PATCH: contribute decimal float runtime support

Ben Elliston bje@au1.ibm.com
Tue Jan 17 23:11:00 GMT 2006


This is a straightforward patch that drops in the dfp-bit.[hc] files,
modelled on fp-bit.[hc].  The libgcc.texi documentation is updated
(tested with `make info dvi').  Another patch, forthcoming shortly,
adds support for building these files.

Okay for the trunk?

2005-15-18  Ben Elliston  <bje@au.ibm.com>

        * config/dfp-bit.h, config/dfp-bit.c: New files.
        * doc/libgcc.texi (Decimal float library routines): New node.

Index: doc/libgcc.texi
===================================================================
--- doc/libgcc.texi	(revision 109843)
+++ doc/libgcc.texi	(working copy)
@@ -39,6 +39,7 @@ and @code{@w{unsigned int}} correspond t
 @menu
 * Integer library routines::
 * Soft float library routines::
+* Decimal float library routines::
 * Exception handling routines::
 * Miscellaneous routines::
 @end menu
@@ -485,6 +486,205 @@ These functions return the quotient of @
 + i@var{d})}), following the rules of C99 Annex G@.
 @end deftypefn
 
+@node Decimal float library routines
+@section Routines for decimal floating point emulation
+@cindex decimal float library
+@cindex IEEE-754R
+
+The software decimal floating point library implements IEEE 754R
+decimal floating point arithmetic and is only activated on selected
+targets.
+
+@subsection Arithmetic functions
+
+@deftypefn {Runtime Function} _Decimal32 __addsd3 (_Decimal32 @var{a}, _Decimal32 @var{b})
+@deftypefnx {Runtime Function} _Decimal64 __adddd3 (_Decimal64 @var{a}, _Decimal64 @var{b})
+@deftypefnx {Runtime Function} _Decimal128 __addtd3 (_Decimal128 @var{a}, _Decimal128 @var{b})
+These functions return the sum of @var{a} and @var{b}.
+@end deftypefn
+
+@deftypefn {Runtime Function} _Decimal32 __subsd3 (_Decimal32 @var{a}, _Decimal32 @var{b})
+@deftypefnx {Runtime Function} _Decimal64 __subdd3 (_Decimal64 @var{a}, _Decimal64 @var{b})
+@deftypefnx {Runtime Function} _Decimal128 __subtd3 (_Decimal128 @var{a}, _Decimal128 @var{b})
+These functions return the difference between @var{b} and @var{a};
+that is, @w{@math{@var{a} - @var{b}}}.
+@end deftypefn
+
+@deftypefn {Runtime Function} _Decimal32 __mulsd3 (_Decimal32 @var{a}, _Decimal32 @var{b})
+@deftypefnx {Runtime Function} _Decimal64 __muldd3 (_Decimal64 @var{a}, _Decimal64 @var{b})
+@deftypefnx {Runtime Function} _Decimal128 __multd3 (_Decimal128 @var{a}, _Decimal128 @var{b})
+These functions return the product of @var{a} and @var{b}.
+@end deftypefn
+
+@deftypefn {Runtime Function} _Decimal32 __divsd3 (_Decimal32 @var{a}, _Decimal32 @var{b})
+@deftypefnx {Runtime Function} _Decimal64 __divdd3 (_Decimal64 @var{a}, _Decimal64 @var{b})
+@deftypefnx {Runtime Function} _Decimal128 __divtd3 (_Decimal128 @var{a}, _Decimal128 @var{b})
+These functions return the quotient of @var{a} and @var{b}; that is,
+@w{@math{@var{a} / @var{b}}}.
+@end deftypefn
+
+@deftypefn {Runtime Function} _Decimal32 __negsd2 (_Decimal32 @var{a})
+@deftypefnx {Runtime Function} _Decimal64 __negdd2 (_Decimal64 @var{a})
+@deftypefnx {Runtime Function} _Decimal128 __negtd2 (_Decimal128 @var{a})
+These functions return the negation of @var{a}.  They simply flip the
+sign bit, so they can produce negative zero and negative NaN@.
+@end deftypefn
+
+@subsection Conversion functions
+
+@c DFP/DFP conversions
+@deftypefn {Runtime Function} _Decimal64 __extendsddd2 (_Decimal32 @var{a})
+@deftypefnx {Runtime Function} _Decimal128 __extendsdtd2 (_Decimal32 @var{a})
+@deftypefnx {Runtime Function} _Decimal128 __extendddtd2 (_Decimal64 @var{a})
+@c DFP/binary FP conversions
+@deftypefnx {Runtime Function} _Decimal32 __extendsfsd (float @var{a})
+@deftypefnx {Runtime Function} double __extendsddf (_Decimal32 @var{a})
+@deftypefnx {Runtime Function} {long double} __extendsdxf (_Decimal32 @var{a})
+@deftypefnx {Runtime Function} _Decimal64 __extendsfdd (float @var{a})
+@deftypefnx {Runtime Function} _Decimal64 __extenddfdd (double @var{a})
+@deftypefnx {Runtime Function} {long double} __extendddxf (_Decimal64 @var{a})
+@deftypefnx {Runtime Function} _Decimal128 __extendsftd (float @var{a})
+@deftypefnx {Runtime Function} _Decimal128 __extenddftd (double @var{a})
+@deftypefnx {Runtime Function} _Decimal128 __extendxftd ({long double} @var{a})
+These functions extend @var{a} to the wider mode of their return type.
+@end deftypefn
+
+@c DFP/DFP conversions
+@deftypefn {Runtime Function} _Decimal32 __truncddsd2 (_Decimal64 @var{a})
+@deftypefnx {Runtime Function} _Decimal32 __trunctdsd2 (_Decimal128 @var{a})
+@deftypefnx {Runtime Function} _Decimal64 __trunctddd2 (_Decimal128 @var{a})
+@c DFP/binary FP conversions
+@deftypefnx {Runtime Function} float __truncsdsf (_Decimal32 @var{a})
+@deftypefnx {Runtime Function} _Decimal32 __truncdfsd (double @var{a})
+@deftypefnx {Runtime Function} _Decimal32 __truncxfsd ({long double} @var{a})
+@deftypefnx {Runtime Function} float __truncddsf (_Decimal64 @var{a})
+@deftypefnx {Runtime Function} double __truncdddf (_Decimal64 @var{a})
+@deftypefnx {Runtime Function} _Decimal64 __truncxfdd ({long double} @var{a})
+@deftypefnx {Runtime Function} float __trunctdsf (_Decimal128 @var{a})
+@deftypefnx {Runtime Function} double __trunctddf (_Decimal128 @var{a})
+@deftypefnx {Runtime Function} {long double} __trunctdxf (_Decimal128 @var{a})
+These functions truncate @var{a} to the narrower mode of their return
+type.
+@end deftypefn
+
+@deftypefn {Runtime Function} int __fixsdsi (_Decimal32 @var{a})
+@deftypefnx {Runtime Function} int __fixddsi (_Decimal64 @var{a})
+@deftypefnx {Runtime Function} int __fixtdsi (_Decimal128 @var{a})
+These functions convert @var{a} to a signed integer.
+@end deftypefn
+
+@deftypefn {Runtime Function} long __fixsddi (_Decimal32 @var{a})
+@deftypefnx {Runtime Function} long __fixdddi (_Decimal64 @var{a})
+@deftypefnx {Runtime Function} long __fixtddi (_Decimal128 @var{a})
+These functions convert @var{a} to a signed long.
+@end deftypefn
+
+@deftypefn {Runtime Function} {unsigned int} __fixunssdsi (_Decimal32 @var{a})
+@deftypefnx {Runtime Function} {unsigned int} __fixunsddsi (_Decimal64 @var{a})
+@deftypefnx {Runtime Function} {unsigned int} __fixunstdsi (_Decimal128 @var{a})
+These functions convert @var{a} to an unsigned integer.  Negative values all become zero.
+@end deftypefn
+
+@deftypefn {Runtime Function} {unsigned long} __fixunssddi (_Decimal32 @var{a})
+@deftypefnx {Runtime Function} {unsigned long} __fixunsdddi (_Decimal64 @var{a})
+@deftypefnx {Runtime Function} {unsigned long} __fixunstddi (_Decimal128 @var{a})
+These functions convert @var{a} to an unsigned long.  Negative values
+all become zero.
+@end deftypefn
+
+@deftypefn {Runtime Function} _Decimal32 __floatsisd (int @var{i})
+@deftypefnx {Runtime Function} _Decimal64 __floatsidd (int @var{i})
+@deftypefnx {Runtime Function} _Decimal128 __floatsitd (int @var{i})
+These functions convert @var{i}, a signed integer, to decimal floating point.
+@end deftypefn
+
+@deftypefn {Runtime Function} _Decimal32 __floatdisd (long @var{i})
+@deftypefnx {Runtime Function} _Decimal64 __floatdidd (long @var{i})
+@deftypefnx {Runtime Function} _Decimal128 __floatditd (long @var{i})
+These functions convert @var{i}, a signed long, to decimal floating point.
+@end deftypefn
+
+@deftypefn {Runtime Function} _Decimal32 __floatunssisd (unsigned int @var{i})
+@deftypefnx {Runtime Function} _Decimal64 __floatunssidd (unsigned int @var{i})
+@deftypefnx {Runtime Function} _Decimal128 __floatunssitd (unsigned int @var{i})
+These functions convert @var{i}, an unsigned integer, to decimal floating point.
+@end deftypefn
+
+@deftypefn {Runtime Function} _Decimal32 __floatunsdisd (unsigned long @var{i})
+@deftypefnx {Runtime Function} _Decimal64 __floatunsdidd (unsigned long @var{i})
+@deftypefnx {Runtime Function} _Decimal128 __floatunsditd (unsigned long @var{i})
+These functions convert @var{i}, an unsigned long, to decimal floating point.
+@end deftypefn
+
+@subsection Comparison functions
+
+@deftypefn {Runtime Function} int __unordsd2 (_Decimal32 @var{a}, _Decimal32 @var{b})
+@deftypefnx {Runtime Function} int __unorddd2 (_Decimal64 @var{a}, _Decimal64 @var{b})
+@deftypefnx {Runtime Function} int __unordtd2 (_Decimal128 @var{a}, _Decimal128 @var{b})
+These functions return a nonzero value if either argument is NaN, otherwise 0.
+@end deftypefn
+
+There is also a complete group of higher level functions which
+correspond directly to comparison operators.  They implement the ISO C
+semantics for floating-point comparisons, taking NaN into account.
+Pay careful attention to the return values defined for each set.
+Under the hood, all of these routines are implemented as
+
+@smallexample
+  if (__unord@var{X}d2 (a, b))
+    return @var{E};
+  return __cmp@var{X}d2 (a, b);
+@end smallexample
+
+@noindent
+where @var{E} is a constant chosen to give the proper behavior for
+NaN@.  Thus, the meaning of the return value is different for each set.
+Do not rely on this implementation; only the semantics documented
+below are guaranteed.
+
+@deftypefn {Runtime Function} int __eqsd2 (_Decimal32 @var{a}, _Decimal32 @var{b})
+@deftypefnx {Runtime Function} int __eqdd2 (_Decimal64 @var{a}, _Decimal64 @var{b})
+@deftypefnx {Runtime Function} int __eqtd2 (_Decimal128 @var{a}, _Decimal128 @var{b})
+These functions return zero if neither argument is NaN, and @var{a} and
+@var{b} are equal.
+@end deftypefn
+
+@deftypefn {Runtime Function} int __nesd2 (_Decimal32 @var{a}, _Decimal32 @var{b})
+@deftypefnx {Runtime Function} int __nedd2 (_Decimal64 @var{a}, _Decimal64 @var{b})
+@deftypefnx {Runtime Function} int __netd2 (_Decimal128 @var{a}, _Decimal128 @var{b})
+These functions return a nonzero value if either argument is NaN, or
+if @var{a} and @var{b} are unequal.
+@end deftypefn
+
+@deftypefn {Runtime Function} int __gesd2 (_Decimal32 @var{a}, _Decimal32 @var{b})
+@deftypefnx {Runtime Function} int __gedd2 (_Decimal64 @var{a}, _Decimal64 @var{b})
+@deftypefnx {Runtime Function} int __getd2 (_Decimal128 @var{a}, _Decimal128 @var{b})
+These functions return a value greater than or equal to zero if
+neither argument is NaN, and @var{a} is greater than or equal to
+@var{b}.
+@end deftypefn
+
+@deftypefn {Runtime Function} int __ltsd2 (_Decimal32 @var{a}, _Decimal32 @var{b})
+@deftypefnx {Runtime Function} int __ltdd2 (_Decimal64 @var{a}, _Decimal64 @var{b})
+@deftypefnx {Runtime Function} int __lttd2 (_Decimal128 @var{a}, _Decimal128 @var{b})
+These functions return a value less than zero if neither argument is
+NaN, and @var{a} is strictly less than @var{b}.
+@end deftypefn
+
+@deftypefn {Runtime Function} int __lesd2 (_Decimal32 @var{a}, _Decimal32 @var{b})
+@deftypefnx {Runtime Function} int __ledd2 (_Decimal64 @var{a}, _Decimal64 @var{b})
+@deftypefnx {Runtime Function} int __letd2 (_Decimal128 @var{a}, _Decimal128 @var{b})
+These functions return a value less than or equal to zero if neither
+argument is NaN, and @var{a} is less than or equal to @var{b}.
+@end deftypefn
+
+@deftypefn {Runtime Function} int __gtsd2 (_Decimal32 @var{a}, _Decimal32 @var{b})
+@deftypefnx {Runtime Function} int __gtdd2 (_Decimal64 @var{a}, _Decimal64 @var{b})
+@deftypefnx {Runtime Function} int __gttd2 (_Decimal128 @var{a}, _Decimal128 @var{b})
+These functions return a value greater than zero if neither argument
+is NaN, and @var{a} is strictly greater than @var{b}.
+@end deftypefn
+
 @node Exception handling routines
 @section Language-independent routines for exception handling
 
-------------- next part --------------
/* Header file for dfp-bit.c.
   Copyright (C) 2005, 2006 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file.  (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.  */

#ifndef _DFPBIT_H
#define _DFPBIT_H

#include "tconfig.h"
#include "coretypes.h"
#include "tm.h"

#ifndef LIBGCC2_FLOAT_WORDS_BIG_ENDIAN
#define LIBGCC2_FLOAT_WORDS_BIG_ENDIAN LIBGCC2_WORDS_BIG_ENDIAN
#endif

#ifndef LIBGCC2_LONG_DOUBLE_TYPE_SIZE
#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE LONG_DOUBLE_TYPE_SIZE
#endif

#ifndef LIBGCC2_HAS_XF_MODE
#define LIBGCC2_HAS_XF_MODE \
  (BITS_PER_UNIT == 8 && LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 80)
#endif

/* Depending on WIDTH, define a number of macros:

   DFP_C_TYPE: type of the arguments to the libgcc functions;
	(eg _Decimal32)

   IEEE_TYPE: the corresponding (encoded) IEEE754R type;
	(eg decimal32)
   
   TO_INTERNAL: the name of the decNumber function to convert an
   encoded value into the decNumber internal representation;

   TO_ENCODED: the name of the decNumber function to convert an
   internally represented decNumber into the encoded
   representation.

   FROM_STRING: the name of the decNumber function to read an
   encoded value from a string.

   TO_STRING: the name of the decNumber function to write an
   encoded value to a string.  */

#if WIDTH == 32
#define DFP_C_TYPE	_Decimal32
#define IEEE_TYPE	decimal32
#define HOST_TO_IEEE	__host_to_ieee_32
#define IEEE_TO_HOST	__ieee_to_host_32
#define TO_INTERNAL	__decimal32ToNumber
#define TO_ENCODED	__decimal32FromNumber
#define FROM_STRING	__decimal32FromString
#define TO_STRING	__decimal32ToString
#elif WIDTH == 64
#define DFP_C_TYPE	_Decimal64
#define IEEE_TYPE	decimal64
#define HOST_TO_IEEE	__host_to_ieee_64
#define IEEE_TO_HOST	__ieee_to_host_64
#define TO_INTERNAL	__decimal64ToNumber
#define TO_ENCODED	__decimal64FromNumber
#define FROM_STRING	__decimal64FromString
#define TO_STRING	__decimal64ToString
#elif WIDTH == 128
#define DFP_C_TYPE	_Decimal128
#define IEEE_TYPE	decimal128
#define HOST_TO_IEEE	__host_to_ieee_128
#define IEEE_TO_HOST	__ieee_to_host_128
#define TO_INTERNAL	__decimal128ToNumber
#define TO_ENCODED	__decimal128FromNumber
#define FROM_STRING	__decimal128FromString
#define TO_STRING	__decimal128ToString
#else
#error invalid decimal float word width
#endif

/* We define __DEC_EVAL_METHOD__ to 2, saying that we evaluate all
   operations and constants to the range and precision of the _Decimal128
   type.  Make it so.  */
#if WIDTH == 32
#define CONTEXT_INIT DEC_INIT_DECIMAL32
#elif WIDTH == 64
#define CONTEXT_INIT DEC_INIT_DECIMAL64
#elif WIDTH == 128
#define CONTEXT_INIT DEC_INIT_DECIMAL128
#endif

/* Define CONTEXT_ROUND to obtain the current decNumber rounding mode.  */
extern enum rounding	__decGetRound (void);
#define CONTEXT_ROUND	__decGetRound ()

extern int __dfp_traps;
#define CONTEXT_TRAPS	__dfp_traps
#define CONTEXT_ERRORS(context)	context.status & DEC_Errors
extern void __dfp_raise (int);
#define DFP_RAISE(A)	__dfp_raise(A)

/* Conversions between different decimal float types use WIDTH_TO to
   determine additional macros to define.  */

#if defined (L_dd_to_sd) || defined (L_td_to_sd)
#define WIDTH_TO 32
#elif defined (L_sd_to_dd) || defined (L_td_to_dd)
#define WIDTH_TO 64
#elif defined (L_sd_to_td) || defined (L_dd_to_td)
#define WIDTH_TO 128
#endif

/* If WIDTH_TO is defined, define additional macros:

   DFP_C_TYPE_TO: type of the result of dfp to dfp conversion.

   IEEE_TYPE_TO: the corresponding (encoded) IEEE754R type.

   TO_ENCODED_TO: the name of the decNumber function to convert an
   internally represented decNumber into the encoded representation
   for the destination.  */

#if WIDTH_TO == 32
#define DFP_C_TYPE_TO	_Decimal32
#define IEEE_TYPE_TO	decimal32
#define TO_ENCODED_TO	__decimal32FromNumber
#define IEEE_TO_HOST_TO __ieee_to_host_32
#elif WIDTH_TO == 64
#define DFP_C_TYPE_TO	_Decimal64
#define IEEE_TYPE_TO	decimal64
#define TO_ENCODED_TO	__decimal64FromNumber
#define IEEE_TO_HOST_TO __ieee_to_host_64
#elif WIDTH_TO == 128
#define DFP_C_TYPE_TO	_Decimal128
#define IEEE_TYPE_TO	decimal128
#define TO_ENCODED_TO	__decimal128FromNumber
#define IEEE_TO_HOST_TO __ieee_to_host_128
#endif

/* Conversions between decimal float types and integral types use INT_KIND
   to determine the data type and C functions to use.  */

#if defined (L_sd_to_si) || defined (L_dd_to_si) || defined (L_td_to_si)  \
   || defined (L_si_to_sd) || defined (L_si_to_dd) || defined (L_si_to_td)
#define INT_KIND 1
#elif defined (L_sd_to_di) || defined (L_dd_to_di) || defined (L_td_to_di) \
   || defined (L_di_to_sd) || defined (L_di_to_dd) || defined (L_di_to_td)
#define INT_KIND 2
#elif defined (L_sd_to_usi) || defined (L_dd_to_usi) || defined (L_td_to_usi) \
   || defined (L_usi_to_sd) || defined (L_usi_to_dd) || defined (L_usi_to_td)
#define INT_KIND 3
#elif defined (L_sd_to_udi) || defined (L_dd_to_udi) || defined (L_td_to_udi) \
   || defined (L_udi_to_sd) || defined (L_udi_to_dd) || defined (L_udi_to_td)
#define INT_KIND 4
#endif

/*  If INT_KIND is defined, define additional macros:

    INT_TYPE: The integer data type.

    INT_FMT: The format string for writing the integer to a string.

    CAST_FOR_FMT: Cast variable of INT_KIND to C type for sprintf.
    This works for ILP32 and LP64, won't for other type size systems.

    STR_TO_INT: The function to read the integer from a string.  */

#if INT_KIND == 1
#define INT_TYPE SItype
#define INT_FMT "%d"
#define CAST_FOR_FMT(A) (int)A
#define STR_TO_INT strtol
#elif INT_KIND == 2
#define INT_TYPE DItype
#define INT_FMT "%lld"
#define CAST_FOR_FMT(A) (long long)A
#define STR_TO_INT strtoll
#elif INT_KIND == 3
#define INT_TYPE USItype
#define INT_FMT "%u"
#define CAST_FOR_FMT(A) (unsigned int)A
#define STR_TO_INT strtoul
#elif INT_KIND == 4
#define INT_TYPE UDItype
#define INT_FMT "%llu"
#define CAST_FOR_FMT(A) (unsigned long long)A
#define STR_TO_INT strtoull
#endif

/* Conversions between decimal float types and binary float types use
   BFP_KIND to determine the data type and C functions to use.  */

#if defined (L_sd_to_sf) || defined (L_dd_to_sf) || defined (L_td_to_sf) \
 || defined (L_sf_to_sd) || defined (L_sf_to_dd) || defined (L_sf_to_td)
#define BFP_KIND 1
#elif defined (L_sd_to_df) || defined (L_dd_to_df ) || defined (L_td_to_df) \
 ||   defined (L_df_to_sd) || defined (L_df_to_dd) || defined (L_df_to_td)
#define BFP_KIND 2
#elif defined (L_sd_to_xf) || defined (L_dd_to_xf ) || defined (L_td_to_xf) \
 ||   defined (L_xf_to_sd) || defined (L_xf_to_dd) || defined (L_xf_to_td)
#define BFP_KIND 3
#endif

/*  If BFP_KIND is defined, define additional macros:

    BFP_TYPE: The binary floating point data type.

    BFP_FMT: The format string for writing the value to a string.

    STR_TO_BFP: The function to read the value from a string.  */

#if BFP_KIND == 1
/* strtof is declared in <stdlib.h> only for C99.  */
extern float strtof (const char *, char **);
#define BFP_TYPE SFtype
#define BFP_FMT "%e"
#define STR_TO_BFP strtof

#elif BFP_KIND == 2
#define BFP_TYPE DFtype
#define BFP_FMT "%e"
#define STR_TO_BFP strtod

#elif BFP_KIND == 3
#if LIBGCC2_HAS_XF_MODE
/* These aren't used if XF mode is not supported.  */
#define BFP_TYPE XFtype
#define BFP_FMT "%e"
#define BFP_VIA_TYPE double
#define STR_TO_BFP strtod
#endif

#endif /* BFP_KIND */

#if WIDTH == 128 || WIDTH_TO == 128
#include "decimal128.h"
#endif
#if WIDTH == 64 || WIDTH_TO == 64
#include "decimal64.h"
#endif
#if WIDTH == 32 || WIDTH_TO == 32
#include "decimal32.h"
#endif
#include "decNumber.h"

/* Names of arithmetic functions.  */

#if WIDTH == 32
#define DFP_ADD		__addsd3
#define DFP_SUB		__subsd3
#define DFP_MULTIPLY	__mulsd3
#define DFP_DIVIDE	__divsd3
#define DFP_EQ		__eqsd2
#define DFP_NE		__nesd2
#define DFP_LT		__ltsd2
#define DFP_GT		__gtsd2
#define DFP_LE		__lesd2
#define DFP_GE		__gesd2
#define DFP_UNORD	__unordsd2
#elif WIDTH == 64
#define DFP_ADD		__adddd3
#define DFP_SUB		__subdd3
#define DFP_MULTIPLY	__muldd3
#define DFP_DIVIDE	__divdd3
#define DFP_EQ		__eqdd2
#define DFP_NE		__nedd2
#define DFP_LT		__ltdd2
#define DFP_GT		__gtdd2
#define DFP_LE		__ledd2
#define DFP_GE		__gedd2
#define DFP_UNORD	__unorddd2
#elif WIDTH == 128
#define DFP_ADD		__addtd3
#define DFP_SUB		__subtd3
#define DFP_MULTIPLY	__multd3
#define DFP_DIVIDE	__divtd3
#define DFP_EQ		__eqtd2
#define DFP_NE		__netd2
#define DFP_LT		__lttd2
#define DFP_GT		__gttd2
#define DFP_LE		__letd2
#define DFP_GE		__getd2
#define DFP_UNORD	__unordtd2
#endif

/* Names of functions to convert between different decimal float types.  */

#if WIDTH == 32
#if WIDTH_TO == 64
#define DFP_TO_DFP	__extendsddd2
#elif WIDTH_TO == 128
#define DFP_TO_DFP	__extendsdtd2
#endif
#elif WIDTH == 64	
#if WIDTH_TO == 32
#define DFP_TO_DFP	__truncddsd2
#elif WIDTH_TO == 128
#define DFP_TO_DFP	__extendddtd2
#endif
#elif WIDTH == 128
#if WIDTH_TO == 32
#define DFP_TO_DFP	__trunctdsd2
#elif WIDTH_TO == 64
#define DFP_TO_DFP	__trunctddd2
#endif
#endif

/* Names of functions to convert between decimal float and integers.  */

#if WIDTH == 32
#if INT_KIND == 1
#define INT_TO_DFP	__floatsisd
#define DFP_TO_INT	__fixsdsi
#elif INT_KIND == 2
#define INT_TO_DFP	__floatdisd
#define DFP_TO_INT	__fixsddi
#elif INT_KIND == 3
#define INT_TO_DFP	__floatunssisd
#define DFP_TO_INT	__fixunssdsi
#elif INT_KIND == 4
#define INT_TO_DFP	__floatunsdisd
#define DFP_TO_INT	__fixunssddi
#endif
#elif WIDTH == 64
#if INT_KIND == 1
#define INT_TO_DFP	__floatsidd
#define DFP_TO_INT	__fixddsi
#elif INT_KIND == 2
#define INT_TO_DFP	__floatdidd
#define DFP_TO_INT	__fixdddi
#elif INT_KIND == 3
#define INT_TO_DFP	__floatunssidd
#define DFP_TO_INT	__fixunsddsi
#elif INT_KIND == 4
#define INT_TO_DFP	__floatunsdidd
#define DFP_TO_INT	__fixunsdddi
#endif
#elif WIDTH == 128
#if INT_KIND == 1
#define INT_TO_DFP	__floatsitd
#define DFP_TO_INT	__fixtdsi
#elif INT_KIND == 2
#define INT_TO_DFP	__floatditd
#define DFP_TO_INT	__fixtddi
#elif INT_KIND == 3
#define INT_TO_DFP	__floatunssitd
#define DFP_TO_INT	__fixunstdsi
#elif INT_KIND == 4
#define INT_TO_DFP	__floatunsditd
#define DFP_TO_INT	__fixunstddi
#endif
#endif

/* Names of functions to convert between decimal float and binary float.  */

#if WIDTH == 32
#if BFP_KIND == 1
#define BFP_TO_DFP	__extendsfsd
#define DFP_TO_BFP	__truncsdsf
#elif BFP_KIND == 2
#define BFP_TO_DFP	__truncdfsd
#define DFP_TO_BFP	__extendsddf
#elif BFP_KIND == 3
#define BFP_TO_DFP	__truncxfsd
#define DFP_TO_BFP	__extendsdxf
#endif /* BFP_KIND */

#elif WIDTH == 64
#if BFP_KIND == 1
#define BFP_TO_DFP	__extendsfdd
#define DFP_TO_BFP	__truncddsf
#elif BFP_KIND == 2
#define BFP_TO_DFP	__extenddfdd
#define DFP_TO_BFP	__truncdddf
#elif BFP_KIND == 3
#define BFP_TO_DFP	__truncxfdd
#define DFP_TO_BFP	__extendddxf
#endif /* BFP_KIND */

#elif WIDTH == 128
#if BFP_KIND == 1
#define BFP_TO_DFP	__extendsftd
#define DFP_TO_BFP	__trunctdsf
#elif BFP_KIND == 2
#define BFP_TO_DFP	__extenddftd
#define DFP_TO_BFP	__trunctddf
#elif BFP_KIND == 3
#define BFP_TO_DFP	__extendxftd
#define DFP_TO_BFP	__trunctdxf
#endif /* BFP_KIND */

#endif /* WIDTH */

/* Some handy typedefs.  */

typedef float SFtype __attribute__ ((mode (SF)));
typedef float DFtype __attribute__ ((mode (DF)));
#if LIBGCC2_HAS_XF_MODE
typedef float XFtype __attribute__ ((mode (XF)));
#endif /* LIBGCC2_HAS_XF_MODE */

typedef int SItype __attribute__ ((mode (SI)));
typedef int DItype __attribute__ ((mode (DI)));
typedef unsigned int USItype __attribute__ ((mode (SI)));
typedef unsigned int UDItype __attribute__ ((mode (DI)));

/* The type of the result of a decimal float comparison.  This must
   match `word_mode' in GCC for the target.  Default to SItype.  */

#ifndef CMPtype
#define CMPtype SItype
#endif

/* Prototypes.  */

#if defined (L_mul_sd) || defined (L_mul_dd) || defined (L_mul_td)
extern DFP_C_TYPE DFP_MULTIPLY (DFP_C_TYPE, DFP_C_TYPE);
#endif

#if defined (L_div_sd) || defined (L_div_dd) || defined (L_div_td)
extern DFP_C_TYPE DFP_DIVIDE (DFP_C_TYPE, DFP_C_TYPE);
#endif

#if defined (L_addsub_sd) || defined (L_addsub_dd) || defined (L_addsub_td)
extern DFP_C_TYPE DFP_ADD (DFP_C_TYPE, DFP_C_TYPE);
extern DFP_C_TYPE DFP_SUB (DFP_C_TYPE, DFP_C_TYPE);
#endif

#if defined (L_eq_sd) || defined (L_eq_dd) || defined (L_eq_td)
extern CMPtype DFP_EQ (DFP_C_TYPE, DFP_C_TYPE);
#endif

#if defined (L_ne_sd) || defined (L_ne_dd) || defined (L_ne_td)
extern CMPtype DFP_NE (DFP_C_TYPE, DFP_C_TYPE);
#endif

#if defined (L_lt_sd) || defined (L_lt_dd) || defined (L_lt_td)
extern CMPtype DFP_LT (DFP_C_TYPE, DFP_C_TYPE);
#endif

#if defined (L_gt_sd) || defined (L_gt_dd) || defined (L_gt_td)
extern CMPtype DFP_GT (DFP_C_TYPE, DFP_C_TYPE);
#endif

#if defined (L_le_sd) || defined (L_le_dd) || defined (L_le_td)
extern CMPtype DFP_LE (DFP_C_TYPE, DFP_C_TYPE);
#endif

#if defined (L_ge_sd) || defined (L_ge_dd) || defined (L_ge_td)
extern CMPtype DFP_GE (DFP_C_TYPE, DFP_C_TYPE);
#endif

#if defined (L_unord_sd) || defined (L_unord_dd) || defined (L_unord_td)
extern CMPtype DFP_UNORD (DFP_C_TYPE, DFP_C_TYPE);
#endif

#if defined (L_sd_to_dd) || defined (L_sd_to_td) || defined (L_dd_to_sd) \
 || defined (L_dd_to_td) || defined (L_td_to_sd) || defined (L_td_to_dd)
extern DFP_C_TYPE_TO DFP_TO_DFP (DFP_C_TYPE);
#endif

#if defined (L_sd_to_si) || defined (L_dd_to_si) || defined (L_td_to_si) \
 || defined (L_sd_to_di) || defined (L_dd_to_di) || defined (L_td_to_di) \
 || defined (L_sd_to_usi) || defined (L_dd_to_usi) || defined (L_td_to_usi) \
 || defined (L_sd_to_udi) || defined (L_dd_to_udi) || defined (L_td_to_udi)
extern INT_TYPE DFP_TO_INT (DFP_C_TYPE);
#endif

#if defined (L_si_to_sd) || defined (L_si_to_dd) || defined (L_si_to_td) \
 || defined (L_di_to_sd) || defined (L_di_to_dd) || defined (L_di_to_td) \
 || defined (L_usi_to_sd) || defined (L_usi_to_dd) || defined (L_usi_to_td) \
 || defined (L_udi_to_sd) || defined (L_udi_to_dd) || defined (L_udi_to_td)
extern DFP_C_TYPE INT_TO_DFP (INT_TYPE);
#endif

#if defined (L_sd_to_sf) || defined (L_dd_to_sf) || defined (L_td_to_sf) \
 || defined (L_sd_to_df) || defined (L_dd_to_df) || defined (L_td_to_df) \
 || ((defined (L_sd_to_xf) || defined (L_dd_to_xf) || defined (L_td_to_xf)) \
     && LIBGCC2_HAS_XF_MODE)
extern BFP_TYPE DFP_TO_BFP (DFP_C_TYPE);
#endif

#if defined (L_sf_to_sd) || defined (L_sf_to_dd) || defined (L_sf_to_td) \
 || defined (L_df_to_sd) || defined (L_df_to_dd) || defined (L_df_to_td) \
 || ((defined (L_xf_to_sd) || defined (L_xf_to_dd) || defined (L_xf_to_td)) \
     && LIBGCC2_HAS_XF_MODE)
extern DFP_C_TYPE BFP_TO_DFP (BFP_TYPE);
#endif

#endif /* _DFPBIT_H */
-------------- next part --------------
/* This is a software decimal floating point library.
   Copyright (C) 2005, 2006 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file.  (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.  */

/* This implements IEEE 754R decimal floating point arithmetic, but
   does not provide a mechanism for setting the rounding mode, or for
   generating or handling exceptions.  Conversions between decimal
   floating point types and other types depend on C library functions.

   Contributed by Ben Elliston  <bje@au.ibm.com>.  */

/* The intended way to use this file is to make two copies, add `#define '
   to one copy, then compile both copies and add them to libgcc.a.  */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>

#include "config/dfp-bit.h"

/* Forward declarations.  */
#if WIDTH == 32 || WIDTH_TO == 32
void __host_to_ieee_32 (_Decimal32 in, decimal32 *out);
void __ieee_to_host_32 (decimal32 in, _Decimal32 *out);
#endif
#if WIDTH == 64 || WIDTH_TO == 64
void __host_to_ieee_64 (_Decimal64 in, decimal64 *out);
void __ieee_to_host_64 (decimal64 in, _Decimal64 *out);
#endif
#if WIDTH == 128 || WIDTH_TO == 128
void __host_to_ieee_128 (_Decimal128 in, decimal128 *out);
void __ieee_to_host_128 (decimal128 in, _Decimal128 *out);
#endif

/* A pointer to a unary decNumber operation.  */
typedef decNumber* (*dfp_unary_func)
     (decNumber *, decNumber *, decContext *);

/* A pointer to a binary decNumber operation.  */
typedef decNumber* (*dfp_binary_func)
     (decNumber *, decNumber *, decNumber *, decContext *);

extern unsigned long __dec_byte_swap (unsigned long);

/* Unary operations.  */

static inline DFP_C_TYPE
dfp_unary_op (dfp_unary_func op, DFP_C_TYPE arg)
{
  DFP_C_TYPE result;
  decContext context;
  decNumber arg1, res;
  IEEE_TYPE a, encoded_result;

  HOST_TO_IEEE (arg, &a);

  decContextDefault (&context, CONTEXT_INIT);
  context.round = CONTEXT_ROUND;

  TO_INTERNAL (&a, &arg1);

  /* Perform the operation.  */
  op (&res, &arg1, &context);

  if (CONTEXT_TRAPS && CONTEXT_ERRORS (context))
    DFP_RAISE (0);

  TO_ENCODED (&encoded_result, &res, &context);
  IEEE_TO_HOST (encoded_result, &result);
  return result;
}

/* Binary operations.  */

static inline DFP_C_TYPE
dfp_binary_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  DFP_C_TYPE result;
  decContext context;
  decNumber arg1, arg2, res;
  IEEE_TYPE a, b, encoded_result;

  HOST_TO_IEEE (arg_a, &a);
  HOST_TO_IEEE (arg_b, &b);

  decContextDefault (&context, CONTEXT_INIT);
  context.round = CONTEXT_ROUND;

  TO_INTERNAL (&a, &arg1);
  TO_INTERNAL (&b, &arg2);

  /* Perform the operation.  */
  op (&res, &arg1, &arg2, &context);

  if (CONTEXT_TRAPS && CONTEXT_ERRORS (context))
    DFP_RAISE (0);

  TO_ENCODED (&encoded_result, &res, &context);
  IEEE_TO_HOST (encoded_result, &result);
  return result;
}

/* Comparison operations.  */

static inline int
dfp_compare_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  IEEE_TYPE a, b;
  decContext context;
  decNumber arg1, arg2, res;
  int result;

  HOST_TO_IEEE (arg_a, &a);
  HOST_TO_IEEE (arg_b, &b);

  decContextDefault (&context, CONTEXT_INIT);
  context.round = CONTEXT_ROUND;

  TO_INTERNAL (&a, &arg1);
  TO_INTERNAL (&b, &arg2);

  /* Perform the comparison.  */
  op (&res, &arg1, &arg2, &context);

  if (CONTEXT_TRAPS && CONTEXT_ERRORS (context))
    DFP_RAISE (0);

  if (decNumberIsNegative (&res))
    result = -1;
  else if (decNumberIsZero (&res))
    result = 0;
  else
    result = 1;

  return result;
}


#if defined(L_conv_sd)
void
__host_to_ieee_32 (_Decimal32 in, decimal32 *out)
{
  uint32_t t;

  if (!LIBGCC2_FLOAT_WORDS_BIG_ENDIAN)
    {
      memcpy (&t, &in, 4);
      t = __dec_byte_swap (t);
      memcpy (out, &t, 4);
    }
  else
    memcpy (out, &in, 4);
}

void
__ieee_to_host_32 (decimal32 in, _Decimal32 *out)
{
  uint32_t t;

  if (!LIBGCC2_FLOAT_WORDS_BIG_ENDIAN)
    {
      memcpy (&t, &in, 4);
      t = __dec_byte_swap (t);
      memcpy (out, &t, 4);
    }
  else
    memcpy (out, &in, 4);
}
#endif /* L_conv_sd */

#if defined(L_conv_dd)
static void
__swap64 (char *src, char *dst)
{
  uint32_t t1, t2;

  if (!LIBGCC2_FLOAT_WORDS_BIG_ENDIAN) 
    {
      memcpy (&t1, src, 4);
      memcpy (&t2, src + 4, 4);
      t1 = __dec_byte_swap (t1);
      t2 = __dec_byte_swap (t2);
      memcpy (dst, &t2, 4);
      memcpy (dst + 4, &t1, 4);
    }
  else
    memcpy (dst, src, 8);
}

void
__host_to_ieee_64 (_Decimal64 in, decimal64 *out)
{
  __swap64 ((char *) &in, (char *) out);
}

void
__ieee_to_host_64 (decimal64 in, _Decimal64 *out)
{
  __swap64 ((char *) &in, (char *) out);
}
#endif /* L_conv_dd */

#if defined(L_conv_td)
static void
__swap128 (char *src, char *dst)
{
  uint32_t t1, t2, t3, t4;

  if (!LIBGCC2_FLOAT_WORDS_BIG_ENDIAN)
    {
      memcpy (&t1, src, 4);
      memcpy (&t2, src + 4, 4);
      memcpy (&t3, src + 8, 4);
      memcpy (&t4, src + 12, 4);
      t1 = __dec_byte_swap (t1);
      t2 = __dec_byte_swap (t2);
      t3 = __dec_byte_swap (t3);
      t4 = __dec_byte_swap (t4);
      memcpy (dst, &t4, 4);
      memcpy (dst + 4, &t3, 4);
      memcpy (dst + 8, &t2, 4);
      memcpy (dst + 12, &t1, 4);
    }
  else
    memcpy (dst, src, 16);
}

void
__host_to_ieee_128 (_Decimal128 in, decimal128 *out)
{
  __swap128 ((char *) &in, (char *) out);
}

void
__ieee_to_host_128 (decimal128 in, _Decimal128 *out)
{
  __swap128 ((char *) &in, (char *) out);
}
#endif /* L_conv_td */

#if defined(L_addsub_sd) || defined(L_addsub_dd) || defined(L_addsub_td)
DFP_C_TYPE
DFP_ADD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  return dfp_binary_op (decNumberAdd, arg_a, arg_b);
}

DFP_C_TYPE
DFP_SUB (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  return dfp_binary_op (decNumberSubtract, arg_a, arg_b);
}
#endif /* L_addsub */

#if defined(L_mul_sd) || defined(L_mul_dd) || defined(L_mul_td)
DFP_C_TYPE
DFP_MULTIPLY (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  return dfp_binary_op (decNumberMultiply, arg_a, arg_b);
}
#endif /* L_mul */

#if defined(L_div_sd) || defined(L_div_dd) || defined(L_div_td)
DFP_C_TYPE
DFP_DIVIDE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  return dfp_binary_op (decNumberDivide, arg_a, arg_b);
}
#endif /* L_div */

#if defined (L_eq_sd) || defined (L_eq_dd) || defined (L_eq_td)
CMPtype
DFP_EQ (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  int stat;
  stat = dfp_compare_op (decNumberCompare, arg_a, arg_b);
  /* For EQ return zero for true, nonzero for false.  */
  return stat != 0;
}
#endif /* L_eq */

#if defined (L_ne_sd) || defined (L_ne_dd) || defined (L_ne_td)
CMPtype
DFP_NE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  int stat;
  stat = dfp_compare_op (decNumberCompare, arg_a, arg_b);
  /* For NE return nonzero for true, zero for false.  */
  return stat != 0;
}
#endif /* L_ne */

#if defined (L_lt_sd) || defined (L_lt_dd) || defined (L_lt_td)
CMPtype
DFP_LT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  int stat;
  stat = dfp_compare_op (decNumberCompare, arg_a, arg_b);
  /* For LT return -1 (<0) for true, 1 for false.  */
  return (stat == -1) ? -1 : 1;
}
#endif /* L_lt */

#if defined (L_gt_sd) || defined (L_gt_dd) || defined (L_gt_td)
CMPtype
DFP_GT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  int stat;
  stat = dfp_compare_op (decNumberCompare, arg_a, arg_b);
  /* For GT return 1 (>0) for true, -1 for false.  */
  return (stat == 1) ? 1 : -1;
}
#endif

#if defined (L_le_sd) || defined (L_le_dd) || defined (L_le_td)
CMPtype
DFP_LE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  int stat;
  stat = dfp_compare_op (decNumberCompare, arg_a, arg_b);
  /* For LE return 0 (<= 0) for true, 1 for false.  */
  return stat == 1;
}
#endif /* L_le */

#if defined (L_ge_sd) || defined (L_ge_dd) || defined (L_ge_td)
CMPtype
DFP_GE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  int stat;
  stat = dfp_compare_op (decNumberCompare, arg_a, arg_b);
  /* For GE return 1 (>=0) for true, -1 for false.  */
  return (stat != -1) ? 1 : -1;
}
#endif /* L_ge */

#define BUFMAX 128

#if defined (L_sd_to_dd) || defined (L_sd_to_td) || defined (L_dd_to_sd) \
 || defined (L_dd_to_td) || defined (L_td_to_sd) || defined (L_td_to_dd)
DFP_C_TYPE_TO
DFP_TO_DFP (DFP_C_TYPE f_from)
{
  DFP_C_TYPE_TO f_to;
  IEEE_TYPE s_from;
  IEEE_TYPE_TO s_to;
  decNumber d;
  decContext context;

  decContextDefault (&context, CONTEXT_INIT);
  context.round = CONTEXT_ROUND;

  HOST_TO_IEEE (f_from, &s_from);
  TO_INTERNAL (&s_from, &d);
  TO_ENCODED_TO (&s_to, &d, &context);
  if (CONTEXT_TRAPS && (context.status & DEC_Inexact) != 0)
    DFP_RAISE (DEC_Inexact);

  IEEE_TO_HOST_TO (s_to, &f_to);
  return f_to;
}
#endif

#if defined (L_sd_to_si) || defined (L_dd_to_si) || defined (L_td_to_si) \
  || defined (L_sd_to_di) || defined (L_dd_to_di) || defined (L_td_to_di) \
  || defined (L_sd_to_usi) || defined (L_dd_to_usi) || defined (L_td_to_usi) \
  || defined (L_sd_to_udi) || defined (L_dd_to_udi) || defined (L_td_to_udi)
INT_TYPE
DFP_TO_INT (DFP_C_TYPE x)
{
  /* decNumber's decimal* types have the same format as C's _Decimal*
     types, but they have different calling conventions.  */

  IEEE_TYPE s;
  char buf[BUFMAX];
  char *pos;
  decNumber qval, n1, n2;
  decContext context;

  decContextDefault (&context, CONTEXT_INIT);
  /* Need non-default rounding mode here.  */
  context.round = DEC_ROUND_DOWN;

  HOST_TO_IEEE (x, &s);
  TO_INTERNAL (&s, &n1);
  /* Rescale if the exponent is less than zero.  */
  decNumberToIntegralValue (&n2, &n1, &context);
  /* Get a value to use for the quanitize call.  */
  decNumberFromString (&qval, (char *) "1.0", &context);
  /* Force the exponent to zero.  */
  decNumberQuantize (&n1, &n2, &qval, &context);
  /* This is based on text in N1107 secton 5.1; it might turn out to be
     undefined behavior instead.  */
  if (context.status & DEC_Invalid_operation)
    {
#if defined (L_sd_to_si) || defined (L_dd_to_si) || defined (L_td_to_si)
      if (decNumberIsNegative(&n2))
        return INT_MIN;
      else
        return INT_MAX;
#elif defined (L_sd_to_di) || defined (L_dd_to_di) || defined (L_td_to_di)
      if (decNumberIsNegative(&n2))
        /* Find a defined constant that will work here.  */
        return (-9223372036854775807LL - 1LL);
      else
        /* Find a defined constant that will work here.  */
        return 9223372036854775807LL;
#elif defined (L_sd_to_usi) || defined (L_dd_to_usi) || defined (L_td_to_usi)
      return UINT_MAX;
#elif defined (L_sd_to_udi) || defined (L_dd_to_udi) || defined (L_td_to_udi)
        /* Find a defined constant that will work here.  */
      return 18446744073709551615ULL;
#endif
    }
  /* Get a string, which at this point will not include an exponent.  */
  decNumberToString (&n1, buf);
  /* Ignore the fractional part.  */
  pos = strchr (buf, '.');
  if (pos)
    *pos = 0;
  /* Use a C library function to convert to the integral type.  */
  return STR_TO_INT (buf, NULL, 10);
}
#endif

#if defined (L_si_to_sd) || defined (L_si_to_dd) || defined (L_si_to_td) \
  || defined (L_di_to_sd) || defined (L_di_to_dd) || defined (L_di_to_td) \
  || defined (L_usi_to_sd) || defined (L_usi_to_dd) || defined (L_usi_to_td) \
  || defined (L_udi_to_sd) || defined (L_udi_to_dd) || defined (L_udi_to_td)
DFP_C_TYPE
INT_TO_DFP (INT_TYPE i)
{
  DFP_C_TYPE f;
  IEEE_TYPE s;
  char buf[BUFMAX];
  decContext context;

  decContextDefault (&context, CONTEXT_INIT);
  context.round = CONTEXT_ROUND;

  /* Use a C library function to get a floating point string.  */
  sprintf (buf, INT_FMT ".0", CAST_FOR_FMT(i));
  /* Convert from the floating point string to a decimal* type.  */
  FROM_STRING (&s, buf, &context);
  IEEE_TO_HOST (s, &f);
  if (CONTEXT_TRAPS && (context.status & DEC_Inexact) != 0)
    DFP_RAISE (DEC_Inexact);
  return f;
}
#endif

#if defined (L_sd_to_sf) || defined (L_dd_to_sf) || defined (L_td_to_sf) \
 || defined (L_sd_to_df) || defined (L_dd_to_df) || defined (L_td_to_df) \
 || ((defined (L_sd_to_xf) || defined (L_dd_to_xf) || defined (L_td_to_xf)) \
     && LIBGCC2_HAS_XF_MODE)
BFP_TYPE
DFP_TO_BFP (DFP_C_TYPE f)
{
  IEEE_TYPE s;
  char buf[BUFMAX];

  HOST_TO_IEEE (f, &s);
  /* Write the value to a string.  */
  TO_STRING (&s, buf);
  /* Read it as the binary floating point type and return that.  */
  return STR_TO_BFP (buf, NULL);
}
#endif
                                                                                
#if defined (L_sf_to_sd) || defined (L_sf_to_dd) || defined (L_sf_to_td) \
 || defined (L_df_to_sd) || defined (L_df_to_dd) || defined (L_df_to_td) \
 || ((defined (L_xf_to_sd) || defined (L_xf_to_dd) || defined (L_xf_to_td)) \
     && LIBGCC2_HAS_XF_MODE)
DFP_C_TYPE
BFP_TO_DFP (BFP_TYPE x)
{
  DFP_C_TYPE f;
  IEEE_TYPE s;
  char buf[BUFMAX];
  decContext context;

  decContextDefault (&context, CONTEXT_INIT);
  context.round = CONTEXT_ROUND;

  /* Use a C library function to write the floating point value to a string.  */
#ifdef BFP_VIA_TYPE
  /* FIXME: Is threre a better way to output an XFmode variable in C?  */
  sprintf (buf, BFP_FMT, (BFP_VIA_TYPE) x);
#else
  sprintf (buf, BFP_FMT, x);
#endif

  /* Convert from the floating point string to a decimal* type.  */
  FROM_STRING (&s, buf, &context);
  IEEE_TO_HOST (s, &f);
  if (CONTEXT_TRAPS && (context.status & DEC_Inexact) != 0)
    DFP_RAISE (DEC_Inexact);
  return f;
}
#endif

#if defined (L_unord_sd) || defined (L_unord_dd) || defined (L_unord_td)
CMPtype
DFP_UNORD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
  decNumber arg1, arg2;
  IEEE_TYPE a, b;

  HOST_TO_IEEE (arg_a, &a);
  HOST_TO_IEEE (arg_b, &b);
  TO_INTERNAL (&a, &arg1);
  TO_INTERNAL (&b, &arg2);
  return (decNumberIsNaN (&arg1) || decNumberIsNaN (&arg2));
}
#endif /* L_unord_sd || L_unord_dd || L_unord_td */


More information about the Gcc-patches mailing list