
GDB & Multi-
target

GDB & Multi-target
Pedro Alves <palves@redhat.com>

GNU Cauldron 2017

2

mailto:%3Cpalves@redhat.com

Outline
• Multi target

3

Why?
• Combined host/accelerator|coprocessor debugging

• GPGPU debugging? (CPU target + GPU target)

• Debug multiple embedded boards as multiple inferiors

• requested on the gdb@ list a couple days ago!

• Combined Client+Server debugging

• Distributed computing (HPC debugging)

• debug multiple nodes, potentially different archs

• Valgrind follow-fork/follow-exec

• Because it's cool?

4

GDB's evolution
• GDB starts single-process debugging only (1734)

• Multi-threading (1830)

• Multi-process (2010)

• Multi-target (2017)

5

GDB's little brain
• inferior list is a global list

• thread list is a global list

• ptid_t is pervasive

• there's only one target stack

• historical "current_target" squashed target

• each target_ops instance has "beneath" pointer

• targets > process_stratum skip "wrong" inferiors

6

GDB's little brain, after
• target_ops -> C++ class hierarchy + virtual methods

• inferior list is still a global list

• each inferior has its own thread list

• target stack is now an array of target_ops pointers

• each inferior has its own target stack array

• squashed "current_target" is gone -> inf->m_stack.top ();

• "target_ops::beneath" pointer is gone -> inf->m_stack.beneath (target);

• ptid_t remains the same

• ptid_t => thread_info * in many places

• ptid_t => 'target_ops *' + ptid_t in other places

7

target stack, after
class target_stack

{

public:

 void push_target (struct target_ops *);

 int unpush_target (struct target_ops *);

 target_ops *at (enum strata stratum) { return m_stack[stratum]; }

 target_ops *top () { return at (m_top); }

 target_ops *find_target_beneath (const target_ops *t);

private:

 enum strata m_top {};

 target_ops *m_stack[(int) debug_stratum] {};

};

8

Status
• Requires target_async-capable targets

• Non-stop native + gdbserver works

• Non-stop gdbserver (1) + gdbserver (2) works

• All-stop works, as long as all target backends are non-stop:

• "maint set target-non-stop on"

• native + gdbserver + core works too, for fun

• all-stop without all-stop-on-top-of-non-stop not attempted

• Testsuite not regression-free

• Several hacks in place...

9

Demo!

User interface, threads
(gdb) info threads

 Id Target Id Frame

 1.1 Thread 8284.8284 "server" main () at server.c:70

* 2.1 Thread 8287.8287 "client" main () at client.c:66

11

User interface, inferiors
(gdb) info inferiors

 Num Description Connection Executable

 1 process 8284 1 (extended-remote :20000) /tmp/server

* 2 process 8287 2 (extended-remote :20001) /tmp/client

 3 process 11617 3 (core) /tmp/threaded-core

 4 <null> 2 (extended-remote :20001)

12

User interface, "info connections"
(gdb) info connections

 Num Description

 1 1 (extended-remote :20000)

* 2 2 (extended-remote :20001)

 3 3 (core)

13

User interface, new "connections"
(gdb) info inferiors

 Num Description Connection Executable

* 1 process 8284 1 native /tmp/server

 2 process 8287 2 (extended-remote :20001) /tmp/client

(gdb) add-inferior

Added inferior 3 on target 1 (native)

(gdb) inferior 2

[Switching to inferior 2 [process 8287] (/tmp/client)]

(gdb) add-inferior

Added inferior 4 on target 2 (extended-remote :20001)

14

User interface, the new "connections"
(gdb) info inferiors

 Num Description Connection Executable

 1 process 8284 1 (extended-remote :20000) /tmp/server

* 2 process 8287 2 (extended-remote :20001) /tmp/client

 3 <null> 4 (native)

 4 <null> 2 (extended-remote :20001)

(gdb)

15

