]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/exp_ch6.adb
[Ada] Validate_Access_Subprogram_Instance: check if not null types match
[gcc.git] / gcc / ada / exp_ch6.adb
CommitLineData
01aef5ad 1------------------------------------------------------------------------------
70482933
RK
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- E X P _ C H 6 --
6-- --
7-- B o d y --
8-- --
1d005acc 9-- Copyright (C) 1992-2019, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
70482933
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
23-- --
24------------------------------------------------------------------------------
25
879ac954 26with Atree; use Atree;
a2dbe7d5 27with Aspects; use Aspects;
879ac954
AC
28with Checks; use Checks;
29with Contracts; use Contracts;
30with Debug; use Debug;
31with Einfo; use Einfo;
32with Errout; use Errout;
33with Elists; use Elists;
4ac62786 34with Expander; use Expander;
879ac954
AC
35with Exp_Aggr; use Exp_Aggr;
36with Exp_Atag; use Exp_Atag;
37with Exp_Ch2; use Exp_Ch2;
38with Exp_Ch3; use Exp_Ch3;
39with Exp_Ch7; use Exp_Ch7;
40with Exp_Ch9; use Exp_Ch9;
41with Exp_Dbug; use Exp_Dbug;
42with Exp_Disp; use Exp_Disp;
43with Exp_Dist; use Exp_Dist;
44with Exp_Intr; use Exp_Intr;
45with Exp_Pakd; use Exp_Pakd;
46with Exp_Tss; use Exp_Tss;
879ac954
AC
47with Exp_Util; use Exp_Util;
48with Freeze; use Freeze;
879ac954 49with Inline; use Inline;
4ac62786 50with Itypes; use Itypes;
879ac954
AC
51with Lib; use Lib;
52with Namet; use Namet;
53with Nlists; use Nlists;
54with Nmake; use Nmake;
55with Opt; use Opt;
56with Restrict; use Restrict;
57with Rident; use Rident;
58with Rtsfind; use Rtsfind;
59with Sem; use Sem;
60with Sem_Aux; use Sem_Aux;
61with Sem_Ch6; use Sem_Ch6;
62with Sem_Ch8; use Sem_Ch8;
63with Sem_Ch13; use Sem_Ch13;
64with Sem_Dim; use Sem_Dim;
65with Sem_Disp; use Sem_Disp;
66with Sem_Dist; use Sem_Dist;
67with Sem_Eval; use Sem_Eval;
68with Sem_Mech; use Sem_Mech;
69with Sem_Res; use Sem_Res;
70with Sem_SCIL; use Sem_SCIL;
71with Sem_Util; use Sem_Util;
72with Sinfo; use Sinfo;
73with Snames; use Snames;
74with Stand; use Stand;
879ac954
AC
75with Tbuild; use Tbuild;
76with Uintp; use Uintp;
77with Validsw; use Validsw;
70482933
RK
78
79package body Exp_Ch6 is
80
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
84
02822a92
RD
85 procedure Add_Access_Actual_To_Build_In_Place_Call
86 (Function_Call : Node_Id;
87 Function_Id : Entity_Id;
f937473f
RD
88 Return_Object : Node_Id;
89 Is_Access : Boolean := False);
02822a92
RD
90 -- Ada 2005 (AI-318-02): Apply the Unrestricted_Access attribute to the
91 -- object name given by Return_Object and add the attribute to the end of
92 -- the actual parameter list associated with the build-in-place function
f937473f
RD
93 -- call denoted by Function_Call. However, if Is_Access is True, then
94 -- Return_Object is already an access expression, in which case it's passed
95 -- along directly to the build-in-place function. Finally, if Return_Object
96 -- is empty, then pass a null literal as the actual.
97
200b7162 98 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
f937473f
RD
99 (Function_Call : Node_Id;
100 Function_Id : Entity_Id;
101 Alloc_Form : BIP_Allocation_Form := Unspecified;
200b7162
BD
102 Alloc_Form_Exp : Node_Id := Empty;
103 Pool_Actual : Node_Id := Make_Null (No_Location));
104 -- Ada 2005 (AI-318-02): Add the actuals needed for a build-in-place
105 -- function call that returns a caller-unknown-size result (BIP_Alloc_Form
106 -- and BIP_Storage_Pool). If Alloc_Form_Exp is present, then use it,
107 -- otherwise pass a literal corresponding to the Alloc_Form parameter
108 -- (which must not be Unspecified in that case). Pool_Actual is the
109 -- parameter to pass to BIP_Storage_Pool.
f937473f 110
d3f70b35 111 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
2c17ca0a
AC
112 (Func_Call : Node_Id;
113 Func_Id : Entity_Id;
114 Ptr_Typ : Entity_Id := Empty;
115 Master_Exp : Node_Id := Empty);
df3e68b1
HK
116 -- Ada 2005 (AI-318-02): If the result type of a build-in-place call needs
117 -- finalization actions, add an actual parameter which is a pointer to the
2c17ca0a
AC
118 -- finalization master of the caller. If Master_Exp is not Empty, then that
119 -- will be passed as the actual. Otherwise, if Ptr_Typ is left Empty, this
120 -- will result in an automatic "null" value for the actual.
f937473f
RD
121
122 procedure Add_Task_Actuals_To_Build_In_Place_Call
123 (Function_Call : Node_Id;
124 Function_Id : Entity_Id;
1399d355
AC
125 Master_Actual : Node_Id;
126 Chain : Node_Id := Empty);
f937473f
RD
127 -- Ada 2005 (AI-318-02): For a build-in-place call, if the result type
128 -- contains tasks, add two actual parameters: the master, and a pointer to
129 -- the caller's activation chain. Master_Actual is the actual parameter
130 -- expression to pass for the master. In most cases, this is the current
131 -- master (_master). The two exceptions are: If the function call is the
132 -- initialization expression for an allocator, we pass the master of the
6dfc5592 133 -- access type. If the function call is the initialization expression for a
1399d355
AC
134 -- return object, we pass along the master passed in by the caller. In most
135 -- contexts, the activation chain to pass is the local one, which is
136 -- indicated by No (Chain). However, in an allocator, the caller passes in
137 -- the activation Chain. Note: Master_Actual can be Empty, but only if
138 -- there are no tasks.
02822a92 139
0691ed6b 140 function Caller_Known_Size
1155ae01
AC
141 (Func_Call : Node_Id;
142 Result_Subt : Entity_Id) return Boolean;
0691ed6b
AC
143 -- True if result subtype is definite, or has a size that does not require
144 -- secondary stack usage (i.e. no variant part or components whose type
145 -- depends on discriminants). In particular, untagged types with only
146 -- access discriminants do not require secondary stack use. Note we must
147 -- always use the secondary stack for dispatching-on-result calls.
148
1ed19d98
JM
149 function Check_Number_Of_Actuals
150 (Subp_Call : Node_Id;
151 Subp_Id : Entity_Id) return Boolean;
152 -- Given a subprogram call to the given subprogram return True if the
153 -- number of actual parameters (including extra actuals) is correct.
154
70482933
RK
155 procedure Check_Overriding_Operation (Subp : Entity_Id);
156 -- Subp is a dispatching operation. Check whether it may override an
157 -- inherited private operation, in which case its DT entry is that of
158 -- the hidden operation, not the one it may have received earlier.
159 -- This must be done before emitting the code to set the corresponding
160 -- DT to the address of the subprogram. The actual placement of Subp in
161 -- the proper place in the list of primitive operations is done in
162 -- Declare_Inherited_Private_Subprograms, which also has to deal with
163 -- implicit operations. This duplication is unavoidable for now???
164
165 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id);
166 -- This procedure is called only if the subprogram body N, whose spec
167 -- has the given entity Spec, contains a parameterless recursive call.
168 -- It attempts to generate runtime code to detect if this a case of
169 -- infinite recursion.
170 --
171 -- The body is scanned to determine dependencies. If the only external
172 -- dependencies are on a small set of scalar variables, then the values
173 -- of these variables are captured on entry to the subprogram, and if
174 -- the values are not changed for the call, we know immediately that
175 -- we have an infinite recursion.
176
ca1f6b29 177 procedure Expand_Actuals
ec40b86c
HK
178 (N : Node_Id;
179 Subp : Entity_Id;
180 Post_Call : out List_Id);
181 -- Return a list of actions to take place after the call in Post_Call. The
182 -- call will later be rewritten as an Expression_With_Actions, with the
183 -- Post_Call actions inserted, and the call inside.
ca1f6b29 184 --
ec40b86c
HK
185 -- For each actual of an in-out or out parameter which is a numeric (view)
186 -- conversion of the form T (A), where A denotes a variable, we insert the
187 -- declaration:
da574a86
AC
188 --
189 -- Temp : T[ := T (A)];
190 --
191 -- prior to the call. Then we replace the actual with a reference to Temp,
192 -- and append the assignment:
193 --
194 -- A := TypeA (Temp);
195 --
196 -- after the call. Here TypeA is the actual type of variable A. For out
197 -- parameters, the initial declaration has no expression. If A is not an
198 -- entity name, we generate instead:
199 --
200 -- Var : TypeA renames A;
201 -- Temp : T := Var; -- omitting expression for out parameter.
202 -- ...
203 -- Var := TypeA (Temp);
204 --
205 -- For other in-out parameters, we emit the required constraint checks
206 -- before and/or after the call.
207 --
208 -- For all parameter modes, actuals that denote components and slices of
209 -- packed arrays are expanded into suitable temporaries.
210 --
00907026
EB
211 -- For nonscalar objects that are possibly unaligned, add call by copy code
212 -- (copy in for IN and IN OUT, copy out for OUT and IN OUT).
da574a86 213 --
5f6fb720
AC
214 -- For OUT and IN OUT parameters, add predicate checks after the call
215 -- based on the predicates of the actual type.
ca1f6b29
BD
216
217 procedure Expand_Call_Helper (N : Node_Id; Post_Call : out List_Id);
ec40b86c 218 -- Does the main work of Expand_Call. Post_Call is as for Expand_Actuals.
da574a86 219
df3e68b1
HK
220 procedure Expand_Ctrl_Function_Call (N : Node_Id);
221 -- N is a function call which returns a controlled object. Transform the
222 -- call into a temporary which retrieves the returned object from the
223 -- secondary stack using 'reference.
224
2b3d67a5 225 procedure Expand_Non_Function_Return (N : Node_Id);
c9d70ab1
AC
226 -- Expand a simple return statement found in a procedure body, entry body,
227 -- accept statement, or an extended return statement. Note that all non-
228 -- function returns are simple return statements.
2b3d67a5 229
70482933
RK
230 function Expand_Protected_Object_Reference
231 (N : Node_Id;
02822a92 232 Scop : Entity_Id) return Node_Id;
70482933
RK
233
234 procedure Expand_Protected_Subprogram_Call
235 (N : Node_Id;
236 Subp : Entity_Id;
237 Scop : Entity_Id);
238 -- A call to a protected subprogram within the protected object may appear
239 -- as a regular call. The list of actuals must be expanded to contain a
240 -- reference to the object itself, and the call becomes a call to the
241 -- corresponding protected subprogram.
242
de01377c
AC
243 procedure Expand_Simple_Function_Return (N : Node_Id);
244 -- Expand simple return from function. In the case where we are returning
245 -- from a function body this is called by Expand_N_Simple_Return_Statement.
246
63585f75
SB
247 function Has_Unconstrained_Access_Discriminants
248 (Subtyp : Entity_Id) return Boolean;
de01377c
AC
249 -- Returns True if the given subtype is unconstrained and has one or more
250 -- access discriminants.
2b3d67a5 251
ec40b86c
HK
252 procedure Insert_Post_Call_Actions (N : Node_Id; Post_Call : List_Id);
253 -- Insert the Post_Call list previously produced by routine Expand_Actuals
254 -- or Expand_Call_Helper into the tree.
255
4ac62786
AC
256 procedure Replace_Renaming_Declaration_Id
257 (New_Decl : Node_Id;
258 Orig_Decl : Node_Id);
259 -- Replace the internal identifier of the new renaming declaration New_Decl
260 -- with the identifier of its original declaration Orig_Decl exchanging the
261 -- entities containing their defining identifiers to ensure the correct
262 -- replacement of the object declaration by the object renaming declaration
263 -- to avoid homograph conflicts (since the object declaration's defining
264 -- identifier was already entered in the current scope). The Next_Entity
265 -- links of the two entities are also swapped since the entities are part
266 -- of the return scope's entity list and the list structure would otherwise
267 -- be corrupted. The homonym chain is preserved as well.
268
2700b9c1
AC
269 procedure Rewrite_Function_Call_For_C (N : Node_Id);
270 -- When generating C code, replace a call to a function that returns an
271 -- array into the generated procedure with an additional out parameter.
272
c79f6efd
BD
273 procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id);
274 -- N is a return statement for a function that returns its result on the
275 -- secondary stack. This sets the Sec_Stack_Needed_For_Return flag on the
276 -- function and all blocks and loops that the return statement is jumping
277 -- out of. This ensures that the secondary stack is not released; otherwise
278 -- the function result would be reclaimed before returning to the caller.
279
02822a92
RD
280 ----------------------------------------------
281 -- Add_Access_Actual_To_Build_In_Place_Call --
282 ----------------------------------------------
283
284 procedure Add_Access_Actual_To_Build_In_Place_Call
285 (Function_Call : Node_Id;
286 Function_Id : Entity_Id;
f937473f
RD
287 Return_Object : Node_Id;
288 Is_Access : Boolean := False)
02822a92
RD
289 is
290 Loc : constant Source_Ptr := Sloc (Function_Call);
291 Obj_Address : Node_Id;
f937473f 292 Obj_Acc_Formal : Entity_Id;
02822a92
RD
293
294 begin
f937473f 295 -- Locate the implicit access parameter in the called function
02822a92 296
f937473f 297 Obj_Acc_Formal := Build_In_Place_Formal (Function_Id, BIP_Object_Access);
02822a92 298
f937473f
RD
299 -- If no return object is provided, then pass null
300
301 if not Present (Return_Object) then
302 Obj_Address := Make_Null (Loc);
7888a6ae 303 Set_Parent (Obj_Address, Function_Call);
02822a92 304
f937473f
RD
305 -- If Return_Object is already an expression of an access type, then use
306 -- it directly, since it must be an access value denoting the return
307 -- object, and couldn't possibly be the return object itself.
308
309 elsif Is_Access then
310 Obj_Address := Return_Object;
7888a6ae 311 Set_Parent (Obj_Address, Function_Call);
02822a92
RD
312
313 -- Apply Unrestricted_Access to caller's return object
314
f937473f
RD
315 else
316 Obj_Address :=
317 Make_Attribute_Reference (Loc,
318 Prefix => Return_Object,
319 Attribute_Name => Name_Unrestricted_Access);
7888a6ae
GD
320
321 Set_Parent (Return_Object, Obj_Address);
322 Set_Parent (Obj_Address, Function_Call);
f937473f 323 end if;
02822a92
RD
324
325 Analyze_And_Resolve (Obj_Address, Etype (Obj_Acc_Formal));
326
327 -- Build the parameter association for the new actual and add it to the
328 -- end of the function's actuals.
329
f937473f
RD
330 Add_Extra_Actual_To_Call (Function_Call, Obj_Acc_Formal, Obj_Address);
331 end Add_Access_Actual_To_Build_In_Place_Call;
332
3e7302c3 333 ------------------------------------------------------
200b7162 334 -- Add_Unconstrained_Actuals_To_Build_In_Place_Call --
3e7302c3 335 ------------------------------------------------------
f937473f 336
200b7162 337 procedure Add_Unconstrained_Actuals_To_Build_In_Place_Call
f937473f
RD
338 (Function_Call : Node_Id;
339 Function_Id : Entity_Id;
340 Alloc_Form : BIP_Allocation_Form := Unspecified;
200b7162
BD
341 Alloc_Form_Exp : Node_Id := Empty;
342 Pool_Actual : Node_Id := Make_Null (No_Location))
f937473f 343 is
7d1d3a54
HK
344 Loc : constant Source_Ptr := Sloc (Function_Call);
345
f937473f
RD
346 Alloc_Form_Actual : Node_Id;
347 Alloc_Form_Formal : Node_Id;
200b7162 348 Pool_Formal : Node_Id;
f937473f
RD
349
350 begin
7d1d3a54
HK
351 -- Nothing to do when the size of the object is known, and the caller is
352 -- in charge of allocating it, and the callee doesn't unconditionally
353 -- require an allocation form (such as due to having a tagged result).
354
355 if not Needs_BIP_Alloc_Form (Function_Id) then
7888a6ae
GD
356 return;
357 end if;
358
f937473f
RD
359 -- Locate the implicit allocation form parameter in the called function.
360 -- Maybe it would be better for each implicit formal of a build-in-place
361 -- function to have a flag or a Uint attribute to identify it. ???
362
363 Alloc_Form_Formal := Build_In_Place_Formal (Function_Id, BIP_Alloc_Form);
364
365 if Present (Alloc_Form_Exp) then
366 pragma Assert (Alloc_Form = Unspecified);
367
368 Alloc_Form_Actual := Alloc_Form_Exp;
369
370 else
371 pragma Assert (Alloc_Form /= Unspecified);
372
373 Alloc_Form_Actual :=
374 Make_Integer_Literal (Loc,
375 Intval => UI_From_Int (BIP_Allocation_Form'Pos (Alloc_Form)));
376 end if;
377
378 Analyze_And_Resolve (Alloc_Form_Actual, Etype (Alloc_Form_Formal));
379
380 -- Build the parameter association for the new actual and add it to the
381 -- end of the function's actuals.
382
383 Add_Extra_Actual_To_Call
384 (Function_Call, Alloc_Form_Formal, Alloc_Form_Actual);
200b7162 385
7d1d3a54
HK
386 -- Pass the Storage_Pool parameter. This parameter is omitted on ZFP as
387 -- those targets do not support pools.
200b7162 388
535a8637 389 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8417f4b2
AC
390 Pool_Formal := Build_In_Place_Formal (Function_Id, BIP_Storage_Pool);
391 Analyze_And_Resolve (Pool_Actual, Etype (Pool_Formal));
392 Add_Extra_Actual_To_Call
393 (Function_Call, Pool_Formal, Pool_Actual);
394 end if;
200b7162 395 end Add_Unconstrained_Actuals_To_Build_In_Place_Call;
f937473f 396
d3f70b35
AC
397 -----------------------------------------------------------
398 -- Add_Finalization_Master_Actual_To_Build_In_Place_Call --
399 -----------------------------------------------------------
df3e68b1 400
d3f70b35 401 procedure Add_Finalization_Master_Actual_To_Build_In_Place_Call
2c17ca0a
AC
402 (Func_Call : Node_Id;
403 Func_Id : Entity_Id;
404 Ptr_Typ : Entity_Id := Empty;
405 Master_Exp : Node_Id := Empty)
df3e68b1
HK
406 is
407 begin
d3f70b35 408 if not Needs_BIP_Finalization_Master (Func_Id) then
df3e68b1
HK
409 return;
410 end if;
411
412 declare
413 Formal : constant Entity_Id :=
d3f70b35 414 Build_In_Place_Formal (Func_Id, BIP_Finalization_Master);
df3e68b1
HK
415 Loc : constant Source_Ptr := Sloc (Func_Call);
416
417 Actual : Node_Id;
418 Desig_Typ : Entity_Id;
419
420 begin
2c17ca0a
AC
421 -- If there is a finalization master actual, such as the implicit
422 -- finalization master of an enclosing build-in-place function,
423 -- then this must be added as an extra actual of the call.
424
425 if Present (Master_Exp) then
426 Actual := Master_Exp;
427
d3f70b35 428 -- Case where the context does not require an actual master
df3e68b1 429
2c17ca0a 430 elsif No (Ptr_Typ) then
df3e68b1
HK
431 Actual := Make_Null (Loc);
432
433 else
434 Desig_Typ := Directly_Designated_Type (Ptr_Typ);
435
436 -- Check for a library-level access type whose designated type has
a267d8cc
AC
437 -- suppressed finalization or the access type is subject to pragma
438 -- No_Heap_Finalization. Such an access type lacks a master. Pass
439 -- a null actual to callee in order to signal a missing master.
df3e68b1
HK
440
441 if Is_Library_Level_Entity (Ptr_Typ)
cccb761b 442 and then (Finalize_Storage_Only (Desig_Typ)
a267d8cc 443 or else No_Heap_Finalization (Ptr_Typ))
df3e68b1
HK
444 then
445 Actual := Make_Null (Loc);
446
447 -- Types in need of finalization actions
448
449 elsif Needs_Finalization (Desig_Typ) then
450
d3f70b35
AC
451 -- The general mechanism of creating finalization masters for
452 -- anonymous access types is disabled by default, otherwise
453 -- finalization masters will pop all over the place. Such types
454 -- use context-specific masters.
df3e68b1
HK
455
456 if Ekind (Ptr_Typ) = E_Anonymous_Access_Type
d3f70b35 457 and then No (Finalization_Master (Ptr_Typ))
df3e68b1 458 then
32b794c8 459 Build_Anonymous_Master (Ptr_Typ);
df3e68b1
HK
460 end if;
461
d3f70b35 462 -- Access-to-controlled types should always have a master
df3e68b1 463
d3f70b35 464 pragma Assert (Present (Finalization_Master (Ptr_Typ)));
df3e68b1
HK
465
466 Actual :=
467 Make_Attribute_Reference (Loc,
468 Prefix =>
e4494292 469 New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
df3e68b1
HK
470 Attribute_Name => Name_Unrestricted_Access);
471
472 -- Tagged types
473
474 else
475 Actual := Make_Null (Loc);
476 end if;
477 end if;
478
479 Analyze_And_Resolve (Actual, Etype (Formal));
480
481 -- Build the parameter association for the new actual and add it to
482 -- the end of the function's actuals.
483
484 Add_Extra_Actual_To_Call (Func_Call, Formal, Actual);
485 end;
d3f70b35 486 end Add_Finalization_Master_Actual_To_Build_In_Place_Call;
df3e68b1 487
f937473f
RD
488 ------------------------------
489 -- Add_Extra_Actual_To_Call --
490 ------------------------------
491
492 procedure Add_Extra_Actual_To_Call
493 (Subprogram_Call : Node_Id;
494 Extra_Formal : Entity_Id;
495 Extra_Actual : Node_Id)
496 is
497 Loc : constant Source_Ptr := Sloc (Subprogram_Call);
498 Param_Assoc : Node_Id;
499
500 begin
02822a92
RD
501 Param_Assoc :=
502 Make_Parameter_Association (Loc,
f937473f
RD
503 Selector_Name => New_Occurrence_Of (Extra_Formal, Loc),
504 Explicit_Actual_Parameter => Extra_Actual);
02822a92 505
f937473f
RD
506 Set_Parent (Param_Assoc, Subprogram_Call);
507 Set_Parent (Extra_Actual, Param_Assoc);
02822a92 508
f937473f
RD
509 if Present (Parameter_Associations (Subprogram_Call)) then
510 if Nkind (Last (Parameter_Associations (Subprogram_Call))) =
02822a92
RD
511 N_Parameter_Association
512 then
f937473f
RD
513
514 -- Find last named actual, and append
515
516 declare
517 L : Node_Id;
518 begin
519 L := First_Actual (Subprogram_Call);
520 while Present (L) loop
521 if No (Next_Actual (L)) then
522 Set_Next_Named_Actual (Parent (L), Extra_Actual);
523 exit;
524 end if;
525 Next_Actual (L);
526 end loop;
527 end;
528
02822a92 529 else
f937473f 530 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
02822a92
RD
531 end if;
532
f937473f 533 Append (Param_Assoc, To => Parameter_Associations (Subprogram_Call));
02822a92
RD
534
535 else
f937473f
RD
536 Set_Parameter_Associations (Subprogram_Call, New_List (Param_Assoc));
537 Set_First_Named_Actual (Subprogram_Call, Extra_Actual);
02822a92 538 end if;
f937473f
RD
539 end Add_Extra_Actual_To_Call;
540
f937473f
RD
541 ---------------------------------------------
542 -- Add_Task_Actuals_To_Build_In_Place_Call --
543 ---------------------------------------------
544
545 procedure Add_Task_Actuals_To_Build_In_Place_Call
546 (Function_Call : Node_Id;
547 Function_Id : Entity_Id;
1399d355
AC
548 Master_Actual : Node_Id;
549 Chain : Node_Id := Empty)
f937473f 550 is
af89615f 551 Loc : constant Source_Ptr := Sloc (Function_Call);
af89615f
AC
552 Actual : Node_Id;
553 Chain_Actual : Node_Id;
554 Chain_Formal : Node_Id;
555 Master_Formal : Node_Id;
6dfc5592 556
f937473f
RD
557 begin
558 -- No such extra parameters are needed if there are no tasks
559
1ed19d98 560 if not Needs_BIP_Task_Actuals (Function_Id) then
f937473f
RD
561 return;
562 end if;
563
af89615f
AC
564 Actual := Master_Actual;
565
44bf8eb0
AC
566 -- Use a dummy _master actual in case of No_Task_Hierarchy
567
568 if Restriction_Active (No_Task_Hierarchy) then
569 Actual := New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc);
94bbf008
AC
570
571 -- In the case where we use the master associated with an access type,
572 -- the actual is an entity and requires an explicit reference.
573
574 elsif Nkind (Actual) = N_Defining_Identifier then
e4494292 575 Actual := New_Occurrence_Of (Actual, Loc);
44bf8eb0
AC
576 end if;
577
af89615f 578 -- Locate the implicit master parameter in the called function
f937473f 579
af89615f
AC
580 Master_Formal := Build_In_Place_Formal (Function_Id, BIP_Task_Master);
581 Analyze_And_Resolve (Actual, Etype (Master_Formal));
f937473f 582
af89615f
AC
583 -- Build the parameter association for the new actual and add it to the
584 -- end of the function's actuals.
f937473f 585
af89615f 586 Add_Extra_Actual_To_Call (Function_Call, Master_Formal, Actual);
75a64833 587
af89615f 588 -- Locate the implicit activation chain parameter in the called function
f937473f 589
af89615f
AC
590 Chain_Formal :=
591 Build_In_Place_Formal (Function_Id, BIP_Activation_Chain);
f937473f 592
af89615f 593 -- Create the actual which is a pointer to the current activation chain
f937473f 594
1399d355
AC
595 if No (Chain) then
596 Chain_Actual :=
597 Make_Attribute_Reference (Loc,
598 Prefix => Make_Identifier (Loc, Name_uChain),
599 Attribute_Name => Name_Unrestricted_Access);
600
601 -- Allocator case; make a reference to the Chain passed in by the caller
602
603 else
604 Chain_Actual :=
605 Make_Attribute_Reference (Loc,
606 Prefix => New_Occurrence_Of (Chain, Loc),
607 Attribute_Name => Name_Unrestricted_Access);
608 end if;
f937473f 609
af89615f 610 Analyze_And_Resolve (Chain_Actual, Etype (Chain_Formal));
f937473f 611
af89615f
AC
612 -- Build the parameter association for the new actual and add it to the
613 -- end of the function's actuals.
f937473f 614
af89615f 615 Add_Extra_Actual_To_Call (Function_Call, Chain_Formal, Chain_Actual);
f937473f
RD
616 end Add_Task_Actuals_To_Build_In_Place_Call;
617
618 -----------------------
619 -- BIP_Formal_Suffix --
620 -----------------------
621
622 function BIP_Formal_Suffix (Kind : BIP_Formal_Kind) return String is
623 begin
624 case Kind is
d8f43ee6 625 when BIP_Alloc_Form =>
f937473f 626 return "BIPalloc";
d8f43ee6
HK
627
628 when BIP_Storage_Pool =>
200b7162 629 return "BIPstoragepool";
d8f43ee6 630
d3f70b35
AC
631 when BIP_Finalization_Master =>
632 return "BIPfinalizationmaster";
d8f43ee6
HK
633
634 when BIP_Task_Master =>
af89615f 635 return "BIPtaskmaster";
d8f43ee6
HK
636
637 when BIP_Activation_Chain =>
f937473f 638 return "BIPactivationchain";
d8f43ee6
HK
639
640 when BIP_Object_Access =>
f937473f
RD
641 return "BIPaccess";
642 end case;
643 end BIP_Formal_Suffix;
644
645 ---------------------------
646 -- Build_In_Place_Formal --
647 ---------------------------
648
649 function Build_In_Place_Formal
650 (Func : Entity_Id;
651 Kind : BIP_Formal_Kind) return Entity_Id
652 is
16d92641 653 Formal_Suffix : constant String := BIP_Formal_Suffix (Kind);
f937473f
RD
654 Extra_Formal : Entity_Id := Extra_Formals (Func);
655
656 begin
657 -- Maybe it would be better for each implicit formal of a build-in-place
658 -- function to have a flag or a Uint attribute to identify it. ???
659
0d566e01
ES
660 -- The return type in the function declaration may have been a limited
661 -- view, and the extra formals for the function were not generated at
aeae67ed 662 -- that point. At the point of call the full view must be available and
0d566e01
ES
663 -- the extra formals can be created.
664
665 if No (Extra_Formal) then
666 Create_Extra_Formals (Func);
667 Extra_Formal := Extra_Formals (Func);
668 end if;
669
16d92641
PMR
670 -- We search for a formal with a matching suffix. We can't search
671 -- for the full name, because of the code at the end of Sem_Ch6.-
672 -- Create_Extra_Formals, which copies the Extra_Formals over to
673 -- the Alias of an instance, which will cause the formals to have
674 -- "incorrect" names.
675
f937473f 676 loop
19590d70 677 pragma Assert (Present (Extra_Formal));
16d92641
PMR
678 declare
679 Name : constant String := Get_Name_String (Chars (Extra_Formal));
680 begin
681 exit when Name'Length >= Formal_Suffix'Length
682 and then Formal_Suffix =
683 Name (Name'Last - Formal_Suffix'Length + 1 .. Name'Last);
684 end;
af89615f 685
f937473f
RD
686 Next_Formal_With_Extras (Extra_Formal);
687 end loop;
688
f937473f
RD
689 return Extra_Formal;
690 end Build_In_Place_Formal;
02822a92 691
4039e173
AC
692 -------------------------------
693 -- Build_Procedure_Body_Form --
694 -------------------------------
695
696 function Build_Procedure_Body_Form
697 (Func_Id : Entity_Id;
698 Func_Body : Node_Id) return Node_Id
699 is
700 Loc : constant Source_Ptr := Sloc (Func_Body);
701
702 Proc_Decl : constant Node_Id :=
703 Next (Unit_Declaration_Node (Func_Id));
704 -- It is assumed that the next node following the declaration of the
705 -- corresponding subprogram spec is the declaration of the procedure
706 -- form.
707
708 Proc_Id : constant Entity_Id := Defining_Entity (Proc_Decl);
709
710 procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id);
711 -- Replace each return statement found in the list Stmts with an
712 -- assignment of the return expression to parameter Param_Id.
713
714 ---------------------
715 -- Replace_Returns --
716 ---------------------
717
718 procedure Replace_Returns (Param_Id : Entity_Id; Stmts : List_Id) is
719 Stmt : Node_Id;
720
721 begin
722 Stmt := First (Stmts);
723 while Present (Stmt) loop
724 if Nkind (Stmt) = N_Block_Statement then
8f8f531f
PMR
725 Replace_Returns (Param_Id,
726 Statements (Handled_Statement_Sequence (Stmt)));
4039e173
AC
727
728 elsif Nkind (Stmt) = N_Case_Statement then
729 declare
730 Alt : Node_Id;
731 begin
732 Alt := First (Alternatives (Stmt));
733 while Present (Alt) loop
734 Replace_Returns (Param_Id, Statements (Alt));
735 Next (Alt);
736 end loop;
737 end;
738
17fd72ce
ES
739 elsif Nkind (Stmt) = N_Extended_Return_Statement then
740 declare
741 Ret_Obj : constant Entity_Id :=
742 Defining_Entity
743 (First (Return_Object_Declarations (Stmt)));
744 Assign : constant Node_Id :=
745 Make_Assignment_Statement (Sloc (Stmt),
746 Name =>
747 New_Occurrence_Of (Param_Id, Loc),
748 Expression =>
749 New_Occurrence_Of (Ret_Obj, Sloc (Stmt)));
a14bbbb4 750 Stmts : List_Id;
17fd72ce
ES
751
752 begin
6dc87f5f 753 -- The extended return may just contain the declaration
a14bbbb4
AC
754
755 if Present (Handled_Statement_Sequence (Stmt)) then
6dc87f5f 756 Stmts := Statements (Handled_Statement_Sequence (Stmt));
a14bbbb4
AC
757 else
758 Stmts := New_List;
759 end if;
760
17fd72ce
ES
761 Set_Assignment_OK (Name (Assign));
762
763 Rewrite (Stmt,
764 Make_Block_Statement (Sloc (Stmt),
765 Declarations =>
766 Return_Object_Declarations (Stmt),
767 Handled_Statement_Sequence =>
768 Make_Handled_Sequence_Of_Statements (Loc,
a14bbbb4 769 Statements => Stmts)));
17fd72ce
ES
770
771 Replace_Returns (Param_Id, Stmts);
772
773 Append_To (Stmts, Assign);
774 Append_To (Stmts, Make_Simple_Return_Statement (Loc));
775 end;
776
4039e173
AC
777 elsif Nkind (Stmt) = N_If_Statement then
778 Replace_Returns (Param_Id, Then_Statements (Stmt));
779 Replace_Returns (Param_Id, Else_Statements (Stmt));
780
781 declare
782 Part : Node_Id;
783 begin
784 Part := First (Elsif_Parts (Stmt));
785 while Present (Part) loop
0ef5cd0a 786 Replace_Returns (Param_Id, Then_Statements (Part));
4039e173
AC
787 Next (Part);
788 end loop;
789 end;
790
791 elsif Nkind (Stmt) = N_Loop_Statement then
792 Replace_Returns (Param_Id, Statements (Stmt));
793
794 elsif Nkind (Stmt) = N_Simple_Return_Statement then
795
796 -- Generate:
797 -- Param := Expr;
798 -- return;
799
800 Rewrite (Stmt,
801 Make_Assignment_Statement (Sloc (Stmt),
802 Name => New_Occurrence_Of (Param_Id, Loc),
803 Expression => Relocate_Node (Expression (Stmt))));
804
805 Insert_After (Stmt, Make_Simple_Return_Statement (Loc));
806
807 -- Skip the added return
808
809 Next (Stmt);
810 end if;
811
812 Next (Stmt);
813 end loop;
814 end Replace_Returns;
815
816 -- Local variables
817
818 Stmts : List_Id;
819 New_Body : Node_Id;
820
821 -- Start of processing for Build_Procedure_Body_Form
822
823 begin
824 -- This routine replaces the original function body:
825
826 -- function F (...) return Array_Typ is
827 -- begin
828 -- ...
829 -- return Something;
830 -- end F;
831
832 -- with the following:
833
834 -- procedure P (..., Result : out Array_Typ) is
835 -- begin
836 -- ...
837 -- Result := Something;
838 -- end P;
839
840 Stmts :=
841 Statements (Handled_Statement_Sequence (Func_Body));
842 Replace_Returns (Last_Entity (Proc_Id), Stmts);
843
844 New_Body :=
845 Make_Subprogram_Body (Loc,
846 Specification =>
847 Copy_Subprogram_Spec (Specification (Proc_Decl)),
848 Declarations => Declarations (Func_Body),
849 Handled_Statement_Sequence =>
850 Make_Handled_Sequence_Of_Statements (Loc,
851 Statements => Stmts));
852
0ef5cd0a
AC
853 -- If the function is a generic instance, so is the new procedure.
854 -- Set flag accordingly so that the proper renaming declarations are
855 -- generated.
856
857 Set_Is_Generic_Instance (Proc_Id, Is_Generic_Instance (Func_Id));
4039e173
AC
858 return New_Body;
859 end Build_Procedure_Body_Form;
860
0691ed6b
AC
861 -----------------------
862 -- Caller_Known_Size --
863 -----------------------
864
865 function Caller_Known_Size
1155ae01
AC
866 (Func_Call : Node_Id;
867 Result_Subt : Entity_Id) return Boolean
868 is
0691ed6b 869 begin
1155ae01
AC
870 return
871 (Is_Definite_Subtype (Underlying_Type (Result_Subt))
872 and then No (Controlling_Argument (Func_Call)))
873 or else not Requires_Transient_Scope (Underlying_Type (Result_Subt));
0691ed6b
AC
874 end Caller_Known_Size;
875
1ed19d98
JM
876 -----------------------------
877 -- Check_Number_Of_Actuals --
878 -----------------------------
879
880 function Check_Number_Of_Actuals
881 (Subp_Call : Node_Id;
882 Subp_Id : Entity_Id) return Boolean
883 is
884 Formal : Entity_Id;
885 Actual : Node_Id;
886
887 begin
888 pragma Assert (Nkind_In (Subp_Call, N_Entry_Call_Statement,
889 N_Function_Call,
890 N_Procedure_Call_Statement));
891
892 Formal := First_Formal_With_Extras (Subp_Id);
893 Actual := First_Actual (Subp_Call);
894
895 while Present (Formal) and then Present (Actual) loop
896 Next_Formal_With_Extras (Formal);
897 Next_Actual (Actual);
898 end loop;
899
900 return No (Formal) and then No (Actual);
901 end Check_Number_Of_Actuals;
902
c9a4817d
RD
903 --------------------------------
904 -- Check_Overriding_Operation --
905 --------------------------------
70482933
RK
906
907 procedure Check_Overriding_Operation (Subp : Entity_Id) is
908 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
909 Op_List : constant Elist_Id := Primitive_Operations (Typ);
910 Op_Elmt : Elmt_Id;
911 Prim_Op : Entity_Id;
912 Par_Op : Entity_Id;
913
914 begin
915 if Is_Derived_Type (Typ)
916 and then not Is_Private_Type (Typ)
917 and then In_Open_Scopes (Scope (Etype (Typ)))
d347f572 918 and then Is_Base_Type (Typ)
70482933 919 then
2f1b20a9
ES
920 -- Subp overrides an inherited private operation if there is an
921 -- inherited operation with a different name than Subp (see
922 -- Derive_Subprogram) whose Alias is a hidden subprogram with the
923 -- same name as Subp.
70482933
RK
924
925 Op_Elmt := First_Elmt (Op_List);
926 while Present (Op_Elmt) loop
927 Prim_Op := Node (Op_Elmt);
928 Par_Op := Alias (Prim_Op);
929
930 if Present (Par_Op)
931 and then not Comes_From_Source (Prim_Op)
932 and then Chars (Prim_Op) /= Chars (Par_Op)
933 and then Chars (Par_Op) = Chars (Subp)
934 and then Is_Hidden (Par_Op)
935 and then Type_Conformant (Prim_Op, Subp)
936 then
024d33d8 937 Set_DT_Position_Value (Subp, DT_Position (Prim_Op));
70482933
RK
938 end if;
939
940 Next_Elmt (Op_Elmt);
941 end loop;
942 end if;
943 end Check_Overriding_Operation;
944
945 -------------------------------
946 -- Detect_Infinite_Recursion --
947 -------------------------------
948
949 procedure Detect_Infinite_Recursion (N : Node_Id; Spec : Entity_Id) is
950 Loc : constant Source_Ptr := Sloc (N);
951
fbf5a39b 952 Var_List : constant Elist_Id := New_Elmt_List;
70482933
RK
953 -- List of globals referenced by body of procedure
954
fbf5a39b 955 Call_List : constant Elist_Id := New_Elmt_List;
70482933
RK
956 -- List of recursive calls in body of procedure
957
fbf5a39b 958 Shad_List : constant Elist_Id := New_Elmt_List;
2f1b20a9
ES
959 -- List of entity id's for entities created to capture the value of
960 -- referenced globals on entry to the procedure.
70482933
RK
961
962 Scop : constant Uint := Scope_Depth (Spec);
2f1b20a9
ES
963 -- This is used to record the scope depth of the current procedure, so
964 -- that we can identify global references.
70482933
RK
965
966 Max_Vars : constant := 4;
967 -- Do not test more than four global variables
968
969 Count_Vars : Natural := 0;
970 -- Count variables found so far
971
972 Var : Entity_Id;
973 Elm : Elmt_Id;
974 Ent : Entity_Id;
975 Call : Elmt_Id;
976 Decl : Node_Id;
977 Test : Node_Id;
978 Elm1 : Elmt_Id;
979 Elm2 : Elmt_Id;
980 Last : Node_Id;
981
982 function Process (Nod : Node_Id) return Traverse_Result;
983 -- Function to traverse the subprogram body (using Traverse_Func)
984
985 -------------
986 -- Process --
987 -------------
988
989 function Process (Nod : Node_Id) return Traverse_Result is
990 begin
991 -- Procedure call
992
993 if Nkind (Nod) = N_Procedure_Call_Statement then
994
995 -- Case of one of the detected recursive calls
996
997 if Is_Entity_Name (Name (Nod))
998 and then Has_Recursive_Call (Entity (Name (Nod)))
999 and then Entity (Name (Nod)) = Spec
1000 then
1001 Append_Elmt (Nod, Call_List);
1002 return Skip;
1003
1004 -- Any other procedure call may have side effects
1005
1006 else
1007 return Abandon;
1008 end if;
1009
1010 -- A call to a pure function can always be ignored
1011
1012 elsif Nkind (Nod) = N_Function_Call
1013 and then Is_Entity_Name (Name (Nod))
1014 and then Is_Pure (Entity (Name (Nod)))
1015 then
1016 return Skip;
1017
1018 -- Case of an identifier reference
1019
1020 elsif Nkind (Nod) = N_Identifier then
1021 Ent := Entity (Nod);
1022
1023 -- If no entity, then ignore the reference
1024
1025 -- Not clear why this can happen. To investigate, remove this
1026 -- test and look at the crash that occurs here in 3401-004 ???
1027
1028 if No (Ent) then
1029 return Skip;
1030
1031 -- Ignore entities with no Scope, again not clear how this
1032 -- can happen, to investigate, look at 4108-008 ???
1033
1034 elsif No (Scope (Ent)) then
1035 return Skip;
1036
1037 -- Ignore the reference if not to a more global object
1038
1039 elsif Scope_Depth (Scope (Ent)) >= Scop then
1040 return Skip;
1041
1042 -- References to types, exceptions and constants are always OK
1043
1044 elsif Is_Type (Ent)
1045 or else Ekind (Ent) = E_Exception
1046 or else Ekind (Ent) = E_Constant
1047 then
1048 return Skip;
1049
1050 -- If other than a non-volatile scalar variable, we have some
1051 -- kind of global reference (e.g. to a function) that we cannot
1052 -- deal with so we forget the attempt.
1053
1054 elsif Ekind (Ent) /= E_Variable
1055 or else not Is_Scalar_Type (Etype (Ent))
fbf5a39b 1056 or else Treat_As_Volatile (Ent)
70482933
RK
1057 then
1058 return Abandon;
1059
1060 -- Otherwise we have a reference to a global scalar
1061
1062 else
1063 -- Loop through global entities already detected
1064
1065 Elm := First_Elmt (Var_List);
1066 loop
1067 -- If not detected before, record this new global reference
1068
1069 if No (Elm) then
1070 Count_Vars := Count_Vars + 1;
1071
1072 if Count_Vars <= Max_Vars then
1073 Append_Elmt (Entity (Nod), Var_List);
1074 else
1075 return Abandon;
1076 end if;
1077
1078 exit;
1079
1080 -- If recorded before, ignore
1081
1082 elsif Node (Elm) = Entity (Nod) then
1083 return Skip;
1084
1085 -- Otherwise keep looking
1086
1087 else
1088 Next_Elmt (Elm);
1089 end if;
1090 end loop;
1091
1092 return Skip;
1093 end if;
1094
1095 -- For all other node kinds, recursively visit syntactic children
1096
1097 else
1098 return OK;
1099 end if;
1100 end Process;
1101
02822a92 1102 function Traverse_Body is new Traverse_Func (Process);
70482933
RK
1103
1104 -- Start of processing for Detect_Infinite_Recursion
1105
1106 begin
2f1b20a9
ES
1107 -- Do not attempt detection in No_Implicit_Conditional mode, since we
1108 -- won't be able to generate the code to handle the recursion in any
1109 -- case.
70482933 1110
6e937c1c 1111 if Restriction_Active (No_Implicit_Conditionals) then
70482933
RK
1112 return;
1113 end if;
1114
1115 -- Otherwise do traversal and quit if we get abandon signal
1116
1117 if Traverse_Body (N) = Abandon then
1118 return;
1119
2f1b20a9
ES
1120 -- We must have a call, since Has_Recursive_Call was set. If not just
1121 -- ignore (this is only an error check, so if we have a funny situation,
a90bd866 1122 -- due to bugs or errors, we do not want to bomb).
70482933
RK
1123
1124 elsif Is_Empty_Elmt_List (Call_List) then
1125 return;
1126 end if;
1127
1128 -- Here is the case where we detect recursion at compile time
1129
2f1b20a9
ES
1130 -- Push our current scope for analyzing the declarations and code that
1131 -- we will insert for the checking.
70482933 1132
7888a6ae 1133 Push_Scope (Spec);
70482933 1134
2f1b20a9
ES
1135 -- This loop builds temporary variables for each of the referenced
1136 -- globals, so that at the end of the loop the list Shad_List contains
1137 -- these temporaries in one-to-one correspondence with the elements in
1138 -- Var_List.
70482933
RK
1139
1140 Last := Empty;
1141 Elm := First_Elmt (Var_List);
1142 while Present (Elm) loop
1143 Var := Node (Elm);
c12beea0 1144 Ent := Make_Temporary (Loc, 'S');
70482933
RK
1145 Append_Elmt (Ent, Shad_List);
1146
2f1b20a9
ES
1147 -- Insert a declaration for this temporary at the start of the
1148 -- declarations for the procedure. The temporaries are declared as
1149 -- constant objects initialized to the current values of the
1150 -- corresponding temporaries.
70482933
RK
1151
1152 Decl :=
1153 Make_Object_Declaration (Loc,
1154 Defining_Identifier => Ent,
1155 Object_Definition => New_Occurrence_Of (Etype (Var), Loc),
1156 Constant_Present => True,
1157 Expression => New_Occurrence_Of (Var, Loc));
1158
1159 if No (Last) then
1160 Prepend (Decl, Declarations (N));
1161 else
1162 Insert_After (Last, Decl);
1163 end if;
1164
1165 Last := Decl;
1166 Analyze (Decl);
1167 Next_Elmt (Elm);
1168 end loop;
1169
1170 -- Loop through calls
1171
1172 Call := First_Elmt (Call_List);
1173 while Present (Call) loop
1174
1175 -- Build a predicate expression of the form
1176
1177 -- True
1178 -- and then global1 = temp1
1179 -- and then global2 = temp2
1180 -- ...
1181
1182 -- This predicate determines if any of the global values
1183 -- referenced by the procedure have changed since the
1184 -- current call, if not an infinite recursion is assured.
1185
1186 Test := New_Occurrence_Of (Standard_True, Loc);
1187
1188 Elm1 := First_Elmt (Var_List);
1189 Elm2 := First_Elmt (Shad_List);
1190 while Present (Elm1) loop
1191 Test :=
1192 Make_And_Then (Loc,
1193 Left_Opnd => Test,
1194 Right_Opnd =>
1195 Make_Op_Eq (Loc,
1196 Left_Opnd => New_Occurrence_Of (Node (Elm1), Loc),
1197 Right_Opnd => New_Occurrence_Of (Node (Elm2), Loc)));
1198
1199 Next_Elmt (Elm1);
1200 Next_Elmt (Elm2);
1201 end loop;
1202
1203 -- Now we replace the call with the sequence
1204
1205 -- if no-changes (see above) then
1206 -- raise Storage_Error;
1207 -- else
1208 -- original-call
1209 -- end if;
1210
1211 Rewrite (Node (Call),
1212 Make_If_Statement (Loc,
1213 Condition => Test,
1214 Then_Statements => New_List (
07fc65c4
GB
1215 Make_Raise_Storage_Error (Loc,
1216 Reason => SE_Infinite_Recursion)),
70482933
RK
1217
1218 Else_Statements => New_List (
1219 Relocate_Node (Node (Call)))));
1220
1221 Analyze (Node (Call));
1222
1223 Next_Elmt (Call);
1224 end loop;
1225
1226 -- Remove temporary scope stack entry used for analysis
1227
1228 Pop_Scope;
1229 end Detect_Infinite_Recursion;
1230
1231 --------------------
1232 -- Expand_Actuals --
1233 --------------------
1234
ca1f6b29 1235 procedure Expand_Actuals
ec40b86c
HK
1236 (N : Node_Id;
1237 Subp : Entity_Id;
1238 Post_Call : out List_Id)
ca1f6b29 1239 is
70482933
RK
1240 Loc : constant Source_Ptr := Sloc (N);
1241 Actual : Node_Id;
1242 Formal : Entity_Id;
1243 N_Node : Node_Id;
f6820c2d 1244 E_Actual : Entity_Id;
70482933
RK
1245 E_Formal : Entity_Id;
1246
1247 procedure Add_Call_By_Copy_Code;
fbf5a39b
AC
1248 -- For cases where the parameter must be passed by copy, this routine
1249 -- generates a temporary variable into which the actual is copied and
1250 -- then passes this as the parameter. For an OUT or IN OUT parameter,
1251 -- an assignment is also generated to copy the result back. The call
1252 -- also takes care of any constraint checks required for the type
1253 -- conversion case (on both the way in and the way out).
70482933 1254
348c3ae6 1255 procedure Add_Simple_Call_By_Copy_Code (Bit_Packed_Array : Boolean);
f44fe430
RD
1256 -- This is similar to the above, but is used in cases where we know
1257 -- that all that is needed is to simply create a temporary and copy
348c3ae6
EB
1258 -- the value in and out of the temporary. If Bit_Packed_Array is True,
1259 -- the procedure is called for a bit-packed array actual.
70482933 1260
62e45e3e
HK
1261 procedure Add_Validation_Call_By_Copy_Code (Act : Node_Id);
1262 -- Perform copy-back for actual parameter Act which denotes a validation
1263 -- variable.
1264
70482933
RK
1265 procedure Check_Fortran_Logical;
1266 -- A value of type Logical that is passed through a formal parameter
1267 -- must be normalized because .TRUE. usually does not have the same
1268 -- representation as True. We assume that .FALSE. = False = 0.
1269 -- What about functions that return a logical type ???
1270
758c442c
GD
1271 function Is_Legal_Copy return Boolean;
1272 -- Check that an actual can be copied before generating the temporary
348c3ae6
EB
1273 -- to be used in the call. If the formal is of a by_reference type or
1274 -- is aliased, then the program is illegal (this can only happen in
1275 -- the presence of representation clauses that force a misalignment)
1276 -- If the formal is a by_reference parameter imposed by a DEC pragma,
1277 -- emit a warning that this might lead to unaligned arguments.
758c442c 1278
70482933 1279 function Make_Var (Actual : Node_Id) return Entity_Id;
da574a86
AC
1280 -- Returns an entity that refers to the given actual parameter, Actual
1281 -- (not including any type conversion). If Actual is an entity name,
1282 -- then this entity is returned unchanged, otherwise a renaming is
1283 -- created to provide an entity for the actual.
70482933
RK
1284
1285 procedure Reset_Packed_Prefix;
1286 -- The expansion of a packed array component reference is delayed in
1287 -- the context of a call. Now we need to complete the expansion, so we
1288 -- unmark the analyzed bits in all prefixes.
1289
1290 ---------------------------
1291 -- Add_Call_By_Copy_Code --
1292 ---------------------------
1293
1294 procedure Add_Call_By_Copy_Code is
db99c46e 1295 Crep : Boolean;
cc335f43 1296 Expr : Node_Id;
db99c46e
AC
1297 F_Typ : Entity_Id := Etype (Formal);
1298 Indic : Node_Id;
cc335f43
AC
1299 Init : Node_Id;
1300 Temp : Entity_Id;
cc335f43 1301 V_Typ : Entity_Id;
db99c46e 1302 Var : Entity_Id;
70482933
RK
1303
1304 begin
758c442c
GD
1305 if not Is_Legal_Copy then
1306 return;
1307 end if;
1308
b086849e 1309 Temp := Make_Temporary (Loc, 'T', Actual);
70482933 1310
db99c46e
AC
1311 -- Handle formals whose type comes from the limited view
1312
1313 if From_Limited_With (F_Typ)
1314 and then Has_Non_Limited_View (F_Typ)
1315 then
1316 F_Typ := Non_Limited_View (F_Typ);
1317 end if;
1318
f44fe430
RD
1319 -- Use formal type for temp, unless formal type is an unconstrained
1320 -- array, in which case we don't have to worry about bounds checks,
758c442c 1321 -- and we use the actual type, since that has appropriate bounds.
f44fe430
RD
1322
1323 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1324 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1325 else
db99c46e 1326 Indic := New_Occurrence_Of (F_Typ, Loc);
f44fe430
RD
1327 end if;
1328
13931a38
EB
1329 -- The new code will be properly analyzed below and the setting of
1330 -- the Do_Range_Check flag recomputed so remove the obsolete one.
1331
1332 Set_Do_Range_Check (Actual, False);
1333
70482933 1334 if Nkind (Actual) = N_Type_Conversion then
13931a38
EB
1335 Set_Do_Range_Check (Expression (Actual), False);
1336
70482933 1337 V_Typ := Etype (Expression (Actual));
19f0526a
AC
1338
1339 -- If the formal is an (in-)out parameter, capture the name
1340 -- of the variable in order to build the post-call assignment.
81a5b587
AC
1341
1342 Var := Make_Var (Expression (Actual));
19f0526a 1343
08aa9a4a 1344 Crep := not Same_Representation
0da2c8ac 1345 (F_Typ, Etype (Expression (Actual)));
08aa9a4a 1346
70482933
RK
1347 else
1348 V_Typ := Etype (Actual);
1349 Var := Make_Var (Actual);
1350 Crep := False;
1351 end if;
1352
1353 -- Setup initialization for case of in out parameter, or an out
1354 -- parameter where the formal is an unconstrained array (in the
1355 -- latter case, we have to pass in an object with bounds).
1356
cc335f43
AC
1357 -- If this is an out parameter, the initial copy is wasteful, so as
1358 -- an optimization for the one-dimensional case we extract the
1359 -- bounds of the actual and build an uninitialized temporary of the
1360 -- right size.
1361
e693ddbe
EB
1362 -- If the formal is an out parameter with discriminants, the
1363 -- discriminants must be captured even if the rest of the object
1364 -- is in principle uninitialized, because the discriminants may
1365 -- be read by the called subprogram.
1366
70482933 1367 if Ekind (Formal) = E_In_Out_Parameter
0da2c8ac 1368 or else (Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ))
e693ddbe 1369 or else Has_Discriminants (F_Typ)
70482933
RK
1370 then
1371 if Nkind (Actual) = N_Type_Conversion then
1372 if Conversion_OK (Actual) then
0da2c8ac 1373 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
70482933 1374 else
0da2c8ac 1375 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
70482933 1376 end if;
cc335f43
AC
1377
1378 elsif Ekind (Formal) = E_Out_Parameter
0da2c8ac
AC
1379 and then Is_Array_Type (F_Typ)
1380 and then Number_Dimensions (F_Typ) = 1
1381 and then not Has_Non_Null_Base_Init_Proc (F_Typ)
cc335f43
AC
1382 then
1383 -- Actual is a one-dimensional array or slice, and the type
1384 -- requires no initialization. Create a temporary of the
f44fe430 1385 -- right size, but do not copy actual into it (optimization).
cc335f43
AC
1386
1387 Init := Empty;
1388 Indic :=
1389 Make_Subtype_Indication (Loc,
5f6fb720 1390 Subtype_Mark => New_Occurrence_Of (F_Typ, Loc),
cc335f43
AC
1391 Constraint =>
1392 Make_Index_Or_Discriminant_Constraint (Loc,
1393 Constraints => New_List (
1394 Make_Range (Loc,
1395 Low_Bound =>
1396 Make_Attribute_Reference (Loc,
5f6fb720 1397 Prefix => New_Occurrence_Of (Var, Loc),
70f91180 1398 Attribute_Name => Name_First),
cc335f43
AC
1399 High_Bound =>
1400 Make_Attribute_Reference (Loc,
5f6fb720 1401 Prefix => New_Occurrence_Of (Var, Loc),
cc335f43
AC
1402 Attribute_Name => Name_Last)))));
1403
70482933
RK
1404 else
1405 Init := New_Occurrence_Of (Var, Loc);
1406 end if;
1407
1408 -- An initialization is created for packed conversions as
1409 -- actuals for out parameters to enable Make_Object_Declaration
1410 -- to determine the proper subtype for N_Node. Note that this
1411 -- is wasteful because the extra copying on the call side is
1412 -- not required for such out parameters. ???
1413
1414 elsif Ekind (Formal) = E_Out_Parameter
1415 and then Nkind (Actual) = N_Type_Conversion
0da2c8ac 1416 and then (Is_Bit_Packed_Array (F_Typ)
70482933
RK
1417 or else
1418 Is_Bit_Packed_Array (Etype (Expression (Actual))))
1419 then
1420 if Conversion_OK (Actual) then
f44fe430 1421 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
70482933 1422 else
f44fe430 1423 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
70482933 1424 end if;
2e071734
AC
1425
1426 elsif Ekind (Formal) = E_In_Parameter then
02822a92
RD
1427
1428 -- Handle the case in which the actual is a type conversion
1429
1430 if Nkind (Actual) = N_Type_Conversion then
1431 if Conversion_OK (Actual) then
1432 Init := OK_Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1433 else
1434 Init := Convert_To (F_Typ, New_Occurrence_Of (Var, Loc));
1435 end if;
1436 else
1437 Init := New_Occurrence_Of (Var, Loc);
1438 end if;
2e071734 1439
68e4cc98
ES
1440 -- Access types are passed in without checks, but if a copy-back is
1441 -- required for a null-excluding check on an in-out or out parameter,
1442 -- then the initial value is that of the actual.
1443
1444 elsif Is_Access_Type (E_Formal)
1445 and then Can_Never_Be_Null (Etype (Actual))
1446 and then not Can_Never_Be_Null (E_Formal)
1447 then
1448 Init := New_Occurrence_Of (Var, Loc);
1449
70482933
RK
1450 else
1451 Init := Empty;
1452 end if;
1453
1454 N_Node :=
1455 Make_Object_Declaration (Loc,
1456 Defining_Identifier => Temp,
cc335f43 1457 Object_Definition => Indic,
f44fe430 1458 Expression => Init);
70482933
RK
1459 Set_Assignment_OK (N_Node);
1460 Insert_Action (N, N_Node);
1461
1462 -- Now, normally the deal here is that we use the defining
1463 -- identifier created by that object declaration. There is
1464 -- one exception to this. In the change of representation case
1465 -- the above declaration will end up looking like:
1466
1467 -- temp : type := identifier;
1468
1469 -- And in this case we might as well use the identifier directly
1470 -- and eliminate the temporary. Note that the analysis of the
1471 -- declaration was not a waste of time in that case, since it is
1472 -- what generated the necessary change of representation code. If
1473 -- the change of representation introduced additional code, as in
1474 -- a fixed-integer conversion, the expression is not an identifier
1475 -- and must be kept.
1476
1477 if Crep
1478 and then Present (Expression (N_Node))
1479 and then Is_Entity_Name (Expression (N_Node))
1480 then
1481 Temp := Entity (Expression (N_Node));
1482 Rewrite (N_Node, Make_Null_Statement (Loc));
1483 end if;
1484
fbf5a39b 1485 -- For IN parameter, all we do is to replace the actual
70482933 1486
fbf5a39b 1487 if Ekind (Formal) = E_In_Parameter then
e4494292 1488 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
fbf5a39b
AC
1489 Analyze (Actual);
1490
1491 -- Processing for OUT or IN OUT parameter
1492
1493 else
c8ef728f
ES
1494 -- Kill current value indications for the temporary variable we
1495 -- created, since we just passed it as an OUT parameter.
1496
1497 Kill_Current_Values (Temp);
75ba322d 1498 Set_Is_Known_Valid (Temp, False);
8f0303e7 1499 Set_Is_True_Constant (Temp, False);
c8ef728f 1500
fbf5a39b
AC
1501 -- If type conversion, use reverse conversion on exit
1502
1503 if Nkind (Actual) = N_Type_Conversion then
1504 if Conversion_OK (Actual) then
1505 Expr := OK_Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1506 else
1507 Expr := Convert_To (V_Typ, New_Occurrence_Of (Temp, Loc));
1508 end if;
70482933 1509 else
fbf5a39b 1510 Expr := New_Occurrence_Of (Temp, Loc);
70482933 1511 end if;
70482933 1512
e4494292 1513 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
fbf5a39b 1514 Analyze (Actual);
70482933 1515
d766cee3
RD
1516 -- If the actual is a conversion of a packed reference, it may
1517 -- already have been expanded by Remove_Side_Effects, and the
1518 -- resulting variable is a temporary which does not designate
1519 -- the proper out-parameter, which may not be addressable. In
1520 -- that case, generate an assignment to the original expression
b0159fbe 1521 -- (before expansion of the packed reference) so that the proper
d766cee3 1522 -- expansion of assignment to a packed component can take place.
70482933 1523
d766cee3
RD
1524 declare
1525 Obj : Node_Id;
1526 Lhs : Node_Id;
1527
1528 begin
1529 if Is_Renaming_Of_Object (Var)
1530 and then Nkind (Renamed_Object (Var)) = N_Selected_Component
d766cee3
RD
1531 and then Nkind (Original_Node (Prefix (Renamed_Object (Var))))
1532 = N_Indexed_Component
1533 and then
1534 Has_Non_Standard_Rep (Etype (Prefix (Renamed_Object (Var))))
1535 then
1536 Obj := Renamed_Object (Var);
1537 Lhs :=
1538 Make_Selected_Component (Loc,
1539 Prefix =>
1540 New_Copy_Tree (Original_Node (Prefix (Obj))),
1541 Selector_Name => New_Copy (Selector_Name (Obj)));
1542 Reset_Analyzed_Flags (Lhs);
1543
1544 else
c8307596 1545 Lhs := New_Occurrence_Of (Var, Loc);
d766cee3
RD
1546 end if;
1547
1548 Set_Assignment_OK (Lhs);
1549
d15f9422
AC
1550 if Is_Access_Type (E_Formal)
1551 and then Is_Entity_Name (Lhs)
996c8821
RD
1552 and then
1553 Present (Effective_Extra_Accessibility (Entity (Lhs)))
d15f9422 1554 then
4bb43ffb
AC
1555 -- Copyback target is an Ada 2012 stand-alone object of an
1556 -- anonymous access type.
d15f9422
AC
1557
1558 pragma Assert (Ada_Version >= Ada_2012);
1559
1560 if Type_Access_Level (E_Formal) >
996c8821
RD
1561 Object_Access_Level (Lhs)
1562 then
1563 Append_To (Post_Call,
1564 Make_Raise_Program_Error (Loc,
1565 Reason => PE_Accessibility_Check_Failed));
d15f9422
AC
1566 end if;
1567
1568 Append_To (Post_Call,
1569 Make_Assignment_Statement (Loc,
1570 Name => Lhs,
1571 Expression => Expr));
1572
996c8821
RD
1573 -- We would like to somehow suppress generation of the
1574 -- extra_accessibility assignment generated by the expansion
1575 -- of the above assignment statement. It's not a correctness
1576 -- issue because the following assignment renders it dead,
1577 -- but generating back-to-back assignments to the same
1578 -- target is undesirable. ???
d15f9422
AC
1579
1580 Append_To (Post_Call,
1581 Make_Assignment_Statement (Loc,
1582 Name => New_Occurrence_Of (
1583 Effective_Extra_Accessibility (Entity (Lhs)), Loc),
1584 Expression => Make_Integer_Literal (Loc,
1585 Type_Access_Level (E_Formal))));
996c8821 1586
d15f9422 1587 else
68e4cc98
ES
1588 if Is_Access_Type (E_Formal)
1589 and then Can_Never_Be_Null (Etype (Actual))
1590 and then not Can_Never_Be_Null (E_Formal)
1591 then
1592 Append_To (Post_Call,
1593 Make_Raise_Constraint_Error (Loc,
1594 Condition =>
1595 Make_Op_Eq (Loc,
1596 Left_Opnd => New_Occurrence_Of (Temp, Loc),
1597 Right_Opnd => Make_Null (Loc)),
1598 Reason => CE_Access_Check_Failed));
1599 end if;
1600
d15f9422
AC
1601 Append_To (Post_Call,
1602 Make_Assignment_Statement (Loc,
1603 Name => Lhs,
1604 Expression => Expr));
1605 end if;
d766cee3 1606 end;
fbf5a39b 1607 end if;
70482933
RK
1608 end Add_Call_By_Copy_Code;
1609
1610 ----------------------------------
f44fe430 1611 -- Add_Simple_Call_By_Copy_Code --
70482933
RK
1612 ----------------------------------
1613
348c3ae6 1614 procedure Add_Simple_Call_By_Copy_Code (Bit_Packed_Array : Boolean) is
758c442c 1615 Decl : Node_Id;
db99c46e 1616 F_Typ : Entity_Id := Etype (Formal);
70482933 1617 Incod : Node_Id;
db99c46e 1618 Indic : Node_Id;
70482933 1619 Lhs : Node_Id;
db99c46e 1620 Outcod : Node_Id;
70482933 1621 Rhs : Node_Id;
db99c46e 1622 Temp : Entity_Id;
70482933
RK
1623
1624 begin
348c3ae6
EB
1625 -- ??? We need to do the copy for a bit-packed array because this is
1626 -- where the rewriting into a mask-and-shift sequence is done. But of
1627 -- course this may break the program if it expects bits to be really
1628 -- passed by reference. That's what we have done historically though.
1629
1630 if not Bit_Packed_Array and then not Is_Legal_Copy then
758c442c
GD
1631 return;
1632 end if;
1633
db99c46e
AC
1634 -- Handle formals whose type comes from the limited view
1635
1636 if From_Limited_With (F_Typ)
1637 and then Has_Non_Limited_View (F_Typ)
1638 then
1639 F_Typ := Non_Limited_View (F_Typ);
1640 end if;
1641
f44fe430
RD
1642 -- Use formal type for temp, unless formal type is an unconstrained
1643 -- array, in which case we don't have to worry about bounds checks,
758c442c 1644 -- and we use the actual type, since that has appropriate bounds.
f44fe430
RD
1645
1646 if Is_Array_Type (F_Typ) and then not Is_Constrained (F_Typ) then
1647 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1648 else
db99c46e 1649 Indic := New_Occurrence_Of (F_Typ, Loc);
f44fe430 1650 end if;
70482933
RK
1651
1652 -- Prepare to generate code
1653
f44fe430
RD
1654 Reset_Packed_Prefix;
1655
b086849e 1656 Temp := Make_Temporary (Loc, 'T', Actual);
70482933
RK
1657 Incod := Relocate_Node (Actual);
1658 Outcod := New_Copy_Tree (Incod);
1659
1660 -- Generate declaration of temporary variable, initializing it
c73ae90f 1661 -- with the input parameter unless we have an OUT formal or
758c442c 1662 -- this is an initialization call.
70482933 1663
c73ae90f
GD
1664 -- If the formal is an out parameter with discriminants, the
1665 -- discriminants must be captured even if the rest of the object
1666 -- is in principle uninitialized, because the discriminants may
1667 -- be read by the called subprogram.
1668
70482933
RK
1669 if Ekind (Formal) = E_Out_Parameter then
1670 Incod := Empty;
758c442c 1671
db99c46e 1672 if Has_Discriminants (F_Typ) then
c73ae90f
GD
1673 Indic := New_Occurrence_Of (Etype (Actual), Loc);
1674 end if;
1675
758c442c 1676 elsif Inside_Init_Proc then
c73ae90f
GD
1677
1678 -- Could use a comment here to match comment below ???
1679
758c442c
GD
1680 if Nkind (Actual) /= N_Selected_Component
1681 or else
1682 not Has_Discriminant_Dependent_Constraint
1683 (Entity (Selector_Name (Actual)))
1684 then
1685 Incod := Empty;
1686
c73ae90f
GD
1687 -- Otherwise, keep the component in order to generate the proper
1688 -- actual subtype, that depends on enclosing discriminants.
758c442c 1689
c73ae90f 1690 else
758c442c
GD
1691 null;
1692 end if;
70482933
RK
1693 end if;
1694
758c442c 1695 Decl :=
70482933
RK
1696 Make_Object_Declaration (Loc,
1697 Defining_Identifier => Temp,
f44fe430 1698 Object_Definition => Indic,
758c442c
GD
1699 Expression => Incod);
1700
1701 if Inside_Init_Proc
1702 and then No (Incod)
1703 then
1704 -- If the call is to initialize a component of a composite type,
1705 -- and the component does not depend on discriminants, use the
1706 -- actual type of the component. This is required in case the
1707 -- component is constrained, because in general the formal of the
1708 -- initialization procedure will be unconstrained. Note that if
1709 -- the component being initialized is constrained by an enclosing
1710 -- discriminant, the presence of the initialization in the
1711 -- declaration will generate an expression for the actual subtype.
1712
1713 Set_No_Initialization (Decl);
1714 Set_Object_Definition (Decl,
1715 New_Occurrence_Of (Etype (Actual), Loc));
1716 end if;
1717
1718 Insert_Action (N, Decl);
70482933
RK
1719
1720 -- The actual is simply a reference to the temporary
1721
1722 Rewrite (Actual, New_Occurrence_Of (Temp, Loc));
1723
1724 -- Generate copy out if OUT or IN OUT parameter
1725
1726 if Ekind (Formal) /= E_In_Parameter then
1727 Lhs := Outcod;
1728 Rhs := New_Occurrence_Of (Temp, Loc);
8f0303e7 1729 Set_Is_True_Constant (Temp, False);
70482933
RK
1730
1731 -- Deal with conversion
1732
1733 if Nkind (Lhs) = N_Type_Conversion then
1734 Lhs := Expression (Lhs);
1735 Rhs := Convert_To (Etype (Actual), Rhs);
1736 end if;
1737
1738 Append_To (Post_Call,
1739 Make_Assignment_Statement (Loc,
1740 Name => Lhs,
1741 Expression => Rhs));
f44fe430 1742 Set_Assignment_OK (Name (Last (Post_Call)));
70482933 1743 end if;
f44fe430 1744 end Add_Simple_Call_By_Copy_Code;
70482933 1745
62e45e3e
HK
1746 --------------------------------------
1747 -- Add_Validation_Call_By_Copy_Code --
1748 --------------------------------------
1749
1750 procedure Add_Validation_Call_By_Copy_Code (Act : Node_Id) is
1751 Expr : Node_Id;
1752 Obj : Node_Id;
1753 Obj_Typ : Entity_Id;
0691ed6b 1754 Var : constant Node_Id := Unqual_Conv (Act);
62e45e3e
HK
1755 Var_Id : Entity_Id;
1756
1757 begin
13931a38
EB
1758 -- Generate range check if required
1759
1760 if Do_Range_Check (Actual) then
1761 Generate_Range_Check (Actual, E_Formal, CE_Range_Check_Failed);
1762 end if;
1763
1764 -- If there is a type conversion in the actual, it will be reinstated
1765 -- below, the new instance will be properly analyzed and the setting
1766 -- of the Do_Range_Check flag recomputed so remove the obsolete one.
1767
1768 if Nkind (Actual) = N_Type_Conversion then
1769 Set_Do_Range_Check (Expression (Actual), False);
1770 end if;
1771
62e45e3e
HK
1772 -- Copy the value of the validation variable back into the object
1773 -- being validated.
1774
1775 if Is_Entity_Name (Var) then
1776 Var_Id := Entity (Var);
1777 Obj := Validated_Object (Var_Id);
1778 Obj_Typ := Etype (Obj);
1779
1780 Expr := New_Occurrence_Of (Var_Id, Loc);
1781
1782 -- A type conversion is needed when the validation variable and
1783 -- the validated object carry different types. This case occurs
1784 -- when the actual is qualified in some fashion.
1785
1786 -- Common:
1787 -- subtype Int is Integer range ...;
1788 -- procedure Call (Val : in out Integer);
1789
1790 -- Original:
1791 -- Object : Int;
1792 -- Call (Integer (Object));
1793
1794 -- Expanded:
1795 -- Object : Int;
1796 -- Var : Integer := Object; -- conversion to base type
1797 -- if not Var'Valid then -- validity check
1798 -- Call (Var); -- modify Var
1799 -- Object := Int (Var); -- conversion to subtype
1800
1801 if Etype (Var_Id) /= Obj_Typ then
1802 Expr :=
1803 Make_Type_Conversion (Loc,
1804 Subtype_Mark => New_Occurrence_Of (Obj_Typ, Loc),
1805 Expression => Expr);
1806 end if;
1807
1808 -- Generate:
1809 -- Object := Var;
1810 -- <or>
1811 -- Object := Object_Type (Var);
1812
1813 Append_To (Post_Call,
1814 Make_Assignment_Statement (Loc,
1815 Name => Obj,
1816 Expression => Expr));
1817
1818 -- If the flow reaches this point, then this routine was invoked with
1819 -- an actual which does not denote a validation variable.
1820
1821 else
1822 pragma Assert (False);
1823 null;
1824 end if;
1825 end Add_Validation_Call_By_Copy_Code;
1826
70482933
RK
1827 ---------------------------
1828 -- Check_Fortran_Logical --
1829 ---------------------------
1830
1831 procedure Check_Fortran_Logical is
fbf5a39b 1832 Logical : constant Entity_Id := Etype (Formal);
70482933
RK
1833 Var : Entity_Id;
1834
1835 -- Note: this is very incomplete, e.g. it does not handle arrays
1836 -- of logical values. This is really not the right approach at all???)
1837
1838 begin
1839 if Convention (Subp) = Convention_Fortran
1840 and then Root_Type (Etype (Formal)) = Standard_Boolean
1841 and then Ekind (Formal) /= E_In_Parameter
1842 then
1843 Var := Make_Var (Actual);
1844 Append_To (Post_Call,
1845 Make_Assignment_Statement (Loc,
1846 Name => New_Occurrence_Of (Var, Loc),
1847 Expression =>
1848 Unchecked_Convert_To (
1849 Logical,
1850 Make_Op_Ne (Loc,
1851 Left_Opnd => New_Occurrence_Of (Var, Loc),
1852 Right_Opnd =>
1853 Unchecked_Convert_To (
1854 Logical,
1855 New_Occurrence_Of (Standard_False, Loc))))));
1856 end if;
1857 end Check_Fortran_Logical;
1858
758c442c
GD
1859 -------------------
1860 -- Is_Legal_Copy --
1861 -------------------
1862
1863 function Is_Legal_Copy return Boolean is
1864 begin
1865 -- An attempt to copy a value of such a type can only occur if
1866 -- representation clauses give the actual a misaligned address.
1867
5d66b937
EB
1868 if Is_By_Reference_Type (Etype (Formal))
1869 or else Is_Aliased (Formal)
1870 or else (Mechanism (Formal) = By_Reference
1871 and then not Has_Foreign_Convention (Subp))
1872 then
f45ccc7c 1873
f8f50235
AC
1874 -- The actual may in fact be properly aligned but there is not
1875 -- enough front-end information to determine this. In that case
5d66b937
EB
1876 -- gigi will emit an error or a warning if a copy is not legal,
1877 -- or generate the proper code.
f45ccc7c 1878
758c442c
GD
1879 return False;
1880
1881 -- For users of Starlet, we assume that the specification of by-
7888a6ae 1882 -- reference mechanism is mandatory. This may lead to unaligned
758c442c
GD
1883 -- objects but at least for DEC legacy code it is known to work.
1884 -- The warning will alert users of this code that a problem may
1885 -- be lurking.
1886
1887 elsif Mechanism (Formal) = By_Reference
5d66b937 1888 and then Ekind (Scope (Formal)) = E_Procedure
758c442c
GD
1889 and then Is_Valued_Procedure (Scope (Formal))
1890 then
1891 Error_Msg_N
685bc70f 1892 ("by_reference actual may be misaligned??", Actual);
758c442c
GD
1893 return False;
1894
1895 else
1896 return True;
1897 end if;
1898 end Is_Legal_Copy;
1899
70482933
RK
1900 --------------
1901 -- Make_Var --
1902 --------------
1903
1904 function Make_Var (Actual : Node_Id) return Entity_Id is
1905 Var : Entity_Id;
1906
1907 begin
1908 if Is_Entity_Name (Actual) then
1909 return Entity (Actual);
1910
1911 else
b086849e 1912 Var := Make_Temporary (Loc, 'T', Actual);
70482933
RK
1913
1914 N_Node :=
1915 Make_Object_Renaming_Declaration (Loc,
1916 Defining_Identifier => Var,
1917 Subtype_Mark =>
1918 New_Occurrence_Of (Etype (Actual), Loc),
1919 Name => Relocate_Node (Actual));
1920
1921 Insert_Action (N, N_Node);
1922 return Var;
1923 end if;
1924 end Make_Var;
1925
1926 -------------------------
1927 -- Reset_Packed_Prefix --
1928 -------------------------
1929
1930 procedure Reset_Packed_Prefix is
1931 Pfx : Node_Id := Actual;
70482933
RK
1932 begin
1933 loop
1934 Set_Analyzed (Pfx, False);
ac4d6407
RD
1935 exit when
1936 not Nkind_In (Pfx, N_Selected_Component, N_Indexed_Component);
70482933
RK
1937 Pfx := Prefix (Pfx);
1938 end loop;
1939 end Reset_Packed_Prefix;
1940
1941 -- Start of processing for Expand_Actuals
1942
1943 begin
70482933
RK
1944 Post_Call := New_List;
1945
2f1b20a9
ES
1946 Formal := First_Formal (Subp);
1947 Actual := First_Actual (N);
70482933
RK
1948 while Present (Formal) loop
1949 E_Formal := Etype (Formal);
f6820c2d 1950 E_Actual := Etype (Actual);
70482933 1951
db99c46e
AC
1952 -- Handle formals whose type comes from the limited view
1953
1954 if From_Limited_With (E_Formal)
1955 and then Has_Non_Limited_View (E_Formal)
1956 then
1957 E_Formal := Non_Limited_View (E_Formal);
1958 end if;
1959
70482933
RK
1960 if Is_Scalar_Type (E_Formal)
1961 or else Nkind (Actual) = N_Slice
1962 then
1963 Check_Fortran_Logical;
1964
1965 -- RM 6.4.1 (11)
1966
1967 elsif Ekind (Formal) /= E_Out_Parameter then
1968
1969 -- The unusual case of the current instance of a protected type
1970 -- requires special handling. This can only occur in the context
1971 -- of a call within the body of a protected operation.
1972
1973 if Is_Entity_Name (Actual)
1974 and then Ekind (Entity (Actual)) = E_Protected_Type
1975 and then In_Open_Scopes (Entity (Actual))
1976 then
1977 if Scope (Subp) /= Entity (Actual) then
685bc70f
AC
1978 Error_Msg_N
1979 ("operation outside protected type may not "
1980 & "call back its protected operations??", Actual);
70482933
RK
1981 end if;
1982
1983 Rewrite (Actual,
1984 Expand_Protected_Object_Reference (N, Entity (Actual)));
1985 end if;
1986
02822a92
RD
1987 -- Ada 2005 (AI-318-02): If the actual parameter is a call to a
1988 -- build-in-place function, then a temporary return object needs
1989 -- to be created and access to it must be passed to the function.
f937473f
RD
1990 -- Currently we limit such functions to those with inherently
1991 -- limited result subtypes, but eventually we plan to expand the
1992 -- functions that are treated as build-in-place to include other
1993 -- composite result types.
02822a92 1994
95eb8b69 1995 if Is_Build_In_Place_Function_Call (Actual) then
02822a92 1996 Make_Build_In_Place_Call_In_Anonymous_Context (Actual);
4ac62786
AC
1997
1998 -- Ada 2005 (AI-318-02): Specialization of the previous case for
1999 -- actuals containing build-in-place function calls whose returned
2000 -- object covers interface types.
2001
2002 elsif Present (Unqual_BIP_Iface_Function_Call (Actual)) then
2003 Make_Build_In_Place_Iface_Call_In_Anonymous_Context (Actual);
02822a92
RD
2004 end if;
2005
70482933
RK
2006 Apply_Constraint_Check (Actual, E_Formal);
2007
2008 -- Out parameter case. No constraint checks on access type
68e4cc98
ES
2009 -- RM 6.4.1 (13), but on return a null-excluding check may be
2010 -- required (see below).
70482933
RK
2011
2012 elsif Is_Access_Type (E_Formal) then
2013 null;
2014
2015 -- RM 6.4.1 (14)
2016
2017 elsif Has_Discriminants (Base_Type (E_Formal))
2018 or else Has_Non_Null_Base_Init_Proc (E_Formal)
2019 then
2020 Apply_Constraint_Check (Actual, E_Formal);
2021
2022 -- RM 6.4.1 (15)
2023
2024 else
2025 Apply_Constraint_Check (Actual, Base_Type (E_Formal));
2026 end if;
2027
2028 -- Processing for IN-OUT and OUT parameters
2029
2030 if Ekind (Formal) /= E_In_Parameter then
2031
2032 -- For type conversions of arrays, apply length/range checks
2033
2034 if Is_Array_Type (E_Formal)
2035 and then Nkind (Actual) = N_Type_Conversion
2036 then
2037 if Is_Constrained (E_Formal) then
2038 Apply_Length_Check (Expression (Actual), E_Formal);
2039 else
2040 Apply_Range_Check (Expression (Actual), E_Formal);
2041 end if;
2042 end if;
2043
62e45e3e
HK
2044 -- The actual denotes a variable which captures the value of an
2045 -- object for validation purposes. Add a copy-back to reflect any
2046 -- potential changes in value back into the original object.
2047
2048 -- Var : ... := Object;
2049 -- if not Var'Valid then -- validity check
2050 -- Call (Var); -- modify var
2051 -- Object := Var; -- update Object
2052
2053 -- This case is given higher priority because the subsequent check
2054 -- for type conversion may add an extra copy of the variable and
2055 -- prevent proper value propagation back in the original object.
2056
2057 if Is_Validation_Variable_Reference (Actual) then
2058 Add_Validation_Call_By_Copy_Code (Actual);
70482933 2059
62e45e3e
HK
2060 -- If argument is a type conversion for a type that is passed by
2061 -- copy, then we must pass the parameter by copy.
2062
2063 elsif Nkind (Actual) = N_Type_Conversion
70482933
RK
2064 and then
2065 (Is_Numeric_Type (E_Formal)
2066 or else Is_Access_Type (E_Formal)
2067 or else Is_Enumeration_Type (E_Formal)
2068 or else Is_Bit_Packed_Array (Etype (Formal))
2069 or else Is_Bit_Packed_Array (Etype (Expression (Actual)))
2070
2071 -- Also pass by copy if change of representation
2072
2073 or else not Same_Representation
da574a86
AC
2074 (Etype (Formal),
2075 Etype (Expression (Actual))))
70482933
RK
2076 then
2077 Add_Call_By_Copy_Code;
2078
607114db 2079 -- References to components of bit-packed arrays are expanded
70482933
RK
2080 -- at this point, rather than at the point of analysis of the
2081 -- actuals, to handle the expansion of the assignment to
2082 -- [in] out parameters.
2083
2084 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
348c3ae6 2085 Add_Simple_Call_By_Copy_Code (Bit_Packed_Array => True);
f44fe430 2086
00907026 2087 -- If a nonscalar actual is possibly bit-aligned, we need a copy
02822a92
RD
2088 -- because the back-end cannot cope with such objects. In other
2089 -- cases where alignment forces a copy, the back-end generates
2090 -- it properly. It should not be generated unconditionally in the
2091 -- front-end because it does not know precisely the alignment
2092 -- requirements of the target, and makes too conservative an
2093 -- estimate, leading to superfluous copies or spurious errors
2094 -- on by-reference parameters.
f44fe430 2095
02822a92
RD
2096 elsif Nkind (Actual) = N_Selected_Component
2097 and then
2098 Component_May_Be_Bit_Aligned (Entity (Selector_Name (Actual)))
f44fe430
RD
2099 and then not Represented_As_Scalar (Etype (Formal))
2100 then
348c3ae6 2101 Add_Simple_Call_By_Copy_Code (Bit_Packed_Array => False);
70482933 2102
607114db 2103 -- References to slices of bit-packed arrays are expanded
70482933
RK
2104
2105 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
2106 Add_Call_By_Copy_Code;
2107
fbf5a39b
AC
2108 -- References to possibly unaligned slices of arrays are expanded
2109
2110 elsif Is_Possibly_Unaligned_Slice (Actual) then
2111 Add_Call_By_Copy_Code;
2112
7888a6ae 2113 -- Deal with access types where the actual subtype and the
70482933
RK
2114 -- formal subtype are not the same, requiring a check.
2115
638e383e 2116 -- It is necessary to exclude tagged types because of "downward
68e4cc98
ES
2117 -- conversion" errors, but null-excluding checks on return may be
2118 -- required.
70482933
RK
2119
2120 elsif Is_Access_Type (E_Formal)
70482933 2121 and then not Is_Tagged_Type (Designated_Type (E_Formal))
68e4cc98
ES
2122 and then (not Same_Type (E_Formal, E_Actual)
2123 or else (Can_Never_Be_Null (E_Actual)
2124 and then not Can_Never_Be_Null (E_Formal)))
70482933
RK
2125 then
2126 Add_Call_By_Copy_Code;
2127
faf3cf91
ES
2128 -- If the actual is not a scalar and is marked for volatile
2129 -- treatment, whereas the formal is not volatile, then pass
2130 -- by copy unless it is a by-reference type.
2131
0386aad1
AC
2132 -- Note: we use Is_Volatile here rather than Treat_As_Volatile,
2133 -- because this is the enforcement of a language rule that applies
2134 -- only to "real" volatile variables, not e.g. to the address
2135 -- clause overlay case.
2136
70482933 2137 elsif Is_Entity_Name (Actual)
0386aad1 2138 and then Is_Volatile (Entity (Actual))
f6820c2d 2139 and then not Is_By_Reference_Type (E_Actual)
70482933 2140 and then not Is_Scalar_Type (Etype (Entity (Actual)))
0386aad1 2141 and then not Is_Volatile (E_Formal)
70482933
RK
2142 then
2143 Add_Call_By_Copy_Code;
2144
2145 elsif Nkind (Actual) = N_Indexed_Component
2146 and then Is_Entity_Name (Prefix (Actual))
2147 and then Has_Volatile_Components (Entity (Prefix (Actual)))
2148 then
2149 Add_Call_By_Copy_Code;
d79e621a
GD
2150
2151 -- Add call-by-copy code for the case of scalar out parameters
2152 -- when it is not known at compile time that the subtype of the
c2369146
AC
2153 -- formal is a subrange of the subtype of the actual (or vice
2154 -- versa for in out parameters), in order to get range checks
2155 -- on such actuals. (Maybe this case should be handled earlier
2156 -- in the if statement???)
d79e621a
GD
2157
2158 elsif Is_Scalar_Type (E_Formal)
c2369146 2159 and then
f6820c2d 2160 (not In_Subrange_Of (E_Formal, E_Actual)
c2369146
AC
2161 or else
2162 (Ekind (Formal) = E_In_Out_Parameter
f6820c2d 2163 and then not In_Subrange_Of (E_Actual, E_Formal)))
d79e621a 2164 then
d79e621a 2165 Add_Call_By_Copy_Code;
70482933
RK
2166 end if;
2167
5f6fb720 2168 -- RM 3.2.4 (23/3): A predicate is checked on in-out and out
f6820c2d
AC
2169 -- by-reference parameters on exit from the call. If the actual
2170 -- is a derived type and the operation is inherited, the body
2171 -- of the operation will not contain a call to the predicate
2172 -- function, so it must be done explicitly after the call. Ditto
2173 -- if the actual is an entity of a predicated subtype.
2174
cae64f11
AC
2175 -- The rule refers to by-reference types, but a check is needed
2176 -- for by-copy types as well. That check is subsumed by the rule
2177 -- for subtype conversion on assignment, but we can generate the
2178 -- required check now.
2179
dd4e47ab 2180 -- Note also that Subp may be either a subprogram entity for
e93f4e12
AC
2181 -- direct calls, or a type entity for indirect calls, which must
2182 -- be handled separately because the name does not denote an
2183 -- overloadable entity.
dd4e47ab 2184
2ac4a591 2185 By_Ref_Predicate_Check : declare
5f6fb720
AC
2186 Aund : constant Entity_Id := Underlying_Type (E_Actual);
2187 Atyp : Entity_Id;
2188
2ac4a591
AC
2189 function Is_Public_Subp return Boolean;
2190 -- Check whether the subprogram being called is a visible
2191 -- operation of the type of the actual. Used to determine
2192 -- whether an invariant check must be generated on the
2193 -- caller side.
2194
2195 ---------------------
2196 -- Is_Public_Subp --
2197 ---------------------
2198
2199 function Is_Public_Subp return Boolean is
2200 Pack : constant Entity_Id := Scope (Subp);
2201 Subp_Decl : Node_Id;
2202
2203 begin
2204 if not Is_Subprogram (Subp) then
2205 return False;
2206
2207 -- The operation may be inherited, or a primitive of the
2208 -- root type.
2209
2210 elsif
2211 Nkind_In (Parent (Subp), N_Private_Extension_Declaration,
2212 N_Full_Type_Declaration)
2213 then
2214 Subp_Decl := Parent (Subp);
2215
2216 else
2217 Subp_Decl := Unit_Declaration_Node (Subp);
2218 end if;
2219
2220 return Ekind (Pack) = E_Package
2221 and then
2222 List_Containing (Subp_Decl) =
2223 Visible_Declarations
2224 (Specification (Unit_Declaration_Node (Pack)));
2225 end Is_Public_Subp;
2226
2227 -- Start of processing for By_Ref_Predicate_Check
2228
5f6fb720
AC
2229 begin
2230 if No (Aund) then
2231 Atyp := E_Actual;
2232 else
2233 Atyp := Aund;
2234 end if;
2235
2236 if Has_Predicates (Atyp)
2237 and then Present (Predicate_Function (Atyp))
2238
2239 -- Skip predicate checks for special cases
2240
b8e6830b 2241 and then Predicate_Tests_On_Arguments (Subp)
5f6fb720
AC
2242 then
2243 Append_To (Post_Call,
2244 Make_Predicate_Check (Atyp, Actual));
2245 end if;
2ac4a591
AC
2246
2247 -- We generated caller-side invariant checks in two cases:
2248
2249 -- a) when calling an inherited operation, where there is an
2250 -- implicit view conversion of the actual to the parent type.
2251
2252 -- b) When the conversion is explicit
2253
2254 -- We treat these cases separately because the required
2255 -- conversion for a) is added later when expanding the call.
2256
2257 if Has_Invariants (Etype (Actual))
2258 and then
2259 Nkind (Parent (Subp)) = N_Private_Extension_Declaration
2260 then
b9eb3aa8 2261 if Comes_From_Source (N) and then Is_Public_Subp then
2ac4a591
AC
2262 Append_To (Post_Call, Make_Invariant_Call (Actual));
2263 end if;
2264
2265 elsif Nkind (Actual) = N_Type_Conversion
2266 and then Has_Invariants (Etype (Expression (Actual)))
2267 then
2268 if Comes_From_Source (N) and then Is_Public_Subp then
2269 Append_To (Post_Call,
2270 Make_Invariant_Call (Expression (Actual)));
2271 end if;
2272 end if;
2273 end By_Ref_Predicate_Check;
f6820c2d 2274
fbf5a39b 2275 -- Processing for IN parameters
70482933
RK
2276
2277 else
13931a38
EB
2278 -- Generate range check if required
2279
2280 if Do_Range_Check (Actual) then
2281 Generate_Range_Check (Actual, E_Formal, CE_Range_Check_Failed);
2282 end if;
2283
607114db 2284 -- For IN parameters in the bit-packed array case, we expand an
fbf5a39b
AC
2285 -- indexed component (the circuit in Exp_Ch4 deliberately left
2286 -- indexed components appearing as actuals untouched, so that
2287 -- the special processing above for the OUT and IN OUT cases
2288 -- could be performed. We could make the test in Exp_Ch4 more
2289 -- complex and have it detect the parameter mode, but it is
f44fe430 2290 -- easier simply to handle all cases here.)
fbf5a39b 2291
70482933 2292 if Nkind (Actual) = N_Indexed_Component
b3f75672 2293 and then Is_Bit_Packed_Array (Etype (Prefix (Actual)))
70482933
RK
2294 then
2295 Reset_Packed_Prefix;
2296 Expand_Packed_Element_Reference (Actual);
2297
607114db 2298 -- If we have a reference to a bit-packed array, we copy it, since
0386aad1 2299 -- the actual must be byte aligned.
70482933 2300
fbf5a39b 2301 -- Is this really necessary in all cases???
70482933 2302
fbf5a39b 2303 elsif Is_Ref_To_Bit_Packed_Array (Actual) then
348c3ae6 2304 Add_Simple_Call_By_Copy_Code (Bit_Packed_Array => True);
f44fe430 2305
00907026 2306 -- If a nonscalar actual is possibly unaligned, we need a copy
f44fe430
RD
2307
2308 elsif Is_Possibly_Unaligned_Object (Actual)
2309 and then not Represented_As_Scalar (Etype (Formal))
2310 then
348c3ae6 2311 Add_Simple_Call_By_Copy_Code (Bit_Packed_Array => False);
70482933 2312
fbf5a39b
AC
2313 -- Similarly, we have to expand slices of packed arrays here
2314 -- because the result must be byte aligned.
70482933 2315
fbf5a39b
AC
2316 elsif Is_Ref_To_Bit_Packed_Slice (Actual) then
2317 Add_Call_By_Copy_Code;
70482933 2318
fbf5a39b
AC
2319 -- Only processing remaining is to pass by copy if this is a
2320 -- reference to a possibly unaligned slice, since the caller
2321 -- expects an appropriately aligned argument.
70482933 2322
fbf5a39b
AC
2323 elsif Is_Possibly_Unaligned_Slice (Actual) then
2324 Add_Call_By_Copy_Code;
fb468a94
AC
2325
2326 -- An unusual case: a current instance of an enclosing task can be
2327 -- an actual, and must be replaced by a reference to self.
2328
2329 elsif Is_Entity_Name (Actual)
2330 and then Is_Task_Type (Entity (Actual))
2331 then
2332 if In_Open_Scopes (Entity (Actual)) then
2333 Rewrite (Actual,
2334 (Make_Function_Call (Loc,
da574a86 2335 Name => New_Occurrence_Of (RTE (RE_Self), Loc))));
fb468a94
AC
2336 Analyze (Actual);
2337
2338 -- A task type cannot otherwise appear as an actual
2339
2340 else
2341 raise Program_Error;
2342 end if;
70482933
RK
2343 end if;
2344 end if;
2345
2346 Next_Formal (Formal);
2347 Next_Actual (Actual);
2348 end loop;
70482933
RK
2349 end Expand_Actuals;
2350
2351 -----------------
2352 -- Expand_Call --
2353 -----------------
2354
ca1f6b29
BD
2355 procedure Expand_Call (N : Node_Id) is
2356 Post_Call : List_Id;
3fc40cd7 2357
ca1f6b29 2358 begin
3fc40cd7
PMR
2359 pragma Assert (Nkind_In (N, N_Entry_Call_Statement,
2360 N_Function_Call,
2361 N_Procedure_Call_Statement));
2362
ca1f6b29
BD
2363 Expand_Call_Helper (N, Post_Call);
2364 Insert_Post_Call_Actions (N, Post_Call);
2365 end Expand_Call;
2366
2367 ------------------------
2368 -- Expand_Call_Helper --
2369 ------------------------
2370
70482933
RK
2371 -- This procedure handles expansion of function calls and procedure call
2372 -- statements (i.e. it serves as the body for Expand_N_Function_Call and
70f91180 2373 -- Expand_N_Procedure_Call_Statement). Processing for calls includes:
70482933 2374
70f91180 2375 -- Replace call to Raise_Exception by Raise_Exception_Always if possible
70482933
RK
2376 -- Provide values of actuals for all formals in Extra_Formals list
2377 -- Replace "call" to enumeration literal function by literal itself
2378 -- Rewrite call to predefined operator as operator
2379 -- Replace actuals to in-out parameters that are numeric conversions,
2380 -- with explicit assignment to temporaries before and after the call.
70482933
RK
2381
2382 -- Note that the list of actuals has been filled with default expressions
2383 -- during semantic analysis of the call. Only the extra actuals required
2384 -- for the 'Constrained attribute and for accessibility checks are added
2385 -- at this point.
2386
ca1f6b29 2387 procedure Expand_Call_Helper (N : Node_Id; Post_Call : out List_Id) is
70482933 2388 Loc : constant Source_Ptr := Sloc (N);
6dfc5592 2389 Call_Node : Node_Id := N;
70482933 2390 Extra_Actuals : List_Id := No_List;
fdce4bb7 2391 Prev : Node_Id := Empty;
758c442c 2392
70482933
RK
2393 procedure Add_Actual_Parameter (Insert_Param : Node_Id);
2394 -- Adds one entry to the end of the actual parameter list. Used for
2f1b20a9
ES
2395 -- default parameters and for extra actuals (for Extra_Formals). The
2396 -- argument is an N_Parameter_Association node.
70482933
RK
2397
2398 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id);
2f1b20a9
ES
2399 -- Adds an extra actual to the list of extra actuals. Expr is the
2400 -- expression for the value of the actual, EF is the entity for the
2401 -- extra formal.
70482933 2402
5f325af2
AC
2403 procedure Add_View_Conversion_Invariants
2404 (Formal : Entity_Id;
2405 Actual : Node_Id);
10c2c151
AC
2406 -- Adds invariant checks for every intermediate type between the range
2407 -- of a view converted argument to its ancestor (from parent to child).
84e13614 2408
a081ded4
ES
2409 function Can_Fold_Predicate_Call (P : Entity_Id) return Boolean;
2410 -- Try to constant-fold a predicate check, which often enough is a
2411 -- simple arithmetic expression that can be computed statically if
2412 -- its argument is static. This cleans up the output of CCG, even
2413 -- though useless predicate checks will be generally removed by
2414 -- back-end optimizations.
2415
70482933 2416 function Inherited_From_Formal (S : Entity_Id) return Entity_Id;
1fb63e89 2417 -- Within an instance, a type derived from an untagged formal derived
70f91180
RD
2418 -- type inherits from the original parent, not from the actual. The
2419 -- current derivation mechanism has the derived type inherit from the
2420 -- actual, which is only correct outside of the instance. If the
2421 -- subprogram is inherited, we test for this particular case through a
2422 -- convoluted tree traversal before setting the proper subprogram to be
2423 -- called.
70482933 2424
84f4072a
JM
2425 function In_Unfrozen_Instance (E : Entity_Id) return Boolean;
2426 -- Return true if E comes from an instance that is not yet frozen
2427
5a644684
JM
2428 function Is_Class_Wide_Interface_Type (E : Entity_Id) return Boolean;
2429 -- Return True when E is a class-wide interface type or an access to
2430 -- a class-wide interface type.
2431
df3e68b1 2432 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean;
2c1b72d7 2433 -- Determine if Subp denotes a non-dispatching call to a Deep routine
df3e68b1 2434
dd386db0
AC
2435 function New_Value (From : Node_Id) return Node_Id;
2436 -- From is the original Expression. New_Value is equivalent to a call
2437 -- to Duplicate_Subexpr with an explicit dereference when From is an
2438 -- access parameter.
2439
70482933
RK
2440 --------------------------
2441 -- Add_Actual_Parameter --
2442 --------------------------
2443
2444 procedure Add_Actual_Parameter (Insert_Param : Node_Id) is
2445 Actual_Expr : constant Node_Id :=
2446 Explicit_Actual_Parameter (Insert_Param);
2447
2448 begin
2449 -- Case of insertion is first named actual
2450
2451 if No (Prev) or else
2452 Nkind (Parent (Prev)) /= N_Parameter_Association
2453 then
6dfc5592
RD
2454 Set_Next_Named_Actual
2455 (Insert_Param, First_Named_Actual (Call_Node));
2456 Set_First_Named_Actual (Call_Node, Actual_Expr);
70482933
RK
2457
2458 if No (Prev) then
6dfc5592
RD
2459 if No (Parameter_Associations (Call_Node)) then
2460 Set_Parameter_Associations (Call_Node, New_List);
70482933 2461 end if;
57a3fca9
AC
2462
2463 Append (Insert_Param, Parameter_Associations (Call_Node));
2464
70482933
RK
2465 else
2466 Insert_After (Prev, Insert_Param);
2467 end if;
2468
2469 -- Case of insertion is not first named actual
2470
2471 else
2472 Set_Next_Named_Actual
2473 (Insert_Param, Next_Named_Actual (Parent (Prev)));
2474 Set_Next_Named_Actual (Parent (Prev), Actual_Expr);
6dfc5592 2475 Append (Insert_Param, Parameter_Associations (Call_Node));
70482933
RK
2476 end if;
2477
2478 Prev := Actual_Expr;
2479 end Add_Actual_Parameter;
2480
2481 ----------------------
2482 -- Add_Extra_Actual --
2483 ----------------------
2484
2485 procedure Add_Extra_Actual (Expr : Node_Id; EF : Entity_Id) is
2486 Loc : constant Source_Ptr := Sloc (Expr);
2487
2488 begin
2489 if Extra_Actuals = No_List then
2490 Extra_Actuals := New_List;
6dfc5592 2491 Set_Parent (Extra_Actuals, Call_Node);
70482933
RK
2492 end if;
2493
2494 Append_To (Extra_Actuals,
2495 Make_Parameter_Association (Loc,
7a2c2277 2496 Selector_Name => New_Occurrence_Of (EF, Loc),
9d983bbf 2497 Explicit_Actual_Parameter => Expr));
70482933
RK
2498
2499 Analyze_And_Resolve (Expr, Etype (EF));
75a64833 2500
6dfc5592 2501 if Nkind (Call_Node) = N_Function_Call then
75a64833
AC
2502 Set_Is_Accessibility_Actual (Parent (Expr));
2503 end if;
70482933
RK
2504 end Add_Extra_Actual;
2505
5f325af2
AC
2506 ------------------------------------
2507 -- Add_View_Conversion_Invariants --
2508 ------------------------------------
84e13614 2509
5f325af2
AC
2510 procedure Add_View_Conversion_Invariants
2511 (Formal : Entity_Id;
2512 Actual : Node_Id)
2513 is
84e13614 2514 Arg : Entity_Id;
10c2c151 2515 Curr_Typ : Entity_Id;
84e13614
JS
2516 Inv_Checks : List_Id;
2517 Par_Typ : Entity_Id;
2518
2519 begin
2520 Inv_Checks := No_List;
2521
10c2c151
AC
2522 -- Extract the argument from a potentially nested set of view
2523 -- conversions.
84e13614
JS
2524
2525 Arg := Actual;
2526 while Nkind (Arg) = N_Type_Conversion loop
2527 Arg := Expression (Arg);
2528 end loop;
2529
10c2c151
AC
2530 -- Move up the derivation chain starting with the type of the formal
2531 -- parameter down to the type of the actual object.
84e13614 2532
10c2c151
AC
2533 Curr_Typ := Empty;
2534 Par_Typ := Etype (Arg);
84e13614
JS
2535 while Par_Typ /= Etype (Formal) and Par_Typ /= Curr_Typ loop
2536 Curr_Typ := Par_Typ;
10c2c151 2537
84e13614
JS
2538 if Has_Invariants (Curr_Typ)
2539 and then Present (Invariant_Procedure (Curr_Typ))
2540 then
2541 -- Verify the invariate of the current type. Generate:
10c2c151
AC
2542
2543 -- <Curr_Typ>Invariant (Curr_Typ (Arg));
84e13614
JS
2544
2545 Prepend_New_To (Inv_Checks,
2546 Make_Procedure_Call_Statement (Loc,
2547 Name =>
2548 New_Occurrence_Of
2549 (Invariant_Procedure (Curr_Typ), Loc),
2550 Parameter_Associations => New_List (
2551 Make_Type_Conversion (Loc,
2552 Subtype_Mark => New_Occurrence_Of (Curr_Typ, Loc),
2553 Expression => New_Copy_Tree (Arg)))));
2554 end if;
2555
2556 Par_Typ := Base_Type (Etype (Curr_Typ));
2557 end loop;
2558
2559 if not Is_Empty_List (Inv_Checks) then
2560 Insert_Actions_After (N, Inv_Checks);
2561 end if;
5f325af2 2562 end Add_View_Conversion_Invariants;
84e13614 2563
a081ded4
ES
2564 -----------------------------
2565 -- Can_Fold_Predicate_Call --
2566 -----------------------------
2567
2568 function Can_Fold_Predicate_Call (P : Entity_Id) return Boolean is
6ef13c4f 2569 Actual : Node_Id;
a081ded4
ES
2570
2571 function May_Fold (N : Node_Id) return Traverse_Result;
2572 -- The predicate expression is foldable if it only contains operators
2573 -- and literals. During this check, we also replace occurrences of
2574 -- the formal of the constructed predicate function with the static
2575 -- value of the actual. This is done on a copy of the analyzed
2576 -- expression for the predicate.
2577
29c64a0f
HK
2578 --------------
2579 -- May_Fold --
2580 --------------
2581
a081ded4
ES
2582 function May_Fold (N : Node_Id) return Traverse_Result is
2583 begin
2584 case Nkind (N) is
29c64a0f
HK
2585 when N_Binary_Op
2586 | N_Unary_Op
2587 =>
a081ded4
ES
2588 return OK;
2589
29c64a0f
HK
2590 when N_Expanded_Name
2591 | N_Identifier
2592 =>
a081ded4
ES
2593 if Ekind (Entity (N)) = E_In_Parameter
2594 and then Entity (N) = First_Entity (P)
2595 then
2596 Rewrite (N, New_Copy (Actual));
2597 Set_Is_Static_Expression (N);
2598 return OK;
2599
2600 elsif Ekind (Entity (N)) = E_Enumeration_Literal then
2601 return OK;
2602
2603 else
2604 return Abandon;
2605 end if;
2606
29c64a0f
HK
2607 when N_Case_Expression
2608 | N_If_Expression
2609 =>
a081ded4
ES
2610 return OK;
2611
2612 when N_Integer_Literal =>
2613 return OK;
2614
2615 when others =>
2616 return Abandon;
2617 end case;
2618 end May_Fold;
2619
2620 function Try_Fold is new Traverse_Func (May_Fold);
2621
6ef13c4f 2622 -- Other lLocal variables
29c64a0f 2623
6ef13c4f
ES
2624 Subt : constant Entity_Id := Etype (First_Entity (P));
2625 Aspect : Node_Id;
2626 Pred : Node_Id;
29c64a0f 2627
a081ded4
ES
2628 -- Start of processing for Can_Fold_Predicate_Call
2629
2630 begin
2631 -- Folding is only interesting if the actual is static and its type
2632 -- has a Dynamic_Predicate aspect. For CodePeer we preserve the
2633 -- function call.
2634
6ef13c4f
ES
2635 Actual := First (Parameter_Associations (Call_Node));
2636 Aspect := Find_Aspect (Subt, Aspect_Dynamic_Predicate);
2637
2638 -- If actual is a declared constant, retrieve its value
2639
2640 if Is_Entity_Name (Actual)
2641 and then Ekind (Entity (Actual)) = E_Constant
2642 then
2643 Actual := Constant_Value (Entity (Actual));
2644 end if;
2645
2646 if No (Actual)
2647 or else Nkind (Actual) /= N_Integer_Literal
a081ded4 2648 or else not Has_Dynamic_Predicate_Aspect (Subt)
6ef13c4f 2649 or else No (Aspect)
a081ded4
ES
2650 or else CodePeer_Mode
2651 then
2652 return False;
2653 end if;
2654
2655 -- Retrieve the analyzed expression for the predicate
2656
6ef13c4f 2657 Pred := New_Copy_Tree (Expression (Aspect));
a081ded4
ES
2658
2659 if Try_Fold (Pred) = OK then
2660 Rewrite (Call_Node, Pred);
2661 Analyze_And_Resolve (Call_Node, Standard_Boolean);
2662 return True;
2663
29c64a0f 2664 -- Otherwise continue the expansion of the function call
a081ded4 2665
29c64a0f 2666 else
a081ded4
ES
2667 return False;
2668 end if;
2669 end Can_Fold_Predicate_Call;
2670
70482933
RK
2671 ---------------------------
2672 -- Inherited_From_Formal --
2673 ---------------------------
2674
2675 function Inherited_From_Formal (S : Entity_Id) return Entity_Id is
2676 Par : Entity_Id;
2677 Gen_Par : Entity_Id;
2678 Gen_Prim : Elist_Id;
2679 Elmt : Elmt_Id;
2680 Indic : Node_Id;
2681
2682 begin
2683 -- If the operation is inherited, it is attached to the corresponding
2684 -- type derivation. If the parent in the derivation is a generic
2685 -- actual, it is a subtype of the actual, and we have to recover the
2686 -- original derived type declaration to find the proper parent.
2687
2688 if Nkind (Parent (S)) /= N_Full_Type_Declaration
fbf5a39b 2689 or else not Is_Derived_Type (Defining_Identifier (Parent (S)))
2f1b20a9
ES
2690 or else Nkind (Type_Definition (Original_Node (Parent (S)))) /=
2691 N_Derived_Type_Definition
fbf5a39b 2692 or else not In_Instance
70482933
RK
2693 then
2694 return Empty;
2695
2696 else
2697 Indic :=
e27b834b
AC
2698 Subtype_Indication
2699 (Type_Definition (Original_Node (Parent (S))));
70482933
RK
2700
2701 if Nkind (Indic) = N_Subtype_Indication then
2702 Par := Entity (Subtype_Mark (Indic));
2703 else
2704 Par := Entity (Indic);
2705 end if;
2706 end if;
2707
2708 if not Is_Generic_Actual_Type (Par)
2709 or else Is_Tagged_Type (Par)
2710 or else Nkind (Parent (Par)) /= N_Subtype_Declaration
2711 or else not In_Open_Scopes (Scope (Par))
70482933
RK
2712 then
2713 return Empty;
70482933
RK
2714 else
2715 Gen_Par := Generic_Parent_Type (Parent (Par));
2716 end if;
2717
7888a6ae
GD
2718 -- If the actual has no generic parent type, the formal is not
2719 -- a formal derived type, so nothing to inherit.
2720
2721 if No (Gen_Par) then
2722 return Empty;
2723 end if;
2724
2f1b20a9
ES
2725 -- If the generic parent type is still the generic type, this is a
2726 -- private formal, not a derived formal, and there are no operations
2727 -- inherited from the formal.
fbf5a39b
AC
2728
2729 if Nkind (Parent (Gen_Par)) = N_Formal_Type_Declaration then
2730 return Empty;
2731 end if;
2732
70482933 2733 Gen_Prim := Collect_Primitive_Operations (Gen_Par);
70482933 2734
2f1b20a9 2735 Elmt := First_Elmt (Gen_Prim);
70482933
RK
2736 while Present (Elmt) loop
2737 if Chars (Node (Elmt)) = Chars (S) then
2738 declare
2739 F1 : Entity_Id;
2740 F2 : Entity_Id;
70482933 2741
2f1b20a9 2742 begin
70482933
RK
2743 F1 := First_Formal (S);
2744 F2 := First_Formal (Node (Elmt));
70482933
RK
2745 while Present (F1)
2746 and then Present (F2)
2747 loop
70482933
RK
2748 if Etype (F1) = Etype (F2)
2749 or else Etype (F2) = Gen_Par
2750 then
2751 Next_Formal (F1);
2752 Next_Formal (F2);
2753 else
2754 Next_Elmt (Elmt);
2755 exit; -- not the right subprogram
2756 end if;
2757
2758 return Node (Elmt);
2759 end loop;
2760 end;
2761
2762 else
2763 Next_Elmt (Elmt);
2764 end if;
2765 end loop;
2766
2767 raise Program_Error;
2768 end Inherited_From_Formal;
2769
84f4072a
JM
2770 --------------------------
2771 -- In_Unfrozen_Instance --
2772 --------------------------
2773
2774 function In_Unfrozen_Instance (E : Entity_Id) return Boolean is
bde73c6b 2775 S : Entity_Id;
84f4072a
JM
2776
2777 begin
bde73c6b
AC
2778 S := E;
2779 while Present (S) and then S /= Standard_Standard loop
84f4072a
JM
2780 if Is_Generic_Instance (S)
2781 and then Present (Freeze_Node (S))
2782 and then not Analyzed (Freeze_Node (S))
2783 then
2784 return True;
2785 end if;
2786
2787 S := Scope (S);
2788 end loop;
2789
2790 return False;
2791 end In_Unfrozen_Instance;
2792
5a644684
JM
2793 ----------------------------------
2794 -- Is_Class_Wide_Interface_Type --
2795 ----------------------------------
2796
2797 function Is_Class_Wide_Interface_Type (E : Entity_Id) return Boolean is
5a644684 2798 DDT : Entity_Id;
7f8c1cd3 2799 Typ : Entity_Id := E;
5a644684
JM
2800
2801 begin
2802 if Has_Non_Limited_View (Typ) then
2803 Typ := Non_Limited_View (Typ);
2804 end if;
2805
2806 if Ekind (Typ) = E_Anonymous_Access_Type then
2807 DDT := Directly_Designated_Type (Typ);
2808
2809 if Has_Non_Limited_View (DDT) then
2810 DDT := Non_Limited_View (DDT);
2811 end if;
2812
2813 return Is_Class_Wide_Type (DDT) and then Is_Interface (DDT);
2814 else
2815 return Is_Class_Wide_Type (Typ) and then Is_Interface (Typ);
2816 end if;
2817 end Is_Class_Wide_Interface_Type;
2818
df3e68b1
HK
2819 -------------------------
2820 -- Is_Direct_Deep_Call --
2821 -------------------------
2822
2823 function Is_Direct_Deep_Call (Subp : Entity_Id) return Boolean is
2824 begin
2825 if Is_TSS (Subp, TSS_Deep_Adjust)
2826 or else Is_TSS (Subp, TSS_Deep_Finalize)
2827 or else Is_TSS (Subp, TSS_Deep_Initialize)
2828 then
2829 declare
2830 Actual : Node_Id;
2831 Formal : Node_Id;
2832
2833 begin
2834 Actual := First (Parameter_Associations (N));
2835 Formal := First_Formal (Subp);
2836 while Present (Actual)
2837 and then Present (Formal)
2838 loop
2839 if Nkind (Actual) = N_Identifier
2840 and then Is_Controlling_Actual (Actual)
2841 and then Etype (Actual) = Etype (Formal)
2842 then
2843 return True;
2844 end if;
2845
2846 Next (Actual);
2847 Next_Formal (Formal);
2848 end loop;
2849 end;
2850 end if;
2851
2852 return False;
2853 end Is_Direct_Deep_Call;
2854
dd386db0
AC
2855 ---------------
2856 -- New_Value --
2857 ---------------
2858
2859 function New_Value (From : Node_Id) return Node_Id is
2860 Res : constant Node_Id := Duplicate_Subexpr (From);
2861 begin
2862 if Is_Access_Type (Etype (From)) then
bde73c6b 2863 return Make_Explicit_Dereference (Sloc (From), Prefix => Res);
dd386db0
AC
2864 else
2865 return Res;
2866 end if;
2867 end New_Value;
2868
fdce4bb7
JM
2869 -- Local variables
2870
888be6b1 2871 Remote : constant Boolean := Is_Remote_Call (Call_Node);
fdce4bb7
JM
2872 Actual : Node_Id;
2873 Formal : Entity_Id;
2874 Orig_Subp : Entity_Id := Empty;
2875 Param_Count : Natural := 0;
2876 Parent_Formal : Entity_Id;
2877 Parent_Subp : Entity_Id;
6a237c45 2878 Pref_Entity : Entity_Id;
fdce4bb7
JM
2879 Scop : Entity_Id;
2880 Subp : Entity_Id;
2881
e27b834b 2882 Prev_Orig : Node_Id;
fdce4bb7
JM
2883 -- Original node for an actual, which may have been rewritten. If the
2884 -- actual is a function call that has been transformed from a selected
2885 -- component, the original node is unanalyzed. Otherwise, it carries
2886 -- semantic information used to generate additional actuals.
2887
2888 CW_Interface_Formals_Present : Boolean := False;
2889
ca1f6b29 2890 -- Start of processing for Expand_Call_Helper
70482933
RK
2891
2892 begin
ca1f6b29
BD
2893 Post_Call := New_List;
2894
fc90cc62
AC
2895 -- Expand the function or procedure call if the first actual has a
2896 -- declared dimension aspect, and the subprogram is declared in one
2897 -- of the dimension I/O packages.
dec6faf1
AC
2898
2899 if Ada_Version >= Ada_2012
fc90cc62
AC
2900 and then
2901 Nkind_In (Call_Node, N_Procedure_Call_Statement, N_Function_Call)
dec6faf1
AC
2902 and then Present (Parameter_Associations (Call_Node))
2903 then
df378148 2904 Expand_Put_Call_With_Symbol (Call_Node);
dec6faf1
AC
2905 end if;
2906
07fc65c4
GB
2907 -- Ignore if previous error
2908
6dfc5592
RD
2909 if Nkind (Call_Node) in N_Has_Etype
2910 and then Etype (Call_Node) = Any_Type
2911 then
07fc65c4
GB
2912 return;
2913 end if;
2914
70482933
RK
2915 -- Call using access to subprogram with explicit dereference
2916
6dfc5592
RD
2917 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
2918 Subp := Etype (Name (Call_Node));
70482933
RK
2919 Parent_Subp := Empty;
2920
2921 -- Case of call to simple entry, where the Name is a selected component
2922 -- whose prefix is the task, and whose selector name is the entry name
2923
6dfc5592
RD
2924 elsif Nkind (Name (Call_Node)) = N_Selected_Component then
2925 Subp := Entity (Selector_Name (Name (Call_Node)));
70482933
RK
2926 Parent_Subp := Empty;
2927
2928 -- Case of call to member of entry family, where Name is an indexed
2929 -- component, with the prefix being a selected component giving the
2930 -- task and entry family name, and the index being the entry index.
2931
6dfc5592
RD
2932 elsif Nkind (Name (Call_Node)) = N_Indexed_Component then
2933 Subp := Entity (Selector_Name (Prefix (Name (Call_Node))));
70482933
RK
2934 Parent_Subp := Empty;
2935
2936 -- Normal case
2937
2938 else
6dfc5592 2939 Subp := Entity (Name (Call_Node));
70482933
RK
2940 Parent_Subp := Alias (Subp);
2941
2942 -- Replace call to Raise_Exception by call to Raise_Exception_Always
2943 -- if we can tell that the first parameter cannot possibly be null.
70f91180 2944 -- This improves efficiency by avoiding a run-time test.
70482933 2945
7888a6ae
GD
2946 -- We do not do this if Raise_Exception_Always does not exist, which
2947 -- can happen in configurable run time profiles which provide only a
70f91180 2948 -- Raise_Exception.
7888a6ae
GD
2949
2950 if Is_RTE (Subp, RE_Raise_Exception)
2951 and then RTE_Available (RE_Raise_Exception_Always)
70482933
RK
2952 then
2953 declare
3cae7f14
RD
2954 FA : constant Node_Id :=
2955 Original_Node (First_Actual (Call_Node));
2956
70482933
RK
2957 begin
2958 -- The case we catch is where the first argument is obtained
2f1b20a9
ES
2959 -- using the Identity attribute (which must always be
2960 -- non-null).
70482933
RK
2961
2962 if Nkind (FA) = N_Attribute_Reference
2963 and then Attribute_Name (FA) = Name_Identity
2964 then
2965 Subp := RTE (RE_Raise_Exception_Always);
6dfc5592 2966 Set_Name (Call_Node, New_Occurrence_Of (Subp, Loc));
70482933
RK
2967 end if;
2968 end;
2969 end if;
2970
2971 if Ekind (Subp) = E_Entry then
2972 Parent_Subp := Empty;
2973 end if;
2974 end if;
2975
f4d379b8
HK
2976 -- Ada 2005 (AI-345): We have a procedure call as a triggering
2977 -- alternative in an asynchronous select or as an entry call in
2978 -- a conditional or timed select. Check whether the procedure call
2979 -- is a renaming of an entry and rewrite it as an entry call.
2980
0791fbe9 2981 if Ada_Version >= Ada_2005
6dfc5592 2982 and then Nkind (Call_Node) = N_Procedure_Call_Statement
f4d379b8 2983 and then
6dfc5592 2984 ((Nkind (Parent (Call_Node)) = N_Triggering_Alternative
3cae7f14 2985 and then Triggering_Statement (Parent (Call_Node)) = Call_Node)
f4d379b8 2986 or else
6dfc5592 2987 (Nkind (Parent (Call_Node)) = N_Entry_Call_Alternative
3cae7f14 2988 and then Entry_Call_Statement (Parent (Call_Node)) = Call_Node))
f4d379b8
HK
2989 then
2990 declare
2991 Ren_Decl : Node_Id;
2992 Ren_Root : Entity_Id := Subp;
2993
2994 begin
2995 -- This may be a chain of renamings, find the root
2996
2997 if Present (Alias (Ren_Root)) then
2998 Ren_Root := Alias (Ren_Root);
2999 end if;
3000
3001 if Present (Original_Node (Parent (Parent (Ren_Root)))) then
3002 Ren_Decl := Original_Node (Parent (Parent (Ren_Root)));
3003
3004 if Nkind (Ren_Decl) = N_Subprogram_Renaming_Declaration then
6dfc5592 3005 Rewrite (Call_Node,
f4d379b8
HK
3006 Make_Entry_Call_Statement (Loc,
3007 Name =>
3008 New_Copy_Tree (Name (Ren_Decl)),
3009 Parameter_Associations =>
6dfc5592
RD
3010 New_Copy_List_Tree
3011 (Parameter_Associations (Call_Node))));
f4d379b8
HK
3012
3013 return;
3014 end if;
3015 end if;
3016 end;
3017 end if;
3018
a081ded4
ES
3019 -- if this is a call to a predicate function, try to constant
3020 -- fold it.
3021
3022 if Nkind (Call_Node) = N_Function_Call
3023 and then Is_Entity_Name (Name (Call_Node))
3024 and then Is_Predicate_Function (Subp)
3025 and then Can_Fold_Predicate_Call (Subp)
3026 then
3027 return;
3028 end if;
3029
2700b9c1
AC
3030 if Modify_Tree_For_C
3031 and then Nkind (Call_Node) = N_Function_Call
3032 and then Is_Entity_Name (Name (Call_Node))
2700b9c1 3033 then
780d73d7
AC
3034 declare
3035 Func_Id : constant Entity_Id :=
3036 Ultimate_Alias (Entity (Name (Call_Node)));
3037 begin
3038 -- When generating C code, transform a function call that returns
3039 -- a constrained array type into procedure form.
aeb98f1d 3040
780d73d7
AC
3041 if Rewritten_For_C (Func_Id) then
3042
3043 -- For internally generated calls ensure that they reference
3044 -- the entity of the spec of the called function (needed since
3045 -- the expander may generate calls using the entity of their
3046 -- body). See for example Expand_Boolean_Operator().
3047
3048 if not (Comes_From_Source (Call_Node))
3049 and then Nkind (Unit_Declaration_Node (Func_Id)) =
3050 N_Subprogram_Body
3051 then
3052 Set_Entity (Name (Call_Node),
3053 Corresponding_Function
3054 (Corresponding_Procedure (Func_Id)));
3055 end if;
3056
3057 Rewrite_Function_Call_For_C (Call_Node);
3058 return;
3059
3060 -- Also introduce a temporary for functions that return a record
3061 -- called within another procedure or function call, since records
3062 -- are passed by pointer in the generated C code, and we cannot
3063 -- take a pointer from a subprogram call.
3064
3065 elsif Nkind (Parent (Call_Node)) in N_Subprogram_Call
3066 and then Is_Record_Type (Etype (Func_Id))
3067 then
3068 declare
3069 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
3070 Decl : Node_Id;
3071
3072 begin
3073 -- Generate:
3074 -- Temp : ... := Func_Call (...);
3075
3076 Decl :=
3077 Make_Object_Declaration (Loc,
3078 Defining_Identifier => Temp_Id,
3079 Object_Definition =>
3080 New_Occurrence_Of (Etype (Func_Id), Loc),
3081 Expression =>
3082 Make_Function_Call (Loc,
3083 Name =>
3084 New_Occurrence_Of (Func_Id, Loc),
3085 Parameter_Associations =>
3086 Parameter_Associations (Call_Node)));
3087
3088 Insert_Action (Parent (Call_Node), Decl);
3089 Rewrite (Call_Node, New_Occurrence_Of (Temp_Id, Loc));
3090 return;
3091 end;
3092 end if;
3093 end;
2700b9c1
AC
3094 end if;
3095
e27b834b
AC
3096 -- First step, compute extra actuals, corresponding to any Extra_Formals
3097 -- present. Note that we do not access Extra_Formals directly, instead
3098 -- we simply note the presence of the extra formals as we process the
3099 -- regular formals collecting corresponding actuals in Extra_Actuals.
70482933 3100
c2369146
AC
3101 -- We also generate any required range checks for actuals for in formals
3102 -- as we go through the loop, since this is a convenient place to do it.
3103 -- (Though it seems that this would be better done in Expand_Actuals???)
fbf5a39b 3104
e2441021
AC
3105 -- Special case: Thunks must not compute the extra actuals; they must
3106 -- just propagate to the target primitive their extra actuals.
3107
3108 if Is_Thunk (Current_Scope)
3109 and then Thunk_Entity (Current_Scope) = Subp
3110 and then Present (Extra_Formals (Subp))
3111 then
3112 pragma Assert (Present (Extra_Formals (Current_Scope)));
3113
3114 declare
3115 Target_Formal : Entity_Id;
3116 Thunk_Formal : Entity_Id;
3117
3118 begin
3119 Target_Formal := Extra_Formals (Subp);
3120 Thunk_Formal := Extra_Formals (Current_Scope);
3121 while Present (Target_Formal) loop
3122 Add_Extra_Actual
683af98c
AC
3123 (Expr => New_Occurrence_Of (Thunk_Formal, Loc),
3124 EF => Thunk_Formal);
e2441021
AC
3125
3126 Target_Formal := Extra_Formal (Target_Formal);
3127 Thunk_Formal := Extra_Formal (Thunk_Formal);
3128 end loop;
3129
3130 while Is_Non_Empty_List (Extra_Actuals) loop
3131 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
3132 end loop;
3133
ca1f6b29
BD
3134 Expand_Actuals (Call_Node, Subp, Post_Call);
3135 pragma Assert (Is_Empty_List (Post_Call));
e2441021
AC
3136 return;
3137 end;
3138 end if;
3139
8c5b03a0
AC
3140 Formal := First_Formal (Subp);
3141 Actual := First_Actual (Call_Node);
fdce4bb7 3142 Param_Count := 1;
70482933 3143 while Present (Formal) loop
fbf5a39b
AC
3144 -- Prepare to examine current entry
3145
70482933
RK
3146 Prev := Actual;
3147 Prev_Orig := Original_Node (Prev);
3148
758c442c 3149 -- Ada 2005 (AI-251): Check if any formal is a class-wide interface
2f1b20a9 3150 -- to expand it in a further round.
758c442c
GD
3151
3152 CW_Interface_Formals_Present :=
3153 CW_Interface_Formals_Present
5a644684 3154 or else Is_Class_Wide_Interface_Type (Etype (Formal));
758c442c
GD
3155
3156 -- Create possible extra actual for constrained case. Usually, the
3157 -- extra actual is of the form actual'constrained, but since this
3158 -- attribute is only available for unconstrained records, TRUE is
3159 -- expanded if the type of the formal happens to be constrained (for
3160 -- instance when this procedure is inherited from an unconstrained
3161 -- record to a constrained one) or if the actual has no discriminant
3162 -- (its type is constrained). An exception to this is the case of a
3163 -- private type without discriminants. In this case we pass FALSE
3164 -- because the object has underlying discriminants with defaults.
70482933
RK
3165
3166 if Present (Extra_Constrained (Formal)) then
3167 if Ekind (Etype (Prev)) in Private_Kind
3168 and then not Has_Discriminants (Base_Type (Etype (Prev)))
3169 then
01aef5ad 3170 Add_Extra_Actual
683af98c
AC
3171 (Expr => New_Occurrence_Of (Standard_False, Loc),
3172 EF => Extra_Constrained (Formal));
70482933
RK
3173
3174 elsif Is_Constrained (Etype (Formal))
3175 or else not Has_Discriminants (Etype (Prev))
3176 then
01aef5ad 3177 Add_Extra_Actual
683af98c
AC
3178 (Expr => New_Occurrence_Of (Standard_True, Loc),
3179 EF => Extra_Constrained (Formal));
70482933 3180
5d09245e
AC
3181 -- Do not produce extra actuals for Unchecked_Union parameters.
3182 -- Jump directly to the end of the loop.
3183
3184 elsif Is_Unchecked_Union (Base_Type (Etype (Actual))) then
3185 goto Skip_Extra_Actual_Generation;
3186
70482933
RK
3187 else
3188 -- If the actual is a type conversion, then the constrained
3189 -- test applies to the actual, not the target type.
3190
3191 declare
2f1b20a9 3192 Act_Prev : Node_Id;
70482933
RK
3193
3194 begin
2f1b20a9
ES
3195 -- Test for unchecked conversions as well, which can occur
3196 -- as out parameter actuals on calls to stream procedures.
70482933 3197
2f1b20a9 3198 Act_Prev := Prev;
ac4d6407
RD
3199 while Nkind_In (Act_Prev, N_Type_Conversion,
3200 N_Unchecked_Type_Conversion)
fbf5a39b 3201 loop
70482933 3202 Act_Prev := Expression (Act_Prev);
fbf5a39b 3203 end loop;
70482933 3204
3563739b
AC
3205 -- If the expression is a conversion of a dereference, this
3206 -- is internally generated code that manipulates addresses,
3207 -- e.g. when building interface tables. No check should
3208 -- occur in this case, and the discriminated object is not
3209 -- directly a hand.
f4d379b8
HK
3210
3211 if not Comes_From_Source (Actual)
3212 and then Nkind (Actual) = N_Unchecked_Type_Conversion
3213 and then Nkind (Act_Prev) = N_Explicit_Dereference
3214 then
3215 Add_Extra_Actual
683af98c
AC
3216 (Expr => New_Occurrence_Of (Standard_False, Loc),
3217 EF => Extra_Constrained (Formal));
f4d379b8
HK
3218
3219 else
3220 Add_Extra_Actual
683af98c
AC
3221 (Expr =>
3222 Make_Attribute_Reference (Sloc (Prev),
3223 Prefix =>
3224 Duplicate_Subexpr_No_Checks
3225 (Act_Prev, Name_Req => True),
3226 Attribute_Name => Name_Constrained),
3227 EF => Extra_Constrained (Formal));
f4d379b8 3228 end if;
70482933
RK
3229 end;
3230 end if;
3231 end if;
3232
3233 -- Create possible extra actual for accessibility level
3234
43b26411 3235 if Present (Get_Accessibility (Formal)) then
7888a6ae
GD
3236
3237 -- Ada 2005 (AI-252): If the actual was rewritten as an Access
3238 -- attribute, then the original actual may be an aliased object
3239 -- occurring as the prefix in a call using "Object.Operation"
3240 -- notation. In that case we must pass the level of the object,
3241 -- so Prev_Orig is reset to Prev and the attribute will be
3242 -- processed by the code for Access attributes further below.
3243
3244 if Prev_Orig /= Prev
3245 and then Nkind (Prev) = N_Attribute_Reference
7f5e671b
PMR
3246 and then Get_Attribute_Id (Attribute_Name (Prev)) =
3247 Attribute_Access
7888a6ae
GD
3248 and then Is_Aliased_View (Prev_Orig)
3249 then
3250 Prev_Orig := Prev;
05dbb83f 3251
d449ed75
PMR
3252 -- A class-wide precondition generates a test in which formals of
3253 -- the subprogram are replaced by actuals that came from source.
3254 -- In that case as well, the accessiblity comes from the actual.
3255 -- This is the one case in which there are references to formals
3256 -- outside of their subprogram.
3257
3258 elsif Prev_Orig /= Prev
3259 and then Is_Entity_Name (Prev_Orig)
3260 and then Present (Entity (Prev_Orig))
3261 and then Is_Formal (Entity (Prev_Orig))
3262 and then not In_Open_Scopes (Scope (Entity (Prev_Orig)))
3263 then
3264 Prev_Orig := Prev;
3265
05dbb83f
AC
3266 -- If the actual is a formal of an enclosing subprogram it is
3267 -- the right entity, even if it is a rewriting. This happens
3268 -- when the call is within an inherited condition or predicate.
3269
3270 elsif Is_Entity_Name (Actual)
3271 and then Is_Formal (Entity (Actual))
3272 and then In_Open_Scopes (Scope (Entity (Actual)))
3273 then
3274 Prev_Orig := Prev;
6a237c45
AC
3275
3276 elsif Nkind (Prev_Orig) = N_Type_Conversion then
3277 Prev_Orig := Expression (Prev_Orig);
7888a6ae
GD
3278 end if;
3279
9d983bbf
AC
3280 -- Ada 2005 (AI-251): Thunks must propagate the extra actuals of
3281 -- accessibility levels.
fdce4bb7 3282
da1c23dd 3283 if Is_Thunk (Current_Scope) then
fdce4bb7
JM
3284 declare
3285 Parm_Ent : Entity_Id;
3286
3287 begin
3288 if Is_Controlling_Actual (Actual) then
3289
3290 -- Find the corresponding actual of the thunk
3291
3292 Parm_Ent := First_Entity (Current_Scope);
3293 for J in 2 .. Param_Count loop
3294 Next_Entity (Parm_Ent);
3295 end loop;
3296
8a49a499 3297 -- Handle unchecked conversion of access types generated
5b5b27ad 3298 -- in thunks (cf. Expand_Interface_Thunk).
8a49a499
AC
3299
3300 elsif Is_Access_Type (Etype (Actual))
3301 and then Nkind (Actual) = N_Unchecked_Type_Conversion
3302 then
3303 Parm_Ent := Entity (Expression (Actual));
3304
fdce4bb7
JM
3305 else pragma Assert (Is_Entity_Name (Actual));
3306 Parm_Ent := Entity (Actual);
3307 end if;
3308
3309 Add_Extra_Actual
683af98c 3310 (Expr =>
43b26411
JS
3311 New_Occurrence_Of (Get_Accessibility (Parm_Ent), Loc),
3312 EF => Get_Accessibility (Formal));
fdce4bb7
JM
3313 end;
3314
3315 elsif Is_Entity_Name (Prev_Orig) then
70482933 3316
d766cee3
RD
3317 -- When passing an access parameter, or a renaming of an access
3318 -- parameter, as the actual to another access parameter we need
3319 -- to pass along the actual's own access level parameter. This
3320 -- is done if we are within the scope of the formal access
3321 -- parameter (if this is an inlined body the extra formal is
3322 -- irrelevant).
3323
3324 if (Is_Formal (Entity (Prev_Orig))
3325 or else
3326 (Present (Renamed_Object (Entity (Prev_Orig)))
3327 and then
3328 Is_Entity_Name (Renamed_Object (Entity (Prev_Orig)))
3329 and then
3330 Is_Formal
3331 (Entity (Renamed_Object (Entity (Prev_Orig))))))
70482933
RK
3332 and then Ekind (Etype (Prev_Orig)) = E_Anonymous_Access_Type
3333 and then In_Open_Scopes (Scope (Entity (Prev_Orig)))
3334 then
3335 declare
3336 Parm_Ent : constant Entity_Id := Param_Entity (Prev_Orig);
3337
3338 begin
3339 pragma Assert (Present (Parm_Ent));
3340
43b26411 3341 if Present (Get_Accessibility (Parm_Ent)) then
f4d379b8 3342 Add_Extra_Actual
683af98c
AC
3343 (Expr =>
3344 New_Occurrence_Of
43b26411
JS
3345 (Get_Accessibility (Parm_Ent), Loc),
3346 EF => Get_Accessibility (Formal));
70482933
RK
3347
3348 -- If the actual access parameter does not have an
3349 -- associated extra formal providing its scope level,
3350 -- then treat the actual as having library-level
3351 -- accessibility.
3352
3353 else
f4d379b8 3354 Add_Extra_Actual
683af98c
AC
3355 (Expr =>
3356 Make_Integer_Literal (Loc,
3357 Intval => Scope_Depth (Standard_Standard)),
43b26411 3358 EF => Get_Accessibility (Formal));
70482933
RK
3359 end if;
3360 end;
3361
7888a6ae
GD
3362 -- The actual is a normal access value, so just pass the level
3363 -- of the actual's access type.
70482933
RK
3364
3365 else
f4d379b8 3366 Add_Extra_Actual
683af98c 3367 (Expr => Dynamic_Accessibility_Level (Prev_Orig),
43b26411 3368 EF => Get_Accessibility (Formal));
70482933
RK
3369 end if;
3370
01aef5ad
GD
3371 -- If the actual is an access discriminant, then pass the level
3372 -- of the enclosing object (RM05-3.10.2(12.4/2)).
3373
3374 elsif Nkind (Prev_Orig) = N_Selected_Component
3375 and then Ekind (Entity (Selector_Name (Prev_Orig))) =
3376 E_Discriminant
3377 and then Ekind (Etype (Entity (Selector_Name (Prev_Orig)))) =
3378 E_Anonymous_Access_Type
3379 then
3380 Add_Extra_Actual
683af98c
AC
3381 (Expr =>
3382 Make_Integer_Literal (Loc,
3383 Intval => Object_Access_Level (Prefix (Prev_Orig))),
43b26411 3384 EF => Get_Accessibility (Formal));
01aef5ad
GD
3385
3386 -- All other cases
fdce4bb7 3387
70482933
RK
3388 else
3389 case Nkind (Prev_Orig) is
70482933 3390 when N_Attribute_Reference =>
70482933 3391 case Get_Attribute_Id (Attribute_Name (Prev_Orig)) is
87b66149
JS
3392 -- Ignore 'Result, 'Loop_Entry, and 'Old as they can
3393 -- be used to identify access objects and do not have
3394 -- an effect on accessibility level.
3395
3396 when Attribute_Loop_Entry
3397 | Attribute_Old
3398 | Attribute_Result
3399 =>
3400 null;
70482933 3401
75a64833 3402 -- For X'Access, pass on the level of the prefix X
70482933
RK
3403
3404 when Attribute_Access =>
996c8821 3405
683af98c 3406 -- Accessibility level of S'Access is that of A
6a237c45
AC
3407
3408 Prev_Orig := Prefix (Prev_Orig);
3409
683af98c
AC
3410 -- If the expression is a view conversion, the
3411 -- accessibility level is that of the expression.
6a237c45 3412
683af98c
AC
3413 if Nkind (Original_Node (Prev_Orig)) =
3414 N_Type_Conversion
6a237c45 3415 and then
683af98c
AC
3416 Nkind (Expression (Original_Node (Prev_Orig))) =
3417 N_Explicit_Dereference
6a237c45
AC
3418 then
3419 Prev_Orig :=
3420 Expression (Original_Node (Prev_Orig));
3421 end if;
3422
6cce2156
GD
3423 -- If this is an Access attribute applied to the
3424 -- the current instance object passed to a type
3425 -- initialization procedure, then use the level
3426 -- of the type itself. This is not really correct,
3427 -- as there should be an extra level parameter
3428 -- passed in with _init formals (only in the case
3429 -- where the type is immutably limited), but we
3430 -- don't have an easy way currently to create such
3431 -- an extra formal (init procs aren't ever frozen).
3432 -- For now we just use the level of the type,
3433 -- which may be too shallow, but that works better
3434 -- than passing Object_Access_Level of the type,
3435 -- which can be one level too deep in some cases.
3436 -- ???
3437
6a237c45 3438 -- A further case that requires special handling
64ac53f4 3439 -- is the common idiom E.all'access. If E is a
6a237c45
AC
3440 -- formal of the enclosing subprogram, the
3441 -- accessibility of the expression is that of E.
3442
3443 if Is_Entity_Name (Prev_Orig) then
3444 Pref_Entity := Entity (Prev_Orig);
3445
3446 elsif Nkind (Prev_Orig) = N_Explicit_Dereference
683af98c 3447 and then Is_Entity_Name (Prefix (Prev_Orig))
6a237c45
AC
3448 then
3449 Pref_Entity := Entity (Prefix ((Prev_Orig)));
3450
3451 else
3452 Pref_Entity := Empty;
3453 end if;
3454
3455 if Is_Entity_Name (Prev_Orig)
3456 and then Is_Type (Entity (Prev_Orig))
6cce2156
GD
3457 then
3458 Add_Extra_Actual
683af98c
AC
3459 (Expr =>
3460 Make_Integer_Literal (Loc,
3461 Intval =>
3462 Type_Access_Level (Pref_Entity)),
43b26411 3463 EF => Get_Accessibility (Formal));
6a237c45
AC
3464
3465 elsif Nkind (Prev_Orig) = N_Explicit_Dereference
3466 and then Present (Pref_Entity)
3467 and then Is_Formal (Pref_Entity)
3468 and then Present
43b26411 3469 (Get_Accessibility (Pref_Entity))
6a237c45 3470 then
683af98c
AC
3471 Add_Extra_Actual
3472 (Expr =>
3473 New_Occurrence_Of
43b26411
JS
3474 (Get_Accessibility (Pref_Entity), Loc),
3475 EF => Get_Accessibility (Formal));
6cce2156
GD
3476
3477 else
3478 Add_Extra_Actual
683af98c
AC
3479 (Expr =>
3480 Make_Integer_Literal (Loc,
3481 Intval =>
3482 Object_Access_Level (Prev_Orig)),
43b26411 3483 EF => Get_Accessibility (Formal));
6cce2156 3484 end if;
70482933
RK
3485
3486 -- Treat the unchecked attributes as library-level
3487
d8f43ee6
HK
3488 when Attribute_Unchecked_Access
3489 | Attribute_Unrestricted_Access
3490 =>
01aef5ad 3491 Add_Extra_Actual
683af98c
AC
3492 (Expr =>
3493 Make_Integer_Literal (Loc,
3494 Intval => Scope_Depth (Standard_Standard)),
43b26411 3495 EF => Get_Accessibility (Formal));
70482933
RK
3496
3497 -- No other cases of attributes returning access
9d983bbf 3498 -- values that can be passed to access parameters.
70482933
RK
3499
3500 when others =>
3501 raise Program_Error;
3502
3503 end case;
3504
92a745f3
TQ
3505 -- For allocators we pass the level of the execution of the
3506 -- called subprogram, which is one greater than the current
43fa58c2
JM
3507 -- scope level. However, according to RM 3.10.2(14/3) this
3508 -- is wrong since for an anonymous allocator defining the
3509 -- value of an access parameter, the accessibility level is
3510 -- that of the innermost master of the call???
70482933
RK
3511
3512 when N_Allocator =>
01aef5ad 3513 Add_Extra_Actual
683af98c
AC
3514 (Expr =>
3515 Make_Integer_Literal (Loc,
3516 Intval => Scope_Depth (Current_Scope) + 1),
43b26411 3517 EF => Get_Accessibility (Formal));
70482933 3518
d15f9422
AC
3519 -- For most other cases we simply pass the level of the
3520 -- actual's access type. The type is retrieved from
3521 -- Prev rather than Prev_Orig, because in some cases
3522 -- Prev_Orig denotes an original expression that has
3523 -- not been analyzed.
70482933
RK
3524
3525 when others =>
01aef5ad 3526 Add_Extra_Actual
683af98c 3527 (Expr => Dynamic_Accessibility_Level (Prev),
43b26411 3528 EF => Get_Accessibility (Formal));
70482933
RK
3529 end case;
3530 end if;
3531 end if;
3532
2f1b20a9 3533 -- Perform the check of 4.6(49) that prevents a null value from being
b3f48fd4
AC
3534 -- passed as an actual to an access parameter. Note that the check
3535 -- is elided in the common cases of passing an access attribute or
2f1b20a9
ES
3536 -- access parameter as an actual. Also, we currently don't enforce
3537 -- this check for expander-generated actuals and when -gnatdj is set.
70482933 3538
0791fbe9 3539 if Ada_Version >= Ada_2005 then
70482933 3540
b3f48fd4
AC
3541 -- Ada 2005 (AI-231): Check null-excluding access types. Note that
3542 -- the intent of 6.4.1(13) is that null-exclusion checks should
3543 -- not be done for 'out' parameters, even though it refers only
308e6f3a 3544 -- to constraint checks, and a null_exclusion is not a constraint.
b3f48fd4 3545 -- Note that AI05-0196-1 corrects this mistake in the RM.
70482933 3546
2f1b20a9
ES
3547 if Is_Access_Type (Etype (Formal))
3548 and then Can_Never_Be_Null (Etype (Formal))
b3f48fd4 3549 and then Ekind (Formal) /= E_Out_Parameter
2f1b20a9 3550 and then Nkind (Prev) /= N_Raise_Constraint_Error
d766cee3 3551 and then (Known_Null (Prev)
996c8821 3552 or else not Can_Never_Be_Null (Etype (Prev)))
2f1b20a9
ES
3553 then
3554 Install_Null_Excluding_Check (Prev);
3555 end if;
70482933 3556
0791fbe9 3557 -- Ada_Version < Ada_2005
70482933 3558
2f1b20a9
ES
3559 else
3560 if Ekind (Etype (Formal)) /= E_Anonymous_Access_Type
3561 or else Access_Checks_Suppressed (Subp)
3562 then
3563 null;
70482933 3564
2f1b20a9
ES
3565 elsif Debug_Flag_J then
3566 null;
70482933 3567
2f1b20a9
ES
3568 elsif not Comes_From_Source (Prev) then
3569 null;
70482933 3570
2f1b20a9
ES
3571 elsif Is_Entity_Name (Prev)
3572 and then Ekind (Etype (Prev)) = E_Anonymous_Access_Type
3573 then
3574 null;
2820d220 3575
ac4d6407 3576 elsif Nkind_In (Prev, N_Allocator, N_Attribute_Reference) then
2f1b20a9
ES
3577 null;
3578
2f1b20a9
ES
3579 else
3580 Install_Null_Excluding_Check (Prev);
3581 end if;
70482933
RK
3582 end if;
3583
fbf5a39b
AC
3584 -- Perform appropriate validity checks on parameters that
3585 -- are entities.
70482933
RK
3586
3587 if Validity_Checks_On then
6cdb2c6e 3588 if (Ekind (Formal) = E_In_Parameter
996c8821 3589 and then Validity_Check_In_Params)
6cdb2c6e
AC
3590 or else
3591 (Ekind (Formal) = E_In_Out_Parameter
996c8821 3592 and then Validity_Check_In_Out_Params)
70482933 3593 then
7888a6ae
GD
3594 -- If the actual is an indexed component of a packed type (or
3595 -- is an indexed or selected component whose prefix recursively
3596 -- meets this condition), it has not been expanded yet. It will
3597 -- be copied in the validity code that follows, and has to be
3598 -- expanded appropriately, so reanalyze it.
08aa9a4a 3599
7888a6ae
GD
3600 -- What we do is just to unset analyzed bits on prefixes till
3601 -- we reach something that does not have a prefix.
3602
3603 declare
3604 Nod : Node_Id;
3605
3606 begin
3607 Nod := Actual;
ac4d6407
RD
3608 while Nkind_In (Nod, N_Indexed_Component,
3609 N_Selected_Component)
7888a6ae
GD
3610 loop
3611 Set_Analyzed (Nod, False);
3612 Nod := Prefix (Nod);
3613 end loop;
3614 end;
08aa9a4a 3615
70482933 3616 Ensure_Valid (Actual);
70482933
RK
3617 end if;
3618 end if;
3619
3620 -- For IN OUT and OUT parameters, ensure that subscripts are valid
3621 -- since this is a left side reference. We only do this for calls
3622 -- from the source program since we assume that compiler generated
3623 -- calls explicitly generate any required checks. We also need it
b3f48fd4
AC
3624 -- only if we are doing standard validity checks, since clearly it is
3625 -- not needed if validity checks are off, and in subscript validity
3626 -- checking mode, all indexed components are checked with a call
3627 -- directly from Expand_N_Indexed_Component.
70482933 3628
6dfc5592 3629 if Comes_From_Source (Call_Node)
70482933
RK
3630 and then Ekind (Formal) /= E_In_Parameter
3631 and then Validity_Checks_On
3632 and then Validity_Check_Default
3633 and then not Validity_Check_Subscripts
3634 then
3635 Check_Valid_Lvalue_Subscripts (Actual);
3636 end if;
3637
c8ef728f
ES
3638 -- Mark any scalar OUT parameter that is a simple variable as no
3639 -- longer known to be valid (unless the type is always valid). This
3640 -- reflects the fact that if an OUT parameter is never set in a
3641 -- procedure, then it can become invalid on the procedure return.
fbf5a39b
AC
3642
3643 if Ekind (Formal) = E_Out_Parameter
3644 and then Is_Entity_Name (Actual)
3645 and then Ekind (Entity (Actual)) = E_Variable
3646 and then not Is_Known_Valid (Etype (Actual))
3647 then
3648 Set_Is_Known_Valid (Entity (Actual), False);
3649 end if;
3650
c8ef728f
ES
3651 -- For an OUT or IN OUT parameter, if the actual is an entity, then
3652 -- clear current values, since they can be clobbered. We are probably
3653 -- doing this in more places than we need to, but better safe than
a90bd866 3654 -- sorry when it comes to retaining bad current values.
fbf5a39b
AC
3655
3656 if Ekind (Formal) /= E_In_Parameter
3657 and then Is_Entity_Name (Actual)
67ce0d7e 3658 and then Present (Entity (Actual))
fbf5a39b 3659 then
67ce0d7e
RD
3660 declare
3661 Ent : constant Entity_Id := Entity (Actual);
3662 Sav : Node_Id;
3663
3664 begin
ac4d6407
RD
3665 -- For an OUT or IN OUT parameter that is an assignable entity,
3666 -- we do not want to clobber the Last_Assignment field, since
3667 -- if it is set, it was precisely because it is indeed an OUT
a90bd866 3668 -- or IN OUT parameter. We do reset the Is_Known_Valid flag
75ba322d 3669 -- since the subprogram could have returned in invalid value.
ac4d6407 3670
13931a38 3671 if Is_Assignable (Ent) then
67ce0d7e
RD
3672 Sav := Last_Assignment (Ent);
3673 Kill_Current_Values (Ent);
3674 Set_Last_Assignment (Ent, Sav);
75ba322d 3675 Set_Is_Known_Valid (Ent, False);
8f0303e7 3676 Set_Is_True_Constant (Ent, False);
67ce0d7e 3677
4bb43ffb 3678 -- For all other cases, just kill the current values
67ce0d7e
RD
3679
3680 else
3681 Kill_Current_Values (Ent);
3682 end if;
3683 end;
fbf5a39b
AC
3684 end if;
3685
70482933
RK
3686 -- If the formal is class wide and the actual is an aggregate, force
3687 -- evaluation so that the back end who does not know about class-wide
3688 -- type, does not generate a temporary of the wrong size.
3689
3690 if not Is_Class_Wide_Type (Etype (Formal)) then
3691 null;
3692
3693 elsif Nkind (Actual) = N_Aggregate
3694 or else (Nkind (Actual) = N_Qualified_Expression
3695 and then Nkind (Expression (Actual)) = N_Aggregate)
3696 then
3697 Force_Evaluation (Actual);
3698 end if;
3699
3700 -- In a remote call, if the formal is of a class-wide type, check
3701 -- that the actual meets the requirements described in E.4(18).
3702
7888a6ae 3703 if Remote and then Is_Class_Wide_Type (Etype (Formal)) then
70482933 3704 Insert_Action (Actual,
7888a6ae
GD
3705 Make_Transportable_Check (Loc,
3706 Duplicate_Subexpr_Move_Checks (Actual)));
70482933
RK
3707 end if;
3708
5f325af2
AC
3709 -- Perform invariant checks for all intermediate types in a view
3710 -- conversion after successful return from a call that passes the
3711 -- view conversion as an IN OUT or OUT parameter (RM 7.3.2 (12/3,
3712 -- 13/3, 14/3)). Consider only source conversion in order to avoid
3713 -- generating spurious checks on complex expansion such as object
3714 -- initialization through an extension aggregate.
84e13614 3715
5f325af2
AC
3716 if Comes_From_Source (N)
3717 and then Ekind (Formal) /= E_In_Parameter
84e13614
JS
3718 and then Nkind (Actual) = N_Type_Conversion
3719 then
5f325af2 3720 Add_View_Conversion_Invariants (Formal, Actual);
84e13614
JS
3721 end if;
3722
4f94fa11
AC
3723 -- Generating C the initialization of an allocator is performed by
3724 -- means of individual statements, and hence it must be done before
3725 -- the call.
3726
3727 if Modify_Tree_For_C
3728 and then Nkind (Actual) = N_Allocator
3729 and then Nkind (Expression (Actual)) = N_Qualified_Expression
3730 then
3731 Remove_Side_Effects (Actual);
3732 end if;
3733
5d09245e
AC
3734 -- This label is required when skipping extra actual generation for
3735 -- Unchecked_Union parameters.
3736
3737 <<Skip_Extra_Actual_Generation>>
3738
fdce4bb7 3739 Param_Count := Param_Count + 1;
70482933
RK
3740 Next_Actual (Actual);
3741 Next_Formal (Formal);
3742 end loop;
3743
bdf69d33 3744 -- If we are calling an Ada 2012 function which needs to have the
63585f75
SB
3745 -- "accessibility level determined by the point of call" (AI05-0234)
3746 -- passed in to it, then pass it in.
3747
b8a93198 3748 if Ekind_In (Subp, E_Function, E_Operator, E_Subprogram_Type)
57a3fca9
AC
3749 and then
3750 Present (Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)))
63585f75
SB
3751 then
3752 declare
3753 Ancestor : Node_Id := Parent (Call_Node);
3754 Level : Node_Id := Empty;
3755 Defer : Boolean := False;
3756
3757 begin
3758 -- Unimplemented: if Subp returns an anonymous access type, then
57a3fca9 3759
63585f75
SB
3760 -- a) if the call is the operand of an explict conversion, then
3761 -- the target type of the conversion (a named access type)
3762 -- determines the accessibility level pass in;
57a3fca9 3763
63585f75
SB
3764 -- b) if the call defines an access discriminant of an object
3765 -- (e.g., the discriminant of an object being created by an
3766 -- allocator, or the discriminant of a function result),
3767 -- then the accessibility level to pass in is that of the
3768 -- discriminated object being initialized).
3769
57a3fca9
AC
3770 -- ???
3771
63585f75
SB
3772 while Nkind (Ancestor) = N_Qualified_Expression
3773 loop
3774 Ancestor := Parent (Ancestor);
3775 end loop;
3776
3777 case Nkind (Ancestor) is
3778 when N_Allocator =>
ebf494ec 3779
63585f75 3780 -- At this point, we'd like to assign
ebf494ec 3781
63585f75 3782 -- Level := Dynamic_Accessibility_Level (Ancestor);
ebf494ec 3783
63585f75
SB
3784 -- but Etype of Ancestor may not have been set yet,
3785 -- so that doesn't work.
ebf494ec 3786
63585f75
SB
3787 -- Handle this later in Expand_Allocator_Expression.
3788
3789 Defer := True;
3790
d8f43ee6
HK
3791 when N_Object_Declaration
3792 | N_Object_Renaming_Declaration
3793 =>
63585f75
SB
3794 declare
3795 Def_Id : constant Entity_Id :=
3796 Defining_Identifier (Ancestor);
ebf494ec 3797
63585f75
SB
3798 begin
3799 if Is_Return_Object (Def_Id) then
3800 if Present (Extra_Accessibility_Of_Result
3801 (Return_Applies_To (Scope (Def_Id))))
3802 then
3803 -- Pass along value that was passed in if the
3804 -- routine we are returning from also has an
3805 -- Accessibility_Of_Result formal.
3806
3807 Level :=
3808 New_Occurrence_Of
3809 (Extra_Accessibility_Of_Result
ebf494ec 3810 (Return_Applies_To (Scope (Def_Id))), Loc);
63585f75
SB
3811 end if;
3812 else
ebf494ec
RD
3813 Level :=
3814 Make_Integer_Literal (Loc,
3815 Intval => Object_Access_Level (Def_Id));
63585f75
SB
3816 end if;
3817 end;
3818
3819 when N_Simple_Return_Statement =>
3820 if Present (Extra_Accessibility_Of_Result
ebf494ec
RD
3821 (Return_Applies_To
3822 (Return_Statement_Entity (Ancestor))))
63585f75 3823 then
fb12497d
AC
3824 -- Pass along value that was passed in if the returned
3825 -- routine also has an Accessibility_Of_Result formal.
63585f75
SB
3826
3827 Level :=
3828 New_Occurrence_Of
3829 (Extra_Accessibility_Of_Result
d8f43ee6
HK
3830 (Return_Applies_To
3831 (Return_Statement_Entity (Ancestor))), Loc);
63585f75
SB
3832 end if;
3833
3834 when others =>
3835 null;
3836 end case;
3837
3838 if not Defer then
3839 if not Present (Level) then
ebf494ec 3840
63585f75 3841 -- The "innermost master that evaluates the function call".
ebf494ec 3842
886b5a18
AC
3843 -- ??? - Should we use Integer'Last here instead in order
3844 -- to deal with (some of) the problems associated with
3845 -- calls to subps whose enclosing scope is unknown (e.g.,
3846 -- Anon_Access_To_Subp_Param.all)?
63585f75 3847
d8f43ee6
HK
3848 Level :=
3849 Make_Integer_Literal (Loc,
3850 Intval => Scope_Depth (Current_Scope) + 1);
63585f75
SB
3851 end if;
3852
57a3fca9 3853 Add_Extra_Actual
683af98c
AC
3854 (Expr => Level,
3855 EF =>
3856 Extra_Accessibility_Of_Result (Ultimate_Alias (Subp)));
63585f75
SB
3857 end if;
3858 end;
3859 end if;
3860
4bb43ffb 3861 -- If we are expanding the RHS of an assignment we need to check if tag
c8ef728f
ES
3862 -- propagation is needed. You might expect this processing to be in
3863 -- Analyze_Assignment but has to be done earlier (bottom-up) because the
3864 -- assignment might be transformed to a declaration for an unconstrained
3865 -- value if the expression is classwide.
70482933 3866
6dfc5592
RD
3867 if Nkind (Call_Node) = N_Function_Call
3868 and then Is_Tag_Indeterminate (Call_Node)
3869 and then Is_Entity_Name (Name (Call_Node))
70482933
RK
3870 then
3871 declare
3872 Ass : Node_Id := Empty;
3873
3874 begin
6dfc5592
RD
3875 if Nkind (Parent (Call_Node)) = N_Assignment_Statement then
3876 Ass := Parent (Call_Node);
70482933 3877
6dfc5592 3878 elsif Nkind (Parent (Call_Node)) = N_Qualified_Expression
3cae7f14
RD
3879 and then Nkind (Parent (Parent (Call_Node))) =
3880 N_Assignment_Statement
70482933 3881 then
6dfc5592 3882 Ass := Parent (Parent (Call_Node));
02822a92 3883
6dfc5592 3884 elsif Nkind (Parent (Call_Node)) = N_Explicit_Dereference
3cae7f14
RD
3885 and then Nkind (Parent (Parent (Call_Node))) =
3886 N_Assignment_Statement
02822a92 3887 then
6dfc5592 3888 Ass := Parent (Parent (Call_Node));
70482933
RK
3889 end if;
3890
3891 if Present (Ass)
3892 and then Is_Class_Wide_Type (Etype (Name (Ass)))
3893 then
6dfc5592
RD
3894 if Is_Access_Type (Etype (Call_Node)) then
3895 if Designated_Type (Etype (Call_Node)) /=
02822a92
RD
3896 Root_Type (Etype (Name (Ass)))
3897 then
3898 Error_Msg_NE
a4f4dbdb
AC
3899 ("tag-indeterminate expression must have designated "
3900 & "type& (RM 5.2 (6))",
3cae7f14 3901 Call_Node, Root_Type (Etype (Name (Ass))));
02822a92 3902 else
6dfc5592 3903 Propagate_Tag (Name (Ass), Call_Node);
02822a92
RD
3904 end if;
3905
6dfc5592 3906 elsif Etype (Call_Node) /= Root_Type (Etype (Name (Ass))) then
fbf5a39b 3907 Error_Msg_NE
a4f4dbdb
AC
3908 ("tag-indeterminate expression must have type & "
3909 & "(RM 5.2 (6))",
6dfc5592 3910 Call_Node, Root_Type (Etype (Name (Ass))));
02822a92 3911
fbf5a39b 3912 else
6dfc5592 3913 Propagate_Tag (Name (Ass), Call_Node);
fbf5a39b
AC
3914 end if;
3915
3916 -- The call will be rewritten as a dispatching call, and
3917 -- expanded as such.
3918
70482933
RK
3919 return;
3920 end if;
3921 end;
3922 end if;
3923
758c442c
GD
3924 -- Ada 2005 (AI-251): If some formal is a class-wide interface, expand
3925 -- it to point to the correct secondary virtual table
3926
d3b00ce3 3927 if Nkind (Call_Node) in N_Subprogram_Call
758c442c
GD
3928 and then CW_Interface_Formals_Present
3929 then
6dfc5592 3930 Expand_Interface_Actuals (Call_Node);
758c442c
GD
3931 end if;
3932
70482933
RK
3933 -- Deals with Dispatch_Call if we still have a call, before expanding
3934 -- extra actuals since this will be done on the re-analysis of the
b3f48fd4
AC
3935 -- dispatching call. Note that we do not try to shorten the actual list
3936 -- for a dispatching call, it would not make sense to do so. Expansion
535a8637 3937 -- of dispatching calls is suppressed for VM targets, because the VM
b3f48fd4
AC
3938 -- back-ends directly handle the generation of dispatching calls and
3939 -- would have to undo any expansion to an indirect call.
70482933 3940
d3b00ce3 3941 if Nkind (Call_Node) in N_Subprogram_Call
6dfc5592 3942 and then Present (Controlling_Argument (Call_Node))
70482933 3943 then
6dfc5592 3944 declare
dd386db0 3945 Call_Typ : constant Entity_Id := Etype (Call_Node);
6dfc5592
RD
3946 Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
3947 Eq_Prim_Op : Entity_Id := Empty;
dd386db0
AC
3948 New_Call : Node_Id;
3949 Param : Node_Id;
3950 Prev_Call : Node_Id;
fbf5a39b 3951
6dfc5592
RD
3952 begin
3953 if not Is_Limited_Type (Typ) then
3954 Eq_Prim_Op := Find_Prim_Op (Typ, Name_Op_Eq);
3955 end if;
fbf5a39b 3956
6dfc5592
RD
3957 if Tagged_Type_Expansion then
3958 Expand_Dispatching_Call (Call_Node);
70f91180 3959
6dfc5592
RD
3960 -- The following return is worrisome. Is it really OK to skip
3961 -- all remaining processing in this procedure ???
5a1ccfb1 3962
6dfc5592 3963 return;
5a1ccfb1 3964
6dfc5592
RD
3965 -- VM targets
3966
3967 else
3968 Apply_Tag_Checks (Call_Node);
3969
dd386db0
AC
3970 -- If this is a dispatching "=", we must first compare the
3971 -- tags so we generate: x.tag = y.tag and then x = y
3972
3973 if Subp = Eq_Prim_Op then
3974
75b87c16 3975 -- Mark the node as analyzed to avoid reanalyzing this
dd386db0
AC
3976 -- dispatching call (which would cause a never-ending loop)
3977
3978 Prev_Call := Relocate_Node (Call_Node);
3979 Set_Analyzed (Prev_Call);
3980
3981 Param := First_Actual (Call_Node);
3982 New_Call :=
3983 Make_And_Then (Loc,
3984 Left_Opnd =>
3985 Make_Op_Eq (Loc,
3986 Left_Opnd =>
3987 Make_Selected_Component (Loc,
3988 Prefix => New_Value (Param),
3989 Selector_Name =>
e4494292
RD
3990 New_Occurrence_Of
3991 (First_Tag_Component (Typ), Loc)),
dd386db0
AC
3992
3993 Right_Opnd =>
3994 Make_Selected_Component (Loc,
3995 Prefix =>
3996 Unchecked_Convert_To (Typ,
3997 New_Value (Next_Actual (Param))),
3998 Selector_Name =>
e4494292 3999 New_Occurrence_Of
dd386db0
AC
4000 (First_Tag_Component (Typ), Loc))),
4001 Right_Opnd => Prev_Call);
4002
4003 Rewrite (Call_Node, New_Call);
4004
4005 Analyze_And_Resolve
4006 (Call_Node, Call_Typ, Suppress => All_Checks);
4007 end if;
4008
6dfc5592
RD
4009 -- Expansion of a dispatching call results in an indirect call,
4010 -- which in turn causes current values to be killed (see
4011 -- Resolve_Call), so on VM targets we do the call here to
4012 -- ensure consistent warnings between VM and non-VM targets.
4013
4014 Kill_Current_Values;
4015 end if;
4016
4017 -- If this is a dispatching "=" then we must update the reference
4018 -- to the call node because we generated:
4019 -- x.tag = y.tag and then x = y
4020
dd386db0 4021 if Subp = Eq_Prim_Op then
6dfc5592
RD
4022 Call_Node := Right_Opnd (Call_Node);
4023 end if;
4024 end;
70f91180 4025 end if;
70482933
RK
4026
4027 -- Similarly, expand calls to RCI subprograms on which pragma
4028 -- All_Calls_Remote applies. The rewriting will be reanalyzed
b3f48fd4
AC
4029 -- later. Do this only when the call comes from source since we
4030 -- do not want such a rewriting to occur in expanded code.
70482933 4031
6dfc5592
RD
4032 if Is_All_Remote_Call (Call_Node) then
4033 Expand_All_Calls_Remote_Subprogram_Call (Call_Node);
70482933
RK
4034
4035 -- Similarly, do not add extra actuals for an entry call whose entity
4036 -- is a protected procedure, or for an internal protected subprogram
4037 -- call, because it will be rewritten as a protected subprogram call
4038 -- and reanalyzed (see Expand_Protected_Subprogram_Call).
4039
4040 elsif Is_Protected_Type (Scope (Subp))
4041 and then (Ekind (Subp) = E_Procedure
4042 or else Ekind (Subp) = E_Function)
4043 then
4044 null;
4045
4046 -- During that loop we gathered the extra actuals (the ones that
4047 -- correspond to Extra_Formals), so now they can be appended.
4048
4049 else
4050 while Is_Non_Empty_List (Extra_Actuals) loop
4051 Add_Actual_Parameter (Remove_Head (Extra_Actuals));
4052 end loop;
4053 end if;
4054
b3f48fd4
AC
4055 -- At this point we have all the actuals, so this is the point at which
4056 -- the various expansion activities for actuals is carried out.
f44fe430 4057
ca1f6b29 4058 Expand_Actuals (Call_Node, Subp, Post_Call);
70482933 4059
5f49133f
AC
4060 -- Verify that the actuals do not share storage. This check must be done
4061 -- on the caller side rather that inside the subprogram to avoid issues
4062 -- of parameter passing.
4063
4064 if Check_Aliasing_Of_Parameters then
4065 Apply_Parameter_Aliasing_Checks (Call_Node, Subp);
4066 end if;
4067
b3f48fd4
AC
4068 -- If the subprogram is a renaming, or if it is inherited, replace it in
4069 -- the call with the name of the actual subprogram being called. If this
4070 -- is a dispatching call, the run-time decides what to call. The Alias
4071 -- attribute does not apply to entries.
70482933 4072
6dfc5592
RD
4073 if Nkind (Call_Node) /= N_Entry_Call_Statement
4074 and then No (Controlling_Argument (Call_Node))
70482933 4075 and then Present (Parent_Subp)
df3e68b1 4076 and then not Is_Direct_Deep_Call (Subp)
70482933
RK
4077 then
4078 if Present (Inherited_From_Formal (Subp)) then
4079 Parent_Subp := Inherited_From_Formal (Subp);
4080 else
b81a5940 4081 Parent_Subp := Ultimate_Alias (Parent_Subp);
70482933
RK
4082 end if;
4083
c8ef728f
ES
4084 -- The below setting of Entity is suspect, see F109-018 discussion???
4085
6dfc5592 4086 Set_Entity (Name (Call_Node), Parent_Subp);
70482933 4087
f937473f 4088 if Is_Abstract_Subprogram (Parent_Subp)
70482933
RK
4089 and then not In_Instance
4090 then
4091 Error_Msg_NE
6dfc5592
RD
4092 ("cannot call abstract subprogram &!",
4093 Name (Call_Node), Parent_Subp);
70482933
RK
4094 end if;
4095
d4817e3f
HK
4096 -- Inspect all formals of derived subprogram Subp. Compare parameter
4097 -- types with the parent subprogram and check whether an actual may
4098 -- need a type conversion to the corresponding formal of the parent
4099 -- subprogram.
70482933 4100
d4817e3f 4101 -- Not clear whether intrinsic subprograms need such conversions. ???
70482933
RK
4102
4103 if not Is_Intrinsic_Subprogram (Parent_Subp)
4104 or else Is_Generic_Instance (Parent_Subp)
4105 then
d4817e3f
HK
4106 declare
4107 procedure Convert (Act : Node_Id; Typ : Entity_Id);
4108 -- Rewrite node Act as a type conversion of Act to Typ. Analyze
4109 -- and resolve the newly generated construct.
70482933 4110
d4817e3f
HK
4111 -------------
4112 -- Convert --
4113 -------------
70482933 4114
d4817e3f
HK
4115 procedure Convert (Act : Node_Id; Typ : Entity_Id) is
4116 begin
4117 Rewrite (Act, OK_Convert_To (Typ, Relocate_Node (Act)));
4118 Analyze (Act);
4119 Resolve (Act, Typ);
4120 end Convert;
4121
4122 -- Local variables
4123
4124 Actual_Typ : Entity_Id;
4125 Formal_Typ : Entity_Id;
4126 Parent_Typ : Entity_Id;
4127
4128 begin
6dfc5592 4129 Actual := First_Actual (Call_Node);
d4817e3f
HK
4130 Formal := First_Formal (Subp);
4131 Parent_Formal := First_Formal (Parent_Subp);
4132 while Present (Formal) loop
4133 Actual_Typ := Etype (Actual);
4134 Formal_Typ := Etype (Formal);
4135 Parent_Typ := Etype (Parent_Formal);
4136
4137 -- For an IN parameter of a scalar type, the parent formal
4138 -- type and derived formal type differ or the parent formal
4139 -- type and actual type do not match statically.
4140
4141 if Is_Scalar_Type (Formal_Typ)
4142 and then Ekind (Formal) = E_In_Parameter
4143 and then Formal_Typ /= Parent_Typ
4144 and then
4145 not Subtypes_Statically_Match (Parent_Typ, Actual_Typ)
4146 and then not Raises_Constraint_Error (Actual)
4147 then
4148 Convert (Actual, Parent_Typ);
4149 Enable_Range_Check (Actual);
4150
d79e621a
GD
4151 -- If the actual has been marked as requiring a range
4152 -- check, then generate it here.
4153
4154 if Do_Range_Check (Actual) then
d79e621a
GD
4155 Generate_Range_Check
4156 (Actual, Etype (Formal), CE_Range_Check_Failed);
4157 end if;
4158
d4817e3f
HK
4159 -- For access types, the parent formal type and actual type
4160 -- differ.
4161
4162 elsif Is_Access_Type (Formal_Typ)
4163 and then Base_Type (Parent_Typ) /= Base_Type (Actual_Typ)
70482933 4164 then
d4817e3f
HK
4165 if Ekind (Formal) /= E_In_Parameter then
4166 Convert (Actual, Parent_Typ);
4167
4168 elsif Ekind (Parent_Typ) = E_Anonymous_Access_Type
4169 and then Designated_Type (Parent_Typ) /=
4170 Designated_Type (Actual_Typ)
4171 and then not Is_Controlling_Formal (Formal)
4172 then
4173 -- This unchecked conversion is not necessary unless
4174 -- inlining is enabled, because in that case the type
4175 -- mismatch may become visible in the body about to be
4176 -- inlined.
4177
4178 Rewrite (Actual,
4179 Unchecked_Convert_To (Parent_Typ,
4180 Relocate_Node (Actual)));
d4817e3f
HK
4181 Analyze (Actual);
4182 Resolve (Actual, Parent_Typ);
4183 end if;
70482933 4184
ab01e614
AC
4185 -- If there is a change of representation, then generate a
4186 -- warning, and do the change of representation.
4187
4188 elsif not Same_Representation (Formal_Typ, Parent_Typ) then
4189 Error_Msg_N
4190 ("??change of representation required", Actual);
4191 Convert (Actual, Parent_Typ);
4192
d4817e3f
HK
4193 -- For array and record types, the parent formal type and
4194 -- derived formal type have different sizes or pragma Pack
4195 -- status.
70482933 4196
d4817e3f 4197 elsif ((Is_Array_Type (Formal_Typ)
ab01e614 4198 and then Is_Array_Type (Parent_Typ))
d4817e3f
HK
4199 or else
4200 (Is_Record_Type (Formal_Typ)
ab01e614 4201 and then Is_Record_Type (Parent_Typ)))
d4817e3f
HK
4202 and then
4203 (Esize (Formal_Typ) /= Esize (Parent_Typ)
ab01e614
AC
4204 or else Has_Pragma_Pack (Formal_Typ) /=
4205 Has_Pragma_Pack (Parent_Typ))
d4817e3f
HK
4206 then
4207 Convert (Actual, Parent_Typ);
70482933 4208 end if;
70482933 4209
d4817e3f
HK
4210 Next_Actual (Actual);
4211 Next_Formal (Formal);
4212 Next_Formal (Parent_Formal);
4213 end loop;
4214 end;
70482933
RK
4215 end if;
4216
4217 Orig_Subp := Subp;
4218 Subp := Parent_Subp;
4219 end if;
4220
8a36a0cc
AC
4221 -- Deal with case where call is an explicit dereference
4222
6dfc5592 4223 if Nkind (Name (Call_Node)) = N_Explicit_Dereference then
70482933
RK
4224
4225 -- Handle case of access to protected subprogram type
4226
f937473f 4227 if Is_Access_Protected_Subprogram_Type
6dfc5592 4228 (Base_Type (Etype (Prefix (Name (Call_Node)))))
70482933 4229 then
b3f48fd4
AC
4230 -- If this is a call through an access to protected operation, the
4231 -- prefix has the form (object'address, operation'access). Rewrite
4232 -- as a for other protected calls: the object is the 1st parameter
4233 -- of the list of actuals.
70482933
RK
4234
4235 declare
4236 Call : Node_Id;
4237 Parm : List_Id;
4238 Nam : Node_Id;
4239 Obj : Node_Id;
6dfc5592 4240 Ptr : constant Node_Id := Prefix (Name (Call_Node));
fbf5a39b
AC
4241
4242 T : constant Entity_Id :=
4243 Equivalent_Type (Base_Type (Etype (Ptr)));
4244
4245 D_T : constant Entity_Id :=
4246 Designated_Type (Base_Type (Etype (Ptr)));
70482933
RK
4247
4248 begin
f44fe430
RD
4249 Obj :=
4250 Make_Selected_Component (Loc,
4251 Prefix => Unchecked_Convert_To (T, Ptr),
4252 Selector_Name =>
4253 New_Occurrence_Of (First_Entity (T), Loc));
4254
4255 Nam :=
4256 Make_Selected_Component (Loc,
4257 Prefix => Unchecked_Convert_To (T, Ptr),
4258 Selector_Name =>
4259 New_Occurrence_Of (Next_Entity (First_Entity (T)), Loc));
70482933 4260
02822a92
RD
4261 Nam :=
4262 Make_Explicit_Dereference (Loc,
4263 Prefix => Nam);
70482933 4264
be035558 4265 if Present (Parameter_Associations (Call_Node)) then
6dfc5592 4266 Parm := Parameter_Associations (Call_Node);
70482933
RK
4267 else
4268 Parm := New_List;
4269 end if;
4270
4271 Prepend (Obj, Parm);
4272
4273 if Etype (D_T) = Standard_Void_Type then
02822a92
RD
4274 Call :=
4275 Make_Procedure_Call_Statement (Loc,
4276 Name => Nam,
4277 Parameter_Associations => Parm);
70482933 4278 else
02822a92
RD
4279 Call :=
4280 Make_Function_Call (Loc,
4281 Name => Nam,
4282 Parameter_Associations => Parm);
70482933
RK
4283 end if;
4284
6dfc5592 4285 Set_First_Named_Actual (Call, First_Named_Actual (Call_Node));
70482933
RK
4286 Set_Etype (Call, Etype (D_T));
4287
4288 -- We do not re-analyze the call to avoid infinite recursion.
4289 -- We analyze separately the prefix and the object, and set
4290 -- the checks on the prefix that would otherwise be emitted
4291 -- when resolving a call.
4292
6dfc5592 4293 Rewrite (Call_Node, Call);
70482933
RK
4294 Analyze (Nam);
4295 Apply_Access_Check (Nam);
4296 Analyze (Obj);
4297 return;
4298 end;
4299 end if;
4300 end if;
4301
4302 -- If this is a call to an intrinsic subprogram, then perform the
4303 -- appropriate expansion to the corresponding tree node and we
a90bd866 4304 -- are all done (since after that the call is gone).
70482933 4305
98f01d53
AC
4306 -- In the case where the intrinsic is to be processed by the back end,
4307 -- the call to Expand_Intrinsic_Call will do nothing, which is fine,
b3f48fd4
AC
4308 -- since the idea in this case is to pass the call unchanged. If the
4309 -- intrinsic is an inherited unchecked conversion, and the derived type
4310 -- is the target type of the conversion, we must retain it as the return
4311 -- type of the expression. Otherwise the expansion below, which uses the
4312 -- parent operation, will yield the wrong type.
98f01d53 4313
70482933 4314 if Is_Intrinsic_Subprogram (Subp) then
6dfc5592 4315 Expand_Intrinsic_Call (Call_Node, Subp);
d766cee3 4316
6dfc5592 4317 if Nkind (Call_Node) = N_Unchecked_Type_Conversion
d766cee3
RD
4318 and then Parent_Subp /= Orig_Subp
4319 and then Etype (Parent_Subp) /= Etype (Orig_Subp)
4320 then
6dfc5592 4321 Set_Etype (Call_Node, Etype (Orig_Subp));
d766cee3
RD
4322 end if;
4323
70482933
RK
4324 return;
4325 end if;
4326
b29def53
AC
4327 if Ekind_In (Subp, E_Function, E_Procedure) then
4328
f68fc405
AC
4329 -- We perform a simple optimization on calls for To_Address by
4330 -- replacing them with an unchecked conversion. Not only is this
4331 -- efficient, but it also avoids order of elaboration problems when
4332 -- address clauses are inlined (address expression elaborated at the
ca1f6b29 4333 -- wrong point).
26a43556 4334
f68fc405 4335 -- We perform this optimization regardless of whether we are in the
26a43556 4336 -- main unit or in a unit in the context of the main unit, to ensure
ca1f6b29
BD
4337 -- that the generated tree is the same in both cases, for CodePeer
4338 -- use.
26a43556
AC
4339
4340 if Is_RTE (Subp, RE_To_Address) then
6dfc5592 4341 Rewrite (Call_Node,
26a43556 4342 Unchecked_Convert_To
6dfc5592 4343 (RTE (RE_Address), Relocate_Node (First_Actual (Call_Node))));
26a43556 4344 return;
7d827255 4345
7ec25b2b
AC
4346 -- A call to a null procedure is replaced by a null statement, but we
4347 -- are not allowed to ignore possible side effects of the call, so we
4348 -- make sure that actuals are evaluated.
66f95f60 4349 -- We also suppress this optimization for GNATCoverage.
7d827255 4350
66f95f60
AC
4351 elsif Is_Null_Procedure (Subp)
4352 and then not Opt.Suppress_Control_Flow_Optimizations
4353 then
7d827255
AC
4354 Actual := First_Actual (Call_Node);
4355 while Present (Actual) loop
4356 Remove_Side_Effects (Actual);
4357 Next_Actual (Actual);
4358 end loop;
4359
4360 Rewrite (Call_Node, Make_Null_Statement (Loc));
4361 return;
8dbf3473
AC
4362 end if;
4363
6c26bac2 4364 -- Handle inlining. No action needed if the subprogram is not inlined
f087ea44 4365
6c26bac2
AC
4366 if not Is_Inlined (Subp) then
4367 null;
f087ea44 4368
49209838
EB
4369 -- Front-end inlining of expression functions (performed also when
4370 -- back-end inlining is enabled).
b5f3c913
AC
4371
4372 elsif Is_Inlinable_Expression_Function (Subp) then
4373 Rewrite (N, New_Copy (Expression_Of_Expression_Function (Subp)));
4374 Analyze (N);
4375 return;
4376
49209838 4377 -- Handle front-end inlining
84f4072a 4378
6c26bac2 4379 elsif not Back_End_Inlining then
a41ea816 4380 Inlined_Subprogram : declare
fbf5a39b
AC
4381 Bod : Node_Id;
4382 Must_Inline : Boolean := False;
4383 Spec : constant Node_Id := Unit_Declaration_Node (Subp);
a41ea816 4384
70482933 4385 begin
2f1b20a9
ES
4386 -- Verify that the body to inline has already been seen, and
4387 -- that if the body is in the current unit the inlining does
4388 -- not occur earlier. This avoids order-of-elaboration problems
4389 -- in the back end.
4390
4391 -- This should be documented in sinfo/einfo ???
70482933 4392
fbf5a39b
AC
4393 if No (Spec)
4394 or else Nkind (Spec) /= N_Subprogram_Declaration
4395 or else No (Body_To_Inline (Spec))
70482933 4396 then
fbf5a39b
AC
4397 Must_Inline := False;
4398
26a43556
AC
4399 -- If this an inherited function that returns a private type,
4400 -- do not inline if the full view is an unconstrained array,
4401 -- because such calls cannot be inlined.
5b4994bc
AC
4402
4403 elsif Present (Orig_Subp)
4404 and then Is_Array_Type (Etype (Orig_Subp))
4405 and then not Is_Constrained (Etype (Orig_Subp))
4406 then
4407 Must_Inline := False;
4408
84f4072a 4409 elsif In_Unfrozen_Instance (Scope (Subp)) then
5b4994bc
AC
4410 Must_Inline := False;
4411
fbf5a39b
AC
4412 else
4413 Bod := Body_To_Inline (Spec);
4414
6dfc5592
RD
4415 if (In_Extended_Main_Code_Unit (Call_Node)
4416 or else In_Extended_Main_Code_Unit (Parent (Call_Node))
ac4d6407 4417 or else Has_Pragma_Inline_Always (Subp))
fbf5a39b
AC
4418 and then (not In_Same_Extended_Unit (Sloc (Bod), Loc)
4419 or else
4420 Earlier_In_Extended_Unit (Sloc (Bod), Loc))
4421 then
4422 Must_Inline := True;
4423
4424 -- If we are compiling a package body that is not the main
4425 -- unit, it must be for inlining/instantiation purposes,
4426 -- in which case we inline the call to insure that the same
4427 -- temporaries are generated when compiling the body by
4428 -- itself. Otherwise link errors can occur.
4429
2820d220
AC
4430 -- If the function being called is itself in the main unit,
4431 -- we cannot inline, because there is a risk of double
4432 -- elaboration and/or circularity: the inlining can make
4433 -- visible a private entity in the body of the main unit,
4434 -- that gigi will see before its sees its proper definition.
4435
6dfc5592 4436 elsif not (In_Extended_Main_Code_Unit (Call_Node))
fbf5a39b
AC
4437 and then In_Package_Body
4438 then
2820d220 4439 Must_Inline := not In_Extended_Main_Source_Unit (Subp);
1ba563f5
AC
4440
4441 -- Inline calls to _postconditions when generating C code
4442
64f5d139 4443 elsif Modify_Tree_For_C
1ba563f5
AC
4444 and then In_Same_Extended_Unit (Sloc (Bod), Loc)
4445 and then Chars (Name (N)) = Name_uPostconditions
4446 then
4447 Must_Inline := True;
fbf5a39b
AC
4448 end if;
4449 end if;
4450
4451 if Must_Inline then
6dfc5592 4452 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
70482933
RK
4453
4454 else
fbf5a39b 4455 -- Let the back end handle it
70482933 4456
cf27c5a2 4457 Add_Inlined_Body (Subp, Call_Node);
70482933
RK
4458
4459 if Front_End_Inlining
4460 and then Nkind (Spec) = N_Subprogram_Declaration
6dfc5592 4461 and then (In_Extended_Main_Code_Unit (Call_Node))
70482933
RK
4462 and then No (Body_To_Inline (Spec))
4463 and then not Has_Completion (Subp)
4464 and then In_Same_Extended_Unit (Sloc (Spec), Loc)
70482933 4465 then
fbf5a39b 4466 Cannot_Inline
685bc70f
AC
4467 ("cannot inline& (body not seen yet)?",
4468 Call_Node, Subp);
70482933
RK
4469 end if;
4470 end if;
a41ea816 4471 end Inlined_Subprogram;
84f4072a 4472
49209838
EB
4473 -- Front-end expansion of simple functions returning unconstrained
4474 -- types (see Check_And_Split_Unconstrained_Function). Note that the
4475 -- case of a simple renaming (Body_To_Inline in N_Entity below, see
4476 -- also Build_Renamed_Body) cannot be expanded here because this may
4477 -- give rise to order-of-elaboration issues for the types of the
4478 -- parameters of the subprogram, if any.
6c26bac2 4479
49209838
EB
4480 elsif Present (Unit_Declaration_Node (Subp))
4481 and then Nkind (Unit_Declaration_Node (Subp)) =
4482 N_Subprogram_Declaration
4483 and then Present (Body_To_Inline (Unit_Declaration_Node (Subp)))
4484 and then
4485 Nkind (Body_To_Inline (Unit_Declaration_Node (Subp))) not in
4486 N_Entity
4487 then
4488 Expand_Inlined_Call (Call_Node, Subp, Orig_Subp);
4489
4490 -- Back-end inlining either if optimization is enabled or the call is
4491 -- required to be inlined.
4492
4493 elsif Optimization_Level > 0
4494 or else Has_Pragma_Inline_Always (Subp)
6c26bac2 4495 then
cf27c5a2 4496 Add_Inlined_Body (Subp, Call_Node);
70482933
RK
4497 end if;
4498 end if;
4499
26a43556
AC
4500 -- Check for protected subprogram. This is either an intra-object call,
4501 -- or a protected function call. Protected procedure calls are rewritten
4502 -- as entry calls and handled accordingly.
70482933 4503
26a43556
AC
4504 -- In Ada 2005, this may be an indirect call to an access parameter that
4505 -- is an access_to_subprogram. In that case the anonymous type has a
4506 -- scope that is a protected operation, but the call is a regular one.
6f76a257 4507 -- In either case do not expand call if subprogram is eliminated.
c8ef728f 4508
70482933
RK
4509 Scop := Scope (Subp);
4510
6dfc5592 4511 if Nkind (Call_Node) /= N_Entry_Call_Statement
70482933 4512 and then Is_Protected_Type (Scop)
c8ef728f 4513 and then Ekind (Subp) /= E_Subprogram_Type
6f76a257 4514 and then not Is_Eliminated (Subp)
70482933 4515 then
26a43556
AC
4516 -- If the call is an internal one, it is rewritten as a call to the
4517 -- corresponding unprotected subprogram.
70482933 4518
6dfc5592 4519 Expand_Protected_Subprogram_Call (Call_Node, Subp, Scop);
70482933
RK
4520 end if;
4521
df3e68b1
HK
4522 -- Functions returning controlled objects need special attention. If
4523 -- the return type is limited, then the context is initialization and
4524 -- different processing applies. If the call is to a protected function,
4525 -- the expansion above will call Expand_Call recursively. Otherwise the
4526 -- function call is transformed into a temporary which obtains the
4527 -- result from the secondary stack.
70482933 4528
c768e988 4529 if Needs_Finalization (Etype (Subp)) then
cd644ae2
PMR
4530 if not Is_Build_In_Place_Function_Call (Call_Node)
4531 and then
4532 (No (First_Formal (Subp))
3fc40cd7
PMR
4533 or else
4534 not Is_Concurrent_Record_Type (Etype (First_Formal (Subp))))
cd644ae2
PMR
4535 then
4536 Expand_Ctrl_Function_Call (Call_Node);
4537
c768e988
AC
4538 -- Build-in-place function calls which appear in anonymous contexts
4539 -- need a transient scope to ensure the proper finalization of the
4540 -- intermediate result after its use.
4541
cd644ae2 4542 elsif Is_Build_In_Place_Function_Call (Call_Node)
3fc40cd7
PMR
4543 and then Nkind_In (Parent (Unqual_Conv (Call_Node)),
4544 N_Attribute_Reference,
4545 N_Function_Call,
4546 N_Indexed_Component,
4547 N_Object_Renaming_Declaration,
4548 N_Procedure_Call_Statement,
4549 N_Selected_Component,
4550 N_Slice)
d2ca5779
PMR
4551 and then
4552 (Ekind (Current_Scope) /= E_Loop
4553 or else Nkind (Parent (N)) /= N_Function_Call
4554 or else not Is_Build_In_Place_Function_Call (Parent (N)))
c768e988 4555 then
6560f851 4556 Establish_Transient_Scope (Call_Node, Manage_Sec_Stack => True);
c768e988 4557 end if;
70482933 4558 end if;
ca1f6b29 4559 end Expand_Call_Helper;
70482933 4560
df3e68b1
HK
4561 -------------------------------
4562 -- Expand_Ctrl_Function_Call --
4563 -------------------------------
4564
4565 procedure Expand_Ctrl_Function_Call (N : Node_Id) is
bf561f2b
AC
4566 function Is_Element_Reference (N : Node_Id) return Boolean;
4567 -- Determine whether node N denotes a reference to an Ada 2012 container
4568 -- element.
4569
4570 --------------------------
4571 -- Is_Element_Reference --
4572 --------------------------
4573
4574 function Is_Element_Reference (N : Node_Id) return Boolean is
4575 Ref : constant Node_Id := Original_Node (N);
4576
4577 begin
4578 -- Analysis marks an element reference by setting the generalized
4579 -- indexing attribute of an indexed component before the component
4580 -- is rewritten into a function call.
4581
4582 return
4583 Nkind (Ref) = N_Indexed_Component
4584 and then Present (Generalized_Indexing (Ref));
4585 end Is_Element_Reference;
4586
bf561f2b
AC
4587 -- Start of processing for Expand_Ctrl_Function_Call
4588
df3e68b1
HK
4589 begin
4590 -- Optimization, if the returned value (which is on the sec-stack) is
4591 -- returned again, no need to copy/readjust/finalize, we can just pass
4592 -- the value thru (see Expand_N_Simple_Return_Statement), and thus no
4593 -- attachment is needed
4594
4595 if Nkind (Parent (N)) = N_Simple_Return_Statement then
4596 return;
4597 end if;
4598
4599 -- Resolution is now finished, make sure we don't start analysis again
4600 -- because of the duplication.
4601
4602 Set_Analyzed (N);
4603
4604 -- A function which returns a controlled object uses the secondary
4605 -- stack. Rewrite the call into a temporary which obtains the result of
4606 -- the function using 'reference.
4607
4608 Remove_Side_Effects (N);
3cebd1c0 4609
937e9676
AC
4610 -- The side effect removal of the function call produced a temporary.
4611 -- When the context is a case expression, if expression, or expression
4612 -- with actions, the lifetime of the temporary must be extended to match
4613 -- that of the context. Otherwise the function result will be finalized
4614 -- too early and affect the result of the expression. To prevent this
4615 -- unwanted effect, the temporary should not be considered for clean up
4616 -- actions by the general finalization machinery.
4617
4618 -- Exception to this rule are references to Ada 2012 container elements.
bf561f2b
AC
4619 -- Such references must be finalized at the end of each iteration of the
4620 -- related quantified expression, otherwise the container will remain
4621 -- busy.
4622
937e9676 4623 if Nkind (N) = N_Explicit_Dereference
bf561f2b 4624 and then Within_Case_Or_If_Expression (N)
937e9676 4625 and then not Is_Element_Reference (N)
3cebd1c0 4626 then
937e9676 4627 Set_Is_Ignored_Transient (Entity (Prefix (N)));
3cebd1c0 4628 end if;
df3e68b1
HK
4629 end Expand_Ctrl_Function_Call;
4630
2b3d67a5
AC
4631 ----------------------------------------
4632 -- Expand_N_Extended_Return_Statement --
4633 ----------------------------------------
4634
4635 -- If there is a Handled_Statement_Sequence, we rewrite this:
4636
4637 -- return Result : T := <expression> do
4638 -- <handled_seq_of_stms>
4639 -- end return;
4640
4641 -- to be:
4642
4643 -- declare
4644 -- Result : T := <expression>;
4645 -- begin
4646 -- <handled_seq_of_stms>
4647 -- return Result;
4648 -- end;
4649
4650 -- Otherwise (no Handled_Statement_Sequence), we rewrite this:
4651
4652 -- return Result : T := <expression>;
4653
4654 -- to be:
4655
4656 -- return <expression>;
4657
4658 -- unless it's build-in-place or there's no <expression>, in which case
4659 -- we generate:
4660
4661 -- declare
4662 -- Result : T := <expression>;
4663 -- begin
4664 -- return Result;
4665 -- end;
4666
4667 -- Note that this case could have been written by the user as an extended
4668 -- return statement, or could have been transformed to this from a simple
4669 -- return statement.
4670
4671 -- That is, we need to have a reified return object if there are statements
4672 -- (which might refer to it) or if we're doing build-in-place (so we can
4673 -- set its address to the final resting place or if there is no expression
7d1d3a54 4674 -- (in which case default initial values might need to be set)).
2b3d67a5
AC
4675
4676 procedure Expand_N_Extended_Return_Statement (N : Node_Id) is
4677 Loc : constant Source_Ptr := Sloc (N);
4678
7d1d3a54 4679 function Build_Heap_Or_Pool_Allocator
df3e68b1
HK
4680 (Temp_Id : Entity_Id;
4681 Temp_Typ : Entity_Id;
4682 Func_Id : Entity_Id;
4683 Ret_Typ : Entity_Id;
4684 Alloc_Expr : Node_Id) return Node_Id;
4685 -- Create the statements necessary to allocate a return object on the
7d1d3a54
HK
4686 -- heap or user-defined storage pool. The object may need finalization
4687 -- actions depending on the return type.
df3e68b1 4688 --
7d1d3a54
HK
4689 -- * Controlled case
4690 --
4691 -- if BIPfinalizationmaster = null then
4692 -- Temp_Id := <Alloc_Expr>;
4693 -- else
4694 -- declare
4695 -- type Ptr_Typ is access Ret_Typ;
4696 -- for Ptr_Typ'Storage_Pool use
4697 -- Base_Pool (BIPfinalizationmaster.all).all;
4698 -- Local : Ptr_Typ;
df3e68b1 4699 --
df3e68b1 4700 -- begin
7d1d3a54
HK
4701 -- procedure Allocate (...) is
4702 -- begin
4703 -- System.Storage_Pools.Subpools.Allocate_Any (...);
4704 -- end Allocate;
df3e68b1 4705 --
7d1d3a54
HK
4706 -- Local := <Alloc_Expr>;
4707 -- Temp_Id := Temp_Typ (Local);
4708 -- end;
4709 -- end if;
4710 --
4711 -- * Non-controlled case
4712 --
4713 -- Temp_Id := <Alloc_Expr>;
df3e68b1
HK
4714 --
4715 -- Temp_Id is the temporary which is used to reference the internally
4716 -- created object in all allocation forms. Temp_Typ is the type of the
4717 -- temporary. Func_Id is the enclosing function. Ret_Typ is the return
4718 -- type of Func_Id. Alloc_Expr is the actual allocator.
2b3d67a5 4719
e5f2c03c 4720 function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id;
2b3d67a5
AC
4721 -- Construct a call to System.Tasking.Stages.Move_Activation_Chain
4722 -- with parameters:
4723 -- From current activation chain
4724 -- To activation chain passed in by the caller
4725 -- New_Master master passed in by the caller
e5f2c03c
AC
4726 --
4727 -- Func_Id is the entity of the function where the extended return
4728 -- statement appears.
2b3d67a5 4729
7d1d3a54
HK
4730 ----------------------------------
4731 -- Build_Heap_Or_Pool_Allocator --
4732 ----------------------------------
df3e68b1 4733
7d1d3a54 4734 function Build_Heap_Or_Pool_Allocator
df3e68b1
HK
4735 (Temp_Id : Entity_Id;
4736 Temp_Typ : Entity_Id;
4737 Func_Id : Entity_Id;
4738 Ret_Typ : Entity_Id;
4739 Alloc_Expr : Node_Id) return Node_Id
4740 is
4741 begin
200b7162
BD
4742 pragma Assert (Is_Build_In_Place_Function (Func_Id));
4743
7d1d3a54 4744 -- Processing for objects that require finalization actions
df3e68b1 4745
535a8637 4746 if Needs_Finalization (Ret_Typ) then
df3e68b1 4747 declare
d3f70b35
AC
4748 Decls : constant List_Id := New_List;
4749 Fin_Mas_Id : constant Entity_Id :=
4750 Build_In_Place_Formal
4751 (Func_Id, BIP_Finalization_Master);
6a4f3b31
HK
4752 Orig_Expr : constant Node_Id :=
4753 New_Copy_Tree
4754 (Source => Alloc_Expr,
4755 Scopes_In_EWA_OK => True);
d3f70b35 4756 Stmts : constant List_Id := New_List;
ba759acd
AC
4757 Desig_Typ : Entity_Id;
4758 Local_Id : Entity_Id;
4759 Pool_Id : Entity_Id;
4760 Ptr_Typ : Entity_Id;
df3e68b1
HK
4761
4762 begin
4763 -- Generate:
d3f70b35 4764 -- Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
df3e68b1
HK
4765
4766 Pool_Id := Make_Temporary (Loc, 'P');
4767
4768 Append_To (Decls,
4769 Make_Object_Renaming_Declaration (Loc,
4770 Defining_Identifier => Pool_Id,
2c1b72d7 4771 Subtype_Mark =>
e4494292 4772 New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc),
2c1b72d7 4773 Name =>
df3e68b1
HK
4774 Make_Explicit_Dereference (Loc,
4775 Prefix =>
4776 Make_Function_Call (Loc,
2c1b72d7 4777 Name =>
e4494292 4778 New_Occurrence_Of (RTE (RE_Base_Pool), Loc),
df3e68b1
HK
4779 Parameter_Associations => New_List (
4780 Make_Explicit_Dereference (Loc,
d3f70b35 4781 Prefix =>
e4494292 4782 New_Occurrence_Of (Fin_Mas_Id, Loc)))))));
df3e68b1
HK
4783
4784 -- Create an access type which uses the storage pool of the
d3f70b35
AC
4785 -- caller's master. This additional type is necessary because
4786 -- the finalization master cannot be associated with the type
df3e68b1
HK
4787 -- of the temporary. Otherwise the secondary stack allocation
4788 -- will fail.
4789
ba759acd
AC
4790 Desig_Typ := Ret_Typ;
4791
4792 -- Ensure that the build-in-place machinery uses a fat pointer
4793 -- when allocating an unconstrained array on the heap. In this
4794 -- case the result object type is a constrained array type even
4795 -- though the function type is unconstrained.
4796
4797 if Ekind (Desig_Typ) = E_Array_Subtype then
4798 Desig_Typ := Base_Type (Desig_Typ);
4799 end if;
4800
df3e68b1 4801 -- Generate:
ba759acd 4802 -- type Ptr_Typ is access Desig_Typ;
df3e68b1
HK
4803
4804 Ptr_Typ := Make_Temporary (Loc, 'P');
4805
4806 Append_To (Decls,
4807 Make_Full_Type_Declaration (Loc,
4808 Defining_Identifier => Ptr_Typ,
2c1b72d7 4809 Type_Definition =>
df3e68b1
HK
4810 Make_Access_To_Object_Definition (Loc,
4811 Subtype_Indication =>
e4494292 4812 New_Occurrence_Of (Desig_Typ, Loc))));
df3e68b1 4813
d3f70b35
AC
4814 -- Perform minor decoration in order to set the master and the
4815 -- storage pool attributes.
df3e68b1 4816
7d1d3a54 4817 Set_Ekind (Ptr_Typ, E_Access_Type);
d3f70b35 4818 Set_Finalization_Master (Ptr_Typ, Fin_Mas_Id);
df3e68b1
HK
4819 Set_Associated_Storage_Pool (Ptr_Typ, Pool_Id);
4820
4821 -- Create the temporary, generate:
df3e68b1
HK
4822 -- Local_Id : Ptr_Typ;
4823
4824 Local_Id := Make_Temporary (Loc, 'T');
4825
4826 Append_To (Decls,
4827 Make_Object_Declaration (Loc,
4828 Defining_Identifier => Local_Id,
2c1b72d7 4829 Object_Definition =>
e4494292 4830 New_Occurrence_Of (Ptr_Typ, Loc)));
df3e68b1
HK
4831
4832 -- Allocate the object, generate:
df3e68b1
HK
4833 -- Local_Id := <Alloc_Expr>;
4834
4835 Append_To (Stmts,
4836 Make_Assignment_Statement (Loc,
e4494292 4837 Name => New_Occurrence_Of (Local_Id, Loc),
df3e68b1
HK
4838 Expression => Alloc_Expr));
4839
4840 -- Generate:
4841 -- Temp_Id := Temp_Typ (Local_Id);
4842
4843 Append_To (Stmts,
4844 Make_Assignment_Statement (Loc,
e4494292 4845 Name => New_Occurrence_Of (Temp_Id, Loc),
df3e68b1
HK
4846 Expression =>
4847 Unchecked_Convert_To (Temp_Typ,
e4494292 4848 New_Occurrence_Of (Local_Id, Loc))));
df3e68b1
HK
4849
4850 -- Wrap the allocation in a block. This is further conditioned
d3f70b35
AC
4851 -- by checking the caller finalization master at runtime. A
4852 -- null value indicates a non-existent master, most likely due
4853 -- to a Finalize_Storage_Only allocation.
df3e68b1
HK
4854
4855 -- Generate:
7d1d3a54
HK
4856 -- if BIPfinalizationmaster = null then
4857 -- Temp_Id := <Orig_Expr>;
4858 -- else
df3e68b1
HK
4859 -- declare
4860 -- <Decls>
4861 -- begin
4862 -- <Stmts>
4863 -- end;
4864 -- end if;
4865
4866 return
4867 Make_If_Statement (Loc,
2c1b72d7 4868 Condition =>
7d1d3a54 4869 Make_Op_Eq (Loc,
e4494292 4870 Left_Opnd => New_Occurrence_Of (Fin_Mas_Id, Loc),
2c1b72d7 4871 Right_Opnd => Make_Null (Loc)),
df3e68b1
HK
4872
4873 Then_Statements => New_List (
7d1d3a54
HK
4874 Make_Assignment_Statement (Loc,
4875 Name => New_Occurrence_Of (Temp_Id, Loc),
4876 Expression => Orig_Expr)),
4877
4878 Else_Statements => New_List (
df3e68b1 4879 Make_Block_Statement (Loc,
2c1b72d7 4880 Declarations => Decls,
df3e68b1
HK
4881 Handled_Statement_Sequence =>
4882 Make_Handled_Sequence_Of_Statements (Loc,
4883 Statements => Stmts))));
4884 end;
4885
4886 -- For all other cases, generate:
df3e68b1
HK
4887 -- Temp_Id := <Alloc_Expr>;
4888
4889 else
4890 return
4891 Make_Assignment_Statement (Loc,
e4494292 4892 Name => New_Occurrence_Of (Temp_Id, Loc),
df3e68b1
HK
4893 Expression => Alloc_Expr);
4894 end if;
7d1d3a54 4895 end Build_Heap_Or_Pool_Allocator;
2b3d67a5 4896
2b3d67a5
AC
4897 ---------------------------
4898 -- Move_Activation_Chain --
4899 ---------------------------
4900
e5f2c03c 4901 function Move_Activation_Chain (Func_Id : Entity_Id) return Node_Id is
2b3d67a5 4902 begin
2b3d67a5
AC
4903 return
4904 Make_Procedure_Call_Statement (Loc,
2c1b72d7 4905 Name =>
e4494292 4906 New_Occurrence_Of (RTE (RE_Move_Activation_Chain), Loc),
0613fb33
AC
4907
4908 Parameter_Associations => New_List (
4909
4910 -- Source chain
4911
4912 Make_Attribute_Reference (Loc,
4913 Prefix => Make_Identifier (Loc, Name_uChain),
4914 Attribute_Name => Name_Unrestricted_Access),
4915
4916 -- Destination chain
4917
e4494292 4918 New_Occurrence_Of
e5f2c03c 4919 (Build_In_Place_Formal (Func_Id, BIP_Activation_Chain), Loc),
0613fb33
AC
4920
4921 -- New master
4922
e4494292 4923 New_Occurrence_Of
e5f2c03c 4924 (Build_In_Place_Formal (Func_Id, BIP_Task_Master), Loc)));
2b3d67a5
AC
4925 end Move_Activation_Chain;
4926
e5f2c03c
AC
4927 -- Local variables
4928
4929 Func_Id : constant Entity_Id :=
4930 Return_Applies_To (Return_Statement_Entity (N));
4931 Is_BIP_Func : constant Boolean :=
4932 Is_Build_In_Place_Function (Func_Id);
4933 Ret_Obj_Id : constant Entity_Id :=
4934 First_Entity (Return_Statement_Entity (N));
4935 Ret_Obj_Decl : constant Node_Id := Parent (Ret_Obj_Id);
4936 Ret_Typ : constant Entity_Id := Etype (Func_Id);
4937
4938 Exp : Node_Id;
4939 HSS : Node_Id;
4940 Result : Node_Id;
e5f2c03c
AC
4941 Stmts : List_Id;
4942
dcd5fd67
PMR
4943 Return_Stmt : Node_Id := Empty;
4944 -- Force initialization to facilitate static analysis
4945
df3e68b1 4946 -- Start of processing for Expand_N_Extended_Return_Statement
2b3d67a5 4947
df3e68b1 4948 begin
f6f4d8d4
JM
4949 -- Given that functionality of interface thunks is simple (just displace
4950 -- the pointer to the object) they are always handled by means of
4951 -- simple return statements.
4952
76ed5f08 4953 pragma Assert (not Is_Thunk (Current_Subprogram));
f6f4d8d4 4954
df3e68b1
HK
4955 if Nkind (Ret_Obj_Decl) = N_Object_Declaration then
4956 Exp := Expression (Ret_Obj_Decl);
b3801819
PMR
4957
4958 -- Assert that if F says "return R : T := G(...) do..."
4959 -- then F and G are both b-i-p, or neither b-i-p.
4960
4961 if Nkind (Exp) = N_Function_Call then
76ed5f08 4962 pragma Assert (Ekind (Current_Subprogram) = E_Function);
b3801819 4963 pragma Assert
76ed5f08 4964 (Is_Build_In_Place_Function (Current_Subprogram) =
b3801819
PMR
4965 Is_Build_In_Place_Function_Call (Exp));
4966 null;
4967 end if;
df3e68b1
HK
4968 else
4969 Exp := Empty;
4970 end if;
2b3d67a5 4971
df3e68b1 4972 HSS := Handled_Statement_Sequence (N);
2b3d67a5 4973
df3e68b1
HK
4974 -- If the returned object needs finalization actions, the function must
4975 -- perform the appropriate cleanup should it fail to return. The state
4976 -- of the function itself is tracked through a flag which is coupled
4977 -- with the scope finalizer. There is one flag per each return object
4978 -- in case of multiple returns.
2b3d67a5 4979
e5f2c03c 4980 if Is_BIP_Func and then Needs_Finalization (Etype (Ret_Obj_Id)) then
df3e68b1
HK
4981 declare
4982 Flag_Decl : Node_Id;
4983 Flag_Id : Entity_Id;
4984 Func_Bod : Node_Id;
2b3d67a5 4985
df3e68b1
HK
4986 begin
4987 -- Recover the function body
2b3d67a5 4988
e5f2c03c 4989 Func_Bod := Unit_Declaration_Node (Func_Id);
0613fb33 4990
df3e68b1
HK
4991 if Nkind (Func_Bod) = N_Subprogram_Declaration then
4992 Func_Bod := Parent (Parent (Corresponding_Body (Func_Bod)));
4993 end if;
2b3d67a5 4994
d4dfb005
BD
4995 if Nkind (Func_Bod) = N_Function_Specification then
4996 Func_Bod := Parent (Func_Bod); -- one more level for child units
4997 end if;
4998
4999 pragma Assert (Nkind (Func_Bod) = N_Subprogram_Body);
5000
df3e68b1 5001 -- Create a flag to track the function state
2b3d67a5 5002
df3e68b1 5003 Flag_Id := Make_Temporary (Loc, 'F');
3cebd1c0 5004 Set_Status_Flag_Or_Transient_Decl (Ret_Obj_Id, Flag_Id);
2b3d67a5 5005
df3e68b1
HK
5006 -- Insert the flag at the beginning of the function declarations,
5007 -- generate:
5008 -- Fnn : Boolean := False;
2b3d67a5 5009
df3e68b1
HK
5010 Flag_Decl :=
5011 Make_Object_Declaration (Loc,
5012 Defining_Identifier => Flag_Id,
2c1b72d7 5013 Object_Definition =>
e4494292
RD
5014 New_Occurrence_Of (Standard_Boolean, Loc),
5015 Expression =>
5016 New_Occurrence_Of (Standard_False, Loc));
2b3d67a5 5017
df3e68b1
HK
5018 Prepend_To (Declarations (Func_Bod), Flag_Decl);
5019 Analyze (Flag_Decl);
5020 end;
5021 end if;
2b3d67a5
AC
5022
5023 -- Build a simple_return_statement that returns the return object when
5024 -- there is a statement sequence, or no expression, or the result will
5025 -- be built in place. Note however that we currently do this for all
d4dfb005 5026 -- composite cases, even though not all are built in place.
2b3d67a5 5027
df3e68b1 5028 if Present (HSS)
e5f2c03c 5029 or else Is_Composite_Type (Ret_Typ)
2b3d67a5
AC
5030 or else No (Exp)
5031 then
df3e68b1
HK
5032 if No (HSS) then
5033 Stmts := New_List;
2b3d67a5
AC
5034
5035 -- If the extended return has a handled statement sequence, then wrap
5036 -- it in a block and use the block as the first statement.
5037
5038 else
df3e68b1
HK
5039 Stmts := New_List (
5040 Make_Block_Statement (Loc,
2c1b72d7 5041 Declarations => New_List,
df3e68b1 5042 Handled_Statement_Sequence => HSS));
2b3d67a5
AC
5043 end if;
5044
df3e68b1
HK
5045 -- If the result type contains tasks, we call Move_Activation_Chain.
5046 -- Later, the cleanup code will call Complete_Master, which will
5047 -- terminate any unactivated tasks belonging to the return statement
5048 -- master. But Move_Activation_Chain updates their master to be that
5049 -- of the caller, so they will not be terminated unless the return
5050 -- statement completes unsuccessfully due to exception, abort, goto,
5051 -- or exit. As a formality, we test whether the function requires the
5052 -- result to be built in place, though that's necessarily true for
5053 -- the case of result types with task parts.
2b3d67a5 5054
e5f2c03c
AC
5055 if Is_BIP_Func and then Has_Task (Ret_Typ) then
5056
4a1bfefb
AC
5057 -- The return expression is an aggregate for a complex type which
5058 -- contains tasks. This particular case is left unexpanded since
5059 -- the regular expansion would insert all temporaries and
5060 -- initialization code in the wrong block.
5061
5062 if Nkind (Exp) = N_Aggregate then
5063 Expand_N_Aggregate (Exp);
5064 end if;
5065
1a36a0cd
AC
5066 -- Do not move the activation chain if the return object does not
5067 -- contain tasks.
5068
5069 if Has_Task (Etype (Ret_Obj_Id)) then
e5f2c03c 5070 Append_To (Stmts, Move_Activation_Chain (Func_Id));
1a36a0cd 5071 end if;
2b3d67a5
AC
5072 end if;
5073
df3e68b1
HK
5074 -- Update the state of the function right before the object is
5075 -- returned.
5076
e5f2c03c 5077 if Is_BIP_Func and then Needs_Finalization (Etype (Ret_Obj_Id)) then
df3e68b1 5078 declare
35a1c212 5079 Flag_Id : constant Entity_Id :=
3cebd1c0 5080 Status_Flag_Or_Transient_Decl (Ret_Obj_Id);
4fdebd93 5081
df3e68b1
HK
5082 begin
5083 -- Generate:
5084 -- Fnn := True;
5085
5086 Append_To (Stmts,
5087 Make_Assignment_Statement (Loc,
e4494292
RD
5088 Name => New_Occurrence_Of (Flag_Id, Loc),
5089 Expression => New_Occurrence_Of (Standard_True, Loc)));
df3e68b1 5090 end;
2b3d67a5
AC
5091 end if;
5092
5093 -- Build a simple_return_statement that returns the return object
5094
df3e68b1 5095 Return_Stmt :=
2b3d67a5 5096 Make_Simple_Return_Statement (Loc,
2c1b72d7 5097 Expression => New_Occurrence_Of (Ret_Obj_Id, Loc));
df3e68b1 5098 Append_To (Stmts, Return_Stmt);
2b3d67a5 5099
df3e68b1 5100 HSS := Make_Handled_Sequence_Of_Statements (Loc, Stmts);
2b3d67a5
AC
5101 end if;
5102
df3e68b1 5103 -- Case where we build a return statement block
2b3d67a5 5104
df3e68b1 5105 if Present (HSS) then
2b3d67a5
AC
5106 Result :=
5107 Make_Block_Statement (Loc,
2c1b72d7 5108 Declarations => Return_Object_Declarations (N),
df3e68b1 5109 Handled_Statement_Sequence => HSS);
2b3d67a5
AC
5110
5111 -- We set the entity of the new block statement to be that of the
5112 -- return statement. This is necessary so that various fields, such
5113 -- as Finalization_Chain_Entity carry over from the return statement
5114 -- to the block. Note that this block is unusual, in that its entity
5115 -- is an E_Return_Statement rather than an E_Block.
5116
5117 Set_Identifier
5118 (Result, New_Occurrence_Of (Return_Statement_Entity (N), Loc));
5119
54bf19e4 5120 -- If the object decl was already rewritten as a renaming, then we
47a6f660 5121 -- don't want to do the object allocation and transformation of
54bf19e4 5122 -- the return object declaration to a renaming. This case occurs
2b3d67a5 5123 -- when the return object is initialized by a call to another
54bf19e4
AC
5124 -- build-in-place function, and that function is responsible for
5125 -- the allocation of the return object.
2b3d67a5 5126
e5f2c03c 5127 if Is_BIP_Func
df3e68b1 5128 and then Nkind (Ret_Obj_Decl) = N_Object_Renaming_Declaration
2b3d67a5 5129 then
df3e68b1
HK
5130 pragma Assert
5131 (Nkind (Original_Node (Ret_Obj_Decl)) = N_Object_Declaration
4ac62786
AC
5132 and then
5133
5134 -- It is a regular BIP object declaration
5135
5136 (Is_Build_In_Place_Function_Call
5137 (Expression (Original_Node (Ret_Obj_Decl)))
5138
5139 -- It is a BIP object declaration that displaces the pointer
5140 -- to the object to reference a convered interface type.
5141
5142 or else
5143 Present (Unqual_BIP_Iface_Function_Call
5144 (Expression (Original_Node (Ret_Obj_Decl))))));
df3e68b1
HK
5145
5146 -- Return the build-in-place result by reference
2b3d67a5 5147
df3e68b1 5148 Set_By_Ref (Return_Stmt);
2b3d67a5 5149
e5f2c03c 5150 elsif Is_BIP_Func then
2b3d67a5
AC
5151
5152 -- Locate the implicit access parameter associated with the
5153 -- caller-supplied return object and convert the return
5154 -- statement's return object declaration to a renaming of a
5155 -- dereference of the access parameter. If the return object's
5156 -- declaration includes an expression that has not already been
5157 -- expanded as separate assignments, then add an assignment
5158 -- statement to ensure the return object gets initialized.
5159
df3e68b1
HK
5160 -- declare
5161 -- Result : T [:= <expression>];
5162 -- begin
5163 -- ...
2b3d67a5
AC
5164
5165 -- is converted to
5166
df3e68b1
HK
5167 -- declare
5168 -- Result : T renames FuncRA.all;
5169 -- [Result := <expression;]
5170 -- begin
5171 -- ...
2b3d67a5
AC
5172
5173 declare
e5f2c03c
AC
5174 Ret_Obj_Expr : constant Node_Id := Expression (Ret_Obj_Decl);
5175 Ret_Obj_Typ : constant Entity_Id := Etype (Ret_Obj_Id);
5176
2b3d67a5 5177 Init_Assignment : Node_Id := Empty;
e5f2c03c
AC
5178 Obj_Acc_Formal : Entity_Id;
5179 Obj_Acc_Deref : Node_Id;
5180 Obj_Alloc_Formal : Entity_Id;
2b3d67a5
AC
5181
5182 begin
5183 -- Build-in-place results must be returned by reference
5184
df3e68b1 5185 Set_By_Ref (Return_Stmt);
2b3d67a5
AC
5186
5187 -- Retrieve the implicit access parameter passed by the caller
5188
e5f2c03c
AC
5189 Obj_Acc_Formal :=
5190 Build_In_Place_Formal (Func_Id, BIP_Object_Access);
2b3d67a5
AC
5191
5192 -- If the return object's declaration includes an expression
5193 -- and the declaration isn't marked as No_Initialization, then
5194 -- we need to generate an assignment to the object and insert
5195 -- it after the declaration before rewriting it as a renaming
5196 -- (otherwise we'll lose the initialization). The case where
5197 -- the result type is an interface (or class-wide interface)
5198 -- is also excluded because the context of the function call
5199 -- must be unconstrained, so the initialization will always
5200 -- be done as part of an allocator evaluation (storage pool
5201 -- or secondary stack), never to a constrained target object
5202 -- passed in by the caller. Besides the assignment being
5203 -- unneeded in this case, it avoids problems with trying to
5204 -- generate a dispatching assignment when the return expression
5205 -- is a nonlimited descendant of a limited interface (the
5206 -- interface has no assignment operation).
5207
e5f2c03c 5208 if Present (Ret_Obj_Expr)
df3e68b1 5209 and then not No_Initialization (Ret_Obj_Decl)
e5f2c03c 5210 and then not Is_Interface (Ret_Obj_Typ)
2b3d67a5
AC
5211 then
5212 Init_Assignment :=
5213 Make_Assignment_Statement (Loc,
e5f2c03c 5214 Name => New_Occurrence_Of (Ret_Obj_Id, Loc),
6a4f3b31
HK
5215 Expression =>
5216 New_Copy_Tree
5217 (Source => Ret_Obj_Expr,
5218 Scopes_In_EWA_OK => True));
df3e68b1 5219
e5f2c03c 5220 Set_Etype (Name (Init_Assignment), Etype (Ret_Obj_Id));
2b3d67a5
AC
5221 Set_Assignment_OK (Name (Init_Assignment));
5222 Set_No_Ctrl_Actions (Init_Assignment);
5223
5224 Set_Parent (Name (Init_Assignment), Init_Assignment);
5225 Set_Parent (Expression (Init_Assignment), Init_Assignment);
5226
df3e68b1 5227 Set_Expression (Ret_Obj_Decl, Empty);
2b3d67a5 5228
e5f2c03c 5229 if Is_Class_Wide_Type (Etype (Ret_Obj_Id))
2b3d67a5
AC
5230 and then not Is_Class_Wide_Type
5231 (Etype (Expression (Init_Assignment)))
5232 then
5233 Rewrite (Expression (Init_Assignment),
5234 Make_Type_Conversion (Loc,
5235 Subtype_Mark =>
e5f2c03c 5236 New_Occurrence_Of (Etype (Ret_Obj_Id), Loc),
2c1b72d7 5237 Expression =>
2b3d67a5
AC
5238 Relocate_Node (Expression (Init_Assignment))));
5239 end if;
5240
5241 -- In the case of functions where the calling context can
5242 -- determine the form of allocation needed, initialization
5243 -- is done with each part of the if statement that handles
5244 -- the different forms of allocation (this is true for
7d1d3a54 5245 -- unconstrained, tagged, and controlled result subtypes).
2b3d67a5 5246
7d1d3a54 5247 if not Needs_BIP_Alloc_Form (Func_Id) then
df3e68b1 5248 Insert_After (Ret_Obj_Decl, Init_Assignment);
2b3d67a5
AC
5249 end if;
5250 end if;
5251
5252 -- When the function's subtype is unconstrained, a run-time
bde9a2c2 5253 -- test may be needed to decide the form of allocation to use
2b3d67a5
AC
5254 -- for the return object. The function has an implicit formal
5255 -- parameter indicating this. If the BIP_Alloc_Form formal has
5256 -- the value one, then the caller has passed access to an
5257 -- existing object for use as the return object. If the value
5258 -- is two, then the return object must be allocated on the
5259 -- secondary stack. Otherwise, the object must be allocated in
15529d0a
PMR
5260 -- a storage pool. We generate an if statement to test the
5261 -- implicit allocation formal and initialize a local access
5262 -- value appropriately, creating allocators in the secondary
7d1d3a54 5263 -- stack and global heap cases. The special formal also exists
15529d0a
PMR
5264 -- and must be tested when the function has a tagged result,
5265 -- even when the result subtype is constrained, because in
5266 -- general such functions can be called in dispatching contexts
5267 -- and must be handled similarly to functions with a class-wide
5268 -- result.
2b3d67a5 5269
7d1d3a54 5270 if Needs_BIP_Alloc_Form (Func_Id) then
2b3d67a5 5271 Obj_Alloc_Formal :=
e5f2c03c 5272 Build_In_Place_Formal (Func_Id, BIP_Alloc_Form);
2b3d67a5
AC
5273
5274 declare
8417f4b2
AC
5275 Pool_Id : constant Entity_Id :=
5276 Make_Temporary (Loc, 'P');
2b3d67a5
AC
5277 Alloc_Obj_Id : Entity_Id;
5278 Alloc_Obj_Decl : Node_Id;
5279 Alloc_If_Stmt : Node_Id;
640ad9c2 5280 Guard_Except : Node_Id;
200b7162 5281 Heap_Allocator : Node_Id;
200b7162
BD
5282 Pool_Decl : Node_Id;
5283 Pool_Allocator : Node_Id;
8417f4b2
AC
5284 Ptr_Type_Decl : Node_Id;
5285 Ref_Type : Entity_Id;
5286 SS_Allocator : Node_Id;
2b3d67a5
AC
5287
5288 begin
2b3d67a5
AC
5289 -- Create an access type designating the function's
5290 -- result subtype.
5291
5292 Ref_Type := Make_Temporary (Loc, 'A');
5293
5294 Ptr_Type_Decl :=
5295 Make_Full_Type_Declaration (Loc,
5296 Defining_Identifier => Ref_Type,
2c1b72d7 5297 Type_Definition =>
2b3d67a5 5298 Make_Access_To_Object_Definition (Loc,
2c1b72d7 5299 All_Present => True,
2b3d67a5 5300 Subtype_Indication =>
e5f2c03c 5301 New_Occurrence_Of (Ret_Obj_Typ, Loc)));
2b3d67a5 5302
df3e68b1 5303 Insert_Before (Ret_Obj_Decl, Ptr_Type_Decl);
2b3d67a5
AC
5304
5305 -- Create an access object that will be initialized to an
5306 -- access value denoting the return object, either coming
5307 -- from an implicit access value passed in by the caller
5308 -- or from the result of an allocator.
5309
5310 Alloc_Obj_Id := Make_Temporary (Loc, 'R');
5311 Set_Etype (Alloc_Obj_Id, Ref_Type);
5312
5313 Alloc_Obj_Decl :=
5314 Make_Object_Declaration (Loc,
5315 Defining_Identifier => Alloc_Obj_Id,
2c1b72d7 5316 Object_Definition =>
e4494292 5317 New_Occurrence_Of (Ref_Type, Loc));
2b3d67a5 5318
df3e68b1 5319 Insert_Before (Ret_Obj_Decl, Alloc_Obj_Decl);
2b3d67a5
AC
5320
5321 -- Create allocators for both the secondary stack and
5322 -- global heap. If there's an initialization expression,
5323 -- then create these as initialized allocators.
5324
e5f2c03c 5325 if Present (Ret_Obj_Expr)
df3e68b1 5326 and then not No_Initialization (Ret_Obj_Decl)
2b3d67a5
AC
5327 then
5328 -- Always use the type of the expression for the
5329 -- qualified expression, rather than the result type.
5330 -- In general we cannot always use the result type
5331 -- for the allocator, because the expression might be
5332 -- of a specific type, such as in the case of an
5333 -- aggregate or even a nonlimited object when the
5334 -- result type is a limited class-wide interface type.
5335
5336 Heap_Allocator :=
5337 Make_Allocator (Loc,
5338 Expression =>
5339 Make_Qualified_Expression (Loc,
5340 Subtype_Mark =>
e4494292 5341 New_Occurrence_Of
e5f2c03c 5342 (Etype (Ret_Obj_Expr), Loc),
6a4f3b31
HK
5343 Expression =>
5344 New_Copy_Tree
5345 (Source => Ret_Obj_Expr,
5346 Scopes_In_EWA_OK => True)));
2b3d67a5
AC
5347
5348 else
5349 -- If the function returns a class-wide type we cannot
5350 -- use the return type for the allocator. Instead we
5351 -- use the type of the expression, which must be an
5352 -- aggregate of a definite type.
5353
e5f2c03c 5354 if Is_Class_Wide_Type (Ret_Obj_Typ) then
2b3d67a5
AC
5355 Heap_Allocator :=
5356 Make_Allocator (Loc,
5357 Expression =>
e4494292 5358 New_Occurrence_Of
e5f2c03c 5359 (Etype (Ret_Obj_Expr), Loc));
2b3d67a5
AC
5360 else
5361 Heap_Allocator :=
5362 Make_Allocator (Loc,
5363 Expression =>
e5f2c03c 5364 New_Occurrence_Of (Ret_Obj_Typ, Loc));
2b3d67a5
AC
5365 end if;
5366
5367 -- If the object requires default initialization then
5368 -- that will happen later following the elaboration of
5369 -- the object renaming. If we don't turn it off here
5370 -- then the object will be default initialized twice.
5371
5372 Set_No_Initialization (Heap_Allocator);
5373 end if;
5374
3a248f7c
BD
5375 -- Set the flag indicating that the allocator came from
5376 -- a build-in-place return statement, so we can avoid
5377 -- adjusting the allocated object. Note that this flag
5378 -- will be inherited by the copies made below.
5379
5380 Set_Alloc_For_BIP_Return (Heap_Allocator);
5381
200b7162 5382 -- The Pool_Allocator is just like the Heap_Allocator,
8417f4b2
AC
5383 -- except we set Storage_Pool and Procedure_To_Call so
5384 -- it will use the user-defined storage pool.
200b7162 5385
6a4f3b31
HK
5386 Pool_Allocator :=
5387 New_Copy_Tree
5388 (Source => Heap_Allocator,
5389 Scopes_In_EWA_OK => True);
5390
3a248f7c 5391 pragma Assert (Alloc_For_BIP_Return (Pool_Allocator));
8417f4b2
AC
5392
5393 -- Do not generate the renaming of the build-in-place
535a8637
AC
5394 -- pool parameter on ZFP because the parameter is not
5395 -- created in the first place.
8417f4b2 5396
535a8637 5397 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8417f4b2
AC
5398 Pool_Decl :=
5399 Make_Object_Renaming_Declaration (Loc,
5400 Defining_Identifier => Pool_Id,
5401 Subtype_Mark =>
e4494292 5402 New_Occurrence_Of
8417f4b2
AC
5403 (RTE (RE_Root_Storage_Pool), Loc),
5404 Name =>
5405 Make_Explicit_Dereference (Loc,
e4494292 5406 New_Occurrence_Of
8417f4b2 5407 (Build_In_Place_Formal
e5f2c03c 5408 (Func_Id, BIP_Storage_Pool), Loc)));
8417f4b2
AC
5409 Set_Storage_Pool (Pool_Allocator, Pool_Id);
5410 Set_Procedure_To_Call
5411 (Pool_Allocator, RTE (RE_Allocate_Any));
5412 else
5413 Pool_Decl := Make_Null_Statement (Loc);
5414 end if;
200b7162 5415
2b3d67a5
AC
5416 -- If the No_Allocators restriction is active, then only
5417 -- an allocator for secondary stack allocation is needed.
5418 -- It's OK for such allocators to have Comes_From_Source
5419 -- set to False, because gigi knows not to flag them as
5420 -- being a violation of No_Implicit_Heap_Allocations.
5421
5422 if Restriction_Active (No_Allocators) then
5423 SS_Allocator := Heap_Allocator;
5424 Heap_Allocator := Make_Null (Loc);
200b7162 5425 Pool_Allocator := Make_Null (Loc);
2b3d67a5 5426
200b7162
BD
5427 -- Otherwise the heap and pool allocators may be needed,
5428 -- so we make another allocator for secondary stack
5429 -- allocation.
2b3d67a5
AC
5430
5431 else
6a4f3b31
HK
5432 SS_Allocator :=
5433 New_Copy_Tree
5434 (Source => Heap_Allocator,
5435 Scopes_In_EWA_OK => True);
5436
3a248f7c 5437 pragma Assert (Alloc_For_BIP_Return (SS_Allocator));
2b3d67a5 5438
3e7302c3 5439 -- The heap and pool allocators are marked as
200b7162
BD
5440 -- Comes_From_Source since they correspond to an
5441 -- explicit user-written allocator (that is, it will
5442 -- only be executed on behalf of callers that call the
3e7302c3
AC
5443 -- function as initialization for such an allocator).
5444 -- Prevents errors when No_Implicit_Heap_Allocations
5445 -- is in force.
2b3d67a5
AC
5446
5447 Set_Comes_From_Source (Heap_Allocator, True);
200b7162 5448 Set_Comes_From_Source (Pool_Allocator, True);
2b3d67a5
AC
5449 end if;
5450
abbfd698 5451 -- The allocator is returned on the secondary stack
2b3d67a5 5452
abbfd698 5453 Check_Restriction (No_Secondary_Stack, N);
535a8637
AC
5454 Set_Storage_Pool (SS_Allocator, RTE (RE_SS_Pool));
5455 Set_Procedure_To_Call
5456 (SS_Allocator, RTE (RE_SS_Allocate));
5457
5458 -- The allocator is returned on the secondary stack,
5459 -- so indicate that the function return, as well as
c79f6efd 5460 -- all blocks that encloses the allocator, must not
535a8637
AC
5461 -- release it. The flags must be set now because
5462 -- the decision to use the secondary stack is done
5463 -- very late in the course of expanding the return
5464 -- statement, past the point where these flags are
5465 -- normally set.
5466
e5f2c03c 5467 Set_Uses_Sec_Stack (Func_Id);
535a8637 5468 Set_Uses_Sec_Stack (Return_Statement_Entity (N));
c79f6efd
BD
5469 Set_Sec_Stack_Needed_For_Return
5470 (Return_Statement_Entity (N));
5471 Set_Enclosing_Sec_Stack_Return (N);
2b3d67a5 5472
640ad9c2
HK
5473 -- Guard against poor expansion on the caller side by
5474 -- using a raise statement to catch out-of-range values
5475 -- of formal parameter BIP_Alloc_Form.
5476
5477 if Exceptions_OK then
5478 Guard_Except :=
5479 Make_Raise_Program_Error (Loc,
5480 Reason => PE_Build_In_Place_Mismatch);
5481 else
5482 Guard_Except := Make_Null_Statement (Loc);
5483 end if;
5484
2b3d67a5
AC
5485 -- Create an if statement to test the BIP_Alloc_Form
5486 -- formal and initialize the access object to either the
200b7162
BD
5487 -- BIP_Object_Access formal (BIP_Alloc_Form =
5488 -- Caller_Allocation), the result of allocating the
5489 -- object in the secondary stack (BIP_Alloc_Form =
5490 -- Secondary_Stack), or else an allocator to create the
5491 -- return object in the heap or user-defined pool
5492 -- (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
2b3d67a5
AC
5493
5494 -- ??? An unchecked type conversion must be made in the
5495 -- case of assigning the access object formal to the
5496 -- local access object, because a normal conversion would
5497 -- be illegal in some cases (such as converting access-
5498 -- to-unconstrained to access-to-constrained), but the
5499 -- the unchecked conversion will presumably fail to work
5500 -- right in just such cases. It's not clear at all how to
5501 -- handle this. ???
5502
5503 Alloc_If_Stmt :=
5504 Make_If_Statement (Loc,
df3e68b1 5505 Condition =>
2b3d67a5 5506 Make_Op_Eq (Loc,
2c1b72d7 5507 Left_Opnd =>
e4494292 5508 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
2b3d67a5
AC
5509 Right_Opnd =>
5510 Make_Integer_Literal (Loc,
5511 UI_From_Int (BIP_Allocation_Form'Pos
5512 (Caller_Allocation)))),
df3e68b1
HK
5513
5514 Then_Statements => New_List (
5515 Make_Assignment_Statement (Loc,
2c1b72d7 5516 Name =>
e4494292 5517 New_Occurrence_Of (Alloc_Obj_Id, Loc),
df3e68b1
HK
5518 Expression =>
5519 Make_Unchecked_Type_Conversion (Loc,
5520 Subtype_Mark =>
e4494292 5521 New_Occurrence_Of (Ref_Type, Loc),
2c1b72d7 5522 Expression =>
e5f2c03c 5523 New_Occurrence_Of (Obj_Acc_Formal, Loc)))),
df3e68b1
HK
5524
5525 Elsif_Parts => New_List (
5526 Make_Elsif_Part (Loc,
5527 Condition =>
5528 Make_Op_Eq (Loc,
2c1b72d7 5529 Left_Opnd =>
e4494292 5530 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
df3e68b1
HK
5531 Right_Opnd =>
5532 Make_Integer_Literal (Loc,
5533 UI_From_Int (BIP_Allocation_Form'Pos
2b3d67a5 5534 (Secondary_Stack)))),
df3e68b1
HK
5535
5536 Then_Statements => New_List (
5537 Make_Assignment_Statement (Loc,
2c1b72d7 5538 Name =>
e4494292 5539 New_Occurrence_Of (Alloc_Obj_Id, Loc),
200b7162
BD
5540 Expression => SS_Allocator))),
5541
5542 Make_Elsif_Part (Loc,
5543 Condition =>
5544 Make_Op_Eq (Loc,
5545 Left_Opnd =>
e4494292 5546 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
200b7162
BD
5547 Right_Opnd =>
5548 Make_Integer_Literal (Loc,
5549 UI_From_Int (BIP_Allocation_Form'Pos
5550 (Global_Heap)))),
5551
5552 Then_Statements => New_List (
7d1d3a54 5553 Build_Heap_Or_Pool_Allocator
200b7162
BD
5554 (Temp_Id => Alloc_Obj_Id,
5555 Temp_Typ => Ref_Type,
e5f2c03c
AC
5556 Func_Id => Func_Id,
5557 Ret_Typ => Ret_Obj_Typ,
5168a9b3
PMR
5558 Alloc_Expr => Heap_Allocator))),
5559
5560 -- ???If all is well, we can put the following
5561 -- 'elsif' in the 'else', but this is a useful
5562 -- self-check in case caller and callee don't agree
5563 -- on whether BIPAlloc and so on should be passed.
5564
5565 Make_Elsif_Part (Loc,
5566 Condition =>
5567 Make_Op_Eq (Loc,
5568 Left_Opnd =>
5569 New_Occurrence_Of (Obj_Alloc_Formal, Loc),
5570 Right_Opnd =>
5571 Make_Integer_Literal (Loc,
5572 UI_From_Int (BIP_Allocation_Form'Pos
5573 (User_Storage_Pool)))),
5574
5575 Then_Statements => New_List (
5576 Pool_Decl,
7d1d3a54 5577 Build_Heap_Or_Pool_Allocator
5168a9b3
PMR
5578 (Temp_Id => Alloc_Obj_Id,
5579 Temp_Typ => Ref_Type,
5580 Func_Id => Func_Id,
5581 Ret_Typ => Ret_Obj_Typ,
5582 Alloc_Expr => Pool_Allocator)))),
5583
5584 -- Raise Program_Error if it's none of the above;
fc47ef60 5585 -- this is a compiler bug.
df3e68b1 5586
640ad9c2 5587 Else_Statements => New_List (Guard_Except));
2b3d67a5
AC
5588
5589 -- If a separate initialization assignment was created
5590 -- earlier, append that following the assignment of the
5591 -- implicit access formal to the access object, to ensure
54bf19e4
AC
5592 -- that the return object is initialized in that case. In
5593 -- this situation, the target of the assignment must be
5594 -- rewritten to denote a dereference of the access to the
5595 -- return object passed in by the caller.
2b3d67a5
AC
5596
5597 if Present (Init_Assignment) then
5598 Rewrite (Name (Init_Assignment),
5599 Make_Explicit_Dereference (Loc,
e4494292 5600 Prefix => New_Occurrence_Of (Alloc_Obj_Id, Loc)));
56af8688
PMR
5601 pragma Assert
5602 (Assignment_OK
5603 (Original_Node (Name (Init_Assignment))));
5604 Set_Assignment_OK (Name (Init_Assignment));
df3e68b1 5605
e5f2c03c 5606 Set_Etype (Name (Init_Assignment), Etype (Ret_Obj_Id));
2b3d67a5
AC
5607
5608 Append_To
2c1b72d7 5609 (Then_Statements (Alloc_If_Stmt), Init_Assignment);
2b3d67a5
AC
5610 end if;
5611
df3e68b1 5612 Insert_Before (Ret_Obj_Decl, Alloc_If_Stmt);
2b3d67a5
AC
5613
5614 -- Remember the local access object for use in the
5615 -- dereference of the renaming created below.
5616
bde9a2c2
EB
5617 Obj_Acc_Formal := Alloc_Obj_Id;
5618 end;
5619
5620 -- When the function's subtype is unconstrained and a run-time
5621 -- test is not needed, we nevertheless need to build the return
5622 -- using the function's result subtype.
5623
5624 elsif not Is_Constrained (Underlying_Type (Etype (Func_Id)))
5625 then
5626 declare
5627 Alloc_Obj_Id : Entity_Id;
5628 Alloc_Obj_Decl : Node_Id;
5629 Ptr_Type_Decl : Node_Id;
5630 Ref_Type : Entity_Id;
5631
5632 begin
5633 -- Create an access type designating the function's
5634 -- result subtype.
5635
5636 Ref_Type := Make_Temporary (Loc, 'A');
5637
5638 Ptr_Type_Decl :=
5639 Make_Full_Type_Declaration (Loc,
5640 Defining_Identifier => Ref_Type,
5641 Type_Definition =>
5642 Make_Access_To_Object_Definition (Loc,
5643 All_Present => True,
5644 Subtype_Indication =>
5645 New_Occurrence_Of (Ret_Obj_Typ, Loc)));
5646
5647 Insert_Before (Ret_Obj_Decl, Ptr_Type_Decl);
5648
5649 -- Create an access object initialized to the conversion
5650 -- of the implicit access value passed in by the caller.
5651
5652 Alloc_Obj_Id := Make_Temporary (Loc, 'R');
5653 Set_Etype (Alloc_Obj_Id, Ref_Type);
5654
5655 -- See the ??? comment a few lines above about the use of
5656 -- an unchecked conversion here.
5657
5658 Alloc_Obj_Decl :=
5659 Make_Object_Declaration (Loc,
5660 Defining_Identifier => Alloc_Obj_Id,
5661 Object_Definition =>
5662 New_Occurrence_Of (Ref_Type, Loc),
5663 Expression =>
5664 Make_Unchecked_Type_Conversion (Loc,
5665 Subtype_Mark =>
5666 New_Occurrence_Of (Ref_Type, Loc),
5667 Expression =>
5668 New_Occurrence_Of (Obj_Acc_Formal, Loc)));
5669
5670 Insert_Before (Ret_Obj_Decl, Alloc_Obj_Decl);
5671
5672 -- Remember the local access object for use in the
5673 -- dereference of the renaming created below.
5674
e5f2c03c 5675 Obj_Acc_Formal := Alloc_Obj_Id;
2b3d67a5
AC
5676 end;
5677 end if;
5678
5679 -- Replace the return object declaration with a renaming of a
5680 -- dereference of the access value designating the return
5681 -- object.
5682
5683 Obj_Acc_Deref :=
5684 Make_Explicit_Dereference (Loc,
e5f2c03c 5685 Prefix => New_Occurrence_Of (Obj_Acc_Formal, Loc));
2b3d67a5 5686
df3e68b1 5687 Rewrite (Ret_Obj_Decl,
2b3d67a5 5688 Make_Object_Renaming_Declaration (Loc,
e5f2c03c 5689 Defining_Identifier => Ret_Obj_Id,
2c1b72d7 5690 Access_Definition => Empty,
e5f2c03c 5691 Subtype_Mark => New_Occurrence_Of (Ret_Obj_Typ, Loc),
2c1b72d7 5692 Name => Obj_Acc_Deref));
2b3d67a5 5693
e5f2c03c 5694 Set_Renamed_Object (Ret_Obj_Id, Obj_Acc_Deref);
2b3d67a5
AC
5695 end;
5696 end if;
5697
5698 -- Case where we do not build a block
5699
5700 else
df3e68b1
HK
5701 -- We're about to drop Return_Object_Declarations on the floor, so
5702 -- we need to insert it, in case it got expanded into useful code.
2b3d67a5
AC
5703 -- Remove side effects from expression, which may be duplicated in
5704 -- subsequent checks (see Expand_Simple_Function_Return).
5705
df3e68b1 5706 Insert_List_Before (N, Return_Object_Declarations (N));
2b3d67a5
AC
5707 Remove_Side_Effects (Exp);
5708
5709 -- Build simple_return_statement that returns the expression directly
5710
df3e68b1
HK
5711 Return_Stmt := Make_Simple_Return_Statement (Loc, Expression => Exp);
5712 Result := Return_Stmt;
2b3d67a5
AC
5713 end if;
5714
5715 -- Set the flag to prevent infinite recursion
5716
df3e68b1 5717 Set_Comes_From_Extended_Return_Statement (Return_Stmt);
2b3d67a5
AC
5718
5719 Rewrite (N, Result);
bde9a2c2 5720 Analyze (N, Suppress => All_Checks);
2b3d67a5
AC
5721 end Expand_N_Extended_Return_Statement;
5722
70482933
RK
5723 ----------------------------
5724 -- Expand_N_Function_Call --
5725 ----------------------------
5726
5727 procedure Expand_N_Function_Call (N : Node_Id) is
70482933 5728 begin
ac4d6407 5729 Expand_Call (N);
70482933
RK
5730 end Expand_N_Function_Call;
5731
5732 ---------------------------------------
5733 -- Expand_N_Procedure_Call_Statement --
5734 ---------------------------------------
5735
5736 procedure Expand_N_Procedure_Call_Statement (N : Node_Id) is
5737 begin
1af4455a 5738 Expand_Call (N);
70482933
RK
5739 end Expand_N_Procedure_Call_Statement;
5740
2b3d67a5
AC
5741 --------------------------------------
5742 -- Expand_N_Simple_Return_Statement --
5743 --------------------------------------
5744
5745 procedure Expand_N_Simple_Return_Statement (N : Node_Id) is
5746 begin
5747 -- Defend against previous errors (i.e. the return statement calls a
5748 -- function that is not available in configurable runtime).
5749
5750 if Present (Expression (N))
5751 and then Nkind (Expression (N)) = N_Empty
5752 then
ee2ba856 5753 Check_Error_Detected;
2b3d67a5
AC
5754 return;
5755 end if;
5756
5757 -- Distinguish the function and non-function cases:
5758
5759 case Ekind (Return_Applies_To (Return_Statement_Entity (N))) is
d8f43ee6
HK
5760 when E_Function
5761 | E_Generic_Function
5762 =>
2b3d67a5
AC
5763 Expand_Simple_Function_Return (N);
5764
d8f43ee6
HK
5765 when E_Entry
5766 | E_Entry_Family
5767 | E_Generic_Procedure
5768 | E_Procedure
5769 | E_Return_Statement
5770 =>
2b3d67a5
AC
5771 Expand_Non_Function_Return (N);
5772
5773 when others =>
5774 raise Program_Error;
5775 end case;
5776
5777 exception
5778 when RE_Not_Available =>
5779 return;
5780 end Expand_N_Simple_Return_Statement;
5781
70482933
RK
5782 ------------------------------
5783 -- Expand_N_Subprogram_Body --
5784 ------------------------------
5785
4a3b249c
RD
5786 -- Add poll call if ATC polling is enabled, unless the body will be inlined
5787 -- by the back-end.
70482933 5788
7888a6ae 5789 -- Add dummy push/pop label nodes at start and end to clear any local
4a3b249c 5790 -- exception indications if local-exception-to-goto optimization is active.
7888a6ae 5791
f44fe430
RD
5792 -- Add return statement if last statement in body is not a return statement
5793 -- (this makes things easier on Gigi which does not want to have to handle
5794 -- a missing return).
70482933
RK
5795
5796 -- Add call to Activate_Tasks if body is a task activator
5797
5798 -- Deal with possible detection of infinite recursion
5799
5800 -- Eliminate body completely if convention stubbed
5801
5802 -- Encode entity names within body, since we will not need to reference
5803 -- these entities any longer in the front end.
5804
5805 -- Initialize scalar out parameters if Initialize/Normalize_Scalars
5806
c9a4817d 5807 -- Reset Pure indication if any parameter has root type System.Address
199c6a10
AC
5808 -- or has any parameters of limited types, where limited means that the
5809 -- run-time view is limited (i.e. the full type is limited).
c9a4817d 5810
12e0c41c
AC
5811 -- Wrap thread body
5812
70482933 5813 procedure Expand_N_Subprogram_Body (N : Node_Id) is
1af4455a
HK
5814 Body_Id : constant Entity_Id := Defining_Entity (N);
5815 HSS : constant Node_Id := Handled_Statement_Sequence (N);
5816 Loc : constant Source_Ptr := Sloc (N);
70482933 5817
2700b9c1
AC
5818 procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id);
5819 -- Append a return statement to the statement sequence Stmts if the last
5820 -- statement is not already a return or a goto statement. Note that the
5821 -- latter test is not critical, it does not matter if we add a few extra
5822 -- returns, since they get eliminated anyway later on. Spec_Id denotes
5823 -- the corresponding spec of the subprogram body.
5824
70482933
RK
5825 ----------------
5826 -- Add_Return --
5827 ----------------
5828
2700b9c1 5829 procedure Add_Return (Spec_Id : Entity_Id; Stmts : List_Id) is
c9d70ab1
AC
5830 Last_Stmt : Node_Id;
5831 Loc : Source_Ptr;
5832 Stmt : Node_Id;
12e0c41c
AC
5833
5834 begin
7888a6ae
GD
5835 -- Get last statement, ignoring any Pop_xxx_Label nodes, which are
5836 -- not relevant in this context since they are not executable.
12e0c41c 5837
2700b9c1 5838 Last_Stmt := Last (Stmts);
c9d70ab1
AC
5839 while Nkind (Last_Stmt) in N_Pop_xxx_Label loop
5840 Prev (Last_Stmt);
7888a6ae 5841 end loop;
12e0c41c 5842
7888a6ae 5843 -- Now insert return unless last statement is a transfer
12e0c41c 5844
c9d70ab1 5845 if not Is_Transfer (Last_Stmt) then
12e0c41c 5846
7888a6ae
GD
5847 -- The source location for the return is the end label of the
5848 -- procedure if present. Otherwise use the sloc of the last
5849 -- statement in the list. If the list comes from a generated
5850 -- exception handler and we are not debugging generated code,
5851 -- all the statements within the handler are made invisible
5852 -- to the debugger.
12e0c41c 5853
2700b9c1
AC
5854 if Nkind (Parent (Stmts)) = N_Exception_Handler
5855 and then not Comes_From_Source (Parent (Stmts))
7888a6ae 5856 then
c9d70ab1 5857 Loc := Sloc (Last_Stmt);
241ebe89
HK
5858 elsif Present (End_Label (HSS)) then
5859 Loc := Sloc (End_Label (HSS));
7888a6ae 5860 else
c9d70ab1 5861 Loc := Sloc (Last_Stmt);
7888a6ae 5862 end if;
12e0c41c 5863
c9d70ab1
AC
5864 -- Append return statement, and set analyzed manually. We can't
5865 -- call Analyze on this return since the scope is wrong.
5334d18f 5866
c9d70ab1
AC
5867 -- Note: it almost works to push the scope and then do the Analyze
5868 -- call, but something goes wrong in some weird cases and it is
5869 -- not worth worrying about ???
5334d18f 5870
c9d70ab1 5871 Stmt := Make_Simple_Return_Statement (Loc);
5334d18f 5872
c9d70ab1
AC
5873 -- The return statement is handled properly, and the call to the
5874 -- postcondition, inserted below, does not require information
5875 -- from the body either. However, that call is analyzed in the
5876 -- enclosing scope, and an elaboration check might improperly be
5877 -- added to it. A guard in Sem_Elab is needed to prevent that
5878 -- spurious check, see Check_Elab_Call.
6a74a7b0 5879
2700b9c1 5880 Append_To (Stmts, Stmt);
c9d70ab1 5881 Set_Analyzed (Stmt);
5334d18f 5882
c9d70ab1
AC
5883 -- Call the _Postconditions procedure if the related subprogram
5884 -- has contract assertions that need to be verified on exit.
5334d18f 5885
c9d70ab1
AC
5886 if Ekind (Spec_Id) = E_Procedure
5887 and then Present (Postconditions_Proc (Spec_Id))
5888 then
5889 Insert_Action (Stmt,
5890 Make_Procedure_Call_Statement (Loc,
5891 Name =>
5892 New_Occurrence_Of (Postconditions_Proc (Spec_Id), Loc)));
5893 end if;
12e0c41c 5894 end if;
7888a6ae 5895 end Add_Return;
12e0c41c 5896
4039e173 5897 -- Local variables
241ebe89 5898
2700b9c1
AC
5899 Except_H : Node_Id;
5900 L : List_Id;
5901 Spec_Id : Entity_Id;
5902
70482933
RK
5903 -- Start of processing for Expand_N_Subprogram_Body
5904
5905 begin
1af4455a
HK
5906 if Present (Corresponding_Spec (N)) then
5907 Spec_Id := Corresponding_Spec (N);
5908 else
5909 Spec_Id := Body_Id;
5910 end if;
241ebe89 5911
90e7b558
AC
5912 -- If this is a Pure function which has any parameters whose root type
5913 -- is System.Address, reset the Pure indication.
5914 -- This check is also performed when the subprogram is frozen, but we
5915 -- repeat it on the body so that the indication is consistent, and so
5916 -- it applies as well to bodies without separate specifications.
5917
5918 if Is_Pure (Spec_Id)
5919 and then Is_Subprogram (Spec_Id)
5920 and then not Has_Pragma_Pure_Function (Spec_Id)
5921 then
5922 Check_Function_With_Address_Parameter (Spec_Id);
5923
5924 if Spec_Id /= Body_Id then
5925 Set_Is_Pure (Body_Id, Is_Pure (Spec_Id));
5926 end if;
5927 end if;
5928
4a3b249c
RD
5929 -- Set L to either the list of declarations if present, or to the list
5930 -- of statements if no declarations are present. This is used to insert
5931 -- new stuff at the start.
70482933
RK
5932
5933 if Is_Non_Empty_List (Declarations (N)) then
5934 L := Declarations (N);
5935 else
241ebe89 5936 L := Statements (HSS);
7888a6ae
GD
5937 end if;
5938
5939 -- If local-exception-to-goto optimization active, insert dummy push
1adaea16
AC
5940 -- statements at start, and dummy pop statements at end, but inhibit
5941 -- this if we have No_Exception_Handlers, since they are useless and
3747db82
ES
5942 -- interfere with analysis, e.g. by CodePeer. We also don't need these
5943 -- if we're unnesting subprograms because the only purpose of these
5944 -- nodes is to ensure we don't set a label in one subprogram and branch
5945 -- to it in another.
7888a6ae
GD
5946
5947 if (Debug_Flag_Dot_G
5948 or else Restriction_Active (No_Exception_Propagation))
1adaea16
AC
5949 and then not Restriction_Active (No_Exception_Handlers)
5950 and then not CodePeer_Mode
3747db82 5951 and then not Unnest_Subprogram_Mode
7888a6ae
GD
5952 and then Is_Non_Empty_List (L)
5953 then
5954 declare
5955 FS : constant Node_Id := First (L);
5956 FL : constant Source_Ptr := Sloc (FS);
5957 LS : Node_Id;
5958 LL : Source_Ptr;
5959
5960 begin
5961 -- LS points to either last statement, if statements are present
5962 -- or to the last declaration if there are no statements present.
5963 -- It is the node after which the pop's are generated.
5964
241ebe89
HK
5965 if Is_Non_Empty_List (Statements (HSS)) then
5966 LS := Last (Statements (HSS));
7888a6ae
GD
5967 else
5968 LS := Last (L);
5969 end if;
5970
5971 LL := Sloc (LS);
5972
5973 Insert_List_Before_And_Analyze (FS, New_List (
5974 Make_Push_Constraint_Error_Label (FL),
5975 Make_Push_Program_Error_Label (FL),
5976 Make_Push_Storage_Error_Label (FL)));
5977
5978 Insert_List_After_And_Analyze (LS, New_List (
5979 Make_Pop_Constraint_Error_Label (LL),
5980 Make_Pop_Program_Error_Label (LL),
5981 Make_Pop_Storage_Error_Label (LL)));
5982 end;
70482933
RK
5983 end if;
5984
7888a6ae
GD
5985 -- Need poll on entry to subprogram if polling enabled. We only do this
5986 -- for non-empty subprograms, since it does not seem necessary to poll
4a3b249c 5987 -- for a dummy null subprogram.
c885d7a1
AC
5988
5989 if Is_Non_Empty_List (L) then
4a3b249c
RD
5990
5991 -- Do not add a polling call if the subprogram is to be inlined by
5992 -- the back-end, to avoid repeated calls with multiple inlinings.
5993
c885d7a1
AC
5994 if Is_Inlined (Spec_Id)
5995 and then Front_End_Inlining
5996 and then Optimization_Level > 1
5997 then
5998 null;
5999 else
6000 Generate_Poll_Call (First (L));
6001 end if;
6002 end if;
6003
70482933
RK
6004 -- Initialize any scalar OUT args if Initialize/Normalize_Scalars
6005
6006 if Init_Or_Norm_Scalars and then Is_Subprogram (Spec_Id) then
6007 declare
2f1b20a9 6008 F : Entity_Id;
05c064c1 6009 A : Node_Id;
70482933
RK
6010
6011 begin
70482933
RK
6012 -- Loop through formals
6013
2f1b20a9 6014 F := First_Formal (Spec_Id);
70482933
RK
6015 while Present (F) loop
6016 if Is_Scalar_Type (Etype (F))
6017 and then Ekind (F) = E_Out_Parameter
6018 then
70f91180
RD
6019 Check_Restriction (No_Default_Initialization, F);
6020
02822a92
RD
6021 -- Insert the initialization. We turn off validity checks
6022 -- for this assignment, since we do not want any check on
6023 -- the initial value itself (which may well be invalid).
05c064c1 6024 -- Predicate checks are disabled as well (RM 6.4.1 (13/3))
02822a92 6025
c9d70ab1
AC
6026 A :=
6027 Make_Assignment_Statement (Loc,
02822a92 6028 Name => New_Occurrence_Of (F, Loc),
05c064c1
AC
6029 Expression => Get_Simple_Init_Val (Etype (F), N));
6030 Set_Suppress_Assignment_Checks (A);
6031
6032 Insert_Before_And_Analyze (First (L),
6033 A, Suppress => Validity_Check);
70482933
RK
6034 end if;
6035
6036 Next_Formal (F);
6037 end loop;
70482933
RK
6038 end;
6039 end if;
6040
6041 -- Clear out statement list for stubbed procedure
6042
6043 if Present (Corresponding_Spec (N)) then
6044 Set_Elaboration_Flag (N, Spec_Id);
6045
6046 if Convention (Spec_Id) = Convention_Stubbed
6047 or else Is_Eliminated (Spec_Id)
6048 then
6049 Set_Declarations (N, Empty_List);
6050 Set_Handled_Statement_Sequence (N,
6051 Make_Handled_Sequence_Of_Statements (Loc,
2c1b72d7 6052 Statements => New_List (Make_Null_Statement (Loc))));
241ebe89 6053
70482933
RK
6054 return;
6055 end if;
6056 end if;
6057
70f91180
RD
6058 -- Create a set of discriminals for the next protected subprogram body
6059
6060 if Is_List_Member (N)
6061 and then Present (Parent (List_Containing (N)))
6062 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
6063 and then Present (Next_Protected_Operation (N))
6064 then
6065 Set_Discriminals (Parent (Base_Type (Scope (Spec_Id))));
6066 end if;
6067
4a3b249c
RD
6068 -- Returns_By_Ref flag is normally set when the subprogram is frozen but
6069 -- subprograms with no specs are not frozen.
70482933
RK
6070
6071 declare
6072 Typ : constant Entity_Id := Etype (Spec_Id);
6073 Utyp : constant Entity_Id := Underlying_Type (Typ);
6074
6075 begin
d6e1090a 6076 if Is_Limited_View (Typ) then
70482933
RK
6077 Set_Returns_By_Ref (Spec_Id);
6078
048e5cef 6079 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
70482933
RK
6080 Set_Returns_By_Ref (Spec_Id);
6081 end if;
6082 end;
6083
4a3b249c
RD
6084 -- For a procedure, we add a return for all possible syntactic ends of
6085 -- the subprogram.
70482933 6086
b29def53 6087 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure) then
2700b9c1 6088 Add_Return (Spec_Id, Statements (HSS));
70482933 6089
241ebe89
HK
6090 if Present (Exception_Handlers (HSS)) then
6091 Except_H := First_Non_Pragma (Exception_Handlers (HSS));
70482933 6092 while Present (Except_H) loop
2700b9c1 6093 Add_Return (Spec_Id, Statements (Except_H));
70482933
RK
6094 Next_Non_Pragma (Except_H);
6095 end loop;
6096 end if;
6097
98f01d53
AC
6098 -- For a function, we must deal with the case where there is at least
6099 -- one missing return. What we do is to wrap the entire body of the
6100 -- function in a block:
70482933
RK
6101
6102 -- begin
6103 -- ...
6104 -- end;
6105
6106 -- becomes
6107
6108 -- begin
6109 -- begin
6110 -- ...
6111 -- end;
6112
6113 -- raise Program_Error;
6114 -- end;
6115
4a3b249c
RD
6116 -- This approach is necessary because the raise must be signalled to the
6117 -- caller, not handled by any local handler (RM 6.4(11)).
70482933 6118
4a3b249c
RD
6119 -- Note: we do not need to analyze the constructed sequence here, since
6120 -- it has no handler, and an attempt to analyze the handled statement
6121 -- sequence twice is risky in various ways (e.g. the issue of expanding
6122 -- cleanup actions twice).
70482933
RK
6123
6124 elsif Has_Missing_Return (Spec_Id) then
6125 declare
241ebe89 6126 Hloc : constant Source_Ptr := Sloc (HSS);
70482933
RK
6127 Blok : constant Node_Id :=
6128 Make_Block_Statement (Hloc,
241ebe89 6129 Handled_Statement_Sequence => HSS);
70482933 6130 Rais : constant Node_Id :=
07fc65c4
GB
6131 Make_Raise_Program_Error (Hloc,
6132 Reason => PE_Missing_Return);
70482933
RK
6133
6134 begin
6135 Set_Handled_Statement_Sequence (N,
6136 Make_Handled_Sequence_Of_Statements (Hloc,
6137 Statements => New_List (Blok, Rais)));
6138
7888a6ae 6139 Push_Scope (Spec_Id);
70482933
RK
6140 Analyze (Blok);
6141 Analyze (Rais);
6142 Pop_Scope;
6143 end;
6144 end if;
6145
70482933
RK
6146 -- If subprogram contains a parameterless recursive call, then we may
6147 -- have an infinite recursion, so see if we can generate code to check
6148 -- for this possibility if storage checks are not suppressed.
6149
6150 if Ekind (Spec_Id) = E_Procedure
6151 and then Has_Recursive_Call (Spec_Id)
6152 and then not Storage_Checks_Suppressed (Spec_Id)
6153 then
6154 Detect_Infinite_Recursion (N, Spec_Id);
6155 end if;
6156
70482933
RK
6157 -- Set to encode entity names in package body before gigi is called
6158
6159 Qualify_Entity_Names (N);
7327f5c2
AC
6160
6161 -- If the body belongs to a nonabstract library-level source primitive
6162 -- of a tagged type, install an elaboration check which ensures that a
6163 -- dispatching call targeting the primitive will not execute the body
6164 -- without it being previously elaborated.
6165
6166 Install_Primitive_Elaboration_Check (N);
70482933
RK
6167 end Expand_N_Subprogram_Body;
6168
6169 -----------------------------------
6170 -- Expand_N_Subprogram_Body_Stub --
6171 -----------------------------------
6172
6173 procedure Expand_N_Subprogram_Body_Stub (N : Node_Id) is
31ae1b46 6174 Bod : Node_Id;
c37e6613 6175
70482933
RK
6176 begin
6177 if Present (Corresponding_Body (N)) then
31ae1b46
AC
6178 Bod := Unit_Declaration_Node (Corresponding_Body (N));
6179
6180 -- The body may have been expanded already when it is analyzed
6181 -- through the subunit node. Do no expand again: it interferes
6182 -- with the construction of unnesting tables when generating C.
6183
6184 if not Analyzed (Bod) then
6185 Expand_N_Subprogram_Body (Bod);
6186 end if;
6187
6188 -- Add full qualification to entities that may be created late
6189 -- during unnesting.
6190
6191 Qualify_Entity_Names (N);
70482933 6192 end if;
70482933
RK
6193 end Expand_N_Subprogram_Body_Stub;
6194
6195 -------------------------------------
6196 -- Expand_N_Subprogram_Declaration --
6197 -------------------------------------
6198
70482933
RK
6199 -- If the declaration appears within a protected body, it is a private
6200 -- operation of the protected type. We must create the corresponding
6201 -- protected subprogram an associated formals. For a normal protected
6202 -- operation, this is done when expanding the protected type declaration.
6203
758c442c
GD
6204 -- If the declaration is for a null procedure, emit null body
6205
70482933 6206 procedure Expand_N_Subprogram_Declaration (N : Node_Id) is
2700b9c1
AC
6207 Loc : constant Source_Ptr := Sloc (N);
6208 Subp : constant Entity_Id := Defining_Entity (N);
6209
2700b9c1
AC
6210 -- Local variables
6211
1af4455a 6212 Scop : constant Entity_Id := Scope (Subp);
fbf5a39b 6213 Prot_Bod : Node_Id;
241ebe89 6214 Prot_Decl : Node_Id;
fbf5a39b 6215 Prot_Id : Entity_Id;
70482933 6216
2700b9c1
AC
6217 -- Start of processing for Expand_N_Subprogram_Declaration
6218
70482933 6219 begin
2ba431e5
YM
6220 -- In SPARK, subprogram declarations are only allowed in package
6221 -- specifications.
7ff2d234 6222
fe5d3068
YM
6223 if Nkind (Parent (N)) /= N_Package_Specification then
6224 if Nkind (Parent (N)) = N_Compilation_Unit then
ce5ba43a 6225 Check_SPARK_05_Restriction
fe5d3068
YM
6226 ("subprogram declaration is not a library item", N);
6227
6228 elsif Present (Next (N))
7ff2d234 6229 and then Nkind (Next (N)) = N_Pragma
533e3abc 6230 and then Get_Pragma_Id (Next (N)) = Pragma_Import
7ff2d234 6231 then
2ba431e5 6232 -- In SPARK, subprogram declarations are also permitted in
7ff2d234
AC
6233 -- declarative parts when immediately followed by a corresponding
6234 -- pragma Import. We only check here that there is some pragma
6235 -- Import.
6236
6237 null;
6238 else
ce5ba43a 6239 Check_SPARK_05_Restriction
fe5d3068 6240 ("subprogram declaration is not allowed here", N);
7ff2d234
AC
6241 end if;
6242 end if;
6243
2f1b20a9
ES
6244 -- Deal with case of protected subprogram. Do not generate protected
6245 -- operation if operation is flagged as eliminated.
70482933
RK
6246
6247 if Is_List_Member (N)
6248 and then Present (Parent (List_Containing (N)))
6249 and then Nkind (Parent (List_Containing (N))) = N_Protected_Body
6250 and then Is_Protected_Type (Scop)
6251 then
6871ba5f
AC
6252 if No (Protected_Body_Subprogram (Subp))
6253 and then not Is_Eliminated (Subp)
6254 then
fbf5a39b 6255 Prot_Decl :=
70482933
RK
6256 Make_Subprogram_Declaration (Loc,
6257 Specification =>
6258 Build_Protected_Sub_Specification
2f1b20a9 6259 (N, Scop, Unprotected_Mode));
70482933
RK
6260
6261 -- The protected subprogram is declared outside of the protected
6262 -- body. Given that the body has frozen all entities so far, we
fbf5a39b 6263 -- analyze the subprogram and perform freezing actions explicitly.
19590d70
GD
6264 -- including the generation of an explicit freeze node, to ensure
6265 -- that gigi has the proper order of elaboration.
fbf5a39b
AC
6266 -- If the body is a subunit, the insertion point is before the
6267 -- stub in the parent.
70482933
RK
6268
6269 Prot_Bod := Parent (List_Containing (N));
6270
6271 if Nkind (Parent (Prot_Bod)) = N_Subunit then
6272 Prot_Bod := Corresponding_Stub (Parent (Prot_Bod));
6273 end if;
6274
fbf5a39b
AC
6275 Insert_Before (Prot_Bod, Prot_Decl);
6276 Prot_Id := Defining_Unit_Name (Specification (Prot_Decl));
19590d70 6277 Set_Has_Delayed_Freeze (Prot_Id);
70482933 6278
7888a6ae 6279 Push_Scope (Scope (Scop));
fbf5a39b 6280 Analyze (Prot_Decl);
6b958cec 6281 Freeze_Before (N, Prot_Id);
fbf5a39b 6282 Set_Protected_Body_Subprogram (Subp, Prot_Id);
47bfea3a
AC
6283
6284 -- Create protected operation as well. Even though the operation
6285 -- is only accessible within the body, it is possible to make it
6286 -- available outside of the protected object by using 'Access to
3d923671 6287 -- provide a callback, so build protected version in all cases.
47bfea3a
AC
6288
6289 Prot_Decl :=
3d923671
AC
6290 Make_Subprogram_Declaration (Loc,
6291 Specification =>
6292 Build_Protected_Sub_Specification (N, Scop, Protected_Mode));
47bfea3a
AC
6293 Insert_Before (Prot_Bod, Prot_Decl);
6294 Analyze (Prot_Decl);
6295
70482933
RK
6296 Pop_Scope;
6297 end if;
758c442c 6298
54bf19e4
AC
6299 -- Ada 2005 (AI-348): Generate body for a null procedure. In most
6300 -- cases this is superfluous because calls to it will be automatically
6301 -- inlined, but we definitely need the body if preconditions for the
b912db16 6302 -- procedure are present, or if performing coverage analysis.
02822a92 6303
758c442c
GD
6304 elsif Nkind (Specification (N)) = N_Procedure_Specification
6305 and then Null_Present (Specification (N))
6306 then
6307 declare
e1f3cb58 6308 Bod : constant Node_Id := Body_To_Inline (N);
d6533e74 6309
758c442c 6310 begin
e1f3cb58
AC
6311 Set_Has_Completion (Subp, False);
6312 Append_Freeze_Action (Subp, Bod);
c73ae90f 6313
e1f3cb58
AC
6314 -- The body now contains raise statements, so calls to it will
6315 -- not be inlined.
c73ae90f 6316
e1f3cb58 6317 Set_Is_Inlined (Subp, False);
758c442c 6318 end;
70482933 6319 end if;
2700b9c1
AC
6320
6321 -- When generating C code, transform a function that returns a
6322 -- constrained array type into a procedure with an out parameter
6323 -- that carries the return value.
6324
638f5054
AC
6325 -- We skip this transformation for unchecked conversions, since they
6326 -- are not needed by the C generator (and this also produces cleaner
6327 -- output).
6328
2700b9c1
AC
6329 if Modify_Tree_For_C
6330 and then Nkind (Specification (N)) = N_Function_Specification
6331 and then Is_Array_Type (Etype (Subp))
6332 and then Is_Constrained (Etype (Subp))
638f5054 6333 and then not Is_Unchecked_Conversion_Instance (Subp)
2700b9c1 6334 then
51b42ffa 6335 Build_Procedure_Form (N);
2700b9c1 6336 end if;
70482933
RK
6337 end Expand_N_Subprogram_Declaration;
6338
2b3d67a5
AC
6339 --------------------------------
6340 -- Expand_Non_Function_Return --
6341 --------------------------------
6342
6343 procedure Expand_Non_Function_Return (N : Node_Id) is
6344 pragma Assert (No (Expression (N)));
6345
c9d70ab1
AC
6346 Loc : constant Source_Ptr := Sloc (N);
6347 Scope_Id : Entity_Id := Return_Applies_To (Return_Statement_Entity (N));
6348 Kind : constant Entity_Kind := Ekind (Scope_Id);
6349 Call : Node_Id;
6350 Acc_Stat : Node_Id;
6351 Goto_Stat : Node_Id;
6352 Lab_Node : Node_Id;
2b3d67a5
AC
6353
6354 begin
c9d70ab1
AC
6355 -- Call the _Postconditions procedure if the related subprogram has
6356 -- contract assertions that need to be verified on exit.
6357
6358 if Ekind_In (Scope_Id, E_Entry, E_Entry_Family, E_Procedure)
6359 and then Present (Postconditions_Proc (Scope_Id))
2b3d67a5 6360 then
2b3d67a5
AC
6361 Insert_Action (N,
6362 Make_Procedure_Call_Statement (Loc,
c9d70ab1 6363 Name => New_Occurrence_Of (Postconditions_Proc (Scope_Id), Loc)));
2b3d67a5
AC
6364 end if;
6365
6366 -- If it is a return from a procedure do no extra steps
6367
6368 if Kind = E_Procedure or else Kind = E_Generic_Procedure then
6369 return;
6370
6371 -- If it is a nested return within an extended one, replace it with a
6372 -- return of the previously declared return object.
6373
6374 elsif Kind = E_Return_Statement then
6375 Rewrite (N,
6376 Make_Simple_Return_Statement (Loc,
6377 Expression =>
6378 New_Occurrence_Of (First_Entity (Scope_Id), Loc)));
6379 Set_Comes_From_Extended_Return_Statement (N);
6380 Set_Return_Statement_Entity (N, Scope_Id);
6381 Expand_Simple_Function_Return (N);
6382 return;
6383 end if;
6384
6385 pragma Assert (Is_Entry (Scope_Id));
6386
6387 -- Look at the enclosing block to see whether the return is from an
6388 -- accept statement or an entry body.
6389
6390 for J in reverse 0 .. Scope_Stack.Last loop
6391 Scope_Id := Scope_Stack.Table (J).Entity;
6392 exit when Is_Concurrent_Type (Scope_Id);
6393 end loop;
6394
6395 -- If it is a return from accept statement it is expanded as call to
6396 -- RTS Complete_Rendezvous and a goto to the end of the accept body.
6397
6398 -- (cf : Expand_N_Accept_Statement, Expand_N_Selective_Accept,
6399 -- Expand_N_Accept_Alternative in exp_ch9.adb)
6400
6401 if Is_Task_Type (Scope_Id) then
6402
6403 Call :=
6404 Make_Procedure_Call_Statement (Loc,
e4494292 6405 Name => New_Occurrence_Of (RTE (RE_Complete_Rendezvous), Loc));
2b3d67a5
AC
6406 Insert_Before (N, Call);
6407 -- why not insert actions here???
6408 Analyze (Call);
6409
6410 Acc_Stat := Parent (N);
6411 while Nkind (Acc_Stat) /= N_Accept_Statement loop
6412 Acc_Stat := Parent (Acc_Stat);
6413 end loop;
6414
6415 Lab_Node := Last (Statements
6416 (Handled_Statement_Sequence (Acc_Stat)));
6417
6418 Goto_Stat := Make_Goto_Statement (Loc,
6419 Name => New_Occurrence_Of
6420 (Entity (Identifier (Lab_Node)), Loc));
6421
6422 Set_Analyzed (Goto_Stat);
6423
6424 Rewrite (N, Goto_Stat);
6425 Analyze (N);
6426
6427 -- If it is a return from an entry body, put a Complete_Entry_Body call
6428 -- in front of the return.
6429
6430 elsif Is_Protected_Type (Scope_Id) then
6431 Call :=
6432 Make_Procedure_Call_Statement (Loc,
6433 Name =>
e4494292 6434 New_Occurrence_Of (RTE (RE_Complete_Entry_Body), Loc),
2b3d67a5
AC
6435 Parameter_Associations => New_List (
6436 Make_Attribute_Reference (Loc,
2c1b72d7 6437 Prefix =>
e4494292 6438 New_Occurrence_Of
2b3d67a5 6439 (Find_Protection_Object (Current_Scope), Loc),
2c1b72d7 6440 Attribute_Name => Name_Unchecked_Access)));
2b3d67a5
AC
6441
6442 Insert_Before (N, Call);
6443 Analyze (Call);
6444 end if;
6445 end Expand_Non_Function_Return;
6446
70482933
RK
6447 ---------------------------------------
6448 -- Expand_Protected_Object_Reference --
6449 ---------------------------------------
6450
6451 function Expand_Protected_Object_Reference
6452 (N : Node_Id;
02822a92 6453 Scop : Entity_Id) return Node_Id
70482933
RK
6454 is
6455 Loc : constant Source_Ptr := Sloc (N);
6456 Corr : Entity_Id;
6457 Rec : Node_Id;
6458 Param : Entity_Id;
6459 Proc : Entity_Id;
6460
6461 begin
7675ad4f 6462 Rec := Make_Identifier (Loc, Name_uObject);
70482933
RK
6463 Set_Etype (Rec, Corresponding_Record_Type (Scop));
6464
2f1b20a9
ES
6465 -- Find enclosing protected operation, and retrieve its first parameter,
6466 -- which denotes the enclosing protected object. If the enclosing
6467 -- operation is an entry, we are immediately within the protected body,
6468 -- and we can retrieve the object from the service entries procedure. A
16b05213 6469 -- barrier function has the same signature as an entry. A barrier
2f1b20a9
ES
6470 -- function is compiled within the protected object, but unlike
6471 -- protected operations its never needs locks, so that its protected
6472 -- body subprogram points to itself.
70482933
RK
6473
6474 Proc := Current_Scope;
70482933
RK
6475 while Present (Proc)
6476 and then Scope (Proc) /= Scop
6477 loop
6478 Proc := Scope (Proc);
6479 end loop;
6480
6481 Corr := Protected_Body_Subprogram (Proc);
6482
6483 if No (Corr) then
6484
6485 -- Previous error left expansion incomplete.
6486 -- Nothing to do on this call.
6487
6488 return Empty;
6489 end if;
6490
6491 Param :=
6492 Defining_Identifier
6493 (First (Parameter_Specifications (Parent (Corr))));
6494
b9696ffb
AC
6495 if Is_Subprogram (Proc) and then Proc /= Corr then
6496
98f01d53 6497 -- Protected function or procedure
70482933
RK
6498
6499 Set_Entity (Rec, Param);
6500
2f1b20a9
ES
6501 -- Rec is a reference to an entity which will not be in scope when
6502 -- the call is reanalyzed, and needs no further analysis.
70482933
RK
6503
6504 Set_Analyzed (Rec);
6505
6506 else
2f1b20a9
ES
6507 -- Entry or barrier function for entry body. The first parameter of
6508 -- the entry body procedure is pointer to the object. We create a
6509 -- local variable of the proper type, duplicating what is done to
6510 -- define _object later on.
70482933
RK
6511
6512 declare
c12beea0 6513 Decls : List_Id;
c8307596 6514 Obj_Ptr : constant Entity_Id := Make_Temporary (Loc, 'T');
fbf5a39b 6515
70482933
RK
6516 begin
6517 Decls := New_List (
6518 Make_Full_Type_Declaration (Loc,
6519 Defining_Identifier => Obj_Ptr,
2c1b72d7 6520 Type_Definition =>
70482933
RK
6521 Make_Access_To_Object_Definition (Loc,
6522 Subtype_Indication =>
e4494292 6523 New_Occurrence_Of
c12beea0 6524 (Corresponding_Record_Type (Scop), Loc))));
70482933
RK
6525
6526 Insert_Actions (N, Decls);
6b958cec 6527 Freeze_Before (N, Obj_Ptr);
70482933
RK
6528
6529 Rec :=
6530 Make_Explicit_Dereference (Loc,
2c1b72d7
AC
6531 Prefix =>
6532 Unchecked_Convert_To (Obj_Ptr,
6533 New_Occurrence_Of (Param, Loc)));
70482933 6534
2f1b20a9 6535 -- Analyze new actual. Other actuals in calls are already analyzed
7888a6ae 6536 -- and the list of actuals is not reanalyzed after rewriting.
70482933
RK
6537
6538 Set_Parent (Rec, N);
6539 Analyze (Rec);
6540 end;
6541 end if;
6542
6543 return Rec;
6544 end Expand_Protected_Object_Reference;
6545
6546 --------------------------------------
6547 -- Expand_Protected_Subprogram_Call --
6548 --------------------------------------
6549
6550 procedure Expand_Protected_Subprogram_Call
6551 (N : Node_Id;
6552 Subp : Entity_Id;
6553 Scop : Entity_Id)
6554 is
f31dcd99 6555 Rec : Node_Id;
70482933 6556
86ec3bfb
AC
6557 procedure Expand_Internal_Init_Call;
6558 -- A call to an operation of the type may occur in the initialization
6559 -- of a private component. In that case the prefix of the call is an
6560 -- entity name and the call is treated as internal even though it
6561 -- appears in code outside of the protected type.
6562
36295779
AC
6563 procedure Freeze_Called_Function;
6564 -- If it is a function call it can appear in elaboration code and
6565 -- the called entity must be frozen before the call. This must be
6566 -- done before the call is expanded, as the expansion may rewrite it
6567 -- to something other than a call (e.g. a temporary initialized in a
6568 -- transient block).
6569
86ec3bfb
AC
6570 -------------------------------
6571 -- Expand_Internal_Init_Call --
6572 -------------------------------
6573
6574 procedure Expand_Internal_Init_Call is
6575 begin
6576 -- If the context is a protected object (rather than a protected
6577 -- type) the call itself is bound to raise program_error because
6578 -- the protected body will not have been elaborated yet. This is
6579 -- diagnosed subsequently in Sem_Elab.
6580
6581 Freeze_Called_Function;
6582
6583 -- The target of the internal call is the first formal of the
6584 -- enclosing initialization procedure.
6585
6586 Rec := New_Occurrence_Of (First_Formal (Current_Scope), Sloc (N));
6587 Build_Protected_Subprogram_Call (N,
6588 Name => Name (N),
6589 Rec => Rec,
6590 External => False);
6591 Analyze (N);
6592 Resolve (N, Etype (Subp));
6593 end Expand_Internal_Init_Call;
6594
36295779
AC
6595 ----------------------------
6596 -- Freeze_Called_Function --
6597 ----------------------------
6598
6599 procedure Freeze_Called_Function is
6600 begin
6601 if Ekind (Subp) = E_Function then
6602 Freeze_Expression (Name (N));
6603 end if;
6604 end Freeze_Called_Function;
6605
6606 -- Start of processing for Expand_Protected_Subprogram_Call
6607
70482933 6608 begin
54bf19e4
AC
6609 -- If the protected object is not an enclosing scope, this is an inter-
6610 -- object function call. Inter-object procedure calls are expanded by
6611 -- Exp_Ch9.Build_Simple_Entry_Call. The call is intra-object only if the
6612 -- subprogram being called is in the protected body being compiled, and
6613 -- if the protected object in the call is statically the enclosing type.
a77152ca 6614 -- The object may be a component of some other data structure, in which
54bf19e4 6615 -- case this must be handled as an inter-object call.
70482933
RK
6616
6617 if not In_Open_Scopes (Scop)
9ca67d3f 6618 or else Is_Entry_Wrapper (Current_Scope)
f31dcd99 6619 or else not Is_Entity_Name (Name (N))
70482933
RK
6620 then
6621 if Nkind (Name (N)) = N_Selected_Component then
6622 Rec := Prefix (Name (N));
6623
86ec3bfb 6624 elsif Nkind (Name (N)) = N_Indexed_Component then
70482933 6625 Rec := Prefix (Prefix (Name (N)));
86ec3bfb 6626
5e127570
AC
6627 -- If this is a call within an entry wrapper, it appears within a
6628 -- precondition that calls another primitive of the synchronized
6629 -- type. The target object of the call is the first actual on the
6630 -- wrapper. Note that this is an external call, because the wrapper
6631 -- is called outside of the synchronized object. This means that
6632 -- an entry call to an entry with preconditions involves two
6633 -- synchronized operations.
6634
6635 elsif Ekind (Current_Scope) = E_Procedure
6636 and then Is_Entry_Wrapper (Current_Scope)
6637 then
6638 Rec := New_Occurrence_Of (First_Entity (Current_Scope), Sloc (N));
6639
6cdce506
ES
6640 -- A default parameter of a protected operation may be a call to
6641 -- a protected function of the type. This appears as an internal
6642 -- call in the profile of the operation, but if the context is an
6643 -- external call we must convert the call into an external one,
6644 -- using the protected object that is the target, so that:
6645
6646 -- Prot.P (F)
6647 -- is transformed into
6648 -- Prot.P (Prot.F)
6649
6650 elsif Nkind (Parent (N)) = N_Procedure_Call_Statement
6651 and then Nkind (Name (Parent (N))) = N_Selected_Component
6652 and then Is_Protected_Type (Etype (Prefix (Name (Parent (N)))))
6653 and then Is_Entity_Name (Name (N))
6654 and then Scope (Entity (Name (N))) =
92a68a04 6655 Etype (Prefix (Name (Parent (N))))
6cdce506
ES
6656 then
6657 Rewrite (Name (N),
6658 Make_Selected_Component (Sloc (N),
92a68a04 6659 Prefix => New_Copy_Tree (Prefix (Name (Parent (N)))),
6cdce506 6660 Selector_Name => Relocate_Node (Name (N))));
92a68a04 6661
6cdce506
ES
6662 Analyze_And_Resolve (N);
6663 return;
6664
86ec3bfb
AC
6665 else
6666 -- If the context is the initialization procedure for a protected
6667 -- type, the call is legal because the called entity must be a
6668 -- function of that enclosing type, and this is treated as an
6669 -- internal call.
6670
f31dcd99
HK
6671 pragma Assert
6672 (Is_Entity_Name (Name (N)) and then Inside_Init_Proc);
6673
86ec3bfb
AC
6674 Expand_Internal_Init_Call;
6675 return;
70482933
RK
6676 end if;
6677
36295779 6678 Freeze_Called_Function;
70482933 6679 Build_Protected_Subprogram_Call (N,
2c1b72d7 6680 Name => New_Occurrence_Of (Subp, Sloc (N)),
2ba1a7c7 6681 Rec => Convert_Concurrent (Rec, Etype (Rec)),
70482933
RK
6682 External => True);
6683
6684 else
6685 Rec := Expand_Protected_Object_Reference (N, Scop);
6686
6687 if No (Rec) then
6688 return;
6689 end if;
6690
36295779 6691 Freeze_Called_Function;
70482933
RK
6692 Build_Protected_Subprogram_Call (N,
6693 Name => Name (N),
6694 Rec => Rec,
6695 External => False);
70482933
RK
6696 end if;
6697
811c6a85 6698 -- Analyze and resolve the new call. The actuals have already been
b0159fbe 6699 -- resolved, but expansion of a function call will add extra actuals
811c6a85
AC
6700 -- if needed. Analysis of a procedure call already includes resolution.
6701
6702 Analyze (N);
6703
6704 if Ekind (Subp) = E_Function then
6705 Resolve (N, Etype (Subp));
6706 end if;
70482933
RK
6707 end Expand_Protected_Subprogram_Call;
6708
2b3d67a5
AC
6709 -----------------------------------
6710 -- Expand_Simple_Function_Return --
6711 -----------------------------------
6712
54bf19e4 6713 -- The "simple" comes from the syntax rule simple_return_statement. The
a90bd866 6714 -- semantics are not at all simple.
2b3d67a5
AC
6715
6716 procedure Expand_Simple_Function_Return (N : Node_Id) is
6717 Loc : constant Source_Ptr := Sloc (N);
6718
6719 Scope_Id : constant Entity_Id :=
6720 Return_Applies_To (Return_Statement_Entity (N));
6721 -- The function we are returning from
6722
6723 R_Type : constant Entity_Id := Etype (Scope_Id);
6724 -- The result type of the function
6725
6726 Utyp : constant Entity_Id := Underlying_Type (R_Type);
6727
81501d2b 6728 Exp : Node_Id := Expression (N);
2b3d67a5
AC
6729 pragma Assert (Present (Exp));
6730
6731 Exptyp : constant Entity_Id := Etype (Exp);
6732 -- The type of the expression (not necessarily the same as R_Type)
6733
6734 Subtype_Ind : Node_Id;
54bf19e4
AC
6735 -- If the result type of the function is class-wide and the expression
6736 -- has a specific type, then we use the expression's type as the type of
6737 -- the return object. In cases where the expression is an aggregate that
6738 -- is built in place, this avoids the need for an expensive conversion
6739 -- of the return object to the specific type on assignments to the
6740 -- individual components.
2b3d67a5
AC
6741
6742 begin
6743 if Is_Class_Wide_Type (R_Type)
81501d2b
AC
6744 and then not Is_Class_Wide_Type (Exptyp)
6745 and then Nkind (Exp) /= N_Type_Conversion
2b3d67a5 6746 then
81501d2b 6747 Subtype_Ind := New_Occurrence_Of (Exptyp, Loc);
2b3d67a5
AC
6748 else
6749 Subtype_Ind := New_Occurrence_Of (R_Type, Loc);
81501d2b
AC
6750
6751 -- If the result type is class-wide and the expression is a view
6752 -- conversion, the conversion plays no role in the expansion because
6753 -- it does not modify the tag of the object. Remove the conversion
6754 -- altogether to prevent tag overwriting.
6755
6756 if Is_Class_Wide_Type (R_Type)
6757 and then not Is_Class_Wide_Type (Exptyp)
6758 and then Nkind (Exp) = N_Type_Conversion
6759 then
6760 Exp := Expression (Exp);
6761 end if;
2b3d67a5
AC
6762 end if;
6763
b3801819
PMR
6764 -- Assert that if F says "return G(...);"
6765 -- then F and G are both b-i-p, or neither b-i-p.
6766
6767 if Nkind (Exp) = N_Function_Call then
6768 pragma Assert (Ekind (Scope_Id) = E_Function);
6769 pragma Assert
6770 (Is_Build_In_Place_Function (Scope_Id) =
6771 Is_Build_In_Place_Function_Call (Exp));
6772 null;
6773 end if;
6774
cd644ae2
PMR
6775 -- For the case of a simple return that does not come from an
6776 -- extended return, in the case of build-in-place, we rewrite
6777 -- "return <expression>;" to be:
2b3d67a5
AC
6778
6779 -- return _anon_ : <return_subtype> := <expression>
6780
6781 -- The expansion produced by Expand_N_Extended_Return_Statement will
6782 -- contain simple return statements (for example, a block containing
6783 -- simple return of the return object), which brings us back here with
6784 -- Comes_From_Extended_Return_Statement set. The reason for the barrier
6785 -- checking for a simple return that does not come from an extended
6786 -- return is to avoid this infinite recursion.
6787
6788 -- The reason for this design is that for Ada 2005 limited returns, we
6789 -- need to reify the return object, so we can build it "in place", and
6790 -- we need a block statement to hang finalization and tasking stuff.
6791
6792 -- ??? In order to avoid disruption, we avoid translating to extended
6793 -- return except in the cases where we really need to (Ada 2005 for
6794 -- inherently limited). We might prefer to do this translation in all
6795 -- cases (except perhaps for the case of Ada 95 inherently limited),
6796 -- in order to fully exercise the Expand_N_Extended_Return_Statement
6797 -- code. This would also allow us to do the build-in-place optimization
6798 -- for efficiency even in cases where it is semantically not required.
6799
6800 -- As before, we check the type of the return expression rather than the
6801 -- return type of the function, because the latter may be a limited
6802 -- class-wide interface type, which is not a limited type, even though
6803 -- the type of the expression may be.
6804
d4dfb005
BD
6805 pragma Assert
6806 (Comes_From_Extended_Return_Statement (N)
3fc40cd7
PMR
6807 or else not Is_Build_In_Place_Function_Call (Exp)
6808 or else Is_Build_In_Place_Function (Scope_Id));
d4dfb005 6809
2b3d67a5 6810 if not Comes_From_Extended_Return_Statement (N)
d4dfb005 6811 and then Is_Build_In_Place_Function (Scope_Id)
2b3d67a5 6812 and then not Debug_Flag_Dot_L
f6f4d8d4
JM
6813
6814 -- The functionality of interface thunks is simple and it is always
6815 -- handled by means of simple return statements. This leaves their
6816 -- expansion simple and clean.
6817
da1c23dd 6818 and then not Is_Thunk (Current_Scope)
2b3d67a5
AC
6819 then
6820 declare
6821 Return_Object_Entity : constant Entity_Id :=
6822 Make_Temporary (Loc, 'R', Exp);
f6f4d8d4 6823
2b3d67a5
AC
6824 Obj_Decl : constant Node_Id :=
6825 Make_Object_Declaration (Loc,
6826 Defining_Identifier => Return_Object_Entity,
6827 Object_Definition => Subtype_Ind,
6828 Expression => Exp);
6829
f6f4d8d4
JM
6830 Ext : constant Node_Id :=
6831 Make_Extended_Return_Statement (Loc,
6832 Return_Object_Declarations => New_List (Obj_Decl));
2b3d67a5
AC
6833 -- Do not perform this high-level optimization if the result type
6834 -- is an interface because the "this" pointer must be displaced.
6835
6836 begin
6837 Rewrite (N, Ext);
6838 Analyze (N);
6839 return;
6840 end;
6841 end if;
6842
6843 -- Here we have a simple return statement that is part of the expansion
6844 -- of an extended return statement (either written by the user, or
6845 -- generated by the above code).
6846
6847 -- Always normalize C/Fortran boolean result. This is not always needed,
6848 -- but it seems a good idea to minimize the passing around of non-
6849 -- normalized values, and in any case this handles the processing of
6850 -- barrier functions for protected types, which turn the condition into
6851 -- a return statement.
6852
6853 if Is_Boolean_Type (Exptyp)
6854 and then Nonzero_Is_True (Exptyp)
6855 then
6856 Adjust_Condition (Exp);
6857 Adjust_Result_Type (Exp, Exptyp);
6858 end if;
6859
6860 -- Do validity check if enabled for returns
6861
6862 if Validity_Checks_On
6863 and then Validity_Check_Returns
6864 then
6865 Ensure_Valid (Exp);
6866 end if;
6867
6868 -- Check the result expression of a scalar function against the subtype
6869 -- of the function by inserting a conversion. This conversion must
6870 -- eventually be performed for other classes of types, but for now it's
6871 -- only done for scalars.
6872 -- ???
6873
6874 if Is_Scalar_Type (Exptyp) then
6875 Rewrite (Exp, Convert_To (R_Type, Exp));
6876
6877 -- The expression is resolved to ensure that the conversion gets
6878 -- expanded to generate a possible constraint check.
6879
6880 Analyze_And_Resolve (Exp, R_Type);
6881 end if;
6882
6883 -- Deal with returning variable length objects and controlled types
6884
6885 -- Nothing to do if we are returning by reference, or this is not a
6886 -- type that requires special processing (indicated by the fact that
6887 -- it requires a cleanup scope for the secondary stack case).
6888
d4dfb005 6889 if Is_Build_In_Place_Function (Scope_Id)
2b3d67a5
AC
6890 or else Is_Limited_Interface (Exptyp)
6891 then
6892 null;
6893
f6f4d8d4
JM
6894 -- No copy needed for thunks returning interface type objects since
6895 -- the object is returned by reference and the maximum functionality
6896 -- required is just to displace the pointer.
6897
4b342b91 6898 elsif Is_Thunk (Current_Scope) and then Is_Interface (Exptyp) then
f6f4d8d4
JM
6899 null;
6900
ed09416f
AC
6901 -- If the call is within a thunk and the type is a limited view, the
6902 -- backend will eventually see the non-limited view of the type.
6903
bdeea27b 6904 elsif Is_Thunk (Current_Scope) and then Is_Incomplete_Type (Exptyp) then
ed09416f
AC
6905 return;
6906
95a79822
ES
6907 -- A return statement from a Ghost function does not use the secondary
6908 -- stack (or any other one).
6909
6910 elsif not Requires_Transient_Scope (R_Type)
6911 or else Is_Ignored_Ghost_Entity (Scope_Id)
6912 then
2b3d67a5 6913
d29f68cf
AC
6914 -- Mutable records with variable-length components are not returned
6915 -- on the sec-stack, so we need to make sure that the back end will
6916 -- only copy back the size of the actual value, and not the maximum
6917 -- size. We create an actual subtype for this purpose. However we
6918 -- need not do it if the expression is a function call since this
6919 -- will be done in the called function and doing it here too would
6920 -- cause a temporary with maximum size to be created.
2b3d67a5
AC
6921
6922 declare
6923 Ubt : constant Entity_Id := Underlying_Type (Base_Type (Exptyp));
6924 Decl : Node_Id;
6925 Ent : Entity_Id;
6926 begin
d29f68cf
AC
6927 if Nkind (Exp) /= N_Function_Call
6928 and then Has_Discriminants (Ubt)
2b3d67a5
AC
6929 and then not Is_Constrained (Ubt)
6930 and then not Has_Unchecked_Union (Ubt)
6931 then
6932 Decl := Build_Actual_Subtype (Ubt, Exp);
6933 Ent := Defining_Identifier (Decl);
6934 Insert_Action (Exp, Decl);
6935 Rewrite (Exp, Unchecked_Convert_To (Ent, Exp));
6936 Analyze_And_Resolve (Exp);
6937 end if;
6938 end;
6939
6940 -- Here if secondary stack is used
6941
6942 else
c624298a 6943 -- Prevent the reclamation of the secondary stack by all enclosing
c79f6efd
BD
6944 -- blocks and loops as well as the related function; otherwise the
6945 -- result would be reclaimed too early.
adb252d8 6946
c79f6efd 6947 Set_Enclosing_Sec_Stack_Return (N);
2b3d67a5
AC
6948
6949 -- Optimize the case where the result is a function call. In this
6950 -- case either the result is already on the secondary stack, or is
6951 -- already being returned with the stack pointer depressed and no
54bf19e4
AC
6952 -- further processing is required except to set the By_Ref flag
6953 -- to ensure that gigi does not attempt an extra unnecessary copy.
2b3d67a5
AC
6954 -- (actually not just unnecessary but harmfully wrong in the case
6955 -- of a controlled type, where gigi does not know how to do a copy).
54bf19e4
AC
6956 -- To make up for a gcc 2.8.1 deficiency (???), we perform the copy
6957 -- for array types if the constrained status of the target type is
6958 -- different from that of the expression.
2b3d67a5
AC
6959
6960 if Requires_Transient_Scope (Exptyp)
6961 and then
6962 (not Is_Array_Type (Exptyp)
6963 or else Is_Constrained (Exptyp) = Is_Constrained (R_Type)
6964 or else CW_Or_Has_Controlled_Part (Utyp))
6965 and then Nkind (Exp) = N_Function_Call
6966 then
6967 Set_By_Ref (N);
6968
6969 -- Remove side effects from the expression now so that other parts
6970 -- of the expander do not have to reanalyze this node without this
6971 -- optimization
6972
6973 Rewrite (Exp, Duplicate_Subexpr_No_Checks (Exp));
6974
ec7f007c
AC
6975 -- Ada 2005 (AI-251): If the type of the returned object is
6976 -- an interface then add an implicit type conversion to force
6977 -- displacement of the "this" pointer.
6978
6979 if Is_Interface (R_Type) then
6980 Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
6981 end if;
6982
6983 Analyze_And_Resolve (Exp, R_Type);
6984
2b3d67a5
AC
6985 -- For controlled types, do the allocation on the secondary stack
6986 -- manually in order to call adjust at the right time:
6987
6988 -- type Anon1 is access R_Type;
6989 -- for Anon1'Storage_pool use ss_pool;
6990 -- Anon2 : anon1 := new R_Type'(expr);
6991 -- return Anon2.all;
6992
6993 -- We do the same for classwide types that are not potentially
6994 -- controlled (by the virtue of restriction No_Finalization) because
6995 -- gigi is not able to properly allocate class-wide types.
6996
6997 elsif CW_Or_Has_Controlled_Part (Utyp) then
6998 declare
6999 Loc : constant Source_Ptr := Sloc (N);
7000 Acc_Typ : constant Entity_Id := Make_Temporary (Loc, 'A');
7001 Alloc_Node : Node_Id;
7002 Temp : Entity_Id;
7003
7004 begin
7005 Set_Ekind (Acc_Typ, E_Access_Type);
7006
7007 Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
7008
7009 -- This is an allocator for the secondary stack, and it's fine
7010 -- to have Comes_From_Source set False on it, as gigi knows not
7011 -- to flag it as a violation of No_Implicit_Heap_Allocations.
7012
7013 Alloc_Node :=
7014 Make_Allocator (Loc,
7015 Expression =>
7016 Make_Qualified_Expression (Loc,
e4494292 7017 Subtype_Mark => New_Occurrence_Of (Etype (Exp), Loc),
2b3d67a5
AC
7018 Expression => Relocate_Node (Exp)));
7019
7020 -- We do not want discriminant checks on the declaration,
7021 -- given that it gets its value from the allocator.
7022
7023 Set_No_Initialization (Alloc_Node);
7024
7025 Temp := Make_Temporary (Loc, 'R', Alloc_Node);
7026
7027 Insert_List_Before_And_Analyze (N, New_List (
7028 Make_Full_Type_Declaration (Loc,
7029 Defining_Identifier => Acc_Typ,
7030 Type_Definition =>
7031 Make_Access_To_Object_Definition (Loc,
7032 Subtype_Indication => Subtype_Ind)),
7033
7034 Make_Object_Declaration (Loc,
7035 Defining_Identifier => Temp,
e4494292 7036 Object_Definition => New_Occurrence_Of (Acc_Typ, Loc),
2b3d67a5
AC
7037 Expression => Alloc_Node)));
7038
7039 Rewrite (Exp,
7040 Make_Explicit_Dereference (Loc,
e4494292 7041 Prefix => New_Occurrence_Of (Temp, Loc)));
2b3d67a5 7042
a1092b48
AC
7043 -- Ada 2005 (AI-251): If the type of the returned object is
7044 -- an interface then add an implicit type conversion to force
7045 -- displacement of the "this" pointer.
7046
7047 if Is_Interface (R_Type) then
7048 Rewrite (Exp, Convert_To (R_Type, Relocate_Node (Exp)));
7049 end if;
7050
2b3d67a5
AC
7051 Analyze_And_Resolve (Exp, R_Type);
7052 end;
7053
7054 -- Otherwise use the gigi mechanism to allocate result on the
7055 -- secondary stack.
7056
7057 else
7058 Check_Restriction (No_Secondary_Stack, N);
7059 Set_Storage_Pool (N, RTE (RE_SS_Pool));
535a8637 7060 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
2b3d67a5
AC
7061 end if;
7062 end if;
7063
54bf19e4
AC
7064 -- Implement the rules of 6.5(8-10), which require a tag check in
7065 -- the case of a limited tagged return type, and tag reassignment for
2b3d67a5
AC
7066 -- nonlimited tagged results. These actions are needed when the return
7067 -- type is a specific tagged type and the result expression is a
54bf19e4
AC
7068 -- conversion or a formal parameter, because in that case the tag of
7069 -- the expression might differ from the tag of the specific result type.
2b3d67a5 7070
320fbd1e
JS
7071 -- We must also verify an underlying type exists for the return type in
7072 -- case it is incomplete - in which case is not necessary to generate a
7073 -- check anyway since an incomplete limited tagged return type would
7074 -- qualify as a premature usage.
7075
7076 if Present (Utyp)
7077 and then Is_Tagged_Type (Utyp)
2b3d67a5
AC
7078 and then not Is_Class_Wide_Type (Utyp)
7079 and then (Nkind_In (Exp, N_Type_Conversion,
7080 N_Unchecked_Type_Conversion)
7081 or else (Is_Entity_Name (Exp)
bb6a856b 7082 and then Is_Formal (Entity (Exp))))
2b3d67a5 7083 then
54bf19e4
AC
7084 -- When the return type is limited, perform a check that the tag of
7085 -- the result is the same as the tag of the return type.
2b3d67a5
AC
7086
7087 if Is_Limited_Type (R_Type) then
7088 Insert_Action (Exp,
7089 Make_Raise_Constraint_Error (Loc,
7090 Condition =>
7091 Make_Op_Ne (Loc,
2c1b72d7 7092 Left_Opnd =>
2b3d67a5 7093 Make_Selected_Component (Loc,
7675ad4f
AC
7094 Prefix => Duplicate_Subexpr (Exp),
7095 Selector_Name => Make_Identifier (Loc, Name_uTag)),
2b3d67a5
AC
7096 Right_Opnd =>
7097 Make_Attribute_Reference (Loc,
2c1b72d7
AC
7098 Prefix =>
7099 New_Occurrence_Of (Base_Type (Utyp), Loc),
2b3d67a5 7100 Attribute_Name => Name_Tag)),
2c1b72d7 7101 Reason => CE_Tag_Check_Failed));
2b3d67a5
AC
7102
7103 -- If the result type is a specific nonlimited tagged type, then we
7104 -- have to ensure that the tag of the result is that of the result
54bf19e4
AC
7105 -- type. This is handled by making a copy of the expression in
7106 -- the case where it might have a different tag, namely when the
2b3d67a5
AC
7107 -- expression is a conversion or a formal parameter. We create a new
7108 -- object of the result type and initialize it from the expression,
7109 -- which will implicitly force the tag to be set appropriately.
7110
7111 else
7112 declare
7113 ExpR : constant Node_Id := Relocate_Node (Exp);
7114 Result_Id : constant Entity_Id :=
7115 Make_Temporary (Loc, 'R', ExpR);
7116 Result_Exp : constant Node_Id :=
e4494292 7117 New_Occurrence_Of (Result_Id, Loc);
2b3d67a5
AC
7118 Result_Obj : constant Node_Id :=
7119 Make_Object_Declaration (Loc,
7120 Defining_Identifier => Result_Id,
7121 Object_Definition =>
e4494292 7122 New_Occurrence_Of (R_Type, Loc),
2b3d67a5
AC
7123 Constant_Present => True,
7124 Expression => ExpR);
7125
7126 begin
7127 Set_Assignment_OK (Result_Obj);
7128 Insert_Action (Exp, Result_Obj);
7129
7130 Rewrite (Exp, Result_Exp);
7131 Analyze_And_Resolve (Exp, R_Type);
7132 end;
7133 end if;
7134
7135 -- Ada 2005 (AI-344): If the result type is class-wide, then insert
7136 -- a check that the level of the return expression's underlying type
7137 -- is not deeper than the level of the master enclosing the function.
7138 -- Always generate the check when the type of the return expression
7139 -- is class-wide, when it's a type conversion, or when it's a formal
7140 -- parameter. Otherwise, suppress the check in the case where the
7141 -- return expression has a specific type whose level is known not to
7142 -- be statically deeper than the function's result type.
7143
0a376301
JM
7144 -- No runtime check needed in interface thunks since it is performed
7145 -- by the target primitive associated with the thunk.
7146
2b3d67a5
AC
7147 -- Note: accessibility check is skipped in the VM case, since there
7148 -- does not seem to be any practical way to implement this check.
7149
0791fbe9 7150 elsif Ada_Version >= Ada_2005
2b3d67a5
AC
7151 and then Tagged_Type_Expansion
7152 and then Is_Class_Wide_Type (R_Type)
0a376301 7153 and then not Is_Thunk (Current_Scope)
3217f71e 7154 and then not Scope_Suppress.Suppress (Accessibility_Check)
2b3d67a5
AC
7155 and then
7156 (Is_Class_Wide_Type (Etype (Exp))
7157 or else Nkind_In (Exp, N_Type_Conversion,
7158 N_Unchecked_Type_Conversion)
7159 or else (Is_Entity_Name (Exp)
bb6a856b 7160 and then Is_Formal (Entity (Exp)))
2b3d67a5
AC
7161 or else Scope_Depth (Enclosing_Dynamic_Scope (Etype (Exp))) >
7162 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))
7163 then
7164 declare
7165 Tag_Node : Node_Id;
7166
7167 begin
7168 -- Ada 2005 (AI-251): In class-wide interface objects we displace
c5f5123f
AC
7169 -- "this" to reference the base of the object. This is required to
7170 -- get access to the TSD of the object.
2b3d67a5
AC
7171
7172 if Is_Class_Wide_Type (Etype (Exp))
7173 and then Is_Interface (Etype (Exp))
2b3d67a5 7174 then
47a6f660
AC
7175 -- If the expression is an explicit dereference then we can
7176 -- directly displace the pointer to reference the base of
7177 -- the object.
7178
7179 if Nkind (Exp) = N_Explicit_Dereference then
7180 Tag_Node :=
7181 Make_Explicit_Dereference (Loc,
7182 Prefix =>
7183 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
7184 Make_Function_Call (Loc,
7185 Name =>
7186 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
7187 Parameter_Associations => New_List (
7188 Unchecked_Convert_To (RTE (RE_Address),
7189 Duplicate_Subexpr (Prefix (Exp)))))));
7190
7191 -- Similar case to the previous one but the expression is a
7192 -- renaming of an explicit dereference.
7193
7194 elsif Nkind (Exp) = N_Identifier
7195 and then Present (Renamed_Object (Entity (Exp)))
7196 and then Nkind (Renamed_Object (Entity (Exp)))
7197 = N_Explicit_Dereference
7198 then
7199 Tag_Node :=
7200 Make_Explicit_Dereference (Loc,
7201 Prefix =>
7202 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
7203 Make_Function_Call (Loc,
7204 Name =>
7205 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
7206 Parameter_Associations => New_List (
7207 Unchecked_Convert_To (RTE (RE_Address),
7208 Duplicate_Subexpr
7209 (Prefix
7210 (Renamed_Object (Entity (Exp)))))))));
7211
7212 -- Common case: obtain the address of the actual object and
7213 -- displace the pointer to reference the base of the object.
7214
7215 else
7216 Tag_Node :=
7217 Make_Explicit_Dereference (Loc,
7218 Prefix =>
7219 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
7220 Make_Function_Call (Loc,
7221 Name =>
7222 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
7223 Parameter_Associations => New_List (
7224 Make_Attribute_Reference (Loc,
7225 Prefix => Duplicate_Subexpr (Exp),
7226 Attribute_Name => Name_Address)))));
7227 end if;
2b3d67a5
AC
7228 else
7229 Tag_Node :=
7230 Make_Attribute_Reference (Loc,
2c1b72d7 7231 Prefix => Duplicate_Subexpr (Exp),
2b3d67a5
AC
7232 Attribute_Name => Name_Tag);
7233 end if;
7234
c6840e83
AC
7235 -- CodePeer does not do anything useful with
7236 -- Ada.Tags.Type_Specific_Data components.
f2a54683 7237
c6840e83 7238 if not CodePeer_Mode then
f2a54683
AC
7239 Insert_Action (Exp,
7240 Make_Raise_Program_Error (Loc,
7241 Condition =>
7242 Make_Op_Gt (Loc,
7243 Left_Opnd => Build_Get_Access_Level (Loc, Tag_Node),
7244 Right_Opnd =>
7245 Make_Integer_Literal (Loc,
7246 Scope_Depth (Enclosing_Dynamic_Scope (Scope_Id)))),
c6840e83 7247 Reason => PE_Accessibility_Check_Failed));
f2a54683 7248 end if;
2b3d67a5
AC
7249 end;
7250
7251 -- AI05-0073: If function has a controlling access result, check that
7252 -- the tag of the return value, if it is not null, matches designated
7253 -- type of return type.
f7ea2603
RD
7254
7255 -- The return expression is referenced twice in the code below, so it
7256 -- must be made free of side effects. Given that different compilers
2b3d67a5
AC
7257 -- may evaluate these parameters in different order, both occurrences
7258 -- perform a copy.
7259
7260 elsif Ekind (R_Type) = E_Anonymous_Access_Type
7261 and then Has_Controlling_Result (Scope_Id)
7262 then
7263 Insert_Action (N,
7264 Make_Raise_Constraint_Error (Loc,
7265 Condition =>
7266 Make_And_Then (Loc,
7267 Left_Opnd =>
7268 Make_Op_Ne (Loc,
7269 Left_Opnd => Duplicate_Subexpr (Exp),
7270 Right_Opnd => Make_Null (Loc)),
ebf494ec 7271
2b3d67a5
AC
7272 Right_Opnd => Make_Op_Ne (Loc,
7273 Left_Opnd =>
7274 Make_Selected_Component (Loc,
7275 Prefix => Duplicate_Subexpr (Exp),
7675ad4f 7276 Selector_Name => Make_Identifier (Loc, Name_uTag)),
ebf494ec 7277
2b3d67a5
AC
7278 Right_Opnd =>
7279 Make_Attribute_Reference (Loc,
7280 Prefix =>
7281 New_Occurrence_Of (Designated_Type (R_Type), Loc),
7282 Attribute_Name => Name_Tag))),
ebf494ec 7283
2b3d67a5
AC
7284 Reason => CE_Tag_Check_Failed),
7285 Suppress => All_Checks);
7286 end if;
7287
63585f75
SB
7288 -- AI05-0234: RM 6.5(21/3). Check access discriminants to
7289 -- ensure that the function result does not outlive an
7290 -- object designated by one of it discriminants.
7291
57a3fca9 7292 if Present (Extra_Accessibility_Of_Result (Scope_Id))
63585f75
SB
7293 and then Has_Unconstrained_Access_Discriminants (R_Type)
7294 then
7295 declare
ebf494ec 7296 Discrim_Source : Node_Id;
63585f75
SB
7297
7298 procedure Check_Against_Result_Level (Level : Node_Id);
ebf494ec
RD
7299 -- Check the given accessibility level against the level
7300 -- determined by the point of call. (AI05-0234).
63585f75
SB
7301
7302 --------------------------------
7303 -- Check_Against_Result_Level --
7304 --------------------------------
7305
7306 procedure Check_Against_Result_Level (Level : Node_Id) is
7307 begin
7308 Insert_Action (N,
7309 Make_Raise_Program_Error (Loc,
7310 Condition =>
7311 Make_Op_Gt (Loc,
7312 Left_Opnd => Level,
7313 Right_Opnd =>
7314 New_Occurrence_Of
7315 (Extra_Accessibility_Of_Result (Scope_Id), Loc)),
7316 Reason => PE_Accessibility_Check_Failed));
7317 end Check_Against_Result_Level;
ebf494ec 7318
63585f75 7319 begin
ebf494ec 7320 Discrim_Source := Exp;
63585f75
SB
7321 while Nkind (Discrim_Source) = N_Qualified_Expression loop
7322 Discrim_Source := Expression (Discrim_Source);
7323 end loop;
7324
7325 if Nkind (Discrim_Source) = N_Identifier
7326 and then Is_Return_Object (Entity (Discrim_Source))
7327 then
63585f75
SB
7328 Discrim_Source := Entity (Discrim_Source);
7329
7330 if Is_Constrained (Etype (Discrim_Source)) then
7331 Discrim_Source := Etype (Discrim_Source);
7332 else
7333 Discrim_Source := Expression (Parent (Discrim_Source));
7334 end if;
7335
7336 elsif Nkind (Discrim_Source) = N_Identifier
7337 and then Nkind_In (Original_Node (Discrim_Source),
7338 N_Aggregate, N_Extension_Aggregate)
7339 then
63585f75
SB
7340 Discrim_Source := Original_Node (Discrim_Source);
7341
7342 elsif Nkind (Discrim_Source) = N_Explicit_Dereference and then
7343 Nkind (Original_Node (Discrim_Source)) = N_Function_Call
7344 then
63585f75 7345 Discrim_Source := Original_Node (Discrim_Source);
63585f75
SB
7346 end if;
7347
0691ed6b 7348 Discrim_Source := Unqual_Conv (Discrim_Source);
63585f75
SB
7349
7350 case Nkind (Discrim_Source) is
7351 when N_Defining_Identifier =>
54bf19e4
AC
7352 pragma Assert (Is_Composite_Type (Discrim_Source)
7353 and then Has_Discriminants (Discrim_Source)
7354 and then Is_Constrained (Discrim_Source));
63585f75
SB
7355
7356 declare
7357 Discrim : Entity_Id :=
7358 First_Discriminant (Base_Type (R_Type));
7359 Disc_Elmt : Elmt_Id :=
7360 First_Elmt (Discriminant_Constraint
7361 (Discrim_Source));
7362 begin
7363 loop
7364 if Ekind (Etype (Discrim)) =
54bf19e4
AC
7365 E_Anonymous_Access_Type
7366 then
63585f75
SB
7367 Check_Against_Result_Level
7368 (Dynamic_Accessibility_Level (Node (Disc_Elmt)));
7369 end if;
7370
7371 Next_Elmt (Disc_Elmt);
7372 Next_Discriminant (Discrim);
7373 exit when not Present (Discrim);
7374 end loop;
7375 end;
7376
d8f43ee6
HK
7377 when N_Aggregate
7378 | N_Extension_Aggregate
7379 =>
54bf19e4
AC
7380 -- Unimplemented: extension aggregate case where discrims
7381 -- come from ancestor part, not extension part.
63585f75
SB
7382
7383 declare
7384 Discrim : Entity_Id :=
7385 First_Discriminant (Base_Type (R_Type));
7386
7387 Disc_Exp : Node_Id := Empty;
7388
7389 Positionals_Exhausted
7390 : Boolean := not Present (Expressions
7391 (Discrim_Source));
7392
7393 function Associated_Expr
7394 (Comp_Id : Entity_Id;
7395 Associations : List_Id) return Node_Id;
7396
7397 -- Given a component and a component associations list,
7398 -- locate the expression for that component; returns
7399 -- Empty if no such expression is found.
7400
7401 ---------------------
7402 -- Associated_Expr --
7403 ---------------------
7404
7405 function Associated_Expr
7406 (Comp_Id : Entity_Id;
7407 Associations : List_Id) return Node_Id
7408 is
54bf19e4 7409 Assoc : Node_Id;
63585f75 7410 Choice : Node_Id;
54bf19e4 7411
63585f75
SB
7412 begin
7413 -- Simple linear search seems ok here
7414
54bf19e4 7415 Assoc := First (Associations);
63585f75
SB
7416 while Present (Assoc) loop
7417 Choice := First (Choices (Assoc));
63585f75
SB
7418 while Present (Choice) loop
7419 if (Nkind (Choice) = N_Identifier
54bf19e4
AC
7420 and then Chars (Choice) = Chars (Comp_Id))
7421 or else (Nkind (Choice) = N_Others_Choice)
63585f75
SB
7422 then
7423 return Expression (Assoc);
7424 end if;
7425
7426 Next (Choice);
7427 end loop;
7428
7429 Next (Assoc);
7430 end loop;
7431
7432 return Empty;
7433 end Associated_Expr;
7434
63585f75
SB
7435 begin
7436 if not Positionals_Exhausted then
7437 Disc_Exp := First (Expressions (Discrim_Source));
7438 end if;
7439
7440 loop
7441 if Positionals_Exhausted then
54bf19e4
AC
7442 Disc_Exp :=
7443 Associated_Expr
7444 (Discrim,
7445 Component_Associations (Discrim_Source));
63585f75
SB
7446 end if;
7447
7448 if Ekind (Etype (Discrim)) =
54bf19e4
AC
7449 E_Anonymous_Access_Type
7450 then
63585f75
SB
7451 Check_Against_Result_Level
7452 (Dynamic_Accessibility_Level (Disc_Exp));
7453 end if;
7454
7455 Next_Discriminant (Discrim);
7456 exit when not Present (Discrim);
7457
7458 if not Positionals_Exhausted then
7459 Next (Disc_Exp);
7460 Positionals_Exhausted := not Present (Disc_Exp);
7461 end if;
7462 end loop;
7463 end;
7464
7465 when N_Function_Call =>
54bf19e4
AC
7466
7467 -- No check needed (check performed by callee)
7468
63585f75
SB
7469 null;
7470
7471 when others =>
63585f75
SB
7472 declare
7473 Level : constant Node_Id :=
54bf19e4
AC
7474 Make_Integer_Literal (Loc,
7475 Object_Access_Level (Discrim_Source));
7476
63585f75
SB
7477 begin
7478 -- Unimplemented: check for name prefix that includes
7479 -- a dereference of an access value with a dynamic
7480 -- accessibility level (e.g., an access param or a
7481 -- saooaaat) and use dynamic level in that case. For
7482 -- example:
7483 -- return Access_Param.all(Some_Index).Some_Component;
54bf19e4 7484 -- ???
63585f75
SB
7485
7486 Set_Etype (Level, Standard_Natural);
7487 Check_Against_Result_Level (Level);
7488 end;
63585f75
SB
7489 end case;
7490 end;
7491 end if;
7492
00907026
EB
7493 -- If we are returning a nonscalar object that is possibly unaligned,
7494 -- then copy the value into a temporary first. This copy may need to
7495 -- expand to a loop of component operations.
2b3d67a5
AC
7496
7497 if Is_Possibly_Unaligned_Slice (Exp)
00907026
EB
7498 or else (Is_Possibly_Unaligned_Object (Exp)
7499 and then not Represented_As_Scalar (Etype (Exp)))
2b3d67a5
AC
7500 then
7501 declare
7502 ExpR : constant Node_Id := Relocate_Node (Exp);
7503 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', ExpR);
7504 begin
7505 Insert_Action (Exp,
7506 Make_Object_Declaration (Loc,
7507 Defining_Identifier => Tnn,
7508 Constant_Present => True,
7509 Object_Definition => New_Occurrence_Of (R_Type, Loc),
7510 Expression => ExpR),
2c1b72d7 7511 Suppress => All_Checks);
2b3d67a5
AC
7512 Rewrite (Exp, New_Occurrence_Of (Tnn, Loc));
7513 end;
7514 end if;
7515
c9d70ab1
AC
7516 -- Call the _Postconditions procedure if the related function has
7517 -- contract assertions that need to be verified on exit.
2b3d67a5
AC
7518
7519 if Ekind (Scope_Id) = E_Function
c9d70ab1 7520 and then Present (Postconditions_Proc (Scope_Id))
2b3d67a5 7521 then
c8593453
AC
7522 -- In the case of discriminated objects, we have created a
7523 -- constrained subtype above, and used the underlying type. This
7524 -- transformation is post-analysis and harmless, except that now the
7525 -- call to the post-condition will be analyzed and the type kinds
7526 -- have to match.
7527
7528 if Nkind (Exp) = N_Unchecked_Type_Conversion
7529 and then Is_Private_Type (R_Type) /= Is_Private_Type (Etype (Exp))
2b3d67a5 7530 then
c8593453
AC
7531 Rewrite (Exp, Expression (Relocate_Node (Exp)));
7532 end if;
2b3d67a5 7533
c8593453
AC
7534 -- We are going to reference the returned value twice in this case,
7535 -- once in the call to _Postconditions, and once in the actual return
7536 -- statement, but we can't have side effects happening twice.
2b3d67a5 7537
89d3b1a1 7538 Force_Evaluation (Exp, Mode => Strict);
2b3d67a5 7539
c9d70ab1 7540 -- Generate call to _Postconditions
2b3d67a5
AC
7541
7542 Insert_Action (Exp,
7543 Make_Procedure_Call_Statement (Loc,
c9d70ab1
AC
7544 Name =>
7545 New_Occurrence_Of (Postconditions_Proc (Scope_Id), Loc),
c8593453 7546 Parameter_Associations => New_List (New_Copy_Tree (Exp))));
2b3d67a5
AC
7547 end if;
7548
7549 -- Ada 2005 (AI-251): If this return statement corresponds with an
7550 -- simple return statement associated with an extended return statement
7551 -- and the type of the returned object is an interface then generate an
7552 -- implicit conversion to force displacement of the "this" pointer.
7553
0791fbe9 7554 if Ada_Version >= Ada_2005
2b3d67a5
AC
7555 and then Comes_From_Extended_Return_Statement (N)
7556 and then Nkind (Expression (N)) = N_Identifier
7557 and then Is_Interface (Utyp)
7558 and then Utyp /= Underlying_Type (Exptyp)
7559 then
7560 Rewrite (Exp, Convert_To (Utyp, Relocate_Node (Exp)));
7561 Analyze_And_Resolve (Exp);
7562 end if;
7563 end Expand_Simple_Function_Return;
7564
02822a92
RD
7565 -----------------------
7566 -- Freeze_Subprogram --
7567 -----------------------
758c442c 7568
02822a92
RD
7569 procedure Freeze_Subprogram (N : Node_Id) is
7570 Loc : constant Source_Ptr := Sloc (N);
3ca505dc 7571
02822a92
RD
7572 procedure Register_Predefined_DT_Entry (Prim : Entity_Id);
7573 -- (Ada 2005): Register a predefined primitive in all the secondary
7574 -- dispatch tables of its primitive type.
3ca505dc 7575
f4d379b8
HK
7576 ----------------------------------
7577 -- Register_Predefined_DT_Entry --
7578 ----------------------------------
7579
7580 procedure Register_Predefined_DT_Entry (Prim : Entity_Id) is
7581 Iface_DT_Ptr : Elmt_Id;
02822a92 7582 Tagged_Typ : Entity_Id;
f4d379b8 7583 Thunk_Id : Entity_Id;
7888a6ae 7584 Thunk_Code : Node_Id;
f4d379b8
HK
7585
7586 begin
02822a92 7587 Tagged_Typ := Find_Dispatching_Type (Prim);
f4d379b8 7588
02822a92 7589 if No (Access_Disp_Table (Tagged_Typ))
ce2b6ba5 7590 or else not Has_Interfaces (Tagged_Typ)
c8ef728f 7591 or else not RTE_Available (RE_Interface_Tag)
f937473f 7592 or else Restriction_Active (No_Dispatching_Calls)
f4d379b8
HK
7593 then
7594 return;
7595 end if;
7596
1923d2d6
JM
7597 -- Skip the first two access-to-dispatch-table pointers since they
7598 -- leads to the primary dispatch table (predefined DT and user
7599 -- defined DT). We are only concerned with the secondary dispatch
7600 -- table pointers. Note that the access-to- dispatch-table pointer
7601 -- corresponds to the first implemented interface retrieved below.
f4d379b8 7602
02822a92 7603 Iface_DT_Ptr :=
1923d2d6 7604 Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Tagged_Typ))));
f937473f 7605
7888a6ae 7606 while Present (Iface_DT_Ptr)
df3e68b1 7607 and then Ekind (Node (Iface_DT_Ptr)) = E_Constant
7888a6ae 7608 loop
ac4d6407 7609 pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
20dc266e
JM
7610 Expand_Interface_Thunk (Prim, Thunk_Id, Thunk_Code,
7611 Iface => Related_Type (Node (Iface_DT_Ptr)));
7888a6ae
GD
7612
7613 if Present (Thunk_Code) then
ac4d6407 7614 Insert_Actions_After (N, New_List (
7888a6ae
GD
7615 Thunk_Code,
7616
7617 Build_Set_Predefined_Prim_Op_Address (Loc,
54bf19e4 7618 Tag_Node =>
e4494292 7619 New_Occurrence_Of (Node (Next_Elmt (Iface_DT_Ptr)), Loc),
54bf19e4 7620 Position => DT_Position (Prim),
7888a6ae 7621 Address_Node =>
70f91180 7622 Unchecked_Convert_To (RTE (RE_Prim_Ptr),
1923d2d6 7623 Make_Attribute_Reference (Loc,
e4494292 7624 Prefix => New_Occurrence_Of (Thunk_Id, Loc),
1923d2d6 7625 Attribute_Name => Name_Unrestricted_Access))),
ac4d6407
RD
7626
7627 Build_Set_Predefined_Prim_Op_Address (Loc,
54bf19e4 7628 Tag_Node =>
e4494292 7629 New_Occurrence_Of
1923d2d6
JM
7630 (Node (Next_Elmt (Next_Elmt (Next_Elmt (Iface_DT_Ptr)))),
7631 Loc),
54bf19e4 7632 Position => DT_Position (Prim),
ac4d6407 7633 Address_Node =>
70f91180 7634 Unchecked_Convert_To (RTE (RE_Prim_Ptr),
1923d2d6 7635 Make_Attribute_Reference (Loc,
e4494292 7636 Prefix => New_Occurrence_Of (Prim, Loc),
1923d2d6 7637 Attribute_Name => Name_Unrestricted_Access)))));
7888a6ae 7638 end if;
f4d379b8 7639
1923d2d6
JM
7640 -- Skip the tag of the predefined primitives dispatch table
7641
7642 Next_Elmt (Iface_DT_Ptr);
7643 pragma Assert (Has_Thunks (Node (Iface_DT_Ptr)));
7644
54bf19e4 7645 -- Skip tag of the no-thunks dispatch table
1923d2d6
JM
7646
7647 Next_Elmt (Iface_DT_Ptr);
7648 pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
7649
54bf19e4 7650 -- Skip tag of predefined primitives no-thunks dispatch table
1923d2d6 7651
ac4d6407
RD
7652 Next_Elmt (Iface_DT_Ptr);
7653 pragma Assert (not Has_Thunks (Node (Iface_DT_Ptr)));
7654
f4d379b8 7655 Next_Elmt (Iface_DT_Ptr);
f4d379b8
HK
7656 end loop;
7657 end Register_Predefined_DT_Entry;
7658
7888a6ae 7659 -- Local variables
3ca505dc 7660
df3e68b1 7661 Subp : constant Entity_Id := Entity (N);
3ca505dc 7662
ac4d6407
RD
7663 -- Start of processing for Freeze_Subprogram
7664
7888a6ae 7665 begin
d766cee3 7666 -- We suppress the initialization of the dispatch table entry when
535a8637
AC
7667 -- not Tagged_Type_Expansion because the dispatching mechanism is
7668 -- handled internally by the target.
d766cee3
RD
7669
7670 if Is_Dispatching_Operation (Subp)
7671 and then not Is_Abstract_Subprogram (Subp)
7672 and then Present (DTC_Entity (Subp))
7673 and then Present (Scope (DTC_Entity (Subp)))
1f110335 7674 and then Tagged_Type_Expansion
d766cee3
RD
7675 and then not Restriction_Active (No_Dispatching_Calls)
7676 and then RTE_Available (RE_Tag)
7677 then
7888a6ae 7678 declare
d766cee3 7679 Typ : constant Entity_Id := Scope (DTC_Entity (Subp));
c8ef728f 7680
7888a6ae 7681 begin
8fc789c8 7682 -- Handle private overridden primitives
c8ef728f 7683
d766cee3
RD
7684 if not Is_CPP_Class (Typ) then
7685 Check_Overriding_Operation (Subp);
7888a6ae 7686 end if;
c8ef728f 7687
d766cee3
RD
7688 -- We assume that imported CPP primitives correspond with objects
7689 -- whose constructor is in the CPP side; therefore we don't need
7690 -- to generate code to register them in the dispatch table.
c8ef728f 7691
d766cee3
RD
7692 if Is_CPP_Class (Typ) then
7693 null;
3ca505dc 7694
d766cee3
RD
7695 -- Handle CPP primitives found in derivations of CPP_Class types.
7696 -- These primitives must have been inherited from some parent, and
7697 -- there is no need to register them in the dispatch table because
5b6f12c7 7698 -- Build_Inherit_Prims takes care of initializing these slots.
3ca505dc 7699
d766cee3 7700 elsif Is_Imported (Subp)
54bf19e4
AC
7701 and then (Convention (Subp) = Convention_CPP
7702 or else Convention (Subp) = Convention_C)
d766cee3
RD
7703 then
7704 null;
7705
7706 -- Generate code to register the primitive in non statically
7707 -- allocated dispatch tables
7708
bfae1846
AC
7709 elsif not Building_Static_DT (Scope (DTC_Entity (Subp))) then
7710
d766cee3
RD
7711 -- When a primitive is frozen, enter its name in its dispatch
7712 -- table slot.
f4d379b8 7713
d766cee3 7714 if not Is_Interface (Typ)
ce2b6ba5 7715 or else Present (Interface_Alias (Subp))
d766cee3
RD
7716 then
7717 if Is_Predefined_Dispatching_Operation (Subp) then
7718 Register_Predefined_DT_Entry (Subp);
7888a6ae 7719 end if;
d766cee3 7720
991395ab
AC
7721 Insert_Actions_After (N,
7722 Register_Primitive (Loc, Prim => Subp));
7888a6ae
GD
7723 end if;
7724 end if;
7725 end;
70482933
RK
7726 end if;
7727
7888a6ae
GD
7728 -- Mark functions that return by reference. Note that it cannot be part
7729 -- of the normal semantic analysis of the spec since the underlying
7730 -- returned type may not be known yet (for private types).
70482933 7731
d766cee3
RD
7732 declare
7733 Typ : constant Entity_Id := Etype (Subp);
7734 Utyp : constant Entity_Id := Underlying_Type (Typ);
d6e1090a 7735
d766cee3 7736 begin
51245e2d 7737 if Is_Limited_View (Typ) then
d766cee3 7738 Set_Returns_By_Ref (Subp);
d6e1090a 7739
048e5cef 7740 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
d766cee3
RD
7741 Set_Returns_By_Ref (Subp);
7742 end if;
7743 end;
b546e2a7
AC
7744
7745 -- Wnen freezing a null procedure, analyze its delayed aspects now
7746 -- because we may not have reached the end of the declarative list when
7747 -- delayed aspects are normally analyzed. This ensures that dispatching
7748 -- calls are properly rewritten when the generated _Postcondition
7749 -- procedure is analyzed in the null procedure body.
7750
7751 if Nkind (Parent (Subp)) = N_Procedure_Specification
7752 and then Null_Present (Parent (Subp))
7753 then
f99ff327 7754 Analyze_Entry_Or_Subprogram_Contract (Subp);
b546e2a7 7755 end if;
70482933
RK
7756 end Freeze_Subprogram;
7757
7d1d3a54
HK
7758 --------------------------------------------
7759 -- Has_Unconstrained_Access_Discriminants --
7760 --------------------------------------------
7761
7762 function Has_Unconstrained_Access_Discriminants
7763 (Subtyp : Entity_Id) return Boolean
7764 is
7765 Discr : Entity_Id;
7766
7767 begin
7768 if Has_Discriminants (Subtyp)
7769 and then not Is_Constrained (Subtyp)
7770 then
7771 Discr := First_Discriminant (Subtyp);
7772 while Present (Discr) loop
7773 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
7774 return True;
7775 end if;
7776
7777 Next_Discriminant (Discr);
7778 end loop;
7779 end if;
7780
7781 return False;
7782 end Has_Unconstrained_Access_Discriminants;
7783
ca1f6b29
BD
7784 ------------------------------
7785 -- Insert_Post_Call_Actions --
7786 ------------------------------
7787
ec40b86c 7788 procedure Insert_Post_Call_Actions (N : Node_Id; Post_Call : List_Id) is
40b4bc2d
AC
7789 Context : constant Node_Id := Parent (N);
7790
ca1f6b29
BD
7791 begin
7792 if Is_Empty_List (Post_Call) then
7793 return;
7794 end if;
7795
ec40b86c
HK
7796 -- Cases where the call is not a member of a statement list. This
7797 -- includes the case where the call is an actual in another function
7798 -- call or indexing, i.e. an expression context as well.
ca1f6b29
BD
7799
7800 if not Is_List_Member (N)
40b4bc2d 7801 or else Nkind_In (Context, N_Function_Call, N_Indexed_Component)
ca1f6b29
BD
7802 then
7803 -- In Ada 2012 the call may be a function call in an expression
ec40b86c
HK
7804 -- (since OUT and IN OUT parameters are now allowed for such calls).
7805 -- The write-back of (in)-out parameters is handled by the back-end,
7806 -- but the constraint checks generated when subtypes of formal and
7807 -- actual don't match must be inserted in the form of assignments.
ca1f6b29
BD
7808
7809 if Nkind (Original_Node (N)) = N_Function_Call then
7810 pragma Assert (Ada_Version >= Ada_2012);
7811 -- Functions with '[in] out' parameters are only allowed in Ada
7812 -- 2012.
7813
7814 -- We used to handle this by climbing up parents to a
7815 -- non-statement/declaration and then simply making a call to
7816 -- Insert_Actions_After (P, Post_Call), but that doesn't work
7817 -- for Ada 2012. If we are in the middle of an expression, e.g.
7818 -- the condition of an IF, this call would insert after the IF
ec40b86c
HK
7819 -- statement, which is much too late to be doing the write back.
7820 -- For example:
ca1f6b29
BD
7821
7822 -- if Clobber (X) then
7823 -- Put_Line (X'Img);
7824 -- else
7825 -- goto Junk
7826 -- end if;
7827
ec40b86c
HK
7828 -- Now assume Clobber changes X, if we put the write back after
7829 -- the IF, the Put_Line gets the wrong value and the goto causes
7830 -- the write back to be skipped completely.
ca1f6b29
BD
7831
7832 -- To deal with this, we replace the call by
7833
7834 -- do
7835 -- Tnnn : constant function-result-type := function-call;
7836 -- Post_Call actions
7837 -- in
7838 -- Tnnn;
7839 -- end;
7840
7841 declare
7842 Loc : constant Source_Ptr := Sloc (N);
7843 Tnnn : constant Entity_Id := Make_Temporary (Loc, 'T');
7844 FRTyp : constant Entity_Id := Etype (N);
7845 Name : constant Node_Id := Relocate_Node (N);
7846
7847 begin
7848 Prepend_To (Post_Call,
7849 Make_Object_Declaration (Loc,
7850 Defining_Identifier => Tnnn,
7851 Object_Definition => New_Occurrence_Of (FRTyp, Loc),
7852 Constant_Present => True,
7853 Expression => Name));
7854
7855 Rewrite (N,
7856 Make_Expression_With_Actions (Loc,
7857 Actions => Post_Call,
7858 Expression => New_Occurrence_Of (Tnnn, Loc)));
7859
7860 -- We don't want to just blindly call Analyze_And_Resolve
7861 -- because that would cause unwanted recursion on the call.
7862 -- So for a moment set the call as analyzed to prevent that
7863 -- recursion, and get the rest analyzed properly, then reset
7864 -- the analyzed flag, so our caller can continue.
7865
7866 Set_Analyzed (Name, True);
7867 Analyze_And_Resolve (N, FRTyp);
7868 Set_Analyzed (Name, False);
7869 end;
7870
ec40b86c
HK
7871 -- If not the special Ada 2012 case of a function call, then we must
7872 -- have the triggering statement of a triggering alternative or an
7873 -- entry call alternative, and we can add the post call stuff to the
7874 -- corresponding statement list.
ca1f6b29
BD
7875
7876 else
40b4bc2d
AC
7877 pragma Assert (Nkind_In (Context, N_Entry_Call_Alternative,
7878 N_Triggering_Alternative));
ca1f6b29 7879
40b4bc2d
AC
7880 if Is_Non_Empty_List (Statements (Context)) then
7881 Insert_List_Before_And_Analyze
7882 (First (Statements (Context)), Post_Call);
7883 else
7884 Set_Statements (Context, Post_Call);
7885 end if;
ca1f6b29
BD
7886 end if;
7887
40b4bc2d
AC
7888 -- A procedure call is always part of a declarative or statement list,
7889 -- however a function call may appear nested within a construct. Most
7890 -- cases of function call nesting are handled in the special case above.
7891 -- The only exception is when the function call acts as an actual in a
7892 -- procedure call. In this case the function call is in a list, but the
7893 -- post-call actions must be inserted after the procedure call.
7894
7895 elsif Nkind (Context) = N_Procedure_Call_Statement then
7896 Insert_Actions_After (Context, Post_Call);
7897
ec40b86c
HK
7898 -- Otherwise, normal case where N is in a statement sequence, just put
7899 -- the post-call stuff after the call statement.
ca1f6b29
BD
7900
7901 else
7902 Insert_Actions_After (N, Post_Call);
7903 end if;
7904 end Insert_Post_Call_Actions;
7905
7d1d3a54
HK
7906 -----------------------------------
7907 -- Is_Build_In_Place_Result_Type --
7908 -----------------------------------
7909
7910 function Is_Build_In_Place_Result_Type (Typ : Entity_Id) return Boolean is
7911 begin
7912 if not Expander_Active then
7913 return False;
7914 end if;
7915
7916 -- In Ada 2005 all functions with an inherently limited return type
7917 -- must be handled using a build-in-place profile, including the case
7918 -- of a function with a limited interface result, where the function
7919 -- may return objects of nonlimited descendants.
7920
7921 if Is_Limited_View (Typ) then
7922 return Ada_Version >= Ada_2005 and then not Debug_Flag_Dot_L;
7923
7924 else
7925 if Debug_Flag_Dot_9 then
7926 return False;
7927 end if;
7928
7929 if Has_Interfaces (Typ) then
7930 return False;
7931 end if;
7932
7933 declare
7934 T : Entity_Id := Typ;
7935 begin
7936 -- For T'Class, return True if it's True for T. This is necessary
7937 -- because a class-wide function might say "return F (...)", where
7938 -- F returns the corresponding specific type. We need a loop in
7939 -- case T is a subtype of a class-wide type.
7940
7941 while Is_Class_Wide_Type (T) loop
7942 T := Etype (T);
7943 end loop;
7944
7945 -- If this is a generic formal type in an instance, return True if
7946 -- it's True for the generic actual type.
7947
7948 if Nkind (Parent (T)) = N_Subtype_Declaration
7949 and then Present (Generic_Parent_Type (Parent (T)))
7950 then
7951 T := Entity (Subtype_Indication (Parent (T)));
7952
7953 if Present (Full_View (T)) then
7954 T := Full_View (T);
7955 end if;
7956 end if;
7957
7958 if Present (Underlying_Type (T)) then
7959 T := Underlying_Type (T);
7960 end if;
7961
7962 declare
7963 Result : Boolean;
7964 -- So we can stop here in the debugger
7965 begin
7966 -- ???For now, enable build-in-place for a very narrow set of
7967 -- controlled types. Change "if True" to "if False" to
7968 -- experiment with more controlled types. Eventually, we might
7969 -- like to enable build-in-place for all tagged types, all
7970 -- types that need finalization, and all caller-unknown-size
7971 -- types.
7972
7973 if True then
7974 Result := Is_Controlled (T)
7975 and then Present (Enclosing_Subprogram (T))
7976 and then not Is_Compilation_Unit (Enclosing_Subprogram (T))
7977 and then Ekind (Enclosing_Subprogram (T)) = E_Procedure;
7978 else
7979 Result := Is_Controlled (T);
7980 end if;
7981
7982 return Result;
7983 end;
7984 end;
7985 end if;
7986 end Is_Build_In_Place_Result_Type;
7987
7988 --------------------------------
7989 -- Is_Build_In_Place_Function --
7990 --------------------------------
7991
7992 function Is_Build_In_Place_Function (E : Entity_Id) return Boolean is
7993 begin
7994 -- This function is called from Expand_Subtype_From_Expr during
7995 -- semantic analysis, even when expansion is off. In those cases
7996 -- the build_in_place expansion will not take place.
7997
7998 if not Expander_Active then
7999 return False;
8000 end if;
8001
8002 -- For now we test whether E denotes a function or access-to-function
8003 -- type whose result subtype is inherently limited. Later this test
adc81ec8 8004 -- may be revised to allow composite nonlimited types.
7d1d3a54
HK
8005
8006 if Ekind_In (E, E_Function, E_Generic_Function)
8007 or else (Ekind (E) = E_Subprogram_Type
8008 and then Etype (E) /= Standard_Void_Type)
8009 then
adc81ec8
BD
8010 -- If the function is imported from a foreign language, we don't do
8011 -- build-in-place. Note that Import (Ada) functions can do
8012 -- build-in-place. Note that it is OK for a build-in-place function
8013 -- to return a type with a foreign convention; the build-in-place
8014 -- machinery will ensure there is no copying.
7d1d3a54
HK
8015
8016 return Is_Build_In_Place_Result_Type (Etype (E))
adc81ec8 8017 and then not (Has_Foreign_Convention (E) and then Is_Imported (E))
7d1d3a54
HK
8018 and then not Debug_Flag_Dot_L;
8019 else
8020 return False;
8021 end if;
8022 end Is_Build_In_Place_Function;
8023
8024 -------------------------------------
8025 -- Is_Build_In_Place_Function_Call --
8026 -------------------------------------
8027
8028 function Is_Build_In_Place_Function_Call (N : Node_Id) return Boolean is
8029 Exp_Node : constant Node_Id := Unqual_Conv (N);
8030 Function_Id : Entity_Id;
8031
8032 begin
8033 -- Return False if the expander is currently inactive, since awareness
8034 -- of build-in-place treatment is only relevant during expansion. Note
8035 -- that Is_Build_In_Place_Function, which is called as part of this
8036 -- function, is also conditioned this way, but we need to check here as
8037 -- well to avoid blowing up on processing protected calls when expansion
8038 -- is disabled (such as with -gnatc) since those would trip over the
8039 -- raise of Program_Error below.
8040
8041 -- In SPARK mode, build-in-place calls are not expanded, so that we
8042 -- may end up with a call that is neither resolved to an entity, nor
8043 -- an indirect call.
8044
8045 if not Expander_Active or else Nkind (Exp_Node) /= N_Function_Call then
8046 return False;
8047 end if;
8048
8049 if Is_Entity_Name (Name (Exp_Node)) then
8050 Function_Id := Entity (Name (Exp_Node));
8051
8052 -- In the case of an explicitly dereferenced call, use the subprogram
8053 -- type generated for the dereference.
8054
8055 elsif Nkind (Name (Exp_Node)) = N_Explicit_Dereference then
8056 Function_Id := Etype (Name (Exp_Node));
8057
8058 -- This may be a call to a protected function.
8059
8060 elsif Nkind (Name (Exp_Node)) = N_Selected_Component then
8061 Function_Id := Etype (Entity (Selector_Name (Name (Exp_Node))));
8062
8063 else
8064 raise Program_Error;
8065 end if;
8066
8067 declare
8068 Result : constant Boolean := Is_Build_In_Place_Function (Function_Id);
8069 -- So we can stop here in the debugger
8070 begin
8071 return Result;
8072 end;
8073 end Is_Build_In_Place_Function_Call;
8074
8dbf3473
AC
8075 -----------------------
8076 -- Is_Null_Procedure --
8077 -----------------------
8078
8079 function Is_Null_Procedure (Subp : Entity_Id) return Boolean is
8080 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
8081
8082 begin
8083 if Ekind (Subp) /= E_Procedure then
8084 return False;
8085
8086 -- Check if this is a declared null procedure
8087
8088 elsif Nkind (Decl) = N_Subprogram_Declaration then
e1f3cb58
AC
8089 if not Null_Present (Specification (Decl)) then
8090 return False;
8dbf3473
AC
8091
8092 elsif No (Body_To_Inline (Decl)) then
8093 return False;
8094
8095 -- Check if the body contains only a null statement, followed by
8096 -- the return statement added during expansion.
8097
8098 else
8099 declare
8100 Orig_Bod : constant Node_Id := Body_To_Inline (Decl);
8101
8102 Stat : Node_Id;
8103 Stat2 : Node_Id;
8104
8105 begin
8106 if Nkind (Orig_Bod) /= N_Subprogram_Body then
8107 return False;
8108 else
327503f1
JM
8109 -- We must skip SCIL nodes because they are currently
8110 -- implemented as special N_Null_Statement nodes.
8111
8dbf3473 8112 Stat :=
327503f1 8113 First_Non_SCIL_Node
8dbf3473 8114 (Statements (Handled_Statement_Sequence (Orig_Bod)));
327503f1 8115 Stat2 := Next_Non_SCIL_Node (Stat);
8dbf3473
AC
8116
8117 return
e1f3cb58
AC
8118 Is_Empty_List (Declarations (Orig_Bod))
8119 and then Nkind (Stat) = N_Null_Statement
8120 and then
8dbf3473
AC
8121 (No (Stat2)
8122 or else
8123 (Nkind (Stat2) = N_Simple_Return_Statement
8124 and then No (Next (Stat2))));
8125 end if;
8126 end;
8127 end if;
8128
8129 else
8130 return False;
8131 end if;
8132 end Is_Null_Procedure;
8133
02822a92
RD
8134 -------------------------------------------
8135 -- Make_Build_In_Place_Call_In_Allocator --
8136 -------------------------------------------
8137
8138 procedure Make_Build_In_Place_Call_In_Allocator
8139 (Allocator : Node_Id;
8140 Function_Call : Node_Id)
8141 is
94bbf008 8142 Acc_Type : constant Entity_Id := Etype (Allocator);
90e491a7 8143 Loc : constant Source_Ptr := Sloc (Function_Call);
02822a92 8144 Func_Call : Node_Id := Function_Call;
1399d355 8145 Ref_Func_Call : Node_Id;
02822a92
RD
8146 Function_Id : Entity_Id;
8147 Result_Subt : Entity_Id;
02822a92 8148 New_Allocator : Node_Id;
1399d355
AC
8149 Return_Obj_Access : Entity_Id; -- temp for function result
8150 Temp_Init : Node_Id; -- initial value of Return_Obj_Access
8151 Alloc_Form : BIP_Allocation_Form;
8152 Pool : Node_Id; -- nonnull if Alloc_Form = User_Storage_Pool
8153 Return_Obj_Actual : Node_Id; -- the temp.all, in caller-allocates case
8154 Chain : Entity_Id; -- activation chain, in case of tasks
02822a92
RD
8155
8156 begin
19590d70
GD
8157 -- Step past qualification or unchecked conversion (the latter can occur
8158 -- in cases of calls to 'Input).
8159
7d1d3a54
HK
8160 if Nkind_In (Func_Call, N_Qualified_Expression,
8161 N_Type_Conversion,
8162 N_Unchecked_Type_Conversion)
19590d70 8163 then
02822a92
RD
8164 Func_Call := Expression (Func_Call);
8165 end if;
8166
fdce4bb7
JM
8167 -- Mark the call as processed as a build-in-place call
8168
d4dfb005 8169 pragma Assert (not Is_Expanded_Build_In_Place_Call (Func_Call));
fdce4bb7
JM
8170 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8171
02822a92
RD
8172 if Is_Entity_Name (Name (Func_Call)) then
8173 Function_Id := Entity (Name (Func_Call));
8174
8175 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8176 Function_Id := Etype (Name (Func_Call));
8177
8178 else
8179 raise Program_Error;
8180 end if;
8181
94bbf008 8182 Result_Subt := Available_View (Etype (Function_Id));
02822a92 8183
1399d355
AC
8184 -- Create a temp for the function result. In the caller-allocates case,
8185 -- this will be initialized to the result of a new uninitialized
8186 -- allocator. Note: we do not use Allocator as the Related_Node of
8187 -- Return_Obj_Access in call to Make_Temporary below as this would
8188 -- create a sort of infinite "recursion".
0d566e01 8189
1399d355
AC
8190 Return_Obj_Access := Make_Temporary (Loc, 'R');
8191 Set_Etype (Return_Obj_Access, Acc_Type);
d4dfb005 8192 Set_Can_Never_Be_Null (Acc_Type, False);
3fc40cd7 8193 -- It gets initialized to null, so we can't have that
0d566e01 8194
7d1d3a54
HK
8195 -- When the result subtype is constrained, the return object is created
8196 -- on the caller side, and access to it is passed to the function. This
8197 -- optimization is disabled when the result subtype needs finalization
8198 -- actions because the caller side allocation may result in undesirable
8199 -- finalization. Consider the following example:
8200 --
8201 -- function Make_Lim_Ctrl return Lim_Ctrl is
8202 -- begin
8203 -- return Result : Lim_Ctrl := raise Program_Error do
8204 -- null;
8205 -- end return;
8206 -- end Make_Lim_Ctrl;
8207 --
8208 -- Obj : Lim_Ctrl_Ptr := new Lim_Ctrl'(Make_Lim_Ctrl);
8209 --
8210 -- Even though the size of limited controlled type Lim_Ctrl is known,
8211 -- allocating Obj at the caller side will chain Obj on Lim_Ctrl_Ptr's
8212 -- finalization master. The subsequent call to Make_Lim_Ctrl will fail
8213 -- during the initialization actions for Result, which implies that
8214 -- Result (and Obj by extension) should not be finalized. However Obj
8215 -- will be finalized when access type Lim_Ctrl_Ptr goes out of scope
8216 -- since it is already attached on the related finalization master.
02822a92 8217
7888a6ae 8218 -- Here and in related routines, we must examine the full view of the
cf0e5ca7
BD
8219 -- type, because the view at the point of call may differ from the
8220 -- one in the function body, and the expansion mechanism depends on
7888a6ae
GD
8221 -- the characteristics of the full view.
8222
cf0e5ca7
BD
8223 if Needs_BIP_Alloc_Form (Function_Id) then
8224 Temp_Init := Empty;
8225
8226 -- Case of a user-defined storage pool. Pass an allocation parameter
8227 -- indicating that the function should allocate its result in the
8228 -- pool, and pass the pool. Use 'Unrestricted_Access because the
8229 -- pool may not be aliased.
8230
8231 if Present (Associated_Storage_Pool (Acc_Type)) then
8232 Alloc_Form := User_Storage_Pool;
8233 Pool :=
8234 Make_Attribute_Reference (Loc,
8235 Prefix =>
8236 New_Occurrence_Of
8237 (Associated_Storage_Pool (Acc_Type), Loc),
8238 Attribute_Name => Name_Unrestricted_Access);
8239
8240 -- No user-defined pool; pass an allocation parameter indicating that
8241 -- the function should allocate its result on the heap.
8242
8243 else
8244 Alloc_Form := Global_Heap;
8245 Pool := Make_Null (No_Location);
8246 end if;
8247
8248 -- The caller does not provide the return object in this case, so we
8249 -- have to pass null for the object access actual.
8250
8251 Return_Obj_Actual := Empty;
8252
8253 else
f937473f
RD
8254 -- Replace the initialized allocator of form "new T'(Func (...))"
8255 -- with an uninitialized allocator of form "new T", where T is the
8256 -- result subtype of the called function. The call to the function
8257 -- is handled separately further below.
02822a92 8258
f937473f 8259 New_Allocator :=
fad0600d 8260 Make_Allocator (Loc,
e4494292 8261 Expression => New_Occurrence_Of (Result_Subt, Loc));
fad0600d
AC
8262 Set_No_Initialization (New_Allocator);
8263
8264 -- Copy attributes to new allocator. Note that the new allocator
8265 -- logically comes from source if the original one did, so copy the
8266 -- relevant flag. This ensures proper treatment of the restriction
8267 -- No_Implicit_Heap_Allocations in this case.
02822a92 8268
fad0600d 8269 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
f937473f 8270 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
fad0600d 8271 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
02822a92 8272
f937473f 8273 Rewrite (Allocator, New_Allocator);
02822a92 8274
1399d355 8275 -- Initial value of the temp is the result of the uninitialized
90e491a7
PMR
8276 -- allocator. Unchecked_Convert is needed for T'Input where T is
8277 -- derived from a controlled type.
02822a92 8278
1399d355 8279 Temp_Init := Relocate_Node (Allocator);
f937473f 8280
7d1d3a54
HK
8281 if Nkind_In (Function_Call, N_Type_Conversion,
8282 N_Unchecked_Type_Conversion)
90e491a7
PMR
8283 then
8284 Temp_Init := Unchecked_Convert_To (Acc_Type, Temp_Init);
8285 end if;
8286
1399d355
AC
8287 -- Indicate that caller allocates, and pass in the return object
8288
8289 Alloc_Form := Caller_Allocation;
8290 Pool := Make_Null (No_Location);
8291 Return_Obj_Actual :=
8292 Make_Unchecked_Type_Conversion (Loc,
8293 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8294 Expression =>
8295 Make_Explicit_Dereference (Loc,
8296 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)));
f937473f
RD
8297
8298 -- When the result subtype is unconstrained, the function itself must
8299 -- perform the allocation of the return object, so we pass parameters
1399d355 8300 -- indicating that.
f937473f 8301
1399d355
AC
8302 end if;
8303
8304 -- Declare the temp object
8305
8306 Insert_Action (Allocator,
8307 Make_Object_Declaration (Loc,
8308 Defining_Identifier => Return_Obj_Access,
8309 Object_Definition => New_Occurrence_Of (Acc_Type, Loc),
8310 Expression => Temp_Init));
8311
8312 Ref_Func_Call := Make_Reference (Loc, Func_Call);
8313
8314 -- Ada 2005 (AI-251): If the type of the allocator is an interface
8315 -- then generate an implicit conversion to force displacement of the
8316 -- "this" pointer.
8317
8318 if Is_Interface (Designated_Type (Acc_Type)) then
8319 Rewrite
8320 (Ref_Func_Call,
8321 OK_Convert_To (Acc_Type, Ref_Func_Call));
90e491a7
PMR
8322
8323 -- If the types are incompatible, we need an unchecked conversion. Note
8324 -- that the full types will be compatible, but the types not visibly
8325 -- compatible.
8326
7d1d3a54
HK
8327 elsif Nkind_In (Function_Call, N_Type_Conversion,
8328 N_Unchecked_Type_Conversion)
90e491a7
PMR
8329 then
8330 Ref_Func_Call := Unchecked_Convert_To (Acc_Type, Ref_Func_Call);
f937473f 8331 end if;
02822a92 8332
1399d355
AC
8333 declare
8334 Assign : constant Node_Id :=
7d1d3a54
HK
8335 Make_Assignment_Statement (Loc,
8336 Name => New_Occurrence_Of (Return_Obj_Access, Loc),
8337 Expression => Ref_Func_Call);
1399d355
AC
8338 -- Assign the result of the function call into the temp. In the
8339 -- caller-allocates case, this is overwriting the temp with its
8340 -- initial value, which has no effect. In the callee-allocates case,
8341 -- this is setting the temp to point to the object allocated by the
90e491a7
PMR
8342 -- callee. Unchecked_Convert is needed for T'Input where T is derived
8343 -- from a controlled type.
1399d355
AC
8344
8345 Actions : List_Id;
8346 -- Actions to be inserted. If there are no tasks, this is just the
8347 -- assignment statement. If the allocated object has tasks, we need
8348 -- to wrap the assignment in a block that activates them. The
8349 -- activation chain of that block must be passed to the function,
8350 -- rather than some outer chain.
7d1d3a54 8351
1399d355
AC
8352 begin
8353 if Has_Task (Result_Subt) then
8354 Actions := New_List;
8355 Build_Task_Allocate_Block_With_Init_Stmts
8356 (Actions, Allocator, Init_Stmts => New_List (Assign));
8357 Chain := Activation_Chain_Entity (Last (Actions));
8358 else
8359 Actions := New_List (Assign);
8360 Chain := Empty;
8361 end if;
8362
8363 Insert_Actions (Allocator, Actions);
8364 end;
8365
8366 -- When the function has a controlling result, an allocation-form
8367 -- parameter must be passed indicating that the caller is allocating
8368 -- the result object. This is needed because such a function can be
8369 -- called as a dispatching operation and must be treated similarly
8370 -- to functions with unconstrained result subtypes.
8371
8372 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8373 (Func_Call, Function_Id, Alloc_Form, Pool_Actual => Pool);
8374
8375 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8376 (Func_Call, Function_Id, Acc_Type);
8377
8378 Add_Task_Actuals_To_Build_In_Place_Call
8379 (Func_Call, Function_Id, Master_Actual => Master_Id (Acc_Type),
8380 Chain => Chain);
8381
8382 -- Add an implicit actual to the function call that provides access
8383 -- to the allocated object. An unchecked conversion to the (specific)
8384 -- result subtype of the function is inserted to handle cases where
8385 -- the access type of the allocator has a class-wide designated type.
8386
8387 Add_Access_Actual_To_Build_In_Place_Call
8388 (Func_Call, Function_Id, Return_Obj_Actual);
8389
1399d355 8390 -- Finally, replace the allocator node with a reference to the temp
02822a92 8391
1399d355 8392 Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
d2d4b355 8393
02822a92 8394 Analyze_And_Resolve (Allocator, Acc_Type);
1ed19d98 8395 pragma Assert (Check_Number_Of_Actuals (Func_Call, Function_Id));
02822a92
RD
8396 end Make_Build_In_Place_Call_In_Allocator;
8397
8398 ---------------------------------------------------
8399 -- Make_Build_In_Place_Call_In_Anonymous_Context --
8400 ---------------------------------------------------
8401
8402 procedure Make_Build_In_Place_Call_In_Anonymous_Context
8403 (Function_Call : Node_Id)
8404 is
90e491a7 8405 Loc : constant Source_Ptr := Sloc (Function_Call);
0691ed6b 8406 Func_Call : constant Node_Id := Unqual_Conv (Function_Call);
02822a92
RD
8407 Function_Id : Entity_Id;
8408 Result_Subt : Entity_Id;
8409 Return_Obj_Id : Entity_Id;
8410 Return_Obj_Decl : Entity_Id;
8411
8412 begin
fdce4bb7
JM
8413 -- If the call has already been processed to add build-in-place actuals
8414 -- then return. One place this can occur is for calls to build-in-place
8415 -- functions that occur within a call to a protected operation, where
8416 -- due to rewriting and expansion of the protected call there can be
8417 -- more than one call to Expand_Actuals for the same set of actuals.
8418
8419 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8420 return;
8421 end if;
8422
8423 -- Mark the call as processed as a build-in-place call
8424
8425 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8426
02822a92
RD
8427 if Is_Entity_Name (Name (Func_Call)) then
8428 Function_Id := Entity (Name (Func_Call));
8429
8430 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8431 Function_Id := Etype (Name (Func_Call));
8432
8433 else
8434 raise Program_Error;
8435 end if;
8436
8437 Result_Subt := Etype (Function_Id);
8438
df3e68b1
HK
8439 -- If the build-in-place function returns a controlled object, then the
8440 -- object needs to be finalized immediately after the context. Since
8441 -- this case produces a transient scope, the servicing finalizer needs
8442 -- to name the returned object. Create a temporary which is initialized
8443 -- with the function call:
8444 --
8445 -- Temp_Id : Func_Type := BIP_Func_Call;
8446 --
8447 -- The initialization expression of the temporary will be rewritten by
8448 -- the expander using the appropriate mechanism in Make_Build_In_Place_
8449 -- Call_In_Object_Declaration.
8450
8451 if Needs_Finalization (Result_Subt) then
8452 declare
8453 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'R');
8454 Temp_Decl : Node_Id;
8455
8456 begin
8457 -- Reset the guard on the function call since the following does
8458 -- not perform actual call expansion.
8459
8460 Set_Is_Expanded_Build_In_Place_Call (Func_Call, False);
8461
8462 Temp_Decl :=
8463 Make_Object_Declaration (Loc,
8464 Defining_Identifier => Temp_Id,
8465 Object_Definition =>
e4494292 8466 New_Occurrence_Of (Result_Subt, Loc),
df3e68b1
HK
8467 Expression =>
8468 New_Copy_Tree (Function_Call));
8469
8470 Insert_Action (Function_Call, Temp_Decl);
8471
e4494292 8472 Rewrite (Function_Call, New_Occurrence_Of (Temp_Id, Loc));
df3e68b1
HK
8473 Analyze (Function_Call);
8474 end;
8475
e51102b2 8476 -- When the result subtype is definite, an object of the subtype is
f937473f 8477 -- declared and an access value designating it is passed as an actual.
02822a92 8478
0691ed6b 8479 elsif Caller_Known_Size (Func_Call, Result_Subt) then
02822a92 8480
f937473f
RD
8481 -- Create a temporary object to hold the function result
8482
c12beea0 8483 Return_Obj_Id := Make_Temporary (Loc, 'R');
f937473f 8484 Set_Etype (Return_Obj_Id, Result_Subt);
02822a92 8485
f937473f
RD
8486 Return_Obj_Decl :=
8487 Make_Object_Declaration (Loc,
8488 Defining_Identifier => Return_Obj_Id,
8489 Aliased_Present => True,
e4494292 8490 Object_Definition => New_Occurrence_Of (Result_Subt, Loc));
02822a92 8491
f937473f 8492 Set_No_Initialization (Return_Obj_Decl);
02822a92 8493
f937473f 8494 Insert_Action (Func_Call, Return_Obj_Decl);
02822a92 8495
7888a6ae
GD
8496 -- When the function has a controlling result, an allocation-form
8497 -- parameter must be passed indicating that the caller is allocating
8498 -- the result object. This is needed because such a function can be
8499 -- called as a dispatching operation and must be treated similarly
8500 -- to functions with unconstrained result subtypes.
8501
200b7162 8502 Add_Unconstrained_Actuals_To_Build_In_Place_Call
7888a6ae
GD
8503 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
8504
d3f70b35 8505 Add_Finalization_Master_Actual_To_Build_In_Place_Call
df3e68b1 8506 (Func_Call, Function_Id);
f937473f 8507
f937473f
RD
8508 Add_Task_Actuals_To_Build_In_Place_Call
8509 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
7888a6ae
GD
8510
8511 -- Add an implicit actual to the function call that provides access
8512 -- to the caller's return object.
8513
f937473f 8514 Add_Access_Actual_To_Build_In_Place_Call
e4494292 8515 (Func_Call, Function_Id, New_Occurrence_Of (Return_Obj_Id, Loc));
f937473f 8516
1ed19d98
JM
8517 pragma Assert (Check_Number_Of_Actuals (Func_Call, Function_Id));
8518
f937473f
RD
8519 -- When the result subtype is unconstrained, the function must allocate
8520 -- the return object in the secondary stack, so appropriate implicit
8521 -- parameters are added to the call to indicate that. A transient
8522 -- scope is established to ensure eventual cleanup of the result.
8523
8524 else
8525 -- Pass an allocation parameter indicating that the function should
8526 -- allocate its result on the secondary stack.
8527
200b7162 8528 Add_Unconstrained_Actuals_To_Build_In_Place_Call
f937473f
RD
8529 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
8530
d3f70b35 8531 Add_Finalization_Master_Actual_To_Build_In_Place_Call
df3e68b1 8532 (Func_Call, Function_Id);
f937473f 8533
f937473f
RD
8534 Add_Task_Actuals_To_Build_In_Place_Call
8535 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
7888a6ae
GD
8536
8537 -- Pass a null value to the function since no return object is
8538 -- available on the caller side.
8539
f937473f
RD
8540 Add_Access_Actual_To_Build_In_Place_Call
8541 (Func_Call, Function_Id, Empty);
1ed19d98
JM
8542
8543 pragma Assert (Check_Number_Of_Actuals (Func_Call, Function_Id));
f937473f 8544 end if;
02822a92
RD
8545 end Make_Build_In_Place_Call_In_Anonymous_Context;
8546
ce2798e8 8547 --------------------------------------------
02822a92 8548 -- Make_Build_In_Place_Call_In_Assignment --
ce2798e8 8549 --------------------------------------------
02822a92
RD
8550
8551 procedure Make_Build_In_Place_Call_In_Assignment
8552 (Assign : Node_Id;
8553 Function_Call : Node_Id)
8554 is
3fc40cd7
PMR
8555 Func_Call : constant Node_Id := Unqual_Conv (Function_Call);
8556 Lhs : constant Node_Id := Name (Assign);
d4dfb005 8557 Loc : constant Source_Ptr := Sloc (Function_Call);
3fc40cd7 8558 Func_Id : Entity_Id;
3a69b5ff
AC
8559 Obj_Decl : Node_Id;
8560 Obj_Id : Entity_Id;
8561 Ptr_Typ : Entity_Id;
8562 Ptr_Typ_Decl : Node_Id;
74cab21a 8563 New_Expr : Node_Id;
3a69b5ff 8564 Result_Subt : Entity_Id;
02822a92
RD
8565
8566 begin
fdce4bb7
JM
8567 -- Mark the call as processed as a build-in-place call
8568
d4dfb005 8569 pragma Assert (not Is_Expanded_Build_In_Place_Call (Func_Call));
fdce4bb7
JM
8570 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8571
02822a92 8572 if Is_Entity_Name (Name (Func_Call)) then
3a69b5ff 8573 Func_Id := Entity (Name (Func_Call));
02822a92
RD
8574
8575 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
3a69b5ff 8576 Func_Id := Etype (Name (Func_Call));
02822a92
RD
8577
8578 else
8579 raise Program_Error;
8580 end if;
8581
3a69b5ff 8582 Result_Subt := Etype (Func_Id);
02822a92 8583
f937473f
RD
8584 -- When the result subtype is unconstrained, an additional actual must
8585 -- be passed to indicate that the caller is providing the return object.
7888a6ae
GD
8586 -- This parameter must also be passed when the called function has a
8587 -- controlling result, because dispatching calls to the function needs
8588 -- to be treated effectively the same as calls to class-wide functions.
f937473f 8589
200b7162 8590 Add_Unconstrained_Actuals_To_Build_In_Place_Call
3a69b5ff 8591 (Func_Call, Func_Id, Alloc_Form => Caller_Allocation);
f937473f 8592
d3f70b35 8593 Add_Finalization_Master_Actual_To_Build_In_Place_Call
df3e68b1 8594 (Func_Call, Func_Id);
02822a92 8595
f937473f 8596 Add_Task_Actuals_To_Build_In_Place_Call
3a69b5ff 8597 (Func_Call, Func_Id, Make_Identifier (Loc, Name_uMaster));
7888a6ae
GD
8598
8599 -- Add an implicit actual to the function call that provides access to
8600 -- the caller's return object.
8601
02822a92
RD
8602 Add_Access_Actual_To_Build_In_Place_Call
8603 (Func_Call,
3a69b5ff 8604 Func_Id,
02822a92 8605 Make_Unchecked_Type_Conversion (Loc,
e4494292 8606 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
02822a92
RD
8607 Expression => Relocate_Node (Lhs)));
8608
8609 -- Create an access type designating the function's result subtype
8610
c12beea0 8611 Ptr_Typ := Make_Temporary (Loc, 'A');
02822a92
RD
8612
8613 Ptr_Typ_Decl :=
8614 Make_Full_Type_Declaration (Loc,
3a69b5ff 8615 Defining_Identifier => Ptr_Typ,
2c1b72d7 8616 Type_Definition =>
02822a92 8617 Make_Access_To_Object_Definition (Loc,
2c1b72d7 8618 All_Present => True,
02822a92 8619 Subtype_Indication =>
e4494292 8620 New_Occurrence_Of (Result_Subt, Loc)));
02822a92
RD
8621 Insert_After_And_Analyze (Assign, Ptr_Typ_Decl);
8622
8623 -- Finally, create an access object initialized to a reference to the
03e1048e
AC
8624 -- function call. We know this access value is non-null, so mark the
8625 -- entity accordingly to suppress junk access checks.
02822a92 8626
74cab21a
EB
8627 New_Expr := Make_Reference (Loc, Relocate_Node (Func_Call));
8628
d4dfb005
BD
8629 -- Add a conversion if it's the wrong type
8630
8631 if Etype (New_Expr) /= Ptr_Typ then
3fc40cd7
PMR
8632 New_Expr :=
8633 Make_Unchecked_Type_Conversion (Loc,
8634 New_Occurrence_Of (Ptr_Typ, Loc), New_Expr);
d4dfb005
BD
8635 end if;
8636
74cab21a 8637 Obj_Id := Make_Temporary (Loc, 'R', New_Expr);
3a69b5ff 8638 Set_Etype (Obj_Id, Ptr_Typ);
74cab21a 8639 Set_Is_Known_Non_Null (Obj_Id);
02822a92 8640
3a69b5ff 8641 Obj_Decl :=
02822a92 8642 Make_Object_Declaration (Loc,
3a69b5ff 8643 Defining_Identifier => Obj_Id,
e4494292 8644 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
74cab21a 8645 Expression => New_Expr);
3a69b5ff 8646 Insert_After_And_Analyze (Ptr_Typ_Decl, Obj_Decl);
02822a92
RD
8647
8648 Rewrite (Assign, Make_Null_Statement (Loc));
1ed19d98 8649 pragma Assert (Check_Number_Of_Actuals (Func_Call, Func_Id));
02822a92
RD
8650 end Make_Build_In_Place_Call_In_Assignment;
8651
8652 ----------------------------------------------------
8653 -- Make_Build_In_Place_Call_In_Object_Declaration --
8654 ----------------------------------------------------
8655
8656 procedure Make_Build_In_Place_Call_In_Object_Declaration
e5f2c03c 8657 (Obj_Decl : Node_Id;
02822a92
RD
8658 Function_Call : Node_Id)
8659 is
15529d0a
PMR
8660 function Get_Function_Id (Func_Call : Node_Id) return Entity_Id;
8661 -- Get the value of Function_Id, below
8662
3fc40cd7
PMR
8663 ---------------------
8664 -- Get_Function_Id --
8665 ---------------------
8666
15529d0a
PMR
8667 function Get_Function_Id (Func_Call : Node_Id) return Entity_Id is
8668 begin
8669 if Is_Entity_Name (Name (Func_Call)) then
8670 return Entity (Name (Func_Call));
8671
8672 elsif Nkind (Name (Func_Call)) = N_Explicit_Dereference then
8673 return Etype (Name (Func_Call));
8674
8675 else
8676 raise Program_Error;
8677 end if;
8678 end Get_Function_Id;
8679
3fc40cd7 8680 -- Local variables
15529d0a 8681
3fc40cd7
PMR
8682 Func_Call : constant Node_Id := Unqual_Conv (Function_Call);
8683 Function_Id : constant Entity_Id := Get_Function_Id (Func_Call);
8684 Loc : constant Source_Ptr := Sloc (Function_Call);
8685 Obj_Loc : constant Source_Ptr := Sloc (Obj_Decl);
8686 Obj_Def_Id : constant Entity_Id := Defining_Identifier (Obj_Decl);
8687 Obj_Typ : constant Entity_Id := Etype (Obj_Def_Id);
8688 Encl_Func : constant Entity_Id := Enclosing_Subprogram (Obj_Def_Id);
8689 Result_Subt : constant Entity_Id := Etype (Function_Id);
e5f2c03c 8690
8417f4b2
AC
8691 Call_Deref : Node_Id;
8692 Caller_Object : Node_Id;
8693 Def_Id : Entity_Id;
3fc40cd7 8694 Designated_Type : Entity_Id;
2c17ca0a 8695 Fmaster_Actual : Node_Id := Empty;
8417f4b2 8696 Pool_Actual : Node_Id;
f65c67d3 8697 Ptr_Typ : Entity_Id;
8417f4b2 8698 Ptr_Typ_Decl : Node_Id;
f937473f 8699 Pass_Caller_Acc : Boolean := False;
8c7ff9a0 8700 Res_Decl : Node_Id;
15529d0a
PMR
8701
8702 Definite : constant Boolean :=
8703 Caller_Known_Size (Func_Call, Result_Subt)
3fc40cd7 8704 and then not Is_Class_Wide_Type (Obj_Typ);
15529d0a
PMR
8705 -- In the case of "X : T'Class := F(...);", where F returns a
8706 -- Caller_Known_Size (specific) tagged type, we treat it as
8707 -- indefinite, because the code for the Definite case below sets the
8708 -- initialization expression of the object to Empty, which would be
98b779ae
PMR
8709 -- illegal Ada, and would cause gigi to misallocate X.
8710
8711 -- Start of processing for Make_Build_In_Place_Call_In_Object_Declaration
b68cf874 8712
02822a92 8713 begin
98b779ae
PMR
8714 -- If the call has already been processed to add build-in-place actuals
8715 -- then return.
8716
8717 if Is_Expanded_Build_In_Place_Call (Func_Call) then
8718 return;
8719 end if;
8720
fdce4bb7
JM
8721 -- Mark the call as processed as a build-in-place call
8722
8723 Set_Is_Expanded_Build_In_Place_Call (Func_Call);
8724
15529d0a
PMR
8725 -- Create an access type designating the function's result subtype.
8726 -- We use the type of the original call because it may be a call to an
8727 -- inherited operation, which the expansion has replaced with the parent
8728 -- operation that yields the parent type. Note that this access type
8729 -- must be declared before we establish a transient scope, so that it
8730 -- receives the proper accessibility level.
02822a92 8731
15529d0a
PMR
8732 if Is_Class_Wide_Type (Obj_Typ)
8733 and then not Is_Interface (Obj_Typ)
8734 and then not Is_Class_Wide_Type (Etype (Function_Call))
8735 then
8736 Designated_Type := Obj_Typ;
8737 else
8738 Designated_Type := Etype (Function_Call);
8739 end if;
02822a92 8740
15529d0a
PMR
8741 Ptr_Typ := Make_Temporary (Loc, 'A');
8742 Ptr_Typ_Decl :=
8743 Make_Full_Type_Declaration (Loc,
8744 Defining_Identifier => Ptr_Typ,
8745 Type_Definition =>
8746 Make_Access_To_Object_Definition (Loc,
8747 All_Present => True,
8748 Subtype_Indication =>
8749 New_Occurrence_Of (Designated_Type, Loc)));
8750
8751 -- The access type and its accompanying object must be inserted after
8752 -- the object declaration in the constrained case, so that the function
8753 -- call can be passed access to the object. In the indefinite case, or
8754 -- if the object declaration is for a return object, the access type and
8755 -- object must be inserted before the object, since the object
8756 -- declaration is rewritten to be a renaming of a dereference of the
8757 -- access object. Note: we need to freeze Ptr_Typ explicitly, because
8758 -- the result object is in a different (transient) scope, so won't cause
8759 -- freezing.
8760
3fc40cd7 8761 if Definite and then not Is_Return_Object (Obj_Def_Id) then
a2dbe7d5
ES
8762
8763 -- The presence of an address clause complicates the build-in-place
8764 -- expansion because the indicated address must be processed before
8765 -- the indirect call is generated (including the definition of a
64ac53f4 8766 -- local pointer to the object). The address clause may come from
a2dbe7d5
ES
8767 -- an aspect specification or from an explicit attribute
8768 -- specification appearing after the object declaration. These two
8769 -- cases require different processing.
8770
8771 if Has_Aspect (Obj_Def_Id, Aspect_Address) then
8772
8773 -- Skip non-delayed pragmas that correspond to other aspects, if
8774 -- any, to find proper insertion point for freeze node of object.
8775
8776 declare
8777 D : Node_Id := Obj_Decl;
8778 N : Node_Id := Next (D);
8779
8780 begin
8781 while Present (N)
663afa9f 8782 and then Nkind_In (N, N_Attribute_Reference, N_Pragma)
a2dbe7d5
ES
8783 loop
8784 Analyze (N);
8785 D := N;
8786 Next (N);
8787 end loop;
8788
8789 Insert_After (D, Ptr_Typ_Decl);
8790
8791 -- Freeze object before pointer declaration, to ensure that
8792 -- generated attribute for address is inserted at the proper
8793 -- place.
8794
8795 Freeze_Before (Ptr_Typ_Decl, Obj_Def_Id);
8796 end;
8797
8798 Analyze (Ptr_Typ_Decl);
8799
8800 elsif Present (Following_Address_Clause (Obj_Decl)) then
8801
8802 -- Locate explicit address clause, which may also follow pragmas
8803 -- generated by other aspect specifications.
8804
8805 declare
8806 Addr : constant Node_Id := Following_Address_Clause (Obj_Decl);
8807 D : Node_Id := Next (Obj_Decl);
8808
8809 begin
8810 while Present (D) loop
8811 Analyze (D);
8812 exit when D = Addr;
8813 Next (D);
8814 end loop;
8815
8816 Insert_After_And_Analyze (Addr, Ptr_Typ_Decl);
8817 end;
8818
8819 else
8820 Insert_After_And_Analyze (Obj_Decl, Ptr_Typ_Decl);
8821 end if;
02822a92 8822 else
15529d0a 8823 Insert_Action (Obj_Decl, Ptr_Typ_Decl);
02822a92
RD
8824 end if;
8825
15529d0a
PMR
8826 -- Force immediate freezing of Ptr_Typ because Res_Decl will be
8827 -- elaborated in an inner (transient) scope and thus won't cause
8828 -- freezing by itself. It's not an itype, but it needs to be frozen
8829 -- inside the current subprogram (see Freeze_Outside in freeze.adb).
8830
8831 Freeze_Itype (Ptr_Typ, Ptr_Typ_Decl);
8832
8833 -- If the object is a return object of an enclosing build-in-place
8834 -- function, then the implicit build-in-place parameters of the
8835 -- enclosing function are simply passed along to the called function.
8836 -- (Unfortunately, this won't cover the case of extension aggregates
8837 -- where the ancestor part is a build-in-place indefinite function
8838 -- call that should be passed along the caller's parameters.
8839 -- Currently those get mishandled by reassigning the result of the
8840 -- call to the aggregate return object, when the call result should
8841 -- really be directly built in place in the aggregate and not in a
8842 -- temporary. ???)
8843
8844 if Is_Return_Object (Obj_Def_Id) then
8845 Pass_Caller_Acc := True;
8846
8847 -- When the enclosing function has a BIP_Alloc_Form formal then we
3fc40cd7
PMR
8848 -- pass it along to the callee (such as when the enclosing function
8849 -- has an unconstrained or tagged result type).
15529d0a
PMR
8850
8851 if Needs_BIP_Alloc_Form (Encl_Func) then
8852 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8853 Pool_Actual :=
8854 New_Occurrence_Of
8855 (Build_In_Place_Formal
8856 (Encl_Func, BIP_Storage_Pool), Loc);
02822a92 8857
15529d0a 8858 -- The build-in-place pool formal is not built on e.g. ZFP
1155ae01 8859
15529d0a
PMR
8860 else
8861 Pool_Actual := Empty;
8862 end if;
8863
8864 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8865 (Function_Call => Func_Call,
8866 Function_Id => Function_Id,
8867 Alloc_Form_Exp =>
8868 New_Occurrence_Of
8869 (Build_In_Place_Formal (Encl_Func, BIP_Alloc_Form), Loc),
8870 Pool_Actual => Pool_Actual);
8871
8872 -- Otherwise, if enclosing function has a definite result subtype,
8873 -- then caller allocation will be used.
d4dfb005 8874
0691ed6b 8875 else
15529d0a
PMR
8876 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8877 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
0691ed6b 8878 end if;
f65c67d3 8879
15529d0a
PMR
8880 if Needs_BIP_Finalization_Master (Encl_Func) then
8881 Fmaster_Actual :=
8882 New_Occurrence_Of
8883 (Build_In_Place_Formal
8884 (Encl_Func, BIP_Finalization_Master), Loc);
8885 end if;
f65c67d3 8886
15529d0a
PMR
8887 -- Retrieve the BIPacc formal from the enclosing function and convert
8888 -- it to the access type of the callee's BIP_Object_Access formal.
0691ed6b 8889
15529d0a
PMR
8890 Caller_Object :=
8891 Make_Unchecked_Type_Conversion (Loc,
8892 Subtype_Mark =>
8893 New_Occurrence_Of
3fc40cd7
PMR
8894 (Etype (Build_In_Place_Formal
8895 (Function_Id, BIP_Object_Access)),
15529d0a
PMR
8896 Loc),
8897 Expression =>
8898 New_Occurrence_Of
8899 (Build_In_Place_Formal (Encl_Func, BIP_Object_Access),
8900 Loc));
0691ed6b 8901
15529d0a
PMR
8902 -- In the definite case, add an implicit actual to the function call
8903 -- that provides access to the declared object. An unchecked conversion
8904 -- to the (specific) result type of the function is inserted to handle
8905 -- the case where the object is declared with a class-wide type.
0691ed6b 8906
15529d0a
PMR
8907 elsif Definite then
8908 Caller_Object :=
8909 Make_Unchecked_Type_Conversion (Loc,
8910 Subtype_Mark => New_Occurrence_Of (Result_Subt, Loc),
8911 Expression => New_Occurrence_Of (Obj_Def_Id, Loc));
0691ed6b 8912
15529d0a
PMR
8913 -- When the function has a controlling result, an allocation-form
8914 -- parameter must be passed indicating that the caller is allocating
8915 -- the result object. This is needed because such a function can be
8916 -- called as a dispatching operation and must be treated similarly to
8917 -- functions with indefinite result subtypes.
f65c67d3 8918
15529d0a
PMR
8919 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8920 (Func_Call, Function_Id, Alloc_Form => Caller_Allocation);
0691ed6b 8921
15529d0a
PMR
8922 -- The allocation for indefinite library-level objects occurs on the
8923 -- heap as opposed to the secondary stack. This accommodates DLLs where
8924 -- the secondary stack is destroyed after each library unload. This is a
8925 -- hybrid mechanism where a stack-allocated object lives on the heap.
8417f4b2 8926
15529d0a
PMR
8927 elsif Is_Library_Level_Entity (Obj_Def_Id)
8928 and then not Restriction_Active (No_Implicit_Heap_Allocations)
8929 then
8930 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8931 (Func_Call, Function_Id, Alloc_Form => Global_Heap);
8932 Caller_Object := Empty;
8417f4b2 8933
15529d0a
PMR
8934 -- Create a finalization master for the access result type to ensure
8935 -- that the heap allocation can properly chain the object and later
8936 -- finalize it when the library unit goes out of scope.
8417f4b2 8937
15529d0a
PMR
8938 if Needs_Finalization (Etype (Func_Call)) then
8939 Build_Finalization_Master
8940 (Typ => Ptr_Typ,
8941 For_Lib_Level => True,
8942 Insertion_Node => Ptr_Typ_Decl);
1bb6e262 8943
15529d0a
PMR
8944 Fmaster_Actual :=
8945 Make_Attribute_Reference (Loc,
8946 Prefix =>
8947 New_Occurrence_Of (Finalization_Master (Ptr_Typ), Loc),
8948 Attribute_Name => Name_Unrestricted_Access);
8949 end if;
1bb6e262 8950
6560f851
HK
8951 -- In other indefinite cases, pass an indication to do the allocation
8952 -- on the secondary stack and set Caller_Object to Empty so that a null
15529d0a
PMR
8953 -- value will be passed for the caller's object address. A transient
8954 -- scope is established to ensure eventual cleanup of the result.
1bb6e262 8955
15529d0a
PMR
8956 else
8957 Add_Unconstrained_Actuals_To_Build_In_Place_Call
8958 (Func_Call, Function_Id, Alloc_Form => Secondary_Stack);
8959 Caller_Object := Empty;
1bb6e262 8960
6560f851 8961 Establish_Transient_Scope (Obj_Decl, Manage_Sec_Stack => True);
15529d0a 8962 end if;
1bb6e262 8963
15529d0a
PMR
8964 -- Pass along any finalization master actual, which is needed in the
8965 -- case where the called function initializes a return object of an
8966 -- enclosing build-in-place function.
1bb6e262 8967
15529d0a
PMR
8968 Add_Finalization_Master_Actual_To_Build_In_Place_Call
8969 (Func_Call => Func_Call,
8970 Func_Id => Function_Id,
8971 Master_Exp => Fmaster_Actual);
8434cfc7 8972
15529d0a 8973 if Nkind (Parent (Obj_Decl)) = N_Extended_Return_Statement
1ed19d98 8974 and then Needs_BIP_Task_Actuals (Function_Id)
15529d0a
PMR
8975 then
8976 -- Here we're passing along the master that was passed in to this
8977 -- function.
8434cfc7 8978
15529d0a
PMR
8979 Add_Task_Actuals_To_Build_In_Place_Call
8980 (Func_Call, Function_Id,
8981 Master_Actual =>
8982 New_Occurrence_Of
8983 (Build_In_Place_Formal (Encl_Func, BIP_Task_Master), Loc));
8434cfc7 8984
15529d0a
PMR
8985 else
8986 Add_Task_Actuals_To_Build_In_Place_Call
8987 (Func_Call, Function_Id, Make_Identifier (Loc, Name_uMaster));
8988 end if;
8434cfc7 8989
15529d0a
PMR
8990 Add_Access_Actual_To_Build_In_Place_Call
8991 (Func_Call,
8992 Function_Id,
8993 Caller_Object,
8994 Is_Access => Pass_Caller_Acc);
8434cfc7 8995
15529d0a
PMR
8996 -- Finally, create an access object initialized to a reference to the
8997 -- function call. We know this access value cannot be null, so mark the
8998 -- entity accordingly to suppress the access check.
2c17ca0a 8999
15529d0a
PMR
9000 Def_Id := Make_Temporary (Loc, 'R', Func_Call);
9001 Set_Etype (Def_Id, Ptr_Typ);
9002 Set_Is_Known_Non_Null (Def_Id);
7888a6ae 9003
3fc40cd7
PMR
9004 if Nkind_In (Function_Call, N_Type_Conversion,
9005 N_Unchecked_Type_Conversion)
5d57846b 9006 then
15529d0a
PMR
9007 Res_Decl :=
9008 Make_Object_Declaration (Loc,
9009 Defining_Identifier => Def_Id,
9010 Constant_Present => True,
9011 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
9012 Expression =>
3fc40cd7
PMR
9013 Make_Unchecked_Type_Conversion (Loc,
9014 New_Occurrence_Of (Ptr_Typ, Loc),
9015 Make_Reference (Loc, Relocate_Node (Func_Call))));
15529d0a
PMR
9016 else
9017 Res_Decl :=
9018 Make_Object_Declaration (Loc,
9019 Defining_Identifier => Def_Id,
9020 Constant_Present => True,
9021 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
9022 Expression =>
9023 Make_Reference (Loc, Relocate_Node (Func_Call)));
9024 end if;
7888a6ae 9025
15529d0a 9026 Insert_After_And_Analyze (Ptr_Typ_Decl, Res_Decl);
7888a6ae 9027
15529d0a
PMR
9028 -- If the result subtype of the called function is definite and is not
9029 -- itself the return expression of an enclosing BIP function, then mark
9030 -- the object as having no initialization.
7888a6ae 9031
3fc40cd7
PMR
9032 if Definite and then not Is_Return_Object (Obj_Def_Id) then
9033
15529d0a
PMR
9034 -- The related object declaration is encased in a transient block
9035 -- because the build-in-place function call contains at least one
9036 -- nested function call that produces a controlled transient
9037 -- temporary:
02822a92 9038
15529d0a 9039 -- Obj : ... := BIP_Func_Call (Ctrl_Func_Call);
02822a92 9040
15529d0a
PMR
9041 -- Since the build-in-place expansion decouples the call from the
9042 -- object declaration, the finalization machinery lacks the context
9043 -- which prompted the generation of the transient block. To resolve
9044 -- this scenario, store the build-in-place call.
c12beea0 9045
15529d0a
PMR
9046 if Scope_Is_Transient and then Node_To_Be_Wrapped = Obj_Decl then
9047 Set_BIP_Initialization_Call (Obj_Def_Id, Res_Decl);
d4dfb005 9048 end if;
f65c67d3 9049
15529d0a
PMR
9050 Set_Expression (Obj_Decl, Empty);
9051 Set_No_Initialization (Obj_Decl);
f937473f 9052
15529d0a
PMR
9053 -- In case of an indefinite result subtype, or if the call is the
9054 -- return expression of an enclosing BIP function, rewrite the object
9055 -- declaration as an object renaming where the renamed object is a
9056 -- dereference of <function_Call>'reference:
9057 --
9058 -- Obj : Subt renames <function_call>'Ref.all;
f937473f 9059
15529d0a
PMR
9060 else
9061 Call_Deref :=
9062 Make_Explicit_Dereference (Obj_Loc,
9063 Prefix => New_Occurrence_Of (Def_Id, Obj_Loc));
9064
9065 Rewrite (Obj_Decl,
9066 Make_Object_Renaming_Declaration (Obj_Loc,
9067 Defining_Identifier => Make_Temporary (Obj_Loc, 'D'),
3fc40cd7 9068 Subtype_Mark =>
15529d0a 9069 New_Occurrence_Of (Designated_Type, Obj_Loc),
3fc40cd7 9070 Name => Call_Deref));
15529d0a 9071
90e491a7
PMR
9072 -- At this point, Defining_Identifier (Obj_Decl) is no longer equal
9073 -- to Obj_Def_Id.
9074
9075 Set_Renamed_Object (Defining_Identifier (Obj_Decl), Call_Deref);
15529d0a
PMR
9076
9077 -- If the original entity comes from source, then mark the new
9078 -- entity as needing debug information, even though it's defined
9079 -- by a generated renaming that does not come from source, so that
9080 -- the Materialize_Entity flag will be set on the entity when
9081 -- Debug_Renaming_Declaration is called during analysis.
9082
9083 if Comes_From_Source (Obj_Def_Id) then
90e491a7 9084 Set_Debug_Info_Needed (Defining_Identifier (Obj_Decl));
0691ed6b 9085 end if;
cd644ae2 9086
15529d0a
PMR
9087 Analyze (Obj_Decl);
9088 Replace_Renaming_Declaration_Id
9089 (Obj_Decl, Original_Node (Obj_Decl));
cd644ae2 9090 end if;
1ed19d98
JM
9091
9092 pragma Assert (Check_Number_Of_Actuals (Func_Call, Function_Id));
02822a92
RD
9093 end Make_Build_In_Place_Call_In_Object_Declaration;
9094
4ac62786
AC
9095 -------------------------------------------------
9096 -- Make_Build_In_Place_Iface_Call_In_Allocator --
9097 -------------------------------------------------
9098
9099 procedure Make_Build_In_Place_Iface_Call_In_Allocator
9100 (Allocator : Node_Id;
9101 Function_Call : Node_Id)
9102 is
9103 BIP_Func_Call : constant Node_Id :=
9104 Unqual_BIP_Iface_Function_Call (Function_Call);
9105 Loc : constant Source_Ptr := Sloc (Function_Call);
9106
9107 Anon_Type : Entity_Id;
9108 Tmp_Decl : Node_Id;
9109 Tmp_Id : Entity_Id;
9110
9111 begin
9112 -- No action of the call has already been processed
9113
9114 if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
9115 return;
9116 end if;
9117
9118 Tmp_Id := Make_Temporary (Loc, 'D');
9119
9120 -- Insert a temporary before N initialized with the BIP function call
9121 -- without its enclosing type conversions and analyze it without its
9122 -- expansion. This temporary facilitates us reusing the BIP machinery,
9123 -- which takes care of adding the extra build-in-place actuals and
9124 -- transforms this object declaration into an object renaming
9125 -- declaration.
9126
9127 Anon_Type := Create_Itype (E_Anonymous_Access_Type, Function_Call);
9128 Set_Directly_Designated_Type (Anon_Type, Etype (BIP_Func_Call));
9129 Set_Etype (Anon_Type, Anon_Type);
9130
9131 Tmp_Decl :=
9132 Make_Object_Declaration (Loc,
9133 Defining_Identifier => Tmp_Id,
9134 Object_Definition => New_Occurrence_Of (Anon_Type, Loc),
9135 Expression =>
9136 Make_Allocator (Loc,
9137 Expression =>
9138 Make_Qualified_Expression (Loc,
9139 Subtype_Mark =>
9140 New_Occurrence_Of (Etype (BIP_Func_Call), Loc),
9141 Expression => New_Copy_Tree (BIP_Func_Call))));
9142
9143 Expander_Mode_Save_And_Set (False);
9144 Insert_Action (Allocator, Tmp_Decl);
9145 Expander_Mode_Restore;
9146
9147 Make_Build_In_Place_Call_In_Allocator
9148 (Allocator => Expression (Tmp_Decl),
9149 Function_Call => Expression (Expression (Tmp_Decl)));
9150
9151 Rewrite (Allocator, New_Occurrence_Of (Tmp_Id, Loc));
9152 end Make_Build_In_Place_Iface_Call_In_Allocator;
9153
9154 ---------------------------------------------------------
9155 -- Make_Build_In_Place_Iface_Call_In_Anonymous_Context --
9156 ---------------------------------------------------------
9157
9158 procedure Make_Build_In_Place_Iface_Call_In_Anonymous_Context
9159 (Function_Call : Node_Id)
9160 is
9161 BIP_Func_Call : constant Node_Id :=
9162 Unqual_BIP_Iface_Function_Call (Function_Call);
9163 Loc : constant Source_Ptr := Sloc (Function_Call);
9164
9165 Tmp_Decl : Node_Id;
9166 Tmp_Id : Entity_Id;
9167
9168 begin
9169 -- No action of the call has already been processed
9170
9171 if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
9172 return;
9173 end if;
9174
9175 pragma Assert (Needs_Finalization (Etype (BIP_Func_Call)));
9176
9177 -- Insert a temporary before the call initialized with function call to
9178 -- reuse the BIP machinery which takes care of adding the extra build-in
9179 -- place actuals and transforms this object declaration into an object
9180 -- renaming declaration.
9181
9182 Tmp_Id := Make_Temporary (Loc, 'D');
9183
9184 Tmp_Decl :=
9185 Make_Object_Declaration (Loc,
9186 Defining_Identifier => Tmp_Id,
9187 Object_Definition =>
9188 New_Occurrence_Of (Etype (Function_Call), Loc),
9189 Expression => Relocate_Node (Function_Call));
9190
9191 Expander_Mode_Save_And_Set (False);
9192 Insert_Action (Function_Call, Tmp_Decl);
9193 Expander_Mode_Restore;
9194
9195 Make_Build_In_Place_Iface_Call_In_Object_Declaration
9196 (Obj_Decl => Tmp_Decl,
9197 Function_Call => Expression (Tmp_Decl));
9198 end Make_Build_In_Place_Iface_Call_In_Anonymous_Context;
9199
9200 ----------------------------------------------------------
9201 -- Make_Build_In_Place_Iface_Call_In_Object_Declaration --
9202 ----------------------------------------------------------
9203
9204 procedure Make_Build_In_Place_Iface_Call_In_Object_Declaration
9205 (Obj_Decl : Node_Id;
9206 Function_Call : Node_Id)
9207 is
9208 BIP_Func_Call : constant Node_Id :=
9209 Unqual_BIP_Iface_Function_Call (Function_Call);
9210 Loc : constant Source_Ptr := Sloc (Function_Call);
9211 Obj_Id : constant Entity_Id := Defining_Entity (Obj_Decl);
9212
9213 Tmp_Decl : Node_Id;
9214 Tmp_Id : Entity_Id;
9215
9216 begin
9217 -- No action of the call has already been processed
9218
9219 if Is_Expanded_Build_In_Place_Call (BIP_Func_Call) then
9220 return;
9221 end if;
9222
9223 Tmp_Id := Make_Temporary (Loc, 'D');
9224
9225 -- Insert a temporary before N initialized with the BIP function call
9226 -- without its enclosing type conversions and analyze it without its
9227 -- expansion. This temporary facilitates us reusing the BIP machinery,
9228 -- which takes care of adding the extra build-in-place actuals and
9229 -- transforms this object declaration into an object renaming
9230 -- declaration.
9231
9232 Tmp_Decl :=
9233 Make_Object_Declaration (Loc,
9234 Defining_Identifier => Tmp_Id,
9235 Object_Definition =>
9236 New_Occurrence_Of (Etype (BIP_Func_Call), Loc),
9237 Expression => New_Copy_Tree (BIP_Func_Call));
9238
9239 Expander_Mode_Save_And_Set (False);
9240 Insert_Action (Obj_Decl, Tmp_Decl);
9241 Expander_Mode_Restore;
9242
9243 Make_Build_In_Place_Call_In_Object_Declaration
9244 (Obj_Decl => Tmp_Decl,
9245 Function_Call => Expression (Tmp_Decl));
9246
9247 pragma Assert (Nkind (Tmp_Decl) = N_Object_Renaming_Declaration);
9248
9249 -- Replace the original build-in-place function call by a reference to
9250 -- the resulting temporary object renaming declaration. In this way,
9251 -- all the interface conversions performed in the original Function_Call
9252 -- on the build-in-place object are preserved.
9253
9254 Rewrite (BIP_Func_Call, New_Occurrence_Of (Tmp_Id, Loc));
9255
9256 -- Replace the original object declaration by an internal object
9257 -- renaming declaration. This leaves the generated code more clean (the
9258 -- build-in-place function call in an object renaming declaration and
9259 -- displacements of the pointer to the build-in-place object in another
9260 -- renaming declaration) and allows us to invoke the routine that takes
9261 -- care of replacing the identifier of the renaming declaration (routine
9262 -- originally developed for the regular build-in-place management).
9263
9264 Rewrite (Obj_Decl,
9265 Make_Object_Renaming_Declaration (Loc,
9266 Defining_Identifier => Make_Temporary (Loc, 'D'),
9267 Subtype_Mark => New_Occurrence_Of (Etype (Obj_Id), Loc),
9268 Name => Function_Call));
9269 Analyze (Obj_Decl);
9270
9271 Replace_Renaming_Declaration_Id (Obj_Decl, Original_Node (Obj_Decl));
9272 end Make_Build_In_Place_Iface_Call_In_Object_Declaration;
9273
3bfb3c03
JM
9274 --------------------------------------------
9275 -- Make_CPP_Constructor_Call_In_Allocator --
9276 --------------------------------------------
9277
9278 procedure Make_CPP_Constructor_Call_In_Allocator
9279 (Allocator : Node_Id;
9280 Function_Call : Node_Id)
9281 is
9282 Loc : constant Source_Ptr := Sloc (Function_Call);
9283 Acc_Type : constant Entity_Id := Etype (Allocator);
9284 Function_Id : constant Entity_Id := Entity (Name (Function_Call));
9285 Result_Subt : constant Entity_Id := Available_View (Etype (Function_Id));
9286
9287 New_Allocator : Node_Id;
9288 Return_Obj_Access : Entity_Id;
9289 Tmp_Obj : Node_Id;
9290
9291 begin
9292 pragma Assert (Nkind (Allocator) = N_Allocator
8c7ff9a0 9293 and then Nkind (Function_Call) = N_Function_Call);
3bfb3c03 9294 pragma Assert (Convention (Function_Id) = Convention_CPP
8c7ff9a0 9295 and then Is_Constructor (Function_Id));
3bfb3c03
JM
9296 pragma Assert (Is_Constrained (Underlying_Type (Result_Subt)));
9297
9298 -- Replace the initialized allocator of form "new T'(Func (...))" with
9299 -- an uninitialized allocator of form "new T", where T is the result
9300 -- subtype of the called function. The call to the function is handled
9301 -- separately further below.
9302
9303 New_Allocator :=
9304 Make_Allocator (Loc,
e4494292 9305 Expression => New_Occurrence_Of (Result_Subt, Loc));
3bfb3c03
JM
9306 Set_No_Initialization (New_Allocator);
9307
9308 -- Copy attributes to new allocator. Note that the new allocator
9309 -- logically comes from source if the original one did, so copy the
9310 -- relevant flag. This ensures proper treatment of the restriction
9311 -- No_Implicit_Heap_Allocations in this case.
9312
9313 Set_Storage_Pool (New_Allocator, Storage_Pool (Allocator));
9314 Set_Procedure_To_Call (New_Allocator, Procedure_To_Call (Allocator));
9315 Set_Comes_From_Source (New_Allocator, Comes_From_Source (Allocator));
9316
9317 Rewrite (Allocator, New_Allocator);
9318
9319 -- Create a new access object and initialize it to the result of the
9320 -- new uninitialized allocator. Note: we do not use Allocator as the
9321 -- Related_Node of Return_Obj_Access in call to Make_Temporary below
9322 -- as this would create a sort of infinite "recursion".
9323
9324 Return_Obj_Access := Make_Temporary (Loc, 'R');
9325 Set_Etype (Return_Obj_Access, Acc_Type);
9326
9327 -- Generate:
9328 -- Rnnn : constant ptr_T := new (T);
9329 -- Init (Rnn.all,...);
9330
9331 Tmp_Obj :=
9332 Make_Object_Declaration (Loc,
9333 Defining_Identifier => Return_Obj_Access,
9334 Constant_Present => True,
e4494292 9335 Object_Definition => New_Occurrence_Of (Acc_Type, Loc),
3bfb3c03
JM
9336 Expression => Relocate_Node (Allocator));
9337 Insert_Action (Allocator, Tmp_Obj);
9338
9339 Insert_List_After_And_Analyze (Tmp_Obj,
9340 Build_Initialization_Call (Loc,
9341 Id_Ref =>
9342 Make_Explicit_Dereference (Loc,
e4494292 9343 Prefix => New_Occurrence_Of (Return_Obj_Access, Loc)),
3bfb3c03
JM
9344 Typ => Etype (Function_Id),
9345 Constructor_Ref => Function_Call));
9346
9347 -- Finally, replace the allocator node with a reference to the result of
9348 -- the function call itself (which will effectively be an access to the
9349 -- object created by the allocator).
9350
e4494292 9351 Rewrite (Allocator, New_Occurrence_Of (Return_Obj_Access, Loc));
3bfb3c03
JM
9352
9353 -- Ada 2005 (AI-251): If the type of the allocator is an interface then
9354 -- generate an implicit conversion to force displacement of the "this"
9355 -- pointer.
9356
9357 if Is_Interface (Designated_Type (Acc_Type)) then
9358 Rewrite (Allocator, Convert_To (Acc_Type, Relocate_Node (Allocator)));
9359 end if;
9360
9361 Analyze_And_Resolve (Allocator, Acc_Type);
9362 end Make_CPP_Constructor_Call_In_Allocator;
9363
1ed19d98
JM
9364 ----------------------------
9365 -- Needs_BIP_Task_Actuals --
9366 ----------------------------
9367
9368 function Needs_BIP_Task_Actuals (Func_Id : Entity_Id) return Boolean is
9369 pragma Assert (Is_Build_In_Place_Function (Func_Id));
9370 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9371 begin
9372 return Has_Task (Func_Typ);
9373 end Needs_BIP_Task_Actuals;
9374
d3f70b35
AC
9375 -----------------------------------
9376 -- Needs_BIP_Finalization_Master --
9377 -----------------------------------
8fb68c56 9378
d3f70b35
AC
9379 function Needs_BIP_Finalization_Master
9380 (Func_Id : Entity_Id) return Boolean
9381 is
df3e68b1
HK
9382 pragma Assert (Is_Build_In_Place_Function (Func_Id));
9383 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
048e5cef 9384 begin
66340e0e
AC
9385 -- A formal giving the finalization master is needed for build-in-place
9386 -- functions whose result type needs finalization or is a tagged type.
9387 -- Tagged primitive build-in-place functions need such a formal because
9388 -- they can be called by a dispatching call, and extensions may require
9389 -- finalization even if the root type doesn't. This means they're also
9390 -- needed for tagged nonprimitive build-in-place functions with tagged
9391 -- results, since such functions can be called via access-to-function
9392 -- types, and those can be used to call primitives, so masters have to
9393 -- be passed to all such build-in-place functions, primitive or not.
9394
df3e68b1
HK
9395 return
9396 not Restriction_Active (No_Finalization)
66340e0e
AC
9397 and then (Needs_Finalization (Func_Typ)
9398 or else Is_Tagged_Type (Func_Typ));
d3f70b35 9399 end Needs_BIP_Finalization_Master;
048e5cef 9400
1bb6e262
AC
9401 --------------------------
9402 -- Needs_BIP_Alloc_Form --
9403 --------------------------
9404
9405 function Needs_BIP_Alloc_Form (Func_Id : Entity_Id) return Boolean is
9406 pragma Assert (Is_Build_In_Place_Function (Func_Id));
9407 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
1bb6e262 9408 begin
cf0e5ca7 9409 return Requires_Transient_Scope (Func_Typ);
1bb6e262
AC
9410 end Needs_BIP_Alloc_Form;
9411
63585f75
SB
9412 --------------------------------------
9413 -- Needs_Result_Accessibility_Level --
9414 --------------------------------------
9415
9416 function Needs_Result_Accessibility_Level
9417 (Func_Id : Entity_Id) return Boolean
9418 is
9419 Func_Typ : constant Entity_Id := Underlying_Type (Etype (Func_Id));
9420
9421 function Has_Unconstrained_Access_Discriminant_Component
ebf494ec
RD
9422 (Comp_Typ : Entity_Id) return Boolean;
9423 -- Returns True if any component of the type has an unconstrained access
9424 -- discriminant.
63585f75
SB
9425
9426 -----------------------------------------------------
9427 -- Has_Unconstrained_Access_Discriminant_Component --
9428 -----------------------------------------------------
9429
9430 function Has_Unconstrained_Access_Discriminant_Component
9431 (Comp_Typ : Entity_Id) return Boolean
9432 is
9433 begin
9434 if not Is_Limited_Type (Comp_Typ) then
9435 return False;
ebf494ec 9436
63585f75
SB
9437 -- Only limited types can have access discriminants with
9438 -- defaults.
9439
9440 elsif Has_Unconstrained_Access_Discriminants (Comp_Typ) then
9441 return True;
9442
9443 elsif Is_Array_Type (Comp_Typ) then
9444 return Has_Unconstrained_Access_Discriminant_Component
9445 (Underlying_Type (Component_Type (Comp_Typ)));
9446
9447 elsif Is_Record_Type (Comp_Typ) then
9448 declare
ebf494ec
RD
9449 Comp : Entity_Id;
9450
63585f75 9451 begin
ebf494ec 9452 Comp := First_Component (Comp_Typ);
63585f75
SB
9453 while Present (Comp) loop
9454 if Has_Unconstrained_Access_Discriminant_Component
9455 (Underlying_Type (Etype (Comp)))
9456 then
9457 return True;
9458 end if;
9459
9460 Next_Component (Comp);
9461 end loop;
9462 end;
9463 end if;
9464
9465 return False;
9466 end Has_Unconstrained_Access_Discriminant_Component;
9467
8d21ff60
JS
9468 Disable_Coextension_Cases : constant Boolean := True;
9469 -- Flag used to temporarily disable a "True" result for types with
9470 -- access discriminants and related coextension cases.
57a3fca9 9471
63585f75
SB
9472 -- Start of processing for Needs_Result_Accessibility_Level
9473
9474 begin
ebf494ec
RD
9475 -- False if completion unavailable (how does this happen???)
9476
9477 if not Present (Func_Typ) then
9478 return False;
63585f75 9479
ebf494ec 9480 -- False if not a function, also handle enum-lit renames case
63585f75 9481
ebf494ec
RD
9482 elsif Func_Typ = Standard_Void_Type
9483 or else Is_Scalar_Type (Func_Typ)
63585f75
SB
9484 then
9485 return False;
63585f75 9486
ebf494ec 9487 -- Handle a corner case, a cross-dialect subp renaming. For example,
30168043
AC
9488 -- an Ada 2012 renaming of an Ada 2005 subprogram. This can occur when
9489 -- an Ada 2005 (or earlier) unit references predefined run-time units.
ebf494ec
RD
9490
9491 elsif Present (Alias (Func_Id)) then
9492
63585f75
SB
9493 -- Unimplemented: a cross-dialect subp renaming which does not set
9494 -- the Alias attribute (e.g., a rename of a dereference of an access
54bf19e4 9495 -- to subprogram value). ???
63585f75
SB
9496
9497 return Present (Extra_Accessibility_Of_Result (Alias (Func_Id)));
63585f75 9498
ebf494ec
RD
9499 -- Remaining cases require Ada 2012 mode
9500
9501 elsif Ada_Version < Ada_2012 then
63585f75 9502 return False;
63585f75 9503
8d21ff60
JS
9504 -- Handle the situation where a result is an anonymous access type
9505 -- RM 3.10.2 (10.3/3).
9506
9507 elsif Ekind (Func_Typ) = E_Anonymous_Access_Type then
9508 return True;
9509
9510 -- The following cases are related to coextensions and do not fully
9511 -- cover everything mentioned in RM 3.10.2 (12) ???
9512
9513 -- Temporarily disabled ???
9514
9515 elsif Disable_Coextension_Cases then
9516 return False;
9517
9518 -- In the case of, say, a null tagged record result type, the need for
9519 -- this extra parameter might not be obvious so this function returns
9520 -- True for all tagged types for compatibility reasons.
9521
9522 -- A function with, say, a tagged null controlling result type might
9523 -- be overridden by a primitive of an extension having an access
9524 -- discriminant and the overrider and overridden must have compatible
9525 -- calling conventions (including implicitly declared parameters).
9526
9527 -- Similarly, values of one access-to-subprogram type might designate
9528 -- both a primitive subprogram of a given type and a function which is,
9529 -- for example, not a primitive subprogram of any type. Again, this
9530 -- requires calling convention compatibility. It might be possible to
9531 -- solve these issues by introducing wrappers, but that is not the
9532 -- approach that was chosen.
63585f75 9533
8d21ff60 9534 elsif Is_Tagged_Type (Func_Typ) then
63585f75 9535 return True;
63585f75 9536
ebf494ec 9537 elsif Has_Unconstrained_Access_Discriminants (Func_Typ) then
63585f75 9538 return True;
63585f75 9539
ebf494ec 9540 elsif Has_Unconstrained_Access_Discriminant_Component (Func_Typ) then
63585f75 9541 return True;
63585f75 9542
ebf494ec
RD
9543 -- False for all other cases
9544
9545 else
9546 return False;
9547 end if;
63585f75
SB
9548 end Needs_Result_Accessibility_Level;
9549
4ac62786
AC
9550 -------------------------------------
9551 -- Replace_Renaming_Declaration_Id --
9552 -------------------------------------
9553
9554 procedure Replace_Renaming_Declaration_Id
9555 (New_Decl : Node_Id;
9556 Orig_Decl : Node_Id)
9557 is
9558 New_Id : constant Entity_Id := Defining_Entity (New_Decl);
9559 Orig_Id : constant Entity_Id := Defining_Entity (Orig_Decl);
9560
9561 begin
9562 Set_Chars (New_Id, Chars (Orig_Id));
9563
9564 -- Swap next entity links in preparation for exchanging entities
9565
9566 declare
9567 Next_Id : constant Entity_Id := Next_Entity (New_Id);
9568 begin
3f6d1daa
JS
9569 Link_Entities (New_Id, Next_Entity (Orig_Id));
9570 Link_Entities (Orig_Id, Next_Id);
4ac62786
AC
9571 end;
9572
9573 Set_Homonym (New_Id, Homonym (Orig_Id));
9574 Exchange_Entities (New_Id, Orig_Id);
9575
9576 -- Preserve source indication of original declaration, so that xref
9577 -- information is properly generated for the right entity.
9578
9579 Preserve_Comes_From_Source (New_Decl, Orig_Decl);
9580 Preserve_Comes_From_Source (Orig_Id, Orig_Decl);
9581
9582 Set_Comes_From_Source (New_Id, False);
9583 end Replace_Renaming_Declaration_Id;
9584
2700b9c1
AC
9585 ---------------------------------
9586 -- Rewrite_Function_Call_For_C --
9587 ---------------------------------
9588
9589 procedure Rewrite_Function_Call_For_C (N : Node_Id) is
9b7924dd
AC
9590 Orig_Func : constant Entity_Id := Entity (Name (N));
9591 Func_Id : constant Entity_Id := Ultimate_Alias (Orig_Func);
5c12e9fb 9592 Par : constant Node_Id := Parent (N);
888be6b1 9593 Proc_Id : constant Entity_Id := Corresponding_Procedure (Func_Id);
cdabbb52 9594 Loc : constant Source_Ptr := Sloc (Par);
5c12e9fb 9595 Actuals : List_Id;
9b7924dd 9596 Last_Actual : Node_Id;
5c12e9fb 9597 Last_Formal : Entity_Id;
2700b9c1 9598
aeb98f1d
JM
9599 -- Start of processing for Rewrite_Function_Call_For_C
9600
2700b9c1 9601 begin
cdabbb52
HK
9602 -- The actuals may be given by named associations, so the added actual
9603 -- that is the target of the return value of the call must be a named
9604 -- association as well, so we retrieve the name of the generated
9605 -- out_formal.
5c12e9fb
AC
9606
9607 Last_Formal := First_Formal (Proc_Id);
9608 while Present (Next_Formal (Last_Formal)) loop
9609 Last_Formal := Next_Formal (Last_Formal);
9610 end loop;
9611
2700b9c1
AC
9612 Actuals := Parameter_Associations (N);
9613
6f99dcec 9614 -- The original function may lack parameters
241fac51
ES
9615
9616 if No (Actuals) then
9617 Actuals := New_List;
9618 end if;
9619
2700b9c1
AC
9620 -- If the function call is the expression of an assignment statement,
9621 -- transform the assignment into a procedure call. Generate:
9622
9623 -- LHS := Func_Call (...);
9624
9625 -- Proc_Call (..., LHS);
9626
9b7924dd
AC
9627 -- If function is inherited, a conversion may be necessary.
9628
2700b9c1 9629 if Nkind (Par) = N_Assignment_Statement then
9b7924dd
AC
9630 Last_Actual := Name (Par);
9631
9632 if not Comes_From_Source (Orig_Func)
9633 and then Etype (Orig_Func) /= Etype (Func_Id)
9634 then
2a253c5b
AC
9635 Last_Actual :=
9636 Make_Type_Conversion (Loc,
9637 New_Occurrence_Of (Etype (Func_Id), Loc),
9638 Last_Actual);
9b7924dd
AC
9639 end if;
9640
5c12e9fb
AC
9641 Append_To (Actuals,
9642 Make_Parameter_Association (Loc,
cdabbb52
HK
9643 Selector_Name =>
9644 Make_Identifier (Loc, Chars (Last_Formal)),
9b7924dd 9645 Explicit_Actual_Parameter => Last_Actual));
cdabbb52 9646
2700b9c1
AC
9647 Rewrite (Par,
9648 Make_Procedure_Call_Statement (Loc,
9649 Name => New_Occurrence_Of (Proc_Id, Loc),
9650 Parameter_Associations => Actuals));
9651 Analyze (Par);
9652
9653 -- Otherwise the context is an expression. Generate a temporary and a
9654 -- procedure call to obtain the function result. Generate:
9655
9656 -- ... Func_Call (...) ...
9657
9658 -- Temp : ...;
9659 -- Proc_Call (..., Temp);
9660 -- ... Temp ...
9661
9662 else
9663 declare
9664 Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
9665 Call : Node_Id;
9666 Decl : Node_Id;
9667
9668 begin
9669 -- Generate:
9670 -- Temp : ...;
9671
9672 Decl :=
9673 Make_Object_Declaration (Loc,
9674 Defining_Identifier => Temp_Id,
9675 Object_Definition =>
9676 New_Occurrence_Of (Etype (Func_Id), Loc));
9677
9678 -- Generate:
9679 -- Proc_Call (..., Temp);
9680
5c12e9fb
AC
9681 Append_To (Actuals,
9682 Make_Parameter_Association (Loc,
cdabbb52
HK
9683 Selector_Name =>
9684 Make_Identifier (Loc, Chars (Last_Formal)),
9685 Explicit_Actual_Parameter =>
9686 New_Occurrence_Of (Temp_Id, Loc)));
9687
2700b9c1
AC
9688 Call :=
9689 Make_Procedure_Call_Statement (Loc,
9690 Name => New_Occurrence_Of (Proc_Id, Loc),
9691 Parameter_Associations => Actuals);
9692
9693 Insert_Actions (Par, New_List (Decl, Call));
9694 Rewrite (N, New_Occurrence_Of (Temp_Id, Loc));
9695 end;
9696 end if;
9697 end Rewrite_Function_Call_For_C;
9698
c79f6efd
BD
9699 ------------------------------------
9700 -- Set_Enclosing_Sec_Stack_Return --
9701 ------------------------------------
9702
9703 procedure Set_Enclosing_Sec_Stack_Return (N : Node_Id) is
9704 P : Node_Id := N;
9705
9706 begin
9707 -- Due to a possible mix of internally generated blocks, source blocks
9708 -- and loops, the scope stack may not be contiguous as all labels are
9709 -- inserted at the top level within the related function. Instead,
9710 -- perform a parent-based traversal and mark all appropriate constructs.
9711
9712 while Present (P) loop
9713
9714 -- Mark the label of a source or internally generated block or
9715 -- loop.
9716
9717 if Nkind_In (P, N_Block_Statement, N_Loop_Statement) then
9718 Set_Sec_Stack_Needed_For_Return (Entity (Identifier (P)));
9719
9720 -- Mark the enclosing function
9721
9722 elsif Nkind (P) = N_Subprogram_Body then
9723 if Present (Corresponding_Spec (P)) then
9724 Set_Sec_Stack_Needed_For_Return (Corresponding_Spec (P));
9725 else
9726 Set_Sec_Stack_Needed_For_Return (Defining_Entity (P));
9727 end if;
9728
9729 -- Do not go beyond the enclosing function
9730
9731 exit;
9732 end if;
9733
9734 P := Parent (P);
9735 end loop;
9736 end Set_Enclosing_Sec_Stack_Return;
9737
4ac62786
AC
9738 ------------------------------------
9739 -- Unqual_BIP_Iface_Function_Call --
9740 ------------------------------------
9741
9742 function Unqual_BIP_Iface_Function_Call (Expr : Node_Id) return Node_Id is
9743 Has_Pointer_Displacement : Boolean := False;
9744 On_Object_Declaration : Boolean := False;
9745 -- Remember if processing the renaming expressions on recursion we have
9746 -- traversed an object declaration, since we can traverse many object
9747 -- declaration renamings but just one regular object declaration.
9748
9749 function Unqual_BIP_Function_Call (Expr : Node_Id) return Node_Id;
9750 -- Search for a build-in-place function call skipping any qualification
9751 -- including qualified expressions, type conversions, references, calls
9752 -- to displace the pointer to the object, and renamings. Return Empty if
9753 -- no build-in-place function call is found.
9754
9755 ------------------------------
9756 -- Unqual_BIP_Function_Call --
9757 ------------------------------
9758
9759 function Unqual_BIP_Function_Call (Expr : Node_Id) return Node_Id is
9760 begin
9761 -- Recurse to handle case of multiple levels of qualification and/or
9762 -- conversion.
9763
9764 if Nkind_In (Expr, N_Qualified_Expression,
9765 N_Type_Conversion,
9766 N_Unchecked_Type_Conversion)
9767 then
9768 return Unqual_BIP_Function_Call (Expression (Expr));
9769
9770 -- Recurse to handle case of multiple levels of references and
9771 -- explicit dereferences.
9772
9773 elsif Nkind_In (Expr, N_Attribute_Reference,
9774 N_Explicit_Dereference,
9775 N_Reference)
9776 then
9777 return Unqual_BIP_Function_Call (Prefix (Expr));
9778
9779 -- Recurse on object renamings
9780
9781 elsif Nkind (Expr) = N_Identifier
f63adaa7 9782 and then Present (Entity (Expr))
4ac62786
AC
9783 and then Ekind_In (Entity (Expr), E_Constant, E_Variable)
9784 and then Nkind (Parent (Entity (Expr))) =
9785 N_Object_Renaming_Declaration
9786 and then Present (Renamed_Object (Entity (Expr)))
9787 then
9788 return Unqual_BIP_Function_Call (Renamed_Object (Entity (Expr)));
9789
9790 -- Recurse on the initializing expression of the first reference of
9791 -- an object declaration.
9792
9793 elsif not On_Object_Declaration
9794 and then Nkind (Expr) = N_Identifier
f63adaa7 9795 and then Present (Entity (Expr))
4ac62786
AC
9796 and then Ekind_In (Entity (Expr), E_Constant, E_Variable)
9797 and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
9798 and then Present (Expression (Parent (Entity (Expr))))
9799 then
9800 On_Object_Declaration := True;
9801 return
3fc40cd7 9802 Unqual_BIP_Function_Call (Expression (Parent (Entity (Expr))));
4ac62786
AC
9803
9804 -- Recurse to handle calls to displace the pointer to the object to
9805 -- reference a secondary dispatch table.
9806
9807 elsif Nkind (Expr) = N_Function_Call
9808 and then Nkind (Name (Expr)) in N_Has_Entity
f63adaa7 9809 and then Present (Entity (Name (Expr)))
4ac62786
AC
9810 and then RTU_Loaded (Ada_Tags)
9811 and then RTE_Available (RE_Displace)
9812 and then Is_RTE (Entity (Name (Expr)), RE_Displace)
9813 then
9814 Has_Pointer_Displacement := True;
9815 return
9816 Unqual_BIP_Function_Call (First (Parameter_Associations (Expr)));
9817
9818 -- Normal case: check if the inner expression is a BIP function call
9819 -- and the pointer to the object is displaced.
9820
9821 elsif Has_Pointer_Displacement
9822 and then Is_Build_In_Place_Function_Call (Expr)
9823 then
9824 return Expr;
9825
9826 else
9827 return Empty;
9828 end if;
9829 end Unqual_BIP_Function_Call;
9830
9831 -- Start of processing for Unqual_BIP_Iface_Function_Call
9832
9833 begin
d4dfb005 9834 if Nkind (Expr) = N_Identifier and then No (Entity (Expr)) then
3fc40cd7
PMR
9835
9836 -- Can happen for X'Elab_Spec in the binder-generated file
9837
d4dfb005
BD
9838 return Empty;
9839 end if;
9840
4ac62786
AC
9841 return Unqual_BIP_Function_Call (Expr);
9842 end Unqual_BIP_Iface_Function_Call;
9843
70482933 9844end Exp_Ch6;
This page took 7.48119 seconds and 5 git commands to generate.