stl_multiset.h

Go to the documentation of this file.
00001 // Multiset implementation -*- C++ -*-
00002 
00003 // Copyright (C) 2001, 2002, 2004, 2005, 2006 Free Software Foundation, Inc.
00004 //
00005 // This file is part of the GNU ISO C++ Library.  This library is free
00006 // software; you can redistribute it and/or modify it under the
00007 // terms of the GNU General Public License as published by the
00008 // Free Software Foundation; either version 2, or (at your option)
00009 // any later version.
00010 
00011 // This library is distributed in the hope that it will be useful,
00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00014 // GNU General Public License for more details.
00015 
00016 // You should have received a copy of the GNU General Public License along
00017 // with this library; see the file COPYING.  If not, write to the Free
00018 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
00019 // USA.
00020 
00021 // As a special exception, you may use this file as part of a free software
00022 // library without restriction.  Specifically, if other files instantiate
00023 // templates or use macros or inline functions from this file, or you compile
00024 // this file and link it with other files to produce an executable, this
00025 // file does not by itself cause the resulting executable to be covered by
00026 // the GNU General Public License.  This exception does not however
00027 // invalidate any other reasons why the executable file might be covered by
00028 // the GNU General Public License.
00029 
00030 /*
00031  *
00032  * Copyright (c) 1994
00033  * Hewlett-Packard Company
00034  *
00035  * Permission to use, copy, modify, distribute and sell this software
00036  * and its documentation for any purpose is hereby granted without fee,
00037  * provided that the above copyright notice appear in all copies and
00038  * that both that copyright notice and this permission notice appear
00039  * in supporting documentation.  Hewlett-Packard Company makes no
00040  * representations about the suitability of this software for any
00041  * purpose.  It is provided "as is" without express or implied warranty.
00042  *
00043  *
00044  * Copyright (c) 1996
00045  * Silicon Graphics Computer Systems, Inc.
00046  *
00047  * Permission to use, copy, modify, distribute and sell this software
00048  * and its documentation for any purpose is hereby granted without fee,
00049  * provided that the above copyright notice appear in all copies and
00050  * that both that copyright notice and this permission notice appear
00051  * in supporting documentation.  Silicon Graphics makes no
00052  * representations about the suitability of this software for any
00053  * purpose.  It is provided "as is" without express or implied warranty.
00054  */
00055 
00056 /** @file stl_multiset.h
00057  *  This is an internal header file, included by other library headers.
00058  *  You should not attempt to use it directly.
00059  */
00060 
00061 #ifndef _MULTISET_H
00062 #define _MULTISET_H 1
00063 
00064 #include <bits/concept_check.h>
00065 
00066 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD)
00067 
00068   /**
00069    *  @brief A standard container made up of elements, which can be retrieved
00070    *  in logarithmic time.
00071    *
00072    *  @ingroup Containers
00073    *  @ingroup Assoc_containers
00074    *
00075    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
00076    *  <a href="tables.html#66">reversible container</a>, and an
00077    *  <a href="tables.html#69">associative container</a> (using equivalent
00078    *  keys).  For a @c multiset<Key> the key_type and value_type are Key.
00079    *
00080    *  Multisets support bidirectional iterators.
00081    *
00082    *  @if maint
00083    *  The private tree data is declared exactly the same way for set and
00084    *  multiset; the distinction is made entirely in how the tree functions are
00085    *  called (*_unique versus *_equal, same as the standard).
00086    *  @endif
00087   */
00088   template <class _Key, class _Compare = std::less<_Key>,
00089         class _Alloc = std::allocator<_Key> >
00090     class multiset
00091     {
00092       // concept requirements
00093       typedef typename _Alloc::value_type                   _Alloc_value_type;
00094       __glibcxx_class_requires(_Key, _SGIAssignableConcept)
00095       __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
00096                 _BinaryFunctionConcept)
00097       __glibcxx_class_requires2(_Key, _Alloc_value_type, _SameTypeConcept)  
00098 
00099     public:
00100       // typedefs:
00101       typedef _Key     key_type;
00102       typedef _Key     value_type;
00103       typedef _Compare key_compare;
00104       typedef _Compare value_compare;
00105       typedef _Alloc   allocator_type;
00106 
00107     private:
00108       /// @if maint  This turns a red-black tree into a [multi]set.  @endif
00109       typedef typename _Alloc::template rebind<_Key>::other _Key_alloc_type;
00110 
00111       typedef _Rb_tree<key_type, value_type, _Identity<value_type>,
00112                key_compare, _Key_alloc_type> _Rep_type;
00113       /// @if maint  The actual tree structure.  @endif
00114       _Rep_type _M_t;
00115 
00116     public:
00117       typedef typename _Key_alloc_type::pointer             pointer;
00118       typedef typename _Key_alloc_type::const_pointer       const_pointer;
00119       typedef typename _Key_alloc_type::reference           reference;
00120       typedef typename _Key_alloc_type::const_reference     const_reference;
00121       // _GLIBCXX_RESOLVE_LIB_DEFECTS
00122       // DR 103. set::iterator is required to be modifiable,
00123       // but this allows modification of keys.
00124       typedef typename _Rep_type::const_iterator            iterator;
00125       typedef typename _Rep_type::const_iterator            const_iterator;
00126       typedef typename _Rep_type::const_reverse_iterator    reverse_iterator;
00127       typedef typename _Rep_type::const_reverse_iterator    const_reverse_iterator;
00128       typedef typename _Rep_type::size_type                 size_type;
00129       typedef typename _Rep_type::difference_type           difference_type;
00130 
00131       // allocation/deallocation
00132 
00133       /**
00134        *  @brief  Default constructor creates no elements.
00135        */
00136       multiset()
00137       : _M_t(_Compare(), allocator_type()) { }
00138 
00139       explicit
00140       multiset(const _Compare& __comp,
00141            const allocator_type& __a = allocator_type())
00142       : _M_t(__comp, __a) { }
00143 
00144       /**
00145        *  @brief  Builds a %multiset from a range.
00146        *  @param  first  An input iterator.
00147        *  @param  last  An input iterator.
00148        *
00149        *  Create a %multiset consisting of copies of the elements from
00150        *  [first,last).  This is linear in N if the range is already sorted,
00151        *  and NlogN otherwise (where N is distance(first,last)).
00152        */
00153       template <class _InputIterator>
00154         multiset(_InputIterator __first, _InputIterator __last)
00155     : _M_t(_Compare(), allocator_type())
00156         { _M_t._M_insert_equal(__first, __last); }
00157 
00158       /**
00159        *  @brief  Builds a %multiset from a range.
00160        *  @param  first  An input iterator.
00161        *  @param  last  An input iterator.
00162        *  @param  comp  A comparison functor.
00163        *  @param  a  An allocator object.
00164        *
00165        *  Create a %multiset consisting of copies of the elements from
00166        *  [first,last).  This is linear in N if the range is already sorted,
00167        *  and NlogN otherwise (where N is distance(first,last)).
00168        */
00169       template <class _InputIterator>
00170         multiset(_InputIterator __first, _InputIterator __last,
00171          const _Compare& __comp,
00172          const allocator_type& __a = allocator_type())
00173     : _M_t(__comp, __a)
00174         { _M_t._M_insert_equal(__first, __last); }
00175 
00176       /**
00177        *  @brief  %Multiset copy constructor.
00178        *  @param  x  A %multiset of identical element and allocator types.
00179        *
00180        *  The newly-created %multiset uses a copy of the allocation object used
00181        *  by @a x.
00182        */
00183       multiset(const multiset<_Key,_Compare,_Alloc>& __x)
00184       : _M_t(__x._M_t) { }
00185 
00186       /**
00187        *  @brief  %Multiset assignment operator.
00188        *  @param  x  A %multiset of identical element and allocator types.
00189        *
00190        *  All the elements of @a x are copied, but unlike the copy constructor,
00191        *  the allocator object is not copied.
00192        */
00193       multiset<_Key,_Compare,_Alloc>&
00194       operator=(const multiset<_Key,_Compare,_Alloc>& __x)
00195       {
00196     _M_t = __x._M_t;
00197     return *this;
00198       }
00199 
00200       // accessors:
00201 
00202       ///  Returns the comparison object.
00203       key_compare
00204       key_comp() const
00205       { return _M_t.key_comp(); }
00206       ///  Returns the comparison object.
00207       value_compare
00208       value_comp() const
00209       { return _M_t.key_comp(); }
00210       ///  Returns the memory allocation object.
00211       allocator_type
00212       get_allocator() const
00213       { return _M_t.get_allocator(); }
00214 
00215       /**
00216        *  Returns a read/write iterator that points to the first element in the
00217        *  %multiset.  Iteration is done in ascending order according to the
00218        *  keys.
00219        */
00220       iterator
00221       begin() const
00222       { return _M_t.begin(); }
00223 
00224       /**
00225        *  Returns a read/write iterator that points one past the last element in
00226        *  the %multiset.  Iteration is done in ascending order according to the
00227        *  keys.
00228        */
00229       iterator
00230       end() const
00231       { return _M_t.end(); }
00232 
00233       /**
00234        *  Returns a read/write reverse iterator that points to the last element
00235        *  in the %multiset.  Iteration is done in descending order according to
00236        *  the keys.
00237        */
00238       reverse_iterator
00239       rbegin() const
00240       { return _M_t.rbegin(); }
00241 
00242       /**
00243        *  Returns a read/write reverse iterator that points to the last element
00244        *  in the %multiset.  Iteration is done in descending order according to
00245        *  the keys.
00246        */
00247       reverse_iterator
00248       rend() const
00249       { return _M_t.rend(); }
00250 
00251       ///  Returns true if the %set is empty.
00252       bool
00253       empty() const
00254       { return _M_t.empty(); }
00255 
00256       ///  Returns the size of the %set.
00257       size_type
00258       size() const
00259       { return _M_t.size(); }
00260 
00261       ///  Returns the maximum size of the %set.
00262       size_type
00263       max_size() const
00264       { return _M_t.max_size(); }
00265 
00266       /**
00267        *  @brief  Swaps data with another %multiset.
00268        *  @param  x  A %multiset of the same element and allocator types.
00269        *
00270        *  This exchanges the elements between two multisets in constant time.
00271        *  (It is only swapping a pointer, an integer, and an instance of the @c
00272        *  Compare type (which itself is often stateless and empty), so it should
00273        *  be quite fast.)
00274        *  Note that the global std::swap() function is specialized such that
00275        *  std::swap(s1,s2) will feed to this function.
00276        */
00277       void
00278       swap(multiset<_Key, _Compare, _Alloc>& __x)
00279       { _M_t.swap(__x._M_t); }
00280 
00281       // insert/erase
00282       /**
00283        *  @brief Inserts an element into the %multiset.
00284        *  @param  x  Element to be inserted.
00285        *  @return An iterator that points to the inserted element.
00286        *
00287        *  This function inserts an element into the %multiset.  Contrary
00288        *  to a std::set the %multiset does not rely on unique keys and thus
00289        *  multiple copies of the same element can be inserted.
00290        *
00291        *  Insertion requires logarithmic time.
00292        */
00293       iterator
00294       insert(const value_type& __x)
00295       { return _M_t._M_insert_equal(__x); }
00296 
00297       /**
00298        *  @brief Inserts an element into the %multiset.
00299        *  @param  position  An iterator that serves as a hint as to where the
00300        *                    element should be inserted.
00301        *  @param  x  Element to be inserted.
00302        *  @return An iterator that points to the inserted element.
00303        *
00304        *  This function inserts an element into the %multiset.  Contrary
00305        *  to a std::set the %multiset does not rely on unique keys and thus
00306        *  multiple copies of the same element can be inserted.
00307        *
00308        *  Note that the first parameter is only a hint and can potentially
00309        *  improve the performance of the insertion process.  A bad hint would
00310        *  cause no gains in efficiency.
00311        *
00312        *  See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
00313        *  for more on "hinting".
00314        *
00315        *  Insertion requires logarithmic time (if the hint is not taken).
00316        */
00317       iterator
00318       insert(iterator __position, const value_type& __x)
00319       { return _M_t._M_insert_equal(__position, __x); }
00320 
00321       /**
00322        *  @brief A template function that attemps to insert a range of elements.
00323        *  @param  first  Iterator pointing to the start of the range to be
00324        *                 inserted.
00325        *  @param  last  Iterator pointing to the end of the range.
00326        *
00327        *  Complexity similar to that of the range constructor.
00328        */
00329       template <class _InputIterator>
00330         void
00331         insert(_InputIterator __first, _InputIterator __last)
00332         { _M_t._M_insert_equal(__first, __last); }
00333 
00334       /**
00335        *  @brief Erases an element from a %multiset.
00336        *  @param  position  An iterator pointing to the element to be erased.
00337        *
00338        *  This function erases an element, pointed to by the given iterator,
00339        *  from a %multiset.  Note that this function only erases the element,
00340        *  and that if the element is itself a pointer, the pointed-to memory is
00341        *  not touched in any way.  Managing the pointer is the user's
00342        *  responsibilty.
00343        */
00344       void
00345       erase(iterator __position)
00346       { _M_t.erase(__position); }
00347 
00348       /**
00349        *  @brief Erases elements according to the provided key.
00350        *  @param  x  Key of element to be erased.
00351        *  @return  The number of elements erased.
00352        *
00353        *  This function erases all elements located by the given key from a
00354        *  %multiset.
00355        *  Note that this function only erases the element, and that if
00356        *  the element is itself a pointer, the pointed-to memory is not touched
00357        *  in any way.  Managing the pointer is the user's responsibilty.
00358        */
00359       size_type
00360       erase(const key_type& __x)
00361       { return _M_t.erase(__x); }
00362 
00363       /**
00364        *  @brief Erases a [first,last) range of elements from a %multiset.
00365        *  @param  first  Iterator pointing to the start of the range to be
00366        *                 erased.
00367        *  @param  last  Iterator pointing to the end of the range to be erased.
00368        *
00369        *  This function erases a sequence of elements from a %multiset.
00370        *  Note that this function only erases the elements, and that if
00371        *  the elements themselves are pointers, the pointed-to memory is not
00372        *  touched in any way.  Managing the pointer is the user's responsibilty.
00373        */
00374       void
00375       erase(iterator __first, iterator __last)
00376       { _M_t.erase(__first, __last); }
00377 
00378       /**
00379        *  Erases all elements in a %multiset.  Note that this function only
00380        *  erases the elements, and that if the elements themselves are pointers,
00381        *  the pointed-to memory is not touched in any way.  Managing the pointer
00382        *  is the user's responsibilty.
00383        */
00384       void
00385       clear()
00386       { _M_t.clear(); }
00387 
00388       // multiset operations:
00389 
00390       /**
00391        *  @brief Finds the number of elements with given key.
00392        *  @param  x  Key of elements to be located.
00393        *  @return Number of elements with specified key.
00394        */
00395       size_type
00396       count(const key_type& __x) const
00397       { return _M_t.count(__x); }
00398 
00399       // _GLIBCXX_RESOLVE_LIB_DEFECTS
00400       // 214.  set::find() missing const overload
00401       //@{
00402       /**
00403        *  @brief Tries to locate an element in a %set.
00404        *  @param  x  Element to be located.
00405        *  @return  Iterator pointing to sought-after element, or end() if not
00406        *           found.
00407        *
00408        *  This function takes a key and tries to locate the element with which
00409        *  the key matches.  If successful the function returns an iterator
00410        *  pointing to the sought after element.  If unsuccessful it returns the
00411        *  past-the-end ( @c end() ) iterator.
00412        */
00413       iterator
00414       find(const key_type& __x)
00415       { return _M_t.find(__x); }
00416 
00417       const_iterator
00418       find(const key_type& __x) const
00419       { return _M_t.find(__x); }
00420       //@}
00421 
00422       //@{
00423       /**
00424        *  @brief Finds the beginning of a subsequence matching given key.
00425        *  @param  x  Key to be located.
00426        *  @return  Iterator pointing to first element equal to or greater
00427        *           than key, or end().
00428        *
00429        *  This function returns the first element of a subsequence of elements
00430        *  that matches the given key.  If unsuccessful it returns an iterator
00431        *  pointing to the first element that has a greater value than given key
00432        *  or end() if no such element exists.
00433        */
00434       iterator
00435       lower_bound(const key_type& __x)
00436       { return _M_t.lower_bound(__x); }
00437 
00438       const_iterator
00439       lower_bound(const key_type& __x) const
00440       { return _M_t.lower_bound(__x); }
00441       //@}
00442 
00443       //@{
00444       /**
00445        *  @brief Finds the end of a subsequence matching given key.
00446        *  @param  x  Key to be located.
00447        *  @return Iterator pointing to the first element
00448        *          greater than key, or end().
00449        */
00450       iterator
00451       upper_bound(const key_type& __x)
00452       { return _M_t.upper_bound(__x); }
00453 
00454       const_iterator
00455       upper_bound(const key_type& __x) const
00456       { return _M_t.upper_bound(__x); }
00457       //@}
00458 
00459       //@{
00460       /**
00461        *  @brief Finds a subsequence matching given key.
00462        *  @param  x  Key to be located.
00463        *  @return  Pair of iterators that possibly points to the subsequence
00464        *           matching given key.
00465        *
00466        *  This function is equivalent to
00467        *  @code
00468        *    std::make_pair(c.lower_bound(val),
00469        *                   c.upper_bound(val))
00470        *  @endcode
00471        *  (but is faster than making the calls separately).
00472        *
00473        *  This function probably only makes sense for multisets.
00474        */
00475       std::pair<iterator, iterator>
00476       equal_range(const key_type& __x)
00477       { return _M_t.equal_range(__x); }
00478 
00479       std::pair<const_iterator, const_iterator>
00480       equal_range(const key_type& __x) const
00481       { return _M_t.equal_range(__x); }
00482 
00483       template <class _K1, class _C1, class _A1>
00484         friend bool
00485         operator== (const multiset<_K1, _C1, _A1>&,
00486             const multiset<_K1, _C1, _A1>&);
00487 
00488       template <class _K1, class _C1, class _A1>
00489         friend bool
00490         operator< (const multiset<_K1, _C1, _A1>&,
00491            const multiset<_K1, _C1, _A1>&);
00492     };
00493 
00494   /**
00495    *  @brief  Multiset equality comparison.
00496    *  @param  x  A %multiset.
00497    *  @param  y  A %multiset of the same type as @a x.
00498    *  @return  True iff the size and elements of the multisets are equal.
00499    *
00500    *  This is an equivalence relation.  It is linear in the size of the
00501    *  multisets.
00502    *  Multisets are considered equivalent if their sizes are equal, and if
00503    *  corresponding elements compare equal.
00504   */
00505   template <class _Key, class _Compare, class _Alloc>
00506     inline bool
00507     operator==(const multiset<_Key, _Compare, _Alloc>& __x,
00508            const multiset<_Key, _Compare, _Alloc>& __y)
00509     { return __x._M_t == __y._M_t; }
00510 
00511   /**
00512    *  @brief  Multiset ordering relation.
00513    *  @param  x  A %multiset.
00514    *  @param  y  A %multiset of the same type as @a x.
00515    *  @return  True iff @a x is lexicographically less than @a y.
00516    *
00517    *  This is a total ordering relation.  It is linear in the size of the
00518    *  maps.  The elements must be comparable with @c <.
00519    *
00520    *  See std::lexicographical_compare() for how the determination is made.
00521   */
00522   template <class _Key, class _Compare, class _Alloc>
00523     inline bool
00524     operator<(const multiset<_Key, _Compare, _Alloc>& __x,
00525           const multiset<_Key, _Compare, _Alloc>& __y)
00526     { return __x._M_t < __y._M_t; }
00527 
00528   ///  Returns !(x == y).
00529   template <class _Key, class _Compare, class _Alloc>
00530     inline bool
00531     operator!=(const multiset<_Key, _Compare, _Alloc>& __x,
00532            const multiset<_Key, _Compare, _Alloc>& __y)
00533     { return !(__x == __y); }
00534 
00535   ///  Returns y < x.
00536   template <class _Key, class _Compare, class _Alloc>
00537     inline bool
00538     operator>(const multiset<_Key,_Compare,_Alloc>& __x,
00539           const multiset<_Key,_Compare,_Alloc>& __y)
00540     { return __y < __x; }
00541 
00542   ///  Returns !(y < x)
00543   template <class _Key, class _Compare, class _Alloc>
00544     inline bool
00545     operator<=(const multiset<_Key, _Compare, _Alloc>& __x,
00546            const multiset<_Key, _Compare, _Alloc>& __y)
00547     { return !(__y < __x); }
00548 
00549   ///  Returns !(x < y)
00550   template <class _Key, class _Compare, class _Alloc>
00551     inline bool
00552     operator>=(const multiset<_Key, _Compare, _Alloc>& __x,
00553            const multiset<_Key, _Compare, _Alloc>& __y)
00554     { return !(__x < __y); }
00555 
00556   /// See std::multiset::swap().
00557   template <class _Key, class _Compare, class _Alloc>
00558     inline void
00559     swap(multiset<_Key, _Compare, _Alloc>& __x,
00560      multiset<_Key, _Compare, _Alloc>& __y)
00561     { __x.swap(__y); }
00562 
00563 _GLIBCXX_END_NESTED_NAMESPACE
00564 
00565 #endif /* _MULTISET_H */

Generated on Thu Nov 1 13:12:33 2007 for libstdc++ by  doxygen 1.5.1