3.19.58 Xtensa Options

These options are supported for Xtensa targets:

-mconst16
-mno-const16

Enable or disable use of CONST16 instructions for loading constant values. The CONST16 instruction is currently not a standard option from Tensilica. When enabled, CONST16 instructions are always used in place of the standard L32R instructions. The use of CONST16 is enabled by default only if the L32R instruction is not available.

-mfused-madd
-mno-fused-madd

Enable or disable use of fused multiply/add and multiply/subtract instructions in the floating-point option. This has no effect if the floating-point option is not also enabled. Disabling fused multiply/add and multiply/subtract instructions forces the compiler to use separate instructions for the multiply and add/subtract operations. This may be desirable in some cases where strict IEEE 754-compliant results are required: the fused multiply add/subtract instructions do not round the intermediate result, thereby producing results with more bits of precision than specified by the IEEE standard. Disabling fused multiply add/subtract instructions also ensures that the program output is not sensitive to the compiler’s ability to combine multiply and add/subtract operations.

-mserialize-volatile
-mno-serialize-volatile

When this option is enabled, GCC inserts MEMW instructions before volatile memory references to guarantee sequential consistency. The default is -mserialize-volatile. Use -mno-serialize-volatile to omit the MEMW instructions.

-mforce-no-pic

For targets, like GNU/Linux, where all user-mode Xtensa code must be position-independent code (PIC), this option disables PIC for compiling kernel code.

-mtext-section-literals
-mno-text-section-literals

These options control the treatment of literal pools. The default is -mno-text-section-literals, which places literals in a separate section in the output file. This allows the literal pool to be placed in a data RAM/ROM, and it also allows the linker to combine literal pools from separate object files to remove redundant literals and improve code size. With -mtext-section-literals, the literals are interspersed in the text section in order to keep them as close as possible to their references. This may be necessary for large assembly files. Literals for each function are placed right before that function.

-mauto-litpools
-mno-auto-litpools

These options control the treatment of literal pools. The default is -mno-auto-litpools, which places literals in a separate section in the output file unless -mtext-section-literals is used. With -mauto-litpools the literals are interspersed in the text section by the assembler. Compiler does not produce explicit .literal directives and loads literals into registers with MOVI instructions instead of L32R to let the assembler do relaxation and place literals as necessary. This option allows assembler to create several literal pools per function and assemble very big functions, which may not be possible with -mtext-section-literals.

-mtarget-align
-mno-target-align

When this option is enabled, GCC instructs the assembler to automatically align instructions to reduce branch penalties at the expense of some code density. The assembler attempts to widen density instructions to align branch targets and the instructions following call instructions. If there are not enough preceding safe density instructions to align a target, no widening is performed. The default is -mtarget-align. These options do not affect the treatment of auto-aligned instructions like LOOP, which the assembler always aligns, either by widening density instructions or by inserting NOP instructions.

-mlongcalls
-mno-longcalls

When this option is enabled, GCC instructs the assembler to translate direct calls to indirect calls unless it can determine that the target of a direct call is in the range allowed by the call instruction. This translation typically occurs for calls to functions in other source files. Specifically, the assembler translates a direct CALL instruction into an L32R followed by a CALLX instruction. The default is -mno-longcalls. This option should be used in programs where the call target can potentially be out of range. This option is implemented in the assembler, not the compiler, so the assembly code generated by GCC still shows direct call instructions—look at the disassembled object code to see the actual instructions. Note that the assembler uses an indirect call for every cross-file call, not just those that really are out of range.

-mabi=name

Generate code for the specified ABI. Permissible values are: ‘call0’, ‘windowed’. Default ABI is chosen by the Xtensa core configuration.

-mabi=call0

When this option is enabled function parameters are passed in registers a2 through a7, registers a12 through a15 are caller-saved, and register a15 may be used as a frame pointer. When this version of the ABI is enabled the C preprocessor symbol __XTENSA_CALL0_ABI__ is defined.

-mabi=windowed

When this option is enabled function parameters are passed in registers a10 through a15, and called function rotates register window by 8 registers on entry so that its arguments are found in registers a2 through a7. Register a7 may be used as a frame pointer. Register window is rotated 8 registers back upon return. When this version of the ABI is enabled the C preprocessor symbol __XTENSA_WINDOWED_ABI__ is defined.

-mextra-l32r-costs=n

Specify an extra cost of instruction RAM/ROM access for L32R instructions, in clock cycles. This affects, when optimizing for speed, whether loading a constant from literal pool using L32R or synthesizing the constant from a small one with a couple of arithmetic instructions. The default value is 0.

-mstrict-align
-mno-strict-align

Avoid or allow generating memory accesses that may not be aligned on a natural object boundary as described in the architecture specification. The default is -mno-strict-align for cores that support both unaligned loads and stores in hardware and -mstrict-align for all other cores.