riemann_zeta.tcc

Go to the documentation of this file.
00001 // Special functions -*- C++ -*-
00002 
00003 // Copyright (C) 2006, 2007, 2008, 2009
00004 // Free Software Foundation, Inc.
00005 //
00006 // This file is part of the GNU ISO C++ Library.  This library is free
00007 // software; you can redistribute it and/or modify it under the
00008 // terms of the GNU General Public License as published by the
00009 // Free Software Foundation; either version 3, or (at your option)
00010 // any later version.
00011 //
00012 // This library is distributed in the hope that it will be useful,
00013 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00014 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015 // GNU General Public License for more details.
00016 //
00017 // Under Section 7 of GPL version 3, you are granted additional
00018 // permissions described in the GCC Runtime Library Exception, version
00019 // 3.1, as published by the Free Software Foundation.
00020 
00021 // You should have received a copy of the GNU General Public License and
00022 // a copy of the GCC Runtime Library Exception along with this program;
00023 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
00024 // <http://www.gnu.org/licenses/>.
00025 
00026 /** @file tr1/riemann_zeta.tcc
00027  *  This is an internal header file, included by other library headers.
00028  *  You should not attempt to use it directly.
00029  */
00030 
00031 //
00032 // ISO C++ 14882 TR1: 5.2  Special functions
00033 //
00034 
00035 // Written by Edward Smith-Rowland based on:
00036 //   (1) Handbook of Mathematical Functions,
00037 //       Ed. by Milton Abramowitz and Irene A. Stegun,
00038 //       Dover Publications, New-York, Section 5, pp. 807-808.
00039 //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
00040 //   (3) Gamma, Exploring Euler's Constant, Julian Havil,
00041 //       Princeton, 2003.
00042 
00043 #ifndef _GLIBCXX_TR1_RIEMANN_ZETA_TCC
00044 #define _GLIBCXX_TR1_RIEMANN_ZETA_TCC 1
00045 
00046 #include "special_function_util.h"
00047 
00048 namespace std
00049 {
00050 namespace tr1
00051 {
00052 
00053   // [5.2] Special functions
00054 
00055   // Implementation-space details.
00056   namespace __detail
00057   {
00058 
00059     /**
00060      *   @brief  Compute the Riemann zeta function @f$ \zeta(s) @f$
00061      *           by summation for s > 1.
00062      * 
00063      *   The Riemann zeta function is defined by:
00064      *    \f[
00065      *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
00066      *    \f]
00067      *   For s < 1 use the reflection formula:
00068      *    \f[
00069      *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
00070      *    \f]
00071      */
00072     template<typename _Tp>
00073     _Tp
00074     __riemann_zeta_sum(const _Tp __s)
00075     {
00076       //  A user shouldn't get to this.
00077       if (__s < _Tp(1))
00078         std::__throw_domain_error(__N("Bad argument in zeta sum."));
00079 
00080       const unsigned int max_iter = 10000;
00081       _Tp __zeta = _Tp(0);
00082       for (unsigned int __k = 1; __k < max_iter; ++__k)
00083         {
00084           _Tp __term = std::pow(static_cast<_Tp>(__k), -__s);
00085           if (__term < std::numeric_limits<_Tp>::epsilon())
00086             {
00087               break;
00088             }
00089           __zeta += __term;
00090         }
00091 
00092       return __zeta;
00093     }
00094 
00095 
00096     /**
00097      *   @brief  Evaluate the Riemann zeta function @f$ \zeta(s) @f$
00098      *           by an alternate series for s > 0.
00099      * 
00100      *   The Riemann zeta function is defined by:
00101      *    \f[
00102      *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
00103      *    \f]
00104      *   For s < 1 use the reflection formula:
00105      *    \f[
00106      *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
00107      *    \f]
00108      */
00109     template<typename _Tp>
00110     _Tp
00111     __riemann_zeta_alt(const _Tp __s)
00112     {
00113       _Tp __sgn = _Tp(1);
00114       _Tp __zeta = _Tp(0);
00115       for (unsigned int __i = 1; __i < 10000000; ++__i)
00116         {
00117           _Tp __term = __sgn / std::pow(__i, __s);
00118           if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon())
00119             break;
00120           __zeta += __term;
00121           __sgn *= _Tp(-1);
00122         }
00123       __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);
00124 
00125       return __zeta;
00126     }
00127 
00128 
00129     /**
00130      *   @brief  Evaluate the Riemann zeta function by series for all s != 1.
00131      *           Convergence is great until largish negative numbers.
00132      *           Then the convergence of the > 0 sum gets better.
00133      *
00134      *   The series is:
00135      *    \f[
00136      *      \zeta(s) = \frac{1}{1-2^{1-s}}
00137      *                 \sum_{n=0}^{\infty} \frac{1}{2^{n+1}}
00138      *                 \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s}
00139      *    \f]
00140      *   Havil 2003, p. 206.
00141      *
00142      *   The Riemann zeta function is defined by:
00143      *    \f[
00144      *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
00145      *    \f]
00146      *   For s < 1 use the reflection formula:
00147      *    \f[
00148      *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
00149      *    \f]
00150      */
00151     template<typename _Tp>
00152     _Tp
00153     __riemann_zeta_glob(const _Tp __s)
00154     {
00155       _Tp __zeta = _Tp(0);
00156 
00157       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
00158       //  Max e exponent before overflow.
00159       const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
00160                                * std::log(_Tp(10)) - _Tp(1);
00161 
00162       //  This series works until the binomial coefficient blows up
00163       //  so use reflection.
00164       if (__s < _Tp(0))
00165         {
00166 #if _GLIBCXX_USE_C99_MATH_TR1
00167           if (std::tr1::fmod(__s,_Tp(2)) == _Tp(0))
00168             return _Tp(0);
00169           else
00170 #endif
00171             {
00172               _Tp __zeta = __riemann_zeta_glob(_Tp(1) - __s);
00173               __zeta *= std::pow(_Tp(2)
00174                      * __numeric_constants<_Tp>::__pi(), __s)
00175                      * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
00176 #if _GLIBCXX_USE_C99_MATH_TR1
00177                      * std::exp(std::tr1::lgamma(_Tp(1) - __s))
00178 #else
00179                      * std::exp(__log_gamma(_Tp(1) - __s))
00180 #endif
00181                      / __numeric_constants<_Tp>::__pi();
00182               return __zeta;
00183             }
00184         }
00185 
00186       _Tp __num = _Tp(0.5L);
00187       const unsigned int __maxit = 10000;
00188       for (unsigned int __i = 0; __i < __maxit; ++__i)
00189         {
00190           bool __punt = false;
00191           _Tp __sgn = _Tp(1);
00192           _Tp __term = _Tp(0);
00193           for (unsigned int __j = 0; __j <= __i; ++__j)
00194             {
00195 #if _GLIBCXX_USE_C99_MATH_TR1
00196               _Tp __bincoeff =  std::tr1::lgamma(_Tp(1 + __i))
00197                               - std::tr1::lgamma(_Tp(1 + __j))
00198                               - std::tr1::lgamma(_Tp(1 + __i - __j));
00199 #else
00200               _Tp __bincoeff =  __log_gamma(_Tp(1 + __i))
00201                               - __log_gamma(_Tp(1 + __j))
00202                               - __log_gamma(_Tp(1 + __i - __j));
00203 #endif
00204               if (__bincoeff > __max_bincoeff)
00205                 {
00206                   //  This only gets hit for x << 0.
00207                   __punt = true;
00208                   break;
00209                 }
00210               __bincoeff = std::exp(__bincoeff);
00211               __term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s);
00212               __sgn *= _Tp(-1);
00213             }
00214           if (__punt)
00215             break;
00216           __term *= __num;
00217           __zeta += __term;
00218           if (std::abs(__term/__zeta) < __eps)
00219             break;
00220           __num *= _Tp(0.5L);
00221         }
00222 
00223       __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);
00224 
00225       return __zeta;
00226     }
00227 
00228 
00229     /**
00230      *   @brief  Compute the Riemann zeta function @f$ \zeta(s) @f$
00231      *           using the product over prime factors.
00232      *    \f[
00233      *      \zeta(s) = \Pi_{i=1}^\infty \frac{1}{1 - p_i^{-s}}
00234      *    \f]
00235      *    where @f$ {p_i} @f$ are the prime numbers.
00236      * 
00237      *   The Riemann zeta function is defined by:
00238      *    \f[
00239      *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
00240      *    \f]
00241      *   For s < 1 use the reflection formula:
00242      *    \f[
00243      *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
00244      *    \f]
00245      */
00246     template<typename _Tp>
00247     _Tp
00248     __riemann_zeta_product(const _Tp __s)
00249     {
00250       static const _Tp __prime[] = {
00251         _Tp(2), _Tp(3), _Tp(5), _Tp(7), _Tp(11), _Tp(13), _Tp(17), _Tp(19),
00252         _Tp(23), _Tp(29), _Tp(31), _Tp(37), _Tp(41), _Tp(43), _Tp(47),
00253         _Tp(53), _Tp(59), _Tp(61), _Tp(67), _Tp(71), _Tp(73), _Tp(79),
00254         _Tp(83), _Tp(89), _Tp(97), _Tp(101), _Tp(103), _Tp(107), _Tp(109)
00255       };
00256       static const unsigned int __num_primes = sizeof(__prime) / sizeof(_Tp);
00257 
00258       _Tp __zeta = _Tp(1);
00259       for (unsigned int __i = 0; __i < __num_primes; ++__i)
00260         {
00261           const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s);
00262           __zeta *= __fact;
00263           if (_Tp(1) - __fact < std::numeric_limits<_Tp>::epsilon())
00264             break;
00265         }
00266 
00267       __zeta = _Tp(1) / __zeta;
00268 
00269       return __zeta;
00270     }
00271 
00272 
00273     /**
00274      *   @brief  Return the Riemann zeta function @f$ \zeta(s) @f$.
00275      * 
00276      *   The Riemann zeta function is defined by:
00277      *    \f[
00278      *      \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1
00279      *                 \frac{(2\pi)^s}{pi} sin(\frac{\pi s}{2})
00280      *                 \Gamma (1 - s) \zeta (1 - s) for s < 1
00281      *    \f]
00282      *   For s < 1 use the reflection formula:
00283      *    \f[
00284      *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
00285      *    \f]
00286      */
00287     template<typename _Tp>
00288     _Tp
00289     __riemann_zeta(const _Tp __s)
00290     {
00291       if (__isnan(__s))
00292         return std::numeric_limits<_Tp>::quiet_NaN();
00293       else if (__s == _Tp(1))
00294         return std::numeric_limits<_Tp>::infinity();
00295       else if (__s < -_Tp(19))
00296         {
00297           _Tp __zeta = __riemann_zeta_product(_Tp(1) - __s);
00298           __zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s)
00299                  * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
00300 #if _GLIBCXX_USE_C99_MATH_TR1
00301                  * std::exp(std::tr1::lgamma(_Tp(1) - __s))
00302 #else
00303                  * std::exp(__log_gamma(_Tp(1) - __s))
00304 #endif
00305                  / __numeric_constants<_Tp>::__pi();
00306           return __zeta;
00307         }
00308       else if (__s < _Tp(20))
00309         {
00310           //  Global double sum or McLaurin?
00311           bool __glob = true;
00312           if (__glob)
00313             return __riemann_zeta_glob(__s);
00314           else
00315             {
00316               if (__s > _Tp(1))
00317                 return __riemann_zeta_sum(__s);
00318               else
00319                 {
00320                   _Tp __zeta = std::pow(_Tp(2)
00321                                 * __numeric_constants<_Tp>::__pi(), __s)
00322                          * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
00323 #if _GLIBCXX_USE_C99_MATH_TR1
00324                              * std::tr1::tgamma(_Tp(1) - __s)
00325 #else
00326                              * std::exp(__log_gamma(_Tp(1) - __s))
00327 #endif
00328                              * __riemann_zeta_sum(_Tp(1) - __s);
00329                   return __zeta;
00330                 }
00331             }
00332         }
00333       else
00334         return __riemann_zeta_product(__s);
00335     }
00336 
00337 
00338     /**
00339      *   @brief  Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
00340      *           for all s != 1 and x > -1.
00341      * 
00342      *   The Hurwitz zeta function is defined by:
00343      *   @f[
00344      *     \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
00345      *   @f]
00346      *   The Riemann zeta function is a special case:
00347      *   @f[
00348      *     \zeta(s) = \zeta(1,s)
00349      *   @f]
00350      * 
00351      *   This functions uses the double sum that converges for s != 1
00352      *   and x > -1:
00353      *   @f[
00354      *     \zeta(x,s) = \frac{1}{s-1}
00355      *                \sum_{n=0}^{\infty} \frac{1}{n + 1}
00356      *                \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s}
00357      *   @f]
00358      */
00359     template<typename _Tp>
00360     _Tp
00361     __hurwitz_zeta_glob(const _Tp __a, const _Tp __s)
00362     {
00363       _Tp __zeta = _Tp(0);
00364 
00365       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
00366       //  Max e exponent before overflow.
00367       const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
00368                                * std::log(_Tp(10)) - _Tp(1);
00369 
00370       const unsigned int __maxit = 10000;
00371       for (unsigned int __i = 0; __i < __maxit; ++__i)
00372         {
00373           bool __punt = false;
00374           _Tp __sgn = _Tp(1);
00375           _Tp __term = _Tp(0);
00376           for (unsigned int __j = 0; __j <= __i; ++__j)
00377             {
00378 #if _GLIBCXX_USE_C99_MATH_TR1
00379               _Tp __bincoeff =  std::tr1::lgamma(_Tp(1 + __i))
00380                               - std::tr1::lgamma(_Tp(1 + __j))
00381                               - std::tr1::lgamma(_Tp(1 + __i - __j));
00382 #else
00383               _Tp __bincoeff =  __log_gamma(_Tp(1 + __i))
00384                               - __log_gamma(_Tp(1 + __j))
00385                               - __log_gamma(_Tp(1 + __i - __j));
00386 #endif
00387               if (__bincoeff > __max_bincoeff)
00388                 {
00389                   //  This only gets hit for x << 0.
00390                   __punt = true;
00391                   break;
00392                 }
00393               __bincoeff = std::exp(__bincoeff);
00394               __term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s);
00395               __sgn *= _Tp(-1);
00396             }
00397           if (__punt)
00398             break;
00399           __term /= _Tp(__i + 1);
00400           if (std::abs(__term / __zeta) < __eps)
00401             break;
00402           __zeta += __term;
00403         }
00404 
00405       __zeta /= __s - _Tp(1);
00406 
00407       return __zeta;
00408     }
00409 
00410 
00411     /**
00412      *   @brief  Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
00413      *           for all s != 1 and x > -1.
00414      * 
00415      *   The Hurwitz zeta function is defined by:
00416      *   @f[
00417      *     \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
00418      *   @f]
00419      *   The Riemann zeta function is a special case:
00420      *   @f[
00421      *     \zeta(s) = \zeta(1,s)
00422      *   @f]
00423      */
00424     template<typename _Tp>
00425     inline _Tp
00426     __hurwitz_zeta(const _Tp __a, const _Tp __s)
00427     {
00428       return __hurwitz_zeta_glob(__a, __s);
00429     }
00430 
00431   } // namespace std::tr1::__detail
00432 }
00433 }
00434 
00435 #endif // _GLIBCXX_TR1_RIEMANN_ZETA_TCC

Generated on Tue Apr 21 13:13:30 2009 for libstdc++ by  doxygen 1.5.8