bitmap_allocator.h

Go to the documentation of this file.
00001 // Bitmap Allocator. -*- C++ -*-
00002 
00003 // Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
00004 // Free Software Foundation, Inc.
00005 //
00006 // This file is part of the GNU ISO C++ Library.  This library is free
00007 // software; you can redistribute it and/or modify it under the
00008 // terms of the GNU General Public License as published by the
00009 // Free Software Foundation; either version 3, or (at your option)
00010 // any later version.
00011 
00012 // This library is distributed in the hope that it will be useful,
00013 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00014 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015 // GNU General Public License for more details.
00016 
00017 // Under Section 7 of GPL version 3, you are granted additional
00018 // permissions described in the GCC Runtime Library Exception, version
00019 // 3.1, as published by the Free Software Foundation.
00020 
00021 // You should have received a copy of the GNU General Public License and
00022 // a copy of the GCC Runtime Library Exception along with this program;
00023 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
00024 // <http://www.gnu.org/licenses/>.
00025 
00026 /** @file ext/bitmap_allocator.h
00027  *  This file is a GNU extension to the Standard C++ Library.
00028  */
00029 
00030 #ifndef _BITMAP_ALLOCATOR_H
00031 #define _BITMAP_ALLOCATOR_H 1
00032 
00033 #include <utility> // For std::pair.
00034 #include <bits/functexcept.h> // For __throw_bad_alloc().
00035 #include <functional> // For greater_equal, and less_equal.
00036 #include <new> // For operator new.
00037 #include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
00038 #include <ext/concurrence.h>
00039 #include <bits/move.h>
00040 
00041 /** @brief The constant in the expression below is the alignment
00042  * required in bytes.
00043  */
00044 #define _BALLOC_ALIGN_BYTES 8
00045 
00046 namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
00047 {
00048   using std::size_t;
00049   using std::ptrdiff_t;
00050 
00051   namespace __detail
00052   {
00053   _GLIBCXX_BEGIN_NAMESPACE_VERSION
00054     /** @class  __mini_vector bitmap_allocator.h bitmap_allocator.h
00055      *
00056      *  @brief  __mini_vector<> is a stripped down version of the
00057      *  full-fledged std::vector<>.
00058      *
00059      *  It is to be used only for built-in types or PODs. Notable
00060      *  differences are:
00061      * 
00062      *  @detail
00063      *  1. Not all accessor functions are present.
00064      *  2. Used ONLY for PODs.
00065      *  3. No Allocator template argument. Uses ::operator new() to get
00066      *  memory, and ::operator delete() to free it.
00067      *  Caveat: The dtor does NOT free the memory allocated, so this a
00068      *  memory-leaking vector!
00069      */
00070     template<typename _Tp>
00071       class __mini_vector
00072       {
00073     __mini_vector(const __mini_vector&);
00074     __mini_vector& operator=(const __mini_vector&);
00075 
00076       public:
00077     typedef _Tp value_type;
00078     typedef _Tp* pointer;
00079     typedef _Tp& reference;
00080     typedef const _Tp& const_reference;
00081     typedef size_t size_type;
00082     typedef ptrdiff_t difference_type;
00083     typedef pointer iterator;
00084 
00085       private:
00086     pointer _M_start;
00087     pointer _M_finish;
00088     pointer _M_end_of_storage;
00089 
00090     size_type
00091     _M_space_left() const throw()
00092     { return _M_end_of_storage - _M_finish; }
00093 
00094     pointer
00095     allocate(size_type __n)
00096     { return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
00097 
00098     void
00099     deallocate(pointer __p, size_type)
00100     { ::operator delete(__p); }
00101 
00102       public:
00103     // Members used: size(), push_back(), pop_back(),
00104     // insert(iterator, const_reference), erase(iterator),
00105     // begin(), end(), back(), operator[].
00106 
00107     __mini_vector()
00108         : _M_start(0), _M_finish(0), _M_end_of_storage(0) { }
00109 
00110     size_type
00111     size() const throw()
00112     { return _M_finish - _M_start; }
00113 
00114     iterator
00115     begin() const throw()
00116     { return this->_M_start; }
00117 
00118     iterator
00119     end() const throw()
00120     { return this->_M_finish; }
00121 
00122     reference
00123     back() const throw()
00124     { return *(this->end() - 1); }
00125 
00126     reference
00127     operator[](const size_type __pos) const throw()
00128     { return this->_M_start[__pos]; }
00129 
00130     void
00131     insert(iterator __pos, const_reference __x);
00132 
00133     void
00134     push_back(const_reference __x)
00135     {
00136       if (this->_M_space_left())
00137         {
00138           *this->end() = __x;
00139           ++this->_M_finish;
00140         }
00141       else
00142         this->insert(this->end(), __x);
00143     }
00144 
00145     void
00146     pop_back() throw()
00147     { --this->_M_finish; }
00148 
00149     void
00150     erase(iterator __pos) throw();
00151 
00152     void
00153     clear() throw()
00154     { this->_M_finish = this->_M_start; }
00155       };
00156 
00157     // Out of line function definitions.
00158     template<typename _Tp>
00159       void __mini_vector<_Tp>::
00160       insert(iterator __pos, const_reference __x)
00161       {
00162     if (this->_M_space_left())
00163       {
00164         size_type __to_move = this->_M_finish - __pos;
00165         iterator __dest = this->end();
00166         iterator __src = this->end() - 1;
00167 
00168         ++this->_M_finish;
00169         while (__to_move)
00170           {
00171         *__dest = *__src;
00172         --__dest; --__src; --__to_move;
00173           }
00174         *__pos = __x;
00175       }
00176     else
00177       {
00178         size_type __new_size = this->size() ? this->size() * 2 : 1;
00179         iterator __new_start = this->allocate(__new_size);
00180         iterator __first = this->begin();
00181         iterator __start = __new_start;
00182         while (__first != __pos)
00183           {
00184         *__start = *__first;
00185         ++__start; ++__first;
00186           }
00187         *__start = __x;
00188         ++__start;
00189         while (__first != this->end())
00190           {
00191         *__start = *__first;
00192         ++__start; ++__first;
00193           }
00194         if (this->_M_start)
00195           this->deallocate(this->_M_start, this->size());
00196 
00197         this->_M_start = __new_start;
00198         this->_M_finish = __start;
00199         this->_M_end_of_storage = this->_M_start + __new_size;
00200       }
00201       }
00202 
00203     template<typename _Tp>
00204       void __mini_vector<_Tp>::
00205       erase(iterator __pos) throw()
00206       {
00207     while (__pos + 1 != this->end())
00208       {
00209         *__pos = __pos[1];
00210         ++__pos;
00211       }
00212     --this->_M_finish;
00213       }
00214 
00215 
00216     template<typename _Tp>
00217       struct __mv_iter_traits
00218       {
00219     typedef typename _Tp::value_type value_type;
00220     typedef typename _Tp::difference_type difference_type;
00221       };
00222 
00223     template<typename _Tp>
00224       struct __mv_iter_traits<_Tp*>
00225       {
00226     typedef _Tp value_type;
00227     typedef ptrdiff_t difference_type;
00228       };
00229 
00230     enum 
00231       { 
00232     bits_per_byte = 8,
00233     bits_per_block = sizeof(size_t) * size_t(bits_per_byte) 
00234       };
00235 
00236     template<typename _ForwardIterator, typename _Tp, typename _Compare>
00237       _ForwardIterator
00238       __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
00239             const _Tp& __val, _Compare __comp)
00240       {
00241     typedef typename __mv_iter_traits<_ForwardIterator>::value_type
00242       _ValueType;
00243     typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
00244       _DistanceType;
00245 
00246     _DistanceType __len = __last - __first;
00247     _DistanceType __half;
00248     _ForwardIterator __middle;
00249 
00250     while (__len > 0)
00251       {
00252         __half = __len >> 1;
00253         __middle = __first;
00254         __middle += __half;
00255         if (__comp(*__middle, __val))
00256           {
00257         __first = __middle;
00258         ++__first;
00259         __len = __len - __half - 1;
00260           }
00261         else
00262           __len = __half;
00263       }
00264     return __first;
00265       }
00266 
00267     /** @brief The number of Blocks pointed to by the address pair
00268      *  passed to the function.
00269      */
00270     template<typename _AddrPair>
00271       inline size_t
00272       __num_blocks(_AddrPair __ap)
00273       { return (__ap.second - __ap.first) + 1; }
00274 
00275     /** @brief The number of Bit-maps pointed to by the address pair
00276      *  passed to the function.
00277      */
00278     template<typename _AddrPair>
00279       inline size_t
00280       __num_bitmaps(_AddrPair __ap)
00281       { return __num_blocks(__ap) / size_t(bits_per_block); }
00282 
00283     // _Tp should be a pointer type.
00284     template<typename _Tp>
00285       class _Inclusive_between 
00286       : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
00287       {
00288     typedef _Tp pointer;
00289     pointer _M_ptr_value;
00290     typedef typename std::pair<_Tp, _Tp> _Block_pair;
00291     
00292       public:
00293     _Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr) 
00294     { }
00295     
00296     bool 
00297     operator()(_Block_pair __bp) const throw()
00298     {
00299       if (std::less_equal<pointer>()(_M_ptr_value, __bp.second) 
00300           && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
00301         return true;
00302       else
00303         return false;
00304     }
00305       };
00306   
00307     // Used to pass a Functor to functions by reference.
00308     template<typename _Functor>
00309       class _Functor_Ref 
00310       : public std::unary_function<typename _Functor::argument_type, 
00311                    typename _Functor::result_type>
00312       {
00313     _Functor& _M_fref;
00314     
00315       public:
00316     typedef typename _Functor::argument_type argument_type;
00317     typedef typename _Functor::result_type result_type;
00318 
00319     _Functor_Ref(_Functor& __fref) : _M_fref(__fref) 
00320     { }
00321 
00322     result_type 
00323     operator()(argument_type __arg) 
00324     { return _M_fref(__arg); }
00325       };
00326 
00327     /** @class  _Ffit_finder bitmap_allocator.h bitmap_allocator.h
00328      *
00329      *  @brief  The class which acts as a predicate for applying the
00330      *  first-fit memory allocation policy for the bitmap allocator.
00331      */
00332     // _Tp should be a pointer type, and _Alloc is the Allocator for
00333     // the vector.
00334     template<typename _Tp>
00335       class _Ffit_finder 
00336       : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
00337       {
00338     typedef typename std::pair<_Tp, _Tp> _Block_pair;
00339     typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
00340     typedef typename _BPVector::difference_type _Counter_type;
00341 
00342     size_t* _M_pbitmap;
00343     _Counter_type _M_data_offset;
00344 
00345       public:
00346     _Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
00347     { }
00348 
00349     bool 
00350     operator()(_Block_pair __bp) throw()
00351     {
00352       // Set the _rover to the last physical location bitmap,
00353       // which is the bitmap which belongs to the first free
00354       // block. Thus, the bitmaps are in exact reverse order of
00355       // the actual memory layout. So, we count down the bitmaps,
00356       // which is the same as moving up the memory.
00357 
00358       // If the used count stored at the start of the Bit Map headers
00359       // is equal to the number of Objects that the current Block can
00360       // store, then there is definitely no space for another single
00361       // object, so just return false.
00362       _Counter_type __diff = __detail::__num_bitmaps(__bp);
00363 
00364       if (*(reinterpret_cast<size_t*>
00365         (__bp.first) - (__diff + 1)) == __detail::__num_blocks(__bp))
00366         return false;
00367 
00368       size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
00369 
00370       for (_Counter_type __i = 0; __i < __diff; ++__i)
00371         {
00372           _M_data_offset = __i;
00373           if (*__rover)
00374         {
00375           _M_pbitmap = __rover;
00376           return true;
00377         }
00378           --__rover;
00379         }
00380       return false;
00381     }
00382     
00383     size_t*
00384     _M_get() const throw()
00385     { return _M_pbitmap; }
00386 
00387     _Counter_type
00388     _M_offset() const throw()
00389     { return _M_data_offset * size_t(bits_per_block); }
00390       };
00391 
00392     /** @class  _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
00393      *
00394      *  @brief  The bitmap counter which acts as the bitmap
00395      *  manipulator, and manages the bit-manipulation functions and
00396      *  the searching and identification functions on the bit-map.
00397      */
00398     // _Tp should be a pointer type.
00399     template<typename _Tp>
00400       class _Bitmap_counter
00401       {
00402     typedef typename
00403     __detail::__mini_vector<typename std::pair<_Tp, _Tp> > _BPVector;
00404     typedef typename _BPVector::size_type _Index_type;
00405     typedef _Tp pointer;
00406 
00407     _BPVector& _M_vbp;
00408     size_t* _M_curr_bmap;
00409     size_t* _M_last_bmap_in_block;
00410     _Index_type _M_curr_index;
00411     
00412       public:
00413     // Use the 2nd parameter with care. Make sure that such an
00414     // entry exists in the vector before passing that particular
00415     // index to this ctor.
00416     _Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
00417     { this->_M_reset(__index); }
00418     
00419     void 
00420     _M_reset(long __index = -1) throw()
00421     {
00422       if (__index == -1)
00423         {
00424           _M_curr_bmap = 0;
00425           _M_curr_index = static_cast<_Index_type>(-1);
00426           return;
00427         }
00428 
00429       _M_curr_index = __index;
00430       _M_curr_bmap = reinterpret_cast<size_t*>
00431         (_M_vbp[_M_curr_index].first) - 1;
00432       
00433       _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
00434     
00435       _M_last_bmap_in_block = _M_curr_bmap
00436         - ((_M_vbp[_M_curr_index].second 
00437         - _M_vbp[_M_curr_index].first + 1) 
00438            / size_t(bits_per_block) - 1);
00439     }
00440     
00441     // Dangerous Function! Use with extreme care. Pass to this
00442     // function ONLY those values that are known to be correct,
00443     // otherwise this will mess up big time.
00444     void
00445     _M_set_internal_bitmap(size_t* __new_internal_marker) throw()
00446     { _M_curr_bmap = __new_internal_marker; }
00447     
00448     bool
00449     _M_finished() const throw()
00450     { return(_M_curr_bmap == 0); }
00451     
00452     _Bitmap_counter&
00453     operator++() throw()
00454     {
00455       if (_M_curr_bmap == _M_last_bmap_in_block)
00456         {
00457           if (++_M_curr_index == _M_vbp.size())
00458         _M_curr_bmap = 0;
00459           else
00460         this->_M_reset(_M_curr_index);
00461         }
00462       else
00463         --_M_curr_bmap;
00464       return *this;
00465     }
00466     
00467     size_t*
00468     _M_get() const throw()
00469     { return _M_curr_bmap; }
00470     
00471     pointer 
00472     _M_base() const throw()
00473     { return _M_vbp[_M_curr_index].first; }
00474 
00475     _Index_type
00476     _M_offset() const throw()
00477     {
00478       return size_t(bits_per_block)
00479         * ((reinterpret_cast<size_t*>(this->_M_base()) 
00480         - _M_curr_bmap) - 1);
00481     }
00482     
00483     _Index_type
00484     _M_where() const throw()
00485     { return _M_curr_index; }
00486       };
00487 
00488     /** @brief  Mark a memory address as allocated by re-setting the
00489      *  corresponding bit in the bit-map.
00490      */
00491     inline void 
00492     __bit_allocate(size_t* __pbmap, size_t __pos) throw()
00493     {
00494       size_t __mask = 1 << __pos;
00495       __mask = ~__mask;
00496       *__pbmap &= __mask;
00497     }
00498   
00499     /** @brief  Mark a memory address as free by setting the
00500      *  corresponding bit in the bit-map.
00501      */
00502     inline void 
00503     __bit_free(size_t* __pbmap, size_t __pos) throw()
00504     {
00505       size_t __mask = 1 << __pos;
00506       *__pbmap |= __mask;
00507     }
00508 
00509   _GLIBCXX_END_NAMESPACE_VERSION
00510   } // namespace __detail
00511 
00512 _GLIBCXX_BEGIN_NAMESPACE_VERSION
00513 
00514   /** @brief  Generic Version of the bsf instruction.
00515    */
00516   inline size_t 
00517   _Bit_scan_forward(size_t __num)
00518   { return static_cast<size_t>(__builtin_ctzl(__num)); }
00519 
00520   /** @class  free_list bitmap_allocator.h bitmap_allocator.h
00521    *
00522    *  @brief  The free list class for managing chunks of memory to be
00523    *  given to and returned by the bitmap_allocator.
00524    */
00525   class free_list
00526   {
00527   public:
00528     typedef size_t*                 value_type;
00529     typedef __detail::__mini_vector<value_type> vector_type;
00530     typedef vector_type::iterator       iterator;
00531     typedef __mutex             __mutex_type;
00532 
00533   private:
00534     struct _LT_pointer_compare
00535     {
00536       bool
00537       operator()(const size_t* __pui, 
00538          const size_t __cui) const throw()
00539       { return *__pui < __cui; }
00540     };
00541 
00542 #if defined __GTHREADS
00543     __mutex_type&
00544     _M_get_mutex()
00545     {
00546       static __mutex_type _S_mutex;
00547       return _S_mutex;
00548     }
00549 #endif
00550 
00551     vector_type&
00552     _M_get_free_list()
00553     {
00554       static vector_type _S_free_list;
00555       return _S_free_list;
00556     }
00557 
00558     /** @brief  Performs validation of memory based on their size.
00559      *
00560      *  @param  __addr The pointer to the memory block to be
00561      *  validated.
00562      *
00563      *  @detail  Validates the memory block passed to this function and
00564      *  appropriately performs the action of managing the free list of
00565      *  blocks by adding this block to the free list or deleting this
00566      *  or larger blocks from the free list.
00567      */
00568     void
00569     _M_validate(size_t* __addr) throw()
00570     {
00571       vector_type& __free_list = _M_get_free_list();
00572       const vector_type::size_type __max_size = 64;
00573       if (__free_list.size() >= __max_size)
00574     {
00575       // Ok, the threshold value has been reached.  We determine
00576       // which block to remove from the list of free blocks.
00577       if (*__addr >= *__free_list.back())
00578         {
00579           // Ok, the new block is greater than or equal to the
00580           // last block in the list of free blocks. We just free
00581           // the new block.
00582           ::operator delete(static_cast<void*>(__addr));
00583           return;
00584         }
00585       else
00586         {
00587           // Deallocate the last block in the list of free lists,
00588           // and insert the new one in its correct position.
00589           ::operator delete(static_cast<void*>(__free_list.back()));
00590           __free_list.pop_back();
00591         }
00592     }
00593       
00594       // Just add the block to the list of free lists unconditionally.
00595       iterator __temp = __detail::__lower_bound
00596     (__free_list.begin(), __free_list.end(), 
00597      *__addr, _LT_pointer_compare());
00598 
00599       // We may insert the new free list before _temp;
00600       __free_list.insert(__temp, __addr);
00601     }
00602 
00603     /** @brief  Decides whether the wastage of memory is acceptable for
00604      *  the current memory request and returns accordingly.
00605      *
00606      *  @param __block_size The size of the block available in the free
00607      *  list.
00608      *
00609      *  @param __required_size The required size of the memory block.
00610      *
00611      *  @return true if the wastage incurred is acceptable, else returns
00612      *  false.
00613      */
00614     bool 
00615     _M_should_i_give(size_t __block_size, 
00616              size_t __required_size) throw()
00617     {
00618       const size_t __max_wastage_percentage = 36;
00619       if (__block_size >= __required_size && 
00620       (((__block_size - __required_size) * 100 / __block_size)
00621        < __max_wastage_percentage))
00622     return true;
00623       else
00624     return false;
00625     }
00626 
00627   public:
00628     /** @brief This function returns the block of memory to the
00629      *  internal free list.
00630      *
00631      *  @param  __addr The pointer to the memory block that was given
00632      *  by a call to the _M_get function.
00633      */
00634     inline void 
00635     _M_insert(size_t* __addr) throw()
00636     {
00637 #if defined __GTHREADS
00638       __scoped_lock __bfl_lock(_M_get_mutex());
00639 #endif
00640       // Call _M_validate to decide what should be done with
00641       // this particular free list.
00642       this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
00643       // See discussion as to why this is 1!
00644     }
00645     
00646     /** @brief  This function gets a block of memory of the specified
00647      *  size from the free list.
00648      *
00649      *  @param  __sz The size in bytes of the memory required.
00650      *
00651      *  @return  A pointer to the new memory block of size at least
00652      *  equal to that requested.
00653      */
00654     size_t*
00655     _M_get(size_t __sz) throw(std::bad_alloc);
00656 
00657     /** @brief  This function just clears the internal Free List, and
00658      *  gives back all the memory to the OS.
00659      */
00660     void 
00661     _M_clear();
00662   };
00663 
00664 
00665   // Forward declare the class.
00666   template<typename _Tp> 
00667     class bitmap_allocator;
00668 
00669   // Specialize for void:
00670   template<>
00671     class bitmap_allocator<void>
00672     {
00673     public:
00674       typedef void*       pointer;
00675       typedef const void* const_pointer;
00676 
00677       // Reference-to-void members are impossible.
00678       typedef void  value_type;
00679       template<typename _Tp1>
00680         struct rebind
00681     {
00682       typedef bitmap_allocator<_Tp1> other;
00683     };
00684     };
00685 
00686   /**
00687    * @brief Bitmap Allocator, primary template.
00688    * @ingroup allocators
00689    */
00690   template<typename _Tp>
00691     class bitmap_allocator : private free_list
00692     {
00693     public:
00694       typedef size_t            size_type;
00695       typedef ptrdiff_t         difference_type;
00696       typedef _Tp*              pointer;
00697       typedef const _Tp*        const_pointer;
00698       typedef _Tp&              reference;
00699       typedef const _Tp&        const_reference;
00700       typedef _Tp               value_type;
00701       typedef free_list::__mutex_type   __mutex_type;
00702 
00703       template<typename _Tp1>
00704         struct rebind
00705     {
00706       typedef bitmap_allocator<_Tp1> other;
00707     };
00708 
00709     private:
00710       template<size_t _BSize, size_t _AlignSize>
00711         struct aligned_size
00712     {
00713       enum
00714         { 
00715           modulus = _BSize % _AlignSize,
00716           value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
00717         };
00718     };
00719 
00720       struct _Alloc_block
00721       {
00722     char __M_unused[aligned_size<sizeof(value_type),
00723             _BALLOC_ALIGN_BYTES>::value];
00724       };
00725 
00726 
00727       typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
00728 
00729       typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
00730       typedef typename _BPVector::iterator _BPiter;
00731 
00732       template<typename _Predicate>
00733         static _BPiter
00734         _S_find(_Predicate __p)
00735         {
00736       _BPiter __first = _S_mem_blocks.begin();
00737       while (__first != _S_mem_blocks.end() && !__p(*__first))
00738         ++__first;
00739       return __first;
00740     }
00741 
00742 #if defined _GLIBCXX_DEBUG
00743       // Complexity: O(lg(N)). Where, N is the number of block of size
00744       // sizeof(value_type).
00745       void 
00746       _S_check_for_free_blocks() throw()
00747       {
00748     typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
00749     _BPiter __bpi = _S_find(_FFF());
00750 
00751     _GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
00752       }
00753 #endif
00754 
00755       /** @brief  Responsible for exponentially growing the internal
00756        *  memory pool.
00757        *
00758        *  @throw  std::bad_alloc. If memory can not be allocated.
00759        *
00760        *  @detail  Complexity: O(1), but internally depends upon the
00761        *  complexity of the function free_list::_M_get. The part where
00762        *  the bitmap headers are written has complexity: O(X),where X
00763        *  is the number of blocks of size sizeof(value_type) within
00764        *  the newly acquired block. Having a tight bound.
00765        */
00766       void 
00767       _S_refill_pool() throw(std::bad_alloc)
00768       {
00769 #if defined _GLIBCXX_DEBUG
00770     _S_check_for_free_blocks();
00771 #endif
00772 
00773     const size_t __num_bitmaps = (_S_block_size
00774                       / size_t(__detail::bits_per_block));
00775     const size_t __size_to_allocate = sizeof(size_t) 
00776       + _S_block_size * sizeof(_Alloc_block) 
00777       + __num_bitmaps * sizeof(size_t);
00778 
00779     size_t* __temp =
00780       reinterpret_cast<size_t*>(this->_M_get(__size_to_allocate));
00781     *__temp = 0;
00782     ++__temp;
00783 
00784     // The Header information goes at the Beginning of the Block.
00785     _Block_pair __bp = 
00786       std::make_pair(reinterpret_cast<_Alloc_block*>
00787              (__temp + __num_bitmaps), 
00788              reinterpret_cast<_Alloc_block*>
00789              (__temp + __num_bitmaps) 
00790              + _S_block_size - 1);
00791     
00792     // Fill the Vector with this information.
00793     _S_mem_blocks.push_back(__bp);
00794 
00795     for (size_t __i = 0; __i < __num_bitmaps; ++__i)
00796       __temp[__i] = ~static_cast<size_t>(0); // 1 Indicates all Free.
00797 
00798     _S_block_size *= 2;
00799       }
00800 
00801       static _BPVector _S_mem_blocks;
00802       static size_t _S_block_size;
00803       static __detail::_Bitmap_counter<_Alloc_block*> _S_last_request;
00804       static typename _BPVector::size_type _S_last_dealloc_index;
00805 #if defined __GTHREADS
00806       static __mutex_type _S_mut;
00807 #endif
00808 
00809     public:
00810 
00811       /** @brief  Allocates memory for a single object of size
00812        *  sizeof(_Tp).
00813        *
00814        *  @throw  std::bad_alloc. If memory can not be allocated.
00815        *
00816        *  @detail  Complexity: Worst case complexity is O(N), but that
00817        *  is hardly ever hit. If and when this particular case is
00818        *  encountered, the next few cases are guaranteed to have a
00819        *  worst case complexity of O(1)!  That's why this function
00820        *  performs very well on average. You can consider this
00821        *  function to have a complexity referred to commonly as:
00822        *  Amortized Constant time.
00823        */
00824       pointer 
00825       _M_allocate_single_object() throw(std::bad_alloc)
00826       {
00827 #if defined __GTHREADS
00828     __scoped_lock __bit_lock(_S_mut);
00829 #endif
00830 
00831     // The algorithm is something like this: The last_request
00832     // variable points to the last accessed Bit Map. When such a
00833     // condition occurs, we try to find a free block in the
00834     // current bitmap, or succeeding bitmaps until the last bitmap
00835     // is reached. If no free block turns up, we resort to First
00836     // Fit method.
00837 
00838     // WARNING: Do not re-order the condition in the while
00839     // statement below, because it relies on C++'s short-circuit
00840     // evaluation. The return from _S_last_request->_M_get() will
00841     // NOT be dereference able if _S_last_request->_M_finished()
00842     // returns true. This would inevitably lead to a NULL pointer
00843     // dereference if tinkered with.
00844     while (_S_last_request._M_finished() == false
00845            && (*(_S_last_request._M_get()) == 0))
00846       _S_last_request.operator++();
00847 
00848     if (__builtin_expect(_S_last_request._M_finished() == true, false))
00849       {
00850         // Fall Back to First Fit algorithm.
00851         typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
00852         _FFF __fff;
00853         _BPiter __bpi = _S_find(__detail::_Functor_Ref<_FFF>(__fff));
00854 
00855         if (__bpi != _S_mem_blocks.end())
00856           {
00857         // Search was successful. Ok, now mark the first bit from
00858         // the right as 0, meaning Allocated. This bit is obtained
00859         // by calling _M_get() on __fff.
00860         size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
00861         __detail::__bit_allocate(__fff._M_get(), __nz_bit);
00862 
00863         _S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
00864 
00865         // Now, get the address of the bit we marked as allocated.
00866         pointer __ret = reinterpret_cast<pointer>
00867           (__bpi->first + __fff._M_offset() + __nz_bit);
00868         size_t* __puse_count = 
00869           reinterpret_cast<size_t*>
00870           (__bpi->first) - (__detail::__num_bitmaps(*__bpi) + 1);
00871         
00872         ++(*__puse_count);
00873         return __ret;
00874           }
00875         else
00876           {
00877         // Search was unsuccessful. We Add more memory to the
00878         // pool by calling _S_refill_pool().
00879         _S_refill_pool();
00880 
00881         // _M_Reset the _S_last_request structure to the first
00882         // free block's bit map.
00883         _S_last_request._M_reset(_S_mem_blocks.size() - 1);
00884 
00885         // Now, mark that bit as allocated.
00886           }
00887       }
00888 
00889     // _S_last_request holds a pointer to a valid bit map, that
00890     // points to a free block in memory.
00891     size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
00892     __detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);
00893 
00894     pointer __ret = reinterpret_cast<pointer>
00895       (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
00896 
00897     size_t* __puse_count = reinterpret_cast<size_t*>
00898       (_S_mem_blocks[_S_last_request._M_where()].first)
00899       - (__detail::
00900          __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
00901 
00902     ++(*__puse_count);
00903     return __ret;
00904       }
00905 
00906       /** @brief  Deallocates memory that belongs to a single object of
00907        *  size sizeof(_Tp).
00908        *
00909        *  @detail  Complexity: O(lg(N)), but the worst case is not hit
00910        *  often!  This is because containers usually deallocate memory
00911        *  close to each other and this case is handled in O(1) time by
00912        *  the deallocate function.
00913        */
00914       void 
00915       _M_deallocate_single_object(pointer __p) throw()
00916       {
00917 #if defined __GTHREADS
00918     __scoped_lock __bit_lock(_S_mut);
00919 #endif
00920     _Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
00921 
00922     typedef typename _BPVector::iterator _Iterator;
00923     typedef typename _BPVector::difference_type _Difference_type;
00924 
00925     _Difference_type __diff;
00926     long __displacement;
00927 
00928     _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
00929 
00930     __detail::_Inclusive_between<_Alloc_block*> __ibt(__real_p);
00931     if (__ibt(_S_mem_blocks[_S_last_dealloc_index]))
00932       {
00933         _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
00934                   <= _S_mem_blocks.size() - 1);
00935 
00936         // Initial Assumption was correct!
00937         __diff = _S_last_dealloc_index;
00938         __displacement = __real_p - _S_mem_blocks[__diff].first;
00939       }
00940     else
00941       {
00942         _Iterator _iter = _S_find(__ibt);
00943 
00944         _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
00945 
00946         __diff = _iter - _S_mem_blocks.begin();
00947         __displacement = __real_p - _S_mem_blocks[__diff].first;
00948         _S_last_dealloc_index = __diff;
00949       }
00950 
00951     // Get the position of the iterator that has been found.
00952     const size_t __rotate = (__displacement
00953                  % size_t(__detail::bits_per_block));
00954     size_t* __bitmapC = 
00955       reinterpret_cast<size_t*>
00956       (_S_mem_blocks[__diff].first) - 1;
00957     __bitmapC -= (__displacement / size_t(__detail::bits_per_block));
00958       
00959     __detail::__bit_free(__bitmapC, __rotate);
00960     size_t* __puse_count = reinterpret_cast<size_t*>
00961       (_S_mem_blocks[__diff].first)
00962       - (__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
00963     
00964     _GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
00965 
00966     --(*__puse_count);
00967 
00968     if (__builtin_expect(*__puse_count == 0, false))
00969       {
00970         _S_block_size /= 2;
00971       
00972         // We can safely remove this block.
00973         // _Block_pair __bp = _S_mem_blocks[__diff];
00974         this->_M_insert(__puse_count);
00975         _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
00976 
00977         // Reset the _S_last_request variable to reflect the
00978         // erased block. We do this to protect future requests
00979         // after the last block has been removed from a particular
00980         // memory Chunk, which in turn has been returned to the
00981         // free list, and hence had been erased from the vector,
00982         // so the size of the vector gets reduced by 1.
00983         if ((_Difference_type)_S_last_request._M_where() >= __diff--)
00984           _S_last_request._M_reset(__diff); 
00985 
00986         // If the Index into the vector of the region of memory
00987         // that might hold the next address that will be passed to
00988         // deallocated may have been invalidated due to the above
00989         // erase procedure being called on the vector, hence we
00990         // try to restore this invariant too.
00991         if (_S_last_dealloc_index >= _S_mem_blocks.size())
00992           {
00993         _S_last_dealloc_index =(__diff != -1 ? __diff : 0);
00994         _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
00995           }
00996       }
00997       }
00998 
00999     public:
01000       bitmap_allocator() throw()
01001       { }
01002 
01003       bitmap_allocator(const bitmap_allocator&)
01004       { }
01005 
01006       template<typename _Tp1>
01007         bitmap_allocator(const bitmap_allocator<_Tp1>&) throw()
01008         { }
01009 
01010       ~bitmap_allocator() throw()
01011       { }
01012 
01013       pointer 
01014       allocate(size_type __n)
01015       {
01016     if (__n > this->max_size())
01017       std::__throw_bad_alloc();
01018 
01019     if (__builtin_expect(__n == 1, true))
01020       return this->_M_allocate_single_object();
01021     else
01022       { 
01023         const size_type __b = __n * sizeof(value_type);
01024         return reinterpret_cast<pointer>(::operator new(__b));
01025       }
01026       }
01027 
01028       pointer 
01029       allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
01030       { return allocate(__n); }
01031 
01032       void 
01033       deallocate(pointer __p, size_type __n) throw()
01034       {
01035     if (__builtin_expect(__p != 0, true))
01036       {
01037         if (__builtin_expect(__n == 1, true))
01038           this->_M_deallocate_single_object(__p);
01039         else
01040 	      ::operator delete(__p);
01041       }
01042       }
01043 
01044       pointer 
01045       address(reference __r) const
01046       { return std::__addressof(__r); }
01047 
01048       const_pointer 
01049       address(const_reference __r) const
01050       { return std::__addressof(__r); }
01051 
01052       size_type 
01053       max_size() const throw()
01054       { return size_type(-1) / sizeof(value_type); }
01055 
01056       void 
01057       construct(pointer __p, const_reference __data)
01058       { ::new((void *)__p) value_type(__data); }
01059 
01060 #ifdef __GXX_EXPERIMENTAL_CXX0X__
01061       template<typename... _Args>
01062         void
01063         construct(pointer __p, _Args&&... __args)
01064     { ::new((void *)__p) _Tp(std::forward<_Args>(__args)...); }
01065 #endif
01066 
01067       void 
01068       destroy(pointer __p)
01069       { __p->~value_type(); }
01070     };
01071 
01072   template<typename _Tp1, typename _Tp2>
01073     bool 
01074     operator==(const bitmap_allocator<_Tp1>&, 
01075            const bitmap_allocator<_Tp2>&) throw()
01076     { return true; }
01077   
01078   template<typename _Tp1, typename _Tp2>
01079     bool 
01080     operator!=(const bitmap_allocator<_Tp1>&, 
01081            const bitmap_allocator<_Tp2>&) throw() 
01082   { return false; }
01083 
01084   // Static member definitions.
01085   template<typename _Tp>
01086     typename bitmap_allocator<_Tp>::_BPVector
01087     bitmap_allocator<_Tp>::_S_mem_blocks;
01088 
01089   template<typename _Tp>
01090     size_t bitmap_allocator<_Tp>::_S_block_size = 
01091     2 * size_t(__detail::bits_per_block);
01092 
01093   template<typename _Tp>
01094     typename bitmap_allocator<_Tp>::_BPVector::size_type 
01095     bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
01096 
01097   template<typename _Tp>
01098     __detail::_Bitmap_counter
01099       <typename bitmap_allocator<_Tp>::_Alloc_block*>
01100     bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
01101 
01102 #if defined __GTHREADS
01103   template<typename _Tp>
01104     typename bitmap_allocator<_Tp>::__mutex_type
01105     bitmap_allocator<_Tp>::_S_mut;
01106 #endif
01107 
01108 _GLIBCXX_END_NAMESPACE_VERSION
01109 } // namespace __gnu_cxx
01110 
01111 #endif 
01112