]> gcc.gnu.org Git - gcc.git/blob - gcc/fortran/trans-types.c
re PR fortran/54107 ([F03] Memory hog with abstract interface)
[gcc.git] / gcc / fortran / trans-types.c
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002-2013 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4 and Steven Bosscher <s.bosscher@student.tudelft.nl>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* trans-types.c -- gfortran backend types */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h" /* For INTMAX_TYPE, INT8_TYPE, INT16_TYPE, INT32_TYPE,
28 INT64_TYPE, INT_LEAST8_TYPE, INT_LEAST16_TYPE,
29 INT_LEAST32_TYPE, INT_LEAST64_TYPE, INT_FAST8_TYPE,
30 INT_FAST16_TYPE, INT_FAST32_TYPE, INT_FAST64_TYPE,
31 BOOL_TYPE_SIZE, BITS_PER_UNIT, POINTER_SIZE,
32 INT_TYPE_SIZE, CHAR_TYPE_SIZE, SHORT_TYPE_SIZE,
33 LONG_TYPE_SIZE, LONG_LONG_TYPE_SIZE,
34 FLOAT_TYPE_SIZE, DOUBLE_TYPE_SIZE,
35 LONG_DOUBLE_TYPE_SIZE and LIBGCC2_HAS_TF_MODE. */
36 #include "tree.h"
37 #include "langhooks.h" /* For iso-c-bindings.def. */
38 #include "target.h"
39 #include "ggc.h"
40 #include "diagnostic-core.h" /* For fatal_error. */
41 #include "toplev.h" /* For rest_of_decl_compilation. */
42 #include "gfortran.h"
43 #include "trans.h"
44 #include "trans-types.h"
45 #include "trans-const.h"
46 #include "flags.h"
47 #include "dwarf2out.h" /* For struct array_descr_info. */
48 \f
49
50 #if (GFC_MAX_DIMENSIONS < 10)
51 #define GFC_RANK_DIGITS 1
52 #define GFC_RANK_PRINTF_FORMAT "%01d"
53 #elif (GFC_MAX_DIMENSIONS < 100)
54 #define GFC_RANK_DIGITS 2
55 #define GFC_RANK_PRINTF_FORMAT "%02d"
56 #else
57 #error If you really need >99 dimensions, continue the sequence above...
58 #endif
59
60 /* array of structs so we don't have to worry about xmalloc or free */
61 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
62
63 tree gfc_array_index_type;
64 tree gfc_array_range_type;
65 tree gfc_character1_type_node;
66 tree pvoid_type_node;
67 tree prvoid_type_node;
68 tree ppvoid_type_node;
69 tree pchar_type_node;
70 tree pfunc_type_node;
71
72 tree gfc_charlen_type_node;
73
74 tree float128_type_node = NULL_TREE;
75 tree complex_float128_type_node = NULL_TREE;
76
77 bool gfc_real16_is_float128 = false;
78
79 static GTY(()) tree gfc_desc_dim_type;
80 static GTY(()) tree gfc_max_array_element_size;
81 static GTY(()) tree gfc_array_descriptor_base[2 * (GFC_MAX_DIMENSIONS+1)];
82 static GTY(()) tree gfc_array_descriptor_base_caf[2 * (GFC_MAX_DIMENSIONS+1)];
83
84 /* Arrays for all integral and real kinds. We'll fill this in at runtime
85 after the target has a chance to process command-line options. */
86
87 #define MAX_INT_KINDS 5
88 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
89 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
90 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
91 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
92
93 #define MAX_REAL_KINDS 5
94 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
95 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
96 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
97
98 #define MAX_CHARACTER_KINDS 2
99 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
100 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
101 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
102
103 static tree gfc_add_field_to_struct_1 (tree, tree, tree, tree **);
104
105 /* The integer kind to use for array indices. This will be set to the
106 proper value based on target information from the backend. */
107
108 int gfc_index_integer_kind;
109
110 /* The default kinds of the various types. */
111
112 int gfc_default_integer_kind;
113 int gfc_max_integer_kind;
114 int gfc_default_real_kind;
115 int gfc_default_double_kind;
116 int gfc_default_character_kind;
117 int gfc_default_logical_kind;
118 int gfc_default_complex_kind;
119 int gfc_c_int_kind;
120 int gfc_atomic_int_kind;
121 int gfc_atomic_logical_kind;
122
123 /* The kind size used for record offsets. If the target system supports
124 kind=8, this will be set to 8, otherwise it is set to 4. */
125 int gfc_intio_kind;
126
127 /* The integer kind used to store character lengths. */
128 int gfc_charlen_int_kind;
129
130 /* The size of the numeric storage unit and character storage unit. */
131 int gfc_numeric_storage_size;
132 int gfc_character_storage_size;
133
134
135 gfc_try
136 gfc_check_any_c_kind (gfc_typespec *ts)
137 {
138 int i;
139
140 for (i = 0; i < ISOCBINDING_NUMBER; i++)
141 {
142 /* Check for any C interoperable kind for the given type/kind in ts.
143 This can be used after verify_c_interop to make sure that the
144 Fortran kind being used exists in at least some form for C. */
145 if (c_interop_kinds_table[i].f90_type == ts->type &&
146 c_interop_kinds_table[i].value == ts->kind)
147 return SUCCESS;
148 }
149
150 return FAILURE;
151 }
152
153
154 static int
155 get_real_kind_from_node (tree type)
156 {
157 int i;
158
159 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
160 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
161 return gfc_real_kinds[i].kind;
162
163 return -4;
164 }
165
166 static int
167 get_int_kind_from_node (tree type)
168 {
169 int i;
170
171 if (!type)
172 return -2;
173
174 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
175 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
176 return gfc_integer_kinds[i].kind;
177
178 return -1;
179 }
180
181 /* Return a typenode for the "standard" C type with a given name. */
182 static tree
183 get_typenode_from_name (const char *name)
184 {
185 if (name == NULL || *name == '\0')
186 return NULL_TREE;
187
188 if (strcmp (name, "char") == 0)
189 return char_type_node;
190 if (strcmp (name, "unsigned char") == 0)
191 return unsigned_char_type_node;
192 if (strcmp (name, "signed char") == 0)
193 return signed_char_type_node;
194
195 if (strcmp (name, "short int") == 0)
196 return short_integer_type_node;
197 if (strcmp (name, "short unsigned int") == 0)
198 return short_unsigned_type_node;
199
200 if (strcmp (name, "int") == 0)
201 return integer_type_node;
202 if (strcmp (name, "unsigned int") == 0)
203 return unsigned_type_node;
204
205 if (strcmp (name, "long int") == 0)
206 return long_integer_type_node;
207 if (strcmp (name, "long unsigned int") == 0)
208 return long_unsigned_type_node;
209
210 if (strcmp (name, "long long int") == 0)
211 return long_long_integer_type_node;
212 if (strcmp (name, "long long unsigned int") == 0)
213 return long_long_unsigned_type_node;
214
215 gcc_unreachable ();
216 }
217
218 static int
219 get_int_kind_from_name (const char *name)
220 {
221 return get_int_kind_from_node (get_typenode_from_name (name));
222 }
223
224
225 /* Get the kind number corresponding to an integer of given size,
226 following the required return values for ISO_FORTRAN_ENV INT* constants:
227 -2 is returned if we support a kind of larger size, -1 otherwise. */
228 int
229 gfc_get_int_kind_from_width_isofortranenv (int size)
230 {
231 int i;
232
233 /* Look for a kind with matching storage size. */
234 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
235 if (gfc_integer_kinds[i].bit_size == size)
236 return gfc_integer_kinds[i].kind;
237
238 /* Look for a kind with larger storage size. */
239 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
240 if (gfc_integer_kinds[i].bit_size > size)
241 return -2;
242
243 return -1;
244 }
245
246 /* Get the kind number corresponding to a real of given storage size,
247 following the required return values for ISO_FORTRAN_ENV REAL* constants:
248 -2 is returned if we support a kind of larger size, -1 otherwise. */
249 int
250 gfc_get_real_kind_from_width_isofortranenv (int size)
251 {
252 int i;
253
254 size /= 8;
255
256 /* Look for a kind with matching storage size. */
257 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
258 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
259 return gfc_real_kinds[i].kind;
260
261 /* Look for a kind with larger storage size. */
262 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
263 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
264 return -2;
265
266 return -1;
267 }
268
269
270
271 static int
272 get_int_kind_from_width (int size)
273 {
274 int i;
275
276 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
277 if (gfc_integer_kinds[i].bit_size == size)
278 return gfc_integer_kinds[i].kind;
279
280 return -2;
281 }
282
283 static int
284 get_int_kind_from_minimal_width (int size)
285 {
286 int i;
287
288 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
289 if (gfc_integer_kinds[i].bit_size >= size)
290 return gfc_integer_kinds[i].kind;
291
292 return -2;
293 }
294
295
296 /* Generate the CInteropKind_t objects for the C interoperable
297 kinds. */
298
299 void
300 gfc_init_c_interop_kinds (void)
301 {
302 int i;
303
304 /* init all pointers in the list to NULL */
305 for (i = 0; i < ISOCBINDING_NUMBER; i++)
306 {
307 /* Initialize the name and value fields. */
308 c_interop_kinds_table[i].name[0] = '\0';
309 c_interop_kinds_table[i].value = -100;
310 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
311 }
312
313 #define NAMED_INTCST(a,b,c,d) \
314 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
315 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
316 c_interop_kinds_table[a].value = c;
317 #define NAMED_REALCST(a,b,c,d) \
318 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
319 c_interop_kinds_table[a].f90_type = BT_REAL; \
320 c_interop_kinds_table[a].value = c;
321 #define NAMED_CMPXCST(a,b,c,d) \
322 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
323 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
324 c_interop_kinds_table[a].value = c;
325 #define NAMED_LOGCST(a,b,c) \
326 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
327 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
328 c_interop_kinds_table[a].value = c;
329 #define NAMED_CHARKNDCST(a,b,c) \
330 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
331 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
332 c_interop_kinds_table[a].value = c;
333 #define NAMED_CHARCST(a,b,c) \
334 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
335 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
336 c_interop_kinds_table[a].value = c;
337 #define DERIVED_TYPE(a,b,c) \
338 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
339 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
340 c_interop_kinds_table[a].value = c;
341 #define PROCEDURE(a,b) \
342 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
343 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
344 c_interop_kinds_table[a].value = 0;
345 #include "iso-c-binding.def"
346 #define NAMED_FUNCTION(a,b,c,d) \
347 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
348 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
349 c_interop_kinds_table[a].value = c;
350 #include "iso-c-binding.def"
351 }
352
353
354 /* Query the target to determine which machine modes are available for
355 computation. Choose KIND numbers for them. */
356
357 void
358 gfc_init_kinds (void)
359 {
360 unsigned int mode;
361 int i_index, r_index, kind;
362 bool saw_i4 = false, saw_i8 = false;
363 bool saw_r4 = false, saw_r8 = false, saw_r10 = false, saw_r16 = false;
364
365 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
366 {
367 int kind, bitsize;
368
369 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
370 continue;
371
372 /* The middle end doesn't support constants larger than 2*HWI.
373 Perhaps the target hook shouldn't have accepted these either,
374 but just to be safe... */
375 bitsize = GET_MODE_BITSIZE (mode);
376 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
377 continue;
378
379 gcc_assert (i_index != MAX_INT_KINDS);
380
381 /* Let the kind equal the bit size divided by 8. This insulates the
382 programmer from the underlying byte size. */
383 kind = bitsize / 8;
384
385 if (kind == 4)
386 saw_i4 = true;
387 if (kind == 8)
388 saw_i8 = true;
389
390 gfc_integer_kinds[i_index].kind = kind;
391 gfc_integer_kinds[i_index].radix = 2;
392 gfc_integer_kinds[i_index].digits = bitsize - 1;
393 gfc_integer_kinds[i_index].bit_size = bitsize;
394
395 gfc_logical_kinds[i_index].kind = kind;
396 gfc_logical_kinds[i_index].bit_size = bitsize;
397
398 i_index += 1;
399 }
400
401 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
402 used for large file access. */
403
404 if (saw_i8)
405 gfc_intio_kind = 8;
406 else
407 gfc_intio_kind = 4;
408
409 /* If we do not at least have kind = 4, everything is pointless. */
410 gcc_assert(saw_i4);
411
412 /* Set the maximum integer kind. Used with at least BOZ constants. */
413 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
414
415 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
416 {
417 const struct real_format *fmt =
418 REAL_MODE_FORMAT ((enum machine_mode) mode);
419 int kind;
420
421 if (fmt == NULL)
422 continue;
423 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
424 continue;
425
426 /* Only let float, double, long double and __float128 go through.
427 Runtime support for others is not provided, so they would be
428 useless. */
429 if (mode != TYPE_MODE (float_type_node)
430 && (mode != TYPE_MODE (double_type_node))
431 && (mode != TYPE_MODE (long_double_type_node))
432 #if defined(LIBGCC2_HAS_TF_MODE) && defined(ENABLE_LIBQUADMATH_SUPPORT)
433 && (mode != TFmode)
434 #endif
435 )
436 continue;
437
438 /* Let the kind equal the precision divided by 8, rounding up. Again,
439 this insulates the programmer from the underlying byte size.
440
441 Also, it effectively deals with IEEE extended formats. There, the
442 total size of the type may equal 16, but it's got 6 bytes of padding
443 and the increased size can get in the way of a real IEEE quad format
444 which may also be supported by the target.
445
446 We round up so as to handle IA-64 __floatreg (RFmode), which is an
447 82 bit type. Not to be confused with __float80 (XFmode), which is
448 an 80 bit type also supported by IA-64. So XFmode should come out
449 to be kind=10, and RFmode should come out to be kind=11. Egads. */
450
451 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
452
453 if (kind == 4)
454 saw_r4 = true;
455 if (kind == 8)
456 saw_r8 = true;
457 if (kind == 10)
458 saw_r10 = true;
459 if (kind == 16)
460 saw_r16 = true;
461
462 /* Careful we don't stumble a weird internal mode. */
463 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
464 /* Or have too many modes for the allocated space. */
465 gcc_assert (r_index != MAX_REAL_KINDS);
466
467 gfc_real_kinds[r_index].kind = kind;
468 gfc_real_kinds[r_index].radix = fmt->b;
469 gfc_real_kinds[r_index].digits = fmt->p;
470 gfc_real_kinds[r_index].min_exponent = fmt->emin;
471 gfc_real_kinds[r_index].max_exponent = fmt->emax;
472 if (fmt->pnan < fmt->p)
473 /* This is an IBM extended double format (or the MIPS variant)
474 made up of two IEEE doubles. The value of the long double is
475 the sum of the values of the two parts. The most significant
476 part is required to be the value of the long double rounded
477 to the nearest double. If we use emax of 1024 then we can't
478 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
479 rounding will make the most significant part overflow. */
480 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
481 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
482 r_index += 1;
483 }
484
485 /* Choose the default integer kind. We choose 4 unless the user directs us
486 otherwise. Even if the user specified that the default integer kind is 8,
487 the numeric storage size is not 64 bits. In this case, a warning will be
488 issued when NUMERIC_STORAGE_SIZE is used. Set NUMERIC_STORAGE_SIZE to 32. */
489
490 gfc_numeric_storage_size = 4 * 8;
491
492 if (gfc_option.flag_default_integer)
493 {
494 if (!saw_i8)
495 fatal_error ("INTEGER(KIND=8) is not available for -fdefault-integer-8 option");
496
497 gfc_default_integer_kind = 8;
498
499 }
500 else if (gfc_option.flag_integer4_kind == 8)
501 {
502 if (!saw_i8)
503 fatal_error ("INTEGER(KIND=8) is not available for -finteger-4-integer-8 option");
504
505 gfc_default_integer_kind = 8;
506 }
507 else if (saw_i4)
508 {
509 gfc_default_integer_kind = 4;
510 }
511 else
512 {
513 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
514 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
515 }
516
517 /* Choose the default real kind. Again, we choose 4 when possible. */
518 if (gfc_option.flag_default_real)
519 {
520 if (!saw_r8)
521 fatal_error ("REAL(KIND=8) is not available for -fdefault-real-8 option");
522
523 gfc_default_real_kind = 8;
524 }
525 else if (gfc_option.flag_real4_kind == 8)
526 {
527 if (!saw_r8)
528 fatal_error ("REAL(KIND=8) is not available for -freal-4-real-8 option");
529
530 gfc_default_real_kind = 8;
531 }
532 else if (gfc_option.flag_real4_kind == 10)
533 {
534 if (!saw_r10)
535 fatal_error ("REAL(KIND=10) is not available for -freal-4-real-10 option");
536
537 gfc_default_real_kind = 10;
538 }
539 else if (gfc_option.flag_real4_kind == 16)
540 {
541 if (!saw_r16)
542 fatal_error ("REAL(KIND=16) is not available for -freal-4-real-16 option");
543
544 gfc_default_real_kind = 16;
545 }
546 else if (saw_r4)
547 gfc_default_real_kind = 4;
548 else
549 gfc_default_real_kind = gfc_real_kinds[0].kind;
550
551 /* Choose the default double kind. If -fdefault-real and -fdefault-double
552 are specified, we use kind=8, if it's available. If -fdefault-real is
553 specified without -fdefault-double, we use kind=16, if it's available.
554 Otherwise we do not change anything. */
555 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
556 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
557
558 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
559 gfc_default_double_kind = 8;
560 else if (gfc_option.flag_default_real && saw_r16)
561 gfc_default_double_kind = 16;
562 else if (gfc_option.flag_real8_kind == 4)
563 {
564 if (!saw_r4)
565 fatal_error ("REAL(KIND=4) is not available for -freal-8-real-4 option");
566
567 gfc_default_double_kind = 4;
568 }
569 else if (gfc_option.flag_real8_kind == 10 )
570 {
571 if (!saw_r10)
572 fatal_error ("REAL(KIND=10) is not available for -freal-8-real-10 option");
573
574 gfc_default_double_kind = 10;
575 }
576 else if (gfc_option.flag_real8_kind == 16 )
577 {
578 if (!saw_r16)
579 fatal_error ("REAL(KIND=10) is not available for -freal-8-real-16 option");
580
581 gfc_default_double_kind = 16;
582 }
583 else if (saw_r4 && saw_r8)
584 gfc_default_double_kind = 8;
585 else
586 {
587 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
588 real ... occupies two contiguous numeric storage units.
589
590 Therefore we must be supplied a kind twice as large as we chose
591 for single precision. There are loopholes, in that double
592 precision must *occupy* two storage units, though it doesn't have
593 to *use* two storage units. Which means that you can make this
594 kind artificially wide by padding it. But at present there are
595 no GCC targets for which a two-word type does not exist, so we
596 just let gfc_validate_kind abort and tell us if something breaks. */
597
598 gfc_default_double_kind
599 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
600 }
601
602 /* The default logical kind is constrained to be the same as the
603 default integer kind. Similarly with complex and real. */
604 gfc_default_logical_kind = gfc_default_integer_kind;
605 gfc_default_complex_kind = gfc_default_real_kind;
606
607 /* We only have two character kinds: ASCII and UCS-4.
608 ASCII corresponds to a 8-bit integer type, if one is available.
609 UCS-4 corresponds to a 32-bit integer type, if one is available. */
610 i_index = 0;
611 if ((kind = get_int_kind_from_width (8)) > 0)
612 {
613 gfc_character_kinds[i_index].kind = kind;
614 gfc_character_kinds[i_index].bit_size = 8;
615 gfc_character_kinds[i_index].name = "ascii";
616 i_index++;
617 }
618 if ((kind = get_int_kind_from_width (32)) > 0)
619 {
620 gfc_character_kinds[i_index].kind = kind;
621 gfc_character_kinds[i_index].bit_size = 32;
622 gfc_character_kinds[i_index].name = "iso_10646";
623 i_index++;
624 }
625
626 /* Choose the smallest integer kind for our default character. */
627 gfc_default_character_kind = gfc_character_kinds[0].kind;
628 gfc_character_storage_size = gfc_default_character_kind * 8;
629
630 gfc_index_integer_kind = get_int_kind_from_name (PTRDIFF_TYPE);
631
632 /* Pick a kind the same size as the C "int" type. */
633 gfc_c_int_kind = INT_TYPE_SIZE / 8;
634
635 /* Choose atomic kinds to match C's int. */
636 gfc_atomic_int_kind = gfc_c_int_kind;
637 gfc_atomic_logical_kind = gfc_c_int_kind;
638 }
639
640
641 /* Make sure that a valid kind is present. Returns an index into the
642 associated kinds array, -1 if the kind is not present. */
643
644 static int
645 validate_integer (int kind)
646 {
647 int i;
648
649 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
650 if (gfc_integer_kinds[i].kind == kind)
651 return i;
652
653 return -1;
654 }
655
656 static int
657 validate_real (int kind)
658 {
659 int i;
660
661 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
662 if (gfc_real_kinds[i].kind == kind)
663 return i;
664
665 return -1;
666 }
667
668 static int
669 validate_logical (int kind)
670 {
671 int i;
672
673 for (i = 0; gfc_logical_kinds[i].kind; i++)
674 if (gfc_logical_kinds[i].kind == kind)
675 return i;
676
677 return -1;
678 }
679
680 static int
681 validate_character (int kind)
682 {
683 int i;
684
685 for (i = 0; gfc_character_kinds[i].kind; i++)
686 if (gfc_character_kinds[i].kind == kind)
687 return i;
688
689 return -1;
690 }
691
692 /* Validate a kind given a basic type. The return value is the same
693 for the child functions, with -1 indicating nonexistence of the
694 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
695
696 int
697 gfc_validate_kind (bt type, int kind, bool may_fail)
698 {
699 int rc;
700
701 switch (type)
702 {
703 case BT_REAL: /* Fall through */
704 case BT_COMPLEX:
705 rc = validate_real (kind);
706 break;
707 case BT_INTEGER:
708 rc = validate_integer (kind);
709 break;
710 case BT_LOGICAL:
711 rc = validate_logical (kind);
712 break;
713 case BT_CHARACTER:
714 rc = validate_character (kind);
715 break;
716
717 default:
718 gfc_internal_error ("gfc_validate_kind(): Got bad type");
719 }
720
721 if (rc < 0 && !may_fail)
722 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
723
724 return rc;
725 }
726
727
728 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
729 Reuse common type nodes where possible. Recognize if the kind matches up
730 with a C type. This will be used later in determining which routines may
731 be scarfed from libm. */
732
733 static tree
734 gfc_build_int_type (gfc_integer_info *info)
735 {
736 int mode_precision = info->bit_size;
737
738 if (mode_precision == CHAR_TYPE_SIZE)
739 info->c_char = 1;
740 if (mode_precision == SHORT_TYPE_SIZE)
741 info->c_short = 1;
742 if (mode_precision == INT_TYPE_SIZE)
743 info->c_int = 1;
744 if (mode_precision == LONG_TYPE_SIZE)
745 info->c_long = 1;
746 if (mode_precision == LONG_LONG_TYPE_SIZE)
747 info->c_long_long = 1;
748
749 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
750 return intQI_type_node;
751 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
752 return intHI_type_node;
753 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
754 return intSI_type_node;
755 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
756 return intDI_type_node;
757 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
758 return intTI_type_node;
759
760 return make_signed_type (mode_precision);
761 }
762
763 tree
764 gfc_build_uint_type (int size)
765 {
766 if (size == CHAR_TYPE_SIZE)
767 return unsigned_char_type_node;
768 if (size == SHORT_TYPE_SIZE)
769 return short_unsigned_type_node;
770 if (size == INT_TYPE_SIZE)
771 return unsigned_type_node;
772 if (size == LONG_TYPE_SIZE)
773 return long_unsigned_type_node;
774 if (size == LONG_LONG_TYPE_SIZE)
775 return long_long_unsigned_type_node;
776
777 return make_unsigned_type (size);
778 }
779
780
781 static tree
782 gfc_build_real_type (gfc_real_info *info)
783 {
784 int mode_precision = info->mode_precision;
785 tree new_type;
786
787 if (mode_precision == FLOAT_TYPE_SIZE)
788 info->c_float = 1;
789 if (mode_precision == DOUBLE_TYPE_SIZE)
790 info->c_double = 1;
791 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
792 info->c_long_double = 1;
793 if (mode_precision != LONG_DOUBLE_TYPE_SIZE && mode_precision == 128)
794 {
795 info->c_float128 = 1;
796 gfc_real16_is_float128 = true;
797 }
798
799 if (TYPE_PRECISION (float_type_node) == mode_precision)
800 return float_type_node;
801 if (TYPE_PRECISION (double_type_node) == mode_precision)
802 return double_type_node;
803 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
804 return long_double_type_node;
805
806 new_type = make_node (REAL_TYPE);
807 TYPE_PRECISION (new_type) = mode_precision;
808 layout_type (new_type);
809 return new_type;
810 }
811
812 static tree
813 gfc_build_complex_type (tree scalar_type)
814 {
815 tree new_type;
816
817 if (scalar_type == NULL)
818 return NULL;
819 if (scalar_type == float_type_node)
820 return complex_float_type_node;
821 if (scalar_type == double_type_node)
822 return complex_double_type_node;
823 if (scalar_type == long_double_type_node)
824 return complex_long_double_type_node;
825
826 new_type = make_node (COMPLEX_TYPE);
827 TREE_TYPE (new_type) = scalar_type;
828 layout_type (new_type);
829 return new_type;
830 }
831
832 static tree
833 gfc_build_logical_type (gfc_logical_info *info)
834 {
835 int bit_size = info->bit_size;
836 tree new_type;
837
838 if (bit_size == BOOL_TYPE_SIZE)
839 {
840 info->c_bool = 1;
841 return boolean_type_node;
842 }
843
844 new_type = make_unsigned_type (bit_size);
845 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
846 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
847 TYPE_PRECISION (new_type) = 1;
848
849 return new_type;
850 }
851
852
853 /* Create the backend type nodes. We map them to their
854 equivalent C type, at least for now. We also give
855 names to the types here, and we push them in the
856 global binding level context.*/
857
858 void
859 gfc_init_types (void)
860 {
861 char name_buf[18];
862 int index;
863 tree type;
864 unsigned n;
865 unsigned HOST_WIDE_INT hi;
866 unsigned HOST_WIDE_INT lo;
867
868 /* Create and name the types. */
869 #define PUSH_TYPE(name, node) \
870 pushdecl (build_decl (input_location, \
871 TYPE_DECL, get_identifier (name), node))
872
873 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
874 {
875 type = gfc_build_int_type (&gfc_integer_kinds[index]);
876 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
877 if (TYPE_STRING_FLAG (type))
878 type = make_signed_type (gfc_integer_kinds[index].bit_size);
879 gfc_integer_types[index] = type;
880 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
881 gfc_integer_kinds[index].kind);
882 PUSH_TYPE (name_buf, type);
883 }
884
885 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
886 {
887 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
888 gfc_logical_types[index] = type;
889 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
890 gfc_logical_kinds[index].kind);
891 PUSH_TYPE (name_buf, type);
892 }
893
894 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
895 {
896 type = gfc_build_real_type (&gfc_real_kinds[index]);
897 gfc_real_types[index] = type;
898 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
899 gfc_real_kinds[index].kind);
900 PUSH_TYPE (name_buf, type);
901
902 if (gfc_real_kinds[index].c_float128)
903 float128_type_node = type;
904
905 type = gfc_build_complex_type (type);
906 gfc_complex_types[index] = type;
907 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
908 gfc_real_kinds[index].kind);
909 PUSH_TYPE (name_buf, type);
910
911 if (gfc_real_kinds[index].c_float128)
912 complex_float128_type_node = type;
913 }
914
915 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
916 {
917 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
918 type = build_qualified_type (type, TYPE_UNQUALIFIED);
919 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
920 gfc_character_kinds[index].kind);
921 PUSH_TYPE (name_buf, type);
922 gfc_character_types[index] = type;
923 gfc_pcharacter_types[index] = build_pointer_type (type);
924 }
925 gfc_character1_type_node = gfc_character_types[0];
926
927 PUSH_TYPE ("byte", unsigned_char_type_node);
928 PUSH_TYPE ("void", void_type_node);
929
930 /* DBX debugging output gets upset if these aren't set. */
931 if (!TYPE_NAME (integer_type_node))
932 PUSH_TYPE ("c_integer", integer_type_node);
933 if (!TYPE_NAME (char_type_node))
934 PUSH_TYPE ("c_char", char_type_node);
935
936 #undef PUSH_TYPE
937
938 pvoid_type_node = build_pointer_type (void_type_node);
939 prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
940 ppvoid_type_node = build_pointer_type (pvoid_type_node);
941 pchar_type_node = build_pointer_type (gfc_character1_type_node);
942 pfunc_type_node
943 = build_pointer_type (build_function_type_list (void_type_node, NULL_TREE));
944
945 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
946 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
947 since this function is called before gfc_init_constants. */
948 gfc_array_range_type
949 = build_range_type (gfc_array_index_type,
950 build_int_cst (gfc_array_index_type, 0),
951 NULL_TREE);
952
953 /* The maximum array element size that can be handled is determined
954 by the number of bits available to store this field in the array
955 descriptor. */
956
957 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
958 lo = ~ (unsigned HOST_WIDE_INT) 0;
959 if (n > HOST_BITS_PER_WIDE_INT)
960 hi = lo >> (2*HOST_BITS_PER_WIDE_INT - n);
961 else
962 hi = 0, lo >>= HOST_BITS_PER_WIDE_INT - n;
963 gfc_max_array_element_size
964 = build_int_cst_wide (long_unsigned_type_node, lo, hi);
965
966 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
967 boolean_true_node = build_int_cst (boolean_type_node, 1);
968 boolean_false_node = build_int_cst (boolean_type_node, 0);
969
970 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
971 gfc_charlen_int_kind = 4;
972 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
973 }
974
975 /* Get the type node for the given type and kind. */
976
977 tree
978 gfc_get_int_type (int kind)
979 {
980 int index = gfc_validate_kind (BT_INTEGER, kind, true);
981 return index < 0 ? 0 : gfc_integer_types[index];
982 }
983
984 tree
985 gfc_get_real_type (int kind)
986 {
987 int index = gfc_validate_kind (BT_REAL, kind, true);
988 return index < 0 ? 0 : gfc_real_types[index];
989 }
990
991 tree
992 gfc_get_complex_type (int kind)
993 {
994 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
995 return index < 0 ? 0 : gfc_complex_types[index];
996 }
997
998 tree
999 gfc_get_logical_type (int kind)
1000 {
1001 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
1002 return index < 0 ? 0 : gfc_logical_types[index];
1003 }
1004
1005 tree
1006 gfc_get_char_type (int kind)
1007 {
1008 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1009 return index < 0 ? 0 : gfc_character_types[index];
1010 }
1011
1012 tree
1013 gfc_get_pchar_type (int kind)
1014 {
1015 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1016 return index < 0 ? 0 : gfc_pcharacter_types[index];
1017 }
1018
1019 \f
1020 /* Create a character type with the given kind and length. */
1021
1022 tree
1023 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
1024 {
1025 tree bounds, type;
1026
1027 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
1028 type = build_array_type (eltype, bounds);
1029 TYPE_STRING_FLAG (type) = 1;
1030
1031 return type;
1032 }
1033
1034 tree
1035 gfc_get_character_type_len (int kind, tree len)
1036 {
1037 gfc_validate_kind (BT_CHARACTER, kind, false);
1038 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
1039 }
1040
1041
1042 /* Get a type node for a character kind. */
1043
1044 tree
1045 gfc_get_character_type (int kind, gfc_charlen * cl)
1046 {
1047 tree len;
1048
1049 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
1050
1051 return gfc_get_character_type_len (kind, len);
1052 }
1053 \f
1054 /* Covert a basic type. This will be an array for character types. */
1055
1056 tree
1057 gfc_typenode_for_spec (gfc_typespec * spec)
1058 {
1059 tree basetype;
1060
1061 switch (spec->type)
1062 {
1063 case BT_UNKNOWN:
1064 gcc_unreachable ();
1065
1066 case BT_INTEGER:
1067 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
1068 has been resolved. This is done so we can convert C_PTR and
1069 C_FUNPTR to simple variables that get translated to (void *). */
1070 if (spec->f90_type == BT_VOID)
1071 {
1072 if (spec->u.derived
1073 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1074 basetype = ptr_type_node;
1075 else
1076 basetype = pfunc_type_node;
1077 }
1078 else
1079 basetype = gfc_get_int_type (spec->kind);
1080 break;
1081
1082 case BT_REAL:
1083 basetype = gfc_get_real_type (spec->kind);
1084 break;
1085
1086 case BT_COMPLEX:
1087 basetype = gfc_get_complex_type (spec->kind);
1088 break;
1089
1090 case BT_LOGICAL:
1091 basetype = gfc_get_logical_type (spec->kind);
1092 break;
1093
1094 case BT_CHARACTER:
1095 #if 0
1096 if (spec->deferred)
1097 basetype = gfc_get_character_type (spec->kind, NULL);
1098 else
1099 #endif
1100 basetype = gfc_get_character_type (spec->kind, spec->u.cl);
1101 break;
1102
1103 case BT_DERIVED:
1104 case BT_CLASS:
1105 basetype = gfc_get_derived_type (spec->u.derived);
1106
1107 if (spec->type == BT_CLASS)
1108 GFC_CLASS_TYPE_P (basetype) = 1;
1109
1110 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1111 type and kind to fit a (void *) and the basetype returned was a
1112 ptr_type_node. We need to pass up this new information to the
1113 symbol that was declared of type C_PTR or C_FUNPTR. */
1114 if (spec->u.derived->attr.is_iso_c)
1115 {
1116 spec->type = spec->u.derived->ts.type;
1117 spec->kind = spec->u.derived->ts.kind;
1118 spec->f90_type = spec->u.derived->ts.f90_type;
1119 }
1120 break;
1121 case BT_VOID:
1122 case BT_ASSUMED:
1123 /* This is for the second arg to c_f_pointer and c_f_procpointer
1124 of the iso_c_binding module, to accept any ptr type. */
1125 basetype = ptr_type_node;
1126 if (spec->f90_type == BT_VOID)
1127 {
1128 if (spec->u.derived
1129 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1130 basetype = ptr_type_node;
1131 else
1132 basetype = pfunc_type_node;
1133 }
1134 break;
1135 default:
1136 gcc_unreachable ();
1137 }
1138 return basetype;
1139 }
1140 \f
1141 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1142
1143 static tree
1144 gfc_conv_array_bound (gfc_expr * expr)
1145 {
1146 /* If expr is an integer constant, return that. */
1147 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1148 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1149
1150 /* Otherwise return NULL. */
1151 return NULL_TREE;
1152 }
1153 \f
1154 tree
1155 gfc_get_element_type (tree type)
1156 {
1157 tree element;
1158
1159 if (GFC_ARRAY_TYPE_P (type))
1160 {
1161 if (TREE_CODE (type) == POINTER_TYPE)
1162 type = TREE_TYPE (type);
1163 if (GFC_TYPE_ARRAY_RANK (type) == 0)
1164 {
1165 gcc_assert (GFC_TYPE_ARRAY_CORANK (type) > 0);
1166 element = type;
1167 }
1168 else
1169 {
1170 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1171 element = TREE_TYPE (type);
1172 }
1173 }
1174 else
1175 {
1176 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1177 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1178
1179 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1180 element = TREE_TYPE (element);
1181
1182 /* For arrays, which are not scalar coarrays. */
1183 if (TREE_CODE (element) == ARRAY_TYPE)
1184 element = TREE_TYPE (element);
1185 }
1186
1187 return element;
1188 }
1189 \f
1190 /* Build an array. This function is called from gfc_sym_type().
1191 Actually returns array descriptor type.
1192
1193 Format of array descriptors is as follows:
1194
1195 struct gfc_array_descriptor
1196 {
1197 array *data
1198 index offset;
1199 index dtype;
1200 struct descriptor_dimension dimension[N_DIM];
1201 }
1202
1203 struct descriptor_dimension
1204 {
1205 index stride;
1206 index lbound;
1207 index ubound;
1208 }
1209
1210 Translation code should use gfc_conv_descriptor_* rather than
1211 accessing the descriptor directly. Any changes to the array
1212 descriptor type will require changes in gfc_conv_descriptor_* and
1213 gfc_build_array_initializer.
1214
1215 This is represented internally as a RECORD_TYPE. The index nodes
1216 are gfc_array_index_type and the data node is a pointer to the
1217 data. See below for the handling of character types.
1218
1219 The dtype member is formatted as follows:
1220 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1221 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1222 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1223
1224 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1225 this generated poor code for assumed/deferred size arrays. These
1226 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1227 of the GENERIC grammar. Also, there is no way to explicitly set
1228 the array stride, so all data must be packed(1). I've tried to
1229 mark all the functions which would require modification with a GCC
1230 ARRAYS comment.
1231
1232 The data component points to the first element in the array. The
1233 offset field is the position of the origin of the array (i.e. element
1234 (0, 0 ...)). This may be outside the bounds of the array.
1235
1236 An element is accessed by
1237 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1238 This gives good performance as the computation does not involve the
1239 bounds of the array. For packed arrays, this is optimized further
1240 by substituting the known strides.
1241
1242 This system has one problem: all array bounds must be within 2^31
1243 elements of the origin (2^63 on 64-bit machines). For example
1244 integer, dimension (80000:90000, 80000:90000, 2) :: array
1245 may not work properly on 32-bit machines because 80000*80000 >
1246 2^31, so the calculation for stride2 would overflow. This may
1247 still work, but I haven't checked, and it relies on the overflow
1248 doing the right thing.
1249
1250 The way to fix this problem is to access elements as follows:
1251 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1252 Obviously this is much slower. I will make this a compile time
1253 option, something like -fsmall-array-offsets. Mixing code compiled
1254 with and without this switch will work.
1255
1256 (1) This can be worked around by modifying the upper bound of the
1257 previous dimension. This requires extra fields in the descriptor
1258 (both real_ubound and fake_ubound). */
1259
1260
1261 /* Returns true if the array sym does not require a descriptor. */
1262
1263 int
1264 gfc_is_nodesc_array (gfc_symbol * sym)
1265 {
1266 gcc_assert (sym->attr.dimension || sym->attr.codimension);
1267
1268 /* We only want local arrays. */
1269 if (sym->attr.pointer || sym->attr.allocatable)
1270 return 0;
1271
1272 /* We want a descriptor for associate-name arrays that do not have an
1273 explicitly known shape already. */
1274 if (sym->assoc && sym->as->type != AS_EXPLICIT)
1275 return 0;
1276
1277 if (sym->attr.dummy)
1278 return sym->as->type != AS_ASSUMED_SHAPE
1279 && sym->as->type != AS_ASSUMED_RANK;
1280
1281 if (sym->attr.result || sym->attr.function)
1282 return 0;
1283
1284 gcc_assert (sym->as->type == AS_EXPLICIT || sym->as->cp_was_assumed);
1285
1286 return 1;
1287 }
1288
1289
1290 /* Create an array descriptor type. */
1291
1292 static tree
1293 gfc_build_array_type (tree type, gfc_array_spec * as,
1294 enum gfc_array_kind akind, bool restricted,
1295 bool contiguous)
1296 {
1297 tree lbound[GFC_MAX_DIMENSIONS];
1298 tree ubound[GFC_MAX_DIMENSIONS];
1299 int n;
1300
1301 if (as->type == AS_ASSUMED_RANK)
1302 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
1303 {
1304 lbound[n] = NULL_TREE;
1305 ubound[n] = NULL_TREE;
1306 }
1307
1308 for (n = 0; n < as->rank; n++)
1309 {
1310 /* Create expressions for the known bounds of the array. */
1311 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1312 lbound[n] = gfc_index_one_node;
1313 else
1314 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1315 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1316 }
1317
1318 for (n = as->rank; n < as->rank + as->corank; n++)
1319 {
1320 if (as->type != AS_DEFERRED && as->lower[n] == NULL)
1321 lbound[n] = gfc_index_one_node;
1322 else
1323 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1324
1325 if (n < as->rank + as->corank - 1)
1326 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1327 }
1328
1329 if (as->type == AS_ASSUMED_SHAPE)
1330 akind = contiguous ? GFC_ARRAY_ASSUMED_SHAPE_CONT
1331 : GFC_ARRAY_ASSUMED_SHAPE;
1332 else if (as->type == AS_ASSUMED_RANK)
1333 akind = contiguous ? GFC_ARRAY_ASSUMED_RANK_CONT
1334 : GFC_ARRAY_ASSUMED_RANK;
1335 return gfc_get_array_type_bounds (type, as->rank == -1
1336 ? GFC_MAX_DIMENSIONS : as->rank,
1337 as->corank, lbound,
1338 ubound, 0, akind, restricted);
1339 }
1340 \f
1341 /* Returns the struct descriptor_dimension type. */
1342
1343 static tree
1344 gfc_get_desc_dim_type (void)
1345 {
1346 tree type;
1347 tree decl, *chain = NULL;
1348
1349 if (gfc_desc_dim_type)
1350 return gfc_desc_dim_type;
1351
1352 /* Build the type node. */
1353 type = make_node (RECORD_TYPE);
1354
1355 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1356 TYPE_PACKED (type) = 1;
1357
1358 /* Consists of the stride, lbound and ubound members. */
1359 decl = gfc_add_field_to_struct_1 (type,
1360 get_identifier ("stride"),
1361 gfc_array_index_type, &chain);
1362 TREE_NO_WARNING (decl) = 1;
1363
1364 decl = gfc_add_field_to_struct_1 (type,
1365 get_identifier ("lbound"),
1366 gfc_array_index_type, &chain);
1367 TREE_NO_WARNING (decl) = 1;
1368
1369 decl = gfc_add_field_to_struct_1 (type,
1370 get_identifier ("ubound"),
1371 gfc_array_index_type, &chain);
1372 TREE_NO_WARNING (decl) = 1;
1373
1374 /* Finish off the type. */
1375 gfc_finish_type (type);
1376 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1377
1378 gfc_desc_dim_type = type;
1379 return type;
1380 }
1381
1382
1383 /* Return the DTYPE for an array. This describes the type and type parameters
1384 of the array. */
1385 /* TODO: Only call this when the value is actually used, and make all the
1386 unknown cases abort. */
1387
1388 tree
1389 gfc_get_dtype (tree type)
1390 {
1391 tree size;
1392 int n;
1393 HOST_WIDE_INT i;
1394 tree tmp;
1395 tree dtype;
1396 tree etype;
1397 int rank;
1398
1399 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1400
1401 if (GFC_TYPE_ARRAY_DTYPE (type))
1402 return GFC_TYPE_ARRAY_DTYPE (type);
1403
1404 rank = GFC_TYPE_ARRAY_RANK (type);
1405 etype = gfc_get_element_type (type);
1406
1407 switch (TREE_CODE (etype))
1408 {
1409 case INTEGER_TYPE:
1410 n = BT_INTEGER;
1411 break;
1412
1413 case BOOLEAN_TYPE:
1414 n = BT_LOGICAL;
1415 break;
1416
1417 case REAL_TYPE:
1418 n = BT_REAL;
1419 break;
1420
1421 case COMPLEX_TYPE:
1422 n = BT_COMPLEX;
1423 break;
1424
1425 /* We will never have arrays of arrays. */
1426 case RECORD_TYPE:
1427 n = BT_DERIVED;
1428 break;
1429
1430 case ARRAY_TYPE:
1431 n = BT_CHARACTER;
1432 break;
1433
1434 case POINTER_TYPE:
1435 n = BT_ASSUMED;
1436 break;
1437
1438 default:
1439 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1440 /* We can strange array types for temporary arrays. */
1441 return gfc_index_zero_node;
1442 }
1443
1444 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1445 size = TYPE_SIZE_UNIT (etype);
1446
1447 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1448 if (size && INTEGER_CST_P (size))
1449 {
1450 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1451 gfc_fatal_error ("Array element size too big at %C");
1452
1453 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1454 }
1455 dtype = build_int_cst (gfc_array_index_type, i);
1456
1457 if (size && !INTEGER_CST_P (size))
1458 {
1459 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1460 tmp = fold_build2_loc (input_location, LSHIFT_EXPR,
1461 gfc_array_index_type,
1462 fold_convert (gfc_array_index_type, size), tmp);
1463 dtype = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1464 tmp, dtype);
1465 }
1466 /* If we don't know the size we leave it as zero. This should never happen
1467 for anything that is actually used. */
1468 /* TODO: Check this is actually true, particularly when repacking
1469 assumed size parameters. */
1470
1471 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1472 return dtype;
1473 }
1474
1475
1476 /* Build an array type for use without a descriptor, packed according
1477 to the value of PACKED. */
1478
1479 tree
1480 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
1481 bool restricted)
1482 {
1483 tree range;
1484 tree type;
1485 tree tmp;
1486 int n;
1487 int known_stride;
1488 int known_offset;
1489 mpz_t offset;
1490 mpz_t stride;
1491 mpz_t delta;
1492 gfc_expr *expr;
1493
1494 mpz_init_set_ui (offset, 0);
1495 mpz_init_set_ui (stride, 1);
1496 mpz_init (delta);
1497
1498 /* We don't use build_array_type because this does not include include
1499 lang-specific information (i.e. the bounds of the array) when checking
1500 for duplicates. */
1501 if (as->rank)
1502 type = make_node (ARRAY_TYPE);
1503 else
1504 type = build_variant_type_copy (etype);
1505
1506 GFC_ARRAY_TYPE_P (type) = 1;
1507 TYPE_LANG_SPECIFIC (type)
1508 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1509
1510 known_stride = (packed != PACKED_NO);
1511 known_offset = 1;
1512 for (n = 0; n < as->rank; n++)
1513 {
1514 /* Fill in the stride and bound components of the type. */
1515 if (known_stride)
1516 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1517 else
1518 tmp = NULL_TREE;
1519 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1520
1521 expr = as->lower[n];
1522 if (expr->expr_type == EXPR_CONSTANT)
1523 {
1524 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1525 gfc_index_integer_kind);
1526 }
1527 else
1528 {
1529 known_stride = 0;
1530 tmp = NULL_TREE;
1531 }
1532 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1533
1534 if (known_stride)
1535 {
1536 /* Calculate the offset. */
1537 mpz_mul (delta, stride, as->lower[n]->value.integer);
1538 mpz_sub (offset, offset, delta);
1539 }
1540 else
1541 known_offset = 0;
1542
1543 expr = as->upper[n];
1544 if (expr && expr->expr_type == EXPR_CONSTANT)
1545 {
1546 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1547 gfc_index_integer_kind);
1548 }
1549 else
1550 {
1551 tmp = NULL_TREE;
1552 known_stride = 0;
1553 }
1554 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1555
1556 if (known_stride)
1557 {
1558 /* Calculate the stride. */
1559 mpz_sub (delta, as->upper[n]->value.integer,
1560 as->lower[n]->value.integer);
1561 mpz_add_ui (delta, delta, 1);
1562 mpz_mul (stride, stride, delta);
1563 }
1564
1565 /* Only the first stride is known for partial packed arrays. */
1566 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1567 known_stride = 0;
1568 }
1569 for (n = as->rank; n < as->rank + as->corank; n++)
1570 {
1571 expr = as->lower[n];
1572 if (expr->expr_type == EXPR_CONSTANT)
1573 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1574 gfc_index_integer_kind);
1575 else
1576 tmp = NULL_TREE;
1577 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1578
1579 expr = as->upper[n];
1580 if (expr && expr->expr_type == EXPR_CONSTANT)
1581 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1582 gfc_index_integer_kind);
1583 else
1584 tmp = NULL_TREE;
1585 if (n < as->rank + as->corank - 1)
1586 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1587 }
1588
1589 if (known_offset)
1590 {
1591 GFC_TYPE_ARRAY_OFFSET (type) =
1592 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1593 }
1594 else
1595 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1596
1597 if (known_stride)
1598 {
1599 GFC_TYPE_ARRAY_SIZE (type) =
1600 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1601 }
1602 else
1603 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1604
1605 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1606 GFC_TYPE_ARRAY_CORANK (type) = as->corank;
1607 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1608 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1609 NULL_TREE);
1610 /* TODO: use main type if it is unbounded. */
1611 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1612 build_pointer_type (build_array_type (etype, range));
1613 if (restricted)
1614 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1615 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
1616 TYPE_QUAL_RESTRICT);
1617
1618 if (as->rank == 0)
1619 {
1620 if (packed != PACKED_STATIC || gfc_option.coarray == GFC_FCOARRAY_LIB)
1621 {
1622 type = build_pointer_type (type);
1623
1624 if (restricted)
1625 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1626
1627 GFC_ARRAY_TYPE_P (type) = 1;
1628 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1629 }
1630
1631 return type;
1632 }
1633
1634 if (known_stride)
1635 {
1636 mpz_sub_ui (stride, stride, 1);
1637 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1638 }
1639 else
1640 range = NULL_TREE;
1641
1642 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1643 TYPE_DOMAIN (type) = range;
1644
1645 build_pointer_type (etype);
1646 TREE_TYPE (type) = etype;
1647
1648 layout_type (type);
1649
1650 mpz_clear (offset);
1651 mpz_clear (stride);
1652 mpz_clear (delta);
1653
1654 /* Represent packed arrays as multi-dimensional if they have rank >
1655 1 and with proper bounds, instead of flat arrays. This makes for
1656 better debug info. */
1657 if (known_offset)
1658 {
1659 tree gtype = etype, rtype, type_decl;
1660
1661 for (n = as->rank - 1; n >= 0; n--)
1662 {
1663 rtype = build_range_type (gfc_array_index_type,
1664 GFC_TYPE_ARRAY_LBOUND (type, n),
1665 GFC_TYPE_ARRAY_UBOUND (type, n));
1666 gtype = build_array_type (gtype, rtype);
1667 }
1668 TYPE_NAME (type) = type_decl = build_decl (input_location,
1669 TYPE_DECL, NULL, gtype);
1670 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1671 }
1672
1673 if (packed != PACKED_STATIC || !known_stride
1674 || (as->corank && gfc_option.coarray == GFC_FCOARRAY_LIB))
1675 {
1676 /* For dummy arrays and automatic (heap allocated) arrays we
1677 want a pointer to the array. */
1678 type = build_pointer_type (type);
1679 if (restricted)
1680 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1681 GFC_ARRAY_TYPE_P (type) = 1;
1682 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1683 }
1684 return type;
1685 }
1686
1687
1688 /* Return or create the base type for an array descriptor. */
1689
1690 static tree
1691 gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted,
1692 enum gfc_array_kind akind)
1693 {
1694 tree fat_type, decl, arraytype, *chain = NULL;
1695 char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
1696 int idx;
1697
1698 /* Assumed-rank array. */
1699 if (dimen == -1)
1700 dimen = GFC_MAX_DIMENSIONS;
1701
1702 idx = 2 * (codimen + dimen) + restricted;
1703
1704 gcc_assert (codimen + dimen >= 0 && codimen + dimen <= GFC_MAX_DIMENSIONS);
1705
1706 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen)
1707 {
1708 if (gfc_array_descriptor_base_caf[idx])
1709 return gfc_array_descriptor_base_caf[idx];
1710 }
1711 else if (gfc_array_descriptor_base[idx])
1712 return gfc_array_descriptor_base[idx];
1713
1714 /* Build the type node. */
1715 fat_type = make_node (RECORD_TYPE);
1716
1717 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen + codimen);
1718 TYPE_NAME (fat_type) = get_identifier (name);
1719 TYPE_NAMELESS (fat_type) = 1;
1720
1721 /* Add the data member as the first element of the descriptor. */
1722 decl = gfc_add_field_to_struct_1 (fat_type,
1723 get_identifier ("data"),
1724 (restricted
1725 ? prvoid_type_node
1726 : ptr_type_node), &chain);
1727
1728 /* Add the base component. */
1729 decl = gfc_add_field_to_struct_1 (fat_type,
1730 get_identifier ("offset"),
1731 gfc_array_index_type, &chain);
1732 TREE_NO_WARNING (decl) = 1;
1733
1734 /* Add the dtype component. */
1735 decl = gfc_add_field_to_struct_1 (fat_type,
1736 get_identifier ("dtype"),
1737 gfc_array_index_type, &chain);
1738 TREE_NO_WARNING (decl) = 1;
1739
1740 /* Build the array type for the stride and bound components. */
1741 if (dimen + codimen > 0)
1742 {
1743 arraytype =
1744 build_array_type (gfc_get_desc_dim_type (),
1745 build_range_type (gfc_array_index_type,
1746 gfc_index_zero_node,
1747 gfc_rank_cst[codimen + dimen - 1]));
1748
1749 decl = gfc_add_field_to_struct_1 (fat_type, get_identifier ("dim"),
1750 arraytype, &chain);
1751 TREE_NO_WARNING (decl) = 1;
1752 }
1753
1754 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1755 && akind == GFC_ARRAY_ALLOCATABLE)
1756 {
1757 decl = gfc_add_field_to_struct_1 (fat_type,
1758 get_identifier ("token"),
1759 prvoid_type_node, &chain);
1760 TREE_NO_WARNING (decl) = 1;
1761 }
1762
1763 /* Finish off the type. */
1764 gfc_finish_type (fat_type);
1765 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1766
1767 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1768 && akind == GFC_ARRAY_ALLOCATABLE)
1769 gfc_array_descriptor_base_caf[idx] = fat_type;
1770 else
1771 gfc_array_descriptor_base[idx] = fat_type;
1772
1773 return fat_type;
1774 }
1775
1776
1777 /* Build an array (descriptor) type with given bounds. */
1778
1779 tree
1780 gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
1781 tree * ubound, int packed,
1782 enum gfc_array_kind akind, bool restricted)
1783 {
1784 char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
1785 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1786 const char *type_name;
1787 int n;
1788
1789 base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted, akind);
1790 fat_type = build_distinct_type_copy (base_type);
1791 /* Make sure that nontarget and target array type have the same canonical
1792 type (and same stub decl for debug info). */
1793 base_type = gfc_get_array_descriptor_base (dimen, codimen, false, akind);
1794 TYPE_CANONICAL (fat_type) = base_type;
1795 TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
1796
1797 tmp = TYPE_NAME (etype);
1798 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1799 tmp = DECL_NAME (tmp);
1800 if (tmp)
1801 type_name = IDENTIFIER_POINTER (tmp);
1802 else
1803 type_name = "unknown";
1804 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen + codimen,
1805 GFC_MAX_SYMBOL_LEN, type_name);
1806 TYPE_NAME (fat_type) = get_identifier (name);
1807 TYPE_NAMELESS (fat_type) = 1;
1808
1809 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1810 TYPE_LANG_SPECIFIC (fat_type)
1811 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1812
1813 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1814 GFC_TYPE_ARRAY_CORANK (fat_type) = codimen;
1815 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1816 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1817
1818 /* Build an array descriptor record type. */
1819 if (packed != 0)
1820 stride = gfc_index_one_node;
1821 else
1822 stride = NULL_TREE;
1823 for (n = 0; n < dimen + codimen; n++)
1824 {
1825 if (n < dimen)
1826 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1827
1828 if (lbound)
1829 lower = lbound[n];
1830 else
1831 lower = NULL_TREE;
1832
1833 if (lower != NULL_TREE)
1834 {
1835 if (INTEGER_CST_P (lower))
1836 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1837 else
1838 lower = NULL_TREE;
1839 }
1840
1841 if (codimen && n == dimen + codimen - 1)
1842 break;
1843
1844 upper = ubound[n];
1845 if (upper != NULL_TREE)
1846 {
1847 if (INTEGER_CST_P (upper))
1848 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1849 else
1850 upper = NULL_TREE;
1851 }
1852
1853 if (n >= dimen)
1854 continue;
1855
1856 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1857 {
1858 tmp = fold_build2_loc (input_location, MINUS_EXPR,
1859 gfc_array_index_type, upper, lower);
1860 tmp = fold_build2_loc (input_location, PLUS_EXPR,
1861 gfc_array_index_type, tmp,
1862 gfc_index_one_node);
1863 stride = fold_build2_loc (input_location, MULT_EXPR,
1864 gfc_array_index_type, tmp, stride);
1865 /* Check the folding worked. */
1866 gcc_assert (INTEGER_CST_P (stride));
1867 }
1868 else
1869 stride = NULL_TREE;
1870 }
1871 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1872
1873 /* TODO: known offsets for descriptors. */
1874 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1875
1876 if (dimen == 0)
1877 {
1878 arraytype = build_pointer_type (etype);
1879 if (restricted)
1880 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1881
1882 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1883 return fat_type;
1884 }
1885
1886 /* We define data as an array with the correct size if possible.
1887 Much better than doing pointer arithmetic. */
1888 if (stride)
1889 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1890 int_const_binop (MINUS_EXPR, stride,
1891 integer_one_node));
1892 else
1893 rtype = gfc_array_range_type;
1894 arraytype = build_array_type (etype, rtype);
1895 arraytype = build_pointer_type (arraytype);
1896 if (restricted)
1897 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1898 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1899
1900 /* This will generate the base declarations we need to emit debug
1901 information for this type. FIXME: there must be a better way to
1902 avoid divergence between compilations with and without debug
1903 information. */
1904 {
1905 struct array_descr_info info;
1906 gfc_get_array_descr_info (fat_type, &info);
1907 gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
1908 }
1909
1910 return fat_type;
1911 }
1912 \f
1913 /* Build a pointer type. This function is called from gfc_sym_type(). */
1914
1915 static tree
1916 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1917 {
1918 /* Array pointer types aren't actually pointers. */
1919 if (sym->attr.dimension)
1920 return type;
1921 else
1922 return build_pointer_type (type);
1923 }
1924
1925 static tree gfc_nonrestricted_type (tree t);
1926 /* Given two record or union type nodes TO and FROM, ensure
1927 that all fields in FROM have a corresponding field in TO,
1928 their type being nonrestrict variants. This accepts a TO
1929 node that already has a prefix of the fields in FROM. */
1930 static void
1931 mirror_fields (tree to, tree from)
1932 {
1933 tree fto, ffrom;
1934 tree *chain;
1935
1936 /* Forward to the end of TOs fields. */
1937 fto = TYPE_FIELDS (to);
1938 ffrom = TYPE_FIELDS (from);
1939 chain = &TYPE_FIELDS (to);
1940 while (fto)
1941 {
1942 gcc_assert (ffrom && DECL_NAME (fto) == DECL_NAME (ffrom));
1943 chain = &DECL_CHAIN (fto);
1944 fto = DECL_CHAIN (fto);
1945 ffrom = DECL_CHAIN (ffrom);
1946 }
1947
1948 /* Now add all fields remaining in FROM (starting with ffrom). */
1949 for (; ffrom; ffrom = DECL_CHAIN (ffrom))
1950 {
1951 tree newfield = copy_node (ffrom);
1952 DECL_CONTEXT (newfield) = to;
1953 /* The store to DECL_CHAIN might seem redundant with the
1954 stores to *chain, but not clearing it here would mean
1955 leaving a chain into the old fields. If ever
1956 our called functions would look at them confusion
1957 will arise. */
1958 DECL_CHAIN (newfield) = NULL_TREE;
1959 *chain = newfield;
1960 chain = &DECL_CHAIN (newfield);
1961
1962 if (TREE_CODE (ffrom) == FIELD_DECL)
1963 {
1964 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (ffrom));
1965 TREE_TYPE (newfield) = elemtype;
1966 }
1967 }
1968 *chain = NULL_TREE;
1969 }
1970
1971 /* Given a type T, returns a different type of the same structure,
1972 except that all types it refers to (recursively) are always
1973 non-restrict qualified types. */
1974 static tree
1975 gfc_nonrestricted_type (tree t)
1976 {
1977 tree ret = t;
1978
1979 /* If the type isn't laid out yet, don't copy it. If something
1980 needs it for real it should wait until the type got finished. */
1981 if (!TYPE_SIZE (t))
1982 return t;
1983
1984 if (!TYPE_LANG_SPECIFIC (t))
1985 TYPE_LANG_SPECIFIC (t)
1986 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1987 /* If we're dealing with this very node already further up
1988 the call chain (recursion via pointers and struct members)
1989 we haven't yet determined if we really need a new type node.
1990 Assume we don't, return T itself. */
1991 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type == error_mark_node)
1992 return t;
1993
1994 /* If we have calculated this all already, just return it. */
1995 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type)
1996 return TYPE_LANG_SPECIFIC (t)->nonrestricted_type;
1997
1998 /* Mark this type. */
1999 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = error_mark_node;
2000
2001 switch (TREE_CODE (t))
2002 {
2003 default:
2004 break;
2005
2006 case POINTER_TYPE:
2007 case REFERENCE_TYPE:
2008 {
2009 tree totype = gfc_nonrestricted_type (TREE_TYPE (t));
2010 if (totype == TREE_TYPE (t))
2011 ret = t;
2012 else if (TREE_CODE (t) == POINTER_TYPE)
2013 ret = build_pointer_type (totype);
2014 else
2015 ret = build_reference_type (totype);
2016 ret = build_qualified_type (ret,
2017 TYPE_QUALS (t) & ~TYPE_QUAL_RESTRICT);
2018 }
2019 break;
2020
2021 case ARRAY_TYPE:
2022 {
2023 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (t));
2024 if (elemtype == TREE_TYPE (t))
2025 ret = t;
2026 else
2027 {
2028 ret = build_variant_type_copy (t);
2029 TREE_TYPE (ret) = elemtype;
2030 if (TYPE_LANG_SPECIFIC (t)
2031 && GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2032 {
2033 tree dataptr_type = GFC_TYPE_ARRAY_DATAPTR_TYPE (t);
2034 dataptr_type = gfc_nonrestricted_type (dataptr_type);
2035 if (dataptr_type != GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2036 {
2037 TYPE_LANG_SPECIFIC (ret)
2038 = ggc_alloc_cleared_lang_type (sizeof (struct
2039 lang_type));
2040 *TYPE_LANG_SPECIFIC (ret) = *TYPE_LANG_SPECIFIC (t);
2041 GFC_TYPE_ARRAY_DATAPTR_TYPE (ret) = dataptr_type;
2042 }
2043 }
2044 }
2045 }
2046 break;
2047
2048 case RECORD_TYPE:
2049 case UNION_TYPE:
2050 case QUAL_UNION_TYPE:
2051 {
2052 tree field;
2053 /* First determine if we need a new type at all.
2054 Careful, the two calls to gfc_nonrestricted_type per field
2055 might return different values. That happens exactly when
2056 one of the fields reaches back to this very record type
2057 (via pointers). The first calls will assume that we don't
2058 need to copy T (see the error_mark_node marking). If there
2059 are any reasons for copying T apart from having to copy T,
2060 we'll indeed copy it, and the second calls to
2061 gfc_nonrestricted_type will use that new node if they
2062 reach back to T. */
2063 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2064 if (TREE_CODE (field) == FIELD_DECL)
2065 {
2066 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (field));
2067 if (elemtype != TREE_TYPE (field))
2068 break;
2069 }
2070 if (!field)
2071 break;
2072 ret = build_variant_type_copy (t);
2073 TYPE_FIELDS (ret) = NULL_TREE;
2074
2075 /* Here we make sure that as soon as we know we have to copy
2076 T, that also fields reaching back to us will use the new
2077 copy. It's okay if that copy still contains the old fields,
2078 we won't look at them. */
2079 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2080 mirror_fields (ret, t);
2081 }
2082 break;
2083 }
2084
2085 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2086 return ret;
2087 }
2088
2089 \f
2090 /* Return the type for a symbol. Special handling is required for character
2091 types to get the correct level of indirection.
2092 For functions return the return type.
2093 For subroutines return void_type_node.
2094 Calling this multiple times for the same symbol should be avoided,
2095 especially for character and array types. */
2096
2097 tree
2098 gfc_sym_type (gfc_symbol * sym)
2099 {
2100 tree type;
2101 int byref;
2102 bool restricted;
2103
2104 /* Procedure Pointers inside COMMON blocks. */
2105 if (sym->attr.proc_pointer && sym->attr.in_common)
2106 {
2107 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
2108 sym->attr.proc_pointer = 0;
2109 type = build_pointer_type (gfc_get_function_type (sym));
2110 sym->attr.proc_pointer = 1;
2111 return type;
2112 }
2113
2114 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
2115 return void_type_node;
2116
2117 /* In the case of a function the fake result variable may have a
2118 type different from the function type, so don't return early in
2119 that case. */
2120 if (sym->backend_decl && !sym->attr.function)
2121 return TREE_TYPE (sym->backend_decl);
2122
2123 if (sym->ts.type == BT_CHARACTER
2124 && ((sym->attr.function && sym->attr.is_bind_c)
2125 || (sym->attr.result
2126 && sym->ns->proc_name
2127 && sym->ns->proc_name->attr.is_bind_c)))
2128 type = gfc_character1_type_node;
2129 else
2130 type = gfc_typenode_for_spec (&sym->ts);
2131
2132 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
2133 byref = 1;
2134 else
2135 byref = 0;
2136
2137 restricted = !sym->attr.target && !sym->attr.pointer
2138 && !sym->attr.proc_pointer && !sym->attr.cray_pointee;
2139 if (!restricted)
2140 type = gfc_nonrestricted_type (type);
2141
2142 if (sym->attr.dimension || sym->attr.codimension)
2143 {
2144 if (gfc_is_nodesc_array (sym))
2145 {
2146 /* If this is a character argument of unknown length, just use the
2147 base type. */
2148 if (sym->ts.type != BT_CHARACTER
2149 || !(sym->attr.dummy || sym->attr.function)
2150 || sym->ts.u.cl->backend_decl)
2151 {
2152 type = gfc_get_nodesc_array_type (type, sym->as,
2153 byref ? PACKED_FULL
2154 : PACKED_STATIC,
2155 restricted);
2156 byref = 0;
2157 }
2158
2159 if (sym->attr.cray_pointee)
2160 GFC_POINTER_TYPE_P (type) = 1;
2161 }
2162 else
2163 {
2164 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
2165 if (sym->attr.pointer)
2166 akind = sym->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2167 : GFC_ARRAY_POINTER;
2168 else if (sym->attr.allocatable)
2169 akind = GFC_ARRAY_ALLOCATABLE;
2170 type = gfc_build_array_type (type, sym->as, akind, restricted,
2171 sym->attr.contiguous);
2172 }
2173 }
2174 else
2175 {
2176 if (sym->attr.allocatable || sym->attr.pointer
2177 || gfc_is_associate_pointer (sym))
2178 type = gfc_build_pointer_type (sym, type);
2179 if (sym->attr.pointer || sym->attr.cray_pointee)
2180 GFC_POINTER_TYPE_P (type) = 1;
2181 }
2182
2183 /* We currently pass all parameters by reference.
2184 See f95_get_function_decl. For dummy function parameters return the
2185 function type. */
2186 if (byref)
2187 {
2188 /* We must use pointer types for potentially absent variables. The
2189 optimizers assume a reference type argument is never NULL. */
2190 if (sym->attr.optional
2191 || (sym->ns->proc_name && sym->ns->proc_name->attr.entry_master))
2192 type = build_pointer_type (type);
2193 else
2194 {
2195 type = build_reference_type (type);
2196 if (restricted)
2197 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
2198 }
2199 }
2200
2201 return (type);
2202 }
2203 \f
2204 /* Layout and output debug info for a record type. */
2205
2206 void
2207 gfc_finish_type (tree type)
2208 {
2209 tree decl;
2210
2211 decl = build_decl (input_location,
2212 TYPE_DECL, NULL_TREE, type);
2213 TYPE_STUB_DECL (type) = decl;
2214 layout_type (type);
2215 rest_of_type_compilation (type, 1);
2216 rest_of_decl_compilation (decl, 1, 0);
2217 }
2218 \f
2219 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
2220 or RECORD_TYPE pointed to by CONTEXT. The new field is chained
2221 to the end of the field list pointed to by *CHAIN.
2222
2223 Returns a pointer to the new field. */
2224
2225 static tree
2226 gfc_add_field_to_struct_1 (tree context, tree name, tree type, tree **chain)
2227 {
2228 tree decl = build_decl (input_location, FIELD_DECL, name, type);
2229
2230 DECL_CONTEXT (decl) = context;
2231 DECL_CHAIN (decl) = NULL_TREE;
2232 if (TYPE_FIELDS (context) == NULL_TREE)
2233 TYPE_FIELDS (context) = decl;
2234 if (chain != NULL)
2235 {
2236 if (*chain != NULL)
2237 **chain = decl;
2238 *chain = &DECL_CHAIN (decl);
2239 }
2240
2241 return decl;
2242 }
2243
2244 /* Like `gfc_add_field_to_struct_1', but adds alignment
2245 information. */
2246
2247 tree
2248 gfc_add_field_to_struct (tree context, tree name, tree type, tree **chain)
2249 {
2250 tree decl = gfc_add_field_to_struct_1 (context, name, type, chain);
2251
2252 DECL_INITIAL (decl) = 0;
2253 DECL_ALIGN (decl) = 0;
2254 DECL_USER_ALIGN (decl) = 0;
2255
2256 return decl;
2257 }
2258
2259
2260 /* Copy the backend_decl and component backend_decls if
2261 the two derived type symbols are "equal", as described
2262 in 4.4.2 and resolved by gfc_compare_derived_types. */
2263
2264 int
2265 gfc_copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
2266 bool from_gsym)
2267 {
2268 gfc_component *to_cm;
2269 gfc_component *from_cm;
2270
2271 if (from == to)
2272 return 1;
2273
2274 if (from->backend_decl == NULL
2275 || !gfc_compare_derived_types (from, to))
2276 return 0;
2277
2278 to->backend_decl = from->backend_decl;
2279
2280 to_cm = to->components;
2281 from_cm = from->components;
2282
2283 /* Copy the component declarations. If a component is itself
2284 a derived type, we need a copy of its component declarations.
2285 This is done by recursing into gfc_get_derived_type and
2286 ensures that the component's component declarations have
2287 been built. If it is a character, we need the character
2288 length, as well. */
2289 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
2290 {
2291 to_cm->backend_decl = from_cm->backend_decl;
2292 if (from_cm->ts.type == BT_DERIVED
2293 && (!from_cm->attr.pointer || from_gsym))
2294 gfc_get_derived_type (to_cm->ts.u.derived);
2295 else if (from_cm->ts.type == BT_CLASS
2296 && (!CLASS_DATA (from_cm)->attr.class_pointer || from_gsym))
2297 gfc_get_derived_type (to_cm->ts.u.derived);
2298 else if (from_cm->ts.type == BT_CHARACTER)
2299 to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
2300 }
2301
2302 return 1;
2303 }
2304
2305
2306 /* Build a tree node for a procedure pointer component. */
2307
2308 tree
2309 gfc_get_ppc_type (gfc_component* c)
2310 {
2311 tree t;
2312
2313 /* Explicit interface. */
2314 if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
2315 return build_pointer_type (gfc_get_function_type (c->ts.interface));
2316
2317 /* Implicit interface (only return value may be known). */
2318 if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
2319 t = gfc_typenode_for_spec (&c->ts);
2320 else
2321 t = void_type_node;
2322
2323 return build_pointer_type (build_function_type_list (t, NULL_TREE));
2324 }
2325
2326
2327 /* Build a tree node for a derived type. If there are equal
2328 derived types, with different local names, these are built
2329 at the same time. If an equal derived type has been built
2330 in a parent namespace, this is used. */
2331
2332 tree
2333 gfc_get_derived_type (gfc_symbol * derived)
2334 {
2335 tree typenode = NULL, field = NULL, field_type = NULL;
2336 tree canonical = NULL_TREE;
2337 tree *chain = NULL;
2338 bool got_canonical = false;
2339 bool unlimited_entity = false;
2340 gfc_component *c;
2341 gfc_dt_list *dt;
2342 gfc_namespace *ns;
2343
2344 if (derived->attr.unlimited_polymorphic)
2345 return ptr_type_node;
2346
2347 if (derived && derived->attr.flavor == FL_PROCEDURE
2348 && derived->attr.generic)
2349 derived = gfc_find_dt_in_generic (derived);
2350
2351 /* See if it's one of the iso_c_binding derived types. */
2352 if (derived->attr.is_iso_c == 1)
2353 {
2354 if (derived->backend_decl)
2355 return derived->backend_decl;
2356
2357 if (derived->intmod_sym_id == ISOCBINDING_PTR)
2358 derived->backend_decl = ptr_type_node;
2359 else
2360 derived->backend_decl = pfunc_type_node;
2361
2362 derived->ts.kind = gfc_index_integer_kind;
2363 derived->ts.type = BT_INTEGER;
2364 /* Set the f90_type to BT_VOID as a way to recognize something of type
2365 BT_INTEGER that needs to fit a void * for the purpose of the
2366 iso_c_binding derived types. */
2367 derived->ts.f90_type = BT_VOID;
2368
2369 return derived->backend_decl;
2370 }
2371
2372 /* If use associated, use the module type for this one. */
2373 if (gfc_option.flag_whole_file
2374 && derived->backend_decl == NULL
2375 && derived->attr.use_assoc
2376 && derived->module
2377 && gfc_get_module_backend_decl (derived))
2378 goto copy_derived_types;
2379
2380 /* If a whole file compilation, the derived types from an earlier
2381 namespace can be used as the canonical type. */
2382 if (gfc_option.flag_whole_file
2383 && derived->backend_decl == NULL
2384 && !derived->attr.use_assoc
2385 && gfc_global_ns_list)
2386 {
2387 for (ns = gfc_global_ns_list;
2388 ns->translated && !got_canonical;
2389 ns = ns->sibling)
2390 {
2391 dt = ns->derived_types;
2392 for (; dt && !canonical; dt = dt->next)
2393 {
2394 gfc_copy_dt_decls_ifequal (dt->derived, derived, true);
2395 if (derived->backend_decl)
2396 got_canonical = true;
2397 }
2398 }
2399 }
2400
2401 /* Store up the canonical type to be added to this one. */
2402 if (got_canonical)
2403 {
2404 if (TYPE_CANONICAL (derived->backend_decl))
2405 canonical = TYPE_CANONICAL (derived->backend_decl);
2406 else
2407 canonical = derived->backend_decl;
2408
2409 derived->backend_decl = NULL_TREE;
2410 }
2411
2412 /* derived->backend_decl != 0 means we saw it before, but its
2413 components' backend_decl may have not been built. */
2414 if (derived->backend_decl)
2415 {
2416 /* Its components' backend_decl have been built or we are
2417 seeing recursion through the formal arglist of a procedure
2418 pointer component. */
2419 if (TYPE_FIELDS (derived->backend_decl)
2420 || derived->attr.proc_pointer_comp)
2421 return derived->backend_decl;
2422 else
2423 typenode = derived->backend_decl;
2424 }
2425 else
2426 {
2427 /* We see this derived type first time, so build the type node. */
2428 typenode = make_node (RECORD_TYPE);
2429 TYPE_NAME (typenode) = get_identifier (derived->name);
2430 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
2431 derived->backend_decl = typenode;
2432 }
2433
2434 if (derived->components
2435 && derived->components->ts.type == BT_DERIVED
2436 && strcmp (derived->components->name, "_data") == 0
2437 && derived->components->ts.u.derived->attr.unlimited_polymorphic)
2438 unlimited_entity = true;
2439
2440 /* Go through the derived type components, building them as
2441 necessary. The reason for doing this now is that it is
2442 possible to recurse back to this derived type through a
2443 pointer component (PR24092). If this happens, the fields
2444 will be built and so we can return the type. */
2445 for (c = derived->components; c; c = c->next)
2446 {
2447 if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
2448 continue;
2449
2450 if ((!c->attr.pointer && !c->attr.proc_pointer)
2451 || c->ts.u.derived->backend_decl == NULL)
2452 c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived);
2453
2454 if (c->ts.u.derived->attr.is_iso_c)
2455 {
2456 /* Need to copy the modified ts from the derived type. The
2457 typespec was modified because C_PTR/C_FUNPTR are translated
2458 into (void *) from derived types. */
2459 c->ts.type = c->ts.u.derived->ts.type;
2460 c->ts.kind = c->ts.u.derived->ts.kind;
2461 c->ts.f90_type = c->ts.u.derived->ts.f90_type;
2462 if (c->initializer)
2463 {
2464 c->initializer->ts.type = c->ts.type;
2465 c->initializer->ts.kind = c->ts.kind;
2466 c->initializer->ts.f90_type = c->ts.f90_type;
2467 c->initializer->expr_type = EXPR_NULL;
2468 }
2469 }
2470 }
2471
2472 if (TYPE_FIELDS (derived->backend_decl))
2473 return derived->backend_decl;
2474
2475 /* Build the type member list. Install the newly created RECORD_TYPE
2476 node as DECL_CONTEXT of each FIELD_DECL. */
2477 for (c = derived->components; c; c = c->next)
2478 {
2479 if (c->attr.proc_pointer)
2480 field_type = gfc_get_ppc_type (c);
2481 else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
2482 field_type = c->ts.u.derived->backend_decl;
2483 else
2484 {
2485 if (c->ts.type == BT_CHARACTER)
2486 {
2487 /* Evaluate the string length. */
2488 gfc_conv_const_charlen (c->ts.u.cl);
2489 gcc_assert (c->ts.u.cl->backend_decl);
2490 }
2491
2492 field_type = gfc_typenode_for_spec (&c->ts);
2493 }
2494
2495 /* This returns an array descriptor type. Initialization may be
2496 required. */
2497 if ((c->attr.dimension || c->attr.codimension) && !c->attr.proc_pointer )
2498 {
2499 if (c->attr.pointer || c->attr.allocatable)
2500 {
2501 enum gfc_array_kind akind;
2502 if (c->attr.pointer)
2503 akind = c->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2504 : GFC_ARRAY_POINTER;
2505 else
2506 akind = GFC_ARRAY_ALLOCATABLE;
2507 /* Pointers to arrays aren't actually pointer types. The
2508 descriptors are separate, but the data is common. */
2509 field_type = gfc_build_array_type (field_type, c->as, akind,
2510 !c->attr.target
2511 && !c->attr.pointer,
2512 c->attr.contiguous);
2513 }
2514 else
2515 field_type = gfc_get_nodesc_array_type (field_type, c->as,
2516 PACKED_STATIC,
2517 !c->attr.target);
2518 }
2519 else if ((c->attr.pointer || c->attr.allocatable)
2520 && !c->attr.proc_pointer
2521 && !(unlimited_entity && c == derived->components))
2522 field_type = build_pointer_type (field_type);
2523
2524 if (c->attr.pointer)
2525 field_type = gfc_nonrestricted_type (field_type);
2526
2527 /* vtype fields can point to different types to the base type. */
2528 if (c->ts.type == BT_DERIVED
2529 && c->ts.u.derived && c->ts.u.derived->attr.vtype)
2530 field_type = build_pointer_type_for_mode (TREE_TYPE (field_type),
2531 ptr_mode, true);
2532
2533 /* Ensure that the CLASS language specific flag is set. */
2534 if (c->ts.type == BT_CLASS)
2535 {
2536 if (POINTER_TYPE_P (field_type))
2537 GFC_CLASS_TYPE_P (TREE_TYPE (field_type)) = 1;
2538 else
2539 GFC_CLASS_TYPE_P (field_type) = 1;
2540 }
2541
2542 field = gfc_add_field_to_struct (typenode,
2543 get_identifier (c->name),
2544 field_type, &chain);
2545 if (c->loc.lb)
2546 gfc_set_decl_location (field, &c->loc);
2547 else if (derived->declared_at.lb)
2548 gfc_set_decl_location (field, &derived->declared_at);
2549
2550 DECL_PACKED (field) |= TYPE_PACKED (typenode);
2551
2552 gcc_assert (field);
2553 if (!c->backend_decl)
2554 c->backend_decl = field;
2555 }
2556
2557 /* Now lay out the derived type, including the fields. */
2558 if (canonical)
2559 TYPE_CANONICAL (typenode) = canonical;
2560
2561 gfc_finish_type (typenode);
2562 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2563 if (derived->module && derived->ns->proc_name
2564 && derived->ns->proc_name->attr.flavor == FL_MODULE)
2565 {
2566 if (derived->ns->proc_name->backend_decl
2567 && TREE_CODE (derived->ns->proc_name->backend_decl)
2568 == NAMESPACE_DECL)
2569 {
2570 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2571 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2572 = derived->ns->proc_name->backend_decl;
2573 }
2574 }
2575
2576 derived->backend_decl = typenode;
2577
2578 copy_derived_types:
2579
2580 for (dt = gfc_derived_types; dt; dt = dt->next)
2581 gfc_copy_dt_decls_ifequal (derived, dt->derived, false);
2582
2583 return derived->backend_decl;
2584 }
2585
2586
2587 int
2588 gfc_return_by_reference (gfc_symbol * sym)
2589 {
2590 if (!sym->attr.function)
2591 return 0;
2592
2593 if (sym->attr.dimension)
2594 return 1;
2595
2596 if (sym->ts.type == BT_CHARACTER
2597 && !sym->attr.is_bind_c
2598 && (!sym->attr.result
2599 || !sym->ns->proc_name
2600 || !sym->ns->proc_name->attr.is_bind_c))
2601 return 1;
2602
2603 /* Possibly return complex numbers by reference for g77 compatibility.
2604 We don't do this for calls to intrinsics (as the library uses the
2605 -fno-f2c calling convention), nor for calls to functions which always
2606 require an explicit interface, as no compatibility problems can
2607 arise there. */
2608 if (gfc_option.flag_f2c
2609 && sym->ts.type == BT_COMPLEX
2610 && !sym->attr.intrinsic && !sym->attr.always_explicit)
2611 return 1;
2612
2613 return 0;
2614 }
2615 \f
2616 static tree
2617 gfc_get_mixed_entry_union (gfc_namespace *ns)
2618 {
2619 tree type;
2620 tree *chain = NULL;
2621 char name[GFC_MAX_SYMBOL_LEN + 1];
2622 gfc_entry_list *el, *el2;
2623
2624 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2625 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2626
2627 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2628
2629 /* Build the type node. */
2630 type = make_node (UNION_TYPE);
2631
2632 TYPE_NAME (type) = get_identifier (name);
2633
2634 for (el = ns->entries; el; el = el->next)
2635 {
2636 /* Search for duplicates. */
2637 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2638 if (el2->sym->result == el->sym->result)
2639 break;
2640
2641 if (el == el2)
2642 gfc_add_field_to_struct_1 (type,
2643 get_identifier (el->sym->result->name),
2644 gfc_sym_type (el->sym->result), &chain);
2645 }
2646
2647 /* Finish off the type. */
2648 gfc_finish_type (type);
2649 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2650 return type;
2651 }
2652 \f
2653 /* Create a "fn spec" based on the formal arguments;
2654 cf. create_function_arglist. */
2655
2656 static tree
2657 create_fn_spec (gfc_symbol *sym, tree fntype)
2658 {
2659 char spec[150];
2660 size_t spec_len;
2661 gfc_formal_arglist *f;
2662 tree tmp;
2663
2664 memset (&spec, 0, sizeof (spec));
2665 spec[0] = '.';
2666 spec_len = 1;
2667
2668 if (sym->attr.entry_master)
2669 spec[spec_len++] = 'R';
2670 if (gfc_return_by_reference (sym))
2671 {
2672 gfc_symbol *result = sym->result ? sym->result : sym;
2673
2674 if (result->attr.pointer || sym->attr.proc_pointer)
2675 spec[spec_len++] = '.';
2676 else
2677 spec[spec_len++] = 'w';
2678 if (sym->ts.type == BT_CHARACTER)
2679 spec[spec_len++] = 'R';
2680 }
2681
2682 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2683 if (spec_len < sizeof (spec))
2684 {
2685 if (!f->sym || f->sym->attr.pointer || f->sym->attr.target
2686 || f->sym->attr.external || f->sym->attr.cray_pointer
2687 || (f->sym->ts.type == BT_DERIVED
2688 && (f->sym->ts.u.derived->attr.proc_pointer_comp
2689 || f->sym->ts.u.derived->attr.pointer_comp))
2690 || (f->sym->ts.type == BT_CLASS
2691 && (CLASS_DATA (f->sym)->ts.u.derived->attr.proc_pointer_comp
2692 || CLASS_DATA (f->sym)->ts.u.derived->attr.pointer_comp)))
2693 spec[spec_len++] = '.';
2694 else if (f->sym->attr.intent == INTENT_IN)
2695 spec[spec_len++] = 'r';
2696 else if (f->sym)
2697 spec[spec_len++] = 'w';
2698 }
2699
2700 tmp = build_tree_list (NULL_TREE, build_string (spec_len, spec));
2701 tmp = tree_cons (get_identifier ("fn spec"), tmp, TYPE_ATTRIBUTES (fntype));
2702 return build_type_attribute_variant (fntype, tmp);
2703 }
2704
2705
2706 tree
2707 gfc_get_function_type (gfc_symbol * sym)
2708 {
2709 tree type;
2710 vec<tree, va_gc> *typelist;
2711 gfc_formal_arglist *f;
2712 gfc_symbol *arg;
2713 int alternate_return;
2714 bool is_varargs = true, recursive_type = false;
2715
2716 /* Make sure this symbol is a function, a subroutine or the main
2717 program. */
2718 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2719 || sym->attr.flavor == FL_PROGRAM);
2720
2721 /* To avoid recursing infinitely on recursive types, we use error_mark_node
2722 so that they can be detected here and handled further down. */
2723 if (sym->backend_decl == NULL)
2724 sym->backend_decl = error_mark_node;
2725 else if (sym->backend_decl == error_mark_node)
2726 recursive_type = true;
2727 else if (sym->attr.proc_pointer)
2728 return TREE_TYPE (TREE_TYPE (sym->backend_decl));
2729 else
2730 return TREE_TYPE (sym->backend_decl);
2731
2732 alternate_return = 0;
2733 typelist = NULL;
2734
2735 if (sym->attr.entry_master)
2736 /* Additional parameter for selecting an entry point. */
2737 vec_safe_push (typelist, gfc_array_index_type);
2738
2739 if (sym->result)
2740 arg = sym->result;
2741 else
2742 arg = sym;
2743
2744 if (arg->ts.type == BT_CHARACTER)
2745 gfc_conv_const_charlen (arg->ts.u.cl);
2746
2747 /* Some functions we use an extra parameter for the return value. */
2748 if (gfc_return_by_reference (sym))
2749 {
2750 type = gfc_sym_type (arg);
2751 if (arg->ts.type == BT_COMPLEX
2752 || arg->attr.dimension
2753 || arg->ts.type == BT_CHARACTER)
2754 type = build_reference_type (type);
2755
2756 vec_safe_push (typelist, type);
2757 if (arg->ts.type == BT_CHARACTER)
2758 {
2759 if (!arg->ts.deferred)
2760 /* Transfer by value. */
2761 vec_safe_push (typelist, gfc_charlen_type_node);
2762 else
2763 /* Deferred character lengths are transferred by reference
2764 so that the value can be returned. */
2765 vec_safe_push (typelist, build_pointer_type(gfc_charlen_type_node));
2766 }
2767 }
2768
2769 /* Build the argument types for the function. */
2770 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2771 {
2772 arg = f->sym;
2773 if (arg)
2774 {
2775 /* Evaluate constant character lengths here so that they can be
2776 included in the type. */
2777 if (arg->ts.type == BT_CHARACTER)
2778 gfc_conv_const_charlen (arg->ts.u.cl);
2779
2780 if (arg->attr.flavor == FL_PROCEDURE)
2781 {
2782 /* We don't know in the general case which argument causes
2783 recursion. But we know that it is a procedure. So we give up
2784 creating the procedure argument type list at the first
2785 procedure argument. */
2786 if (recursive_type)
2787 goto arg_type_list_done;
2788
2789 type = gfc_get_function_type (arg);
2790 type = build_pointer_type (type);
2791 }
2792 else
2793 type = gfc_sym_type (arg);
2794
2795 /* Parameter Passing Convention
2796
2797 We currently pass all parameters by reference.
2798 Parameters with INTENT(IN) could be passed by value.
2799 The problem arises if a function is called via an implicit
2800 prototype. In this situation the INTENT is not known.
2801 For this reason all parameters to global functions must be
2802 passed by reference. Passing by value would potentially
2803 generate bad code. Worse there would be no way of telling that
2804 this code was bad, except that it would give incorrect results.
2805
2806 Contained procedures could pass by value as these are never
2807 used without an explicit interface, and cannot be passed as
2808 actual parameters for a dummy procedure. */
2809
2810 vec_safe_push (typelist, type);
2811 }
2812 else
2813 {
2814 if (sym->attr.subroutine)
2815 alternate_return = 1;
2816 }
2817 }
2818
2819 /* Add hidden string length parameters. */
2820 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2821 {
2822 arg = f->sym;
2823 if (arg && arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
2824 {
2825 if (!arg->ts.deferred)
2826 /* Transfer by value. */
2827 type = gfc_charlen_type_node;
2828 else
2829 /* Deferred character lengths are transferred by reference
2830 so that the value can be returned. */
2831 type = build_pointer_type (gfc_charlen_type_node);
2832
2833 vec_safe_push (typelist, type);
2834 }
2835 }
2836
2837 if (!vec_safe_is_empty (typelist)
2838 || sym->attr.is_main_program
2839 || sym->attr.if_source != IFSRC_UNKNOWN)
2840 is_varargs = false;
2841
2842 arg_type_list_done:
2843
2844 if (!recursive_type && sym->backend_decl == error_mark_node)
2845 sym->backend_decl = NULL_TREE;
2846
2847 if (alternate_return)
2848 type = integer_type_node;
2849 else if (!sym->attr.function || gfc_return_by_reference (sym))
2850 type = void_type_node;
2851 else if (sym->attr.mixed_entry_master)
2852 type = gfc_get_mixed_entry_union (sym->ns);
2853 else if (gfc_option.flag_f2c
2854 && sym->ts.type == BT_REAL
2855 && sym->ts.kind == gfc_default_real_kind
2856 && !sym->attr.always_explicit)
2857 {
2858 /* Special case: f2c calling conventions require that (scalar)
2859 default REAL functions return the C type double instead. f2c
2860 compatibility is only an issue with functions that don't
2861 require an explicit interface, as only these could be
2862 implemented in Fortran 77. */
2863 sym->ts.kind = gfc_default_double_kind;
2864 type = gfc_typenode_for_spec (&sym->ts);
2865 sym->ts.kind = gfc_default_real_kind;
2866 }
2867 else if (sym->result && sym->result->attr.proc_pointer)
2868 /* Procedure pointer return values. */
2869 {
2870 if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
2871 {
2872 /* Unset proc_pointer as gfc_get_function_type
2873 is called recursively. */
2874 sym->result->attr.proc_pointer = 0;
2875 type = build_pointer_type (gfc_get_function_type (sym->result));
2876 sym->result->attr.proc_pointer = 1;
2877 }
2878 else
2879 type = gfc_sym_type (sym->result);
2880 }
2881 else
2882 type = gfc_sym_type (sym);
2883
2884 if (is_varargs || recursive_type)
2885 type = build_varargs_function_type_vec (type, typelist);
2886 else
2887 type = build_function_type_vec (type, typelist);
2888 type = create_fn_spec (sym, type);
2889
2890 return type;
2891 }
2892 \f
2893 /* Language hooks for middle-end access to type nodes. */
2894
2895 /* Return an integer type with BITS bits of precision,
2896 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2897
2898 tree
2899 gfc_type_for_size (unsigned bits, int unsignedp)
2900 {
2901 if (!unsignedp)
2902 {
2903 int i;
2904 for (i = 0; i <= MAX_INT_KINDS; ++i)
2905 {
2906 tree type = gfc_integer_types[i];
2907 if (type && bits == TYPE_PRECISION (type))
2908 return type;
2909 }
2910
2911 /* Handle TImode as a special case because it is used by some backends
2912 (e.g. ARM) even though it is not available for normal use. */
2913 #if HOST_BITS_PER_WIDE_INT >= 64
2914 if (bits == TYPE_PRECISION (intTI_type_node))
2915 return intTI_type_node;
2916 #endif
2917
2918 if (bits <= TYPE_PRECISION (intQI_type_node))
2919 return intQI_type_node;
2920 if (bits <= TYPE_PRECISION (intHI_type_node))
2921 return intHI_type_node;
2922 if (bits <= TYPE_PRECISION (intSI_type_node))
2923 return intSI_type_node;
2924 if (bits <= TYPE_PRECISION (intDI_type_node))
2925 return intDI_type_node;
2926 if (bits <= TYPE_PRECISION (intTI_type_node))
2927 return intTI_type_node;
2928 }
2929 else
2930 {
2931 if (bits <= TYPE_PRECISION (unsigned_intQI_type_node))
2932 return unsigned_intQI_type_node;
2933 if (bits <= TYPE_PRECISION (unsigned_intHI_type_node))
2934 return unsigned_intHI_type_node;
2935 if (bits <= TYPE_PRECISION (unsigned_intSI_type_node))
2936 return unsigned_intSI_type_node;
2937 if (bits <= TYPE_PRECISION (unsigned_intDI_type_node))
2938 return unsigned_intDI_type_node;
2939 if (bits <= TYPE_PRECISION (unsigned_intTI_type_node))
2940 return unsigned_intTI_type_node;
2941 }
2942
2943 return NULL_TREE;
2944 }
2945
2946 /* Return a data type that has machine mode MODE. If the mode is an
2947 integer, then UNSIGNEDP selects between signed and unsigned types. */
2948
2949 tree
2950 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2951 {
2952 int i;
2953 tree *base;
2954
2955 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2956 base = gfc_real_types;
2957 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2958 base = gfc_complex_types;
2959 else if (SCALAR_INT_MODE_P (mode))
2960 {
2961 tree type = gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2962 return type != NULL_TREE && mode == TYPE_MODE (type) ? type : NULL_TREE;
2963 }
2964 else if (VECTOR_MODE_P (mode))
2965 {
2966 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2967 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2968 if (inner_type != NULL_TREE)
2969 return build_vector_type_for_mode (inner_type, mode);
2970 return NULL_TREE;
2971 }
2972 else
2973 return NULL_TREE;
2974
2975 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2976 {
2977 tree type = base[i];
2978 if (type && mode == TYPE_MODE (type))
2979 return type;
2980 }
2981
2982 return NULL_TREE;
2983 }
2984
2985 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
2986 in that case. */
2987
2988 bool
2989 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
2990 {
2991 int rank, dim;
2992 bool indirect = false;
2993 tree etype, ptype, field, t, base_decl;
2994 tree data_off, dim_off, dim_size, elem_size;
2995 tree lower_suboff, upper_suboff, stride_suboff;
2996
2997 if (! GFC_DESCRIPTOR_TYPE_P (type))
2998 {
2999 if (! POINTER_TYPE_P (type))
3000 return false;
3001 type = TREE_TYPE (type);
3002 if (! GFC_DESCRIPTOR_TYPE_P (type))
3003 return false;
3004 indirect = true;
3005 }
3006
3007 rank = GFC_TYPE_ARRAY_RANK (type);
3008 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
3009 return false;
3010
3011 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
3012 gcc_assert (POINTER_TYPE_P (etype));
3013 etype = TREE_TYPE (etype);
3014
3015 /* If the type is not a scalar coarray. */
3016 if (TREE_CODE (etype) == ARRAY_TYPE)
3017 etype = TREE_TYPE (etype);
3018
3019 /* Can't handle variable sized elements yet. */
3020 if (int_size_in_bytes (etype) <= 0)
3021 return false;
3022 /* Nor non-constant lower bounds in assumed shape arrays. */
3023 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3024 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3025 {
3026 for (dim = 0; dim < rank; dim++)
3027 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
3028 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
3029 return false;
3030 }
3031
3032 memset (info, '\0', sizeof (*info));
3033 info->ndimensions = rank;
3034 info->element_type = etype;
3035 ptype = build_pointer_type (gfc_array_index_type);
3036 base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
3037 if (!base_decl)
3038 {
3039 base_decl = build_decl (input_location, VAR_DECL, NULL_TREE,
3040 indirect ? build_pointer_type (ptype) : ptype);
3041 GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
3042 }
3043 info->base_decl = base_decl;
3044 if (indirect)
3045 base_decl = build1 (INDIRECT_REF, ptype, base_decl);
3046
3047 if (GFC_TYPE_ARRAY_SPAN (type))
3048 elem_size = GFC_TYPE_ARRAY_SPAN (type);
3049 else
3050 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
3051 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
3052 data_off = byte_position (field);
3053 field = DECL_CHAIN (field);
3054 field = DECL_CHAIN (field);
3055 field = DECL_CHAIN (field);
3056 dim_off = byte_position (field);
3057 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
3058 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
3059 stride_suboff = byte_position (field);
3060 field = DECL_CHAIN (field);
3061 lower_suboff = byte_position (field);
3062 field = DECL_CHAIN (field);
3063 upper_suboff = byte_position (field);
3064
3065 t = base_decl;
3066 if (!integer_zerop (data_off))
3067 t = fold_build_pointer_plus (t, data_off);
3068 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
3069 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
3070 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
3071 info->allocated = build2 (NE_EXPR, boolean_type_node,
3072 info->data_location, null_pointer_node);
3073 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER
3074 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)
3075 info->associated = build2 (NE_EXPR, boolean_type_node,
3076 info->data_location, null_pointer_node);
3077
3078 for (dim = 0; dim < rank; dim++)
3079 {
3080 t = fold_build_pointer_plus (base_decl,
3081 size_binop (PLUS_EXPR,
3082 dim_off, lower_suboff));
3083 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3084 info->dimen[dim].lower_bound = t;
3085 t = fold_build_pointer_plus (base_decl,
3086 size_binop (PLUS_EXPR,
3087 dim_off, upper_suboff));
3088 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3089 info->dimen[dim].upper_bound = t;
3090 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3091 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3092 {
3093 /* Assumed shape arrays have known lower bounds. */
3094 info->dimen[dim].upper_bound
3095 = build2 (MINUS_EXPR, gfc_array_index_type,
3096 info->dimen[dim].upper_bound,
3097 info->dimen[dim].lower_bound);
3098 info->dimen[dim].lower_bound
3099 = fold_convert (gfc_array_index_type,
3100 GFC_TYPE_ARRAY_LBOUND (type, dim));
3101 info->dimen[dim].upper_bound
3102 = build2 (PLUS_EXPR, gfc_array_index_type,
3103 info->dimen[dim].lower_bound,
3104 info->dimen[dim].upper_bound);
3105 }
3106 t = fold_build_pointer_plus (base_decl,
3107 size_binop (PLUS_EXPR,
3108 dim_off, stride_suboff));
3109 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3110 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
3111 info->dimen[dim].stride = t;
3112 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
3113 }
3114
3115 return true;
3116 }
3117
3118 #include "gt-fortran-trans-types.h"
This page took 0.182572 seconds and 5 git commands to generate.