
1944 if Node (Elmt) = Orig_Prim then
1945 Set_Overridden_Operation (S, Prim);
1946 Set_Alias (Prim, Orig_Prim);
1947 return Prim;
1948 end if;
1949
1950 Next_Elmt (Elmt);
1951 end loop;
1952
1953 Next_Elmt (Vis_Ancestor);
1954 end loop;
1955 end if;
1956 end;
1957 end if;
1958
1959 Next_Elmt (Elmt);
1960 end loop;
1961
1962 return Empty;
1963 end Find_Hidden_Overridden_Primitive;
1964
1965 ---------------------------------------
1966 -- Find_Primitive_Covering_Interface --
1967 ---------------------------------------
1968
1969 function Find_Primitive_Covering_Interface
1970 (Tagged_Type : Entity_Id;
1971 Iface_Prim : Entity_Id) return Entity_Id
1972 is
1973 E : Entity_Id;
1974 El : Elmt_Id;
1975
1976 begin
1977 pragma Assert (Is_Interface (Find_Dispatching_Type (Iface_Prim))
1978 or else (Present (Alias (Iface_Prim))
1979 and then
1980 Is_Interface
1981 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
1982
1983 -- Search in the homonym chain. Done to speed up locating visible
1984 -- entities and required to catch primitives associated with the partial
1985 -- view of private types when processing the corresponding full view.
1986
1987 E := Current_Entity (Iface_Prim);
1988 while Present (E) loop
1989 if Is_Subprogram (E)
1990 and then Is_Dispatching_Operation (E)
1991 and then Is_Interface_Conformant (Tagged_Type, Iface_Prim, E)
1992 then
1993 return E;
1994 end if;
1995
1996 E := Homonym (E);
1997 end loop;
1998
1999 -- Search in the list of primitives of the type. Required to locate
2000 -- the covering primitive if the covering primitive is not visible
2001 -- (for example, non-visible inherited primitive of private type).
2002
2003 El := First_Elmt (Primitive_Operations (Tagged_Type));
2004 while Present (El) loop
2005 E := Node (El);
2006
2007 -- Keep separate the management of internal entities that link
2008 -- primitives with interface primitives from tagged type primitives.
2009
2010 if No (Interface_Alias (E)) then
2011 if Present (Alias (E)) then
2012
2013 -- This interface primitive has not been covered yet
2014
2015 if Alias (E) = Iface_Prim then
2016 return E;
2017
2018 -- The covering primitive was inherited
2019
2020 elsif Overridden_Operation (Ultimate_Alias (E))
2021 = Iface_Prim
2022 then
2023 return E;
2024 end if;
2025 end if;
2026
2027 -- Check if E covers the interface primitive (includes case in
2028 -- which E is an inherited private primitive).
2029
2030 if Is_Interface_Conformant (Tagged_Type, Iface_Prim, E) then
2031 return E;
2032 end if;
2033
2034 -- Use the internal entity that links the interface primitive with
2035 -- the covering primitive to locate the entity.
2036
2037 elsif Interface_Alias (E) = Iface_Prim then
2038 return Alias (E);
2039 end if;
2040
2041 Next_Elmt (El);
2042 end loop;
2043
2044 -- Not found
2045
2046 return Empty;
2047 end Find_Primitive_Covering_Interface;
2048
2049 ---------------------------
2050 -- Inherited_Subprograms --
2051 ---------------------------
2052
2053 function Inherited_Subprograms
2054 (S : Entity_Id;
2055 No_Interfaces : Boolean := False;
2056 Interfaces_Only : Boolean := False) return Subprogram_List
2057 is
2058 Result : Subprogram_List (1 .. 6000);
2059 -- 6000 here is intended to be infinity. We could use an expandable
2060 -- table, but it would be awfully heavy, and there is no way that we
2061 -- could reasonably exceed this value.
2062
2063 N : Int := 0;
2064 -- Number of entries in Result
2065
2066 Parent_Op : Entity_Id;
2067 -- Traverses the Overridden_Operation chain
2068
2069 procedure Store_IS (E : Entity_Id);
2070 -- Stores E in Result if not already stored
2071
2072 --------------
2073 -- Store_IS --
2074 --------------
2075
2076 procedure Store_IS (E : Entity_Id) is
2077 begin
2078 for J in 1 .. N loop
2079 if E = Result (J) then
2080 return;
2081 end if;
2082 end loop;
2083
2084 N := N + 1;
2085 Result (N) := E;
2086 end Store_IS;
2087
2088 -- Start of processing for Inherited_Subprograms
2089
2090 begin
2091 pragma Assert (not (No_Interfaces and Interfaces_Only));
2092
2093 if Present (S) and then Is_Dispatching_Operation (S) then
2094
2095 -- Deal with direct inheritance
2096
2097 if not Interfaces_Only then
2098 Parent_Op := S;
2099 loop
2100 Parent_Op := Overridden_Operation (Parent_Op);
2101 exit when No (Parent_Op)
2102 or else
2103 (No_Interfaces
2104 and then
2105 Is_Interface (Find_Dispatching_Type (Parent_Op)));
2106
2107 if Is_Subprogram_Or_Generic_Subprogram (Parent_Op) then
2108 Store_IS (Parent_Op);
2109 end if;
2110 end loop;
2111 end if;
2112
2113 -- Now deal with interfaces
2114
2115 if not No_Interfaces then
2116 declare
2117 Tag_Typ : Entity_Id;
2118 Prim : Entity_Id;
2119 Elmt : Elmt_Id;
2120
2121 begin
2122 Tag_Typ := Find_Dispatching_Type (S);
2123
2124 if Is_Concurrent_Type (Tag_Typ) then
2125 Tag_Typ := Corresponding_Record_Type (Tag_Typ);
2126 end if;
2127
2128 -- Search primitive operations of dispatching type
2129
2130 if Present (Tag_Typ)
2131 and then Present (Primitive_Operations (Tag_Typ))
2132 then
2133 Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
2134 while Present (Elmt) loop
2135 Prim := Node (Elmt);
2136
2137 -- The following test eliminates some odd cases in which
2138 -- Ekind (Prim) is Void, to be investigated further ???
2139
2140 if not Is_Subprogram_Or_Generic_Subprogram (Prim) then
2141 null;
2142
2143 -- For [generic] subprogram, look at interface alias
2144
2145 elsif Present (Interface_Alias (Prim))
2146 and then Alias (Prim) = S
2147 then
2148 -- We have found a primitive covered by S
2149
2150 Store_IS (Interface_Alias (Prim));
2151 end if;
2152
2153 Next_Elmt (Elmt);
2154 end loop;
2155 end if;
2156 end;
2157 end if;
2158 end if;
2159
2160 return Result (1 .. N);
2161 end Inherited_Subprograms;
2162
2163 ---------------------------
2164 -- Is_Dynamically_Tagged --
2165 ---------------------------
2166
2167 function Is_Dynamically_Tagged (N : Node_Id) return Boolean is
2168 begin
2169 if Nkind (N) = N_Error then
2170 return False;
2171
2172 elsif Present (Find_Controlling_Arg (N)) then
2173 return True;
2174
2175 -- Special cases: entities, and calls that dispatch on result
2176
2177 elsif Is_Entity_Name (N) then
2178 return Is_Class_Wide_Type (Etype (N));
2179
2180 elsif Nkind (N) = N_Function_Call
2181 and then Is_Class_Wide_Type (Etype (N))
2182 then
2183 return True;
2184
2185 -- Otherwise check whether call has controlling argument
2186
2187 else
2188 return False;
2189 end if;
2190 end Is_Dynamically_Tagged;
2191
2192 ---------------------------------
2193 -- Is_Null_Interface_Primitive --
2194 ---------------------------------
2195
2196 function Is_Null_Interface_Primitive (E : Entity_Id) return Boolean is
2197 begin
2198 return Comes_From_Source (E)
2199 and then Is_Dispatching_Operation (E)
2200 and then Ekind (E) = E_Procedure
2201 and then Null_Present (Parent (E))
2202 and then Is_Interface (Find_Dispatching_Type (E));
2203 end Is_Null_Interface_Primitive;
2204
2205 -----------------------------------
2206 -- Is_Inherited_Public_Operation --
2207 -----------------------------------
2208
2209 function Is_Inherited_Public_Operation (Op : Entity_Id) return Boolean is
2210 Prim : constant Entity_Id := Alias (Op);
2211 Scop : constant Entity_Id := Scope (Prim);
2212 Pack_Decl : Node_Id;
2213
2214 begin
2215 if Comes_From_Source (Prim) and then Ekind (Scop) = E_Package then
2216 Pack_Decl := Unit_Declaration_Node (Scop);
2217 return Nkind (Pack_Decl) = N_Package_Declaration
2218 and then List_Containing (Unit_Declaration_Node (Prim)) =
2219 Visible_Declarations (Specification (Pack_Decl));
2220
2221 else
2222 return False;
2223 end if;
2224 end Is_Inherited_Public_Operation;
2225
2226 --------------------------
2227 -- Is_Tag_Indeterminate --
2228 --------------------------
2229
2230 function Is_Tag_Indeterminate (N : Node_Id) return Boolean is
2231 Nam : Entity_Id;
2232 Actual : Node_Id;
2233 Orig_Node : constant Node_Id := Original_Node (N);
2234
2235 begin
2236 if Nkind (Orig_Node) = N_Function_Call
2237 and then Is_Entity_Name (Name (Orig_Node))
2238 then
2239 Nam := Entity (Name (Orig_Node));
2240
2241 if not Has_Controlling_Result (Nam) then
2242 return False;
2243
2244 -- The function may have a controlling result, but if the return type
2245 -- is not visibly tagged, then this is not tag-indeterminate.
2246
2247 elsif Is_Access_Type (Etype (Nam))
2248 and then not Is_Tagged_Type (Designated_Type (Etype (Nam)))
2249 then
2250 return False;
2251
2252 -- An explicit dereference means that the call has already been
2253 -- expanded and there is no tag to propagate.
2254
2255 elsif Nkind (N) = N_Explicit_Dereference then
2256 return False;
2257
2258 -- If there are no actuals, the call is tag-indeterminate
2259
2260 elsif No (Parameter_Associations (Orig_Node)) then
2261 return True;
2262
2263 else
2264 Actual := First_Actual (Orig_Node);
2265 while Present (Actual) loop
2266 if Is_Controlling_Actual (Actual)
2267 and then not Is_Tag_Indeterminate (Actual)
2268 then
2269 -- One operand is dispatching
2270
2271 return False;
2272 end if;
2273
2274 Next_Actual (Actual);
2275 end loop;
2276
2277 return True;
2278 end if;
2279
2280 elsif Nkind (Orig_Node) = N_Qualified_Expression then
2281 return Is_Tag_Indeterminate (Expression (Orig_Node));
2282
2283 -- Case of a call to the Input attribute (possibly rewritten), which is
2284 -- always tag-indeterminate except when its prefix is a Class attribute.
2285
2286 elsif Nkind (Orig_Node) = N_Attribute_Reference
2287 and then
2288 Get_Attribute_Id (Attribute_Name (Orig_Node)) = Attribute_Input
2289 and then Nkind (Prefix (Orig_Node)) /= N_Attribute_Reference
2290 then
2291 return True;
2292
2293 -- In Ada 2005, a function that returns an anonymous access type can be
2294 -- dispatching, and the dereference of a call to such a function can
2295 -- also be tag-indeterminate if the call itself is.
2296
2297 elsif Nkind (Orig_Node) = N_Explicit_Dereference
2298 and then Ada_Version >= Ada_2005
2299 then
2300 return Is_Tag_Indeterminate (Prefix (Orig_Node));
2301
2302 else
2303 return False;
2304 end if;
2305 end Is_Tag_Indeterminate;
2306
2307 ------------------------------------
2308 -- Override_Dispatching_Operation --
2309 ------------------------------------
2310
2311 procedure Override_Dispatching_Operation
2312 (Tagged_Type : Entity_Id;
2313 Prev_Op : Entity_Id;
2314 New_Op : Entity_Id;
2315 Is_Wrapper : Boolean := False)
2316 is
2317 Elmt : Elmt_Id;
2318 Prim : Node_Id;
2319
2320 begin
2321 -- Diagnose failure to match No_Return in parent (Ada-2005, AI-414, but
2322 -- we do it unconditionally in Ada 95 now, since this is our pragma).
2323
2324 if No_Return (Prev_Op) and then not No_Return (New_Op) then
2325 Error_Msg_N ("procedure & must have No_Return pragma", New_Op);
2326 Error_Msg_N ("\since overridden procedure has No_Return", New_Op);
2327 end if;
2328
2329 -- If there is no previous operation to override, the type declaration
2330 -- was malformed, and an error must have been emitted already.
2331
2332 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
2333 while Present (Elmt) and then Node (Elmt) /= Prev_Op loop
2334 Next_Elmt (Elmt);
2335 end loop;
2336
2337 if No (Elmt) then
2338 return;
2339 end if;
2340
2341 -- The location of entities that come from source in the list of
2342 -- primitives of the tagged type must follow their order of occurrence
2343 -- in the sources to fulfill the C++ ABI. If the overridden entity is a
2344 -- primitive of an interface that is not implemented by the parents of
2345 -- this tagged type (that is, it is an alias of an interface primitive
2346 -- generated by Derive_Interface_Progenitors), then we must append the
2347 -- new entity at the end of the list of primitives.
2348
2349 if Present (Alias (Prev_Op))
2350 and then Etype (Tagged_Type) /= Tagged_Type
2351 and then Is_Interface (Find_Dispatching_Type (Alias (Prev_Op)))
2352 and then not Is_Ancestor (Find_Dispatching_Type (Alias (Prev_Op)),
2353 Tagged_Type, Use_Full_View => True)
2354 and then not Implements_Interface
2355 (Etype (Tagged_Type),
2356 Find_Dispatching_Type (Alias (Prev_Op)))
2357 then
2358 Remove_Elmt (Primitive_Operations (Tagged_Type), Elmt);
2359 Append_Elmt (New_Op, Primitive_Operations (Tagged_Type));
2360
2361 -- The new primitive replaces the overridden entity. Required to ensure
2362 -- that overriding primitive is assigned the same dispatch table slot.
2363
2364 else
2365 Replace_Elmt (Elmt, New_Op);
2366 end if;
2367
2368 if Ada_Version >= Ada_2005 and then Has_Interfaces (Tagged_Type) then
2369
2370 -- Ada 2005 (AI-251): Update the attribute alias of all the aliased
2371 -- entities of the overridden primitive to reference New_Op, and
2372 -- also propagate the proper value of Is_Abstract_Subprogram. Verify
2373 -- that the new operation is subtype conformant with the interface
2374 -- operations that it implements (for operations inherited from the
2375 -- parent itself, this check is made when building the derived type).
2376
2377 -- Note: This code is executed with internally generated wrappers of
2378 -- functions with controlling result and late overridings.
2379
2380 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
2381 while Present (Elmt) loop
2382 Prim := Node (Elmt);
2383
2384 if Prim = New_Op then
2385 null;
2386
2387 -- Note: The check on Is_Subprogram protects the frontend against
2388 -- reading attributes in entities that are not yet fully decorated
2389
2390 elsif Is_Subprogram (Prim)
2391 and then Present (Interface_Alias (Prim))
2392 and then Alias (Prim) = Prev_Op
2393 then
2394 Set_Alias (Prim, New_Op);
2395
2396 -- No further decoration needed yet for internally generated
2397 -- wrappers of controlling functions since (at this stage)
2398 -- they are not yet decorated.
2399
2400 if not Is_Wrapper then
2401 Check_Subtype_Conformant (New_Op, Prim);
2402
2403 Set_Is_Abstract_Subprogram (Prim,
2404 Is_Abstract_Subprogram (New_Op));
2405
2406 -- Ensure that this entity will be expanded to fill the
2407 -- corresponding entry in its dispatch table.
2408
2409 if not Is_Abstract_Subprogram (Prim) then
2410 Set_Has_Delayed_Freeze (Prim);
2411 end if;
2412 end if;
2413 end if;
2414
2415 Next_Elmt (Elmt);
2416 end loop;
2417 end if;
2418
2419 if (not Is_Package_Or_Generic_Package (Current_Scope))
2420 or else not In_Private_Part (Current_Scope)
2421 then
2422 -- Not a private primitive
2423
2424 null;
2425
2426 else pragma Assert (Is_Inherited_Operation (Prev_Op));
2427
2428 -- Make the overriding operation into an alias of the implicit one.
2429 -- In this fashion a call from outside ends up calling the new body
2430 -- even if non-dispatching, and a call from inside calls the over-
2431 -- riding operation because it hides the implicit one. To indicate
2432 -- that the body of Prev_Op is never called, set its dispatch table
2433 -- entity to Empty. If the overridden operation has a dispatching
2434 -- result, so does the overriding one.
2435
2436 Set_Alias (Prev_Op, New_Op);
2437 Set_DTC_Entity (Prev_Op, Empty);
2438 Set_Has_Controlling_Result (New_Op, Has_Controlling_Result (Prev_Op));
2439 return;
2440 end if;
2441 end Override_Dispatching_Operation;
2442
2443 -------------------
2444 -- Propagate_Tag --
2445 -------------------
2446
2447 procedure Propagate_Tag (Control : Node_Id; Actual : Node_Id) is
2448 Call_Node : Node_Id;
2449 Arg : Node_Id;
2450
2451 begin
2452 if Nkind (Actual) = N_Function_Call then
2453 Call_Node := Actual;
2454
2455 elsif Nkind (Actual) = N_Identifier
2456 and then Nkind (Original_Node (Actual)) = N_Function_Call
2457 then
2458 -- Call rewritten as object declaration when stack-checking is
2459 -- enabled. Propagate tag to expression in declaration, which is
2460 -- original call.
2461
2462 Call_Node := Expression (Parent (Entity (Actual)));
2463
2464 -- Ada 2005: If this is a dereference of a call to a function with a
2465 -- dispatching access-result, the tag is propagated when the dereference
2466 -- itself is expanded (see exp_ch6.adb) and there is nothing else to do.
2467
2468 elsif Nkind (Actual) = N_Explicit_Dereference
2469 and then Nkind (Original_Node (Prefix (Actual))) = N_Function_Call
2470 then
2471 return;
2472
2473 -- When expansion is suppressed, an unexpanded call to 'Input can occur,
2474 -- and in that case we can simply return.
2475
2476 elsif Nkind (Actual) = N_Attribute_Reference then
2477 pragma Assert (Attribute_Name (Actual) = Name_Input);
2478
2479 return;
2480
2481 -- Only other possibilities are parenthesized or qualified expression,
2482 -- or an expander-generated unchecked conversion of a function call to
2483 -- a stream Input attribute.
2484
2485 else
2486 Call_Node := Expression (Actual);
2487 end if;
2488
2489 -- No action needed if the call has been already expanded
2490
2491 if Is_Expanded_Dispatching_Call (Call_Node) then
2492 return;
2493 end if;
2494
2495 -- Do not set the Controlling_Argument if already set. This happens in
2496 -- the special case of _Input (see Exp_Attr, case Input).
2497
2498 if No (Controlling_Argument (Call_Node)) then
2499 Set_Controlling_Argument (Call_Node, Control);
2500 end if;
2501
2502 Arg := First_Actual (Call_Node);
2503 while Present (Arg) loop
2504 if Is_Tag_Indeterminate (Arg) then
2505 Propagate_Tag (Control, Arg);
2506 end if;
2507
2508 Next_Actual (Arg);
2509 end loop;
2510
2511 -- Expansion of dispatching calls is suppressed when VM_Target, because
2512 -- the VM back-ends directly handle the generation of dispatching calls
2513 -- and would have to undo any expansion to an indirect call.
2514
2515 if Tagged_Type_Expansion then
2516 declare
2517 Call_Typ : constant Entity_Id := Etype (Call_Node);
2518
2519 begin
2520 Expand_Dispatching_Call (Call_Node);
2521
2522 -- If the controlling argument is an interface type and the type
2523 -- of Call_Node differs then we must add an implicit conversion to
2524 -- force displacement of the pointer to the object to reference
2525 -- the secondary dispatch table of the interface.
2526
2527 if Is_Interface (Etype (Control))
2528 and then Etype (Control) /= Call_Typ
2529 then
2530 -- Cannot use Convert_To because the previous call to
2531 -- Expand_Dispatching_Call leaves decorated the Call_Node
2532 -- with the type of Control.
2533
2534 Rewrite (Call_Node,
2535 Make_Type_Conversion (Sloc (Call_Node),
2536 Subtype_Mark =>
2537 New_Occurrence_Of (Etype (Control), Sloc (Call_Node)),
2538 Expression => Relocate_Node (Call_Node)));
2539 Set_Etype (Call_Node, Etype (Control));
2540 Set_Analyzed (Call_Node);
2541
2542 Expand_Interface_Conversion (Call_Node);
2543 end if;
2544 end;
2545
2546 -- Expansion of a dispatching call results in an indirect call, which in
2547 -- turn causes current values to be killed (see Resolve_Call), so on VM
2548 -- targets we do the call here to ensure consistent warnings between VM
2549 -- and non-VM targets.
2550
2551 else
2552 Kill_Current_Values;
2553 end if;
2554 end Propagate_Tag;
2555
2556 end Sem_Disp;
This page took 0.14773 seconds and 5 git commands to generate.