libstdc++
random.h
Go to the documentation of this file.
1 // random number generation -*- C++ -*-
2 
3 // Copyright (C) 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /**
26  * @file bits/random.h
27  * This is an internal header file, included by other library headers.
28  * Do not attempt to use it directly. @headername{random}
29  */
30 
31 #ifndef _RANDOM_H
32 #define _RANDOM_H 1
33 
34 #include <vector>
35 
36 namespace std _GLIBCXX_VISIBILITY(default)
37 {
38 _GLIBCXX_BEGIN_NAMESPACE_VERSION
39 
40  // [26.4] Random number generation
41 
42  /**
43  * @defgroup random Random Number Generation
44  * @ingroup numerics
45  *
46  * A facility for generating random numbers on selected distributions.
47  * @{
48  */
49 
50  /**
51  * @brief A function template for converting the output of a (integral)
52  * uniform random number generator to a floatng point result in the range
53  * [0-1).
54  */
55  template<typename _RealType, size_t __bits,
56  typename _UniformRandomNumberGenerator>
57  _RealType
58  generate_canonical(_UniformRandomNumberGenerator& __g);
59 
60 _GLIBCXX_END_NAMESPACE_VERSION
61 
62  /*
63  * Implementation-space details.
64  */
65  namespace __detail
66  {
67  _GLIBCXX_BEGIN_NAMESPACE_VERSION
68 
69  template<typename _UIntType, size_t __w,
70  bool = __w < static_cast<size_t>
72  struct _Shift
73  { static const _UIntType __value = 0; };
74 
75  template<typename _UIntType, size_t __w>
76  struct _Shift<_UIntType, __w, true>
77  { static const _UIntType __value = _UIntType(1) << __w; };
78 
79  template<typename _Tp, _Tp __m, _Tp __a, _Tp __c, bool>
80  struct _Mod;
81 
82  // Dispatch based on modulus value to prevent divide-by-zero compile-time
83  // errors when m == 0.
84  template<typename _Tp, _Tp __m, _Tp __a = 1, _Tp __c = 0>
85  inline _Tp
86  __mod(_Tp __x)
87  { return _Mod<_Tp, __m, __a, __c, __m == 0>::__calc(__x); }
88 
89  /*
90  * An adaptor class for converting the output of any Generator into
91  * the input for a specific Distribution.
92  */
93  template<typename _Engine, typename _DInputType>
94  struct _Adaptor
95  {
96 
97  public:
98  _Adaptor(_Engine& __g)
99  : _M_g(__g) { }
100 
101  _DInputType
102  min() const
103  { return _DInputType(0); }
104 
105  _DInputType
106  max() const
107  { return _DInputType(1); }
108 
109  /*
110  * Converts a value generated by the adapted random number generator
111  * into a value in the input domain for the dependent random number
112  * distribution.
113  */
114  _DInputType
115  operator()()
116  {
117  return std::generate_canonical<_DInputType,
119  _Engine>(_M_g);
120  }
121 
122  private:
123  _Engine& _M_g;
124  };
125 
126  _GLIBCXX_END_NAMESPACE_VERSION
127  } // namespace __detail
128 
129 _GLIBCXX_BEGIN_NAMESPACE_VERSION
130 
131  /**
132  * @addtogroup random_generators Random Number Generators
133  * @ingroup random
134  *
135  * These classes define objects which provide random or pseudorandom
136  * numbers, either from a discrete or a continuous interval. The
137  * random number generator supplied as a part of this library are
138  * all uniform random number generators which provide a sequence of
139  * random number uniformly distributed over their range.
140  *
141  * A number generator is a function object with an operator() that
142  * takes zero arguments and returns a number.
143  *
144  * A compliant random number generator must satisfy the following
145  * requirements. <table border=1 cellpadding=10 cellspacing=0>
146  * <caption align=top>Random Number Generator Requirements</caption>
147  * <tr><td>To be documented.</td></tr> </table>
148  *
149  * @{
150  */
151 
152  /**
153  * @brief A model of a linear congruential random number generator.
154  *
155  * A random number generator that produces pseudorandom numbers via
156  * linear function:
157  * @f[
158  * x_{i+1}\leftarrow(ax_{i} + c) \bmod m
159  * @f]
160  *
161  * The template parameter @p _UIntType must be an unsigned integral type
162  * large enough to store values up to (__m-1). If the template parameter
163  * @p __m is 0, the modulus @p __m used is
164  * std::numeric_limits<_UIntType>::max() plus 1. Otherwise, the template
165  * parameters @p __a and @p __c must be less than @p __m.
166  *
167  * The size of the state is @f$1@f$.
168  */
169  template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
171  {
172  static_assert(std::is_unsigned<_UIntType>::value, "template argument "
173  "substituting _UIntType not an unsigned integral type");
174  static_assert(__m == 0u || (__a < __m && __c < __m),
175  "template argument substituting __m out of bounds");
176 
177  // XXX FIXME:
178  // _Mod::__calc should handle correctly __m % __a >= __m / __a too.
179  static_assert(__m % __a < __m / __a,
180  "sorry, not implemented yet: try a smaller 'a' constant");
181 
182  public:
183  /** The type of the generated random value. */
184  typedef _UIntType result_type;
185 
186  /** The multiplier. */
187  static constexpr result_type multiplier = __a;
188  /** An increment. */
189  static constexpr result_type increment = __c;
190  /** The modulus. */
191  static constexpr result_type modulus = __m;
192  static constexpr result_type default_seed = 1u;
193 
194  /**
195  * @brief Constructs a %linear_congruential_engine random number
196  * generator engine with seed @p __s. The default seed value
197  * is 1.
198  *
199  * @param __s The initial seed value.
200  */
201  explicit
203  { seed(__s); }
204 
205  /**
206  * @brief Constructs a %linear_congruential_engine random number
207  * generator engine seeded from the seed sequence @p __q.
208  *
209  * @param __q the seed sequence.
210  */
211  template<typename _Sseq, typename = typename
213  ::type>
214  explicit
216  { seed(__q); }
217 
218  /**
219  * @brief Reseeds the %linear_congruential_engine random number generator
220  * engine sequence to the seed @p __s.
221  *
222  * @param __s The new seed.
223  */
224  void
225  seed(result_type __s = default_seed);
226 
227  /**
228  * @brief Reseeds the %linear_congruential_engine random number generator
229  * engine
230  * sequence using values from the seed sequence @p __q.
231  *
232  * @param __q the seed sequence.
233  */
234  template<typename _Sseq>
236  seed(_Sseq& __q);
237 
238  /**
239  * @brief Gets the smallest possible value in the output range.
240  *
241  * The minimum depends on the @p __c parameter: if it is zero, the
242  * minimum generated must be > 0, otherwise 0 is allowed.
243  */
244  static constexpr result_type
245  min()
246  { return __c == 0u ? 1u : 0u; }
247 
248  /**
249  * @brief Gets the largest possible value in the output range.
250  */
251  static constexpr result_type
252  max()
253  { return __m - 1u; }
254 
255  /**
256  * @brief Discard a sequence of random numbers.
257  */
258  void
259  discard(unsigned long long __z)
260  {
261  for (; __z != 0ULL; --__z)
262  (*this)();
263  }
264 
265  /**
266  * @brief Gets the next random number in the sequence.
267  */
270  {
271  _M_x = __detail::__mod<_UIntType, __m, __a, __c>(_M_x);
272  return _M_x;
273  }
274 
275  /**
276  * @brief Compares two linear congruential random number generator
277  * objects of the same type for equality.
278  *
279  * @param __lhs A linear congruential random number generator object.
280  * @param __rhs Another linear congruential random number generator
281  * object.
282  *
283  * @returns true if the infinite sequences of generated values
284  * would be equal, false otherwise.
285  */
286  friend bool
288  const linear_congruential_engine& __rhs)
289  { return __lhs._M_x == __rhs._M_x; }
290 
291  /**
292  * @brief Writes the textual representation of the state x(i) of x to
293  * @p __os.
294  *
295  * @param __os The output stream.
296  * @param __lcr A % linear_congruential_engine random number generator.
297  * @returns __os.
298  */
299  template<typename _UIntType1, _UIntType1 __a1, _UIntType1 __c1,
300  _UIntType1 __m1, typename _CharT, typename _Traits>
302  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
303  const std::linear_congruential_engine<_UIntType1,
304  __a1, __c1, __m1>& __lcr);
305 
306  /**
307  * @brief Sets the state of the engine by reading its textual
308  * representation from @p __is.
309  *
310  * The textual representation must have been previously written using
311  * an output stream whose imbued locale and whose type's template
312  * specialization arguments _CharT and _Traits were the same as those
313  * of @p __is.
314  *
315  * @param __is The input stream.
316  * @param __lcr A % linear_congruential_engine random number generator.
317  * @returns __is.
318  */
319  template<typename _UIntType1, _UIntType1 __a1, _UIntType1 __c1,
320  _UIntType1 __m1, typename _CharT, typename _Traits>
323  std::linear_congruential_engine<_UIntType1, __a1,
324  __c1, __m1>& __lcr);
325 
326  private:
327  _UIntType _M_x;
328  };
329 
330  /**
331  * @brief Compares two linear congruential random number generator
332  * objects of the same type for inequality.
333  *
334  * @param __lhs A linear congruential random number generator object.
335  * @param __rhs Another linear congruential random number generator
336  * object.
337  *
338  * @returns true if the infinite sequences of generated values
339  * would be different, false otherwise.
340  */
341  template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
342  inline bool
343  operator!=(const std::linear_congruential_engine<_UIntType, __a,
344  __c, __m>& __lhs,
345  const std::linear_congruential_engine<_UIntType, __a,
346  __c, __m>& __rhs)
347  { return !(__lhs == __rhs); }
348 
349 
350  /**
351  * A generalized feedback shift register discrete random number generator.
352  *
353  * This algorithm avoids multiplication and division and is designed to be
354  * friendly to a pipelined architecture. If the parameters are chosen
355  * correctly, this generator will produce numbers with a very long period and
356  * fairly good apparent entropy, although still not cryptographically strong.
357  *
358  * The best way to use this generator is with the predefined mt19937 class.
359  *
360  * This algorithm was originally invented by Makoto Matsumoto and
361  * Takuji Nishimura.
362  *
363  * @tparam __w Word size, the number of bits in each element of
364  * the state vector.
365  * @tparam __n The degree of recursion.
366  * @tparam __m The period parameter.
367  * @tparam __r The separation point bit index.
368  * @tparam __a The last row of the twist matrix.
369  * @tparam __u The first right-shift tempering matrix parameter.
370  * @tparam __d The first right-shift tempering matrix mask.
371  * @tparam __s The first left-shift tempering matrix parameter.
372  * @tparam __b The first left-shift tempering matrix mask.
373  * @tparam __t The second left-shift tempering matrix parameter.
374  * @tparam __c The second left-shift tempering matrix mask.
375  * @tparam __l The second right-shift tempering matrix parameter.
376  * @tparam __f Initialization multiplier.
377  */
378  template<typename _UIntType, size_t __w,
379  size_t __n, size_t __m, size_t __r,
380  _UIntType __a, size_t __u, _UIntType __d, size_t __s,
381  _UIntType __b, size_t __t,
382  _UIntType __c, size_t __l, _UIntType __f>
384  {
385  static_assert(std::is_unsigned<_UIntType>::value, "template argument "
386  "substituting _UIntType not an unsigned integral type");
387  static_assert(1u <= __m && __m <= __n,
388  "template argument substituting __m out of bounds");
389  static_assert(__r <= __w, "template argument substituting "
390  "__r out of bound");
391  static_assert(__u <= __w, "template argument substituting "
392  "__u out of bound");
393  static_assert(__s <= __w, "template argument substituting "
394  "__s out of bound");
395  static_assert(__t <= __w, "template argument substituting "
396  "__t out of bound");
397  static_assert(__l <= __w, "template argument substituting "
398  "__l out of bound");
399  static_assert(__w <= std::numeric_limits<_UIntType>::digits,
400  "template argument substituting __w out of bound");
401  static_assert(__a <= (__detail::_Shift<_UIntType, __w>::__value - 1),
402  "template argument substituting __a out of bound");
403  static_assert(__b <= (__detail::_Shift<_UIntType, __w>::__value - 1),
404  "template argument substituting __b out of bound");
405  static_assert(__c <= (__detail::_Shift<_UIntType, __w>::__value - 1),
406  "template argument substituting __c out of bound");
407  static_assert(__d <= (__detail::_Shift<_UIntType, __w>::__value - 1),
408  "template argument substituting __d out of bound");
409  static_assert(__f <= (__detail::_Shift<_UIntType, __w>::__value - 1),
410  "template argument substituting __f out of bound");
411 
412  public:
413  /** The type of the generated random value. */
414  typedef _UIntType result_type;
415 
416  // parameter values
417  static constexpr size_t word_size = __w;
418  static constexpr size_t state_size = __n;
419  static constexpr size_t shift_size = __m;
420  static constexpr size_t mask_bits = __r;
421  static constexpr result_type xor_mask = __a;
422  static constexpr size_t tempering_u = __u;
423  static constexpr result_type tempering_d = __d;
424  static constexpr size_t tempering_s = __s;
425  static constexpr result_type tempering_b = __b;
426  static constexpr size_t tempering_t = __t;
427  static constexpr result_type tempering_c = __c;
428  static constexpr size_t tempering_l = __l;
429  static constexpr result_type initialization_multiplier = __f;
430  static constexpr result_type default_seed = 5489u;
431 
432  // constructors and member function
433  explicit
434  mersenne_twister_engine(result_type __sd = default_seed)
435  { seed(__sd); }
436 
437  /**
438  * @brief Constructs a %mersenne_twister_engine random number generator
439  * engine seeded from the seed sequence @p __q.
440  *
441  * @param __q the seed sequence.
442  */
443  template<typename _Sseq, typename = typename
445  ::type>
446  explicit
448  { seed(__q); }
449 
450  void
451  seed(result_type __sd = default_seed);
452 
453  template<typename _Sseq>
455  seed(_Sseq& __q);
456 
457  /**
458  * @brief Gets the smallest possible value in the output range.
459  */
460  static constexpr result_type
461  min()
462  { return 0; };
463 
464  /**
465  * @brief Gets the largest possible value in the output range.
466  */
467  static constexpr result_type
468  max()
469  { return __detail::_Shift<_UIntType, __w>::__value - 1; }
470 
471  /**
472  * @brief Discard a sequence of random numbers.
473  */
474  void
475  discard(unsigned long long __z)
476  {
477  for (; __z != 0ULL; --__z)
478  (*this)();
479  }
480 
482  operator()();
483 
484  /**
485  * @brief Compares two % mersenne_twister_engine random number generator
486  * objects of the same type for equality.
487  *
488  * @param __lhs A % mersenne_twister_engine random number generator
489  * object.
490  * @param __rhs Another % mersenne_twister_engine random number
491  * generator object.
492  *
493  * @returns true if the infinite sequences of generated values
494  * would be equal, false otherwise.
495  */
496  friend bool
498  const mersenne_twister_engine& __rhs)
499  { return (std::equal(__lhs._M_x, __lhs._M_x + state_size, __rhs._M_x)
500  && __lhs._M_p == __rhs._M_p); }
501 
502  /**
503  * @brief Inserts the current state of a % mersenne_twister_engine
504  * random number generator engine @p __x into the output stream
505  * @p __os.
506  *
507  * @param __os An output stream.
508  * @param __x A % mersenne_twister_engine random number generator
509  * engine.
510  *
511  * @returns The output stream with the state of @p __x inserted or in
512  * an error state.
513  */
514  template<typename _UIntType1,
515  size_t __w1, size_t __n1,
516  size_t __m1, size_t __r1,
517  _UIntType1 __a1, size_t __u1,
518  _UIntType1 __d1, size_t __s1,
519  _UIntType1 __b1, size_t __t1,
520  _UIntType1 __c1, size_t __l1, _UIntType1 __f1,
521  typename _CharT, typename _Traits>
523  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
524  const std::mersenne_twister_engine<_UIntType1, __w1, __n1,
525  __m1, __r1, __a1, __u1, __d1, __s1, __b1, __t1, __c1,
526  __l1, __f1>& __x);
527 
528  /**
529  * @brief Extracts the current state of a % mersenne_twister_engine
530  * random number generator engine @p __x from the input stream
531  * @p __is.
532  *
533  * @param __is An input stream.
534  * @param __x A % mersenne_twister_engine random number generator
535  * engine.
536  *
537  * @returns The input stream with the state of @p __x extracted or in
538  * an error state.
539  */
540  template<typename _UIntType1,
541  size_t __w1, size_t __n1,
542  size_t __m1, size_t __r1,
543  _UIntType1 __a1, size_t __u1,
544  _UIntType1 __d1, size_t __s1,
545  _UIntType1 __b1, size_t __t1,
546  _UIntType1 __c1, size_t __l1, _UIntType1 __f1,
547  typename _CharT, typename _Traits>
550  std::mersenne_twister_engine<_UIntType1, __w1, __n1, __m1,
551  __r1, __a1, __u1, __d1, __s1, __b1, __t1, __c1,
552  __l1, __f1>& __x);
553 
554  private:
555  _UIntType _M_x[state_size];
556  size_t _M_p;
557  };
558 
559  /**
560  * @brief Compares two % mersenne_twister_engine random number generator
561  * objects of the same type for inequality.
562  *
563  * @param __lhs A % mersenne_twister_engine random number generator
564  * object.
565  * @param __rhs Another % mersenne_twister_engine random number
566  * generator object.
567  *
568  * @returns true if the infinite sequences of generated values
569  * would be different, false otherwise.
570  */
571  template<typename _UIntType, size_t __w,
572  size_t __n, size_t __m, size_t __r,
573  _UIntType __a, size_t __u, _UIntType __d, size_t __s,
574  _UIntType __b, size_t __t,
575  _UIntType __c, size_t __l, _UIntType __f>
576  inline bool
577  operator!=(const std::mersenne_twister_engine<_UIntType, __w, __n, __m,
578  __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __lhs,
579  const std::mersenne_twister_engine<_UIntType, __w, __n, __m,
580  __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __rhs)
581  { return !(__lhs == __rhs); }
582 
583 
584  /**
585  * @brief The Marsaglia-Zaman generator.
586  *
587  * This is a model of a Generalized Fibonacci discrete random number
588  * generator, sometimes referred to as the SWC generator.
589  *
590  * A discrete random number generator that produces pseudorandom
591  * numbers using:
592  * @f[
593  * x_{i}\leftarrow(x_{i - s} - x_{i - r} - carry_{i-1}) \bmod m
594  * @f]
595  *
596  * The size of the state is @f$r@f$
597  * and the maximum period of the generator is @f$(m^r - m^s - 1)@f$.
598  *
599  * @var _M_x The state of the generator. This is a ring buffer.
600  * @var _M_carry The carry.
601  * @var _M_p Current index of x(i - r).
602  */
603  template<typename _UIntType, size_t __w, size_t __s, size_t __r>
604  class subtract_with_carry_engine
605  {
606  static_assert(std::is_unsigned<_UIntType>::value, "template argument "
607  "substituting _UIntType not an unsigned integral type");
608  static_assert(0u < __s && __s < __r,
609  "template argument substituting __s out of bounds");
610  static_assert(0u < __w && __w <= std::numeric_limits<_UIntType>::digits,
611  "template argument substituting __w out of bounds");
612 
613  public:
614  /** The type of the generated random value. */
615  typedef _UIntType result_type;
616 
617  // parameter values
618  static constexpr size_t word_size = __w;
619  static constexpr size_t short_lag = __s;
620  static constexpr size_t long_lag = __r;
621  static constexpr result_type default_seed = 19780503u;
622 
623  /**
624  * @brief Constructs an explicitly seeded % subtract_with_carry_engine
625  * random number generator.
626  */
627  explicit
628  subtract_with_carry_engine(result_type __sd = default_seed)
629  { seed(__sd); }
630 
631  /**
632  * @brief Constructs a %subtract_with_carry_engine random number engine
633  * seeded from the seed sequence @p __q.
634  *
635  * @param __q the seed sequence.
636  */
637  template<typename _Sseq, typename = typename
639  ::type>
640  explicit
641  subtract_with_carry_engine(_Sseq& __q)
642  { seed(__q); }
643 
644  /**
645  * @brief Seeds the initial state @f$x_0@f$ of the random number
646  * generator.
647  *
648  * N1688[4.19] modifies this as follows. If @p __value == 0,
649  * sets value to 19780503. In any case, with a linear
650  * congruential generator lcg(i) having parameters @f$ m_{lcg} =
651  * 2147483563, a_{lcg} = 40014, c_{lcg} = 0, and lcg(0) = value
652  * @f$, sets @f$ x_{-r} \dots x_{-1} @f$ to @f$ lcg(1) \bmod m
653  * \dots lcg(r) \bmod m @f$ respectively. If @f$ x_{-1} = 0 @f$
654  * set carry to 1, otherwise sets carry to 0.
655  */
656  void
657  seed(result_type __sd = default_seed);
658 
659  /**
660  * @brief Seeds the initial state @f$x_0@f$ of the
661  * % subtract_with_carry_engine random number generator.
662  */
663  template<typename _Sseq>
665  seed(_Sseq& __q);
666 
667  /**
668  * @brief Gets the inclusive minimum value of the range of random
669  * integers returned by this generator.
670  */
671  static constexpr result_type
672  min()
673  { return 0; }
674 
675  /**
676  * @brief Gets the inclusive maximum value of the range of random
677  * integers returned by this generator.
678  */
679  static constexpr result_type
680  max()
681  { return __detail::_Shift<_UIntType, __w>::__value - 1; }
682 
683  /**
684  * @brief Discard a sequence of random numbers.
685  */
686  void
687  discard(unsigned long long __z)
688  {
689  for (; __z != 0ULL; --__z)
690  (*this)();
691  }
692 
693  /**
694  * @brief Gets the next random number in the sequence.
695  */
696  result_type
697  operator()();
698 
699  /**
700  * @brief Compares two % subtract_with_carry_engine random number
701  * generator objects of the same type for equality.
702  *
703  * @param __lhs A % subtract_with_carry_engine random number generator
704  * object.
705  * @param __rhs Another % subtract_with_carry_engine random number
706  * generator object.
707  *
708  * @returns true if the infinite sequences of generated values
709  * would be equal, false otherwise.
710  */
711  friend bool
712  operator==(const subtract_with_carry_engine& __lhs,
713  const subtract_with_carry_engine& __rhs)
714  { return (std::equal(__lhs._M_x, __lhs._M_x + long_lag, __rhs._M_x)
715  && __lhs._M_carry == __rhs._M_carry
716  && __lhs._M_p == __rhs._M_p); }
717 
718  /**
719  * @brief Inserts the current state of a % subtract_with_carry_engine
720  * random number generator engine @p __x into the output stream
721  * @p __os.
722  *
723  * @param __os An output stream.
724  * @param __x A % subtract_with_carry_engine random number generator
725  * engine.
726  *
727  * @returns The output stream with the state of @p __x inserted or in
728  * an error state.
729  */
730  template<typename _UIntType1, size_t __w1, size_t __s1, size_t __r1,
731  typename _CharT, typename _Traits>
733  operator<<(std::basic_ostream<_CharT, _Traits>&,
734  const std::subtract_with_carry_engine<_UIntType1, __w1,
735  __s1, __r1>&);
736 
737  /**
738  * @brief Extracts the current state of a % subtract_with_carry_engine
739  * random number generator engine @p __x from the input stream
740  * @p __is.
741  *
742  * @param __is An input stream.
743  * @param __x A % subtract_with_carry_engine random number generator
744  * engine.
745  *
746  * @returns The input stream with the state of @p __x extracted or in
747  * an error state.
748  */
749  template<typename _UIntType1, size_t __w1, size_t __s1, size_t __r1,
750  typename _CharT, typename _Traits>
753  std::subtract_with_carry_engine<_UIntType1, __w1,
754  __s1, __r1>&);
755 
756  private:
757  _UIntType _M_x[long_lag];
758  _UIntType _M_carry;
759  size_t _M_p;
760  };
761 
762  /**
763  * @brief Compares two % subtract_with_carry_engine random number
764  * generator objects of the same type for inequality.
765  *
766  * @param __lhs A % subtract_with_carry_engine random number generator
767  * object.
768  * @param __rhs Another % subtract_with_carry_engine random number
769  * generator object.
770  *
771  * @returns true if the infinite sequences of generated values
772  * would be different, false otherwise.
773  */
774  template<typename _UIntType, size_t __w, size_t __s, size_t __r>
775  inline bool
776  operator!=(const std::subtract_with_carry_engine<_UIntType, __w,
777  __s, __r>& __lhs,
778  const std::subtract_with_carry_engine<_UIntType, __w,
779  __s, __r>& __rhs)
780  { return !(__lhs == __rhs); }
781 
782 
783  /**
784  * Produces random numbers from some base engine by discarding blocks of
785  * data.
786  *
787  * 0 <= @p __r <= @p __p
788  */
789  template<typename _RandomNumberEngine, size_t __p, size_t __r>
791  {
792  static_assert(1 <= __r && __r <= __p,
793  "template argument substituting __r out of bounds");
794 
795  public:
796  /** The type of the generated random value. */
797  typedef typename _RandomNumberEngine::result_type result_type;
798 
799  // parameter values
800  static constexpr size_t block_size = __p;
801  static constexpr size_t used_block = __r;
802 
803  /**
804  * @brief Constructs a default %discard_block_engine engine.
805  *
806  * The underlying engine is default constructed as well.
807  */
809  : _M_b(), _M_n(0) { }
810 
811  /**
812  * @brief Copy constructs a %discard_block_engine engine.
813  *
814  * Copies an existing base class random number generator.
815  * @param __rng An existing (base class) engine object.
816  */
817  explicit
818  discard_block_engine(const _RandomNumberEngine& __rng)
819  : _M_b(__rng), _M_n(0) { }
820 
821  /**
822  * @brief Move constructs a %discard_block_engine engine.
823  *
824  * Copies an existing base class random number generator.
825  * @param __rng An existing (base class) engine object.
826  */
827  explicit
828  discard_block_engine(_RandomNumberEngine&& __rng)
829  : _M_b(std::move(__rng)), _M_n(0) { }
830 
831  /**
832  * @brief Seed constructs a %discard_block_engine engine.
833  *
834  * Constructs the underlying generator engine seeded with @p __s.
835  * @param __s A seed value for the base class engine.
836  */
837  explicit
839  : _M_b(__s), _M_n(0) { }
840 
841  /**
842  * @brief Generator construct a %discard_block_engine engine.
843  *
844  * @param __q A seed sequence.
845  */
846  template<typename _Sseq, typename = typename
849  ::type>
850  explicit
852  : _M_b(__q), _M_n(0)
853  { }
854 
855  /**
856  * @brief Reseeds the %discard_block_engine object with the default
857  * seed for the underlying base class generator engine.
858  */
859  void
861  {
862  _M_b.seed();
863  _M_n = 0;
864  }
865 
866  /**
867  * @brief Reseeds the %discard_block_engine object with the default
868  * seed for the underlying base class generator engine.
869  */
870  void
872  {
873  _M_b.seed(__s);
874  _M_n = 0;
875  }
876 
877  /**
878  * @brief Reseeds the %discard_block_engine object with the given seed
879  * sequence.
880  * @param __q A seed generator function.
881  */
882  template<typename _Sseq>
883  void
884  seed(_Sseq& __q)
885  {
886  _M_b.seed(__q);
887  _M_n = 0;
888  }
889 
890  /**
891  * @brief Gets a const reference to the underlying generator engine
892  * object.
893  */
894  const _RandomNumberEngine&
895  base() const noexcept
896  { return _M_b; }
897 
898  /**
899  * @brief Gets the minimum value in the generated random number range.
900  */
901  static constexpr result_type
902  min()
903  { return _RandomNumberEngine::min(); }
904 
905  /**
906  * @brief Gets the maximum value in the generated random number range.
907  */
908  static constexpr result_type
909  max()
910  { return _RandomNumberEngine::max(); }
911 
912  /**
913  * @brief Discard a sequence of random numbers.
914  */
915  void
916  discard(unsigned long long __z)
917  {
918  for (; __z != 0ULL; --__z)
919  (*this)();
920  }
921 
922  /**
923  * @brief Gets the next value in the generated random number sequence.
924  */
926  operator()();
927 
928  /**
929  * @brief Compares two %discard_block_engine random number generator
930  * objects of the same type for equality.
931  *
932  * @param __lhs A %discard_block_engine random number generator object.
933  * @param __rhs Another %discard_block_engine random number generator
934  * object.
935  *
936  * @returns true if the infinite sequences of generated values
937  * would be equal, false otherwise.
938  */
939  friend bool
941  const discard_block_engine& __rhs)
942  { return __lhs._M_b == __rhs._M_b && __lhs._M_n == __rhs._M_n; }
943 
944  /**
945  * @brief Inserts the current state of a %discard_block_engine random
946  * number generator engine @p __x into the output stream
947  * @p __os.
948  *
949  * @param __os An output stream.
950  * @param __x A %discard_block_engine random number generator engine.
951  *
952  * @returns The output stream with the state of @p __x inserted or in
953  * an error state.
954  */
955  template<typename _RandomNumberEngine1, size_t __p1, size_t __r1,
956  typename _CharT, typename _Traits>
958  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
959  const std::discard_block_engine<_RandomNumberEngine1,
960  __p1, __r1>& __x);
961 
962  /**
963  * @brief Extracts the current state of a % subtract_with_carry_engine
964  * random number generator engine @p __x from the input stream
965  * @p __is.
966  *
967  * @param __is An input stream.
968  * @param __x A %discard_block_engine random number generator engine.
969  *
970  * @returns The input stream with the state of @p __x extracted or in
971  * an error state.
972  */
973  template<typename _RandomNumberEngine1, size_t __p1, size_t __r1,
974  typename _CharT, typename _Traits>
977  std::discard_block_engine<_RandomNumberEngine1,
978  __p1, __r1>& __x);
979 
980  private:
981  _RandomNumberEngine _M_b;
982  size_t _M_n;
983  };
984 
985  /**
986  * @brief Compares two %discard_block_engine random number generator
987  * objects of the same type for inequality.
988  *
989  * @param __lhs A %discard_block_engine random number generator object.
990  * @param __rhs Another %discard_block_engine random number generator
991  * object.
992  *
993  * @returns true if the infinite sequences of generated values
994  * would be different, false otherwise.
995  */
996  template<typename _RandomNumberEngine, size_t __p, size_t __r>
997  inline bool
998  operator!=(const std::discard_block_engine<_RandomNumberEngine, __p,
999  __r>& __lhs,
1000  const std::discard_block_engine<_RandomNumberEngine, __p,
1001  __r>& __rhs)
1002  { return !(__lhs == __rhs); }
1003 
1004 
1005  /**
1006  * Produces random numbers by combining random numbers from some base
1007  * engine to produce random numbers with a specifies number of bits @p __w.
1008  */
1009  template<typename _RandomNumberEngine, size_t __w, typename _UIntType>
1011  {
1012  static_assert(std::is_unsigned<_UIntType>::value, "template argument "
1013  "substituting _UIntType not an unsigned integral type");
1014  static_assert(0u < __w && __w <= std::numeric_limits<_UIntType>::digits,
1015  "template argument substituting __w out of bounds");
1016 
1017  public:
1018  /** The type of the generated random value. */
1019  typedef _UIntType result_type;
1020 
1021  /**
1022  * @brief Constructs a default %independent_bits_engine engine.
1023  *
1024  * The underlying engine is default constructed as well.
1025  */
1027  : _M_b() { }
1028 
1029  /**
1030  * @brief Copy constructs a %independent_bits_engine engine.
1031  *
1032  * Copies an existing base class random number generator.
1033  * @param __rng An existing (base class) engine object.
1034  */
1035  explicit
1036  independent_bits_engine(const _RandomNumberEngine& __rng)
1037  : _M_b(__rng) { }
1038 
1039  /**
1040  * @brief Move constructs a %independent_bits_engine engine.
1041  *
1042  * Copies an existing base class random number generator.
1043  * @param __rng An existing (base class) engine object.
1044  */
1045  explicit
1046  independent_bits_engine(_RandomNumberEngine&& __rng)
1047  : _M_b(std::move(__rng)) { }
1048 
1049  /**
1050  * @brief Seed constructs a %independent_bits_engine engine.
1051  *
1052  * Constructs the underlying generator engine seeded with @p __s.
1053  * @param __s A seed value for the base class engine.
1054  */
1055  explicit
1057  : _M_b(__s) { }
1058 
1059  /**
1060  * @brief Generator construct a %independent_bits_engine engine.
1061  *
1062  * @param __q A seed sequence.
1063  */
1064  template<typename _Sseq, typename = typename
1067  ::type>
1068  explicit
1070  : _M_b(__q)
1071  { }
1072 
1073  /**
1074  * @brief Reseeds the %independent_bits_engine object with the default
1075  * seed for the underlying base class generator engine.
1076  */
1077  void
1079  { _M_b.seed(); }
1080 
1081  /**
1082  * @brief Reseeds the %independent_bits_engine object with the default
1083  * seed for the underlying base class generator engine.
1084  */
1085  void
1087  { _M_b.seed(__s); }
1088 
1089  /**
1090  * @brief Reseeds the %independent_bits_engine object with the given
1091  * seed sequence.
1092  * @param __q A seed generator function.
1093  */
1094  template<typename _Sseq>
1095  void
1096  seed(_Sseq& __q)
1097  { _M_b.seed(__q); }
1098 
1099  /**
1100  * @brief Gets a const reference to the underlying generator engine
1101  * object.
1102  */
1103  const _RandomNumberEngine&
1104  base() const noexcept
1105  { return _M_b; }
1106 
1107  /**
1108  * @brief Gets the minimum value in the generated random number range.
1109  */
1110  static constexpr result_type
1112  { return 0U; }
1113 
1114  /**
1115  * @brief Gets the maximum value in the generated random number range.
1116  */
1117  static constexpr result_type
1119  { return __detail::_Shift<_UIntType, __w>::__value - 1; }
1120 
1121  /**
1122  * @brief Discard a sequence of random numbers.
1123  */
1124  void
1125  discard(unsigned long long __z)
1126  {
1127  for (; __z != 0ULL; --__z)
1128  (*this)();
1129  }
1130 
1131  /**
1132  * @brief Gets the next value in the generated random number sequence.
1133  */
1134  result_type
1135  operator()();
1136 
1137  /**
1138  * @brief Compares two %independent_bits_engine random number generator
1139  * objects of the same type for equality.
1140  *
1141  * @param __lhs A %independent_bits_engine random number generator
1142  * object.
1143  * @param __rhs Another %independent_bits_engine random number generator
1144  * object.
1145  *
1146  * @returns true if the infinite sequences of generated values
1147  * would be equal, false otherwise.
1148  */
1149  friend bool
1151  const independent_bits_engine& __rhs)
1152  { return __lhs._M_b == __rhs._M_b; }
1153 
1154  /**
1155  * @brief Extracts the current state of a % subtract_with_carry_engine
1156  * random number generator engine @p __x from the input stream
1157  * @p __is.
1158  *
1159  * @param __is An input stream.
1160  * @param __x A %independent_bits_engine random number generator
1161  * engine.
1162  *
1163  * @returns The input stream with the state of @p __x extracted or in
1164  * an error state.
1165  */
1166  template<typename _CharT, typename _Traits>
1169  std::independent_bits_engine<_RandomNumberEngine,
1170  __w, _UIntType>& __x)
1171  {
1172  __is >> __x._M_b;
1173  return __is;
1174  }
1175 
1176  private:
1177  _RandomNumberEngine _M_b;
1178  };
1179 
1180  /**
1181  * @brief Compares two %independent_bits_engine random number generator
1182  * objects of the same type for inequality.
1183  *
1184  * @param __lhs A %independent_bits_engine random number generator
1185  * object.
1186  * @param __rhs Another %independent_bits_engine random number generator
1187  * object.
1188  *
1189  * @returns true if the infinite sequences of generated values
1190  * would be different, false otherwise.
1191  */
1192  template<typename _RandomNumberEngine, size_t __w, typename _UIntType>
1193  inline bool
1194  operator!=(const std::independent_bits_engine<_RandomNumberEngine, __w,
1195  _UIntType>& __lhs,
1196  const std::independent_bits_engine<_RandomNumberEngine, __w,
1197  _UIntType>& __rhs)
1198  { return !(__lhs == __rhs); }
1199 
1200  /**
1201  * @brief Inserts the current state of a %independent_bits_engine random
1202  * number generator engine @p __x into the output stream @p __os.
1203  *
1204  * @param __os An output stream.
1205  * @param __x A %independent_bits_engine random number generator engine.
1206  *
1207  * @returns The output stream with the state of @p __x inserted or in
1208  * an error state.
1209  */
1210  template<typename _RandomNumberEngine, size_t __w, typename _UIntType,
1211  typename _CharT, typename _Traits>
1213  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1214  const std::independent_bits_engine<_RandomNumberEngine,
1215  __w, _UIntType>& __x)
1216  {
1217  __os << __x.base();
1218  return __os;
1219  }
1220 
1221 
1222  /**
1223  * @brief Produces random numbers by combining random numbers from some
1224  * base engine to produce random numbers with a specifies number of bits
1225  * @p __w.
1226  */
1227  template<typename _RandomNumberEngine, size_t __k>
1229  {
1230  static_assert(1u <= __k, "template argument substituting "
1231  "__k out of bound");
1232 
1233  public:
1234  /** The type of the generated random value. */
1235  typedef typename _RandomNumberEngine::result_type result_type;
1236 
1237  static constexpr size_t table_size = __k;
1238 
1239  /**
1240  * @brief Constructs a default %shuffle_order_engine engine.
1241  *
1242  * The underlying engine is default constructed as well.
1243  */
1245  : _M_b()
1246  { _M_initialize(); }
1247 
1248  /**
1249  * @brief Copy constructs a %shuffle_order_engine engine.
1250  *
1251  * Copies an existing base class random number generator.
1252  * @param __rng An existing (base class) engine object.
1253  */
1254  explicit
1255  shuffle_order_engine(const _RandomNumberEngine& __rng)
1256  : _M_b(__rng)
1257  { _M_initialize(); }
1258 
1259  /**
1260  * @brief Move constructs a %shuffle_order_engine engine.
1261  *
1262  * Copies an existing base class random number generator.
1263  * @param __rng An existing (base class) engine object.
1264  */
1265  explicit
1266  shuffle_order_engine(_RandomNumberEngine&& __rng)
1267  : _M_b(std::move(__rng))
1268  { _M_initialize(); }
1269 
1270  /**
1271  * @brief Seed constructs a %shuffle_order_engine engine.
1272  *
1273  * Constructs the underlying generator engine seeded with @p __s.
1274  * @param __s A seed value for the base class engine.
1275  */
1276  explicit
1278  : _M_b(__s)
1279  { _M_initialize(); }
1280 
1281  /**
1282  * @brief Generator construct a %shuffle_order_engine engine.
1283  *
1284  * @param __q A seed sequence.
1285  */
1286  template<typename _Sseq, typename = typename
1289  ::type>
1290  explicit
1292  : _M_b(__q)
1293  { _M_initialize(); }
1294 
1295  /**
1296  * @brief Reseeds the %shuffle_order_engine object with the default seed
1297  for the underlying base class generator engine.
1298  */
1299  void
1301  {
1302  _M_b.seed();
1303  _M_initialize();
1304  }
1305 
1306  /**
1307  * @brief Reseeds the %shuffle_order_engine object with the default seed
1308  * for the underlying base class generator engine.
1309  */
1310  void
1312  {
1313  _M_b.seed(__s);
1314  _M_initialize();
1315  }
1316 
1317  /**
1318  * @brief Reseeds the %shuffle_order_engine object with the given seed
1319  * sequence.
1320  * @param __q A seed generator function.
1321  */
1322  template<typename _Sseq>
1323  void
1324  seed(_Sseq& __q)
1325  {
1326  _M_b.seed(__q);
1327  _M_initialize();
1328  }
1329 
1330  /**
1331  * Gets a const reference to the underlying generator engine object.
1332  */
1333  const _RandomNumberEngine&
1334  base() const noexcept
1335  { return _M_b; }
1336 
1337  /**
1338  * Gets the minimum value in the generated random number range.
1339  */
1340  static constexpr result_type
1342  { return _RandomNumberEngine::min(); }
1343 
1344  /**
1345  * Gets the maximum value in the generated random number range.
1346  */
1347  static constexpr result_type
1349  { return _RandomNumberEngine::max(); }
1350 
1351  /**
1352  * Discard a sequence of random numbers.
1353  */
1354  void
1355  discard(unsigned long long __z)
1356  {
1357  for (; __z != 0ULL; --__z)
1358  (*this)();
1359  }
1360 
1361  /**
1362  * Gets the next value in the generated random number sequence.
1363  */
1364  result_type
1365  operator()();
1366 
1367  /**
1368  * Compares two %shuffle_order_engine random number generator objects
1369  * of the same type for equality.
1370  *
1371  * @param __lhs A %shuffle_order_engine random number generator object.
1372  * @param __rhs Another %shuffle_order_engine random number generator
1373  * object.
1374  *
1375  * @returns true if the infinite sequences of generated values
1376  * would be equal, false otherwise.
1377  */
1378  friend bool
1380  const shuffle_order_engine& __rhs)
1381  { return (__lhs._M_b == __rhs._M_b
1382  && std::equal(__lhs._M_v, __lhs._M_v + __k, __rhs._M_v)
1383  && __lhs._M_y == __rhs._M_y); }
1384 
1385  /**
1386  * @brief Inserts the current state of a %shuffle_order_engine random
1387  * number generator engine @p __x into the output stream
1388  @p __os.
1389  *
1390  * @param __os An output stream.
1391  * @param __x A %shuffle_order_engine random number generator engine.
1392  *
1393  * @returns The output stream with the state of @p __x inserted or in
1394  * an error state.
1395  */
1396  template<typename _RandomNumberEngine1, size_t __k1,
1397  typename _CharT, typename _Traits>
1399  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1400  const std::shuffle_order_engine<_RandomNumberEngine1,
1401  __k1>& __x);
1402 
1403  /**
1404  * @brief Extracts the current state of a % subtract_with_carry_engine
1405  * random number generator engine @p __x from the input stream
1406  * @p __is.
1407  *
1408  * @param __is An input stream.
1409  * @param __x A %shuffle_order_engine random number generator engine.
1410  *
1411  * @returns The input stream with the state of @p __x extracted or in
1412  * an error state.
1413  */
1414  template<typename _RandomNumberEngine1, size_t __k1,
1415  typename _CharT, typename _Traits>
1419 
1420  private:
1421  void _M_initialize()
1422  {
1423  for (size_t __i = 0; __i < __k; ++__i)
1424  _M_v[__i] = _M_b();
1425  _M_y = _M_b();
1426  }
1427 
1428  _RandomNumberEngine _M_b;
1429  result_type _M_v[__k];
1430  result_type _M_y;
1431  };
1432 
1433  /**
1434  * Compares two %shuffle_order_engine random number generator objects
1435  * of the same type for inequality.
1436  *
1437  * @param __lhs A %shuffle_order_engine random number generator object.
1438  * @param __rhs Another %shuffle_order_engine random number generator
1439  * object.
1440  *
1441  * @returns true if the infinite sequences of generated values
1442  * would be different, false otherwise.
1443  */
1444  template<typename _RandomNumberEngine, size_t __k>
1445  inline bool
1446  operator!=(const std::shuffle_order_engine<_RandomNumberEngine,
1447  __k>& __lhs,
1448  const std::shuffle_order_engine<_RandomNumberEngine,
1449  __k>& __rhs)
1450  { return !(__lhs == __rhs); }
1451 
1452 
1453  /**
1454  * The classic Minimum Standard rand0 of Lewis, Goodman, and Miller.
1455  */
1456  typedef linear_congruential_engine<uint_fast32_t, 16807UL, 0UL, 2147483647UL>
1458 
1459  /**
1460  * An alternative LCR (Lehmer Generator function).
1461  */
1464 
1465  /**
1466  * The classic Mersenne Twister.
1467  *
1468  * Reference:
1469  * M. Matsumoto and T. Nishimura, Mersenne Twister: A 623-Dimensionally
1470  * Equidistributed Uniform Pseudo-Random Number Generator, ACM Transactions
1471  * on Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30.
1472  */
1473  typedef mersenne_twister_engine<
1474  uint_fast32_t,
1475  32, 624, 397, 31,
1476  0x9908b0dfUL, 11,
1477  0xffffffffUL, 7,
1478  0x9d2c5680UL, 15,
1479  0xefc60000UL, 18, 1812433253UL> mt19937;
1480 
1481  /**
1482  * An alternative Mersenne Twister.
1483  */
1484  typedef mersenne_twister_engine<
1485  uint_fast64_t,
1486  64, 312, 156, 31,
1487  0xb5026f5aa96619e9ULL, 29,
1488  0x5555555555555555ULL, 17,
1489  0x71d67fffeda60000ULL, 37,
1490  0xfff7eee000000000ULL, 43,
1491  6364136223846793005ULL> mt19937_64;
1492 
1493  typedef subtract_with_carry_engine<uint_fast32_t, 24, 10, 24>
1494  ranlux24_base;
1495 
1496  typedef subtract_with_carry_engine<uint_fast64_t, 48, 5, 12>
1497  ranlux48_base;
1498 
1500 
1502 
1504 
1506 
1507  /**
1508  * A standard interface to a platform-specific non-deterministic
1509  * random number generator (if any are available).
1510  */
1512  {
1513  public:
1514  /** The type of the generated random value. */
1515  typedef unsigned int result_type;
1516 
1517  // constructors, destructors and member functions
1518 
1519 #ifdef _GLIBCXX_USE_RANDOM_TR1
1520 
1521  explicit
1522  random_device(const std::string& __token = "/dev/urandom")
1523  {
1524  if ((__token != "/dev/urandom" && __token != "/dev/random")
1525  || !(_M_file = std::fopen(__token.c_str(), "rb")))
1526  std::__throw_runtime_error(__N("random_device::"
1527  "random_device(const std::string&)"));
1528  }
1529 
1530  ~random_device()
1531  { std::fclose(_M_file); }
1532 
1533 #else
1534 
1535  explicit
1536  random_device(const std::string& __token = "mt19937")
1537  : _M_mt(_M_strtoul(__token)) { }
1538 
1539  private:
1540  static unsigned long
1541  _M_strtoul(const std::string& __str)
1542  {
1543  unsigned long __ret = 5489UL;
1544  if (__str != "mt19937")
1545  {
1546  const char* __nptr = __str.c_str();
1547  char* __endptr;
1548  __ret = std::strtoul(__nptr, &__endptr, 0);
1549  if (*__nptr == '\0' || *__endptr != '\0')
1550  std::__throw_runtime_error(__N("random_device::_M_strtoul"
1551  "(const std::string&)"));
1552  }
1553  return __ret;
1554  }
1555 
1556  public:
1557 
1558 #endif
1559 
1560  static constexpr result_type
1561  min()
1563 
1564  static constexpr result_type
1565  max()
1567 
1568  double
1569  entropy() const noexcept
1570  { return 0.0; }
1571 
1572  result_type
1573  operator()()
1574  {
1575 #ifdef _GLIBCXX_USE_RANDOM_TR1
1576  result_type __ret;
1577  std::fread(reinterpret_cast<void*>(&__ret), sizeof(result_type),
1578  1, _M_file);
1579  return __ret;
1580 #else
1581  return _M_mt();
1582 #endif
1583  }
1584 
1585  // No copy functions.
1586  random_device(const random_device&) = delete;
1587  void operator=(const random_device&) = delete;
1588 
1589  private:
1590 
1591 #ifdef _GLIBCXX_USE_RANDOM_TR1
1592  FILE* _M_file;
1593 #else
1594  mt19937 _M_mt;
1595 #endif
1596  };
1597 
1598  /* @} */ // group random_generators
1599 
1600  /**
1601  * @addtogroup random_distributions Random Number Distributions
1602  * @ingroup random
1603  * @{
1604  */
1605 
1606  /**
1607  * @addtogroup random_distributions_uniform Uniform Distributions
1608  * @ingroup random_distributions
1609  * @{
1610  */
1611 
1612  /**
1613  * @brief Uniform discrete distribution for random numbers.
1614  * A discrete random distribution on the range @f$[min, max]@f$ with equal
1615  * probability throughout the range.
1616  */
1617  template<typename _IntType = int>
1619  {
1620  static_assert(std::is_integral<_IntType>::value,
1621  "template argument not an integral type");
1622 
1623  public:
1624  /** The type of the range of the distribution. */
1625  typedef _IntType result_type;
1626  /** Parameter type. */
1627  struct param_type
1628  {
1630 
1631  explicit
1632  param_type(_IntType __a = 0,
1633  _IntType __b = std::numeric_limits<_IntType>::max())
1634  : _M_a(__a), _M_b(__b)
1635  {
1636  _GLIBCXX_DEBUG_ASSERT(_M_a <= _M_b);
1637  }
1638 
1639  result_type
1640  a() const
1641  { return _M_a; }
1642 
1643  result_type
1644  b() const
1645  { return _M_b; }
1646 
1647  friend bool
1648  operator==(const param_type& __p1, const param_type& __p2)
1649  { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; }
1650 
1651  private:
1652  _IntType _M_a;
1653  _IntType _M_b;
1654  };
1655 
1656  public:
1657  /**
1658  * @brief Constructs a uniform distribution object.
1659  */
1660  explicit
1661  uniform_int_distribution(_IntType __a = 0,
1662  _IntType __b = std::numeric_limits<_IntType>::max())
1663  : _M_param(__a, __b)
1664  { }
1665 
1666  explicit
1667  uniform_int_distribution(const param_type& __p)
1668  : _M_param(__p)
1669  { }
1670 
1671  /**
1672  * @brief Resets the distribution state.
1673  *
1674  * Does nothing for the uniform integer distribution.
1675  */
1676  void
1677  reset() { }
1678 
1679  result_type
1680  a() const
1681  { return _M_param.a(); }
1682 
1683  result_type
1684  b() const
1685  { return _M_param.b(); }
1686 
1687  /**
1688  * @brief Returns the parameter set of the distribution.
1689  */
1690  param_type
1691  param() const
1692  { return _M_param; }
1693 
1694  /**
1695  * @brief Sets the parameter set of the distribution.
1696  * @param __param The new parameter set of the distribution.
1697  */
1698  void
1699  param(const param_type& __param)
1700  { _M_param = __param; }
1701 
1702  /**
1703  * @brief Returns the inclusive lower bound of the distribution range.
1704  */
1705  result_type
1706  min() const
1707  { return this->a(); }
1708 
1709  /**
1710  * @brief Returns the inclusive upper bound of the distribution range.
1711  */
1712  result_type
1713  max() const
1714  { return this->b(); }
1715 
1716  /**
1717  * @brief Generating functions.
1718  */
1719  template<typename _UniformRandomNumberGenerator>
1720  result_type
1721  operator()(_UniformRandomNumberGenerator& __urng)
1722  { return this->operator()(__urng, this->param()); }
1723 
1724  template<typename _UniformRandomNumberGenerator>
1725  result_type
1726  operator()(_UniformRandomNumberGenerator& __urng,
1727  const param_type& __p);
1728 
1729  param_type _M_param;
1730  };
1731 
1732  /**
1733  * @brief Return true if two uniform integer distributions have
1734  * the same parameters.
1735  */
1736  template<typename _IntType>
1737  inline bool
1740  { return __d1.param() == __d2.param(); }
1741 
1742  /**
1743  * @brief Return true if two uniform integer distributions have
1744  * different parameters.
1745  */
1746  template<typename _IntType>
1747  inline bool
1750  { return !(__d1 == __d2); }
1751 
1752  /**
1753  * @brief Inserts a %uniform_int_distribution random number
1754  * distribution @p __x into the output stream @p os.
1755  *
1756  * @param __os An output stream.
1757  * @param __x A %uniform_int_distribution random number distribution.
1758  *
1759  * @returns The output stream with the state of @p __x inserted or in
1760  * an error state.
1761  */
1762  template<typename _IntType, typename _CharT, typename _Traits>
1764  operator<<(std::basic_ostream<_CharT, _Traits>&,
1766 
1767  /**
1768  * @brief Extracts a %uniform_int_distribution random number distribution
1769  * @p __x from the input stream @p __is.
1770  *
1771  * @param __is An input stream.
1772  * @param __x A %uniform_int_distribution random number generator engine.
1773  *
1774  * @returns The input stream with @p __x extracted or in an error state.
1775  */
1776  template<typename _IntType, typename _CharT, typename _Traits>
1780 
1781 
1782  /**
1783  * @brief Uniform continuous distribution for random numbers.
1784  *
1785  * A continuous random distribution on the range [min, max) with equal
1786  * probability throughout the range. The URNG should be real-valued and
1787  * deliver number in the range [0, 1).
1788  */
1789  template<typename _RealType = double>
1791  {
1793  "template argument not a floating point type");
1794 
1795  public:
1796  /** The type of the range of the distribution. */
1797  typedef _RealType result_type;
1798  /** Parameter type. */
1799  struct param_type
1800  {
1802 
1803  explicit
1804  param_type(_RealType __a = _RealType(0),
1805  _RealType __b = _RealType(1))
1806  : _M_a(__a), _M_b(__b)
1807  {
1808  _GLIBCXX_DEBUG_ASSERT(_M_a <= _M_b);
1809  }
1810 
1811  result_type
1812  a() const
1813  { return _M_a; }
1814 
1815  result_type
1816  b() const
1817  { return _M_b; }
1818 
1819  friend bool
1820  operator==(const param_type& __p1, const param_type& __p2)
1821  { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; }
1822 
1823  private:
1824  _RealType _M_a;
1825  _RealType _M_b;
1826  };
1827 
1828  public:
1829  /**
1830  * @brief Constructs a uniform_real_distribution object.
1831  *
1832  * @param __a [IN] The lower bound of the distribution.
1833  * @param __b [IN] The upper bound of the distribution.
1834  */
1835  explicit
1836  uniform_real_distribution(_RealType __a = _RealType(0),
1837  _RealType __b = _RealType(1))
1838  : _M_param(__a, __b)
1839  { }
1840 
1841  explicit
1842  uniform_real_distribution(const param_type& __p)
1843  : _M_param(__p)
1844  { }
1845 
1846  /**
1847  * @brief Resets the distribution state.
1848  *
1849  * Does nothing for the uniform real distribution.
1850  */
1851  void
1852  reset() { }
1853 
1854  result_type
1855  a() const
1856  { return _M_param.a(); }
1857 
1858  result_type
1859  b() const
1860  { return _M_param.b(); }
1861 
1862  /**
1863  * @brief Returns the parameter set of the distribution.
1864  */
1865  param_type
1866  param() const
1867  { return _M_param; }
1868 
1869  /**
1870  * @brief Sets the parameter set of the distribution.
1871  * @param __param The new parameter set of the distribution.
1872  */
1873  void
1874  param(const param_type& __param)
1875  { _M_param = __param; }
1876 
1877  /**
1878  * @brief Returns the inclusive lower bound of the distribution range.
1879  */
1880  result_type
1881  min() const
1882  { return this->a(); }
1883 
1884  /**
1885  * @brief Returns the inclusive upper bound of the distribution range.
1886  */
1887  result_type
1888  max() const
1889  { return this->b(); }
1890 
1891  /**
1892  * @brief Generating functions.
1893  */
1894  template<typename _UniformRandomNumberGenerator>
1895  result_type
1896  operator()(_UniformRandomNumberGenerator& __urng)
1897  { return this->operator()(__urng, this->param()); }
1898 
1899  template<typename _UniformRandomNumberGenerator>
1900  result_type
1901  operator()(_UniformRandomNumberGenerator& __urng,
1902  const param_type& __p)
1903  {
1904  __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
1905  __aurng(__urng);
1906  return (__aurng() * (__p.b() - __p.a())) + __p.a();
1907  }
1908 
1909  private:
1910  param_type _M_param;
1911  };
1912 
1913  /**
1914  * @brief Return true if two uniform real distributions have
1915  * the same parameters.
1916  */
1917  template<typename _IntType>
1918  inline bool
1921  { return __d1.param() == __d2.param(); }
1922 
1923  /**
1924  * @brief Return true if two uniform real distributions have
1925  * different parameters.
1926  */
1927  template<typename _IntType>
1928  inline bool
1931  { return !(__d1 == __d2); }
1932 
1933  /**
1934  * @brief Inserts a %uniform_real_distribution random number
1935  * distribution @p __x into the output stream @p __os.
1936  *
1937  * @param __os An output stream.
1938  * @param __x A %uniform_real_distribution random number distribution.
1939  *
1940  * @returns The output stream with the state of @p __x inserted or in
1941  * an error state.
1942  */
1943  template<typename _RealType, typename _CharT, typename _Traits>
1945  operator<<(std::basic_ostream<_CharT, _Traits>&,
1947 
1948  /**
1949  * @brief Extracts a %uniform_real_distribution random number distribution
1950  * @p __x from the input stream @p __is.
1951  *
1952  * @param __is An input stream.
1953  * @param __x A %uniform_real_distribution random number generator engine.
1954  *
1955  * @returns The input stream with @p __x extracted or in an error state.
1956  */
1957  template<typename _RealType, typename _CharT, typename _Traits>
1961 
1962  /* @} */ // group random_distributions_uniform
1963 
1964  /**
1965  * @addtogroup random_distributions_normal Normal Distributions
1966  * @ingroup random_distributions
1967  * @{
1968  */
1969 
1970  /**
1971  * @brief A normal continuous distribution for random numbers.
1972  *
1973  * The formula for the normal probability density function is
1974  * @f[
1975  * p(x|\mu,\sigma) = \frac{1}{\sigma \sqrt{2 \pi}}
1976  * e^{- \frac{{x - \mu}^ {2}}{2 \sigma ^ {2}} }
1977  * @f]
1978  */
1979  template<typename _RealType = double>
1981  {
1983  "template argument not a floating point type");
1984 
1985  public:
1986  /** The type of the range of the distribution. */
1987  typedef _RealType result_type;
1988  /** Parameter type. */
1989  struct param_type
1990  {
1992 
1993  explicit
1994  param_type(_RealType __mean = _RealType(0),
1995  _RealType __stddev = _RealType(1))
1996  : _M_mean(__mean), _M_stddev(__stddev)
1997  {
1998  _GLIBCXX_DEBUG_ASSERT(_M_stddev > _RealType(0));
1999  }
2000 
2001  _RealType
2002  mean() const
2003  { return _M_mean; }
2004 
2005  _RealType
2006  stddev() const
2007  { return _M_stddev; }
2008 
2009  friend bool
2010  operator==(const param_type& __p1, const param_type& __p2)
2011  { return (__p1._M_mean == __p2._M_mean
2012  && __p1._M_stddev == __p2._M_stddev); }
2013 
2014  private:
2015  _RealType _M_mean;
2016  _RealType _M_stddev;
2017  };
2018 
2019  public:
2020  /**
2021  * Constructs a normal distribution with parameters @f$mean@f$ and
2022  * standard deviation.
2023  */
2024  explicit
2026  result_type __stddev = result_type(1))
2027  : _M_param(__mean, __stddev), _M_saved_available(false)
2028  { }
2029 
2030  explicit
2031  normal_distribution(const param_type& __p)
2032  : _M_param(__p), _M_saved_available(false)
2033  { }
2034 
2035  /**
2036  * @brief Resets the distribution state.
2037  */
2038  void
2040  { _M_saved_available = false; }
2041 
2042  /**
2043  * @brief Returns the mean of the distribution.
2044  */
2045  _RealType
2046  mean() const
2047  { return _M_param.mean(); }
2048 
2049  /**
2050  * @brief Returns the standard deviation of the distribution.
2051  */
2052  _RealType
2053  stddev() const
2054  { return _M_param.stddev(); }
2055 
2056  /**
2057  * @brief Returns the parameter set of the distribution.
2058  */
2059  param_type
2060  param() const
2061  { return _M_param; }
2062 
2063  /**
2064  * @brief Sets the parameter set of the distribution.
2065  * @param __param The new parameter set of the distribution.
2066  */
2067  void
2068  param(const param_type& __param)
2069  { _M_param = __param; }
2070 
2071  /**
2072  * @brief Returns the greatest lower bound value of the distribution.
2073  */
2074  result_type
2075  min() const
2077 
2078  /**
2079  * @brief Returns the least upper bound value of the distribution.
2080  */
2081  result_type
2082  max() const
2084 
2085  /**
2086  * @brief Generating functions.
2087  */
2088  template<typename _UniformRandomNumberGenerator>
2089  result_type
2090  operator()(_UniformRandomNumberGenerator& __urng)
2091  { return this->operator()(__urng, this->param()); }
2092 
2093  template<typename _UniformRandomNumberGenerator>
2094  result_type
2095  operator()(_UniformRandomNumberGenerator& __urng,
2096  const param_type& __p);
2097 
2098  /**
2099  * @brief Return true if two normal distributions have
2100  * the same parameters and the sequences that would
2101  * be generated are equal.
2102  */
2103  template<typename _RealType1>
2104  friend bool
2107 
2108  /**
2109  * @brief Inserts a %normal_distribution random number distribution
2110  * @p __x into the output stream @p __os.
2111  *
2112  * @param __os An output stream.
2113  * @param __x A %normal_distribution random number distribution.
2114  *
2115  * @returns The output stream with the state of @p __x inserted or in
2116  * an error state.
2117  */
2118  template<typename _RealType1, typename _CharT, typename _Traits>
2120  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2122 
2123  /**
2124  * @brief Extracts a %normal_distribution random number distribution
2125  * @p __x from the input stream @p __is.
2126  *
2127  * @param __is An input stream.
2128  * @param __x A %normal_distribution random number generator engine.
2129  *
2130  * @returns The input stream with @p __x extracted or in an error
2131  * state.
2132  */
2133  template<typename _RealType1, typename _CharT, typename _Traits>
2137 
2138  private:
2139  param_type _M_param;
2140  result_type _M_saved;
2141  bool _M_saved_available;
2142  };
2143 
2144  /**
2145  * @brief Return true if two normal distributions are different.
2146  */
2147  template<typename _RealType>
2148  inline bool
2149  operator!=(const std::normal_distribution<_RealType>& __d1,
2151  { return !(__d1 == __d2); }
2152 
2153 
2154  /**
2155  * @brief A lognormal_distribution random number distribution.
2156  *
2157  * The formula for the normal probability mass function is
2158  * @f[
2159  * p(x|m,s) = \frac{1}{sx\sqrt{2\pi}}
2160  * \exp{-\frac{(\ln{x} - m)^2}{2s^2}}
2161  * @f]
2162  */
2163  template<typename _RealType = double>
2165  {
2167  "template argument not a floating point type");
2168 
2169  public:
2170  /** The type of the range of the distribution. */
2171  typedef _RealType result_type;
2172  /** Parameter type. */
2173  struct param_type
2174  {
2176 
2177  explicit
2178  param_type(_RealType __m = _RealType(0),
2179  _RealType __s = _RealType(1))
2180  : _M_m(__m), _M_s(__s)
2181  { }
2182 
2183  _RealType
2184  m() const
2185  { return _M_m; }
2186 
2187  _RealType
2188  s() const
2189  { return _M_s; }
2190 
2191  friend bool
2192  operator==(const param_type& __p1, const param_type& __p2)
2193  { return __p1._M_m == __p2._M_m && __p1._M_s == __p2._M_s; }
2194 
2195  private:
2196  _RealType _M_m;
2197  _RealType _M_s;
2198  };
2199 
2200  explicit
2201  lognormal_distribution(_RealType __m = _RealType(0),
2202  _RealType __s = _RealType(1))
2203  : _M_param(__m, __s), _M_nd()
2204  { }
2205 
2206  explicit
2207  lognormal_distribution(const param_type& __p)
2208  : _M_param(__p), _M_nd()
2209  { }
2210 
2211  /**
2212  * Resets the distribution state.
2213  */
2214  void
2216  { _M_nd.reset(); }
2217 
2218  /**
2219  *
2220  */
2221  _RealType
2222  m() const
2223  { return _M_param.m(); }
2224 
2225  _RealType
2226  s() const
2227  { return _M_param.s(); }
2228 
2229  /**
2230  * @brief Returns the parameter set of the distribution.
2231  */
2232  param_type
2233  param() const
2234  { return _M_param; }
2235 
2236  /**
2237  * @brief Sets the parameter set of the distribution.
2238  * @param __param The new parameter set of the distribution.
2239  */
2240  void
2241  param(const param_type& __param)
2242  { _M_param = __param; }
2243 
2244  /**
2245  * @brief Returns the greatest lower bound value of the distribution.
2246  */
2247  result_type
2248  min() const
2249  { return result_type(0); }
2250 
2251  /**
2252  * @brief Returns the least upper bound value of the distribution.
2253  */
2254  result_type
2255  max() const
2257 
2258  /**
2259  * @brief Generating functions.
2260  */
2261  template<typename _UniformRandomNumberGenerator>
2262  result_type
2263  operator()(_UniformRandomNumberGenerator& __urng)
2264  { return this->operator()(__urng, this->param()); }
2265 
2266  template<typename _UniformRandomNumberGenerator>
2267  result_type
2268  operator()(_UniformRandomNumberGenerator& __urng,
2269  const param_type& __p)
2270  { return std::exp(__p.s() * _M_nd(__urng) + __p.m()); }
2271 
2272  /**
2273  * @brief Return true if two lognormal distributions have
2274  * the same parameters and the sequences that would
2275  * be generated are equal.
2276  */
2277  template<typename _RealType1>
2278  friend bool
2281  { return (__d1.param() == __d2.param()
2282  && __d1._M_nd == __d2._M_nd); }
2283 
2284  /**
2285  * @brief Inserts a %lognormal_distribution random number distribution
2286  * @p __x into the output stream @p __os.
2287  *
2288  * @param __os An output stream.
2289  * @param __x A %lognormal_distribution random number distribution.
2290  *
2291  * @returns The output stream with the state of @p __x inserted or in
2292  * an error state.
2293  */
2294  template<typename _RealType1, typename _CharT, typename _Traits>
2296  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2298 
2299  /**
2300  * @brief Extracts a %lognormal_distribution random number distribution
2301  * @p __x from the input stream @p __is.
2302  *
2303  * @param __is An input stream.
2304  * @param __x A %lognormal_distribution random number
2305  * generator engine.
2306  *
2307  * @returns The input stream with @p __x extracted or in an error state.
2308  */
2309  template<typename _RealType1, typename _CharT, typename _Traits>
2313 
2314  private:
2315  param_type _M_param;
2316 
2318  };
2319 
2320  /**
2321  * @brief Return true if two lognormal distributions are different.
2322  */
2323  template<typename _RealType>
2324  inline bool
2327  { return !(__d1 == __d2); }
2328 
2329 
2330  /**
2331  * @brief A gamma continuous distribution for random numbers.
2332  *
2333  * The formula for the gamma probability density function is:
2334  * @f[
2335  * p(x|\alpha,\beta) = \frac{1}{\beta\Gamma(\alpha)}
2336  * (x/\beta)^{\alpha - 1} e^{-x/\beta}
2337  * @f]
2338  */
2339  template<typename _RealType = double>
2341  {
2343  "template argument not a floating point type");
2344 
2345  public:
2346  /** The type of the range of the distribution. */
2347  typedef _RealType result_type;
2348  /** Parameter type. */
2349  struct param_type
2350  {
2352  friend class gamma_distribution<_RealType>;
2353 
2354  explicit
2355  param_type(_RealType __alpha_val = _RealType(1),
2356  _RealType __beta_val = _RealType(1))
2357  : _M_alpha(__alpha_val), _M_beta(__beta_val)
2358  {
2359  _GLIBCXX_DEBUG_ASSERT(_M_alpha > _RealType(0));
2360  _M_initialize();
2361  }
2362 
2363  _RealType
2364  alpha() const
2365  { return _M_alpha; }
2366 
2367  _RealType
2368  beta() const
2369  { return _M_beta; }
2370 
2371  friend bool
2372  operator==(const param_type& __p1, const param_type& __p2)
2373  { return (__p1._M_alpha == __p2._M_alpha
2374  && __p1._M_beta == __p2._M_beta); }
2375 
2376  private:
2377  void
2378  _M_initialize();
2379 
2380  _RealType _M_alpha;
2381  _RealType _M_beta;
2382 
2383  _RealType _M_malpha, _M_a2;
2384  };
2385 
2386  public:
2387  /**
2388  * @brief Constructs a gamma distribution with parameters
2389  * @f$\alpha@f$ and @f$\beta@f$.
2390  */
2391  explicit
2392  gamma_distribution(_RealType __alpha_val = _RealType(1),
2393  _RealType __beta_val = _RealType(1))
2394  : _M_param(__alpha_val, __beta_val), _M_nd()
2395  { }
2396 
2397  explicit
2398  gamma_distribution(const param_type& __p)
2399  : _M_param(__p), _M_nd()
2400  { }
2401 
2402  /**
2403  * @brief Resets the distribution state.
2404  */
2405  void
2407  { _M_nd.reset(); }
2408 
2409  /**
2410  * @brief Returns the @f$\alpha@f$ of the distribution.
2411  */
2412  _RealType
2413  alpha() const
2414  { return _M_param.alpha(); }
2415 
2416  /**
2417  * @brief Returns the @f$\beta@f$ of the distribution.
2418  */
2419  _RealType
2420  beta() const
2421  { return _M_param.beta(); }
2422 
2423  /**
2424  * @brief Returns the parameter set of the distribution.
2425  */
2426  param_type
2427  param() const
2428  { return _M_param; }
2429 
2430  /**
2431  * @brief Sets the parameter set of the distribution.
2432  * @param __param The new parameter set of the distribution.
2433  */
2434  void
2435  param(const param_type& __param)
2436  { _M_param = __param; }
2437 
2438  /**
2439  * @brief Returns the greatest lower bound value of the distribution.
2440  */
2441  result_type
2442  min() const
2443  { return result_type(0); }
2444 
2445  /**
2446  * @brief Returns the least upper bound value of the distribution.
2447  */
2448  result_type
2449  max() const
2451 
2452  /**
2453  * @brief Generating functions.
2454  */
2455  template<typename _UniformRandomNumberGenerator>
2456  result_type
2457  operator()(_UniformRandomNumberGenerator& __urng)
2458  { return this->operator()(__urng, this->param()); }
2459 
2460  template<typename _UniformRandomNumberGenerator>
2461  result_type
2462  operator()(_UniformRandomNumberGenerator& __urng,
2463  const param_type& __p);
2464 
2465  /**
2466  * @brief Return true if two gamma distributions have the same
2467  * parameters and the sequences that would be generated
2468  * are equal.
2469  */
2470  template<typename _RealType1>
2471  friend bool
2474  { return (__d1.param() == __d2.param()
2475  && __d1._M_nd == __d2._M_nd); }
2476 
2477  /**
2478  * @brief Inserts a %gamma_distribution random number distribution
2479  * @p __x into the output stream @p __os.
2480  *
2481  * @param __os An output stream.
2482  * @param __x A %gamma_distribution random number distribution.
2483  *
2484  * @returns The output stream with the state of @p __x inserted or in
2485  * an error state.
2486  */
2487  template<typename _RealType1, typename _CharT, typename _Traits>
2489  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2491 
2492  /**
2493  * @brief Extracts a %gamma_distribution random number distribution
2494  * @p __x from the input stream @p __is.
2495  *
2496  * @param __is An input stream.
2497  * @param __x A %gamma_distribution random number generator engine.
2498  *
2499  * @returns The input stream with @p __x extracted or in an error state.
2500  */
2501  template<typename _RealType1, typename _CharT, typename _Traits>
2505 
2506  private:
2507  param_type _M_param;
2508 
2510  };
2511 
2512  /**
2513  * @brief Return true if two gamma distributions are different.
2514  */
2515  template<typename _RealType>
2516  inline bool
2517  operator!=(const std::gamma_distribution<_RealType>& __d1,
2519  { return !(__d1 == __d2); }
2520 
2521 
2522  /**
2523  * @brief A chi_squared_distribution random number distribution.
2524  *
2525  * The formula for the normal probability mass function is
2526  * @f$p(x|n) = \frac{x^{(n/2) - 1}e^{-x/2}}{\Gamma(n/2) 2^{n/2}}@f$
2527  */
2528  template<typename _RealType = double>
2530  {
2532  "template argument not a floating point type");
2533 
2534  public:
2535  /** The type of the range of the distribution. */
2536  typedef _RealType result_type;
2537  /** Parameter type. */
2538  struct param_type
2539  {
2541 
2542  explicit
2543  param_type(_RealType __n = _RealType(1))
2544  : _M_n(__n)
2545  { }
2546 
2547  _RealType
2548  n() const
2549  { return _M_n; }
2550 
2551  friend bool
2552  operator==(const param_type& __p1, const param_type& __p2)
2553  { return __p1._M_n == __p2._M_n; }
2554 
2555  private:
2556  _RealType _M_n;
2557  };
2558 
2559  explicit
2560  chi_squared_distribution(_RealType __n = _RealType(1))
2561  : _M_param(__n), _M_gd(__n / 2)
2562  { }
2563 
2564  explicit
2565  chi_squared_distribution(const param_type& __p)
2566  : _M_param(__p), _M_gd(__p.n() / 2)
2567  { }
2568 
2569  /**
2570  * @brief Resets the distribution state.
2571  */
2572  void
2574  { _M_gd.reset(); }
2575 
2576  /**
2577  *
2578  */
2579  _RealType
2580  n() const
2581  { return _M_param.n(); }
2582 
2583  /**
2584  * @brief Returns the parameter set of the distribution.
2585  */
2586  param_type
2587  param() const
2588  { return _M_param; }
2589 
2590  /**
2591  * @brief Sets the parameter set of the distribution.
2592  * @param __param The new parameter set of the distribution.
2593  */
2594  void
2595  param(const param_type& __param)
2596  { _M_param = __param; }
2597 
2598  /**
2599  * @brief Returns the greatest lower bound value of the distribution.
2600  */
2601  result_type
2602  min() const
2603  { return result_type(0); }
2604 
2605  /**
2606  * @brief Returns the least upper bound value of the distribution.
2607  */
2608  result_type
2609  max() const
2611 
2612  /**
2613  * @brief Generating functions.
2614  */
2615  template<typename _UniformRandomNumberGenerator>
2616  result_type
2617  operator()(_UniformRandomNumberGenerator& __urng)
2618  { return 2 * _M_gd(__urng); }
2619 
2620  template<typename _UniformRandomNumberGenerator>
2621  result_type
2622  operator()(_UniformRandomNumberGenerator& __urng,
2623  const param_type& __p)
2624  {
2626  param_type;
2627  return 2 * _M_gd(__urng, param_type(__p.n() / 2));
2628  }
2629 
2630  /**
2631  * @brief Return true if two Chi-squared distributions have
2632  * the same parameters and the sequences that would be
2633  * generated are equal.
2634  */
2635  template<typename _RealType1>
2636  friend bool
2639  { return __d1.param() == __d2.param() && __d1._M_gd == __d2._M_gd; }
2640 
2641  /**
2642  * @brief Inserts a %chi_squared_distribution random number distribution
2643  * @p __x into the output stream @p __os.
2644  *
2645  * @param __os An output stream.
2646  * @param __x A %chi_squared_distribution random number distribution.
2647  *
2648  * @returns The output stream with the state of @p __x inserted or in
2649  * an error state.
2650  */
2651  template<typename _RealType1, typename _CharT, typename _Traits>
2653  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2655 
2656  /**
2657  * @brief Extracts a %chi_squared_distribution random number distribution
2658  * @p __x from the input stream @p __is.
2659  *
2660  * @param __is An input stream.
2661  * @param __x A %chi_squared_distribution random number
2662  * generator engine.
2663  *
2664  * @returns The input stream with @p __x extracted or in an error state.
2665  */
2666  template<typename _RealType1, typename _CharT, typename _Traits>
2670 
2671  private:
2672  param_type _M_param;
2673 
2675  };
2676 
2677  /**
2678  * @brief Return true if two Chi-squared distributions are different.
2679  */
2680  template<typename _RealType>
2681  inline bool
2684  { return !(__d1 == __d2); }
2685 
2686 
2687  /**
2688  * @brief A cauchy_distribution random number distribution.
2689  *
2690  * The formula for the normal probability mass function is
2691  * @f$p(x|a,b) = (\pi b (1 + (\frac{x-a}{b})^2))^{-1}@f$
2692  */
2693  template<typename _RealType = double>
2695  {
2697  "template argument not a floating point type");
2698 
2699  public:
2700  /** The type of the range of the distribution. */
2701  typedef _RealType result_type;
2702  /** Parameter type. */
2703  struct param_type
2704  {
2706 
2707  explicit
2708  param_type(_RealType __a = _RealType(0),
2709  _RealType __b = _RealType(1))
2710  : _M_a(__a), _M_b(__b)
2711  { }
2712 
2713  _RealType
2714  a() const
2715  { return _M_a; }
2716 
2717  _RealType
2718  b() const
2719  { return _M_b; }
2720 
2721  friend bool
2722  operator==(const param_type& __p1, const param_type& __p2)
2723  { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; }
2724 
2725  private:
2726  _RealType _M_a;
2727  _RealType _M_b;
2728  };
2729 
2730  explicit
2731  cauchy_distribution(_RealType __a = _RealType(0),
2732  _RealType __b = _RealType(1))
2733  : _M_param(__a, __b)
2734  { }
2735 
2736  explicit
2737  cauchy_distribution(const param_type& __p)
2738  : _M_param(__p)
2739  { }
2740 
2741  /**
2742  * @brief Resets the distribution state.
2743  */
2744  void
2746  { }
2747 
2748  /**
2749  *
2750  */
2751  _RealType
2752  a() const
2753  { return _M_param.a(); }
2754 
2755  _RealType
2756  b() const
2757  { return _M_param.b(); }
2758 
2759  /**
2760  * @brief Returns the parameter set of the distribution.
2761  */
2762  param_type
2763  param() const
2764  { return _M_param; }
2765 
2766  /**
2767  * @brief Sets the parameter set of the distribution.
2768  * @param __param The new parameter set of the distribution.
2769  */
2770  void
2771  param(const param_type& __param)
2772  { _M_param = __param; }
2773 
2774  /**
2775  * @brief Returns the greatest lower bound value of the distribution.
2776  */
2777  result_type
2778  min() const
2780 
2781  /**
2782  * @brief Returns the least upper bound value of the distribution.
2783  */
2784  result_type
2785  max() const
2787 
2788  /**
2789  * @brief Generating functions.
2790  */
2791  template<typename _UniformRandomNumberGenerator>
2792  result_type
2793  operator()(_UniformRandomNumberGenerator& __urng)
2794  { return this->operator()(__urng, this->param()); }
2795 
2796  template<typename _UniformRandomNumberGenerator>
2797  result_type
2798  operator()(_UniformRandomNumberGenerator& __urng,
2799  const param_type& __p);
2800 
2801  private:
2802  param_type _M_param;
2803  };
2804 
2805  /**
2806  * @brief Return true if two Cauchy distributions have
2807  * the same parameters.
2808  */
2809  template<typename _RealType>
2810  inline bool
2811  operator==(const std::cauchy_distribution<_RealType>& __d1,
2813  { return __d1.param() == __d2.param(); }
2814 
2815  /**
2816  * @brief Return true if two Cauchy distributions have
2817  * different parameters.
2818  */
2819  template<typename _RealType>
2820  inline bool
2821  operator!=(const std::cauchy_distribution<_RealType>& __d1,
2823  { return !(__d1 == __d2); }
2824 
2825  /**
2826  * @brief Inserts a %cauchy_distribution random number distribution
2827  * @p __x into the output stream @p __os.
2828  *
2829  * @param __os An output stream.
2830  * @param __x A %cauchy_distribution random number distribution.
2831  *
2832  * @returns The output stream with the state of @p __x inserted or in
2833  * an error state.
2834  */
2835  template<typename _RealType, typename _CharT, typename _Traits>
2837  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2839 
2840  /**
2841  * @brief Extracts a %cauchy_distribution random number distribution
2842  * @p __x from the input stream @p __is.
2843  *
2844  * @param __is An input stream.
2845  * @param __x A %cauchy_distribution random number
2846  * generator engine.
2847  *
2848  * @returns The input stream with @p __x extracted or in an error state.
2849  */
2850  template<typename _RealType, typename _CharT, typename _Traits>
2854 
2855 
2856  /**
2857  * @brief A fisher_f_distribution random number distribution.
2858  *
2859  * The formula for the normal probability mass function is
2860  * @f[
2861  * p(x|m,n) = \frac{\Gamma((m+n)/2)}{\Gamma(m/2)\Gamma(n/2)}
2862  * (\frac{m}{n})^{m/2} x^{(m/2)-1}
2863  * (1 + \frac{mx}{n})^{-(m+n)/2}
2864  * @f]
2865  */
2866  template<typename _RealType = double>
2868  {
2870  "template argument not a floating point type");
2871 
2872  public:
2873  /** The type of the range of the distribution. */
2874  typedef _RealType result_type;
2875  /** Parameter type. */
2876  struct param_type
2877  {
2879 
2880  explicit
2881  param_type(_RealType __m = _RealType(1),
2882  _RealType __n = _RealType(1))
2883  : _M_m(__m), _M_n(__n)
2884  { }
2885 
2886  _RealType
2887  m() const
2888  { return _M_m; }
2889 
2890  _RealType
2891  n() const
2892  { return _M_n; }
2893 
2894  friend bool
2895  operator==(const param_type& __p1, const param_type& __p2)
2896  { return __p1._M_m == __p2._M_m && __p1._M_n == __p2._M_n; }
2897 
2898  private:
2899  _RealType _M_m;
2900  _RealType _M_n;
2901  };
2902 
2903  explicit
2904  fisher_f_distribution(_RealType __m = _RealType(1),
2905  _RealType __n = _RealType(1))
2906  : _M_param(__m, __n), _M_gd_x(__m / 2), _M_gd_y(__n / 2)
2907  { }
2908 
2909  explicit
2910  fisher_f_distribution(const param_type& __p)
2911  : _M_param(__p), _M_gd_x(__p.m() / 2), _M_gd_y(__p.n() / 2)
2912  { }
2913 
2914  /**
2915  * @brief Resets the distribution state.
2916  */
2917  void
2919  {
2920  _M_gd_x.reset();
2921  _M_gd_y.reset();
2922  }
2923 
2924  /**
2925  *
2926  */
2927  _RealType
2928  m() const
2929  { return _M_param.m(); }
2930 
2931  _RealType
2932  n() const
2933  { return _M_param.n(); }
2934 
2935  /**
2936  * @brief Returns the parameter set of the distribution.
2937  */
2938  param_type
2939  param() const
2940  { return _M_param; }
2941 
2942  /**
2943  * @brief Sets the parameter set of the distribution.
2944  * @param __param The new parameter set of the distribution.
2945  */
2946  void
2947  param(const param_type& __param)
2948  { _M_param = __param; }
2949 
2950  /**
2951  * @brief Returns the greatest lower bound value of the distribution.
2952  */
2953  result_type
2954  min() const
2955  { return result_type(0); }
2956 
2957  /**
2958  * @brief Returns the least upper bound value of the distribution.
2959  */
2960  result_type
2961  max() const
2963 
2964  /**
2965  * @brief Generating functions.
2966  */
2967  template<typename _UniformRandomNumberGenerator>
2968  result_type
2969  operator()(_UniformRandomNumberGenerator& __urng)
2970  { return (_M_gd_x(__urng) * n()) / (_M_gd_y(__urng) * m()); }
2971 
2972  template<typename _UniformRandomNumberGenerator>
2973  result_type
2974  operator()(_UniformRandomNumberGenerator& __urng,
2975  const param_type& __p)
2976  {
2978  param_type;
2979  return ((_M_gd_x(__urng, param_type(__p.m() / 2)) * n())
2980  / (_M_gd_y(__urng, param_type(__p.n() / 2)) * m()));
2981  }
2982 
2983  /**
2984  * @brief Return true if two Fisher f distributions have
2985  * the same parameters and the sequences that would
2986  * be generated are equal.
2987  */
2988  template<typename _RealType1>
2989  friend bool
2992  { return (__d1.param() == __d2.param()
2993  && __d1._M_gd_x == __d2._M_gd_x
2994  && __d1._M_gd_y == __d2._M_gd_y); }
2995 
2996  /**
2997  * @brief Inserts a %fisher_f_distribution random number distribution
2998  * @p __x into the output stream @p __os.
2999  *
3000  * @param __os An output stream.
3001  * @param __x A %fisher_f_distribution random number distribution.
3002  *
3003  * @returns The output stream with the state of @p __x inserted or in
3004  * an error state.
3005  */
3006  template<typename _RealType1, typename _CharT, typename _Traits>
3008  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
3010 
3011  /**
3012  * @brief Extracts a %fisher_f_distribution random number distribution
3013  * @p __x from the input stream @p __is.
3014  *
3015  * @param __is An input stream.
3016  * @param __x A %fisher_f_distribution random number
3017  * generator engine.
3018  *
3019  * @returns The input stream with @p __x extracted or in an error state.
3020  */
3021  template<typename _RealType1, typename _CharT, typename _Traits>
3025 
3026  private:
3027  param_type _M_param;
3028 
3029  std::gamma_distribution<result_type> _M_gd_x, _M_gd_y;
3030  };
3031 
3032  /**
3033  * @brief Return true if two Fisher f distributions are diferent.
3034  */
3035  template<typename _RealType>
3036  inline bool
3039  { return !(__d1 == __d2); }
3040 
3041  /**
3042  * @brief A student_t_distribution random number distribution.
3043  *
3044  * The formula for the normal probability mass function is:
3045  * @f[
3046  * p(x|n) = \frac{1}{\sqrt(n\pi)} \frac{\Gamma((n+1)/2)}{\Gamma(n/2)}
3047  * (1 + \frac{x^2}{n}) ^{-(n+1)/2}
3048  * @f]
3049  */
3050  template<typename _RealType = double>
3052  {
3054  "template argument not a floating point type");
3055 
3056  public:
3057  /** The type of the range of the distribution. */
3058  typedef _RealType result_type;
3059  /** Parameter type. */
3060  struct param_type
3061  {
3063 
3064  explicit
3065  param_type(_RealType __n = _RealType(1))
3066  : _M_n(__n)
3067  { }
3068 
3069  _RealType
3070  n() const
3071  { return _M_n; }
3072 
3073  friend bool
3074  operator==(const param_type& __p1, const param_type& __p2)
3075  { return __p1._M_n == __p2._M_n; }
3076 
3077  private:
3078  _RealType _M_n;
3079  };
3080 
3081  explicit
3082  student_t_distribution(_RealType __n = _RealType(1))
3083  : _M_param(__n), _M_nd(), _M_gd(__n / 2, 2)
3084  { }
3085 
3086  explicit
3087  student_t_distribution(const param_type& __p)
3088  : _M_param(__p), _M_nd(), _M_gd(__p.n() / 2, 2)
3089  { }
3090 
3091  /**
3092  * @brief Resets the distribution state.
3093  */
3094  void
3096  {
3097  _M_nd.reset();
3098  _M_gd.reset();
3099  }
3100 
3101  /**
3102  *
3103  */
3104  _RealType
3105  n() const
3106  { return _M_param.n(); }
3107 
3108  /**
3109  * @brief Returns the parameter set of the distribution.
3110  */
3111  param_type
3112  param() const
3113  { return _M_param; }
3114 
3115  /**
3116  * @brief Sets the parameter set of the distribution.
3117  * @param __param The new parameter set of the distribution.
3118  */
3119  void
3120  param(const param_type& __param)
3121  { _M_param = __param; }
3122 
3123  /**
3124  * @brief Returns the greatest lower bound value of the distribution.
3125  */
3126  result_type
3127  min() const
3129 
3130  /**
3131  * @brief Returns the least upper bound value of the distribution.
3132  */
3133  result_type
3134  max() const
3136 
3137  /**
3138  * @brief Generating functions.
3139  */
3140  template<typename _UniformRandomNumberGenerator>
3141  result_type
3142  operator()(_UniformRandomNumberGenerator& __urng)
3143  { return _M_nd(__urng) * std::sqrt(n() / _M_gd(__urng)); }
3144 
3145  template<typename _UniformRandomNumberGenerator>
3146  result_type
3147  operator()(_UniformRandomNumberGenerator& __urng,
3148  const param_type& __p)
3149  {
3151  param_type;
3152 
3153  const result_type __g = _M_gd(__urng, param_type(__p.n() / 2, 2));
3154  return _M_nd(__urng) * std::sqrt(__p.n() / __g);
3155  }
3156 
3157  /**
3158  * @brief Return true if two Student t distributions have
3159  * the same parameters and the sequences that would
3160  * be generated are equal.
3161  */
3162  template<typename _RealType1>
3163  friend bool
3166  { return (__d1.param() == __d2.param()
3167  && __d1._M_nd == __d2._M_nd && __d1._M_gd == __d2._M_gd); }
3168 
3169  /**
3170  * @brief Inserts a %student_t_distribution random number distribution
3171  * @p __x into the output stream @p __os.
3172  *
3173  * @param __os An output stream.
3174  * @param __x A %student_t_distribution random number distribution.
3175  *
3176  * @returns The output stream with the state of @p __x inserted or in
3177  * an error state.
3178  */
3179  template<typename _RealType1, typename _CharT, typename _Traits>
3181  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
3183 
3184  /**
3185  * @brief Extracts a %student_t_distribution random number distribution
3186  * @p __x from the input stream @p __is.
3187  *
3188  * @param __is An input stream.
3189  * @param __x A %student_t_distribution random number
3190  * generator engine.
3191  *
3192  * @returns The input stream with @p __x extracted or in an error state.
3193  */
3194  template<typename _RealType1, typename _CharT, typename _Traits>
3198 
3199  private:
3200  param_type _M_param;
3201 
3204  };
3205 
3206  /**
3207  * @brief Return true if two Student t distributions are different.
3208  */
3209  template<typename _RealType>
3210  inline bool
3213  { return !(__d1 == __d2); }
3214 
3215 
3216  /* @} */ // group random_distributions_normal
3217 
3218  /**
3219  * @addtogroup random_distributions_bernoulli Bernoulli Distributions
3220  * @ingroup random_distributions
3221  * @{
3222  */
3223 
3224  /**
3225  * @brief A Bernoulli random number distribution.
3226  *
3227  * Generates a sequence of true and false values with likelihood @f$p@f$
3228  * that true will come up and @f$(1 - p)@f$ that false will appear.
3229  */
3231  {
3232  public:
3233  /** The type of the range of the distribution. */
3234  typedef bool result_type;
3235  /** Parameter type. */
3236  struct param_type
3237  {
3239 
3240  explicit
3241  param_type(double __p = 0.5)
3242  : _M_p(__p)
3243  {
3244  _GLIBCXX_DEBUG_ASSERT((_M_p >= 0.0) && (_M_p <= 1.0));
3245  }
3246 
3247  double
3248  p() const
3249  { return _M_p; }
3250 
3251  friend bool
3252  operator==(const param_type& __p1, const param_type& __p2)
3253  { return __p1._M_p == __p2._M_p; }
3254 
3255  private:
3256  double _M_p;
3257  };
3258 
3259  public:
3260  /**
3261  * @brief Constructs a Bernoulli distribution with likelihood @p p.
3262  *
3263  * @param __p [IN] The likelihood of a true result being returned.
3264  * Must be in the interval @f$[0, 1]@f$.
3265  */
3266  explicit
3267  bernoulli_distribution(double __p = 0.5)
3268  : _M_param(__p)
3269  { }
3270 
3271  explicit
3272  bernoulli_distribution(const param_type& __p)
3273  : _M_param(__p)
3274  { }
3275 
3276  /**
3277  * @brief Resets the distribution state.
3278  *
3279  * Does nothing for a Bernoulli distribution.
3280  */
3281  void
3282  reset() { }
3283 
3284  /**
3285  * @brief Returns the @p p parameter of the distribution.
3286  */
3287  double
3288  p() const
3289  { return _M_param.p(); }
3290 
3291  /**
3292  * @brief Returns the parameter set of the distribution.
3293  */
3294  param_type
3295  param() const
3296  { return _M_param; }
3297 
3298  /**
3299  * @brief Sets the parameter set of the distribution.
3300  * @param __param The new parameter set of the distribution.
3301  */
3302  void
3303  param(const param_type& __param)
3304  { _M_param = __param; }
3305 
3306  /**
3307  * @brief Returns the greatest lower bound value of the distribution.
3308  */
3309  result_type
3310  min() const
3312 
3313  /**
3314  * @brief Returns the least upper bound value of the distribution.
3315  */
3316  result_type
3317  max() const
3319 
3320  /**
3321  * @brief Generating functions.
3322  */
3323  template<typename _UniformRandomNumberGenerator>
3324  result_type
3325  operator()(_UniformRandomNumberGenerator& __urng)
3326  { return this->operator()(__urng, this->param()); }
3327 
3328  template<typename _UniformRandomNumberGenerator>
3329  result_type
3330  operator()(_UniformRandomNumberGenerator& __urng,
3331  const param_type& __p)
3332  {
3333  __detail::_Adaptor<_UniformRandomNumberGenerator, double>
3334  __aurng(__urng);
3335  if ((__aurng() - __aurng.min())
3336  < __p.p() * (__aurng.max() - __aurng.min()))
3337  return true;
3338  return false;
3339  }
3340 
3341  private:
3342  param_type _M_param;
3343  };
3344 
3345  /**
3346  * @brief Return true if two Bernoulli distributions have
3347  * the same parameters.
3348  */
3349  inline bool
3350  operator==(const std::bernoulli_distribution& __d1,
3351  const std::bernoulli_distribution& __d2)
3352  { return __d1.param() == __d2.param(); }
3353 
3354  /**
3355  * @brief Return true if two Bernoulli distributions have
3356  * different parameters.
3357  */
3358  inline bool
3359  operator!=(const std::bernoulli_distribution& __d1,
3360  const std::bernoulli_distribution& __d2)
3361  { return !(__d1 == __d2); }
3362 
3363  /**
3364  * @brief Inserts a %bernoulli_distribution random number distribution
3365  * @p __x into the output stream @p __os.
3366  *
3367  * @param __os An output stream.
3368  * @param __x A %bernoulli_distribution random number distribution.
3369  *
3370  * @returns The output stream with the state of @p __x inserted or in
3371  * an error state.
3372  */
3373  template<typename _CharT, typename _Traits>
3375  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
3376  const std::bernoulli_distribution& __x);
3377 
3378  /**
3379  * @brief Extracts a %bernoulli_distribution random number distribution
3380  * @p __x from the input stream @p __is.
3381  *
3382  * @param __is An input stream.
3383  * @param __x A %bernoulli_distribution random number generator engine.
3384  *
3385  * @returns The input stream with @p __x extracted or in an error state.
3386  */
3387  template<typename _CharT, typename _Traits>
3391  {
3392  double __p;
3393  __is >> __p;
3395  return __is;
3396  }
3397 
3398 
3399  /**
3400  * @brief A discrete binomial random number distribution.
3401  *
3402  * The formula for the binomial probability density function is
3403  * @f$p(i|t,p) = \binom{n}{i} p^i (1 - p)^{t - i}@f$ where @f$t@f$
3404  * and @f$p@f$ are the parameters of the distribution.
3405  */
3406  template<typename _IntType = int>
3408  {
3409  static_assert(std::is_integral<_IntType>::value,
3410  "template argument not an integral type");
3411 
3412  public:
3413  /** The type of the range of the distribution. */
3414  typedef _IntType result_type;
3415  /** Parameter type. */
3416  struct param_type
3417  {
3419  friend class binomial_distribution<_IntType>;
3420 
3421  explicit
3422  param_type(_IntType __t = _IntType(1), double __p = 0.5)
3423  : _M_t(__t), _M_p(__p)
3424  {
3425  _GLIBCXX_DEBUG_ASSERT((_M_t >= _IntType(0))
3426  && (_M_p >= 0.0)
3427  && (_M_p <= 1.0));
3428  _M_initialize();
3429  }
3430 
3431  _IntType
3432  t() const
3433  { return _M_t; }
3434 
3435  double
3436  p() const
3437  { return _M_p; }
3438 
3439  friend bool
3440  operator==(const param_type& __p1, const param_type& __p2)
3441  { return __p1._M_t == __p2._M_t && __p1._M_p == __p2._M_p; }
3442 
3443  private:
3444  void
3445  _M_initialize();
3446 
3447  _IntType _M_t;
3448  double _M_p;
3449 
3450  double _M_q;
3451 #if _GLIBCXX_USE_C99_MATH_TR1
3452  double _M_d1, _M_d2, _M_s1, _M_s2, _M_c,
3453  _M_a1, _M_a123, _M_s, _M_lf, _M_lp1p;
3454 #endif
3455  bool _M_easy;
3456  };
3457 
3458  // constructors and member function
3459  explicit
3460  binomial_distribution(_IntType __t = _IntType(1),
3461  double __p = 0.5)
3462  : _M_param(__t, __p), _M_nd()
3463  { }
3464 
3465  explicit
3466  binomial_distribution(const param_type& __p)
3467  : _M_param(__p), _M_nd()
3468  { }
3469 
3470  /**
3471  * @brief Resets the distribution state.
3472  */
3473  void
3475  { _M_nd.reset(); }
3476 
3477  /**
3478  * @brief Returns the distribution @p t parameter.
3479  */
3480  _IntType
3481  t() const
3482  { return _M_param.t(); }
3483 
3484  /**
3485  * @brief Returns the distribution @p p parameter.
3486  */
3487  double
3488  p() const
3489  { return _M_param.p(); }
3490 
3491  /**
3492  * @brief Returns the parameter set of the distribution.
3493  */
3494  param_type
3495  param() const
3496  { return _M_param; }
3497 
3498  /**
3499  * @brief Sets the parameter set of the distribution.
3500  * @param __param The new parameter set of the distribution.
3501  */
3502  void
3503  param(const param_type& __param)
3504  { _M_param = __param; }
3505 
3506  /**
3507  * @brief Returns the greatest lower bound value of the distribution.
3508  */
3509  result_type
3510  min() const
3511  { return 0; }
3512 
3513  /**
3514  * @brief Returns the least upper bound value of the distribution.
3515  */
3516  result_type
3517  max() const
3518  { return _M_param.t(); }
3519 
3520  /**
3521  * @brief Generating functions.
3522  */
3523  template<typename _UniformRandomNumberGenerator>
3524  result_type
3525  operator()(_UniformRandomNumberGenerator& __urng)
3526  { return this->operator()(__urng, this->param()); }
3527 
3528  template<typename _UniformRandomNumberGenerator>
3529  result_type
3530  operator()(_UniformRandomNumberGenerator& __urng,
3531  const param_type& __p);
3532 
3533  /**
3534  * @brief Return true if two binomial distributions have
3535  * the same parameters and the sequences that would
3536  * be generated are equal.
3537  */
3538  template<typename _IntType1>
3539  friend bool
3542 #ifdef _GLIBCXX_USE_C99_MATH_TR1
3543  { return __d1.param() == __d2.param() && __d1._M_nd == __d2._M_nd; }
3544 #else
3545  { return __d1.param() == __d2.param(); }
3546 #endif
3547 
3548  /**
3549  * @brief Inserts a %binomial_distribution random number distribution
3550  * @p __x into the output stream @p __os.
3551  *
3552  * @param __os An output stream.
3553  * @param __x A %binomial_distribution random number distribution.
3554  *
3555  * @returns The output stream with the state of @p __x inserted or in
3556  * an error state.
3557  */
3558  template<typename _IntType1,
3559  typename _CharT, typename _Traits>
3561  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
3563 
3564  /**
3565  * @brief Extracts a %binomial_distribution random number distribution
3566  * @p __x from the input stream @p __is.
3567  *
3568  * @param __is An input stream.
3569  * @param __x A %binomial_distribution random number generator engine.
3570  *
3571  * @returns The input stream with @p __x extracted or in an error
3572  * state.
3573  */
3574  template<typename _IntType1,
3575  typename _CharT, typename _Traits>
3579 
3580  private:
3581  template<typename _UniformRandomNumberGenerator>
3582  result_type
3583  _M_waiting(_UniformRandomNumberGenerator& __urng, _IntType __t);
3584 
3585  param_type _M_param;
3586 
3587  // NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined.
3589  };
3590 
3591  /**
3592  * @brief Return true if two binomial distributions are different.
3593  */
3594  template<typename _IntType>
3595  inline bool
3598  { return !(__d1 == __d2); }
3599 
3600 
3601  /**
3602  * @brief A discrete geometric random number distribution.
3603  *
3604  * The formula for the geometric probability density function is
3605  * @f$p(i|p) = p(1 - p)^{i}@f$ where @f$p@f$ is the parameter of the
3606  * distribution.
3607  */
3608  template<typename _IntType = int>
3610  {
3611  static_assert(std::is_integral<_IntType>::value,
3612  "template argument not an integral type");
3613 
3614  public:
3615  /** The type of the range of the distribution. */
3616  typedef _IntType result_type;
3617  /** Parameter type. */
3618  struct param_type
3619  {
3621  friend class geometric_distribution<_IntType>;
3622 
3623  explicit
3624  param_type(double __p = 0.5)
3625  : _M_p(__p)
3626  {
3627  _GLIBCXX_DEBUG_ASSERT((_M_p > 0.0) && (_M_p < 1.0));
3628  _M_initialize();
3629  }
3630 
3631  double
3632  p() const
3633  { return _M_p; }
3634 
3635  friend bool
3636  operator==(const param_type& __p1, const param_type& __p2)
3637  { return __p1._M_p == __p2._M_p; }
3638 
3639  private:
3640  void
3641  _M_initialize()
3642  { _M_log_1_p = std::log(1.0 - _M_p); }
3643 
3644  double _M_p;
3645 
3646  double _M_log_1_p;
3647  };
3648 
3649  // constructors and member function
3650  explicit
3651  geometric_distribution(double __p = 0.5)
3652  : _M_param(__p)
3653  { }
3654 
3655  explicit
3656  geometric_distribution(const param_type& __p)
3657  : _M_param(__p)
3658  { }
3659 
3660  /**
3661  * @brief Resets the distribution state.
3662  *
3663  * Does nothing for the geometric distribution.
3664  */
3665  void
3666  reset() { }
3667 
3668  /**
3669  * @brief Returns the distribution parameter @p p.
3670  */
3671  double
3672  p() const
3673  { return _M_param.p(); }
3674 
3675  /**
3676  * @brief Returns the parameter set of the distribution.
3677  */
3678  param_type
3679  param() const
3680  { return _M_param; }
3681 
3682  /**
3683  * @brief Sets the parameter set of the distribution.
3684  * @param __param The new parameter set of the distribution.
3685  */
3686  void
3687  param(const param_type& __param)
3688  { _M_param = __param; }
3689 
3690  /**
3691  * @brief Returns the greatest lower bound value of the distribution.
3692  */
3693  result_type
3694  min() const
3695  { return 0; }
3696 
3697  /**
3698  * @brief Returns the least upper bound value of the distribution.
3699  */
3700  result_type
3701  max() const
3703 
3704  /**
3705  * @brief Generating functions.
3706  */
3707  template<typename _UniformRandomNumberGenerator>
3708  result_type
3709  operator()(_UniformRandomNumberGenerator& __urng)
3710  { return this->operator()(__urng, this->param()); }
3711 
3712  template<typename _UniformRandomNumberGenerator>
3713  result_type
3714  operator()(_UniformRandomNumberGenerator& __urng,
3715  const param_type& __p);
3716 
3717  private:
3718  param_type _M_param;
3719  };
3720 
3721  /**
3722  * @brief Return true if two geometric distributions have
3723  * the same parameters.
3724  */
3725  template<typename _IntType>
3726  inline bool
3729  { return __d1.param() == __d2.param(); }
3730 
3731  /**
3732  * @brief Return true if two geometric distributions have
3733  * different parameters.
3734  */
3735  template<typename _IntType>
3736  inline bool
3739  { return !(__d1 == __d2); }
3740 
3741  /**
3742  * @brief Inserts a %geometric_distribution random number distribution
3743  * @p __x into the output stream @p __os.
3744  *
3745  * @param __os An output stream.
3746  * @param __x A %geometric_distribution random number distribution.
3747  *
3748  * @returns The output stream with the state of @p __x inserted or in
3749  * an error state.
3750  */
3751  template<typename _IntType,
3752  typename _CharT, typename _Traits>
3754  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
3756 
3757  /**
3758  * @brief Extracts a %geometric_distribution random number distribution
3759  * @p __x from the input stream @p __is.
3760  *
3761  * @param __is An input stream.
3762  * @param __x A %geometric_distribution random number generator engine.
3763  *
3764  * @returns The input stream with @p __x extracted or in an error state.
3765  */
3766  template<typename _IntType,
3767  typename _CharT, typename _Traits>
3771 
3772 
3773  /**
3774  * @brief A negative_binomial_distribution random number distribution.
3775  *
3776  * The formula for the negative binomial probability mass function is
3777  * @f$p(i) = \binom{n}{i} p^i (1 - p)^{t - i}@f$ where @f$t@f$
3778  * and @f$p@f$ are the parameters of the distribution.
3779  */
3780  template<typename _IntType = int>
3782  {
3783  static_assert(std::is_integral<_IntType>::value,
3784  "template argument not an integral type");
3785 
3786  public:
3787  /** The type of the range of the distribution. */
3788  typedef _IntType result_type;
3789  /** Parameter type. */
3790  struct param_type
3791  {
3793 
3794  explicit
3795  param_type(_IntType __k = 1, double __p = 0.5)
3796  : _M_k(__k), _M_p(__p)
3797  {
3798  _GLIBCXX_DEBUG_ASSERT((_M_k > 0) && (_M_p > 0.0) && (_M_p <= 1.0));
3799  }
3800 
3801  _IntType
3802  k() const
3803  { return _M_k; }
3804 
3805  double
3806  p() const
3807  { return _M_p; }
3808 
3809  friend bool
3810  operator==(const param_type& __p1, const param_type& __p2)
3811  { return __p1._M_k == __p2._M_k && __p1._M_p == __p2._M_p; }
3812 
3813  private:
3814  _IntType _M_k;
3815  double _M_p;
3816  };
3817 
3818  explicit
3819  negative_binomial_distribution(_IntType __k = 1, double __p = 0.5)
3820  : _M_param(__k, __p), _M_gd(__k, (1.0 - __p) / __p)
3821  { }
3822 
3823  explicit
3824  negative_binomial_distribution(const param_type& __p)
3825  : _M_param(__p), _M_gd(__p.k(), (1.0 - __p.p()) / __p.p())
3826  { }
3827 
3828  /**
3829  * @brief Resets the distribution state.
3830  */
3831  void
3833  { _M_gd.reset(); }
3834 
3835  /**
3836  * @brief Return the @f$k@f$ parameter of the distribution.
3837  */
3838  _IntType
3839  k() const
3840  { return _M_param.k(); }
3841 
3842  /**
3843  * @brief Return the @f$p@f$ parameter of the distribution.
3844  */
3845  double
3846  p() const
3847  { return _M_param.p(); }
3848 
3849  /**
3850  * @brief Returns the parameter set of the distribution.
3851  */
3852  param_type
3853  param() const
3854  { return _M_param; }
3855 
3856  /**
3857  * @brief Sets the parameter set of the distribution.
3858  * @param __param The new parameter set of the distribution.
3859  */
3860  void
3861  param(const param_type& __param)
3862  { _M_param = __param; }
3863 
3864  /**
3865  * @brief Returns the greatest lower bound value of the distribution.
3866  */
3867  result_type
3868  min() const
3869  { return result_type(0); }
3870 
3871  /**
3872  * @brief Returns the least upper bound value of the distribution.
3873  */
3874  result_type
3875  max() const
3877 
3878  /**
3879  * @brief Generating functions.
3880  */
3881  template<typename _UniformRandomNumberGenerator>
3882  result_type
3883  operator()(_UniformRandomNumberGenerator& __urng);
3884 
3885  template<typename _UniformRandomNumberGenerator>
3886  result_type
3887  operator()(_UniformRandomNumberGenerator& __urng,
3888  const param_type& __p);
3889 
3890  /**
3891  * @brief Return true if two negative binomial distributions have
3892  * the same parameters and the sequences that would be
3893  * generated are equal.
3894  */
3895  template<typename _IntType1>
3896  friend bool
3899  { return __d1.param() == __d2.param() && __d1._M_gd == __d2._M_gd; }
3900 
3901  /**
3902  * @brief Inserts a %negative_binomial_distribution random
3903  * number distribution @p __x into the output stream @p __os.
3904  *
3905  * @param __os An output stream.
3906  * @param __x A %negative_binomial_distribution random number
3907  * distribution.
3908  *
3909  * @returns The output stream with the state of @p __x inserted or in
3910  * an error state.
3911  */
3912  template<typename _IntType1, typename _CharT, typename _Traits>
3914  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
3916 
3917  /**
3918  * @brief Extracts a %negative_binomial_distribution random number
3919  * distribution @p __x from the input stream @p __is.
3920  *
3921  * @param __is An input stream.
3922  * @param __x A %negative_binomial_distribution random number
3923  * generator engine.
3924  *
3925  * @returns The input stream with @p __x extracted or in an error state.
3926  */
3927  template<typename _IntType1, typename _CharT, typename _Traits>
3931 
3932  private:
3933  param_type _M_param;
3934 
3936  };
3937 
3938  /**
3939  * @brief Return true if two negative binomial distributions are different.
3940  */
3941  template<typename _IntType>
3942  inline bool
3945  { return !(__d1 == __d2); }
3946 
3947 
3948  /* @} */ // group random_distributions_bernoulli
3949 
3950  /**
3951  * @addtogroup random_distributions_poisson Poisson Distributions
3952  * @ingroup random_distributions
3953  * @{
3954  */
3955 
3956  /**
3957  * @brief A discrete Poisson random number distribution.
3958  *
3959  * The formula for the Poisson probability density function is
3960  * @f$p(i|\mu) = \frac{\mu^i}{i!} e^{-\mu}@f$ where @f$\mu@f$ is the
3961  * parameter of the distribution.
3962  */
3963  template<typename _IntType = int>
3965  {
3966  static_assert(std::is_integral<_IntType>::value,
3967  "template argument not an integral type");
3968 
3969  public:
3970  /** The type of the range of the distribution. */
3971  typedef _IntType result_type;
3972  /** Parameter type. */
3973  struct param_type
3974  {
3976  friend class poisson_distribution<_IntType>;
3977 
3978  explicit
3979  param_type(double __mean = 1.0)
3980  : _M_mean(__mean)
3981  {
3982  _GLIBCXX_DEBUG_ASSERT(_M_mean > 0.0);
3983  _M_initialize();
3984  }
3985 
3986  double
3987  mean() const
3988  { return _M_mean; }
3989 
3990  friend bool
3991  operator==(const param_type& __p1, const param_type& __p2)
3992  { return __p1._M_mean == __p2._M_mean; }
3993 
3994  private:
3995  // Hosts either log(mean) or the threshold of the simple method.
3996  void
3997  _M_initialize();
3998 
3999  double _M_mean;
4000 
4001  double _M_lm_thr;
4002 #if _GLIBCXX_USE_C99_MATH_TR1
4003  double _M_lfm, _M_sm, _M_d, _M_scx, _M_1cx, _M_c2b, _M_cb;
4004 #endif
4005  };
4006 
4007  // constructors and member function
4008  explicit
4009  poisson_distribution(double __mean = 1.0)
4010  : _M_param(__mean), _M_nd()
4011  { }
4012 
4013  explicit
4014  poisson_distribution(const param_type& __p)
4015  : _M_param(__p), _M_nd()
4016  { }
4017 
4018  /**
4019  * @brief Resets the distribution state.
4020  */
4021  void
4023  { _M_nd.reset(); }
4024 
4025  /**
4026  * @brief Returns the distribution parameter @p mean.
4027  */
4028  double
4029  mean() const
4030  { return _M_param.mean(); }
4031 
4032  /**
4033  * @brief Returns the parameter set of the distribution.
4034  */
4035  param_type
4036  param() const
4037  { return _M_param; }
4038 
4039  /**
4040  * @brief Sets the parameter set of the distribution.
4041  * @param __param The new parameter set of the distribution.
4042  */
4043  void
4044  param(const param_type& __param)
4045  { _M_param = __param; }
4046 
4047  /**
4048  * @brief Returns the greatest lower bound value of the distribution.
4049  */
4050  result_type
4051  min() const
4052  { return 0; }
4053 
4054  /**
4055  * @brief Returns the least upper bound value of the distribution.
4056  */
4057  result_type
4058  max() const
4060 
4061  /**
4062  * @brief Generating functions.
4063  */
4064  template<typename _UniformRandomNumberGenerator>
4065  result_type
4066  operator()(_UniformRandomNumberGenerator& __urng)
4067  { return this->operator()(__urng, this->param()); }
4068 
4069  template<typename _UniformRandomNumberGenerator>
4070  result_type
4071  operator()(_UniformRandomNumberGenerator& __urng,
4072  const param_type& __p);
4073 
4074  /**
4075  * @brief Return true if two Poisson distributions have the same
4076  * parameters and the sequences that would be generated
4077  * are equal.
4078  */
4079  template<typename _IntType1>
4080  friend bool
4083 #ifdef _GLIBCXX_USE_C99_MATH_TR1
4084  { return __d1.param() == __d2.param() && __d1._M_nd == __d2._M_nd; }
4085 #else
4086  { return __d1.param() == __d2.param(); }
4087 #endif
4088 
4089  /**
4090  * @brief Inserts a %poisson_distribution random number distribution
4091  * @p __x into the output stream @p __os.
4092  *
4093  * @param __os An output stream.
4094  * @param __x A %poisson_distribution random number distribution.
4095  *
4096  * @returns The output stream with the state of @p __x inserted or in
4097  * an error state.
4098  */
4099  template<typename _IntType1, typename _CharT, typename _Traits>
4101  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
4103 
4104  /**
4105  * @brief Extracts a %poisson_distribution random number distribution
4106  * @p __x from the input stream @p __is.
4107  *
4108  * @param __is An input stream.
4109  * @param __x A %poisson_distribution random number generator engine.
4110  *
4111  * @returns The input stream with @p __x extracted or in an error
4112  * state.
4113  */
4114  template<typename _IntType1, typename _CharT, typename _Traits>
4118 
4119  private:
4120  param_type _M_param;
4121 
4122  // NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined.
4124  };
4125 
4126  /**
4127  * @brief Return true if two Poisson distributions are different.
4128  */
4129  template<typename _IntType>
4130  inline bool
4131  operator!=(const std::poisson_distribution<_IntType>& __d1,
4133  { return !(__d1 == __d2); }
4134 
4135 
4136  /**
4137  * @brief An exponential continuous distribution for random numbers.
4138  *
4139  * The formula for the exponential probability density function is
4140  * @f$p(x|\lambda) = \lambda e^{-\lambda x}@f$.
4141  *
4142  * <table border=1 cellpadding=10 cellspacing=0>
4143  * <caption align=top>Distribution Statistics</caption>
4144  * <tr><td>Mean</td><td>@f$\frac{1}{\lambda}@f$</td></tr>
4145  * <tr><td>Median</td><td>@f$\frac{\ln 2}{\lambda}@f$</td></tr>
4146  * <tr><td>Mode</td><td>@f$zero@f$</td></tr>
4147  * <tr><td>Range</td><td>@f$[0, \infty]@f$</td></tr>
4148  * <tr><td>Standard Deviation</td><td>@f$\frac{1}{\lambda}@f$</td></tr>
4149  * </table>
4150  */
4151  template<typename _RealType = double>
4153  {
4155  "template argument not a floating point type");
4156 
4157  public:
4158  /** The type of the range of the distribution. */
4159  typedef _RealType result_type;
4160  /** Parameter type. */
4161  struct param_type
4162  {
4164 
4165  explicit
4166  param_type(_RealType __lambda = _RealType(1))
4167  : _M_lambda(__lambda)
4168  {
4169  _GLIBCXX_DEBUG_ASSERT(_M_lambda > _RealType(0));
4170  }
4171 
4172  _RealType
4173  lambda() const
4174  { return _M_lambda; }
4175 
4176  friend bool
4177  operator==(const param_type& __p1, const param_type& __p2)
4178  { return __p1._M_lambda == __p2._M_lambda; }
4179 
4180  private:
4181  _RealType _M_lambda;
4182  };
4183 
4184  public:
4185  /**
4186  * @brief Constructs an exponential distribution with inverse scale
4187  * parameter @f$\lambda@f$.
4188  */
4189  explicit
4191  : _M_param(__lambda)
4192  { }
4193 
4194  explicit
4195  exponential_distribution(const param_type& __p)
4196  : _M_param(__p)
4197  { }
4198 
4199  /**
4200  * @brief Resets the distribution state.
4201  *
4202  * Has no effect on exponential distributions.
4203  */
4204  void
4205  reset() { }
4206 
4207  /**
4208  * @brief Returns the inverse scale parameter of the distribution.
4209  */
4210  _RealType
4211  lambda() const
4212  { return _M_param.lambda(); }
4213 
4214  /**
4215  * @brief Returns the parameter set of the distribution.
4216  */
4217  param_type
4218  param() const
4219  { return _M_param; }
4220 
4221  /**
4222  * @brief Sets the parameter set of the distribution.
4223  * @param __param The new parameter set of the distribution.
4224  */
4225  void
4226  param(const param_type& __param)
4227  { _M_param = __param; }
4228 
4229  /**
4230  * @brief Returns the greatest lower bound value of the distribution.
4231  */
4232  result_type
4233  min() const
4234  { return result_type(0); }
4235 
4236  /**
4237  * @brief Returns the least upper bound value of the distribution.
4238  */
4239  result_type
4240  max() const
4242 
4243  /**
4244  * @brief Generating functions.
4245  */
4246  template<typename _UniformRandomNumberGenerator>
4247  result_type
4248  operator()(_UniformRandomNumberGenerator& __urng)
4249  { return this->operator()(__urng, this->param()); }
4250 
4251  template<typename _UniformRandomNumberGenerator>
4252  result_type
4253  operator()(_UniformRandomNumberGenerator& __urng,
4254  const param_type& __p)
4255  {
4256  __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
4257  __aurng(__urng);
4258  return -std::log(__aurng()) / __p.lambda();
4259  }
4260 
4261  private:
4262  param_type _M_param;
4263  };
4264 
4265  /**
4266  * @brief Return true if two exponential distributions have the same
4267  * parameters.
4268  */
4269  template<typename _RealType>
4270  inline bool
4273  { return __d1.param() == __d2.param(); }
4274 
4275  /**
4276  * @brief Return true if two exponential distributions have different
4277  * parameters.
4278  */
4279  template<typename _RealType>
4280  inline bool
4283  { return !(__d1 == __d2); }
4284 
4285  /**
4286  * @brief Inserts a %exponential_distribution random number distribution
4287  * @p __x into the output stream @p __os.
4288  *
4289  * @param __os An output stream.
4290  * @param __x A %exponential_distribution random number distribution.
4291  *
4292  * @returns The output stream with the state of @p __x inserted or in
4293  * an error state.
4294  */
4295  template<typename _RealType, typename _CharT, typename _Traits>
4297  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
4299 
4300  /**
4301  * @brief Extracts a %exponential_distribution random number distribution
4302  * @p __x from the input stream @p __is.
4303  *
4304  * @param __is An input stream.
4305  * @param __x A %exponential_distribution random number
4306  * generator engine.
4307  *
4308  * @returns The input stream with @p __x extracted or in an error state.
4309  */
4310  template<typename _RealType, typename _CharT, typename _Traits>
4314 
4315 
4316  /**
4317  * @brief A weibull_distribution random number distribution.
4318  *
4319  * The formula for the normal probability density function is:
4320  * @f[
4321  * p(x|\alpha,\beta) = \frac{\alpha}{\beta} (\frac{x}{\beta})^{\alpha-1}
4322  * \exp{(-(\frac{x}{\beta})^\alpha)}
4323  * @f]
4324  */
4325  template<typename _RealType = double>
4327  {
4329  "template argument not a floating point type");
4330 
4331  public:
4332  /** The type of the range of the distribution. */
4333  typedef _RealType result_type;
4334  /** Parameter type. */
4335  struct param_type
4336  {
4338 
4339  explicit
4340  param_type(_RealType __a = _RealType(1),
4341  _RealType __b = _RealType(1))
4342  : _M_a(__a), _M_b(__b)
4343  { }
4344 
4345  _RealType
4346  a() const
4347  { return _M_a; }
4348 
4349  _RealType
4350  b() const
4351  { return _M_b; }
4352 
4353  friend bool
4354  operator==(const param_type& __p1, const param_type& __p2)
4355  { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; }
4356 
4357  private:
4358  _RealType _M_a;
4359  _RealType _M_b;
4360  };
4361 
4362  explicit
4363  weibull_distribution(_RealType __a = _RealType(1),
4364  _RealType __b = _RealType(1))
4365  : _M_param(__a, __b)
4366  { }
4367 
4368  explicit
4369  weibull_distribution(const param_type& __p)
4370  : _M_param(__p)
4371  { }
4372 
4373  /**
4374  * @brief Resets the distribution state.
4375  */
4376  void
4378  { }
4379 
4380  /**
4381  * @brief Return the @f$a@f$ parameter of the distribution.
4382  */
4383  _RealType
4384  a() const
4385  { return _M_param.a(); }
4386 
4387  /**
4388  * @brief Return the @f$b@f$ parameter of the distribution.
4389  */
4390  _RealType
4391  b() const
4392  { return _M_param.b(); }
4393 
4394  /**
4395  * @brief Returns the parameter set of the distribution.
4396  */
4397  param_type
4398  param() const
4399  { return _M_param; }
4400 
4401  /**
4402  * @brief Sets the parameter set of the distribution.
4403  * @param __param The new parameter set of the distribution.
4404  */
4405  void
4406  param(const param_type& __param)
4407  { _M_param = __param; }
4408 
4409  /**
4410  * @brief Returns the greatest lower bound value of the distribution.
4411  */
4412  result_type
4413  min() const
4414  { return result_type(0); }
4415 
4416  /**
4417  * @brief Returns the least upper bound value of the distribution.
4418  */
4419  result_type
4420  max() const
4422 
4423  /**
4424  * @brief Generating functions.
4425  */
4426  template<typename _UniformRandomNumberGenerator>
4427  result_type
4428  operator()(_UniformRandomNumberGenerator& __urng)
4429  { return this->operator()(__urng, this->param()); }
4430 
4431  template<typename _UniformRandomNumberGenerator>
4432  result_type
4433  operator()(_UniformRandomNumberGenerator& __urng,
4434  const param_type& __p);
4435 
4436  private:
4437  param_type _M_param;
4438  };
4439 
4440  /**
4441  * @brief Return true if two Weibull distributions have the same
4442  * parameters.
4443  */
4444  template<typename _RealType>
4445  inline bool
4448  { return __d1.param() == __d2.param(); }
4449 
4450  /**
4451  * @brief Return true if two Weibull distributions have different
4452  * parameters.
4453  */
4454  template<typename _RealType>
4455  inline bool
4458  { return !(__d1 == __d2); }
4459 
4460  /**
4461  * @brief Inserts a %weibull_distribution random number distribution
4462  * @p __x into the output stream @p __os.
4463  *
4464  * @param __os An output stream.
4465  * @param __x A %weibull_distribution random number distribution.
4466  *
4467  * @returns The output stream with the state of @p __x inserted or in
4468  * an error state.
4469  */
4470  template<typename _RealType, typename _CharT, typename _Traits>
4472  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
4474 
4475  /**
4476  * @brief Extracts a %weibull_distribution random number distribution
4477  * @p __x from the input stream @p __is.
4478  *
4479  * @param __is An input stream.
4480  * @param __x A %weibull_distribution random number
4481  * generator engine.
4482  *
4483  * @returns The input stream with @p __x extracted or in an error state.
4484  */
4485  template<typename _RealType, typename _CharT, typename _Traits>
4489 
4490 
4491  /**
4492  * @brief A extreme_value_distribution random number distribution.
4493  *
4494  * The formula for the normal probability mass function is
4495  * @f[
4496  * p(x|a,b) = \frac{1}{b}
4497  * \exp( \frac{a-x}{b} - \exp(\frac{a-x}{b}))
4498  * @f]
4499  */
4500  template<typename _RealType = double>
4502  {
4504  "template argument not a floating point type");
4505 
4506  public:
4507  /** The type of the range of the distribution. */
4508  typedef _RealType result_type;
4509  /** Parameter type. */
4510  struct param_type
4511  {
4513 
4514  explicit
4515  param_type(_RealType __a = _RealType(0),
4516  _RealType __b = _RealType(1))
4517  : _M_a(__a), _M_b(__b)
4518  { }
4519 
4520  _RealType
4521  a() const
4522  { return _M_a; }
4523 
4524  _RealType
4525  b() const
4526  { return _M_b; }
4527 
4528  friend bool
4529  operator==(const param_type& __p1, const param_type& __p2)
4530  { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; }
4531 
4532  private:
4533  _RealType _M_a;
4534  _RealType _M_b;
4535  };
4536 
4537  explicit
4538  extreme_value_distribution(_RealType __a = _RealType(0),
4539  _RealType __b = _RealType(1))
4540  : _M_param(__a, __b)
4541  { }
4542 
4543  explicit
4544  extreme_value_distribution(const param_type& __p)
4545  : _M_param(__p)
4546  { }
4547 
4548  /**
4549  * @brief Resets the distribution state.
4550  */
4551  void
4553  { }
4554 
4555  /**
4556  * @brief Return the @f$a@f$ parameter of the distribution.
4557  */
4558  _RealType
4559  a() const
4560  { return _M_param.a(); }
4561 
4562  /**
4563  * @brief Return the @f$b@f$ parameter of the distribution.
4564  */
4565  _RealType
4566  b() const
4567  { return _M_param.b(); }
4568 
4569  /**
4570  * @brief Returns the parameter set of the distribution.
4571  */
4572  param_type
4573  param() const
4574  { return _M_param; }
4575 
4576  /**
4577  * @brief Sets the parameter set of the distribution.
4578  * @param __param The new parameter set of the distribution.
4579  */
4580  void
4581  param(const param_type& __param)
4582  { _M_param = __param; }
4583 
4584  /**
4585  * @brief Returns the greatest lower bound value of the distribution.
4586  */
4587  result_type
4588  min() const
4590 
4591  /**
4592  * @brief Returns the least upper bound value of the distribution.
4593  */
4594  result_type
4595  max() const
4597 
4598  /**
4599  * @brief Generating functions.
4600  */
4601  template<typename _UniformRandomNumberGenerator>
4602  result_type
4603  operator()(_UniformRandomNumberGenerator& __urng)
4604  { return this->operator()(__urng, this->param()); }
4605 
4606  template<typename _UniformRandomNumberGenerator>
4607  result_type
4608  operator()(_UniformRandomNumberGenerator& __urng,
4609  const param_type& __p);
4610 
4611  private:
4612  param_type _M_param;
4613  };
4614 
4615  /**
4616  * @brief Return true if two extreme value distributions have the same
4617  * parameters.
4618  */
4619  template<typename _RealType>
4620  inline bool
4623  { return __d1.param() == __d2.param(); }
4624 
4625  /**
4626  * @brief Return true if two extreme value distributions have different
4627  * parameters.
4628  */
4629  template<typename _RealType>
4630  inline bool
4633  { return !(__d1 == __d2); }
4634 
4635  /**
4636  * @brief Inserts a %extreme_value_distribution random number distribution
4637  * @p __x into the output stream @p __os.
4638  *
4639  * @param __os An output stream.
4640  * @param __x A %extreme_value_distribution random number distribution.
4641  *
4642  * @returns The output stream with the state of @p __x inserted or in
4643  * an error state.
4644  */
4645  template<typename _RealType, typename _CharT, typename _Traits>
4647  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
4649 
4650  /**
4651  * @brief Extracts a %extreme_value_distribution random number
4652  * distribution @p __x from the input stream @p __is.
4653  *
4654  * @param __is An input stream.
4655  * @param __x A %extreme_value_distribution random number
4656  * generator engine.
4657  *
4658  * @returns The input stream with @p __x extracted or in an error state.
4659  */
4660  template<typename _RealType, typename _CharT, typename _Traits>
4664 
4665 
4666  /**
4667  * @brief A discrete_distribution random number distribution.
4668  *
4669  * The formula for the discrete probability mass function is
4670  *
4671  */
4672  template<typename _IntType = int>
4674  {
4675  static_assert(std::is_integral<_IntType>::value,
4676  "template argument not an integral type");
4677 
4678  public:
4679  /** The type of the range of the distribution. */
4680  typedef _IntType result_type;
4681  /** Parameter type. */
4682  struct param_type
4683  {
4685  friend class discrete_distribution<_IntType>;
4686 
4687  param_type()
4688  : _M_prob(), _M_cp()
4689  { }
4690 
4691  template<typename _InputIterator>
4692  param_type(_InputIterator __wbegin,
4693  _InputIterator __wend)
4694  : _M_prob(__wbegin, __wend), _M_cp()
4695  { _M_initialize(); }
4696 
4697  param_type(initializer_list<double> __wil)
4698  : _M_prob(__wil.begin(), __wil.end()), _M_cp()
4699  { _M_initialize(); }
4700 
4701  template<typename _Func>
4702  param_type(size_t __nw, double __xmin, double __xmax,
4703  _Func __fw);
4704 
4705  // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/
4706  param_type(const param_type&) = default;
4707  param_type& operator=(const param_type&) = default;
4708 
4710  probabilities() const
4711  { return _M_prob.empty() ? std::vector<double>(1, 1.0) : _M_prob; }
4712 
4713  friend bool
4714  operator==(const param_type& __p1, const param_type& __p2)
4715  { return __p1._M_prob == __p2._M_prob; }
4716 
4717  private:
4718  void
4719  _M_initialize();
4720 
4721  std::vector<double> _M_prob;
4722  std::vector<double> _M_cp;
4723  };
4724 
4726  : _M_param()
4727  { }
4728 
4729  template<typename _InputIterator>
4730  discrete_distribution(_InputIterator __wbegin,
4731  _InputIterator __wend)
4732  : _M_param(__wbegin, __wend)
4733  { }
4734 
4735  discrete_distribution(initializer_list<double> __wl)
4736  : _M_param(__wl)
4737  { }
4738 
4739  template<typename _Func>
4740  discrete_distribution(size_t __nw, double __xmin, double __xmax,
4741  _Func __fw)
4742  : _M_param(__nw, __xmin, __xmax, __fw)
4743  { }
4744 
4745  explicit
4746  discrete_distribution(const param_type& __p)
4747  : _M_param(__p)
4748  { }
4749 
4750  /**
4751  * @brief Resets the distribution state.
4752  */
4753  void
4755  { }
4756 
4757  /**
4758  * @brief Returns the probabilities of the distribution.
4759  */
4762  {
4763  return _M_param._M_prob.empty()
4764  ? std::vector<double>(1, 1.0) : _M_param._M_prob;
4765  }
4766 
4767  /**
4768  * @brief Returns the parameter set of the distribution.
4769  */
4770  param_type
4771  param() const
4772  { return _M_param; }
4773 
4774  /**
4775  * @brief Sets the parameter set of the distribution.
4776  * @param __param The new parameter set of the distribution.
4777  */
4778  void
4779  param(const param_type& __param)
4780  { _M_param = __param; }
4781 
4782  /**
4783  * @brief Returns the greatest lower bound value of the distribution.
4784  */
4785  result_type
4786  min() const
4787  { return result_type(0); }
4788 
4789  /**
4790  * @brief Returns the least upper bound value of the distribution.
4791  */
4792  result_type
4793  max() const
4794  {
4795  return _M_param._M_prob.empty()
4796  ? result_type(0) : result_type(_M_param._M_prob.size() - 1);
4797  }
4798 
4799  /**
4800  * @brief Generating functions.
4801  */
4802  template<typename _UniformRandomNumberGenerator>
4803  result_type
4804  operator()(_UniformRandomNumberGenerator& __urng)
4805  { return this->operator()(__urng, this->param()); }
4806 
4807  template<typename _UniformRandomNumberGenerator>
4808  result_type
4809  operator()(_UniformRandomNumberGenerator& __urng,
4810  const param_type& __p);
4811 
4812  /**
4813  * @brief Inserts a %discrete_distribution random number distribution
4814  * @p __x into the output stream @p __os.
4815  *
4816  * @param __os An output stream.
4817  * @param __x A %discrete_distribution random number distribution.
4818  *
4819  * @returns The output stream with the state of @p __x inserted or in
4820  * an error state.
4821  */
4822  template<typename _IntType1, typename _CharT, typename _Traits>
4824  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
4826 
4827  /**
4828  * @brief Extracts a %discrete_distribution random number distribution
4829  * @p __x from the input stream @p __is.
4830  *
4831  * @param __is An input stream.
4832  * @param __x A %discrete_distribution random number
4833  * generator engine.
4834  *
4835  * @returns The input stream with @p __x extracted or in an error
4836  * state.
4837  */
4838  template<typename _IntType1, typename _CharT, typename _Traits>
4842 
4843  private:
4844  param_type _M_param;
4845  };
4846 
4847  /**
4848  * @brief Return true if two discrete distributions have the same
4849  * parameters.
4850  */
4851  template<typename _IntType>
4852  inline bool
4855  { return __d1.param() == __d2.param(); }
4856 
4857  /**
4858  * @brief Return true if two discrete distributions have different
4859  * parameters.
4860  */
4861  template<typename _IntType>
4862  inline bool
4865  { return !(__d1 == __d2); }
4866 
4867 
4868  /**
4869  * @brief A piecewise_constant_distribution random number distribution.
4870  *
4871  * The formula for the piecewise constant probability mass function is
4872  *
4873  */
4874  template<typename _RealType = double>
4876  {
4878  "template argument not a floating point type");
4879 
4880  public:
4881  /** The type of the range of the distribution. */
4882  typedef _RealType result_type;
4883  /** Parameter type. */
4884  struct param_type
4885  {
4887  friend class piecewise_constant_distribution<_RealType>;
4888 
4889  param_type()
4890  : _M_int(), _M_den(), _M_cp()
4891  { }
4892 
4893  template<typename _InputIteratorB, typename _InputIteratorW>
4894  param_type(_InputIteratorB __bfirst,
4895  _InputIteratorB __bend,
4896  _InputIteratorW __wbegin);
4897 
4898  template<typename _Func>
4899  param_type(initializer_list<_RealType> __bi, _Func __fw);
4900 
4901  template<typename _Func>
4902  param_type(size_t __nw, _RealType __xmin, _RealType __xmax,
4903  _Func __fw);
4904 
4905  // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/
4906  param_type(const param_type&) = default;
4907  param_type& operator=(const param_type&) = default;
4908 
4910  intervals() const
4911  {
4912  if (_M_int.empty())
4913  {
4914  std::vector<_RealType> __tmp(2);
4915  __tmp[1] = _RealType(1);
4916  return __tmp;
4917  }
4918  else
4919  return _M_int;
4920  }
4921 
4923  densities() const
4924  { return _M_den.empty() ? std::vector<double>(1, 1.0) : _M_den; }
4925 
4926  friend bool
4927  operator==(const param_type& __p1, const param_type& __p2)
4928  { return __p1._M_int == __p2._M_int && __p1._M_den == __p2._M_den; }
4929 
4930  private:
4931  void
4932  _M_initialize();
4933 
4934  std::vector<_RealType> _M_int;
4935  std::vector<double> _M_den;
4936  std::vector<double> _M_cp;
4937  };
4938 
4939  explicit
4941  : _M_param()
4942  { }
4943 
4944  template<typename _InputIteratorB, typename _InputIteratorW>
4945  piecewise_constant_distribution(_InputIteratorB __bfirst,
4946  _InputIteratorB __bend,
4947  _InputIteratorW __wbegin)
4948  : _M_param(__bfirst, __bend, __wbegin)
4949  { }
4950 
4951  template<typename _Func>
4952  piecewise_constant_distribution(initializer_list<_RealType> __bl,
4953  _Func __fw)
4954  : _M_param(__bl, __fw)
4955  { }
4956 
4957  template<typename _Func>
4958  piecewise_constant_distribution(size_t __nw,
4959  _RealType __xmin, _RealType __xmax,
4960  _Func __fw)
4961  : _M_param(__nw, __xmin, __xmax, __fw)
4962  { }
4963 
4964  explicit
4965  piecewise_constant_distribution(const param_type& __p)
4966  : _M_param(__p)
4967  { }
4968 
4969  /**
4970  * @brief Resets the distribution state.
4971  */
4972  void
4974  { }
4975 
4976  /**
4977  * @brief Returns a vector of the intervals.
4978  */
4980  intervals() const
4981  {
4982  if (_M_param._M_int.empty())
4983  {
4984  std::vector<_RealType> __tmp(2);
4985  __tmp[1] = _RealType(1);
4986  return __tmp;
4987  }
4988  else
4989  return _M_param._M_int;
4990  }
4991 
4992  /**
4993  * @brief Returns a vector of the probability densities.
4994  */
4996  densities() const
4997  {
4998  return _M_param._M_den.empty()
4999  ? std::vector<double>(1, 1.0) : _M_param._M_den;
5000  }
5001 
5002  /**
5003  * @brief Returns the parameter set of the distribution.
5004  */
5005  param_type
5006  param() const
5007  { return _M_param; }
5008 
5009  /**
5010  * @brief Sets the parameter set of the distribution.
5011  * @param __param The new parameter set of the distribution.
5012  */
5013  void
5014  param(const param_type& __param)
5015  { _M_param = __param; }
5016 
5017  /**
5018  * @brief Returns the greatest lower bound value of the distribution.
5019  */
5020  result_type
5021  min() const
5022  {
5023  return _M_param._M_int.empty()
5024  ? result_type(0) : _M_param._M_int.front();
5025  }
5026 
5027  /**
5028  * @brief Returns the least upper bound value of the distribution.
5029  */
5030  result_type
5031  max() const
5032  {
5033  return _M_param._M_int.empty()
5034  ? result_type(1) : _M_param._M_int.back();
5035  }
5036 
5037  /**
5038  * @brief Generating functions.
5039  */
5040  template<typename _UniformRandomNumberGenerator>
5041  result_type
5042  operator()(_UniformRandomNumberGenerator& __urng)
5043  { return this->operator()(__urng, this->param()); }
5044 
5045  template<typename _UniformRandomNumberGenerator>
5046  result_type
5047  operator()(_UniformRandomNumberGenerator& __urng,
5048  const param_type& __p);
5049 
5050  /**
5051  * @brief Inserts a %piecewise_constan_distribution random
5052  * number distribution @p __x into the output stream @p __os.
5053  *
5054  * @param __os An output stream.
5055  * @param __x A %piecewise_constan_distribution random number
5056  * distribution.
5057  *
5058  * @returns The output stream with the state of @p __x inserted or in
5059  * an error state.
5060  */
5061  template<typename _RealType1, typename _CharT, typename _Traits>
5063  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
5065 
5066  /**
5067  * @brief Extracts a %piecewise_constan_distribution random
5068  * number distribution @p __x from the input stream @p __is.
5069  *
5070  * @param __is An input stream.
5071  * @param __x A %piecewise_constan_distribution random number
5072  * generator engine.
5073  *
5074  * @returns The input stream with @p __x extracted or in an error
5075  * state.
5076  */
5077  template<typename _RealType1, typename _CharT, typename _Traits>
5081 
5082  private:
5083  param_type _M_param;
5084  };
5085 
5086  /**
5087  * @brief Return true if two piecewise constant distributions have the
5088  * same parameters.
5089  */
5090  template<typename _RealType>
5091  inline bool
5094  { return __d1.param() == __d2.param(); }
5095 
5096  /**
5097  * @brief Return true if two piecewise constant distributions have
5098  * different parameters.
5099  */
5100  template<typename _RealType>
5101  inline bool
5104  { return !(__d1 == __d2); }
5105 
5106 
5107  /**
5108  * @brief A piecewise_linear_distribution random number distribution.
5109  *
5110  * The formula for the piecewise linear probability mass function is
5111  *
5112  */
5113  template<typename _RealType = double>
5115  {
5117  "template argument not a floating point type");
5118 
5119  public:
5120  /** The type of the range of the distribution. */
5121  typedef _RealType result_type;
5122  /** Parameter type. */
5123  struct param_type
5124  {
5126  friend class piecewise_linear_distribution<_RealType>;
5127 
5128  param_type()
5129  : _M_int(), _M_den(), _M_cp(), _M_m()
5130  { }
5131 
5132  template<typename _InputIteratorB, typename _InputIteratorW>
5133  param_type(_InputIteratorB __bfirst,
5134  _InputIteratorB __bend,
5135  _InputIteratorW __wbegin);
5136 
5137  template<typename _Func>
5138  param_type(initializer_list<_RealType> __bl, _Func __fw);
5139 
5140  template<typename _Func>
5141  param_type(size_t __nw, _RealType __xmin, _RealType __xmax,
5142  _Func __fw);
5143 
5144  // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/
5145  param_type(const param_type&) = default;
5146  param_type& operator=(const param_type&) = default;
5147 
5149  intervals() const
5150  {
5151  if (_M_int.empty())
5152  {
5153  std::vector<_RealType> __tmp(2);
5154  __tmp[1] = _RealType(1);
5155  return __tmp;
5156  }
5157  else
5158  return _M_int;
5159  }
5160 
5162  densities() const
5163  { return _M_den.empty() ? std::vector<double>(2, 1.0) : _M_den; }
5164 
5165  friend bool
5166  operator==(const param_type& __p1, const param_type& __p2)
5167  { return (__p1._M_int == __p2._M_int
5168  && __p1._M_den == __p2._M_den); }
5169 
5170  private:
5171  void
5172  _M_initialize();
5173 
5174  std::vector<_RealType> _M_int;
5175  std::vector<double> _M_den;
5176  std::vector<double> _M_cp;
5177  std::vector<double> _M_m;
5178  };
5179 
5180  explicit
5182  : _M_param()
5183  { }
5184 
5185  template<typename _InputIteratorB, typename _InputIteratorW>
5186  piecewise_linear_distribution(_InputIteratorB __bfirst,
5187  _InputIteratorB __bend,
5188  _InputIteratorW __wbegin)
5189  : _M_param(__bfirst, __bend, __wbegin)
5190  { }
5191 
5192  template<typename _Func>
5193  piecewise_linear_distribution(initializer_list<_RealType> __bl,
5194  _Func __fw)
5195  : _M_param(__bl, __fw)
5196  { }
5197 
5198  template<typename _Func>
5199  piecewise_linear_distribution(size_t __nw,
5200  _RealType __xmin, _RealType __xmax,
5201  _Func __fw)
5202  : _M_param(__nw, __xmin, __xmax, __fw)
5203  { }
5204 
5205  explicit
5206  piecewise_linear_distribution(const param_type& __p)
5207  : _M_param(__p)
5208  { }
5209 
5210  /**
5211  * Resets the distribution state.
5212  */
5213  void
5215  { }
5216 
5217  /**
5218  * @brief Return the intervals of the distribution.
5219  */
5221  intervals() const
5222  {
5223  if (_M_param._M_int.empty())
5224  {
5225  std::vector<_RealType> __tmp(2);
5226  __tmp[1] = _RealType(1);
5227  return __tmp;
5228  }
5229  else
5230  return _M_param._M_int;
5231  }
5232 
5233  /**
5234  * @brief Return a vector of the probability densities of the
5235  * distribution.
5236  */
5238  densities() const
5239  {
5240  return _M_param._M_den.empty()
5241  ? std::vector<double>(2, 1.0) : _M_param._M_den;
5242  }
5243 
5244  /**
5245  * @brief Returns the parameter set of the distribution.
5246  */
5247  param_type
5248  param() const
5249  { return _M_param; }
5250 
5251  /**
5252  * @brief Sets the parameter set of the distribution.
5253  * @param __param The new parameter set of the distribution.
5254  */
5255  void
5256  param(const param_type& __param)
5257  { _M_param = __param; }
5258 
5259  /**
5260  * @brief Returns the greatest lower bound value of the distribution.
5261  */
5262  result_type
5263  min() const
5264  {
5265  return _M_param._M_int.empty()
5266  ? result_type(0) : _M_param._M_int.front();
5267  }
5268 
5269  /**
5270  * @brief Returns the least upper bound value of the distribution.
5271  */
5272  result_type
5273  max() const
5274  {
5275  return _M_param._M_int.empty()
5276  ? result_type(1) : _M_param._M_int.back();
5277  }
5278 
5279  /**
5280  * @brief Generating functions.
5281  */
5282  template<typename _UniformRandomNumberGenerator>
5283  result_type
5284  operator()(_UniformRandomNumberGenerator& __urng)
5285  { return this->operator()(__urng, this->param()); }
5286 
5287  template<typename _UniformRandomNumberGenerator>
5288  result_type
5289  operator()(_UniformRandomNumberGenerator& __urng,
5290  const param_type& __p);
5291 
5292  /**
5293  * @brief Inserts a %piecewise_linear_distribution random number
5294  * distribution @p __x into the output stream @p __os.
5295  *
5296  * @param __os An output stream.
5297  * @param __x A %piecewise_linear_distribution random number
5298  * distribution.
5299  *
5300  * @returns The output stream with the state of @p __x inserted or in
5301  * an error state.
5302  */
5303  template<typename _RealType1, typename _CharT, typename _Traits>
5305  operator<<(std::basic_ostream<_CharT, _Traits>& __os,
5307 
5308  /**
5309  * @brief Extracts a %piecewise_linear_distribution random number
5310  * distribution @p __x from the input stream @p __is.
5311  *
5312  * @param __is An input stream.
5313  * @param __x A %piecewise_linear_distribution random number
5314  * generator engine.
5315  *
5316  * @returns The input stream with @p __x extracted or in an error
5317  * state.
5318  */
5319  template<typename _RealType1, typename _CharT, typename _Traits>
5323 
5324  private:
5325  param_type _M_param;
5326  };
5327 
5328  /**
5329  * @brief Return true if two piecewise linear distributions have the
5330  * same parameters.
5331  */
5332  template<typename _RealType>
5333  inline bool
5336  { return __d1.param() == __d2.param(); }
5337 
5338  /**
5339  * @brief Return true if two piecewise linear distributions have
5340  * different parameters.
5341  */
5342  template<typename _RealType>
5343  inline bool
5346  { return !(__d1 == __d2); }
5347 
5348 
5349  /* @} */ // group random_distributions_poisson
5350 
5351  /* @} */ // group random_distributions
5352 
5353  /**
5354  * @addtogroup random_utilities Random Number Utilities
5355  * @ingroup random
5356  * @{
5357  */
5358 
5359  /**
5360  * @brief The seed_seq class generates sequences of seeds for random
5361  * number generators.
5362  */
5363  class seed_seq
5364  {
5365 
5366  public:
5367  /** The type of the seed vales. */
5368  typedef uint_least32_t result_type;
5369 
5370  /** Default constructor. */
5372  : _M_v()
5373  { }
5374 
5375  template<typename _IntType>
5377 
5378  template<typename _InputIterator>
5379  seed_seq(_InputIterator __begin, _InputIterator __end);
5380 
5381  // generating functions
5382  template<typename _RandomAccessIterator>
5383  void
5384  generate(_RandomAccessIterator __begin, _RandomAccessIterator __end);
5385 
5386  // property functions
5387  size_t size() const
5388  { return _M_v.size(); }
5389 
5390  template<typename OutputIterator>
5391  void
5392  param(OutputIterator __dest) const
5393  { std::copy(_M_v.begin(), _M_v.end(), __dest); }
5394 
5395  private:
5396  ///
5398  };
5399 
5400  /* @} */ // group random_utilities
5401 
5402  /* @} */ // group random
5403 
5404 _GLIBCXX_END_NAMESPACE_VERSION
5405 } // namespace std
5406 
5407 #endif