Table of Contents

1 Overview of GNU Modula-2 ... 1
 1.1 What is GNU Modula-2 ... 1
 1.2 Why use GNU Modula-2 .. 1
 1.3 How to get source code using git 1
 1.4 GNU Modula-2 Features .. 2

2 Using GNU Modula-2 ... 3
 2.1 Example compile and link ... 3
 2.2 Compiler options .. 3
 2.3 Elementary data types ... 9
 2.4 Permanently accessible base procedures 10
 2.4.1 Standard procedures and functions common to PIM and ISO ... 10
 2.4.2 ISO specific standard procedures and functions 15
 2.5 Behavior of the high procedure function 16
 2.6 GNU Modula-2 supported dialects 18
 2.6.1 Integer division, remainder and modulus 18
 2.7 Exception implementation ... 19
 2.8 How to detect run time problems at compile time 19
 2.9 GNU Modula-2 language extensions 22
 2.9.1 Optional procedure parameter 25
 2.10 Type compatibility ... 25
 2.10.1 Expression compatibility 27
 2.10.2 Assignment compatibility 27
 2.10.3 Parameter compatibility 28
 2.11 Unbounded by reference .. 28
 2.12 Building a shared library .. 30
 2.13 How to produce swig interface files 30
 2.13.1 Limitations of automatic generated of Swig files 31
 2.14 How to produce a Python module 32
 2.15 Interfacing GNU Modula-2 to C 35
 2.16 Interface to assembly language 37
 2.17 Data type alignment ... 37
 2.18 Packing data types .. 39
 2.19 Accessing GNU Modula-2 Built-ins 41
 2.20 The PIM system module .. 47
 2.21 The ISO system module .. 51
 2.22 Release map .. 56
 2.23 Documentation ... 56
 2.24 Regression tests for gm2 in the repository 56
 2.25 Limitations .. 57
 2.26 Objectives .. 57
 2.27 FAQ .. 57
2.27.1 Why use the C++ exception mechanism in GCC, rather than a bespoke Modula-2 mechanism? 57
2.28 Community .. 57
2.29 Other languages for GCC 57
2.30 License of GNU Modula-2 58

GNU General Public License 59
Contributing to GNU Modula-2 69

3 EBNF of GNU Modula-2 71

4 PIM and ISO library definitions 80
 4.1 Base libraries ... 80
 4.1.1 gm2-libs/ASCII 80
 4.1.2 gm2-libs/Args 81
 4.1.3 gm2-libs/Assertion 82
 4.1.4 gm2-libs/Break 83
 4.1.5 gm2-libs/Builtins 84
 4.1.6 gm2-libs/COROUTINES 90
 4.1.7 gm2-libs/CmdArgs 91
 4.1.8 gm2-libs/Debug 92
 4.1.9 gm2-libs/DynamicStrings 93
 4.1.10 gm2-libs/Environment 101
 4.1.11 gm2-libs/FIO 102
 4.1.12 gm2-libs/FormatStrings 109
 4.1.13 gm2-libs/FpuIO 111
 4.1.14 gm2-libs/GetOpt 112
 4.1.15 gm2-libs/IO 115
 4.1.16 gm2-libs/Indexing 117
 4.1.17 gm2-libs/LMathLib0 120
 4.1.18 gm2-libs/LegacyReal 121
 4.1.19 gm2-libs/M2Dependent 122
 4.1.20 gm2-libs/M2EXCEPTION 124
 4.1.21 gm2-libs/M2RTS 125
 4.1.22 gm2-libs/MathLib0 129
 4.1.23 gm2-libs/MemUtils 130
 4.1.24 gm2-libs/NumberIO 131
 4.1.25 gm2-libs/OptLib 133
 4.1.26 gm2-libs/PushBackInput 135
 4.1.27 gm2-libs/RTExceptions 138
 4.1.28 gm2-libs/RTint 142
 4.1.29 gm2-libs/SArgs 145
 4.1.30 gm2-libs/SCmdArgs 146
 4.1.31 gm2-libs/SEnvironment 147
 4.1.32 gm2-libs/SFIO 148
4.2 PIM and Logitech 3.0 Compatible

4.2.1 gm2-libs-log/BitBlockOps 213
4.2.2 gm2-libs-log/BitByteOps 216
4.2.3 gm2-libs-log/BitWordOps 219
4.2.4 gm2-libs-log/BlockOps 222
4.2.5 gm2-libs-log/Break .. 224
4.2.6 gm2-libs-log/CardinalIO 225
4.2.7 gm2-libs-log/Conversions 228
4.2.8 gm2-libs-log/DebugPMD 229
4.2.9 gm2-libs-log/DebugTrace 230
4.2.10 gm2-libs-log/Delay 231
4.2.11 gm2-libs-log/Display 232
4.2.12 gm2-libs-log/ErrorCode 233
4.2.13 gm2-libs-log/FileSystem 234
4.2.14 gm2-libs-log/FloatingUtilities 240
4.2.15 gm2-libs-log/InOut 242
4.2.16 gm2-libs-log/Keyboard 246
4.2.17 gm2-libs-log/LongIO 247
4.2.18 gm2-libs-log/NumberConversion 248
4.2.19 gm2-libs-log/Random 249
4.2.20 gm2-libs-log/RealConversions 251
4.2.21 gm2-libs-log/RealInOut 254
4.2.22 gm2-libs-log/Strings 257
4.2.23 gm2-libs-log/Termbase 259
4.2.24 gm2-libs-log/Terminal 261
4.2.25 gm2-libs-log/TimeDate 263

4.3 PIM coroutine support 265
4.3.1 gm2-libs-coroutines/Executive 265
4.3.2 gm2-libs-coroutines/KeyBoardLEDs 268
4.3.3 gm2-libs-coroutines/SYSTEM 269
4.3.4 gm2-libs-coroutines/TimerHandler 275

4.4 M2 ISO Libraries ... 277
4.4.1 gm2-libs-iso/COROUTINES 278
4.4.2 gm2-libs-iso/ChanConsts 281
4.4.3 gm2-libs-iso/CharClass 283
4.4.4 gm2-libs-iso/ClientSocket 284
4.4.5 gm2-libs-iso/ComplexMath 285
4.4.6 gm2-libs-iso/ConvStringLong 287
4.4.7 gm2-libs-iso/ConvStringReal 288
4.4.8 gm2-libs-iso/ConvStringShort 289
4.4.9 gm2-libs-iso/ConvTypes 290
4.4.10 gm2-libs-iso/EXCEPTIONS 291
4.4.11 gm2-libs-iso/ErrnoCategory 293
4.4.12 gm2-libs-iso/GeneralUserExceptions 295
4.4.13 gm2-libs-iso/IOChan .. 296
4.4.14 gm2-libs-iso/IOConsts 300
4.4.15 gm2-libs-iso/IOLink ... 301
4.4.16 gm2-libs-iso/IOResult 304
4.4.17 gm2-libs-iso/LongComplexMath 305
4.4.18 gm2-libs-iso/LongConv 307
4.4.19 gm2-libs-iso/LongIO ... 309
4.4.20 gm2-libs-iso/LongMath 311
4.4.21 gm2-libs-iso/LongStr 313
4.4.22 gm2-libs-iso/LongWholeIO 315
4.4.23 gm2-libs-iso/LowLong 316
4.4.24 gm2-libs-iso/LowReal 318
4.4.25 gm2-libs-iso/LowShort 320
4.4.26 gm2-libs-iso/M2EXCEPTION 322
4.4.27 gm2-libs-iso/M2RTS ... 323
4.4.28 gm2-libs-iso/MemStream 327
4.4.29 gm2-libs-iso/Preemptive 329
4.4.30 gm2-libs-iso/Processes 330
4.4.31 gm2-libs-iso/ProgramArgs 334
4.4.32 gm2-libs-iso/RTco ... 335
4.4.33 gm2-libs-iso/RTdata ... 337
4.4.34 gm2-libs-iso/RTentity 339
4.4.35 gm2-libs-iso/RTfio .. 340
4.4.36 gm2-libs-iso/RTgen .. 342
<table>
<thead>
<tr>
<th>Section</th>
<th>File</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.37</td>
<td>gm2-libs-iso/RTgenif</td>
</tr>
<tr>
<td>4.4.38</td>
<td>gm2-libs-iso/RTio</td>
</tr>
<tr>
<td>4.4.39</td>
<td>gm2-libs-iso/RandomNumber</td>
</tr>
<tr>
<td>4.4.40</td>
<td>gm2-libs-iso/RawIO</td>
</tr>
<tr>
<td>4.4.41</td>
<td>gm2-libs-iso/RealConv</td>
</tr>
<tr>
<td>4.4.42</td>
<td>gm2-libs-iso/RealIO</td>
</tr>
<tr>
<td>4.4.43</td>
<td>gm2-libs-iso/RealMath</td>
</tr>
<tr>
<td>4.4.44</td>
<td>gm2-libs-iso/RealStr</td>
</tr>
<tr>
<td>4.4.45</td>
<td>gm2-libs-iso/RdFile</td>
</tr>
<tr>
<td>4.4.46</td>
<td>gm2-libs-iso/SIOResult</td>
</tr>
<tr>
<td>4.4.47</td>
<td>gm2-libs-iso/SLongIO</td>
</tr>
<tr>
<td>4.4.48</td>
<td>gm2-libs-iso/SLongWholeIO</td>
</tr>
<tr>
<td>4.4.49</td>
<td>gm2-libs-iso/SRawIO</td>
</tr>
<tr>
<td>4.4.50</td>
<td>gm2-libs-iso/SRealIO</td>
</tr>
<tr>
<td>4.4.51</td>
<td>gm2-libs-iso/SShortIO</td>
</tr>
<tr>
<td>4.4.52</td>
<td>gm2-libs-iso/SShortWholeIO</td>
</tr>
<tr>
<td>4.4.53</td>
<td>gm2-libs-iso/STextIO</td>
</tr>
<tr>
<td>4.4.54</td>
<td>gm2-libs-iso/SWholeIO</td>
</tr>
<tr>
<td>4.4.55</td>
<td>gm2-libs-iso/SYSTEM</td>
</tr>
<tr>
<td>4.4.56</td>
<td>gm2-libs-iso/Semaphores</td>
</tr>
<tr>
<td>4.4.57</td>
<td>gm2-libs-iso/SeqFile</td>
</tr>
<tr>
<td>4.4.58</td>
<td>gm2-libs-iso/ShortComplexMath</td>
</tr>
<tr>
<td>4.4.59</td>
<td>gm2-libs-iso/ShortConv</td>
</tr>
<tr>
<td>4.4.60</td>
<td>gm2-libs-iso/ShortIO</td>
</tr>
<tr>
<td>4.4.61</td>
<td>gm2-libs-iso/ShortMath</td>
</tr>
<tr>
<td>4.4.62</td>
<td>gm2-libs-iso/ShortStr</td>
</tr>
<tr>
<td>4.4.63</td>
<td>gm2-libs-iso/ShortWholeIO</td>
</tr>
<tr>
<td>4.4.64</td>
<td>gm2-libs-iso/SimpleCipher</td>
</tr>
<tr>
<td>4.4.65</td>
<td>gm2-libs-iso/StdChans</td>
</tr>
<tr>
<td>4.4.66</td>
<td>gm2-libs-iso/Storage</td>
</tr>
<tr>
<td>4.4.67</td>
<td>gm2-libs-iso/StreamFile</td>
</tr>
<tr>
<td>4.4.68</td>
<td>gm2-libs-iso/StringChan</td>
</tr>
<tr>
<td>4.4.69</td>
<td>gm2-libs-iso/Strings</td>
</tr>
<tr>
<td>4.4.70</td>
<td>gm2-libs-iso/SysClock</td>
</tr>
<tr>
<td>4.4.71</td>
<td>gm2-libs-iso/TERMINATION</td>
</tr>
<tr>
<td>4.4.72</td>
<td>gm2-libs-iso/TermFile</td>
</tr>
<tr>
<td>4.4.73</td>
<td>gm2-libs-iso/TextIO</td>
</tr>
<tr>
<td>4.4.74</td>
<td>gm2-libs-iso/TextUtil</td>
</tr>
<tr>
<td>4.4.75</td>
<td>gm2-libs-iso/WholeConv</td>
</tr>
<tr>
<td>4.4.76</td>
<td>gm2-libs-iso/WholeIO</td>
</tr>
<tr>
<td>4.4.77</td>
<td>gm2-libs-iso/WholeStr</td>
</tr>
<tr>
<td>4.4.78</td>
<td>gm2-libs-iso/wrapclock</td>
</tr>
<tr>
<td>4.4.79</td>
<td>gm2-libs-iso/wrapsock</td>
</tr>
<tr>
<td>4.4.80</td>
<td>gm2-libs-iso/wraptme</td>
</tr>
</tbody>
</table>

4.5 Indices ... 431
1 Overview of GNU Modula-2

1.1 What is GNU Modula-2

GNU Modula-2 is a front end (http://gcc.gnu.org/frontends.html) for the GNU Compiler Collection (GCC (http://gcc.gnu.org/)). The GNU Modula-2 compiler is compliant with the PIM2, PIM3, PIM4 and ISO dialects. Also implemented are a complete set of free ISO libraries and PIM libraries.

1.2 Why use GNU Modula-2

There are a number of advantages of using GNU Modula-2 rather than translate an existing project into another language.

The first advantage is of maintainability of the original sources and the ability to debug the original project source code using a combination of gm2 and gdb.

The second advantage is that gcc runs on many processors and platforms. gm2 builds and runs on powerpc64le, amd64, i386, aarch64 to name but a few processors.

gm2 can produce swig interface headers to allow access from Python and other scripting languages. It can also be used with C/C++ and generate shared libraries.

The compiler provides semantic analysis and run time checking (full ISO Modula-2 checking is implemented) and there is a plugin which can, under certain conditions, detect run time errors at compile time.

The compiler supports PIM2, PIM3, PIM4 and ISO dialects of Modula-2, work is underway to implement M2R10. Many of the GCC builtins are available and access to assembly programming is achieved using the same syntax as that used by GCC.

The gm2 driver allows third party libraries to be installed alongside gm2 libraries. For example if the user specifies library foo using -flibs=foo the driver will check the standard GCC install directory for a sub directory foo containing the library contents. The library module search path is altered accordingly for compile and link.

1.3 How to get source code using git

GNU Modula-2 is now in the GCC git tree (https://gcc.gnu.org/git.html).

1 The four Modula-2 dialects supported are defined in the following references:

1.4 GNU Modula-2 Features

- the compiler currently complies with Programming in Modula-2 Edition 2, 3, 4 and ISO Modula-2. Users can switch on specific language features by using: `--fpim`, `--fpim2`, `--fpim3`, `--fpim4` or `--fiso`.
- the option `--fswig` will automatically create a swig interface file which corresponds to the definition module of the file being compiled.
- exception handling is compatible with C++ and swig. Modula-2 code can be used with C or C++ code.
- Python can call GNU Modula-2 modules via swig.
- shared libraries can be built.
- fixed sized types are now available from `SYSTEM`.
- variables can be declared at addresses.
- much better dwarf-2 debugging support and when used with `gdb` the programmer can display RECORDs, ARRAYs, SETs, subranges and constant char literals in Modula-2 syntax.
- supports sets of any ordinal size (memory permitting).
- easy interface to C, and varargs can be passed to C routines.
- many Logitech libraries have been implemented and can be accessed via: `--flibs=m2log,m2pim,m2iso`.
- coroutines have been implemented in the PIM style and these are accessible from SYSTEM. A number of supporting libraries (executive and file descriptor mapping to interrupt vector libraries are available through the `--flibs=m2iso,m2pim` switch).
- can be built as a cross compiler (for embedded microprocessors such as the AVR and the ARM).
2 Using GNU Modula-2

This document contains the user and design issues relevant to the Modula-2 front end to gcc.

2.1 Example compile and link

The `gm2` command is the GNU compiler for the Modula-2 language and supports many of the same options as `gcc`. See Section “Option Summary” in Using the GNU Compiler Collection (GCC). This manual only documents the options specific to `gm2`.

This section describes how to compile and link a simple hello world program. It provides a few examples of using the different options mentioned in see Section “Compiler options” in `gm2`. Assuming that you have a file called `hello.mod` in your current directory which contains:

```
MODULE hello;

FROM StrIO IMPORT WriteString, WriteLn;

BEGIN
  WriteString ('hello world') ; WriteLn
END hello.
```

You can compile and link it by: `gm2 -g hello.mod`. The result will be an `a.out` file created in your directory.

You can split this command into two steps if you prefer. The compile step can be achieved by: `gm2 -g -c -fscaffold-main hello.mod` and the link via: `gm2 -g hello.o`.

2.2 Compiler options

This section describes the compiler options specific to GNU Modula-2 for generic flags details See Section “Invoking GCC” in `gcc`.

For any given input file, the file name suffix determines what kind of compilation is done. The following kinds of input file names are supported:

- `file.mod` Modula-2 implementation or program source files. See the `-fmod=` option if you wish to compile a project which uses a different source file extension.
- `file.def` Modula-2 definition module source files. Definition modules are not compiled separately, in GNU Modula-2 definition modules are parsed as required when program or implementation modules are compiled. See the `-fdef=` option if you wish to compile a project which uses a different source file extension.

To see all the compile actions taken by `gm2` users can also add the `-v` flag at the command line, for example:

`gm2 -v -g -I_ hello.mod`

This displays the sub processes initiated by `gm2` which can be useful when trouble shooting.
You can specify more than one input file on the `gm2` command line,

- `g` create debugging information so that debuggers such as `gdb` can inspect and control executable.

- `I` used to specify the search path for definition and implementation modules. An example is: `gm2 -g -c -I:../../libs foo.mod`. If this option is not specified then the default path is added which consists of the current directory followed by the appropriate language dialect library directories.

- `fauto-init` turns on auto initialization of pointers to NIL. Whenever a block is created all pointers declared within this scope will have their addresses assigned to NIL.

- `fbounds` turns on run time subrange, array index and indirection via NIL pointer checking.

- `fcase` turns on compile time checking to check whether a `CASE` statement requires an `ELSE` clause when `on` was not specified.

- `fcpp` preprocess the source with `cpp -lang-asm -traditional-cpp` For further details about these options See Section “Invocation” in `cpp`. If `fcpp` is supplied then all definition modules and implementation modules which are parsed will be prepossessed by `cpp`.

- `fdebug-builtins` call a real function, rather than the builtin equivalent. This can be useful for debugging parameter values to a builtin function as it allows users to single step code into an intrinsic function.

- `fdef=` recognize the specified suffix as a definition module filename. The default implementation and module filename suffix is `.def`. If this option is used GNU Modula-2 will still fall back to this default if a requested definition module is not found.

- `fdump-system-exports` display all inbuilt system items. This is an internal command line option.

- `fexceptions` turn on exception handling code. By default this option is on. Exception handling can be disabled by `fno-exceptions` and no references are made to the run time exception libraries.

- `fextended-opaque` allows opaque types to be implemented as any type. This is a GNU Modula-2 extension and it requires that the implementation module defining the opaque type is available so that it can be resolved when compiling the module which imports the opaque type.

- `ffloatvalue` turns on run time checking to check whether a floating point number is about to exceed range.
-fgen-module-list=filename
attempt to find all modules when linking and generate a module list. If the filename is ‘-’ then the contents are not written and only used to force the linking of all module ctors. This option cannot be used if ‘-fuse-list’ is enabled.

-findex
generate code to check whether array index values are out of bounds. Array index checking can be disabled via ‘-fno-index’.

-fiso
turn on ISO standard features. Currently this enables the ISO SYSTEM module and alters the default library search path so that the ISO libraries are searched before the PIM libraries. It also effects the behavior of DIV and MOD operators. See Section “Dialect” in gm2.

-flibs= modifies the default library search path. The libraries supplied are: m2pim, m2iso, m2min, m2log and m2cor. These map onto the Programming in Modula-2 base libraries, ISO standard libraries, minimal library support, Logitech compatible library and Programming in Modula-2 with coroutines. Multiple libraries can be specified and are comma separated with precedence going to the first in the list. It is not necessary to use -flibs=m2pim or -flibs=m2iso if you also specify -fpim, -fpim2, -fpim3, -fpim4 or -fiso. Unless you are using -flibs=m2min you should include m2pim as the they provide the base modules which all other dialects utilize. The option ‘-fno-libs=-’ disables the ‘gm2’ driver from modifying the search and library paths.

-static-libgm2
On systems that provide the m2 runtimes as both shared and static libraries, this option forces the use of the static version.

-fm2-g
improve the debugging experience for new programmers at the expense of generating nop instructions if necessary to ensure single stepping precision over all code related keywords. An example of this is in termination of a list of nested IF statements where multiple END keywords are mapped onto a sequence of nop instructions.

-fm2-lower-case
render keywords in error messages using lower case.

-fm2-pathname=
specify the module mangled prefix name for all modules in the following include paths.

-fm2-pathnameI
for internal use only: used by the driver to copy the user facing -I option.

-fm2-plugin
insert plugin to identify run time errors at compile time (default on).

-fm2-prefix=
specify the module mangled prefix name. All exported symbols from a definition module will have the prefix name.
-fm2-statistics
 generates quadruple information: number of quadruples generated, number of quadruples remaining after optimization and number of source lines compiled.

-fm2-strict-type
 experimental flag to turn on the new strict type checker.

-fm2-whole-program
 compile all implementation modules and program module at once. Notice that you need to take care if you are compiling different dialect modules (particularly with the negative operands to modulus). But this option, when coupled together with -O3, can deliver huge performance improvements.

-fmod=
 recognize the specified suffix as implementation and module filenames. The default implementation and module filename suffix is .mod. If this option is used GNU Modula-2 will still fall back to this default if it needs to read an implementation module and the specified suffixed filename does not exist.

-fnil
 generate code to detect accessing data through a NIL value pointer. Dereferencing checking through a NIL pointer can be disabled by ‘-fno-nil’.

-fpim
 turn on PIM standard features. Currently this enables the PIM SYSTEM module and determines which identifiers are pervasive (declared in the base module). If no other ‘-fpim[234]’ switch is used then division and modulus operators behave as defined in PIM4. See Section “Dialect” in gm2.

-fpim2
 turn on PIM-2 standard features. Currently this removes SIZE from being a pervasive identifier (declared in the base module). It places SIZE in the SYSTEM module. It also effects the behavior of DIV and MOD operators. See Section “Dialect” in gm2.

-fpim3
 turn on PIM-3 standard features. Currently this only effects the behavior of DIV and MOD operators. See Section “Dialect” in gm2.

-fpim4
 turn on PIM-4 standard features. Currently this only effects the behavior of DIV and MOD operators. See Section “Dialect” in gm2.

-fpositive-mod-floor-div
 forces the DIV and MOD operators to behave as defined by PIM4. All modulus results are positive and the results from the division are rounded to the floor. See Section “Dialect” in gm2.

-fpthread
 link against the pthread library. By default this option is on. It can be disabled by ‘-fno-pthread’. GNU Modula-2 uses the GCC pthread libraries to implement coroutines (see the SYSTEM implementation module).

-frange
 generate code to check the assignment range, return value range set range and constructor range. Range checking can be disabled via ‘-fno-range’.

-freturn
 generate code to check that functions always exit with a RETURN and do not fall out at the end. Return checking can be disabled via ‘-fno-return’.
-fruntime-modules=
 specify, using a comma separated list, the run time modules and their order. These modules will initialized first before any other modules in the application dependency. By default the run time modules list is set to m2iso:RTentity,m2iso:Storage,m2iso:SYSTEM, m2iso:M2RTS,m2iso:RTExceptions,m2iso:IOLink. Note that these modules will only be linked into your executable if they are required. Adding a long list of dependent modules will not effect the size of the executable it merely states the initialization order should they be required.

-fscaffold-dynamic
 the option ensures that ‘gm2’ will generate a dynamic scaffold infrastructure when compiling implementation and program modules. By default this option is on. Use ‘-fno-scaffold-dynamic’ to turn it off or select ‘-fno-scaffold-static’.

-fscaffold-c
 generate a C source scaffold for the current module being compiled.

-fscaffold-c++
 generate a C++ source scaffold for the current module being compiled.

-fscaffold-main
 force the generation of the ‘main’ function. This is not necessary if the ‘-c’ is omitted.

-fscaffold-static
 the option ensures that ‘gm2’ will generate a static scaffold within the program module. The static scaffold consists of sequences of calls to all dependent module initialization and finalization procedures. The static scaffold is useful for debugging and single stepping the initialization blocks of implementation modules.

-fshared
 generate a shared library from the module.

-fsoft-check-all
 turns on all run time checks. This is the same as invoking GNU Modula-2 using the command options -fnil -frange -findex -fwholevalue -fwholediv -fcase -freturn.

-fsources
 displays the path to the source of each module. This option can be used at compile time to check the correct definition module is being used.

-fswig
 generate a swig interface file.

-funbounded-by-reference
 enable optimization of unbounded parameters by attempting to pass non VAR unbounded parameters by reference. This optimization avoids the implicit copy inside the callee procedure. GNU Modula-2 will only allow unbounded parameters to be passed by reference if, inside the callee procedure, they are not written to, no address is calculated on the array and it is not passed as a VAR
parameter. Note that it is possible to write code to break this optimization, therefore this option should be used carefully. For example it would be possible to take the address of an array, pass the address and the array to a procedure, read from the array in the procedure and write to the location using the address parameter. Due to the dangerous nature of this option it is not enabled when the ‘-O’ option is specified.

```
-fuse-list=filename
```
if ‘-fscaffold-static’ is enabled then use the file `filename` for the initialization order of modules. Whereas if ‘-fscaffold-dynamic’ is enabled then use this file to force linking of all module ctors. This option cannot be used if ‘-fgen-module-list=’ is enabled.

```
-fwholediv
```
generate code to detect whole number division by zero or modulus by zero.

```
-fwholevalue
```
generate code to detect whole number overflow and underflow.

```
-Wcase-enum
```
generate a warning if a CASE statement selects on an enumerated type expression and the statement is missing one or more CASE labels. No warning is issued if the CASE statement has a default ELSE clause. The option ‘-Wall’ will turn on this flag.

```
-Wuninit-variable-checking
```
issue a warning if a variable is used before it is initialized. The checking only occurs in the first basic block in each procedure. It does not check parameters, array types or set types.

```
-Wuninit-variable-checking=all,known,cond
```
issue a warning if a variable is used before it is initialized. The checking will only occur in the first basic block in each procedure if ‘known’ is specified. If ‘cond’ or ‘all’ is specified then checking continues into conditional branches of the flow graph. All checking will stop when a procedure call is invoked or the top of a loop is encountered. The option ‘-Wall’ will turn on this flag with ‘-Wuninit-variable-checking=known’. The ‘-Wuninit-variable-checking=all’ will increase compile time.

This section describes the linking related options. There are three linking strategies available which are dynamic scaffold, static scaffold and user defined. The dynamic scaffold is enabled by default and each module will register itself to the run time ‘M2RTS’ via a constructor. The static scaffold mechanism will invoke each module’s ‘_init’ and ‘_finish’ function in turn via a sequence of calls from within ‘main’. Lastly the user defined strategy can be implemented by turning off the dynamic and static options via ‘-fno-scaffold-dynamic’ and ‘-fno-scaffold-static’.

In the simple test below:

```
$ gm2 hello.mod
```
the driver will add the options ‘-fscaffold-dynamic’ and ‘-fgen-module-list’ which generate a list of application modules and also creates the ‘main’ function with calls to ‘M2RTS’. It can be useful to add the option ‘-fsources’ which displays the source files as they are parsed and summarizes whether the source file is required for compilation or linking.

If you wish to split the above command line into a compile and link then you could use these steps:

```bash
$ gm2 -c -fscaffold-main hello.mod
$ gm2 hello.o
```

The ‘-fscaffold-main’ informs the compiler to generate the ‘main’ function and scaffold. You can enable the environment variable ‘GCC_M2LINK_RTFLAG’ to trace the construction and destruction of the application. The values for ‘GCC_M2LINK_RTFLAG’ are shown in the table below:

<table>
<thead>
<tr>
<th>value</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>turn on all flags below</td>
</tr>
<tr>
<td>module</td>
<td>trace modules as they register themselves</td>
</tr>
<tr>
<td>hex</td>
<td>display the hex address of the init/fini functions</td>
</tr>
<tr>
<td>warning</td>
<td>show any warnings</td>
</tr>
<tr>
<td>pre</td>
<td>generate module list prior to dependency resolution</td>
</tr>
<tr>
<td>dep</td>
<td>trace module dependency resolution</td>
</tr>
<tr>
<td>post</td>
<td>generate module list after dependency resolution</td>
</tr>
<tr>
<td>force</td>
<td>generate a module list after dependency and forced ordering is complete</td>
</tr>
</tbody>
</table>

The values can be combined using a comma separated list.

One of the advantages of the dynamic scaffold is that the driver behaves in a similar way to the other front end drivers. For example consider a small project consisting of 4 definition implementation modules (‘a.def’, ‘a.mod’, ‘b.def’, ‘b.mod’, ‘c.def’, ‘c.mod’, ‘d.def’, ‘d.mod’) and a program module ‘program.mod’.

To link this project we could:

```bash
$ gm2 -g -c a.mod
$ gm2 -g -c b.mod
$ gm2 -g -c c.mod
$ gm2 -g -c d.mod
$ gm2 -g program.mod a.o b.o c.o d.o
```

The module initialization sequence is defined by the ISO standard to follow the import graph traversal. The initialization order is the order in which the corresponding separate modules finish the processing of their import lists.

However, if required, you can override this using ‘-fruntime-modules=a,b,c,d’ for example which forces the initialization sequence to ‘a’, ‘b’, ‘c’ and ‘d’.

2.3 Elementary data types

This section describes the elementary data types supported by GNU Modula-2. It also describes the relationship between these data types and the equivalent C data types.
Chapter 2: Using GNU Modula-2

The following data types are supported: INTEGER, LONGINT, SHORTINT, CARDINAL, LONGCARD, SHORTCARD, BOOLEAN, REAL, LONGREAL, SHORTREAL, COMPLEX, LONGCOMPLEX, SHORTCOMPLEX and CHAR.

An equivalence table is given below:

<table>
<thead>
<tr>
<th>GNU Modula-2</th>
<th>GNU C</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGER</td>
<td>int</td>
</tr>
<tr>
<td>LONGINT</td>
<td>long long int</td>
</tr>
<tr>
<td>SHORTINT</td>
<td>short int</td>
</tr>
<tr>
<td>CARDINAL</td>
<td>unsigned int</td>
</tr>
<tr>
<td>LONGCARD</td>
<td>long long unsigned int</td>
</tr>
<tr>
<td>SHORTCARD</td>
<td>short unsigned int</td>
</tr>
<tr>
<td>BOOLEAN</td>
<td>bool</td>
</tr>
<tr>
<td>REAL</td>
<td>double</td>
</tr>
<tr>
<td>LONGREAL</td>
<td>long double</td>
</tr>
<tr>
<td>SHORTREAL</td>
<td>float</td>
</tr>
<tr>
<td>CHAR</td>
<td>char</td>
</tr>
<tr>
<td>SHORTCOMPLEX</td>
<td>complex float</td>
</tr>
<tr>
<td>COMPLEX</td>
<td>complex double</td>
</tr>
<tr>
<td>LONGCOMPLEX</td>
<td>complex long double</td>
</tr>
</tbody>
</table>

Note that GNU Modula-2 also supports fixed sized data types which are exported from the SYSTEM module. See Section “The PIM system module” in gm2. See Section “The ISO system module” in gm2.

2.4 Permanently accessible base procedures.

This section describes the procedures and functions which are always visible.

2.4.1 Standard procedures and functions common to PIM and ISO

The following procedures are implemented and conform with Programming in Modula-2 and ISO Modula-2: NEW, DISPOSE, INC, DEC, INCL, EXCL and HALT. The standard functions are: ABS, CAP, CHR, FLOAT, HIGH, LFLOAT, LTRUNC, MIN, MAX, ODD, SFLOAT, STRUNC, TRUNC and VAL. All these functions and procedures (except HALT, NEW, DISPOSE and, under non constant conditions, LENGTH) generate in-line code for efficiency.

\[
\text{PROCEDURE ABS (i: <any signed type>)} : <any signed type> ;
\]

\[
\text{PROCEDURE CAP (ch: <any char>)} : <any char> ;
\]

(*
 ABS - returns the positive value of i.
*)

(*
 CAP - returns the capital of character ch providing
 ch lies within the range 'a'..'z'. Otherwise ch
*)
PROCEDURE CAP (ch: CHAR) : CHAR ;

(*
CHR - converts a value of a <whole number type> into a CHAR.
CHR(x) is shorthand for VAL(CHAR, x).
*)
PROCEDURE CHR (x: <whole number type>) : CHAR ;

(*
DISPOSE - the procedure DISPOSE is replaced by:
 DEALLOCATE(p, TSIZE(p^)) ;
The user is expected to import the procedure DEALLOCATE
 (normally found in the module, Storage.)
In: a variable p: of any pointer type which has been
 initialized by a call to NEW.
Out: the area of memory
 holding p^ is returned to the system.
 Note that the underlying procedure DEALLOCATE
 procedure in module Storage will assign p to NIL.
*)
PROCEDURE DISPOSE (VAR p:<any pointer type>) ;

(*
DEC - can either take one or two parameters. If supplied
 with one parameter then on the completion of the call to
 DEC, v will have its predecessor value. If two
 parameters are supplied then the value v will have its
 n'th predecessor. For these reasons the value of n
 must be >=0.
*)
PROCEDURE DEC (VAR v: <any base type>; [n: <any base type> = 1]) ;

(*
EXCL - excludes bit element e from a set type s.
*)
PROCEDURE EXCL (VAR s: <any set type>; e: <element of set type s>) ;
Chapter 2: Using GNU Modula-2

(*
 FLOAT - will return a REAL number whose value is the same as o.
*)

PROCEDURE FLOAT (o: <any whole number type>) : REAL ;

(*
 FLOATS - will return a SHORTREAL number whose value is the same as o.
*)

PROCEDURE FLOATS (o: <any whole number type>) : REAL ;

(*
 FLOATL - will return a LONGREAL number whose value is the same as o.
*)

PROCEDURE FLOATL (o: <any whole number type>) : REAL ;

(*
 HALT - will call the HALT procedure inside the module M2RTS.
 Users can replace M2RTS.
*)

PROCEDURE HALT ;

(*
 HIGH - returns the last accessible index of an parameter declared as
 ARRAY OF CHAR. Thus

 PROCEDURE foo (a: ARRAY OF CHAR) ;
 VAR
 c: CARDINAL ;
 BEGIN
 c := HIGH(a)
 END foo ;

 BEGIN
 foo('hello')
 END

 will cause the local variable c to contain the value 5

*)

PROCEDURE HIGH (a: ARRAY OF CHAR) : CARDINAL ;
("
INC - can either take one or two parameters. If supplied
with one parameter then on the completion of the call to
INC, v will have its successor value. If two
parameters are supplied then the value v will have its
n'th successor. For these reasons the value of n
must be >=0.
"
PROCEDURE INC (VAR v: <any base type>; [n: <any base type> = 1]) ;

("*
INCL - includes bit element e to a set type s.
*)
PROCEDURE INCL (VAR s: <any set type>; e: <element of set type s>) ;

("*
LFLOAT - will return a LONGREAL number whose value is the same as o.
*)
PROCEDURE LFLOAT (o: <any whole number type>) : LONGREAL ;

("*
LTRUNC - will return a LONG<type> number whose value is the same as o. PIM2, PIM3 and ISO Modula-2 will return a LONGCARD whereas PIM4 returns LONGINT.
*)
PROCEDURE LTRUNC (o: <any floating point type>) : LONG<type> ;

("*
MIN - returns the lowest legal value of an ordinal type.
*)
PROCEDURE MIN (t: <ordinal type>) : <ordinal type> ;

("*
MAX - returns the largest legal value of an ordinal type.
*)
PROCEDURE MAX (t: <ordinal type>) : <ordinal type> ;
"
(*)

NEW - the procedure NEW is replaced by:
ALLOCATE(p, TSIZE(p^)) ;
The user is expected to import the procedure ALLOCATE
(normally found in the module, Storage.)

In: a variable p: of any pointer type.
Out: variable p is set to some allocated memory
 which is large enough to hold all the contents of p^.
*)

PROCEDURE NEW (VAR p:<any pointer type>) ;

(*

ODD - returns TRUE if the value is not divisible by 2.
*)

PROCEDURE ODD (x: <whole number type>) : BOOLEAN ;

(*

SFLOAT - will return a SHORTREAL number whose value is the same
 as o.
*)

PROCEDURE SFLOAT (o: <any whole number type>) : SHORTREAL ;

(*

STRUNC - will return a SHORT<TYPE> number whose value is the same
 as o. PIM2, PIM3 and ISO Modula-2 will return a
 SHORTCARD whereas PIM4 returns SHORTINT.
*)

PROCEDURE STRUNC (o: <any floating point type>) : SHORT<TYPE> ;

(*

TRUNC - will return a <TYPE> number whose value is the same as o.
 PIM2, PIM3 and ISO Modula-2 will return a CARDINAL
 whereas PIM4 returns INTEGER.
*)

PROCEDURE TRUNC (o: <any floating point type>) : <TYPE> ;

(*

TRUNCS - will return a <TYPE> number whose value is the same
 as o. PIM2, PIM3 and ISO Modula-2 will return a
SHORTCARD whereas PIM4 returns SHORTINT.

*)

PROCEDURE TRUNCS (o: <any floating point type>) : <type> ;

(*
 TRUNCL - will return a <type> number whose value is the same
 as o. PIM2, PIM3 and ISO Modula-2 will return a
 LONGCARD whereas PIM4 returns LONGINT.
*)

PROCEDURE TRUNCL (o: <any floating point type>) : <type> ;

(*
 VAL - converts data i of <any simple data type 2> to
 <any simple data type 1> and returns this value.
 No range checking is performed during this conversion.
*)

PROCEDURE VAL (<any simple data type 1>,
 i: <any simple data type 2>) : <any simple data type 1> ;

2.4.2 ISO specific standard procedures and functions
The standard function LENGTH is specific to ISO Modula-2 and is defined as:

(*
 IM - returns the imaginary component of a complex type.
 The return value will the same type as the imaginary field
 within the complex type.
*)

PROCEDURE IM (c: <any complex type>) : <floating point type> ;

(*
 INT - returns an INTEGER value which has the same value as v.
 This function is equivalent to: VAL(INTEGER, v).
*)

PROCEDURE INT (v: <any ordinal type>) : INTEGER ;

(*
 LENGTH - returns the length of string a.
*)

PROCEDURE LENGTH (a: ARRAY OF CHAR) : CARDINAL ;
This function is evaluated at compile time, providing that string a is a constant. If a cannot be evaluated then a call is made to M2RTS.Length.

(*
 ODD - returns a BOOLEAN indicating whether the whole number value, v, is odd.
*)

PROCEDURE ODD (v: <any whole number type>) : BOOLEAN ;

(*
 RE - returns the real component of a complex type.
 The return value will the same type as the real field within the complex type.
*)

PROCEDURE RE (c: <any complex type>) : <floating point type> ;

2.5 Behavior of the high procedure function

This section describes the behavior of the standard procedure function HIGH and it includes a table of parameters with the expected return result. The standard procedure function will return the last accessible indice of an ARRAY. If the parameter to HIGH is a static array then the result will be a CARDINAL value matching the upper bound in the ARRAY declaration.

The section also describes the behavior of a string literal actual parameter and how it relates to HIGH. The PIM2, PIM3, PIM4 and ISO standard is silent on the issue of whether a nul is present in an ARRAY OF CHAR actual parameter.

If the first parameter to HIGH is an unbounded ARRAY the return value from HIGH will be the last accessible element in the array. If a constant string literal is passed as an actual parameter then it will be nul terminated. The table and example code below describe the effect of passing an actual parameter and the expected HIGH value.

MODULE example1 ;

PROCEDURE test (a: ARRAY OF CHAR) ;
VAR
 x: CARDINAL ;
BEGIN
 x := HIGH (a) ;
 ...
END test ;

BEGIN
 test ('') ;
test ('1') ;
test ('12') ;
```
test ('123')
END example1.

<table>
<thead>
<tr>
<th>Actual parameter</th>
<th>HIGH (a)</th>
<th>a[HIGH (a)] = nul</th>
</tr>
</thead>
<tbody>
<tr>
<td>''</td>
<td>0</td>
<td>TRUE</td>
</tr>
<tr>
<td>'1'</td>
<td>1</td>
<td>TRUE</td>
</tr>
<tr>
<td>'12'</td>
<td>2</td>
<td>TRUE</td>
</tr>
<tr>
<td>'123'</td>
<td>3</td>
<td>TRUE</td>
</tr>
</tbody>
</table>

A constant string literal will be passed to an ARRAY OF CHAR with an appended null CHAR. Thus if the constant string literal '' is passed as an actual parameter (in example1) then the result from HIGH(a) will be 0.

MODULE example2 ;

PROCEDURE test (a: ARRAY OF CHAR) ;
VAR
  x: CARDINAL ;
BEGIN
  x := HIGH (a) ;
  ...
END test ;

VAR
  str0: ARRAY [0..0] OF CHAR ;
  str1: ARRAY [0..1] OF CHAR ;
  str2: ARRAY [0..2] OF CHAR ;
  str3: ARRAY [0..3] OF CHAR ;
BEGIN
  str0 := 'a' ; (* No room for the null terminator. *)
  test (str0) ;
  str1 := 'ab' ; (* No room for the null terminator. *)
  test (str1) ;
  str2 := 'ab' ; (* Terminated with a null. *)
  test (str2) ;
  str2 := 'abc' ; (* Terminated with a null. *)
  test (str3) ;
END example2.

<table>
<thead>
<tr>
<th>Actual parameter</th>
<th>HIGH (a)</th>
<th>a[HIGH (a)] = nul</th>
</tr>
</thead>
<tbody>
<tr>
<td>str0</td>
<td>0</td>
<td>FALSE</td>
</tr>
<tr>
<td>str1</td>
<td>1</td>
<td>FALSE</td>
</tr>
<tr>
<td>str2</td>
<td>2</td>
<td>TRUE</td>
</tr>
<tr>
<td>str3</td>
<td>3</td>
<td>TRUE</td>
</tr>
</tbody>
</table>


2.6 GNU Modula-2 supported dialects

This section describes the dialects understood by GNU Modula-2. It also describes the differences between the dialects and any command line switches which determine dialect behaviour.


The command line switches ‘-fpim2’, ‘-fpim3’, ‘-fpim4’ and ‘-fiso’ can be used to force mutually exclusive features. However by default the compiler will not aggressively fail if a non mutually exclusive feature is used from another dialect. For example it is possible to specify ‘-fpim2’ and still utilize ‘DEFINITION ‘MODULES’ which have no export list.

Some dialect differences will force a compile time error, for example in PIM2 the user must IMPORT SIZE from the module SYSTEM, whereas in PIM3 and PIM4 SIZE is a pervasive function. Thus compiling PIM4 source code with the ‘-fpim2’ switch will cause a compile time error. This can be fixed quickly with an additional IMPORT or alternatively by compiling with the ‘-fpim4’ switch.

However there are some very important differences between the dialects which are mutually exclusive and therefore it is vital that users choose the dialects with care when these language features are used.

2.6.1 Integer division, remainder and modulus

The most dangerous set of mutually exclusive features found in the four dialects supported by GNU Modula-2 are the INTEGER division, remainder and modulus arithmetic operators. It is important to note that the same source code can be compiled to give different run time results depending upon these switches! The reference manual for the various dialects of Modula-2 are quite clear about this behavior and sadly there are three distinct definitions.

The table below illustrates the problem when a negative operand is used.

<table>
<thead>
<tr>
<th>lval</th>
<th>rval</th>
<th>Pim2/3 DIV</th>
<th>Pim4 DIV</th>
<th>ISO DIV</th>
<th>ISO MOD</th>
<th>ISO /</th>
<th>ISO REM</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>-31</td>
<td>10</td>
<td>-3</td>
<td>-1</td>
<td>-4</td>
<td>9</td>
<td>-4</td>
<td>-3</td>
</tr>
<tr>
<td>31</td>
<td>-10</td>
<td>-3</td>
<td>1</td>
<td>-3</td>
<td>1</td>
<td>Exception</td>
<td>1</td>
</tr>
<tr>
<td>-31</td>
<td>-10</td>
<td>3</td>
<td>-1</td>
<td>4</td>
<td>9</td>
<td>Exception</td>
<td>-1</td>
</tr>
</tbody>
</table>

See also P24 of PIM2, P27 of PIM3, P29 of PIM4 and P201 of the ISO Standard. At present all dialect division, remainder and modulus are implemented as above, apart from the exception calling in the ISO dialect. Instead of exception handling the results are the same as the PIM4 dialect. This is a temporary implementation situation.
2.7 Exception implementation

This section describes how exceptions are implemented in GNU Modula-2 and how command line switches affect their behavior. The option ‘-fsoft-check-all’ enables all software checking of nil dereferences, division by zero etc. Additional code is produced to check these conditions and exception handlers are invoked if the conditions prevail.

Without ‘-fsoft-check-all’ these exceptions will be caught by hardware (assuming the hardware support exists) and a signal handler is invoked. The signal handler will in turn THROW an exception which will be caught by the appropriate Modula-2 handler. However the action of throwing an exception from within a signal handler is implementation defined (according to the C++ documentation). For example on the x86_64 architecture this works whereas on the i686 architecture it does not. Therefore to ensure portability it is recommended to use ‘-fsoft-check-all’.

2.8 How to detect run time problems at compile time

Consider the following program:

```mod
MODULE assignvalue ; (*!m2iso+gm2*)

PROCEDURE bad () : INTEGER ;
VAR
 i: INTEGER ;
BEGIN
 i := -1 ;
 RETURN i
END bad ;

VAR
 foo: CARDINAL ;
BEGIN
 (* The m2rte plugin will detect this as an error, post optimization. *)
 foo := bad ()
END assignvalue.
```

here we see that the programmer has overlooked that the return value from ‘bad’ will cause an overflow to ‘foo’. If we compile the code with the following options:

```bash
$ gm2 -g -fsoft-check-all -O2 -c assignvalue.mod
assignvalue.mod:16:0:inevitable that this error will occur at run time,
assignment will result in an overflow
```

The gm2 semantic plugin is automatically run and will generate a warning message for every exception call which is known as reachable. It is highly advised to run the optimizer (‘-02’ or ‘-03’) with ‘-fsoft-check-all’ so that the compiler is able to run the optimizer and perform variable and flow analysis before the semantic plugin is invoked.

\[2\] ‘-fsoft-check-all’ can be effectively combined with ‘-02’ to semantically analyze source code for possible run time errors at compile time.
The ‘-Wuninit-variable-checking’ can be used to identify uninitialized variables within the first basic block in a procedure. The checking is limited to variables so long as they are not an array or set or a variant record or var parameter.

The following example detects whether a sub component within a record is uninitialized.

```mod
MODULE testlarge2;

TYPE
color = RECORD
 r, g, b: CARDINAL;
END;

pixel = RECORD
 fg, bg: color;
END;

PROCEDURE test;
VAR
 p: pixel;
BEGIN
 p.fg.r := 1;
 p.fg.g := 2;
 p.fg.g := 3; (* Deliberate typo should be p.fg.b. *)
 p.bg := p.fg; (* Accessing an uninitialized field. *)
END test;

BEGIN
 test
END testlarge2.
```

The following example detects if an individual field is uninitialized.

```mod
MODULE testwithnoptr;

TYPE
 Vec = RECORD
 x, y: CARDINAL;
END;

PROCEDURE test;
VAR
 p: Vec;
BEGIN
 WITH p DO
```
x := 1;
x := 2 (* Deliberate typo, user meant y. *)
END;
IF p.y = 2
THEN
END
END test;

BEGIN
test
END testwithnoptr.

The following example detects a record is uninitialized via a pointer variable in a ‘WITH’ block.

$ gm2 -g -c -Wuninit-variable-checking testwithnoptr.mod
testwithnoptr.mod:21:8: warning: In procedure ‘test’: attempting to access expression before it has been initialized
  21 | IF p.y = 2
  | ^~
MODULE testnew6;

FROM Storage IMPORT ALLOCATE;

TYPE
  PtrToVec = POINTER TO RECORD
    x, y: INTEGER;
  END;

PROCEDURE test;
VAR
  p: PtrToVec;
BEGIN
  NEW (p);
  WITH p^ DO
    x := 1;
x := 2 (* Deliberate typo, user meant y. *)
  END;
  IF p^.y = 2
  THEN
  END
END test;

BEGIN
test
END testnew6.

$ gm2 -g -c -Wuninit-variable-checking testnew6.mod
testnew6.mod:19:9: warning: In procedure ‘test’: attempting to access expression before it has been initialized

IF p^.y = 2

2.9 GNU Modula-2 language extensions

This section introduces the GNU Modula-2 language extensions. The GNU Modula-2 compiler allows abstract data types to be any type, not just restricted to a pointer type providing the ‘-fextended-opaque’ option is supplied See Section “Compiler options” in gm2.

Declarations can be made in any order, whether they are types, constants, procedures, nested modules or variables.

GNU Modula-2 also allows programmers to interface to C and assembly language.

GNU Modula-2 provides support for the special tokens __LINE__, __FILE__, __FUNCTION__ and __DATE__. Support for these tokens will occur even if the ‘-fcpp’ option is not supplied. A table of these identifiers and their data type and values is given below:

<table>
<thead>
<tr>
<th>Scope</th>
<th>GNU Modula-2 token</th>
<th>Data type and example value</th>
</tr>
</thead>
<tbody>
<tr>
<td>anywhere</td>
<td><strong>LINE</strong></td>
<td>Constant Literal compatible with CARDINAL, INTEGER and WORD.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example 1234</td>
</tr>
<tr>
<td>anywhere</td>
<td><strong>FILE</strong></td>
<td>Constant string compatible with parameter ARRAY OF CHAR or an</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARRAY whose SIZE is &gt;= string length. Example</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&quot;hello.mod&quot;</td>
</tr>
<tr>
<td>procedure</td>
<td><strong>FUNCTION</strong></td>
<td>Constant string compatible with parameter ARRAY OF CHAR or an</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARRAY whose SIZE is &gt;= string length. Example</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&quot;calc&quot;</td>
</tr>
<tr>
<td>module</td>
<td><strong>FUNCTION</strong></td>
<td>Example</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&quot;module hello initialization&quot;</td>
</tr>
<tr>
<td>anywhere</td>
<td><strong>DATE</strong></td>
<td>Constant string compatible with parameter ARRAY OF CHAR or an</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARRAY whose SIZE is &gt;= string length. Example</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&quot;Thu Apr 29 10:07:16 BST 2004&quot;</td>
</tr>
<tr>
<td>anywhere</td>
<td><strong>COLUMN</strong></td>
<td>Gives a constant literal number determining the left hand column</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
where the first _ appears in __COLUMN__. The left most column is 1.

The preprocessor ‘cpp’ can be invoked via the ‘-fcpp’ command line option. This in turn invokes ‘cpp’ with the following arguments ‘-traditional -lang-asm’. These options preserve comments and all quotations. ‘gm2’ treats a ‘#’ character in the first column as a preprocessor directive unless ‘-fno-cpp’ is supplied.

For example here is a module which calls FatalError via the macro ERROR.

```
MODULE cpp;

FROM SYSTEM IMPORT ADR, SIZE;
FROM libc IMPORT exit, printf, malloc;

PROCEDURE FatalError(a, file: ARRAY OF CHAR;
 line: CARDINAL;
 func: ARRAY OF CHAR);
BEGIN
 printf("%s:%d:fatal error, %s, in %s\n", ADR(file), line, ADR(a), ADR(func));
 exit(1)
END FatalError;

#define ERROR(X) FatalError(X, __FILE__, __LINE__, __FUNCTION__)

VAR
 pc: POINTER TO CARDINAL;
BEGIN
 pc := malloc(SIZE(CARDINAL));
 IF pc = NIL THEN
 ERROR('out of memory')
 END
END cpp.
```

Another use for the C preprocessor in Modula-2 might be to turn on debugging code. For example the library module FormatStrings.mod uses procedures from DynamicStrings.mod and to track down memory leaks it was useful to track the source file and line where each string was created. Here is a section of FormatStrings.mod which shows how the debugging code was enabled and disabled by adding -fcpp to the command line.

```
FROM DynamicStrings IMPORT String, InitString, InitStringChar, Mark, ConCat, Slice, Index, char, Assign, Length, Mult, Dup, ConCatChar, PushAllocation, PopAllocationExemption, InitStringDB, InitStringCharStarDB, InitStringCharDB, MultDB, DupDB, SliceDB;
```
(*
#define InitString(X) InitStringDB(X, __FILE__, __LINE__)
#define InitStringCharStar(X) InitStringCharStarDB(X, __FILE__, __LINE__)
#define InitStringChar(X) InitStringCharDB(X, __FILE__, __LINE__)
#define Mult(X,Y) MultDB(X, Y, __FILE__, __LINE__)
#define Dup(X) DupDB(X, __FILE__, __LINE__)
#define Slice(X,Y,Z) SliceDB(X, Y, Z, __FILE__, __LINE__)
*)

PROCEDURE doDSdbEnter ;
BEGIN
  PushAllocation
END doDSdbEnter ;

PROCEDURE doDSdbExit (s: String) ;
BEGIN
  s := PopAllocationExemption (TRUE, s)
END doDSdbExit ;

PROCEDURE DSdbEnter ;
BEGIN
END DSdbEnter ;

PROCEDURE DSdbExit (s: String) ;
BEGIN
END DSdbExit ;

(*
#define DBsbEnter doDBsbEnter
#define DBsbExit doDBsbExit
*)

PROCEDURE Sprintf1 (s: String; w: ARRAY OF BYTE) : String ;
BEGIN
  DSdbEnter ;
  s := FormatString (HandleEscape (s), w) ;
  DSdbExit (s) ;
  RETURN s
END Sprintf1 ;

It is worth noting that the overhead of this code once -fcpp is not present and -O2 is used will be zero since the local empty procedures DSdbEnter and DSdbExit will be thrown away by the optimization passes of the GCC backend.
2.9.1 Optional procedure parameter

GNU Modula-2 allows the last parameter to a procedure or function parameter to be optional. For example in the ISO library COROUTINES.def the procedure NEWCOROUTINE is defined as having an optional fifth argument (initProtection) which, if absent, is automatically replaced by NIL.

PROCEDURE NEWCOROUTINE (procBody: PROC; workspace: SYSTEM.ADDRESS; size: CARDINAL; VAR cr: COROUTINE; [initProtection: PROTECTION = NIL]);

(* Creates a new coroutine whose body is given by procBody, and returns the identity of the coroutine in cr. workspace is a pointer to the work space allocated to the coroutine; size specifies the size of this workspace in terms of SYSTEM.LOC.

The optional fifth argument may contain a single parameter which specifies the initial protection level of the coroutine. *)

The implementation module COROUTINES.mod implements this procedure using the following syntax:

PROCEDURE NEWCOROUTINE (procBody: PROC; workspace: SYSTEM.ADDRESS; size: CARDINAL; VAR cr: COROUTINE; [initProtection: PROTECTION]);

BEGIN

END NEWCOROUTINE ;

Note that it is illegal for this declaration to contain an initializer value for initProtection. However it is necessary to surround this parameter with the brackets [ and ]. This serves to remind the programmer that the last parameter was declared as optional in the definition module.

Local procedures can be declared to have an optional final parameter in which case the initializer is mandatory in the implementation or program module.

GNU Modula-2 also provides additional fixed sized data types which are all exported from the SYSTEM module. See Section “The PIM system module” in gm2. See Section “The ISO system module” in gm2.

2.10 Type compatibility

This section discuss the issues surrounding assignment, expression and parameter compatibility, their effect of the additional fixed sized datatypes and also their effect of run time checking. The data types supported by the compiler are:

<table>
<thead>
<tr>
<th>GNU Modula-2</th>
<th>scope</th>
<th>switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGER</td>
<td>pervasive</td>
<td></td>
</tr>
<tr>
<td>LONGINT</td>
<td>pervasive</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>SHORTINT</td>
<td>pervasive</td>
<td></td>
</tr>
<tr>
<td>CARDINAL</td>
<td>pervasive</td>
<td></td>
</tr>
<tr>
<td>LONGCARD</td>
<td>pervasive</td>
<td></td>
</tr>
<tr>
<td>SHORTCARD</td>
<td>pervasive</td>
<td></td>
</tr>
<tr>
<td>BOOLEAN</td>
<td>pervasive</td>
<td></td>
</tr>
<tr>
<td>BITSET</td>
<td>pervasive</td>
<td></td>
</tr>
<tr>
<td>REAL</td>
<td>pervasive</td>
<td></td>
</tr>
<tr>
<td>LONGREAL</td>
<td>pervasive</td>
<td></td>
</tr>
<tr>
<td>SHORTREAL</td>
<td>pervasive</td>
<td></td>
</tr>
<tr>
<td>CHAR</td>
<td>pervasive</td>
<td></td>
</tr>
<tr>
<td>SHORTCOMPLEX</td>
<td>pervasive</td>
<td></td>
</tr>
<tr>
<td>COMPLEX</td>
<td>pervasive</td>
<td></td>
</tr>
<tr>
<td>LONGCOMPLEX</td>
<td>pervasive</td>
<td></td>
</tr>
<tr>
<td>LOC</td>
<td>SYSTEM -fiso</td>
<td></td>
</tr>
<tr>
<td>BYTE</td>
<td>SYSTEM</td>
<td></td>
</tr>
<tr>
<td>WORD</td>
<td>SYSTEM</td>
<td></td>
</tr>
<tr>
<td>ADDRESS</td>
<td>SYSTEM</td>
<td></td>
</tr>
</tbody>
</table>

The following extensions are supported for most architectures (please check SYSTEM.def).

<table>
<thead>
<tr>
<th>Type</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGER8</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>INTEGER16</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>INTEGER32</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>INTEGER64</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>CARDINAL8</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>CARDINAL16</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>CARDINAL32</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>CARDINAL64</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>BITSET8</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>BITSET16</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>BITSET32</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>WORD16</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>WORD32</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>WORD64</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>REAL32</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>REAL64</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>REAL96</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>REAL128</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>COMPLEX32</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>COMPLEX64</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>COMPLEX96</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>COMPLEX128</td>
<td>SYSTEM</td>
</tr>
</tbody>
</table>

The Modula-2 language categorizes compatibility between entities of possibly differing types into three sub components: expressions, assignments, and parameters. Parameter
compatibility is further divided into two sections for pass by reference and pass by value compatibility.


2.10.1 Expression compatibility

Modula-2 restricts the types of expressions to the same type. Expression compatibility is a symmetric relation.

For example two sub expressions of INTEGER and CARDINAL are not expression compatible (http://freepages.modula2.org/report4/modula-2.html and ISO Modula-2).

In GNU Modula-2 this rule is also extended across all fixed sized data types (imported from SYSTEM).

2.10.2 Assignment compatibility

This section discusses the assignment issues surrounding assignment compatibility of elementary types (INTEGER, CARDINAL, REAL and CHAR for example). The information here is found in more detail in the Modula-2 ISO standard BS ISO/IEC 10514-1:1996 page 122.

Assignment compatibility exists between the same sized elementary types.

Same type family of different sizes are also compatible as long as the \( \text{MAX}(\text{type}) \) and \( \text{MIN}(\text{type}) \) is known. So for example this includes the INTEGER family, CARDINAL family and the REAL family.

The reason for this is that when the assignment is performed the compiler will check to see that the expression (on the right of the \( := \)) lies within the range of the designator type (on the left hand side of the \( := \)). Thus these ordinal types can be assignment compatible. However it does mean that \text{WORD32} is not compatible with \text{WORD16} as \text{WORD32} does not have a minimum or maximum value and therefore cannot be checked. The compiler does not know which of the two bytes from \text{WORD32} should be copied into \text{WORD16} and which two should be ignored. Currently the types \text{BITSET8}, \text{BITSET16} and \text{BITSET32} are assignment incompatible. However this restriction maybe lifted when further run time checking is achieved.

Modula-2 does allow INTEGER to be assignment compatible with WORD as they are the same size. Likewise GNU Modula-2 allows \text{INTEGER16} to be compatible with \text{WORD16} and the same for the other fixed sized types and their sized equivalent in either \text{WORDn}, \text{BYTE} or \text{LOC} types. However it prohibits assignment between \text{WORD} and \text{WORD32} even though on many systems these sizes will be the same. The reasoning behind this rule is that the extended fixed sized types are meant to be used by applications requiring fixed sized data types and it is more portable to forbid the blurring of the boundaries between fixed sized and machine dependent sized types.

Intermediate code run time checking is always generated by the front end. However this intermediate code is only translated into actual code if the appropriate command line switches are specified. This allows the compiler to perform limited range checking at compile time. In the future it will allow the extensive GCC optimizations to propagate constant values through to the range checks which if they are found to exceed the type range will result in a compile time error message.
2.10.3 Parameter compatibility

Parameter compatibility is divided into two areas, pass by value and pass by reference (VAR). In the case of pass by value the rules are exactly the same as assignment. However in the second case, pass by reference, the actual parameter and formal parameter must be the same size and family. Furthermore INTEGER and CARDINALs are not treated as compatible in the pass by reference case.

The types BYTE, LOC, WORD and WORDn derivatives are assignment and parameter compatible with any data type of the same size.

2.11 Unbounded by reference

This section documents a GNU Modula-2 compiler switch which implements a language optimization surrounding the implementation of unbounded arrays. In GNU Modula-2 the unbounded array is implemented by utilizing an internal structure struct {dataType *address, unsigned int high}. So given the Modula-2 procedure declaration:

```
PROCEDURE foo (VAR a: ARRAY OF dataType) ;
BEGIN
 IF a[2]= (* etc *)
END foo ;
```

it is translated into GCC trees, which can be represented in their C form thus:

```
void foo (struct {dataType *address, unsigned int high} a)
{
 if (a.address[2] == /* etc */
}
```

Whereas if the procedure foo was declared as:

```
PROCEDURE foo (a: ARRAY OF dataType) ;
BEGIN
 IF a[2]= (* etc *)
END foo ;
```

then it is implemented by being translated into the following GCC trees, which can be represented in their C form thus:

```
void foo (struct {dataType *address, unsigned int high} a)
{
 dataType *copyContents = (dataType *)alloca (a.high+1);
 memcpy(copyContents, a.address, a.high+1);
 a.address = copyContents;
 if (a.address[2] == /* etc */
}
```

This implementation works, but it makes a copy of each non VAR unbounded array when a procedure is entered. If the unbounded array is not changed during procedure foo then this implementation will be very inefficient. In effect Modula-2 lacks the REF keyword of Ada. Consequently the programmer maybe tempted to sacrifice semantic clarity for greater efficiency by declaring the parameter using the VAR keyword in place of REF.
The `funbounded-by-reference` switch instructs the compiler to check and see if the programmer is modifying the content of any unbounded array. If it is modified then a copy will be made upon entry into the procedure. Conversely if the content is only read and never modified then this non VAR unbounded array is a candidate for being passed by reference. It is only a candidate as it is still possible that passing this parameter by reference could alter the meaning of the source code. For example consider the following case:

```pascal
PROCEDURE StrConCat (VAR a: ARRAY OF CHAR; b, c: ARRAY OF CHAR) ;
BEGIN
 (* code which performs string a := b + c *)
END StrConCat ;

PROCEDURE foo ;
VAR
 a: ARRAY [0..3] OF CHAR ;
BEGIN
 a := 'q' ;
 StrConCat(a, a, a)
END foo ;
```

In the code above we see that the same parameter, `a`, is being passed three times to `StrConCat`. Clearly even though parameters `b` and `c` are never modified it would be incorrect to implement them as pass by reference. Therefore the compiler checks to see if any non VAR parameter is type compatible with any VAR parameter and if so it generates run time procedure entry checks to determine whether the contents of parameters `b` or `c` matches the contents of `a`. If a match is detected then a copy is made and the address in the unbounded structure is modified.

The compiler will check the address range of each candidate against the address range of any VAR parameter, providing they are type compatible. For example consider:

```pascal
PROCEDURE foo (a: ARRAY OF BYTE; VAR f: REAL) ;
BEGIN
 f := 3.14 ;
 IF a[0]=BYTE(0)
 THEN
 (* etc *)
 END
END foo ;

PROCEDURE bar ;
BEGIN
 r := 2.0 ;
 foo(r, r)
END bar ;
```

Here we see that although parameter, `a`, is a candidate for the passing by reference, it would be incorrect to use this transformation. Thus the compiler detects that parameters, `a` and `f` are type compatible and will produce run time checking code to test whether the address range of their respective contents intersect.
2.12 Building a shared library

This section describes building a tiny shared library implemented in Modula-2 and built with `libtool`. Suppose a project consists of two definition modules and two implementation modules and a program module `a.def`, `a.mod`, `b.def`, `b.mod` and `c.mod`. The first step is to compile the modules using position independent code. This can be achieved by the following three commands:

\[
\text{libtool --tag=CC --mode=compile gm2 -g -c a.mod -o a.lo} \\
\text{libtool --tag=CC --mode=compile gm2 -g -c b.mod -o b.lo} \\
\text{libtool --tag=CC --mode=compile gm2 -g -c c.mod -o c.lo}
\]

The second step is to generate the shared library initialization and finalization routines. We can do this by asking gm2 to generate a list of dependent modules and then use this to generate the scaffold. We also must compile the scaffold.

\[
\text{gm2 -c -g -fmakelist c.mod} \\
\text{gm2 -c -g -fmakeinit -fshared c.mod} \\
\text{libtool --tag=CC --mode=compile g++ -g -c c_m2.cpp -o c_m2.lo}
\]

The third step is to link all these `.lo` files.

\[
\text{libtool --mode=link gcc -g c_m2.lo a.lo b.lo c.lo \} \\
-L$(prefix)/lib64 \} \\
-rpath `pwd` -lgm2 -lstdc++ -lm -o libabc.la}
\]

At this point the shared library `libabc.so` will have been created inside the directory `.libs`.

2.13 How to produce swig interface files

This section describes how Modula-2 implementation modules can be called from Python (and other scripting languages such as TCL and Perl). GNU Modula-2 can be instructed to create a swig interface when it is compiling an implementation module. Swig then uses the interface file to generate all the necessary wrapping to that the desired scripting language may access the implementation module.

Here is an example of how you might call upon the services of the Modula-2 library module `NumberIO` from Python3.

The following commands can be used to generate the Python3 module:

\[
\text{export src='directory to the sources'} \\
\text{export prefix='directory to where the compiler is installed'} \\
\text{gm2 -I$\{src\} -c -g -fswig $\{src\}/..../..../gm2-libs/NumberIO.mod} \\
\text{gm2 -I$\{src\} -c -g -fmakelist $\{src\}/..../..../gm2-libs/NumberIO.mod} \\
\text{gm2 -I$\{src\} -c -g -fmakeinit -fshared \} \\
\text{$\{src\}/..../..../gm2-libs/NumberIO.mod} \\
\text{swig -c++ -python3 NumberIO.i} \\
\text{libtool --mode=compile g++ -g -c -I$\{src\} NumberIO_m2.cpp \} \\
\text{-o NumberIO_m2.lo}
\]
Chapter 2: Using GNU Modula-2 31

```
libtool --tag=CC --mode=compile gm2 -g -c \
-I${src}..../././gm2-libs \n${src}..../././gm2-libs/NumberIO.mod -o NumberIO.lo
```

```
libtool --tag=CC --mode=compile g++ -g -c NumberIO_wrap.cxx \
-I/usr/include/python3 -o NumberIO_wrap.lo
```

```
libtool --mode=link gcc -g NumberIO_m2.lo NumberIO_wrap.lo \
-L${prefix}/lib64 \
-rpath `pwd` -lgm2 -lstdc++ -lm -o libNumberIO.la
```

```
cp .libs/libNumberIO.so _NumberIO.so
```

The first four commands, generate the swig interface file NumberIO.i and python wrap files NumberIO_wrap.cxx and NumberIO.py. The next three libtool commnads compile the C++ and Modula-2 source code into .lo objects. The last libtool command links all the .lo files into a .la file and includes all shared library dependencies.

Now it is possible to run the following Python script (called testnum.py):

```
import NumberIO

print ('1234 x 2 =', NumberIO.NumberIO_StrToInt("1234")*2)
```

like this:

```
$ python3 testnum.py
1234 x 2 = 2468
```

See Section “Producing a Python module” in gm2 for another example which uses the UNQUALIFIED keyword to reduce the module name clutter from the viewport of Python3.

### 2.13.1 Limitations of automatic generated of Swig files

This section discusses the limitations of automatically generating swig files. From the previous example we see that the module NumberIO had a swig interface file NumberIO.i automatically generated by the compiler. If we consider three of the procedure definitions in NumberIO.def we can see the success and limitations of the automatic interface generation.

```
PROCEDURE StrToHex (a: ARRAY OF CHAR; VAR x: CARDINAL) ;
PROCEDURE StrToInt (a: ARRAY OF CHAR; VAR x: INTEGER) ;
PROCEDURE ReadInt (VAR x: CARDINAL) ;
```

Below are the swig interface prototypes:

```
extern void NumberIO_StrToHex (char * _m2_address_a, \
 int _m2_high_a, unsigned int *OUTPUT);
/* parameters: x is known to be an OUTPUT */
extern void NumberIO_StrToInt (char * _m2_address_a, \
 int _m2_high_a, int *OUTPUT);
/* parameters: x is guessed to be an OUTPUT */
extern void NumberIO_ReadInt (int *x);
/* parameters: x is unknown */
```

In the case of StrToHex it can be seen that the compiler detects that the last parameter is an output. It explicitly tells swig this by using the parameter name OUTPUT and in the
following comment it informs the user that it knows this to be an output parameter. In the second procedure `StrToInt` it marks the final parameter as an output, but it tells the user that this is only a guess. Finally in `ReadInt` it informs the user that it does not know whether the parameter, \( x \), is an output, input or an inout parameter.

The compiler decides whether to mark a parameter as either: `INPUT`, `OUTPUT` or `INOUT` if it is read before written or visa versa in the first basic block. At this point it will write output that the parameter is known. If it is not read or written in the first basic block then subsequent basic blocks are searched and the result is commented as a guess. Finally if no read or write occurs then the parameter is commented as unknown. However, clearly it is possible to fool this mechanism. Nevertheless automatic generation of implementation module into swig interface files was thought sufficiently useful despite these limitations.

In conclusion it would be wise to check all parameters in any automatically generated swig interface file. Furthermore you can force the automatic mechanism to generate correct interface files by reading or writing to the `VAR` parameter in the first basic block of a procedure.

### 2.14 How to produce a Python module

This section describes how it is possible to produce a Python module from Modula-2 code. There are a number of advantages to this approach, it ensures your code reaches a wider audience, maybe it is easier to initialize your application in Python.

The example application here is a pedagogical two dimensional gravity next event simulation. The Python module needs to have a clear API which should be placed in a single definition module. Furthermore the API should only use fundamental pervasive data types and strings. Below the API is contained in the file `twoDsim.def`:

```modula2
DEFINITION MODULE twoDsim;

EXPORT UNQUALIFIED gravity, box, poly3, poly5, poly6, mass, fix, circle, pivot, velocity, accel, fps, replayRate, simulateFor;

(*
 gravity - turn on gravity at: g m^2
*)

PROCEDURE gravity (g: REAL);

(*
 box - place a box in the world at (x0,y0),(x0+i,y0+j)
*)

PROCEDURE box (x0, y0, i, j: REAL): CARDINAL;

(*
 poly3 - place a triangle in the world at:
*)
```
PROCEDURE poly3 (x0, y0, x1, y1, x2, y2: REAL) : CARDINAL;

(*
poly5 - place a pentagon in the world at:
(x0,y0),(x1,y1),(x2,y2),(x3,y3),(x4,y4)
*)

PROCEDURE poly5 (x0, y0, x1, y1, x2, y2, x3, y3, x4, y4: REAL) : CARDINAL;

(*
poly6 - place a hexagon in the world at:
(x0,y0),(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5)
*)

PROCEDURE poly6 (x0, y0, x1, y1, x2, y2, x3, y3, x4, y4, x5, y5: REAL) : CARDINAL;

(*
mass - specify the mass of an object and return the, id.
*)

PROCEDURE mass (id: CARDINAL; m: REAL) : CARDINAL;

(*
fix - fix the object to the world.
*)

PROCEDURE fix (id: CARDINAL) : CARDINAL;

(*
circle - adds a circle to the world. Center
defined by: x0, y0 radius, r.
*)

PROCEDURE circle (x0, y0, r: REAL) : CARDINAL;
(* velocity - give an object, id, a velocity, vx, vy. *)
PROCEDURE velocity (id: CARDINAL; vx, vy: REAL) : CARDINAL ;

(* accel - give an object, id, an acceleration, ax, ay. *)
PROCEDURE accel (id: CARDINAL; ax, ay: REAL) : CARDINAL ;

(* fps - set frames per second. *)
PROCEDURE fps (f: REAL) ;

(* replayRate - set frames per second during replay. *)
PROCEDURE replayRate (f: REAL) ;

(* simulateFor - render for, t, seconds. *)
PROCEDURE simulateFor (t: REAL) ;

END twoDsim.

The keyword UNQUALIFIED can be used to ensure that the compiler will provide externally accessible functions gravity, box, poly3, poly5, poly6, mass, fix, circle, pivot, velocity, accel, fps, replayRate, simulateFor rather than name mangled alternatives. Hence in our Python3 application we could write:

```
#!/usr/bin/env python3

from twoDsim import *

b = box (0.0, 0.0, 1.0, 1.0)
b = fix (b)
```
c1 = circle (0.7, 0.7, 0.05)
c1 = mass (c1, 0.01)
c2 = circle (0.7, 0.1, 0.05)
c2 = mass (c2, 0.01)
c2 = fix (c2)
gravity (-9.81)
fps (24.0*4.0)
replayRate (24.0)
print ("creating frames")
try:
    simulateFor (1.0)
    print ("all done")
except:
    print ("exception raised")

which accesses the various functions defined and implemented by the module twoDsim.
The Modula-2 source code is compiled via:

$ gm2 -g -fiso -c -fswig twoDsim.mod
$ gm2 -g -fiso -c -fmakelist twoDsim.mod
$ gm2 -g -fiso -c -fmakeinit twoDsim.mod

The first command both compiles the source file creating twoDsim.o and produces a swig interface file swig.i. We now use swig and g++ to produce and compile the interface wrappers:

$ libtool --mode=compile g++ -g -c twoDsim_m2.cpp -o twoDsim_m2.lo
$ swig -c++ -python3 twoDsim.i
$ libtool --mode=compile g++ -c -fPIC twoDsim_wrap.cxx \ 
  -I/usr/include/python3 -o twoDsim_wrap.lo
$ libtool --mode=compile gm2 -g -fPIC -fiso -c deviceGnuPic.mod
$ libtool --mode=compile gm2 -g -fPIC -fiso -c roots.mod
$ libtool --mode=compile gm2 -g -fPIC -fiso -c -fswig \ 
twoDsim.mod -o twoDsim.lo

Finally the application is linked into a shared library:

$ libtool --mode=link gcc -g twoDsim_m2.lo twoDsim_wrap.lo \ 
  roots.lo deviceGnuPic.lo \ 
  -L$({prefix})/lib64 \ 
  -rpath `pwd` -lgm2 -lstdc++ -lm -o libtwoDsim.la
$ cp .libs/libtwoDsim.so _twoDsim.so

The library name must start with _ to comply with the Python3 module naming scheme.

2.15 Interfacing GNU Modula-2 to C

The GNU Modula-2 compiler tries to use the C calling convention wherever possible however some parameters have no C equivalent and thus a language specific method is used. For example unbounded arrays are passed as a struct {void *address, unsigned int high} and the contents of these arrays are copied by callee functions when they are declared as non VAR parameters. The VAR equivalent unbounded array parameters need no copy, but still use the struct representation.
The recommended method of interfacing GNU Modula-2 to C is by telling the definition module that the implementation is in the C language. This is achieved by using the tokens DEFINITION MODULE FOR "C". Here is an example libprintf.def.

```
DEFINITION MODULE FOR "C" libprintf ;

EXPORT UNQUALIFIED printf ;

PROCEDURE printf (a: ARRAY OF CHAR; ...) : [INTEGER] ;

END libprintf.
```

the UNQUALIFIED keyword in the definition module informs GNU Modula-2 not to prefix the module name to exported references in the object file.

The printf declaration states that the first parameter semantically matches ARRAY OF CHAR but since the module is for the C language it will be mapped onto char *. The token ... indicates a variable number of arguments (varargs) and all parameters passed here are mapped onto their C equivalents. Arrays and constant strings are passed as pointers. Lastly [ INTEGER ] states that the caller can ignore the function return result if desired.

The hello world program can be rewritten as:

```
MODULE hello ;

FROM libprintf IMPORT printf ;

BEGIN
 printf ("hello world\n")
END hello.
```

and it can be compiled by:

'gm2 -g hello.mod -lc'

In reality the `-lc' is redundant as libc is always included in the linking process. It is shown here to emphasize that the C library or object file containing printf must be present. The search path for modules can be changed by using '-I'.

If a procedure function is declared using varargs then some parameter values are converted. The table below summarizes the default conversions and default types used.

<table>
<thead>
<tr>
<th>Actual Parameter</th>
<th>Default conversion</th>
<th>Type of actual value passed</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>none</td>
<td>long long int</td>
</tr>
<tr>
<td>&quot;hello world&quot;</td>
<td>none</td>
<td>const char *</td>
</tr>
<tr>
<td>a: ARRAY OF CHAR</td>
<td>ADR (a)</td>
<td>char *</td>
</tr>
<tr>
<td>a: ARRAY [0..5] OF CHAR</td>
<td>ADR (a)</td>
<td>char *</td>
</tr>
<tr>
<td>3.14</td>
<td>none</td>
<td>long double</td>
</tr>
</tbody>
</table>

If you wish to pass int values then you should explicitly convert the constants using one of the conversion mechanisms. For example: INTEGER(10) or VAL(INTEGER, 10) or CAST(INTEGER, 10).
2.16 Interface to assembly language

The interface for GNU Modula-2 to assembly language is almost identical to GNU C. The only alterations are that the keywords `asm` and `volatile` are in capitals, following the Modula-2 convention.

A simple, but highly non optimal, example is given below. Here we want to add the two `CARDINAL`s `foo` and `bar` together and return the result. The target processor is assumed to be executing the x86_64 instruction set.

```modula2
PROCEDURE Example (foo, bar: CARDINAL) : CARDINAL;
VAR
 myout: CARDINAL;
BEGIN
 ASM VOLATILE("movq %1,%rax; addq %2,%rax; movq %rax,%0"
 : "rm" (myout) (* outputs *)
 : "rm" (foo), "rm" (bar) (* inputs *)
 : "rax"); (* we trash *)
 RETURN(myout)
END Example;
```

For a full description of this interface we refer the reader to the GNU C manual. See Section “Extensions to the C Language Family” in gcc.

The same example can be written using the newer extensions of naming the operands rather than using numbered arguments.

```modula2
PROCEDURE Example (foo, bar: CARDINAL) : CARDINAL;
VAR
 myout: CARDINAL;
BEGIN
 ASM VOLATILE ("movq [%left],%rax; addq [%right],%rax; movq %rax, [%output]"
 : [%output] "rm" (myout) (* outputs *)
 : [left] "rm" (foo), [right] "rm" (bar) (* inputs *)
 : "rax"); (* we trash *)
 RETURN(myout)
END Example;
```

Both examples generate exactly the same code. It is worth noting that the specifier “rm” indicates that the operand can be either a register or memory. Of course you must choose an instruction which can take either, but this allows the compiler to take make more efficient choices depending upon the optimization level given to the compiler.

2.17 Data type alignment

GNU Modula-2 allows you to specify alignment for types and variables. The syntax for alignment is to use the ISO pragma directives `<< bytealignment ( expression )` and `>>`. These directives can be used after type and variable declarations.

The ebnf of the alignment production is:

```plaintext
Alignment ::= [ByteAlignment] =:
ByteAlignment ::= << AttributeExpression >> =:
```
AlignmentExpression := "(" ConstExpression ")" =:

The Alignment ebnf statement may be used during construction of types, records, record fields, arrays, pointers and variables. Below is an example of aligning a type so that the variable bar is aligned on a 1024 address.

MODULE align;

TYPE
  foo = INTEGER <* bytealignment(1024) *>;

VAR
  z : INTEGER;
  bar: foo;
BEGIN
END align.

The next example aligns a variable on a 1024 byte boundary.

MODULE align2;

VAR
  x : CHAR;
  z : ARRAY [0..255] OF INTEGER <* bytealignment(1024) *>;
BEGIN
END align2.

Here the example aligns a pointer on a 1024 byte boundary.

MODULE align4;

FROM SYSTEM IMPORT ADR;
FROM libc IMPORT exit;

VAR
  x : CHAR;
  z : POINTER TO INTEGER <* bytealignment(1024) *>;
BEGIN
  IF ADR(z) MOD 1024=0
  THEN
    exit(0)
  ELSE
    exit(1)
  END
END align4.

In example align5 record field y is aligned on a 1024 byte boundary.

MODULE align5;

FROM SYSTEM IMPORT ADR;
FROM libc IMPORT exit;
TYPE
    rec = RECORD
        x: CHAR ;
        y: CHAR <* bytealignment(1024) *> ;
    END ;
VAR
    r: rec ;
BEGIN
    IF ADR(r.y) MOD 1024=0
    THEN
        exit(0)
    ELSE
        exit(1)
    END
END align5.

In the example below module align6 declares foo as an array of 256 INTEGRERS. The array foo is aligned on a 1024 byte boundary.

MODULE align6 ;
FROM SYSTEM IMPORT ADR ;
FROM libc IMPORT exit ;

TYPE
    foo = ARRAY [0..255] OF INTEGER <* bytealignment(1024) *> ;
VAR
    x : CHAR ;
    z : foo ;
BEGIN
    IF ADR(z) MOD 1024=0
    THEN
        exit(0)
    ELSE
        exit(1)
    END
END align6.

2.18 Packing data types

The pragma <* bytealignment(0) *> can be used to specify that the fields within a RECORD are to be packed. Currently this only applies to fields which are declared as subranges, ordinal types and enumerated types. Here is an example of how two subranges might be packed into a byte.

TYPE
    bits3c = [0..7] ;
    bits3i = [-4..3] ;
byte = RECORD
  <* bytealignment(0) *> 
x: bits3c ;
  <* bitsunused(2) *> 
y: bits3i ;
END ;

Notice that the user has specified that in between fields x and y there are two bits unused.

Now the user wishes to create a record with byte numbers zero and one occupied and then an INTEGER32 field which is four byte aligned. In this case byte numbers two and three will be unused. The pragma bytealignment can be issued at the start of the record indicating the default alignment for the whole record and this can be overridden by individual fields if necessary.

rec = RECORD
  <* bytealignment (1) *> ; 
a, b: byte ;
x: INTEGER32 <* bytealignment(4) *> ;
END ;

In the following example the user has specified that a record has two fields p and q but that there are three bytes unused between these fields.

header = RECORD
  <* bytealignment(1) *> 
p: byte ;
  <* bytesunused(3) *> 
q: byte ;
END ;

The pragma <* bytesunused(x) *> can only be used if the current field is on a byte boundary. There is also a SYSTEM pseudo procedure function TBITSIZE(T) which returns the minimum number of bits necessary to represent type T.

Another example of packing record bit fields is given below:

MODULE align21 ;

FROM libc IMPORT exit ;

TYPE
  colour = (red, blue, green, purple, white, black) ;

soc = PACKEDSET OF colour ;

rec = RECORD
  <* bytealignment(0) *> 
x: soc ;
y: [-1..1] ;
END ;
VAR
  r: rec ;
  v: CARDINAL ;
BEGIN
  v := SIZE(r) ;
  IF SIZE(r)#1
  THEN
    exit(1)
  END ;
  r.x := soc{blue} ;
  IF r.x#soc{blue}
  THEN
    exit(2)
  END
END align21.

Here we see that the total size of this record is one byte and consists of a six bit set type followed by a 2 bit integer subrange.

### 2.19 Accessing GNU Modula-2 Built-ins

This section describes the built-in constants and functions defined in GNU Modula-2. The following compiler constants can be accessed using the `__ATTRIBUTE__ __BUILTIN__` keywords. These are not part of the Modula-2 language and they may differ depending upon the target architecture but they provide a method whereby common libraries can interface to a different underlying architecture.

The built-in constants are: `BITS_PER_UNIT, BITS_PER_WORD, BITS_PER_CHAR` and `UNITS_PER_WORD`. They are integrated into GNU Modula-2 by an extension to the `ConstFactor` rule:

```
ConstFactor := ConstQualidentOrSet | Number | ConstString |
 "(" ConstExpression ")" | "NOT" ConstFactor |
ConstAttribute =:
```

```
ConstAttribute := "__ATTRIBUTE__" "__BUILTIN__" "(" "(" Ident ")" ")" "=":
```

Here is an example taken from the ISO library `SYSTEM.def`:

```
CONST
 BITSPERLOC = __ATTRIBUTE__ __BUILTIN__ ((BITS_PER_UNIT)) ;
 LOCSPERWORD = __ATTRIBUTE__ __BUILTIN__ ((UNITS_PER_WORD)) ;
```

Built-in functions are transparent to the end user. All built-in functions are declared in `DEFINITION MODULEs` and are imported as and when required. Built-in functions are declared in definition modules by using the `__BUILTIN__` keyword. Here is a section of the ISO library `LongMath.def` which demonstrates this feature.

```
PROCEDURE __BUILTIN__ sqrt (x: LONGREAL): LONGREAL;
 (* Returns the square root of x *)
```

This indicates that the function `sqrt` will be implemented using the gcc built-in maths library. If gcc cannot utilize the built-in function (for example if the programmer requested...
the address of sqrt) then code is generated to call the alternative function implemented in the IMPLEMENTATION MODULE.

Sometimes a function exported from the DEFINITION MODULE will have a different name from the built-in function within gcc. In such cases the mapping between the GNU Modula-2 function name and the gcc name is expressed using the keywords __ATTRIBUTE__ __BUILTIN__ ((Ident)). For example the function sqrt in LongMath.def maps onto the gcc built-in function sqrtl and this is expressed as:

```plaintext
PROCEDURE __ATTRIBUTE__ __BUILTIN__ ((sqrtl)) sqrt
 (x: LONGREAL) : LONGREAL;
(* Returns the positive square root of x *)
```

The following module Builtins.def enumerates the list of built-in functions which can be accessed in GNU Modula-2. It also serves to define the parameter and return value for each function:

```plaintext
DEFINITION MODULE Builtins ;

FROM SYSTEM IMPORT ADDRESS ;

(* Floating point intrinsic procedure functions. *)

PROCEDURE __BUILTIN__ isnanf (x: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isnan (x: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isnanl (x: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ isfinitef (x: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isfinite (x: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isfinitel (x: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ sinf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ sin (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ sinl (x: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ cosf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ cos (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ cosl (x: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ sqrtf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ sqrt (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ sqrtl (x: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ atan2f (x, y: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ atan2 (x, y: REAL) : REAL ;
PROCEDURE __BUILTIN__ atan2l (x, y: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ fabsf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ fabs (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ fabsl (x: LONGREAL) : LONGREAL ;
```
PROCEDURE __BUILTIN__ logf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ log (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ logl (x: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ expf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ exp (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ expl (x: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ log10f (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ log10 (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ log10l (x: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ exp10f (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ exp10 (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ exp10l (x: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ ilogbf (x: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ ilogb (x: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ ilogbl (x: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ huge_val () : REAL ;
PROCEDURE __BUILTIN__ huge_valf () : SHORTREAL ;
PROCEDURE __BUILTIN__ huge_vall () : LONGREAL ;

PROCEDURE __BUILTIN__ modf (x: REAL; VAR y: REAL) : REAL ;
PROCEDURE __BUILTIN__ modff (x: SHORTREAL; 
                           VAR y: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ modfl (x: LONGREAL; VAR y: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ signbit (r: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ signbitf (s: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ signbitl (l: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ nextafter (x, y: REAL) : REAL ;
PROCEDURE __BUILTIN__ nextafterf (x, y: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ nextafterl (x, y: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ nexttoward (x: REAL; y: LONGREAL) : REAL ;
PROCEDURE __BUILTIN__ nexttowardf (x: SHORTREAL; y: LONGREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ nexttowardl (x, y: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ scalbn (x: REAL; n: LONGINT) : REAL ;
PROCEDURE __BUILTIN__ scalblnf (x: SHORTREAL; n: LONGINT) : SHORTREAL ;
PROCEDURE __BUILTIN__ scalblnl (x: LONGREAL; n: LONGINT) : LONGREAL ;

PROCEDURE __BUILTIN__ scalbn (x: REAL; n: INTEGER) : REAL ;
PROCEDURE __BUILTIN__ scalbnf (x: SHORTREAL; n: INTEGER) : SHORTREAL;
PROCEDURE __BUILTIN__ scalbnl (x: LONGREAL; n: INTEGER) : LONGREAL;

PROCEDURE __BUILTIN__ isgreater (x, y: REAL) : INTEGER;
PROCEDURE __BUILTIN__ isgreaterf (x, y: SHORTREAL) : INTEGER;
PROCEDURE __BUILTIN__ isgreaterl (x, y: LONGREAL) : INTEGER;

PROCEDURE __BUILTIN__ isgreatequal (x, y: REAL) : INTEGER;
PROCEDURE __BUILTIN__ isgreatequalf (x, y: SHORTREAL) : INTEGER;
PROCEDURE __BUILTIN__ isgreatequall (x, y: LONGREAL) : INTEGER;

PROCEDURE __BUILTIN__ isless (x, y: REAL) : INTEGER;
PROCEDURE __BUILTIN__ islesser (x, y: SHORTREAL) : INTEGER;
PROCEDURE __BUILTIN__ islesser (x, y: LONGREAL) : INTEGER;

PROCEDURE __BUILTIN__ islessequall (x, y: REAL) : INTEGER;
PROCEDURE __BUILTIN__ islessequallf (x, y: SHORTREAL) : INTEGER;
PROCEDURE __BUILTIN__ islessequalll (x, y: LONGREAL) : INTEGER;

PROCEDURE __BUILTIN__ islessgreater (x, y: REAL) : INTEGER;
PROCEDURE __BUILTIN__ islessgreaterf (x, y: SHORTREAL) : INTEGER;
PROCEDURE __BUILTIN__ islessgreaterl (x, y: LONGREAL) : INTEGER;

PROCEDURE __BUILTIN__ isunordered (x, y: REAL) : INTEGER;
PROCEDURE __BUILTIN__ isunorderdf (x, y: SHORTREAL) : INTEGER;
PROCEDURE __BUILTIN__ isunorderdl (x, y: LONGREAL) : INTEGER;

PROCEDURE __BUILTIN__ iseqsig (x, y: REAL) : INTEGER;
PROCEDURE __BUILTIN__ iseqsigf (x, y: SHORTREAL) : INTEGER;
PROCEDURE __BUILTIN__ iseqsigl (x, y: LONGREAL) : INTEGER;

PROCEDURE __BUILTIN__ isnormal (r: REAL) : INTEGER;
PROCEDURE __BUILTIN__ isnormalf (s: SHORTREAL) : INTEGER;
PROCEDURE __BUILTIN__ isnormall (l: LONGREAL) : INTEGER;

PROCEDURE __BUILTIN__ isinf_sign (r: REAL) : INTEGER;
PROCEDURE __BUILTIN__ isinf_signf (s: SHORTREAL) : INTEGER;
PROCEDURE __BUILTIN__ isinf_signl (l: LONGREAL) : INTEGER;

(* Complex arithmetic intrinsic procedure functions. *)

PROCEDURE __BUILTIN__ cabsf (z: SHORTCOMPLEX) : SHORTREAL;
PROCEDURE __BUILTIN__ cabs (z: COMPLEX) : REAL;
PROCEDURE __BUILTIN__ cabsl (z: LONGCOMPLEX) : LONGREAL;

PROCEDURE __BUILTIN__ cargf (z: SHORTCOMPLEX) : SHORTREAL;
PROCEDURE __BUILTIN__ carg (z: COMPLEX) : REAL;
PROCEDURE __BUILTIN__ cargl (z: LONGCOMPLEX) : LONGREAL ;

PROCEDURE __BUILTIN__ conjf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ conj (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ conjl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ cpowerf (base: SHORTCOMPLEX; exp: SHORTREAL) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ cpower (base: COMPLEX; exp: REAL) : COMPLEX ;
PROCEDURE __BUILTIN__ cpowerl (base: LONGCOMPLEX; exp: LONGREAL) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ csqrtf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ csqrt (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ csqrtl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ cexpf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ cexp (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ cexpl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ clnf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ cln (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ clnl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ csinf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ csin (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ csinl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ ccosf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ ccos (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ ccosl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ ctanf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ ctan (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ ctanl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ carcsinf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ carcsin (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ carcsinl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ carccosf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ carccos (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ carccosl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ carctanf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ carctan (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ carctanl (z: LONGCOMPLEX) : LONGCOMPLEX ;
Chapter 2: Using GNU Modula-2

(* memory and string intrinsic procedure functions *)

PROCEDURE __BUILTIN__ alloca (i: CARDINAL) : ADDRESS ;
PROCEDURE __BUILTIN__ memcpy (dest, src: ADDRESS;
  nbytes: CARDINAL) : ADDRESS ;
PROCEDURE __BUILTIN__ index (s: ADDRESS; c: INTEGER) : ADDRESS ;
PROCEDURE __BUILTIN__ rindex (s: ADDRESS; c: INTEGER) : ADDRESS ;
PROCEDURE __BUILTIN__ memcmp (s1, s2: ADDRESS;
  nbytes: CARDINAL) : INTEGER ;
PROCEDURE __BUILTIN__ memset (s: ADDRESS; c: INTEGER;
  nbytes: CARDINAL) : ADDRESS ;
PROCEDURE __BUILTIN__ memmove (s1, s2: ADDRESS;
  nbytes: CARDINAL) : ADDRESS ;
PROCEDURE __BUILTIN__ strcat (dest, src: ADDRESS) : ADDRESS ;
PROCEDURE __BUILTIN__ strncat (dest, src: ADDRESS;
  nbytes: CARDINAL) : ADDRESS ;
PROCEDURE __BUILTIN__ strcpy (dest, src: ADDRESS) : ADDRESS ;
PROCEDURE __BUILTIN__ strncpy (dest, src: ADDRESS;
  nbytes: CARDINAL) : ADDRESS ;
PROCEDURE __BUILTIN__ strcmp (s1, s2: ADDRESS) : INTEGER ;
PROCEDURE __BUILTIN__ strncmp (s1, s2: ADDRESS;
  nbytes: CARDINAL) : INTEGER ;
PROCEDURE __BUILTIN__ strlen (s: ADDRESS) : INTEGER ;
PROCEDURE __BUILTIN__ strstr (haystack, needle: ADDRESS) : ADDRESS ;
PROCEDURE __BUILTIN__ strpbrk (s, accept: ADDRESS) : ADDRESS ;
PROCEDURE __BUILTIN__ strspn (s, accept: ADDRESS) : CARDINAL ;
PROCEDURE __BUILTIN__ strcspn (s, accept: ADDRESS) : CARDINAL ;
PROCEDURE __BUILTIN__ strchr (s: ADDRESS; c: INTEGER) : ADDRESS ;
PROCEDURE __BUILTIN__ strrchr (s: ADDRESS; c: INTEGER) : ADDRESS ;

(*
  longjmp - this GCC builtin restricts the val to always 1.
*)

(* do not use these two builtins, as gcc, only really
  anticipates that the Ada front end should use them
  and it only uses them in its runtime exception handling.
  We leave them here in the hope that someday they will
  behave more like their libc counterparts. *)

PROCEDURE __BUILTIN__ longjmp (env: ADDRESS; val: INTEGER) ;
PROCEDURE __BUILTIN__ setjmp (env: ADDRESS) : INTEGER ;

(*
  frame_address - returns the address of the frame.
  The current frame is obtained if level is 0,
*)
Chapter 2: Using GNU Modula-2

2.19 Builtins

Although this module exists and will result in the generation of in-line code if optimization flags are passed to GNU Modula-2, users are advised to utilize the same functions from more generic libraries. The built-in mechanism will be applied to these generic libraries where appropriate. Note for the mathematical routines to be in-lined you need to specify the ‘-ffast-math -O’ options.

2.20 The PIM system module

DEFINITION MODULE SYSTEM ;

EXPORT QUALIFIED BITSPERBYTE, BYTESPERWORD,
ADDRESS, WORD, BYTE, CSIZE_T, CSSIZE_T, (*
Target specific data types. *)
ADR, TSIZE, ROTATE, SHIFT, THROW, TBITSIZE ;
(* SIZE is also exported if -fpim2 is used. *)

CONST
BITSPERBYTE = __ATTRIBUTE__ __BUILTIN__ ((BITS_PER_UNIT)) ;
BYTESPERWORD = __ATTRIBUTE__ __BUILTIN__ ((UNITS_PER_WORD)) ;

(* Note that the full list of system and sized datatypes include:
LOC, WORD, BYTE, ADDRESS,
(and the non language standard target types)

INTEGER8, INTEGER16, INTEGER32, INTEGER64, CARDINAL8, CARDINAL16, CARDINAL32, CARDINAL64, WORD16, WORD32, WORD64, BITSET8, BITSET16, BITSET32, REAL32, REAL64, REAL128, COMPLEX32, COMPLEX64, COMPLEX128, CSIZE_T, CSSIZE_T.

Also note that the non-standard data types will move into another module in the future. *)

(* The following types are supported on this target:
TYPE
 (* Target specific data types. *)
*)

(*
 all the functions below are declared internally to gm2
==============================================
PROCEDURE ADR (VAR v: <anytype>): ADDRESS;
 (* Returns the address of variable v. *)

PROCEDURE SIZE (v: <type>) : ZType;
 (* Returns the number of BYTES used to store a v of any specified <type>. Only available if -fpim2 is used. *)

PROCEDURE TSIZE (<type>) : CARDINAL;
 (* Returns the number of BYTES used to store a value of the specified <type>. *)

PROCEDURE ROTATE (val: <a set type>; num: INTEGER): <type of first parameter>;
 (* Returns a bit sequence obtained from val by rotating up/right or down/right by the absolute value of num. The direction is down/right if the sign of num is negative, otherwise the direction is up/left. *)

PROCEDURE SHIFT (val: <a set type>; num: INTEGER): <type of first parameter>;
 (* Returns a bit sequence obtained from val by shifting up/left or down/right by the absolute value of num, introducing
zeros as necessary. The direction is down/right if the sign of num is negative, otherwise the direction is up/left.

PROCEDURE THROW (i: INTEGER) <*> noreturn *> ;
(*
THROW is a GNU extension and was not part of the PIM or ISO standards. It throws an exception which will be caught by the EXCEPT block (assuming it exists). This is a compiler builtin function which interfaces to the GCC exception handling runtime system.
GCC uses the term throw, hence the naming distinction between the GCC builtin and the Modula-2 runtime library procedure Raise. The later library procedure Raise will call SYSTEM.THROW after performing various housekeeping activities.
*)

PROCEDURE TBITSIZE (<type>) : CARDINAL ;
(* Returns the minimum number of bits necessary to represent <type>. This procedure function is only useful for determining the number of bits used for any type field within a packed RECORD. It is not particularly useful elsewhere since <type> might be optimized for speed, for example a BOOLEAN could occupy a WORD.
*)

(* The following procedures are invoked by GNU Modula-2 to shift non word sized set types. They are not strictly part of the core PIM Modula-2, however they are used to implement the SHIFT procedure defined above, which are in turn used by the Logitech compatible libraries.

Users will access these procedures by using the procedure SHIFT above and GNU Modula-2 will map SHIFT onto one of the following procedures.
*)

(*
ShiftVal - is a runtime procedure whose job is to implement the SHIFT procedure of ISO SYSTEM. GNU Modula-2 will inline a SHIFT of a single WORD sized set and will only call this routine for larger sets.
*)

PROCEDURE ShiftVal (VAR s, d: ARRAY OF BITSET;
    SetSizeInBits: CARDINAL;
    ShiftCount: INTEGER) ;
(* ShiftLeft - performs the shift left for a multi word set. This procedure might be called by the back end of GNU Modula-2 depending whether amount is known at compile time. *)
PROCEDURE ShiftLeft (VAR s, d: ARRAY OF BITSET;
    SetSizeInBits: CARDINAL;
    ShiftCount: CARDINAL) ;

(* ShiftRight - performs the shift left for a multi word set. This procedure might be called by the back end of GNU Modula-2 depending whether amount is known at compile time. *)
PROCEDURE ShiftRight (VAR s, d: ARRAY OF BITSET;
    SetSizeInBits: CARDINAL;
    ShiftCount: CARDINAL) ;

(* RotateVal - is a runtime procedure whose job is to implement the ROTATE procedure of ISO SYSTEM. GNU Modula-2 will inline a ROTATE of a single WORD (or less) sized set and will only call this routine for larger sets. *)
PROCEDURE RotateVal (VAR s, d: ARRAY OF BITSET;
    SetSizeInBits: CARDINAL;
    RotateCount: INTEGER) ;

(* RotateLeft - performs the rotate left for a multi word set. This procedure might be called by the back end of GNU Modula-2 depending whether amount is known at compile time. *)
PROCEDURE RotateLeft (VAR s, d: ARRAY OF BITSET;
    SetSizeInBits: CARDINAL;
RotateCount: CARDINAL) ;

(*
    RotateRight - performs the rotate right for a multi word set.
    This procedure might be called by the back end of
    GNU Modula-2 depending whether amount is known at
    compile time.
*)

PROCEDURE RotateRight (VAR s, d: ARRAY OF BITSET;
    SetSizeInBits: CARDINAL;
    RotateCount: CARDINAL) ;

END SYSTEM.

The different dialects of Modula-2 PIM-[234] and ISO Modula-2 declare the function
SIZE in different places. PIM-[34] and ISO Modula-2 declare SIZE as a pervasive function
(declared in the base module). PIM-2 defined SIZE in the SYSTEM module (as shown above).

GNU Modula-2 allows users to specify the dialect of Modula-2 by using the -fiso and
-fpim2 command line switches.

The data types CSIZE_T and CSSIZE_T are also exported from the SYSTEM module. The
type CSIZE_T is unsigned and is mapped onto the target C data type size_t whereas the
type CSSIZE_T is mapped onto the signed C data type ssize_t.

It is anticipated that these should only be used to provide cross platform definition
modules for C libraries.

There are also a variety of fixed sized INTEGER and CARDINAL types. The variety of the
fixed sized types will depend upon the target architecture.

2.21 The ISO system module

DEFINITION MODULE SYSTEM;

(* Gives access to system programming facilities that are probably
    non portable. *)

(* The constants and types define underlying properties of storage *)

EXPORT QUALIFIED BITSPERLOC, LOCSPERWORD,
    LOC, BYTE, WORD, ADDRESS, CSIZE_T, CSSIZE_T, (*
    Target specific data types. *)
    ADDADR, SUBADR, DIFADR, MAKEADR, ADR, ROTATE,
    SHIFT, CAST, TSIZE,

    (* Internal GM2 compiler functions *)
    ShiftVal, ShiftLeft, ShiftRight,
RotateVal, RotateLeft, RotateRight, THROW, TBITSIZE;

CONST
(* <implementation-defined constant> ; *)
BITSPERLOC = __ATTRIBUTE__ __BUILTIN__ (BITS_PER_UNIT);
(* <implementation-defined constant> ; *)
LOCSPERWORD = __ATTRIBUTE__ __BUILTIN__ (UNITS_PER_WORD);
(* <implementation-defined constant> ; *)
LOCSPERBYTE = 8 DIV BITSPERLOC;

(* Note that the full list of system and sized datatypes include: LOC, WORD, BYTE, ADDRESS, (and the non language standard target types)

INTEGER8, INTEGER16, INTEGER32, INTEGER64,
CARDINAL8, CARDINAL16, CARDINAL32, CARDINAL64,
WORD16, WORD32, WORD64, BITSET8, BITSET16,
BITSET32, REAL32, REAL64, REAL128, COMPLEX32,
COMPLEX64, COMPLEX128, CSIZE_T, CSSIZE_T.

Also note that the non-standard data types will move into another module in the future. *)

(*
All the data types and procedures below are declared internally.

===============================================================================

TYPE
(* Target specific data types. *)

TYPE
LOC; (* A system basic type. Values are the uninterpreted contents of the smallest addressable unit of storage *)
ADDRESS = POINTER TO LOC;
WORD = ARRAY [0 .. LOCSPERWORD-1] OF LOC;

(* BYTE and LOCSPERBYTE are provided if appropriate for machine *)

TYPE
BYTE = ARRAY [0 .. LOCSPERBYTE-1] OF LOC;

PROCEDURE ADDADR (addr: ADDRESS; offset: CARDINAL): ADDRESS;
(* Returns address given by (addr + offset), or may raise an exception if this address is not valid. *)
PROCEDURE SUBADR (addr: ADDRESS; offset: CARDINAL): ADDRESS;
(* Returns address given by (addr - offset), or may raise an
exception if this address is not valid.
*)

PROCEDURE DIFADR (addr1, addr2: ADDRESS): INTEGER;
(* Returns the difference between addresses (addr1 - addr2),
or may raise an exception if the arguments are invalid
or address space is non-contiguous.
*)

PROCEDURE MAKEADR (high: <some type>; ...): ADDRESS;
(* Returns an address constructed from a list of values whose
types are implementation-defined, or may raise an
exception if this address is not valid.

In GNU Modula-2, MAKEADR can take any number of arguments
which are mapped onto the type ADDRESS. The first parameter
maps onto the high address bits and subsequent parameters map
onto lower address bits. For example:

a := MAKEADR(BYTE(0FEH), BYTE(0DCH), BYTE(0BAH), BYTE(098H),
            BYTE(076H), BYTE(054H), BYTE(032H), BYTE(010H)) ;

then the value of, a, on a 64 bit machine is: 0FEDCBA9876543210H

The parameters do not have to be the same type, but constants
.must. be typed.
*)

PROCEDURE ADR (VAR v: <anytype>): ADDRESS;
(* Returns the address of variable v. *)

PROCEDURE ROTATE (val: <a packedset type>;
                   num: INTEGER): <type of first parameter>;
(* Returns a bit sequence obtained from val by rotating up/right
or down/right by the absolute value of num. The direction is
down/right if the sign of num is negative, otherwise the direction
is up/left.
*)

PROCEDURE SHIFT (val: <a packedset type>;
                 num: INTEGER): <type of first parameter>;
(* Returns a bit sequence obtained from val by shifting up/left
or down/right by the absolute value of num, introducing
zeros as necessary. The direction is down/right if the sign of
num is negative, otherwise the direction is up/left.

PROCEDURE CAST (<targettype>; val: <anytype>): <targettype>; (* CAST is a type transfer function. Given the expression denoted by val, it returns a value of the type <targettype>. An invalid value for the target value or a physical address alignment problem may raise an exception. *)

PROCEDURE TSIZE (<type>; ... ): CARDINAL; (* Returns the number of LOCS used to store a value of the specified <type>. The extra parameters, if present, are used to distinguish variants in a variant record. *)

PROCEDURE THROW (i: INTEGER) <* noreturn *> ; (* THROW is a GNU extension and was not part of the PIM or ISO standards. It throws an exception which will be caught by the EXCEPT block (assuming it exists). This is a compiler builtin function which interfaces to the GCC exception handling runtime system. GCC uses the term throw, hence the naming distinction between the GCC builtin and the Modula-2 runtime library procedure Raise. The later library procedure Raise will call SYSTEM.THROW after performing various housekeeping activities. *)

PROCEDURE TBITSIZE (<type>) : CARDINAL ; (* Returns the minimum number of bits necessary to represent <type>. This procedure function is only useful for determining the number of bits used for any type field within a packed RECORD. It is not particularly useful elsewhere since <type> might be optimized for speed, for example a BOOLEAN could occupy a WORD. *)

(* The following procedures are invoked by GNU Modula-2 to shift non word set types. They are not part of ISO Modula-2 but are used to implement the SHIFT procedure defined above. *)

(* ShiftVal - is a runtime procedure whose job is to implement the SHIFT procedure of ISO SYSTEM. GNU Modula-2 will inline a SHIFT of a single WORD sized set and will only
call this routine for larger sets.
*)

PROCEDURE ShiftVal (VAR s, d: ARRAY OF BITSET;
    SetSizeInBits: CARDINAL;
    ShiftCount: INTEGER) ;

(*
    ShiftLeft - performs the shift left for a multi word set.
    This procedure might be called by the back end of
    GNU Modula-2 depending whether amount is known at
    compile time.
*)

PROCEDURE ShiftLeft (VAR s, d: ARRAY OF BITSET;
    SetSizeInBits: CARDINAL;
    ShiftCount: CARDINAL) ;

(*
    ShiftRight - performs the shift left for a multi word set.
    This procedure might be called by the back end of
    GNU Modula-2 depending whether amount is known at
    compile time.
*)

PROCEDURE ShiftRight (VAR s, d: ARRAY OF BITSET;
    SetSizeInBits: CARDINAL;
    ShiftCount: CARDINAL) ;

(*
    RotateVal - is a runtime procedure whose job is to implement
    the ROTATE procedure of ISO SYSTEM. GNU Modula-2 will
    inline a ROTATE of a single WORD (or less)
    sized set and will only call this routine for larger
    sets.
*)

PROCEDURE RotateVal (VAR s, d: ARRAY OF BITSET;
    SetSizeInBits: CARDINAL;
    RotateCount: INTEGER) ;

(*
    RotateLeft - performs the rotate left for a multi word set.
    This procedure might be called by the back end of
Chapter 2: Using GNU Modula-2

GNU Modula-2 depending whether amount is known at compile time.

*)

PROCEDURE RotateLeft (VAR s, d: ARRAY OF BITSET;
    SetSizeInBits: CARDINAL;
    RotateCount: CARDINAL) ;

(*
    RotateRight - performs the rotate right for a multi word set.
    This procedure might be called by the back end of GNU Modula-2 depending whether amount is known at compile time.
*)

PROCEDURE RotateRight (VAR s, d: ARRAY OF BITSET;
    SetSizeInBits: CARDINAL;
    RotateCount: CARDINAL) ;

END SYSTEM.

The data types CSIZE_T and CSSIZE_T are also exported from the SYSTEM module. The type CSIZE_T is unsigned and is mapped onto the target C data type size_t whereas the type CSSIZE_T is mapped onto the signed C data type ssize_t.

It is anticipated that these should only be used to provide cross platform definition modules for C libraries.

There are also a variety of fixed sized INTEGER and CARDINAL types. The variety of the fixed sized types will depend upon the target architecture.

2.22 Release map

GNU Modula-2 is now part of GCC and therefore will adopt the GCC release schedule. It is intended that GNU Modula-2 implement more of the GCC builtins (vararg access) and GCC features.

There is an intention to implement the ISO generics and the M2R10 dialect of Modula-2. It will also implement all language changes. If you wish to see something different please email gm2@nongnu.org with your ideas.

2.23 Documentation

The GNU Modula-2 documentation is available on line https://gcc.gnu.org/onlinedocs or in the pdf, info, html file format.

2.24 Regression tests for gm2 in the repository

The regression testsuite can be run from the gcc build directory:
$ cd build-gcc
$ make check -j 24

which runs the complete testsuite for all compilers using 24 parallel invocations of the
compiler. Individual language testsuites can be run by specifying the language, for example
the Modula-2 testsuite can be run using:

$ cd build-gcc
$ make check-m2 -j 24

Finally the results of the testsuite can be emailed to the gcc-testresults (https://gcc.
gnu.org/lists.html) list using the test_summary script found in the gcc source tree:

$ ‘directory to the sources’/contrib/test_summary

2.25 Limitations

Logitech compatibility library is incomplete. The principle modules for this platform exist
however for a comprehensive list of completed modules please check the documentation
gm2.html.

2.26 Objectives

- The intention of GNU Modula-2 is to provide a production Modula-2 front end to GCC.
- It should support all Niklaus Wirth PIM Dialects [234] and also ISO Modula-2 including
  a re-implementation of all the ISO modules.
- There should be an easy interface to C.
- Exploit the features of GCC.
- Listen to the requests of the users.

2.27 FAQ

2.27.1 Why use the C++ exception mechanism in GCC, rather
than a bespoke Modula-2 mechanism?

The C++ mechanism is tried and tested, it also provides GNU Modula-2 with the ability to
link with C++ modules and via swig it can raise Python exceptions.

2.28 Community

You can subscribe to the GNU Modula-2 mailing by sending an email to: gm2-
subscribe@nongnu.org or by http://lists.nongnu.org/mailman/listinfo/gm2. The
mailing list contents can be viewed http://lists.gnu.org/archive/html/gm2.

2.29 Other languages for GCC

These exist and can be found on the frontends web page on the gcc web site (http://gcc.
gnu.org/frontends.html).
2.30 License of GNU Modula-2

GNU Modula-2 is free software, the compiler is held under the GPL v3 http://www.gnu.org/licenses/gpl.txt, its libraries (pim, iso and Logitech compatible) are under the GPL v3 with the GCC run time library exception clause.

Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see <http://www.gnu.org/licenses/>.

More information on how these licenses work is available http://www.gnu.org/licenses/licenses.html on the GNU web site.
GNU General Public License

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. https://www.fsf.org

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

**TERMS AND CONDITIONS**

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a “modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.


The “source code” for a work means the preferred form of the work for making modifications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language.
The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A “Major Component”, in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work’s System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary.


No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work’s users, your or third parties’ legal rights to forbid circumvention of technological measures.


You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a relevant date.

b. The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation’s users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways:
a. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, “normally used” refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source.
The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or
d. Limiting the use for publicity purposes of names of licensors or authors of the material; or

e. Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10.


You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance.
However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party’s predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, “control” includes the right to grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To “grant” such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. “Knowingly relying” means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law.


If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License “or any later version” applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation.

If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see https://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode:

program Copyright (C) year name of author
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see https://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Lesser General Public License instead of this License. But first, please read

Contributing to GNU Modula-2

Please do and please read the GNU Emacs info under

* Standards: (standards). GNU coding standards.
* Intellectual Property:: Keeping Free Software Free
* Reading Non-Free Code:: Referring to Proprietary Programs
* Contributions:: Accepting Contributions

You might consider joining the GM2 Mailing list before you start coding. The mailing list may be subscribed via a web interface http://lists.nongnu.org/mailman/listinfo/gm2 or via email gm2-subscribe@nongnu.org.

Many thanks and enjoy your coding!
3 EBNF of GNU Modula-2

This chapter contains the EBNF of GNU Modula-2. This grammar currently supports both PIM and ISO dialects. The rules here are automatically extracted from the crammer files in GNU Modula-2 and serve to document the syntax of the extensions described earlier and how they fit in with the base language.

Note that the first six productions are built into the lexical analysis phase.

Ident := is a builtin and checks for an identifier
       :=;

Integer := is a builtin and checks for an integer
       :=;

Real := is a builtin and checks for a real constant
       :=;

string := is a builtin and checks for a string constant
       :=;

FileUnit := ( DefinitionModule |
              ImplementationOrProgramModule )
       :=;

ProgramModule := 'MODULE' Ident [ Priority ] ';'
                 { Import } Block Ident '.
       :=;

ImplementationModule := 'IMPLEMENTATION' 'MODULE' Ident
                      [ Priority ] ';' { Import
                      } Block
                      Ident '.
       :=;

ImplementationOrProgramModule := ImplementationModule |
                                  ProgramModule
       :=;

Number := Integer | Real
       :=;

Qualident := Ident { '.' Ident }
       :=;

ConstantDeclaration := Ident '=' ConstExpression
       :=;

ConstExpression := SimpleConstExpr [ Relation SimpleConstExpr ]
       :=;

Relation := '=' | '#' | '<>' | '<' | '<=' | '>
          | '>=' | 'IN'
       :=;

SimpleConstExpr := UnaryOrConstTerm { AddOperator
                                     ConstTerm }
       :=;

UnaryOrConstTerm := '+' ConstTerm |
'-' ConstTerm | ConstTerm
        ::= AddOperator := '+' | '-' | 'OR'
        ::= ConstTerm := ConstFactor { MulOperator ConstFactor } ::= MulOperator := '*' | '/' | 'DIV' | 'MOD' | 'REM' | 'AND' | '&'
        ::= ConstFactor := Number | ConstString | ConstSetOrQualidentOrFunction | '(' ConstExpression ')' | 'NOT' ConstFactor | ConstAttribute
        ::= ConstString := string
Chapter 3: EBNF of GNU Modula-2

Type := SimpleType | ArrayType | RecordType | SetType | PointerType | ProcedureType

SimpleType := Qualident [ SubrangeType ] | Enumeration | SubrangeType

Enumeration := '(' IdentList ')' =:

IdentList := Ident { ',' Ident }

SubrangeType := '[' ConstExpression '..' ConstExpression ']' =:

ArrayType := 'ARRAY' SimpleType { ',' SimpleType } 'OF' Type

RecordType := 'RECORD' [ DefaultRecordAttributes ] FieldListSequence 'END'

DefaultRecordAttributes := '<*' AttributeExpression '*>'

RecordFieldPragma := [ '<*' FieldPragmaExpression { ',' FieldPragmaExpression } '*>' ]

FieldPragmaExpression := Ident [ '(' ConstExpression ')']

AttributeExpression := Ident '(' ConstExpression ')

FieldListSequence := FieldListStatement { ';' FieldListStatement }

FieldListStatement := [ FieldList ]

FieldList := IdentList ':' Type RecordFieldPragma | 'CASE' CaseTag 'OF' Varient { '|' Varient } [ 'ELSE' FieldListSequence ] 'END'

TagIdent := [ Ident ]

CaseTag := TagIdent [ ':' Qualident ]
Varient := [ VarientCaseLabelList ':' FieldListSequence ]
=:
VarientCaseLabelList := VarientCaseLabels { ',', VarientCaseLabels }
=:
VarientCaseLabels := ConstExpression [ '..', ConstExpression ]
=:
CaseLabelList := CaseLabels { ',', CaseLabels }
=:
CaseLabels := ConstExpression [ '..', ConstExpression ]
=:
SetType := ( 'SET' | 'PACKEDSET' ) 'OF' SimpleType
=:
PointerType := 'POINTER' 'TO' Type
=:
ProcedureType := 'PROCEDURE' [ FormalTypeList ]
=:
FormalTypeList := '(' ( ')' FormalReturn |
ProcedureParameters ')' FormalReturn )
=:
FormalReturn := [ ':' OptReturnType ]
=:
OptReturnType := ['[ Qualident '] |
Qualident
=:
ProcedureParameters := ProcedureParameter { ',', ProcedureParameter }
=:
ProcedureParameter := '..' | 'VAR' FormalType |
FormalType
=:
VarIdent := Ident [ '[ ConstExpression ]' ]
=:
VariableDeclaration := VarIdentList ':' Type Alignment
=:
VarIdentList := VarIdent { ',', VarIdent }
=:
Designator := Qualident { SubDesignator }
=:
SubDesignator := '.' Ident | '[' ExpList ']' | '

ExpList := Expression { ',', Expression }
Expression := SimpleExpression [ Relation SimpleExpression ]

SimpleExpression := [ '+' | '-' ] Term { AddOperator
  Term }

Term := Factor { MulOperator Factor }

Factor := Number | string | SetOrDesignatorOrFunction |
  '(' Expression ')' |
  'NOT' Factor | ConstAttribute

SetOrDesignatorOrFunction := ( Qualident [ Constructor |
  SimpleDes
  [ ActualParameters ] ] |
  Constructor )

SimpleDes := { '.' Ident | '[' ExpList ']'} |
  '{' }

ActualParameters := '(' [ ExpList ] ')'

Statement := [ AssignmentOrProcedureCall |
  IfStatement | CaseStatement |
  WhileStatement | RepeatStatement |
  LoopStatement | ForStatement |
  WithStatement | AsmStatement |
  'EXIT' | 'RETURN' [ Expression ] |
  RetryStatement ]

RetryStatement := 'RETRY'

AssignmentOrProcedureCall := Designator ( ':=' Expression |
  ActualParameters | )

StatementSequence := Statement { ';' Statement }

IfStatement := 'IF' Expression 'THEN' StatementSequence
  { 'ELSIF' Expression 'THEN' StatementSequence } |
  [ 'ELSE' StatementSequence ] 'END'

CaseStatement := 'CASE' Expression 'OF' Case { '|' |
  Case }
Case := [ CaseLabelList ':' StatementSequence ]

WhileStatement := 'WHILE' Expression 'DO' StatementSequence 'END'

RepeatStatement := 'REPEAT' StatementSequence 'UNTIL' Expression

ForStatement := 'FOR' Ident ':=' Expression 'TO' Expression [ 'BY' ConstExpression ] 'DO' StatementSequence 'END'

LoopStatement := 'LOOP' StatementSequence 'END'

WithStatement := 'WITH' Designator 'DO' StatementSequence 'END'

ProcedureDeclaration := ProcedureHeading ';' ( ProcedureBlock Ident )

DefineBuiltinProcedure := [ '__ATTRIBUTE__' '__BUILTIN__' '__INLINE__' ]


AttributeNoReturn := [ '<*' Ident '*>' ]

AttributeUnused := [ '<*' Ident '*>' ]

Builtin := [ '__BUILTIN__' '__INLINE__' ]

DefProcedureHeading := 'PROCEDURE' Builtin ( Ident [ DefFormalParameters ] AttributeNoReturn )

ProcedureBlock := { Declaration } [ 'BEGIN' BlockBody ] 'END'
Chapter 3: EBNF of GNU Modula-2

Block := { Declaration } InitialBlock FinalBlock
   'END'

InitialBlock := [ 'BEGIN' BlockBody ]

FinalBlock := [ 'FINALLY' BlockBody ]

BlockBody := NormalPart [ 'EXCEPT' ExceptionalPart ]

NormalPart := StatementSequence

ExceptionalPart := StatementSequence

Declaration := 'CONST' { ConstantDeclaration ';' } | 'TYPE' { TypeDeclaration ';' } | 'VAR' { VariableDeclaration ';' } | ProcedureDeclaration ';' | ModuleDeclaration ';

DefFormalParameters := '(' [ DefMultiFPSection ] ')' FormalReturn

DefMultiFPSection := DefExtendedFP | FPSection [ ';' DefMultiFPSection ]

FormalParameters := '(' [ MultiFPSection ] ')' FormalReturn

MultiFPSection := ExtendedFP | FPSection [ ';' MultiFPSection ]

FPSection := NonVarFPSection | VarFPSection

DefExtendedFP := DefOptArg | '...

ExtendedFP := OptArg | '...

VarFPSection := 'VAR' IdentList ':' FormalType [ AttributeUnused ]

NonVarFPSection := IdentList ':' FormalType [ AttributeUnused ]

OptArg := '[' Ident ':' FormalType [ '=' ConstExpression ] ']'
DefOptArg := [' Ident ':' FormalType '= ConstExpression ']

FormalType := { 'ARRAY' | 'OF' } Qualident

ModuleDeclaration := 'MODULE' Ident [ Priority ] ';

Priority := [' ConstExpression ']

Export := 'EXPORT' ( 'QUALIFIED' IdentList | 'UNQUALIFIED' IdentList | IdentList ) ';

Import := 'FROM' Ident 'IMPORT' IdentList ';' | 'IMPORT' IdentList ';

DefinitionModule := 'DEFINITION' 'MODULE' [ 'FOR' string ] Ident

Definition := 'CONST' { ConstantDeclaration ';' } | 'TYPE' { Ident ( ';' | '=' TypeAlignment ' ';') } | 'VAR' { VariableDeclaration ';' } | DefProcedureHeading ';

AsmStatement := 'ASM' [ 'VOLATILE' ] (' AsmOperands ')

NamedOperand := [' Ident ']

AsmOperandName := [ NamedOperand ]


AsmList := [ AsmElement ] { ',' AsmElement }

AsmElement := AsmOperandName string ( ' Expression ' )
:=

TrashList := [ string ] { ',', string }
  :=
4 PIM and ISO library definitions

This chapter contains M2F, PIM and ISO libraries.

4.1 Base libraries

These are the base libraries for the GNU Modula-2 compiler. These modules originally came from the M2F compiler and have been cleaned up and extended. They provide a basic interface to the underlying operating system via libc. They also include a number of libraries to allow access to compiler built-ins. Perhaps the largest difference to PIM and ISO libraries is the DynamicString module which declares the type String. The heavy use of this opaque data type results in a number of equivalent modules that can either handle ARRAY OF CHAR or String.

These modules have been extensively tested and are used throughout building the GNU Modula-2 compiler.

4.1.1 gm2-libs/ASCII

```
DEFINITION MODULE ASCII ;

EXPORT QUALIFIED
 nul, soh, stx, etx, eot, enq, ack, bel,
 bs , ht , nl , vt , np , cr , so , si ,
 dle, dc1, dc2, dc3, dc4, nak, syn, etb,
 can, em , sub, esc, fs , gs , rs , us ,
 sp , (* All the above are in order *)
 lf, ff, eof, del, tab, EOL ;

(*
 Note that lf, eof and EOL are added.
*)

CONST
 nul=000C; soh=001C; stx=002C; etx=003C;
 eot=004C; enq=005C; ack=006C; bel=007C;
 bs =010C; ht =011C; nl =012C; vt =013C;
 np =014C; cr =015C; so =016C; si =017C;
 dle=020C; dc1=021C; dc2=022C; dc3=023C;
 dc4=024C; nak=025C; syn=026C; etb=027C;
 can=030C; em =031C; sub=032C; esc=033C;
 fs =034C; gs =035C; rs =036C; us =037C;
 sp =040C; (* All the above are in order *)
 lf =nl ; ff =np ; eof=eot ; tab=ht ;
 del=177C; EOL=nl ;

END ASCII.
```
4.1.2 gm2-libs/Args

DEFINITION MODULE Args ;

EXPORT QUALIFIED GetArg, Narg ;

(*
   GetArg - returns the nth argument from the command line.
   The success of the operation is returned.
*)

PROCEDURE GetArg (VAR a: ARRAY OF CHAR; n: CARDINAL) : BOOLEAN ;

(*
   Narg - returns the number of arguments available from
   command line.
*)

PROCEDURE Narg () : CARDINAL ;

END Args.
4.1.3 gm2-libs/Assertion

DEFINITION MODULE Assertion;

EXPORT QUALIFIED Assert;

(*
   Assert - tests the boolean Condition, if it fails then HALT
   is called.
*)

PROCEDURE Assert (Condition: BOOLEAN);

END Assertion.
4.1.4 gm2-libs/Break

DEFINITION MODULE Break ;

END Break.
4.1.5 gm2-libs/Builtins

DEFINITION MODULE Builtins ;

FROM SYSTEM IMPORT ADDRESS ;

(* Floating point intrinsic procedure functions. *)

PROCEDURE __BUILTIN__ isnanf (x: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isnan (x: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isnanl (x: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ isnanef (x: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isnanete (x: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isnanle (x: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ sinf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ sin (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ sinl (x: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ cosf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ cos (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ cosl (x: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ sqrtf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ sqrt (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ sqrtl (x: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ atan2f (x, y: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ atan2 (x, y: REAL) : REAL ;
PROCEDURE __BUILTIN__ atan2l (x, y: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ fabsf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ fabs (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ fabsl (x: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ logf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ log (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ logl (x: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ expf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ exp (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ expl (x: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ log10f (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ log10 (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ log10l (x: LONGREAL) : LONGREAL ;
PROCEDURE __BUILTIN__ exp10f (x: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ exp10 (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ exp10l (x: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ ilogbf (x: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ ilogb (x: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ ilogbl (x: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ huge_val () : REAL ;
PROCEDURE __BUILTIN__ huge_valf () : SHORTREAL ;
PROCEDURE __BUILTIN__ huge_vall () : LONGREAL ;

PROCEDURE __BUILTIN__ modf (x: REAL; VAR y: REAL) : REAL ;
PROCEDURE __BUILTIN__ modff (x: SHORTREAL; VAR y: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ modfl (x: LONGREAL; VAR y: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ signbit (r: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ signbift (s: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ signbitl (l: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ nextafter (x, y: REAL) : REAL ;
PROCEDURE __BUILTIN__ nextafterf (x, y: SHORTREAL) : SHORTREAL ;
PROCEDURE __BUILTIN__ nextafterl (x, y: LONGREAL) : LONGREAL ;

PROCEDURE __BUILTIN__ scalbln (x: REAL; n: LONGINT) : REAL ;
PROCEDURE __BUILTIN__ scalblnf (x: SHORTREAL; n: LONGINT) : SHORTREAL ;
PROCEDURE __BUILTIN__ scalblnl (x: LONGREAL; n: LONGINT) : LONGREAL ;

PROCEDURE __BUILTIN__ scalbn (x: REAL; n: INTEGER) : REAL ;
PROCEDURE __BUILTIN__ scalbnf (x: SHORTREAL; n: INTEGER) : SHORTREAL ;
PROCEDURE __BUILTIN__ scalbnl (x: LONGREAL; n: INTEGER) : LONGREAL ;

PROCEDURE __BUILTIN__ isgreater (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isgreaterf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isgreateq (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ isgreaterequal (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isgreaterequalf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isgreaterequall (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ isless (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessequall (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ islesseequal (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessequalf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessequall (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ islessgreater (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessgreaterf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ islessgreaterl (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ isunordered (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isunorderedf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isunorderedl (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ iseqsig (x, y: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ iseqsigf (x, y: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ iseqsigl (x, y: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ isnormal (r: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isnormalf (s: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isnormall (l: LONGREAL) : INTEGER ;

PROCEDURE __BUILTIN__ isinf_sign (r: REAL) : INTEGER ;
PROCEDURE __BUILTIN__ isinf_signf (s: SHORTREAL) : INTEGER ;
PROCEDURE __BUILTIN__ isinf_signl (l: LONGREAL) : INTEGER ;

(* Complex arithmetic intrinsic procedure functions. *)
PROCEDURE __BUILTIN__ cabsf (z: SHORTCOMPLEX) : SHORTREAL ;
PROCEDURE __BUILTIN__ cabs (z: COMPLEX) : REAL ;
PROCEDURE __BUILTIN__ cabsl (z: LONGCOMPLEX) : LONGREAL ;

PROCEDURE __BUILTIN__ cargf (z: SHORTCOMPLEX) : SHORTREAL ;
PROCEDURE __BUILTIN__ carg (z: COMPLEX) : REAL ;
PROCEDURE __BUILTIN__ cargl (z: LONGCOMPLEX) : LONGREAL ;

PROCEDURE __BUILTIN__ conjf (z: SHORTCOMPLEX) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ conj (z: COMPLEX) : COMPLEX ;
PROCEDURE __BUILTIN__ conjl (z: LONGCOMPLEX) : LONGCOMPLEX ;

PROCEDURE __BUILTIN__ cpowerf (base: SHORTCOMPLEX; exp: SHORTREAL) : SHORTCOMPLEX ;
PROCEDURE __BUILTIN__ cpower (base: COMPLEX; exp: REAL) : COMPLEX ;
PROCEDURE __BUILTIN__ cpowerl (base: LONGCOMPLEX; exp: LONGREAL) : LONGCOMPLEX ;
PROCEDURE __BUILTIN__ csqrtf (z: SHORTCOMPLEX) : SHORTCOMPLEX;
PROCEDURE __BUILTIN__ csqrt (z: COMPLEX) : COMPLEX;
PROCEDURE __BUILTIN__ csqrtl (z: LONGCOMPLEX) : LONGCOMPLEX;

PROCEDURE __BUILTIN__ cexpf (z: SHORTCOMPLEX) : SHORTCOMPLEX;
PROCEDURE __BUILTIN__ cexp (z: COMPLEX) : COMPLEX;
PROCEDURE __BUILTIN__ cexpl (z: LONGCOMPLEX) : LONGCOMPLEX;

PROCEDURE __BUILTIN__ clnf (z: SHORTCOMPLEX) : SHORTCOMPLEX;
PROCEDURE __BUILTIN__ cln (z: COMPLEX) : COMPLEX;
PROCEDURE __BUILTIN__ clnl (z: LONGCOMPLEX) : LONGCOMPLEX;

PROCEDURE __BUILTIN__ csinf (z: SHORTCOMPLEX) : SHORTCOMPLEX;
PROCEDURE __BUILTIN__ csin (z: COMPLEX) : COMPLEX;
PROCEDURE __BUILTIN__ csinl (z: LONGCOMPLEX) : LONGCOMPLEX;

PROCEDURE __BUILTIN__ ccosf (z: SHORTCOMPLEX) : SHORTCOMPLEX;
PROCEDURE __BUILTIN__ ccos (z: COMPLEX) : COMPLEX;
PROCEDURE __BUILTIN__ ccosl (z: LONGCOMPLEX) : LONGCOMPLEX;

PROCEDURE __BUILTIN__ ctanf (z: SHORTCOMPLEX) : SHORTCOMPLEX;
PROCEDURE __BUILTIN__ ctan (z: COMPLEX) : COMPLEX;
PROCEDURE __BUILTIN__ ctanl (z: LONGCOMPLEX) : LONGCOMPLEX;

PROCEDURE __BUILTIN__ carcsinf (z: SHORTCOMPLEX) : SHORTCOMPLEX;
PROCEDURE __BUILTIN__ carcsin (z: COMPLEX) : COMPLEX;
PROCEDURE __BUILTIN__ carcsinl (z: LONGCOMPLEX) : LONGCOMPLEX;

PROCEDURE __BUILTIN__ carccosf (z: SHORTCOMPLEX) : SHORTCOMPLEX;
PROCEDURE __BUILTIN__ carccos (z: COMPLEX) : COMPLEX;
PROCEDURE __BUILTIN__ carccosl (z: LONGCOMPLEX) : LONGCOMPLEX;

PROCEDURE __BUILTIN__ carctanf (z: SHORTCOMPLEX) : SHORTCOMPLEX;
PROCEDURE __BUILTIN__ carctan (z: COMPLEX) : COMPLEX;
PROCEDURE __BUILTIN__ carctanl (z: LONGCOMPLEX) : LONGCOMPLEX;

(* memory and string intrinsic procedure functions *)

PROCEDURE __BUILTIN__ alloca (i: CARDINAL) : ADDRESS;
PROCEDURE __BUILTIN__ memcpy (dest, src: ADDRESS;
        nbytes: CARDINAL) : ADDRESS;
PROCEDURE __BUILTIN__ index (s: ADDRESS; c: INTEGER) : ADDRESS;
PROCEDURE __BUILTIN__ rindex (s: ADDRESS; c: INTEGER) : ADDRESS;
PROCEDURE __BUILTIN__ memcmp (s1, s2: ADDRESS;
        nbytes: CARDINAL) : INTEGER;
PROCEDURE __BUILTIN__ memset (s: ADDRESS; c: INTEGER;
        nbytes: CARDINAL) : ADDRESS;
PROCEDURE __BUILTIN__ memmove (s1, s2: ADDRESS;
nbytes: CARDINAL) : ADDRESS;
PROCEDURE __BUILTIN__ strcat (dest, src: ADDRESS) : ADDRESS;
PROCEDURE __BUILTIN__ strncat (dest, src: ADDRESS;
nbytes: CARDINAL) : ADDRESS;
PROCEDURE __BUILTIN__ strcpy (dest, src: ADDRESS) : ADDRESS;
PROCEDURE __BUILTIN__ strncpy (dest, src: ADDRESS;
nbytes: CARDINAL) : ADDRESS;
PROCEDURE __BUILTIN__ strcmp (s1, s2: ADDRESS) : INTEGER;
PROCEDURE __BUILTIN__ strncmp (s1, s2: ADDRESS;
nbytes: CARDINAL) : INTEGER;
PROCEDURE __BUILTIN__ strlen (s: ADDRESS) : INTEGER;
PROCEDURE __BUILTIN__ strstr (haystack, needle: ADDRESS) : ADDRESS;
PROCEDURE __BUILTIN__ strpbrk (s, accept: ADDRESS) : ADDRESS;
PROCEDURE __BUILTIN__ strspn (s, accept: ADDRESS) : CARDINAL;
PROCEDURE __BUILTIN__ strcspn (s, accept: ADDRESS) : CARDINAL;
PROCEDURE __BUILTIN__ strchr (s: ADDRESS; c: INTEGER) : ADDRESS;
PROCEDURE __BUILTIN__ strrchr (s: ADDRESS; c: INTEGER) : ADDRESS;

(*
   longjmp - this GCC builtin restricts the val to always 1.
*)

(* do not use these two builtins, as gcc, only really
   anticipates that the Ada front end should use them
   and it only uses them in its runtime exception handling.
   We leave them here in the hope that someday they will
   behave more like their libc counterparts. *)

PROCEDURE __BUILTIN__ longjmp (env: ADDRESS; val: INTEGER);
PROCEDURE __BUILTIN__ setjmp (env: ADDRESS) : INTEGER;

(*
   frame_address - returns the address of the frame.
   The current frame is obtained if level is 0,
   the next level up if level is 1 etc.
*)

PROCEDURE __BUILTIN__ frame_address (level: CARDINAL) : ADDRESS;

(*
   return_address - returns the return address of function.
   The current function return address is
   obtained if level is 0,
   the next level up if level is 1 etc.
*)
PROCEDURE __BUILTIN__ return_address (level: CARDINAL) : ADDRESS ;

(*
  alloca_trace - this is a no-op which is used for internal debugging.
*)
PROCEDURE alloca_trace (returned: ADDRESS; nBytes: CARDINAL) : ADDRESS ;

END Builtins.
4.1.6 gm2-libs/COROUTINES

DEFINITION MODULE FOR "C" COROUTINES ;

CONST
   UnassignedPriority = 0 ;

TYPE
   INTERRUPTSOURCE = CARDINAL ;
   PROTECTION = [UnassignedPriority..7] ;

END COROUTINES.
4.1.7 gm2-libs/CmdArgs

DEFINITION MODULE CmdArgs;

EXPORT QUALIFIED GetArg, Narg;

(*
GetArg - returns the nth argument from the command line, CmdLine
the success of the operation is returned.
*)

PROCEDURE GetArg (CmdLine: ARRAY OF CHAR;
    n: CARDINAL; VAR Argi: ARRAY OF CHAR) : BOOLEAN;

(*
Narg - returns the number of arguments available from
command line, CmdLine.
*)

PROCEDURE Narg (CmdLine: ARRAY OF CHAR) : CARDINAL;

END CmdArgs.
4.1.8 gm2-libs/Debug

DEFINITION MODULE Debug;

(*
  Description: provides some simple debugging routines.
*)

EXPORT QUALIFIED Halt, DebugString;

(*
  Halt - writes a message in the format:
  Module:Function:Line:Message

  It then terminates by calling HALT.
*)

PROCEDURE Halt (Message,
  Module,
  Function: ARRAY OF CHAR;
  LineNo : CARDINAL);

(*
  DebugString - writes a string to the debugging device (Scn.Write).
  It interprets \n as carriage return, linefeed.
*)

PROCEDURE DebugString (a: ARRAY OF CHAR);

END Debug.
4.1.9 gm2-libs/DynamicStrings

DEFINITION MODULE DynamicStrings ;

FROM SYSTEM IMPORT ADDRESS ;
EXPORT QUALIFIED String,
InitString, KillString, Fin, InitStringCharStar,
InitStringChar, Index, RIndex, ReverseIndex,
Mark, Length, Concat, ConcatChar, Assign, Dup, Add,
Equal, EqualCharStar, EqualArray, ToUpper, ToLower,
CopyOut, Mul, Slice, ReplaceChar,
RemoveWhitePrefix, RemoveWhitePostfix, RemoveComment,
char, string,
InitStringDB, InitStringCharStarDB, InitStringCharDB,
MulDB, DupDB, SliceDB,
PushAllocation, PopAllocation, PopAllocationExemption ;

TYPE
  String ;

(*
  InitString - creates and returns a String type object.
  Initial contents are, a.
*)
PROCEDURE InitString (a: ARRAY OF CHAR) : String ;

(*
  KillString - frees String, s, and its contents.
  NIL is returned.
*)
PROCEDURE KillString (s: String) : String ;

(*
  Fin - finishes with a string, it calls KillString with, s.
  The purpose of the procedure is to provide a short cut
to calling KillString and then testing the return result.
*)
PROCEDURE Fin (s: String) ;
InitStringCharStar - initializes and returns a String to contain the C string.
*)

PROCEDURE InitStringCharStar (a: ADDRESS) : String;

(*
    InitStringChar - initializes and returns a String to contain the single character, ch.
*)

PROCEDURE InitStringChar (ch: CHAR) : String;

(*
    Mark - marks String, s, ready for garbage collection.
*)

PROCEDURE Mark (s: String) : String;

(*
    Length - returns the length of the String, s.
*)

PROCEDURE Length (s: String) : CARDINAL;

(*
    ConCat - returns String, a, after the contents of, b, have been appended.
*)

PROCEDURE ConCat (a, b: String) : String;

(*
    ConCatChar - returns String, a, after character, ch, has been appended.
*)

PROCEDURE ConCatChar (a: String; ch: CHAR) : String;

(*
    Assign - assigns the contents of, b, into, a.
*)
String, a, is returned.
)

PROCEDURE Assign (a, b: String) : String ;

(*
    ReplaceChar - returns string s after it has changed all
        occurrences of from to to.
*)

PROCEDURE ReplaceChar (s: String; from, to: CHAR) : String ;

(*
    Dup - duplicate a String, s, returning the copy of s.
*)

PROCEDURE Dup (s: String) : String ;

(*
    Add - returns a new String which contains the contents of a and b.
*)

PROCEDURE Add (a, b: String) : String ;

(*
    Equal - returns TRUE if String, a, and, b, are equal.
*)

PROCEDURE Equal (a, b: String) : BOOLEAN ;

(*
    EqualCharStar - returns TRUE if contents of String, s, is
        the same as the string, a.
*)

PROCEDURE EqualCharStar (s: String; a: ADDRESS) : BOOLEAN ;

(*
    EqualArray - returns TRUE if contents of String, s, is the
        same as the string, a.
*)

PROCEDURE EqualArray (s: String; a: ARRAY) : BOOLEAN ;
PROCEDURE EqualArray (s: String; a: ARRAY OF CHAR) : BOOLEAN ;

(*
   Mult - returns a new string which is n concatenations of String, s.
   If n<=0 then an empty string is returned.
*)

PROCEDURE Mult (s: String; n: CARDINAL) : String ;

(*
   Slice - returns a new string which contains the elements
   low..high-1
   strings start at element 0
   Slice(s, 0, 2) will return elements 0, 1 but not 2
   Slice(s, 1, 3) will return elements 1, 2 but not 3
   Slice(s, 2, 0) will return elements 2..max
   Slice(s, 3, -1) will return elements 3..max-1
   Slice(s, 4, -2) will return elements 4..max-2
*)

PROCEDURE Slice (s: String; low, high: INTEGER) : String ;

(*
   Index - returns the indice of the first occurance of, ch, in String, s.
   -1 is returned if, ch, does not exist.
   The search starts at position, o.
*)

PROCEDURE Index (s: String; ch: CHAR; o: CARDINAL) : INTEGER ;

(*
   RIndex - returns the indice of the last occurance of, ch,
   in String, s. The search starts at position, o.
   -1 is returned if ch is not found. The search
   is performed left to right.
*)

PROCEDURE RIndex (s: String; ch: CHAR; o: CARDINAL) : INTEGER ;
ReverseIndex - returns the indice of the last occurrence of ch in String s. The search starts at position o and searches from right to left. The start position may be indexed negatively from the right (-1 is the last index).
The return value if ch is found will always be positive. -1 is returned if ch is not found.

PROCEDURE ReverseIndex (s: String; ch: CHAR; o: INTEGER) : INTEGER;

(*
RemoveComment - assuming that, comment, is a comment delimiter which indicates anything to its right is a comment then strip off the comment and also any white space on the remaining right hand side. It leaves any white space on the left hand side alone.
*)

PROCEDURE RemoveComment (s: String; comment: CHAR) : String;

(*
RemoveWhitePrefix - removes any leading white space from String, s. A new string is returned.
*)

PROCEDURE RemoveWhitePrefix (s: String) : String;

(*
RemoveWhitePostfix - removes any leading white space from String, s. A new string is returned.
*)

PROCEDURE RemoveWhitePostfix (s: String) : String;

(*
ToUpper - returns string, s, after it has had its lower case characters replaced by upper case characters. The string, s, is not duplicated.
*)

PROCEDURE ToUpper (s: String) : String;
Chapter 4: PIM and ISO library definitions

(*
    ToLower - returns string, s, after it has had its upper case
    characters replaced by lower case characters.
    The string, s, is not duplicated.
*)

PROCEDURE ToLower (s: String) : String ;

(*
    CopyOut - copies string, s, to a.
*)

PROCEDURE CopyOut (VAR a: ARRAY OF CHAR; s: String) ;

(*
    char - returns the character, ch, at position, i, in String, s.
    As Slice the index can be negative so:
    char(s, 0) will return the first character
    char(s, 1) will return the second character
    char(s, -1) will return the last character
    char(s, -2) will return the penultimate character
    a nul character is returned if the index is out of range.
*)

PROCEDURE char (s: String; i: INTEGER) : CHAR ;

(*
    string - returns the C style char * of String, s.
*)

PROCEDURE string (s: String) : ADDRESS ;

(*
    to easily debug an application using this library one could use
    use the following macro processing defines:

    #define InitString(X) InitStringDB(X, __FILE__, __LINE__)
    #define InitStringCharStar(X) InitStringCharStarDB(X, \n        __FILE__, __LINE__)
*)
#define InitStringChar(X) InitStringCharDB(X, __FILE__, __LINE__)
#define Mult(X,Y) MultDB(X, Y, __FILE__, __LINE__)
#define Dup(X) DupDB(X, __FILE__, __LINE__)
#define Slice(X,Y,Z) SliceDB(X, Y, Z, __FILE__, __LINE__)

and then invoke gm2 with the -fcpp flag.
*)

(*
  InitStringDB - the debug version of InitString.
*)

PROCEDURE InitStringDB (a: ARRAY OF CHAR;
            file: ARRAY OF CHAR; line: CARDINAL) : String;

(*
  InitStringCharStarDB - the debug version of InitStringCharStar.
*)

PROCEDURE InitStringCharStarDB (a: ADDRESS;
            file: ARRAY OF CHAR;
            line: CARDINAL) : String;

(*
  InitStringCharDB - the debug version of InitStringChar.
*)

PROCEDURE InitStringCharDB (ch: CHAR;
            file: ARRAY OF CHAR;
            line: CARDINAL) : String;

(*
  MultDB - the debug version of MultDB.
*)

PROCEDURE MultDB (s: String; n: CARDINAL;
            file: ARRAY OF CHAR; line: CARDINAL) : String;

(*
  DupDB - the debug version of Dup.
*)
PROCEDURE DupDB (s: String;
    file: ARRAY OF CHAR; line: CARDINAL) : String ;

(*
    SliceDB - debug version of Slice.
*)
PROCEDURE SliceDB (s: String; low, high: INTEGER;
    file: ARRAY OF CHAR; line: CARDINAL) : String ;

(*
    PushAllocation - pushes the current allocation/deallocation lists.
*)
PROCEDURE PushAllocation ;

(*
    PopAllocation - test to see that all strings are deallocated since
    the last push. Then it pops to the previous allocation/deallocation lists.
    If halt is true then the application terminates
    with an exit code of 1.
*)
PROCEDURE PopAllocation (halt: BOOLEAN) ;

(*
    PopAllocationExemption - test to see that all strings are
    deallocated, except string e since
    the last push.
    Post-condition: it pops to the previous
    allocation/deallocation lists.
    If halt is true then the application
    terminates with an exit code of 1.
    The string, e, is returned unmodified,
*)
PROCEDURE PopAllocationExemption (halt: BOOLEAN; e: String) : String ;

END DynamicStrings.
4.1.10 gm2-libs/Environment

DEFINITION MODULE Environment ;

EXPORT QUALIFIED GetEnvironment, PutEnvironment ;

(*
 GetEnvironment - gets the environment variable Env and places
 a copy of its value into string, dest.
 It returns TRUE if the string Env was found in
 the processes environment.
*)

PROCEDURE GetEnvironment (Env: ARRAY OF CHAR;
 VAR dest: ARRAY OF CHAR) : BOOLEAN ;

(*
 PutEnvironment - change or add an environment variable definition
 EnvDef.
 TRUE is returned if the environment variable was
 set or changed successfully.
*)

PROCEDURE PutEnvironment (EnvDef: ARRAY OF CHAR) : BOOLEAN ;

END Environment.
4.1.11 gm2-libs/FIO

DEFINITION MODULE FIO ;

(* Provides a simple buffered file input/output library. *)

FROM SYSTEM IMPORT ADDRESS, BYTE ;

EXPORT QUALIFIED (* types *)

File,

(* procedures *)

OpenToRead, OpenToWrite, OpenForRandom, Close, EOF, EOLN, WasEOLN, IsNoError, Exists, IsActive,
exists, openToRead, openToWrite, openForRandom,
setPositionFromBeginning, setPositionFromEnd, 
FindPosition, 
ReadChar, ReadString, 
WriteChar, WriteString, WriteLine, 
WriteCardinal, ReadCardinal, 
UnReadChar, 
WriteNBytes, ReadNBytes, 
FlushBuffer, 
GetUnixFileDescriptor, 
GetFileName, getFileName, getFileNameLength, 
FlushOutErr,

(* variables *)

StdIn, StdOut, StdErr ;

TYPE

File = CARDINAL ;

(* the following variables are initialized to their UNIX equivalents *)

VAR

StdIn, StdOut, StdErr: File ;

(*

IsNoError - returns a TRUE if no error has occured on file, f.
*)

PROCEDURE IsNoError (f: File) : BOOLEAN ;

(*)
IsActive - returns TRUE if the file, f, is still active.
*)

PROCEDURE IsActive (f: File) : BOOLEAN ;

(*
    Exists - returns TRUE if a file named, fname exists for reading.
*)

PROCEDURE Exists (fname: ARRAY OF CHAR) : BOOLEAN ;

(*
    OpenToRead - attempts to open a file, fname, for reading and
    it returns this file.
    The success of this operation can be checked by
    calling IsNoError.
*)

PROCEDURE OpenToRead (fname: ARRAY OF CHAR) : File ;

(*
    OpenToWrite - attempts to open a file, fname, for write and
    it returns this file.
    The success of this operation can be checked by
    calling IsNoError.
*)

PROCEDURE OpenToWrite (fname: ARRAY OF CHAR) : File ;

(*
    OpenForRandom - attempts to open a file, fname, for random access
    read or write and it returns this file.
    The success of this operation can be checked by
    calling IsNoError.
    towrite, determines whether the file should be
    opened for writing or reading.
    newfile, determines whether a file should be
    created if towrite is TRUE or whether the
    previous file should be left alone,
    allowing this descriptor to seek
    and modify an existing file.
*)
PROCEDURE OpenForRandom (fname: ARRAY OF CHAR;
    towrite, newfile: BOOLEAN) : File ;

(*
    Close - close a file which has been previously opened using:
        OpenToRead, OpenToWrite, OpenForRandom.
    It is correct to close a file which has an error status.
*)

PROCEDURE Close (f: File) ;

(* the following functions are functionally equivalent to the above
    except they allow C style names. *)

PROCEDURE exists (fname: ADDRESS; flength: CARDINAL) : BOOLEAN ;
PROCEDURE openToRead (fname: ADDRESS; flength: CARDINAL) : File ;
PROCEDURE openToWrite (fname: ADDRESS; flength: CARDINAL) : File ;
PROCEDURE openForRandom (fname: ADDRESS; flength: CARDINAL;
    towrite, newfile: BOOLEAN) : File ;

(*
    FlushBuffer - flush contents of the FIO file, f, to libc.
*)

PROCEDURE FlushBuffer (f: File) ;

(*
    ReadNBytes - reads nBytes of a file into memory area, dest, returning
        the number of bytes actually read.
    This function will consume from the buffer and then
        perform direct libc reads. It is ideal for large reads.
*)

PROCEDURE ReadNBytes (f: File; nBytes: CARDINAL;
    dest: ADDRESS) : CARDINAL ;

(*
    ReadAny - reads HIGH (a) + 1 bytes into, a. All input
        is fully buffered, unlike ReadNBytes and thus is more
        suited to small reads.
*)
PROCEDURE ReadAny (f: File; VAR a: ARRAY OF BYTE) ;

(*
WriteNBytes - writes nBytes from memory area src to a file
returning the number of bytes actually written.
This function will flush the buffer and then
write the nBytes using a direct write from libc.
It is ideal for large writes.
*)

PROCEDURE WriteNBytes (f: File; nBytes: CARDINAL;
src: ADDRESS) : CARDINAL ;

(*
WriteAny - writes HIGH (a) + 1 bytes onto, file, f. All output
is fully buffered, unlike WriteNBytes and thus is more
suited to small writes.
*)

PROCEDURE WriteAny (f: File; VAR a: ARRAY OF BYTE) ;

(*
WriteChar - writes a single character to file, f.
*)

PROCEDURE WriteChar (f: File; ch: CHAR) ;

(*
EOF - tests to see whether a file, f, has reached end of file.
*)

PROCEDURE EOF (f: File) : BOOLEAN ;

(*
EOLN - tests to see whether a file, f, is about to read a newline.
It does NOT consume the newline. It reads the next character
and then immediately unreads the character.
*)

PROCEDURE EOLN (f: File) : BOOLEAN ;
Chapter 4: PIM and ISO library definitions

(*
    WasEOLN - tests to see whether a file, f, has just read a newline character.
*)
PROCEDURE WasEOLN (f: File) : BOOLEAN ;

(*
    ReadChar - returns a character read from file, f.
    Sensible to check with IsNoError or EOF after calling this function.
*)
PROCEDURE ReadChar (f: File) : CHAR ;

(*
    UnReadChar - replaces a character, ch, back into file, f.
    This character must have been read by ReadChar and it does not allow successive calls. It may only be called if the previous read was successful, end of file or end of line seen.
*)
PROCEDURE UnReadChar (f: File ; ch: CHAR) ;

(*
    WriteLine - writes out a linefeed to file, f.
*)
PROCEDURE WriteLine (f: File) ;

(*
    WriteString - writes a string to file, f.
*)
PROCEDURE WriteString (f: File; a: ARRAY OF CHAR) ;

(*
    ReadString - reads a string from file, f, into string, a.
    It terminates the string if HIGH is reached or if a newline is seen or an error occurs.
*)
PROCEDURE ReadString (f: File; VAR a: ARRAY OF CHAR) ;

(*
WriteCardinal - writes a CARDINAL to file, f.
    It writes the binary image of the CARDINAL.
to file, f.
*)

PROCEDURE WriteCardinal (f: File; c: CARDINAL) ;

(*
ReadCardinal - reads a CARDINAL from file, f.
    It reads a bit image of a CARDINAL
    from file, f.
*)

PROCEDURE ReadCardinal (f: File) : CARDINAL ;

(*
GetUnixFileDescriptor - returns the UNIX file descriptor of a file.
    Useful when combining FIO.mod with select
    (in Selective.def - but note the comments in
    Selective about using read/write primatives)
*)

PROCEDURE GetUnixFileDescriptor (f: File) : INTEGER ;

(*
SetPositionFromBeginning - sets the position from the beginning
    of the file.
*)

PROCEDURE SetPositionFromBeginning (f: File; pos: LONGINT) ;

(*
SetPositionFromEnd - sets the position from the end of the file.
*)

PROCEDURE SetPositionFromEnd (f: File; pos: LONGINT) ;
 Chapter 4: PIM and ISO library definitions

(*
  FindPosition - returns the current absolute position in file, f.
*)
PROCEDURE FindPosition (f: File) : LONGINT ;

(*
  GetFileName - assigns, a, with the filename associated with, f.
*)
PROCEDURE GetFileName (f: File; VAR a: ARRAY OF CHAR) ;

(*
  getFileName - returns the address of the filename associated with, f.
*)
PROCEDURE getFileName (f: File) : ADDRESS ;

(*
  getFileNameLength - returns the number of characters associated with filename, f.
*)
PROCEDURE getFileNameLength (f: File) : CARDINAL ;

(*
  FlushOutErr - flushes, StdOut, and, StdErr.
*)
PROCEDURE FlushOutErr ;

END FIO.
4.1.12 gm2-libs/FormatStrings

DEFINITION MODULE FormatStrings ;

FROM SYSTEM IMPORT BYTE ;
FROM DynamicStrings IMPORT String ;
EXPORT QUALIFIED Sprintf0, Sprintf1, Sprintf2, Sprintf3, Sprintf4,
     HandleEscape ;

(*
     Sprintf0 - returns a String containing, fmt, after it has had its
             escape sequences translated.
*)
PROCEDURE Sprintf0 (fmt: String) : String ;

(*
     Sprintf1 - returns a String containing, fmt, together with
             encapsulated entity, w. It only formats the
             first %s or %d with n.
*)
PROCEDURE Sprintf1 (fmt: String; w: ARRAY OF BYTE) : String ;

(*
     Sprintf2 - returns a string, fmt, which has been formatted.
*)
PROCEDURE Sprintf2 (fmt: String; w1, w2: ARRAY OF BYTE) : String ;

(*
     Sprintf3 - returns a string, fmt, which has been formatted.
*)
PROCEDURE Sprintf3 (fmt: String; w1, w2, w3: ARRAY OF BYTE) : String ;

(*
     Sprintf4 - returns a string, fmt, which has been formatted.
*)
PROCEDURE Sprintf4 (fmt: String;
     w1, w2, w3, w4: ARRAY OF BYTE) : String ;
(*
  HANDLEESCAPE - translates \a, \b, \e, \f, \n, \r, \x[hex] \[octal]
  into their respective ascii codes. It also converts
  \[any] into a single [any] character.
*)

PROCEDURE HandleEscape (s: String) : String ;

END FormatStrings.
4.1.13 gm2-libs/FpuIO

DEFINITION MODULE FpuIO;

EXPORT QUALIFIED ReadReal, WriteReal, StrToReal, RealToStr,
    ReadLongReal, WriteLongReal, StrToLongReal,
    LongRealToStr,
    ReadLongInt, WriteLongInt, StrToLongInt,
    LongIntToStr;

PROCEDURE ReadReal (VAR x: REAL);
PROCEDURE WriteReal (x: REAL; TotalWidth, FractionWidth: CARDINAL);
PROCEDURE StrToReal (a: ARRAY OF CHAR; VAR x: REAL);
PROCEDURE RealToStr (x: REAL; TotalWidth, FractionWidth: CARDINAL;
    VAR a: ARRAY OF CHAR);

PROCEDURE ReadLongReal (VAR x: LONGREAL);
PROCEDURE WriteLongReal (x: LONGREAL; TotalWidth, FractionWidth: CARDINAL);
PROCEDURE StrToLongReal (a: ARRAY OF CHAR; VAR x: LONGREAL);
PROCEDURE LongRealToStr (x: LONGREAL;
    TotalWidth, FractionWidth: CARDINAL;
    VAR a: ARRAY OF CHAR);

PROCEDURE ReadLongInt (VAR x: LONGINT);
PROCEDURE WriteLongInt (x: LONGINT; n: CARDINAL);
PROCEDURE StrToLongInt (a: ARRAY OF CHAR; VAR x: LONGINT);
PROCEDURE LongIntToStr (x: LONGINT; n: CARDINAL; VAR a: ARRAY OF CHAR);

END FpuIO.
4.1.14 gm2-libs/GetOpt

DEFINITION MODULE GetOpt ;

FROM SYSTEM IMPORT ADDRESS ;
FROM DynamicStrings IMPORT String ;

CONST
   no_argument = 0 ;
   required_argument = 1 ;
   optional_argument = 2 ;

TYPE
   LongOptions ;
   PtrToInteger = POINTER TO INTEGER ;

PROCEDURE GetOpt (argc: INTEGER; argv: ADDRESS; optstring: String;
   VAR optarg: String;
   VAR optind, opterr, optopt: INTEGER) : CHAR ;

PROCEDURE InitLongOptions () : LongOptions ;

PROCEDURE AddLongOption (name: String; has_arg: INTEGER;
   flag: INTEGER; val: INTEGER) : LONG ;

(from man 3 getopt)
   The meanings of the different fields are:

   name     is the name of the long option.
   has_arg  is: no_argument (or 0) if the option does not take an
               argument; required_argument (or 1) if the option
requires an argument; or optional_argument (or 2) if the option takes an optional argument.

flag specifies how results are returned for a long option. If flag is NULL, then getopt_long() returns val. (For example, the calling program may set val to the equivalent short option character). Otherwise, getopt_long() returns 0, and flag points to a variable which is set to val if the option is found, but left unchanged if the option is not found.

val is the value to return, or to load into the variable pointed to by flag.

The last element of the array must be filled with zeros.

PROCEDURE AddLongOption (lo: LongOptions; index: CARDINAL; name: String; has_arg: INTEGER; VAR flag: INTEGER; val: INTEGER) : LongOptions ;

PROCEDURE KillLongOptions (lo: LongOptions) : LongOptions ;

PROCEDURE GetOptLong (argc: INTEGER; argv: ADDRESS; optstring: String; longopts: LongOptions; VAR longindex: INTEGER) : INTEGER ;

PROCEDURE GetOptLongOnly (argc: INTEGER; argv: ADDRESS; optstring: String; longopts: LongOptions; VAR longindex: INTEGER) : INTEGER ;
optstring: String; longopts: LongOptions;
VAR longindex: INTEGER) : INTEGER ;

END GetOpt.
4.1.15 gm2-libs/IO

DEFINITION MODULE IO ;

(*
   Description: provides Read, Write, Errors procedures that map onto UNIX file descriptors 0, 1 and 2. This is achieved by using FIO if we are in buffered mode and using libc.write if not.
*)

EXPORT QUALIFIED Read, Write, Error,
    UnBufferedMode, BufferedMode,
    EchoOn, EchoOff ;

PROCEDURE Read (VAR ch: CHAR) ;
PROCEDURE Write (ch: CHAR) ;
PROCEDURE Error (ch: CHAR) ;

(*
    UnBufferedMode - places file descriptor, fd, into an unbuffered mode.
*)

PROCEDURE UnBufferedMode (fd: INTEGER; input: BOOLEAN) ;

(*
    BufferedMode - places file descriptor, fd, into a buffered mode.
*)

PROCEDURE BufferedMode (fd: INTEGER; input: BOOLEAN) ;

(*
    EchoOn - turns on echoing for file descriptor, fd. This only really makes sense for a file descriptor opened for terminal input or maybe some specific file descriptor which is attached to a particular piece of hardware.
*)

PROCEDURE EchoOn (fd: INTEGER; input: BOOLEAN) ;

(*
    EchoOff - turns off echoing for file descriptor, fd. This
only really makes sense for a file descriptor opened
for terminal input or maybe some specific file descriptor
which is attached to a particular piece of hardware.

*)

PROCEDURE EchoOff (fd: INTEGER; input: BOOLEAN) ;

END IO.
4.1.16 gm2-libs/Indexing

DEFINITION MODULE Indexing;

FROM SYSTEM IMPORT ADDRESS;

TYPE
    Index;
    IndexProcedure = PROCEDURE (ADDRESS);

(*
    InitIndexTuned - creates a dynamic array with low indice.
    minsize is the initial number of elements the array is allocated and growfactor determines how it will be resized once it becomes full.
*)

PROCEDURE InitIndexTuned (low, minsize, growfactor: CARDINAL) : Index;

(*
    InitIndex - creates and returns an Index.
*)

PROCEDURE InitIndex (low: CARDINAL) : Index;

(*
    KillIndex - returns Index to free storage.
*)

PROCEDURE KillIndex (i: Index) : Index;

(*
    DebugIndex - turns on debugging within an index.
*)

PROCEDURE DebugIndex (i: Index) : Index;

(*
    InBounds - returns TRUE if indice, n, is within the bounds of the dynamic array.
*)
PROCEDURE InBounds (i: Index; n: CARDINAL) : BOOLEAN;

(*
   HighIndice - returns the last legally accessible indice of this array.*
*)
PROCEDURE HighIndice (i: Index) : CARDINAL;

(*
   LowIndice - returns the first legally accessible indice of this array.*
*)
PROCEDURE LowIndice (i: Index) : CARDINAL;

(*
   PutIndice - places, a, into the dynamic array at position i[n]
*)
PROCEDURE PutIndice (i: Index; n: CARDINAL; a: ADDRESS);

(*
   GetIndice - retrieves, element i[n] from the dynamic array.
*)
PROCEDURE GetIndice (i: Index; n: CARDINAL) : ADDRESS;

(*
   IsIndiceInIndex - returns TRUE if, a, is in the index, i.
*)
PROCEDURE IsIndiceInIndex (i: Index; a: ADDRESS) : BOOLEAN;

(*
   RemoveIndiceFromIndex - removes, a, from Index, i.
*)
PROCEDURE RemoveIndiceFromIndex (i: Index; a: ADDRESS);
DeleteIndice - delete i[j] from the array.
*)

PROCEDURE DeleteIndice (i: Index; j: CARDINAL);

(*
   IncludeIndiceIntoIndex - if the indice is not in the index, then
   add it at the end.
*)

PROCEDURE IncludeIndiceIntoIndex (i: Index; a: ADDRESS);

(*
   ForeachIndiceInIndexDo - for each j indice of i, call procedure p(i[j])
*)

PROCEDURE ForeachIndiceInIndexDo (i: Index; p: IndexProcedure);

(*
   IsEmpty - return TRUE if the array has no entries it.
*)

PROCEDURE IsEmpty (i: Index): BOOLEAN;

END Indexing.
4.1.17 gm2-libs/LMathLib0

DEFINITION MODULE LMathLib0;

CONST
  pi = 3.1415926535897932384626433832795028841972;
  exp1 = 2.7182818284590452353602874713526624977572;

PROCEDURE __BUILTIN__ sqrt (x: LONGREAL) : LONGREAL;
PROCEDURE exp (x: LONGREAL) : LONGREAL;
PROCEDURE ln (x: LONGREAL) : LONGREAL;
PROCEDURE __BUILTIN__ sin (x: LONGREAL) : LONGREAL;
PROCEDURE __BUILTIN__ cos (x: LONGREAL) : LONGREAL;
PROCEDURE tan (x: LONGREAL) : LONGREAL;
PROCEDURE arctan (x: LONGREAL) : LONGREAL;
PROCEDURE entier (x: LONGREAL) : INTEGER;

END LMathLib0.
4.1.18 gm2-libs/LegacyReal

    DEFINITION MODULE LegacyReal ;

    TYPE
        REAL = SHORTREAL ;

    END LegacyReal.
4.1.19 gm2-libs/M2Dependent

DEFINITION MODULE M2Dependent ;

FROM System IMPORT ADDRESS ;

TYPE
  ArgCVCEnvP = PROCEDURE (INTEGER, ADDRESS, ADDRESS) ;

PROCEDURE ConstructModules (applicationmodule, libname, overrideliborder: ADDRESS;
  argc: INTEGER; argv, envp: ADDRESS) ;

PROCEDURE DeconstructModules (applicationmodule, libname: ADDRESS;
  argc: INTEGER; argv, envp: ADDRESS) ;

(*
  RegisterModule - adds module name to the list of outstanding
  modules which need to have their dependencies
  explored to determine initialization order.
*)

PROCEDURE RegisterModule (modulename, libname: ADDRESS;
  init, fini: ArgCVCEnvP;
  dependencies: PROC) ;

(*
  RequestDependant - used to specify that modulename:libname
  is dependant upon
  module dependantmodule:dependantlibname
*)

PROCEDURE RequestDependant (modulename, libname, dependantmodule, dependantlibname: ADDRESS) ;

(*
  InstallTerminationProcedure - installs a procedure, p, which will
  be called when the procedure
  ExecuteTerminationProcedures
  is invoked. It returns TRUE is the
  procedure is installed.
*)
PROCEDURE InstallTerminationProcedure (p: PROC) : BOOLEAN ;

(*
   ExecuteInitialProcedures - executes the initial procedures installed
   by InstallInitialProcedure.
*)

PROCEDURE ExecuteInitialProcedures ;

(*
   InstallInitialProcedure - installs a procedure to be executed just
   before the BEGIN code section of the main program module.
*)

PROCEDURE InstallInitialProcedure (p: PROC) : BOOLEAN ;

(*
   ExecuteTerminationProcedures - calls each installed termination procedure
   in reverse order.
*)

PROCEDURE ExecuteTerminationProcedures ;

END M2Dependent.
4.1.20 gm2-libs/M2EXCEPTION

DEFINITION MODULE M2EXCEPTION;

(* This enumerated list of exceptions must match the exceptions in gm2-libs-iso to allow mixed module dialect projects. *)

TYPE
M2Exceptions =
(indexException, rangeException, caseSelectException, invalidLocation, functionException, wholeValueException, wholeDivException, realValueException, realDivException, complexValueException, complexDivException, protException, sysException, coException, exException);

(* If the program or coroutine is in the exception state then return the enumeration value representing the exception cause. If it is not in the exception state then raises and exception (exException). *)

PROCEDURE M2Exception () : M2Exceptions;

(* Returns TRUE if the program or coroutine is in the exception state. Returns FALSE if the program or coroutine is not in the exception state. *)

PROCEDURE IsM2Exception () : BOOLEAN;

END M2EXCEPTION.
4.1.21 gm2-libs/M2RTS

DEFINITION MODULE M2RTS ;

FROM SYSTEM IMPORT ADDRESS ;

TYPE
    ArgCVEnvP = PROCEDURE (INTEGER, ADDRESS, ADDRESS) ;

PROCEDURE ConstructModules (applicationmodule, libname, 
    overrideliborder: ADDRESS; 
    argc: INTEGER; argv, envp: ADDRESS) ;

PROCEDURE DeconstructModules (applicationmodule, libname: ADDRESS; 
    argc: INTEGER; argv, envp: ADDRESS) ;

(*
    RegisterModule - adds module name to the list of outstanding 
    modules which need to have their dependencies 
    explored to determine initialization order.
*)

PROCEDURE RegisterModule (name, libname: ADDRESS; 
    init, fini: ArgCVEnvP; 
    dependencies: PROC) ;

(*
    RequestDependant - used to specify that modulename is dependant upon 
    module dependantmodule.
*)

PROCEDURE RequestDependant (modulename, libname, 
    dependantmodule, dependantlibname: ADDRESS) ;

(*
    InstallTerminationProcedure - installs a procedure, p, which will 
    be called when the procedure 
    ExecuteTerminationProcedures 
    is invoked. It returns TRUE is the 
    procedure is installed.
*)
PROCEDURE InstallTerminationProcedure (p: PROC) : BOOLEAN ;

(*
   ExecuteInitialProcedures - executes the initial procedures installed
   by InstallInitialProcedure.
*)

PROCEDURE ExecuteInitialProcedures ;

(*
   InstallInitialProcedure - installs a procedure to be executed just
   before the BEGIN code section of the main
   program module.
*)

PROCEDURE InstallInitialProcedure (p: PROC) : BOOLEAN ;

(*
   ExecuteTerminationProcedures - calls each installed termination procedure
       in reverse order.
*)

PROCEDURE ExecuteTerminationProcedures ;

(*
   Terminate - provides compatibility for pim. It call exit with
   the exitcode provided in a prior call to ExitOnHalt
   (or zero if ExitOnHalt was never called). It does
   not call ExecuteTerminationProcedures.
*)

PROCEDURE Terminate <* noreturn *> ;

(*
   HALT - terminate the current program. The procedure Terminate
   is called before the program is stopped. The parameter
   exitcode is optional. If the parameter is not supplied
   HALT will call libc 'abort', otherwise it will exit with
   the code supplied. Supplying a parameter to HALT has the
   same effect as calling ExitOnHalt with the same code and
   then calling HALT with no parameter.
*)
PROCEDURE HALT ([exitcode: INTEGER = -1]) <* noreturn *> ;

(*
   Halt - provides a more user friendly version of HALT, which takes
   four parameters to aid debugging. It writes an error message
   to stderr and calls exit (1).
*)

PROCEDURE Halt (description, filename, function: ARRAY OF CHAR;
               line: CARDINAL) <* noreturn *> ;

(*
   HaltC - provides a more user friendly version of HALT, which takes
   four parameters to aid debugging. It writes an error message
   to stderr and calls exit (1).
*)

PROCEDURE HaltC (description, filename, function: ADDRESS;
                  line: CARDINAL) <* noreturn *> ;

(*
   ExitOnHalt - if HALT is executed then call exit with the exit code, e.
*)

PROCEDURE ExitOnHalt (e: INTEGER) ;

(*
   ErrorMessage - emits an error message to stderr and then calls exit (1).
*)

PROCEDURE ErrorMessage (message: ARRAY OF CHAR;
                         filename: ARRAY OF CHAR;
                         line: CARDINAL;
                         function: ARRAY OF CHAR) <* noreturn *> ;

(*
   Length - returns the length of a string, a. This is called whenever
   the user calls LENGTH and the parameter cannot be calculated
   at compile time.
*)
PROCEDURE Length (a: ARRAY OF CHAR) : CARDINAL ;

(*
   The following are the runtime exception handler routines.
*)

PROCEDURE AssignmentException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;
PROCEDURE ReturnException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;
PROCEDURE IncException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;
PROCEDURE DecException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;
PROCEDURE InclException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;
PROCEDURE ExclException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;
PROCEDURE ShiftException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;
PROCEDURE RotateException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;
PROCEDURE StaticArraySubscriptException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;
PROCEDURE DynamicArraySubscriptException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;
PROCEDURE ForLoopBeginException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;
PROCEDURE ForLoopToException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;
PROCEDURE ForLoopEndException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;
PROCEDURE PointerNilException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;
PROCEDURE NoReturnException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;
PROCEDURE CaseException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;
PROCEDURE WholeNonPosDivException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;
PROCEDURE WholeNonPosModException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;
PROCEDURE WholeZeroDivException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;
PROCEDURE WholeZeroRemException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;
PROCEDURE WholeValueException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;
PROCEDURE RealValueException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;
PROCEDURE ParameterException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;
PROCEDURE NoException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) <* noreturn *> ;

END M2RTS.
4.1.22 gm2-libs/MathLib0

DEFINITION MODULE MathLib0 ;

CONST
  pi = 3.1415926535897932384626433832795028841972;
  exp1 = 2.7182818284590452353602874713526624977572;

PROCEDURE __BUILTIN__ sqrt (x: REAL) : REAL ;
PROCEDURE exp (x: REAL) : REAL ;
PROCEDURE ln (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ sin (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ cos (x: REAL) : REAL ;
PROCEDURE tan (x: REAL) : REAL ;
PROCEDURE arctan (x: REAL) : REAL ;
PROCEDURE entier (x: REAL) : INTEGER ;

END MathLib0.
4.1.23 gm2-libs/MemUtils

DEFINITION MODULE MemUtils ;

FROM SYSTEM IMPORT ADDRESS ;
EXPORT QUALIFIED MemCopy, MemZero ;

(*
    MemCopy - copies a region of memory to the required destination.
*)
PROCEDURE MemCopy (from: ADDRESS; length: CARDINAL; to: ADDRESS) ;

(*
    MemZero - sets a region of memory: a..a+length to zero.
*)
PROCEDURE MemZero (a: ADDRESS; length: CARDINAL) ;

END MemUtils.
4.1.24 gm2-libs/NumberIO

DEFINITION MODULE NumberIO;

EXPORT QUALIFIED ReadCard, WriteCard, ReadHex, WriteHex, ReadInt, WriteInt, CardToStr, StrToCard, StrToHex, HexToStr, StrToInt, IntToStr, ReadOct, WriteOct, OctToStr, StrToOct, ReadBin, WriteBin, BinToStr, StrToBin, StrToBinInt, StrToHexInt, StrToOctInt;

PROCEDURE ReadCard (VAR x: CARDINAL);
PROCEDURE WriteCard (x, n: CARDINAL);
PROCEDURE ReadHex (VAR x: CARDINAL);
PROCEDURE WriteHex (x, n: CARDINAL);
PROCEDURE ReadInt (VAR x: INTEGER);
PROCEDURE WriteInt (x: INTEGER; n: CARDINAL);
PROCEDURE CardToStr (x, n: CARDINAL; VAR a: ARRAY OF CHAR);
PROCEDURE StrToCard (a: ARRAY OF CHAR; VAR x: CARDINAL);
PROCEDURE HexToStr (x, n: CARDINAL; VAR a: ARRAY OF CHAR);
PROCEDURE StrToHex (a: ARRAY OF CHAR; VAR x: CARDINAL);
PROCEDURE IntToStr (x: INTEGER; n: CARDINAL; VAR a: ARRAY OF CHAR);
PROCEDURE StrToInt (a: ARRAY OF CHAR; VAR x: INTEGER);
PROCEDURE ReadOct (VAR x: CARDINAL);
PROCEDURE WriteOct (x, n: CARDINAL);
PROCEDURE OctToStr (x, n: CARDINAL; VAR a: ARRAY OF CHAR);
PROCEDURE StrToOct (a: ARRAY OF CHAR; VAR x: CARDINAL);
PROCEDURE ReadBin (VAR x: CARDINAL);
PROCEDURE WriteBin (x, n: CARDINAL);
PROCEDURE BinToStr (x, n: CARDINAL ; VAR a: ARRAY OF CHAR) ;
PROCEDURE StrToBin (a: ARRAY OF CHAR ; VAR x: CARDINAL) ;
PROCEDURE StrToBinInt (a: ARRAY OF CHAR ; VAR x: INTEGER) ;
PROCEDURE StrToHexInt (a: ARRAY OF CHAR ; VAR x: INTEGER) ;
PROCEDURE StrToOctInt (a: ARRAY OF CHAR ; VAR x: INTEGER) ;

END NumberIO.
4.1.25 gm2-libs/OptLib

DEFINITION MODULE OptLib ;

FROM SYSTEM IMPORT ADDRESS ;
FROM DynamicStrings IMPORT String ;

TYPE
  Option ;

(*
  InitOption - constructor for Option.
*)

PROCEDURE InitOption (argc: INTEGER; argv: ADDRESS) : Option ;

(*
  KillOption - deconstructor for Option.
*)

PROCEDURE KillOption (o: Option) : Option ;

(*
  Dup - duplicate the option array inside, o.
  Notice that this does not duplicate all the contents
  (strings) of argv.
  Shallow copy of the top level indices.
*)

PROCEDURE Dup (o: Option) : Option ;

(*
  Slice - return a new option which has elements [low:high] from the
  options, o.
*)

PROCEDURE Slice (o: Option; low, high: INTEGER) : Option ;

(*
  IndexStrCmp - returns the index in the argv array which matches
  string, s. -1 is returned if the string is not found.
*)
PROCEDURE IndexStrCmp (o: Option; s: String) : INTEGER;

(*
   IndexStrNCmp - returns the index in the argv array where the first
   characters are matched by string, s.
   -1 is returned if the string is not found.
*)

PROCEDURE IndexStrNCmp (o: Option; s: String) : INTEGER;

(*
   ConCat - returns the concatenation of a and b.
*)

PROCEDURE ConCat (a, b: Option) : Option;

(*
   GetArgv - return the argv component of option.
*)

PROCEDURE GetArgv (o: Option) : ADDRESS;

(*
   GetArgc - return the argc component of option.
*)

PROCEDURE GetArgc (o: Option) : INTEGER;

END OptLib.
4.1.26 gm2-libs/PushBackInput

DEFINITION MODULE PushBackInput ;

FROM FIO IMPORT File ;
FROM DynamicStrings IMPORT String ;

EXPORT QUALIFIED Open, PutCh, GetCh, Error,WarnError, WarnString,
Close, SetDebug, GetExitStatus, PutStr,
PutString, GetColumnPosition, GetCurrentLine ;

(*
  Open - opens a file for reading.
*)

PROCEDURE Open (a: ARRAY OF CHAR) : File ;

(*
  GetCh - gets a character from either the push back stack or from file, f.
*)

PROCEDURE GetCh (f: File) : CHAR ;

(*
  PutCh - pushes a character onto the push back stack, it also returns the character which has been pushed.
*)

PROCEDURE PutCh (ch: CHAR) : CHAR ;

(*
  PutString - pushes a string onto the push back stack.
*)

PROCEDURE PutString (a: ARRAY OF CHAR) ;

(*
  PutStr - pushes a dynamic string onto the push back stack.
  The string, s, is not deallocated.
*)
PROCEDURE PutStr (s: String) ;

(*
   Error - emits an error message with the appropriate file, line combination.
*)
PROCEDURE Error (a: ARRAY OF CHAR) ;

(*
   WarnError - emits an error message with the appropriate file, line combination.
   It does not terminate but when the program finishes an exit status of
   1 will be issued.
*)
PROCEDURE WarnError (a: ARRAY OF CHAR) ;

(*
   WarnString - emits an error message with the appropriate file, line combination.
   It does not terminate but when the program finishes an exit status of
   1 will be issued.
*)
PROCEDURE WarnString (s: String) ;

(*
   Close - closes the opened file.
*)
PROCEDURE Close (f: File) ;

(*
   GetExitStatus - returns the exit status which will be 1 if any warnings were issued
*)
PROCEDURE GetExitStatus () : CARDINAL ;

(*
   SetDebug - sets the debug flag on or off.
*)
PROCEDURE SetDebug (d: BOOLEAN) ;
(*
   GetColumnPosition - returns the column position of the current character.*
*)
PROCEDURE GetColumnPosition () : CARDINAL ;

(*
   GetCurrentLine - returns the current line number.
*)
PROCEDURE GetCurrentLine () : CARDINAL ;

END PushBackInput.
4.1.27 gm2-libs/RTExceptions

DEFINITION MODULE RTExceptions ;

(* Runtime exception handler routines. This should be considered as a system module for GNU Modula-2 and allow the compiler to interface with exception handling. *)

FROM SYSTEM IMPORT ADDRESS ;
EXPORT QUALIFIED EHBlock,

  Raise, SetExceptionBlock, GetExceptionBlock,
  GetTextBuffer, GetTextBufferSize, GetNumber,
  InitExceptionBlock, KillExceptionBlock,
  PushHandler, PopHandler,
  BaseExceptionsThrow, DefaultErrorCatch,
  IsInExceptionState, SetExceptionState,
  SwitchExceptionState, GetBaseExceptionBlock,
  SetExceptionSource, GetExceptionSource ;

TYPE
  EHBlock ;
  ProcedureHandler = PROCEDURE ;

(*
  Raise - invoke the exception handler associated with, number, in the active EHBlock. It keeps a record of the number and message in the EHBlock for later use.
*)

PROCEDURE Raise (number: CARDINAL;
  file: ADDRESS; line: CARDINAL;
  column: CARDINAL; function: ADDRESS;
  message: ADDRESS) <* noreturn *> ;

(*
  SetExceptionBlock - sets, source, as the active EHB.
*)

PROCEDURE SetExceptionBlock (source: EHBlock) ;

(*
  GetExceptionBlock - returns the active EHB.
*)
PROCEDURE GetExceptionBlock () : EHBlock ;

(*
   GetTextBuffer - returns the address of the EHB buffer.
*)
PROCEDURE GetTextBuffer (e: EHBlock) : ADDRESS ;

(*
   GetTextBufferSize - return the size of the EHB text buffer.
*)
PROCEDURE GetTextBufferSize (e: EHBlock) : CARDINAL ;

(*
   GetNumber - return the exception number associated with, 
source.
*)
PROCEDURE GetNumber (source: EHBlock) : CARDINAL ;

(*
   InitExceptionBlock - creates and returns a new exception block.
*)
PROCEDURE InitExceptionBlock () : EHBlock ;

(*
   KillExceptionBlock - destroys the EHB, e, and all its handlers.
*)
PROCEDURE KillExceptionBlock (e: EHBlock) : EHBlock ;

(*
   PushHandler - install a handler in EHB, e.
*)
PROCEDURE PushHandler (e: EHBlock; number: CARDINAL; p: ProcedureHandler) ;
Chapter 4: PIM and ISO library definitions

PROCEDURE PopHandler (e: EHBlock; number: CARDINAL) ;

PROCEDURE DefaultErrorCatch ;

PROCEDURE BaseExceptionsThrow ;

PROCEDURE IsInExceptionState () : BOOLEAN ;

PROCEDURE SetExceptionState (to: BOOLEAN) : BOOLEAN ;

PROCEDURE SwitchExceptionState - assigns, from, with the current exception
state and then assigns the current exception to, to.
*)

PROCEDURE SwitchExceptionState (VAR from: BOOLEAN; to: BOOLEAN);

(*
   GetBaseExceptionBlock - returns the initial language exception block
   created.
*)

PROCEDURE GetBaseExceptionBlock (): EHBlock;

(*
   SetExceptionSource - sets the current exception source to, source.
*)

PROCEDURE SetExceptionSource (source: ADDRESS);

(*
   GetExceptionSource - returns the current exception source.
*)

PROCEDURE GetExceptionSource (): ADDRESS;

END RTExceptions.
4.1.28 gm2-libs/RTint

DEFINITION MODULE RTint ;

(* Provides users of the COROUTINES library with the ability to create interrupt sources based on file descriptors and timeouts. *)

FROM SYSTEM IMPORT ADDRESS ;

TYPE
  DispatchVector = PROCEDURE (CARDINAL, CARDINAL, ADDRESS) ;

(*
  InitInputVector - returns an interrupt vector which is associated with the file descriptor, fd.
*)

PROCEDURE InitInputVector (fd: INTEGER; pri: CARDINAL) : CARDINAL ;

(*
  InitOutputVector - returns an interrupt vector which is associated with the file descriptor, fd.
*)

PROCEDURE InitOutputVector (fd: INTEGER; pri: CARDINAL) : CARDINAL ;

(*
  InitTimeVector - returns an interrupt vector associated with the relative time.
*)

PROCEDURE InitTimeVector (micro, secs: CARDINAL; pri: CARDINAL) : CARDINAL ;

(*
  ReArmTimeVector - reprimes the vector, vec, to deliver an interrupt at the new relative time.
*)

PROCEDURE ReArmTimeVector (vec: CARDINAL; micro, secs: CARDINAL) ;

(*
GetTimeVector - assigns, micro, and, secs, with the remaining
time before this interrupt will expire.
This value is only updated when a Listen
occurs.
*)

PROCEDURE GetTimeVector (vec: CARDINAL; VAR micro, secs: CARDINAL) ;

(*
   AttachVector - adds the pointer, p, to be associated with the interrupt
   vector. It returns the previous value attached to this
   vector.
*)

PROCEDURE AttachVector (vec: CARDINAL; ptr: ADDRESS) : ADDRESS ;

(*
   IncludeVector - includes, vec, into the dispatcher list of
   possible interrupt causes.
*)

PROCEDURE IncludeVector (vec: CARDINAL) ;

(*
   ExcludeVector - excludes, vec, from the dispatcher list of
   possible interrupt causes.
*)

PROCEDURE ExcludeVector (vec: CARDINAL) ;

(*
   Listen - will either block indefinitely (until an interrupt)
   or alternatively will test to see whether any interrupts
   are pending.
   If a pending interrupt was found then, call, is called
   and then this procedure returns.
   It only listens for interrupts > pri.
*)

PROCEDURE Listen (untilInterrupt: BOOLEAN;
call: DispatchVector;
pri: CARDINAL) ;
(*
   Init - allows the user to force the initialize order.
*)

PROCEDURE Init;

END RTint.
4.1.29 gm2-libs/SArgs

DEFINITION MODULE SArgs ;

FROM DynamicStrings IMPORT String ;
EXPORT QUALIFIED GetArg, Narg ;

(*
   GetArg - returns the nth argument from the command line.
   The success of the operation is returned.
   If TRUE is returned then the string, s, contains a
   new string, otherwise s is set to NIL.
*)

PROCEDURE GetArg (VAR s: String ; n: CARDINAL) : BOOLEAN ;

(*
   Narg - returns the number of arguments available from
   command line.
*)

PROCEDURE Narg() : CARDINAL ;

END SArgs.
**4.1.30 gm2-libs/SCmdArgs**

```
DEFINITION MODULE SCmdArgs

FROM DynamicStrings IMPORT String

EXPORT QUALIFIED GetArg, Narg

(*
 GetArg - returns the nth argument from the command line, CmdLine
 the success of the operation is returned.
*)

PROCEDURE GetArg (CmdLine: String;
 n: CARDINAL; VAR Arg: String) : BOOLEAN

(*
 Narg - returns the number of arguments available from
 command line, CmdLine.
*)

PROCEDURE Narg (CmdLine: String) : CARDINAL

END SCmdArgs.
```
4.1.31 gm2-libs/SEnvironment

DEFINITION MODULE SEnvironment ;

FROM DynamicStrings IMPORT String ;
EXPORT QUALIFIED GetEnvironment ;

(*
   GetEnvironment - gets the environment variable Env and places
   a copy of its value into String, dest.
   It returns TRUE if the string Env was found in
   the processes environment.
*)

PROCEDURE GetEnvironment (Env: String;
   VAR dest: String) : BOOLEAN ;

(*
   PutEnvironment - change or add an environment variable definition EnvDef.
   TRUE is returned if the environment variable was
   set or changed successfully.
*)

PROCEDURE PutEnvironment (EnvDef: String) : BOOLEAN ;

END SEnvironment.
4.1.32 gm2-libs/SFIO

DEFINITION MODULE SFIO ;

FROM DynamicStrings IMPORT String ;
FROM FIO IMPORT File ;

EXPORT QUALIFIED OpenToRead, OpenToWrite, OpenForRandom, Exists, WriteS, ReadS ;


def exists(fname: string) : boolean :
    
    procedure openreadonly(fname: string) : file :
        
    procedure openforwrite(fname: string) : file :
        
    procedure openforrandom(fname: string) : file :
        
(*

    exists returns true if a file named, fname exists for reading.
*)

PROCEDURE Exists (fname: String) : BOOLEAN ;

(*

    openreadonly attempts to open a file, fname, for reading and
    it returns this file.
    The success of this operation can be checked by
    calling IsNoError.
*)

PROCEDURE OpenToRead (fname: String) : File ;

(*

    openforwrite attempts to open a file, fname, for write and
    it returns this file.
    The success of this operation can be checked by
    calling IsNoError.
*)

PROCEDURE OpenToWrite (fname: String) : File ;

(*

    openforrandom attempts to open a file, fname, for random access
    read or write and it returns this file.
    The success of this operation can be checked by
    calling IsNoError.
    Next, determines whether the file should be
    opened for writing or reading.
    If towrite is true or whether the previous file should
    be left alone, allowing this descriptor to seek
    and modify an existing file.
*)

PROCEDURE OpenForRandom (fname: String) : File ;
PROCEDURE OpenForRandom (fname: String; towrite, newfile: BOOLEAN) : File ;

(*
  WriteS - writes a string, s, to, file. It returns the String, s.
*)
PROCEDURE WriteS (file: File; s: String) : String ;

(*
  ReadS - reads a string, s, from, file. It returns the String, s.
  It stops reading the string at the end of line or end of file.
  It consumes the newline at the end of line but does not place
  this into the returned string.
*)
PROCEDURE ReadS (file: File) : String ;

END SFIO.
4.1.33 gm2-libs/SMathLib0

DEFINITION MODULE SMathLib0;

CONST
    pi   = 3.1415926535897932384626433832795028841972;
    exp1 = 2.7182818284590452353602874713526624977572;

PROCEDURE __BUILTIN__ sqrt (x: SHORTREAL) : SHORTREAL;
PROCEDURE exp (x: SHORTREAL) : SHORTREAL;
PROCEDURE ln (x: SHORTREAL) : SHORTREAL;
PROCEDURE __BUILTIN__ sin (x: SHORTREAL) : SHORTREAL;
PROCEDURE __BUILTIN__ cos (x: SHORTREAL) : SHORTREAL;
PROCEDURE tan (x: SHORTREAL) : SHORTREAL;
PROCEDURE arctan (x: SHORTREAL) : SHORTREAL;
PROCEDURE entier (x: SHORTREAL) : INTEGER;

END SMathLib0.
4.1.34 gm2-libs/SYSTEM

DEFINITION MODULE SYSTEM ;

EXPORT QUALIFIED BITSPERBYTE, BYTESPERWORD, 
ADDRESS, WORD, BYTE, CSIZE_T, CSSIZE_T, (*
Target specific data types. *)
ADR, TSIZE, ROTATE, SHIFT, THROW, TBITSIZE ;
(* SIZE is also exported if -fpim2 is used. *)

CONST

BITSPERBYTE = __ATTRIBUTE__ __BUILTIN__ ((BITS_PER_UNIT)) ;
BYTESPERWORD = __ATTRIBUTE__ __BUILTIN__ ((UNITS_PER_WORD)) ;

(* Note that the full list of system and sized datatypes include:
LOC, WORD, BYTE, ADDRESS, 
(and the non language standard target types)

INTEGER8, INTEGER16, INTEGER32, INTEGER64, 
CARDINAL8, CARDINAL16, CARDINAL32, CARDINAL64, 
WORD16, WORD32, WORD64, BITSET8, BITSET16, 
BITSET32, REAL32, REAL64, REAL128, COMPLEX32, 
COMPLEX64, COMPLEX128, CSIZE_T, CSSIZE_T.

Also note that the non-standard data types will move into another module in the future. *)

(* The following types are supported on this target:
TYPE
(* Target specific data types. *)
*)

(*
all the functions below are declared internally to gm2
==============================================

PROCEDURE ADR (VAR v: <anytype>): ADDRESS;
(* Returns the address of variable v. *)

PROCEDURE SIZE (v: <type>) : ZType;
(* Returns the number of BYTES used to store a v of 
any specified <type>. Only available if -fpim2 is used. *)
PROCEDURE TSIZE (<type>) : CARDINAL;
    (* Returns the number of BYTES used to store a value of the
    specified <type>.
    *)

PROCEDURE ROTATE (val: <a set type>;
    num: INTEGER): <type of first parameter>;
    (* Returns a bit sequence obtained from val by rotating up/right
    or down/right by the absolute value of num. The direction is
down/right if the sign of num is negative, otherwise the direction
is up/left.
    *)

PROCEDURE SHIFT (val: <a set type>;
    num: INTEGER): <type of first parameter>;
    (* Returns a bit sequence obtained from val by shifting up/left
    or down/right by the absolute value of num, introducing
zeros as necessary. The direction is down/right if the sign of
num is negative, otherwise the direction is up/left.
    *)

PROCEDURE THROW (i: INTEGER) <* noreturn *> ;
    (*
    THROW is a GNU extension and was not part of the PIM or ISO
standards. It throws an exception which will be caught by the
EXCEPT block (assuming it exists). This is a compiler builtin
function which interfaces to the GCC exception handling runtime
system.
GCC uses the term throw, hence the naming distinction between
the GCC builtin and the Modula-2 runtime library procedure Raise.
The later library procedure Raise will call SYSTEM.THROW after
performing various housekeeping activities.
    *)

PROCEDURE TBITSIZE (<type>) : CARDINAL ;
    (* Returns the minimum number of bits necessary to represent
<type>. This procedure function is only useful for determining
the number of bits used for any type field within a packed RECORD.
It is not particularly useful elsewhere since <type> might be
optimized for speed, for example a BOOLEAN could occupy a WORD.
    *)

(* The following procedures are invoked by GNU Modula-2 to
shift non word sized set types. They are not strictly part
of the core PIM Modula-2, however they are used
to implement the SHIFT procedure defined above,
which are in turn used by the Logitech compatible libraries.

Users will access these procedures by using the procedure SHIFT above and GNU Modula-2 will map SHIFT onto one of the following procedures.

*)

(* ShiftVal - is a runtime procedure whose job is to implement the SHIFT procedure of ISO SYSTEM. GNU Modula-2 will inline a SHIFT of a single WORD sized set and will only call this routine for larger sets.
*)

PROCEDURE ShiftVal (VAR s, d: ARRAY OF BITSET;
   SetSizeInBits: CARDINAL;
   ShiftCount: INTEGER) ;

(* ShiftLeft - performs the shift left for a multi word set.
   This procedure might be called by the back end of GNU Modula-2 depending whether amount is known at compile time.
*)

PROCEDURE ShiftLeft (VAR s, d: ARRAY OF BITSET;
   SetSizeInBits: CARDINAL;
   ShiftCount: CARDINAL) ;

(* ShiftRight - performs the shift left for a multi word set.
   This procedure might be called by the back end of GNU Modula-2 depending whether amount is known at compile time.
*)

PROCEDURE ShiftRight (VAR s, d: ARRAY OF BITSET;
   SetSizeInBits: CARDINAL;
   ShiftCount: CARDINAL) ;

(* RotateVal - is a runtime procedure whose job is to implement the ROTATE procedure of ISO SYSTEM. GNU Modula-2 will inline a ROTATE of a single WORD (or less) sized set and will only call this routine for larger
sets.
*)

PROCEDURE RotateVal (VAR s, d: ARRAY OF BITSET;
    SetSizeInBits: CARDINAL;
    RotateCount: INTEGER) ;

(*
   RotateLeft - performs the rotate left for a multi word set.
   This procedure might be called by the back end of
   GNU Modula-2 depending whether amount is known at
   compile time.
*)

PROCEDURE RotateLeft (VAR s, d: ARRAY OF BITSET;
    SetSizeInBits: CARDINAL;
    RotateCount: CARDINAL) ;

(*
   RotateRight - performs the rotate right for a multi word set.
   This procedure might be called by the back end of
   GNU Modula-2 depending whether amount is known at
   compile time.
*)

PROCEDURE RotateRight (VAR s, d: ARRAY OF BITSET;
    SetSizeInBits: CARDINAL;
    RotateCount: CARDINAL) ;

END SYSTEM.
4.1.35 gm2-libs/Scan

DEFINITION MODULE Scan ;

(* Provides a primitive symbol fetching from input. Symbols are delimited by spaces and tabs. Limitation only allows one source file at a time to deliver symbols. *)

EXPORT QUALIFIED GetNextSymbol, WriteError, OpenSource, CloseSource, TerminateOnError, DefineComments ;

(* OpenSource - opens a source file for reading. *)
PROCEDURE OpenSource (a: ARRAY OF CHAR) : BOOLEAN ;

(* CloseSource - closes the current source file from reading. *)
PROCEDURE CloseSource ;

(* GetNextSymbol gets the next source symbol and returns it in a. *)
PROCEDURE GetNextSymbol (VAR a: ARRAY OF CHAR) ;

(* WriteError writes a message, a, under the source line, which attempts to pinpoint the Symbol at fault. *)
PROCEDURE WriteError (a: ARRAY OF CHAR) ;

(* TerminateOnError - exits with status 1 if we call WriteError. *)
PROCEDURE TerminateOnError ;

(* DefineComments - defines the start of comments within the source file. *)
The characters in Start define the comment start and characters in End define the end. The BOOLEAN eoln determine whether the comment is terminated by end of line. If eoln is TRUE then End is ignored.

If this procedure is never called then no comments are allowed.

*)

PROCEDURE DefineComments (Start, End: ARRAY OF CHAR; eoln: BOOLEAN);
4.1.36 gm2-libs/Selective

DEFINITION MODULE Selective ;

FROM SYSTEM IMPORT ADDRESS ;

EXPORT QUALIFIED SetOfFd, Timeval,
  InitSet, KillSet, InitTime, KillTime,
  GetTime, SetTime,
  FdZero, FdSet, FdClr, FdIsSet, Select,
  MaxFdsPlusOne, WriteCharRaw, ReadCharRaw,
  GetTimeOfDay ;

TYPE
  SetOfFd = ADDRESS ;  (* Hidden type in Selective.c *)
  Timeval = ADDRESS ;  (* Hidden type in Selective.c *)

PROCEDURE Select (nooffds: CARDINAL;
  readfds, writefds, exceptfds: SetOfFd;
  timeout: Timeval) : INTEGER ;

PROCEDURE InitTime (sec, usec: CARDINAL) : Timeval ;
PROCEDURE KillTime (t: Timeval) : Timeval ;
PROCEDURE GetTime (t: Timeval; VAR sec, usec: CARDINAL) ;
PROCEDURE SetTime (t: Timeval; sec, usec: CARDINAL) ;
PROCEDURE InitSet () : SetOfFd ;
PROCEDURE KillSet (s: SetOfFd) : SetOfFd ;
PROCEDURE FdZero (s: SetOfFd) ;
PROCEDURE FdSet (fd: INTEGER; s: SetOfFd) ;
PROCEDURE FdClr (fd: INTEGER; s: SetOfFd) ;
PROCEDURE FdIsSet (fd: INTEGER; s: SetOfFd) : BOOLEAN ;
PROCEDURE MaxFdsPlusOne (a, b: INTEGER) : INTEGER ;

(* you must use the raw routines with select - not the FIO buffered routines *)
PROCEDURE WriteCharRaw (fd: INTEGER; ch: CHAR) ;
PROCEDURE ReadCharRaw (fd: INTEGER) : CHAR ;

(*
  GetTimeOfDay - fills in a record, Timeval, filled in with the
  current system time in seconds and microseconds.
  It returns zero (see man 3p gettimeofday)
*)

PROCEDURE GetTimeOfDay (tv: Timeval) : INTEGER ;
END Selective.
4.1.37 gm2-libs/StdIO

DEFINITION MODULE StdIO;

EXPORT QUALIFIED ProcRead, ProcWrite,
     Read, Write,
     PushOutput, PopOutput, GetCurrentOutput,
     PushInput, PopInput, GetCurrentInput;

TYPE
    ProcWrite = PROCEDURE (CHAR);
    ProcRead  = PROCEDURE (VAR CHAR);

(*
    Read - is the generic procedure that all higher application layers
    should use to receive a character.
*)

PROCEDURE Read (VAR ch: CHAR);

(*
    Write - is the generic procedure that all higher application layers
    should use to emit a character.
*)

PROCEDURE Write (ch: CHAR);

(*
    PushOutput - pushes the current Write procedure onto a stack,
    any future references to Write will actually invoke
    procedure, p.
*)

PROCEDURE PushOutput (p: ProcWrite);

(*
    PopOutput - restores Write to use the previous output procedure.
*)

PROCEDURE PopOutput;
Chapter 4: PIM and ISO library definitions

(*
    GetCurrentOutput - returns the current output procedure.
*)

PROCEDURE GetCurrentOutput () : ProcWrite ;

(*
    PushInput - pushes the current Read procedure onto a stack,
    any future references to Read will actually invoke
    procedure, p.
*)

PROCEDURE PushInput (p: ProcRead) ;

(*
    PopInput - restores Write to use the previous output procedure.
*)

PROCEDURE PopInput ;

(*
    GetCurrentInput - returns the current input procedure.
*)

PROCEDURE GetCurrentInput () : ProcRead ;

END StdIO.
4.1.38 gm2-libs/Storage

DEFINITION MODULE Storage ;

FROM SYSTEM IMPORT ADDRESS ;

EXPORT QUALIFIED ALLOCATE, DEALLOCATE, REALLOCATE, Available ;

(* ALLOCATE - attempt to allocate memory from the heap. NIL is returned in, a, if ALLOCATE fails. *)
PROCEDURE ALLOCATE (VAR a: ADDRESS ; Size: CARDINAL) ;

(* DEALLOCATE - return, Size, bytes to the heap. The variable, a, is set to NIL. *)
PROCEDURE DEALLOCATE (VAR a: ADDRESS ; Size: CARDINAL) ;

(* REALLOCATE - attempts to reallocate storage. The address, a, should either be NIL in which case ALLOCATE is called, or alternatively it should have already been initialized by ALLOCATE. The allocated storage is resized accordingly. *)
PROCEDURE REALLOCATE (VAR a: ADDRESS; Size: CARDINAL) ;

(* Available - returns TRUE if, Size, bytes can be allocated. *)
PROCEDURE Available (Size: CARDINAL) : BOOLEAN ;

END Storage.
4.1.39 gm2-libs/StrCase

DEFINITION MODULE StrCase ;

EXPORT QUALIFIED StrToUpperCase, StrToLowerCase, Cap, Lower ;

(*
    StrToUpperCase - converts string, a, to uppercase returning the
    result in, b.
*)
PROCEDURE StrToUpperCase (a: ARRAY OF CHAR ; VAR b: ARRAY OF CHAR) ;

(*
    StrToLowerCase - converts string, a, to lowercase returning the
    result in, b.
*)
PROCEDURE StrToLowerCase (a: ARRAY OF CHAR ; VAR b: ARRAY OF CHAR) ;

(*
    Cap - converts a lower case character into a capital character.
    If the character is not a lower case character 'a'..'z'
    then the character is simply returned unaltered.
*)
PROCEDURE Cap (ch: CHAR) : CHAR ;

(*
    Lower - converts an upper case character into a lower case character.
    If the character is not an upper case character 'A'..'Z'
    then the character is simply returned unaltered.
*)
PROCEDURE Lower (ch: CHAR) : CHAR ;

END StrCase.
4.1.40 gm2-libs/StrIO

DEFINITION MODULE StrIO;

EXPORT QUALIFIED ReadString, WriteString, WriteLn;

(*
  WriteLn - writes a carriage return and a newline character.
*)

PROCEDURE WriteLn;

(*
  ReadString - reads a sequence of characters into a string.
  Line editing accepts Del, Ctrl H, Ctrl W and Ctrl U.
*)

PROCEDURE ReadString (VAR a: ARRAY OF CHAR);

(*
  WriteString - writes a string to the default output.
*)

PROCEDURE WriteString (a: ARRAY OF CHAR);

END StrIO.
4.1.41 gm2-libs/StrLib

DEFINITION MODULE StrLib ;

EXPORT QUALIFIED StrConCat, StrLen, StrCopy, StrEqual, StrLess,
IsSubString, StrRemoveWhitePrefix ;

(*
   StrConCat - combines a and b into c.
*)

PROCEDURE StrConCat (a, b: ARRAY OF CHAR; VAR c: ARRAY OF CHAR) ;

(*
   StrLess - returns TRUE if string, a, alphabetically occurs before
   string, b.
*)

PROCEDURE StrLess (a, b: ARRAY OF CHAR) : BOOLEAN ;

(*
   StrEqual - performs a = b on two strings.
*)

PROCEDURE StrEqual (a, b: ARRAY OF CHAR) : BOOLEAN ;

(*
   StrLen - returns the length of string, a.
*)

PROCEDURE StrLen (a: ARRAY OF CHAR) : CARDINAL ;

(*
   StrCopy - copy string src into string dest providing dest is large enough.
   If dest is smaller than a then src then the string is truncated when
   dest is full. Add a nul character if there is room in dest.
*)

PROCEDURE StrCopy (src: ARRAY OF CHAR ; VAR dest: ARRAY OF CHAR) ;
IsSubString - returns true if b is a subcomponent of a.

PROCEDURE IsSubString (a, b: ARRAY OF CHAR) : BOOLEAN ;

(*
    StrRemoveWhitePrefix - copies string, into string, b, excluding any white
    space infront of a.
*)

PROCEDURE StrRemoveWhitePrefix (a: ARRAY OF CHAR; VAR b: ARRAY OF CHAR) ;

END StrLib.
4.1.42 gm2-libs/StringConvert

DEFINITION MODULE StringConvert ;

FROM DynamicStrings IMPORT String ;
EXPORT QUALIFIED IntegerToString, StringToInteger,
  StringToLongInteger, LongIntegerToString,
  StringToCardinal, CardinalToString,
  StringToLongCardinal, LongCardinalToString,
  StringToShortCardinal, ShortCardinalToString,
  StringToLongreal, LongrealToString,
  ToSigFig,
  stoi, itos, ctos, stoc, hstoi, ostoi, bstoi,
  hstoc, ostoc, bstoc,
  stor, stolr ;

(*
  IntegerToString - converts INTEGER, i, into a String. The field width
  can be specified if non zero. Leading characters are defined by padding
  and this function will prepend a + if sign is set to TRUE.
  The base allows the caller to generate binary, octal, decimal, hexadecimal
  numbers. The value of lower is only used when hexadecimal numbers are
  generated and if TRUE then digits abcdef are used, and if FALSE then
  ABCDEF are used.
*)

PROCEDURE IntegerToString (i: INTEGER; width: CARDINAL; padding: CHAR; sign: BOOLEAN;
  base: CARDINAL; lower: BOOLEAN) : String ;

(*
  CardinalToString - converts CARDINAL, c, into a String. The field width
  can be specified if non zero. Leading characters are defined by padding.
  The base allows the caller to generate binary, octal, decimal, hexadecimal
  numbers. The value of lower is only used when hexadecimal numbers are
  generated and if TRUE then digits abcdef are used, and if FALSE then
  ABCDEF are used.
*)

PROCEDURE CardinalToString (c: CARDINAL; width: CARDINAL; padding: CHAR;
  base: CARDINAL; lower: BOOLEAN) : String ;
(*
   StringToInteger - converts a string, s, of, base, into an INTEGER.
   Leading white space is ignored. It stops converting
   when either the string is exhausted or if an illegal
   numeral is found.
   The parameter found is set TRUE if a number was found.
*)
PROCEDURE StringToInteger (s: String; base: CARDINAL; VAR found: BOOLEAN) : INTEGER ;

(*
   StringToCardinal - converts a string, s, of, base, into a CARDINAL.
   Leading white space is ignored. It stops converting
   when either the string is exhausted or if an illegal
   numeral is found.
   The parameter found is set TRUE if a number was found.
*)
PROCEDURE StringToCardinal (s: String; base: CARDINAL; VAR found: BOOLEAN) : CARDINAL ;

(*
   LongIntegerToString - converts LONGINT, i, into a String. The field with
   can be specified if non zero. Leading characters
   are defined by padding and this function will prepend a + if sign is set to TRUE.
   The base allows the caller to generate binary,
   octal, decimal, hexadecimal numbers.
   The value of lower is only used when hexadecimal
   numbers are generated and if TRUE then digits
   abcdef are used, and if FALSE then ABCDEF are used.
*)
PROCEDURE LongIntegerToString (i: LONGINT; width: CARDINAL; padding: CHAR; sign: BOOLEAN; base: CARDINAL; lower: BOOLEAN) : String ;

(*
   StringToLongInteger - converts a string, s, of, base, into an LONGINT.
   Leading white space is ignored. It stops converting
   when either the string is exhausted or if an illegal
   numeral is found.
   The parameter found is set TRUE if a number was found.
*)
PROCEDURE StringToLongInteger (s: String; base: CARDINAL; VAR found: BOOLEAN) : LONGINT ;
PROCEDURE StringToLongInteger (s: String; base: CARDINAL; VAR found: BOOLEAN) : LONGINT ;

(*
  LongCardinalToString - converts LONGCARD, c, into a String. The field
  width can be specified if non zero. Leading characters are defined by padding.
  The base allows the caller to generate binary, octal, decimal, hexadecimal numbers.
  The value of lower is only used when hexadecimal numbers are generated and if TRUE then digits
  abcdef are used, and if FALSE then ABCDEF are used.
*)

PROCEDURE LongCardinalToString (c: LONGCARD; width: CARDINAL; padding: CHAR; base: CARDINAL; lower: BOOLEAN) : String ;

(*
  StringToLongCardinal - converts a string, s, of, base, into a LONGCARD.
  Leading white space is ignored. It stops converting when either the string is exhausted or if an illegal
  numeral is found.
  The parameter found is set TRUE if a number was found.
*)

PROCEDURE StringToLongCardinal (s: String; base: CARDINAL; VAR found: BOOLEAN) : LONGCARD ;

(*
  ShortCardinalToString - converts SHORTCARD, c, into a String. The field
  width can be specified if non zero. Leading characters are defined by padding.
  The base allows the caller to generate binary, octal, decimal, hexadecimal numbers.
  The value of lower is only used when hexadecimal numbers are generated and if TRUE then digits
  abcdef are used, and if FALSE then ABCDEF are used.
*)

PROCEDURE ShortCardinalToString (c: SHORTCARD; width: CARDINAL; padding: CHAR; base: CARDINAL; lower: BOOLEAN) : String ;

(*
  StringToShortCardinal - converts a string, s, of, base, into a SHORTCARD.
*)
Leading white space is ignored. It stops converting when either the string is exhausted or if an illegal numeral is found. The parameter found is set TRUE if a number was found.

PROCEDURE StringToShortCardinal (s: String; base: CARDINAL;
   VAR found: BOOLEAN) : SHORTCARD ;

(*
   stoi - decimal string to INTEGER
*)

PROCEDURE stoi (s: String) : INTEGER ;

(*
   itos - integer to decimal string.
*)

PROCEDURE itos (i: INTEGER; width: CARDINAL; padding: CHAR; sign: BOOLEAN) : String ;

(*
   ctos - cardinal to decimal string.
*)

PROCEDURE ctos (c: CARDINAL; width: CARDINAL; padding: CHAR) : String ;

(*
   stoc - decimal string to CARDINAL
*)

PROCEDURE stoc (s: String) : CARDINAL ;

(*
   hstoi - hexadecimal string to INTEGER
*)

PROCEDURE hstoi (s: String) : INTEGER ;

(*
   ostoi - octal string to INTEGER
*{})
PROCEDURE ostoi (s: String) : INTEGER;

(*
   bstoi - binary string to INTEGER
*)
PROCEDURE bstoi (s: String) : INTEGER;

(*
   hstoc - hexadecimal string to CARDINAL
 *)
PROCEDURE hstoc (s: String) : CARDINAL;

(*
   ostoc - octal string to CARDINAL
 *)
PROCEDURE ostoc (s: String) : CARDINAL;

(*
   bstoc - binary string to CARDINAL
 *)
PROCEDURE bstoc (s: String) : CARDINAL;

(*
   StringToLongreal - returns a LONGREAL and sets found to TRUE
   if a legal number is seen.
 *)
PROCEDURE StringToLongreal (s: String; VAR found: BOOLEAN) : LONGREAL;

(*
   LongrealToString - converts a LONGREAL number, Real, which has,
   TotalWidth, and FractionWidth into a string.

   So for example:
LongrealToString(1.0, 4, 2) -> '1.00'
LongrealToString(12.3, 5, 2) -> '12.30'
LongrealToString(12.3, 6, 2) -> '12.30'
LongrealToString(12.3, 6, 3) -> '12.300'

if total width is too small then the fraction becomes truncated.

LongrealToString(12.3, 5, 3) -> '12.30'

If TotalWidth is 0 then the function will return the value of x which is converted into as a fixed point number with exhaustive precision.

PROCEDURE LongrealToString (x: LONGREAL;
   TotalWidth, FractionWidth: CARDINAL) : String ;

(*
   stor - returns a REAL given a string.
*)
PROCEDURE stor (s: String) : REAL ;

(*
   stolr - returns a LONGREAL given a string.
*)
PROCEDURE stolr (s: String) : LONGREAL ;

(*
   ToSigFig - returns a floating point or base 10 integer string which is accurate to, n, significant figures. It will return a new String and, s, will be destroyed.

So: 12.345

rounded to the following significant figures yields

5  12.345
4  12.34
PROCEDURE ToSigFig (s: String; n: CARDINAL) : String ;

(*
   ToDecimalPlaces - returns a floating point or base 10 integer
   string which is accurate to, n, decimal
   places. It will return a new String
   and, s, will be destroyed.
   Decimal places yields, n, digits after
   the .

   So:  12.345

   rounded to the following decimal places yields

   5   12.34500
   4   12.3450
   3   12.345
   2   12.34
   1   12.3

*)

PROCEDURE ToDecimalPlaces (s: String; n: CARDINAL) : String ;

END StringConvert.
4.1.43 gm2-libs/SysExceptions

DEFINITION MODULE SysExceptions;

(* Provides a mechanism for the underlying libraries to
  configure the exception routines. This mechanism
  is used by both the ISO and PIM libraries.
  It is written to be ISO compliant and this also
  allows for mixed dialect projects. *)

FROM SYSTEM IMPORT ADDRESS;

TYPE
  PROCEXCEPTION = PROCEDURE (ADDRESS);

PROCEDURE InitExceptionHandlers (indexf, range, casef, invalidloc,
  function, wholevalue, wholediv,
  realvalue, realdiv, complexvalue,
  complexdiv, protection, systemf,
  coroutine, exception: PROCEXCEPTION);

END SysExceptions.
4.1.44 gm2-libs/SysStorage

DEFINITION MODULE SysStorage ;

(* Provides dynamic allocation for the system components. This allows the application to use the traditional Storage module which can be handled differently. *)

FROM SYSTEM IMPORT ADDRESS ;
EXPORT QUALIFIED ALLOCATE, DEALLOCATE, REALLOCATE, Available, Init ;

(*
ALLOCATE - attempt to allocate memory from the heap. NIL is returned in, a, if ALLOCATE fails.
*)

PROCEDURE ALLOCATE (VAR a: ADDRESS ; size: CARDINAL) ;

(*
DEALLOCATE - return, size, bytes to the heap. The variable, a, is set to NIL.
*)

PROCEDURE DEALLOCATE (VAR a: ADDRESS ; size: CARDINAL) ;

(*
REALLOCATE - attempts to reallocate storage. The address, a, should either be NIL in which case ALLOCATE is called, or alternatively it should have already been initialized by ALLOCATE. The allocated storage is resized accordingly.
*)

PROCEDURE REALLOCATE (VAR a: ADDRESS; size: CARDINAL) ;

(*
Available - returns TRUE if, size, bytes can be allocated.
*)

PROCEDURE Available (size: CARDINAL) : BOOLEAN;

(*
Init - initializes the heap.
This does nothing on a GNU/Linux system.
But it remains here since it might be used in an embedded system.

PROCEDURE Init ;

END SysStorage.
4.1.45 gm2-libs/TimeString

DEFINITION MODULE TimeString;

EXPORT QUALIFIED GetTimeString;

(*
   GetTimeString - places the time in ascii format into array, a.
*)

PROCEDURE GetTimeString (VAR a: ARRAY OF CHAR);

END TimeString.
4.1.46 gm2-libs/UnixArgs

DEFINITION MODULE UnixArgs;

FROM SYSTEM IMPORT ADDRESS;

EXPORT QUALIFIED GetArgC, GetArgV, GetEnvV;

PROCEDURE GetArgC() : INTEGER;
PROCEDURE GetArgV() : ADDRESS;
PROCEDURE GetEnvV() : ADDRESS;

END UnixArgs.
4.1.47 gm2-libs/cbuiltin

DEFINITION MODULE FOR "C" cbuiltin ;

FROM SYSTEM IMPORT ADDRESS ;
EXPORT UNQUALIFIED alloca, memcpy,
    isfinite, isfinitef, isfinitel,
    isinf_sign, isinf_signf, isinf_signl,
    sinf, sinl, sin,
    cosf, cosl, cos,
    atan2f, atan2l, atan2,
    sqrtf, sqrtl, sqrt,
    fabsf, fabsl, fabs,
    logf, logl, log,
    expf, expl, exp,
    log10f, log10l, log10,
    exp10f, exp10l, exp10,
    ilogbf, ilogbl, ilogb,
    significand, significandf, significandl,
    modf, modff, modfl,
    nextafter, nextafterf, nextafterl,
    nexttoward, nexttowardf, nexttowardl,
    scalb, scalbf, scalbl,
    scalbn, scalbnf, scalbln,
    scalbln, scalblnf, scalblnl,

    cabsf, cabsl, cabs,
    cargf, carg, cargl,
    conjf, conj, conjl,
    cpowf, cpow, cpowl,
    csqrtf, csqrt, csqrtl,
    cexpf, cexp, cexpl,
    clogf, clog, clogl,
    csinf, csin, csinl,
    ccosf, ccos, ccosl,
    ctanf, ctan, ctanl,
    casinf, casin, casinl,
    cacosf, cacos, cacosl,
    catanf, catan, catanl,

    index, rindex,
    memcmp, memset, memmove,
    strcat, strncat, strpcpy, strncpy, strcmp, strncmp,
    strlen, strstr, strpbrk, strspn, strcspn, strchr, strrchr ;

PROCEDURE alloca (i: CARDINAL) : ADDRESS ;
PROCEDURE memcpy (dest, src: ADDRESS; n: CARDINAL) : ADDRESS ;
PROCEDURE isfinite (x: REAL) : BOOLEAN;
PROCEDURE isfinite1 (x: LONGREAL) : BOOLEAN;
PROCEDURE isfinitef (x: SHORTREAL) : BOOLEAN;
PROCEDURE isinf_sign (x: REAL) : BOOLEAN;
PROCEDURE isinf_sign1 (x: LONGREAL) : BOOLEAN;
PROCEDURE isinf_signf (x: SHORTREAL) : BOOLEAN;
PROCEDURE sinf (x: SHORTREAL) : SHORTREAL;
PROCEDURE sin (x: REAL) : REAL;
PROCEDURE sin1 (x: LONGREAL) : LONGREAL;
PROCEDURE cosf (x: SHORTREAL) : SHORTREAL;
PROCEDURE cos (x: REAL) : REAL;
PROCEDURE cos1 (x: LONGREAL) : LONGREAL;
PROCEDURE atan2f (x, y: SHORTREAL) : SHORTREAL;
PROCEDURE atan2 (x, y: REAL) : REAL;
PROCEDURE atan2l (x, y: LONGREAL) : LONGREAL;
PROCEDURE sqrtf (x: SHORTREAL) : SHORTREAL;
PROCEDURE sqrt (x: REAL) : REAL;
PROCEDURE sqrtl (x: LONGREAL) : LONGREAL;
PROCEDURE fabsf (x: SHORTREAL) : SHORTREAL;
PROCEDURE fabs (x: REAL) : REAL;
PROCEDURE fabsl (x: LONGREAL) : LONGREAL;
PROCEDURE logf (x: SHORTREAL) : SHORTREAL;
PROCEDURE log (x: REAL) : REAL;
PROCEDURE logl (x: LONGREAL) : LONGREAL;
PROCEDURE expf (x: SHORTREAL) : SHORTREAL;
PROCEDURE exp (x: REAL) : REAL;
PROCEDURE expl (x: LONGREAL) : LONGREAL;
PROCEDURE log10f (x: SHORTREAL) : SHORTREAL;
PROCEDURE log10 (x: REAL) : REAL;
PROCEDURE log10l (x: LONGREAL) : LONGREAL;
PROCEDURE exp10f (x: SHORTREAL) : SHORTREAL;
PROCEDURE exp10 (x: REAL) : REAL;
PROCEDURE exp10l (x: LONGREAL) : LONGREAL;
PROCEDURE ilogbf (x: SHORTREAL) : INTEGER;
PROCEDURE ilogb (x: REAL) : INTEGER;
PROCEDURE ilogbl (x: LONGREAL) : INTEGER;
PROCEDURE modf (x: REAL; VAR y: REAL) : REAL;
PROCEDURE modff (x: SHORTREAL; VAR y: SHORTREAL) : SHORTREAL;
PROCEDURE modfl (x: LONGREAL; VAR y: LONGREAL) : LONGREAL;
PROCEDURE nextafter (x, y: REAL) : REAL;
PROCEDURE nextafterf (x, y: SHORTREAL) : SHORTREAL;
PROCEDURE nextafterl (x, y: LONGREAL) : LONGREAL;
PROCEDURE nexttoward (x: REAL; y: LONGREAL) : REAL;
PROCEDURE nexttowardf (x: SHORTREAL; y: LONGREAL) : SHORTREAL;
PROCEDURE nexttowardl (x, y: LONGREAL) : LONGREAL;
PROCEDURE scalb (x, n: REAL) : REAL;
PROCEDURE scalbf (x, n: SHORTREAL) : SHORTREAL;
PROCEDURE scalbl (x, n: LONGREAL) : LONGREAL;
PROCEDURE scalbn (x: REAL; n: INTEGER) : REAL;
PROCEDURE scalbnf (x: SHORTREAL; n: INTEGER) : SHORTREAL;
PROCEDURE scalbnl (x: LONGREAL; n: INTEGER) : LONGREAL;
PROCEDURE scalbln (x: REAL; n: LONGINT) : REAL;
PROCEDURE scalblnf (x: SHORTREAL; n: LONGINT) : SHORTREAL;
PROCEDURE scalblnl (x: LONGREAL; n: LONGINT) : LONGREAL;
PROCEDURE cabsf (z: SHORTCOMPLEX) : SHORTREAL;
PROCEDURE cabs (z: COMPLEX) : REAL;
PROCEDURE cabsl (z: LONGCOMPLEX) : LONGREAL;
PROCEDURE cargf (z: SHORTCOMPLEX) : SHORTREAL;
PROCEDURE carg (z: COMPLEX) : REAL;
PROCEDURE cargl (z: LONGCOMPLEX) : LONGREAL;
PROCEDURE conjf (z: SHORTCOMPLEX) : SHORTCOMPLEX;
PROCEDURE conj (z: COMPLEX) : COMPLEX;
PROCEDURE conjl (z: LONGCOMPLEX) : LONGCOMPLEX;
PROCEDURE cpowf (base: SHORTCOMPLEX; exp: SHORTREAL) : SHORTCOMPLEX;
PROCEDURE cpow (base: COMPLEX; exp: REAL) : COMPLEX;
PROCEDURE cpowl (base: LONGCOMPLEX; exp: LONGREAL) : LONGCOMPLEX;
PROCEDURE csqrtf (z: SHORTCOMPLEX) : SHORTCOMPLEX;
PROCEDURE csqrt (z: COMPLEX) : COMPLEX;
PROCEDURE csqrtl (z: LONGCOMPLEX) : LONGCOMPLEX;
PROCEDURE cexpf (z: SHORTCOMPLEX) : SHORTCOMPLEX;
PROCEDURE cexp (z: COMPLEX) : COMPLEX;
PROCEDURE cexpl (z: LONGCOMPLEX) : LONGCOMPLEX;
PROCEDURE csqrf (z: SHORTCOMPLEX) : SHORTCOMPLEX;
PROCEDURE csqrt (z: COMPLEX) : COMPLEX;
PROCEDURE csqrtrl (z: LONGCOMPLEX) : LONGCOMPLEX;
PROCEDURE cexpf (z: SHORTCOMPLEX) : SHORTCOMPLEX;
PROCEDURE cexp (z: COMPLEX) : COMPLEX;
PROCEDURE cexpl (z: LONGCOMPLEX) : LONGCOMPLEX;
PROCEDURE clogf (z: SHORTCOMPLEX) : SHORTCOMPLEX;
PROCEDURE clog (z: COMPLEX) : COMPLEX;
PROCEDURE clogl (z: LONGCOMPLEX) : LONGCOMPLEX;
PROCEDURE csinf (z: SHORTCOMPLEX) : SHORTCOMPLEX;
PROCEDURE csin (z: COMPLEX) : COMPLEX;
PROCEDURE csinl (z: LONGCOMPLEX) : LONGCOMPLEX;

PROCEDURE ccosf (z: SHORTCOMPLEX) : SHORTCOMPLEX;
PROCEDURE ccos (z: COMPLEX) : COMPLEX;
PROCEDURE ccosl (z: LONGCOMPLEX) : LONGCOMPLEX;

PROCEDURE ctanf (z: SHORTCOMPLEX) : SHORTCOMPLEX;
PROCEDURE ctan (z: COMPLEX) : COMPLEX;
PROCEDURE ctanl (z: LONGCOMPLEX) : LONGCOMPLEX;

PROCEDURE casinf (z: SHORTCOMPLEX) : SHORTCOMPLEX;
PROCEDURE casin (z: COMPLEX) : COMPLEX;
PROCEDURE casinl (z: LONGCOMPLEX) : LONGCOMPLEX;

PROCEDURE cacosf (z: SHORTCOMPLEX) : SHORTCOMPLEX;
PROCEDURE cacos (z: COMPLEX) : COMPLEX;
PROCEDURE cacosl (z: LONGCOMPLEX) : LONGCOMPLEX;

PROCEDURE catanf (z: SHORTCOMPLEX) : SHORTCOMPLEX;
PROCEDURE catan (z: COMPLEX) : COMPLEX;
PROCEDURE catanl (z: LONGCOMPLEX) : LONGCOMPLEX;

PROCEDURE index (s: ADDRESS; c: INTEGER) : ADDRESS;
PROCEDURE rindex (s: ADDRESS; c: INTEGER) : ADDRESS;
PROCEDURE memcmp (s1, s2: ADDRESS; n: CARDINAL) : INTEGER;
PROCEDURE memmove (s1, s2: ADDRESS; n: CARDINAL) : ADDRESS;
PROCEDURE memset (s: ADDRESS; c: INTEGER; n: CARDINAL) : ADDRESS;
PROCEDURE strcat (dest, src: ADDRESS) : ADDRESS;
PROCEDURE strncat (dest, src: ADDRESS; n: CARDINAL) : ADDRESS;
PROCEDURE strcpy (dest, src: ADDRESS) : ADDRESS;
PROCEDURE strncpy (dest, src: ADDRESS; n: CARDINAL) : ADDRESS;
PROCEDURE strcmp (s1, s2: ADDRESS) : INTEGER;
PROCEDURE strncmp (s1, s2: ADDRESS; n: CARDINAL) : INTEGER;
PROCEDURE strlen (s: ADDRESS) : INTEGER;
PROCEDURE strstr (haystack, needle: ADDRESS) : ADDRESS;
PROCEDURE strpbrk (s, accept: ADDRESS) : ADDRESS;
PROCEDURE strspn (s, accept: ADDRESS) : CARDINAL;
PROCEDURE strcspn (s, accept: ADDRESS) : CARDINAL;
PROCEDURE strchr (s: ADDRESS; c: INTEGER) : ADDRESS;
PROCEDURE strrchr (s: ADDRESS; c: INTEGER) : ADDRESS;

END cbuiltin.
4.1.48 gm2-libs/cgetopt

DEFINITION MODULE cgetopt;

FROM SYSTEM IMPORT ADDRESS;

TYPE
   Options  = ADDRESS;

VAR
   optarg    : ADDRESS;
   optind, opterr, optopt: INTEGER;

PROCEDURE getopt (argc: INTEGER; argv: ADDRESS; optstring: ADDRESS) : CHAR;

PROCEDURE getopt_long (argc: INTEGER; argv: ADDRESS; optstring: ADDRESS;
   longopts: ADDRESS; VAR longindex: INTEGER) : INTEGER;

PROCEDURE getopt_long_only (argc: INTEGER; argv: ADDRESS; optstring: ADDRESS;
   ...) : INTEGER;

(*
   getopt - the getopt() function parses the command-line arguments.
   Its arguments argc and argv are the argument count and array as
   passed to the main() function on program invocation. An element of
   argv that starts with '-' (and is not exactly "-" or "--") is an
   option element. The characters of this element (aside from the
   initial '-') are option characters. If getopt() is called
   repeatedly, it returns successively each of the option characters
   from each of the option elements.
*)

(*
   getopt_long - works like getopt() except that it also accepts long options,
   started with two dashes. (If the program accepts only long
   options, then optstring should be specified as an empty string (""),
   not NULL.) Long option names may be abbreviated if the abbreviation
   is unique or is an exact match for some defined option. A
   long option may take a parameter, of the form --arg=param or
   --arg param.
*)

(*
   getopt_long_only - a wrapper for the C getopt_long_only.
*)

PROCEDURE getopt_long_only (argc: INTEGER; argv: ADDRESS; optstring: ADDRESS;
   ...) : INTEGER;
longopts: ADDRESS; VAR longindex: INTEGER) : INTEGER ;

(*
   InitOptions - constructor for empty Options.
*)
PROCEDURE InitOptions () : Options ;

(*
   KillOptions - deconstructor for empty Options.
*)
PROCEDURE KillOptions (o: Options) : Options ;

(*
   SetOption - set option[index] with {name, has_arg, flag, val}.
*)
PROCEDURE SetOption (o: Options; index: CARDINAL;
   name: ADDRESS; has_arg: INTEGER;
   VAR flag: INTEGER; val: INTEGER) ;

(*
   GetLongOptionArray - return a pointer to the C array containing all long options.
*)
PROCEDURE GetLongOptionArray (o: Options) : ADDRESS ;

END cgetopt.
4.1.49 gm2-libs/cxxabi

DEFINITION MODULE FOR "C" cxxabi ;

(* This should only be used by the compiler and it matches the
g++ implementation. *)

FROM SYSTEM IMPORT ADDRESS ;
EXPORT UNQUALIFIED __cxa_begin_catch, __cxa_end_catch, __cxa_rethrow ;

PROCEDURE __cxa_begin_catch (a: ADDRESS) : ADDRESS ;
PROCEDURE __cxa_end_catch ;
PROCEDURE __cxa_rethrow ;

END cxxabi.
4.1.50 gm2-libs/dtoa

DEFINITION MODULE dtoa ;

FROM SYSTEM IMPORT ADDRESS ;

TYPE
  Mode = (maxsignificant, decimaldigits) ;

(*
    strtod - returns a REAL given a string, s. It will set
error to TRUE if the number is too large.
*)

PROCEDURE strtod (s: ADDRESS; VAR error: BOOLEAN) : REAL ;

(*
    dtoa - converts a REAL, d, into a string. The address of the
    string is returned.
    mode indicates the type of conversion required.
    ndigits determines the number of digits according to mode.
    decpt the position of the decimal point.
    sign does the string have a sign?
*)

PROCEDURE dtoa (d : REAL;
    mode : Mode;
    ndigits : INTEGER;
    VAR decpt: INTEGER;
    VAR sign : BOOLEAN) : ADDRESS ;

END dtoa.
4.1.51 gm2-libs/errno

DEFINITION MODULE errno ;

CONST
EINTR = 4 ; (* system call interrupted *)
ERANGE = 34 ; (* result is too large *)
EAGAIN = 11 ; (* retry the system call *)

PROCEDURE geterrno () : INTEGER ;

END errno.
4.1.52 gm2-libs/gdbif

DEFINITION MODULE gdbif ;

(* Provides interactive connectivity with gdb useful for debugging
   Modula-2 shared libraries. *)

EXPORT UNQUALIFIED sleepSpin, finishSpin, connectSpin ;

(*
   finishSpin - sets boolean mustWait to FALSE.
*)

PROCEDURE finishSpin ;

(*
   sleepSpin - waits for the boolean variable mustWait to become FALSE.
   It sleeps for a second between each test of the variable.
*)

PROCEDURE sleepSpin ;

(*
   connectSpin - breakpoint placeholder. Its only purpose is to allow users
   to set a breakpoint. This procedure is called once
   sleepSpin is released from its spin (via a call from
   finishSpin).
*)

PROCEDURE connectSpin ;

END gdbif.
4.1.53 gm2-libs/ldtoa

DEFINITION MODULE ldtoa;

FROM SYSTEM IMPORT ADDRESS;

TYPE
   Mode = (maxsignificant, decimaldigits);

(*
    strtold - returns a LONGREAL given a C string, s. It will set
              error to TRUE if the number is too large or badly formed.
*)

PROCEDURE strtold (s: ADDRESS; VAR error: BOOLEAN) : LONGREAL;

(*
    ldtoa - converts a LONGREAL, d, into a string. The address of the
             string is returned.
    mode indicates the type of conversion required.
    ndigits determines the number of digits according to mode.
    decpt the position of the decimal point.
    sign does the string have a sign?
*)

PROCEDURE ldtoa (d : LONGREAL;
                mode : Mode;
                ndigits : INTEGER;
                VAR decpt: INTEGER;
                VAR sign : BOOLEAN) : ADDRESS;

END ldtoa.
4.1.54 gm2-libs/libc

DEFINITION MODULE FOR "C" libc ;

FROM SYSTEM IMPORT ADDRESS, CSIZE_T, CSSIZE_T ;

EXPORT UNQUALIFIED time_t, timeb, tm, ptrToTM,
    write, read,
    system, abort,
    malloc, free,
    exit, isatty,
    getenv, putenv, getpid,
    dup, close, open, lseek,
    readv, writev,
    perror, creat,
    getcwd, chown, strlen, strcpy, strncpy,
    unlink, setenv,
    memcp, memset, memmove, printf, realloc,
    rand, srand,
    time, localtime, ftime,
    shutdown, snprintf,
    rename, setjmp, longjmp, atexit,
    ttyname, sleep, execv ;

TYPE
    time_t = LONGINT ;

    ptrToTM = POINTER TO tm ;

    tm = RECORD
        tm_sec: INTEGER ; (* Seconds. [0-60] (1 leap second) *)
        tm_min: INTEGER ; (* Minutes. [0-59] *)
        tm_hour: INTEGER ; (* Hours. [0-23] *)
        tm_mday: INTEGER ; (* Day. [1-31] *)
        tm_mon: INTEGER ; (* Month. [0-11] *)
        tm_year: INTEGER ; (* Year - 1900. *)
        tm_wday: INTEGER ; (* Day of week. [0-6] *)
        tm_mday: INTEGER ; (* Days in year. [0-365] *)
        tm_isdst: INTEGER ; (* DST. [-1/0/1] *)
        tm_gmtoff: LONGINT ; (* Seconds east of UTC. *)
        tm_zone: ADDRESS ; (* char * zone name *)
    END ;

    timeb = RECORD
        time : time_t ;
        millitm : SHORTCARD ;
        timezone: SHORTCARD ;
dstflag : SHORTCARD ;
END ;

exitP = PROCEDURE () : INTEGER ;

(*
    ssize_t write (int d, void *buf, size_t nbytes)
*)
PROCEDURE write (d: INTEGER; buf: ADDRESS; nbytes: CSIZE_T) : [ CSSIZE_T ] ;

(*
    ssize_t read (int d, void *buf, size_t nbytes)
*)
PROCEDURE read (d: INTEGER; buf: ADDRESS; nbytes: CSIZE_T) : [ CSSIZE_T ] ;

(*
    int system(string)
    char *string;
*)
PROCEDURE system (a: ADDRESS) : [ INTEGER ] ;

(*
    abort - generate a fault

    abort() first closes all open files if possible, then sends an IOT signal to the process. This signal usually results in termination with a core dump, which may be used for debugging.

    It is possible for abort() to return control if is caught or ignored, in which case the value returned is that of the kill(2V) system call.
*)
PROCEDURE abort <*> noreturn *> ;

(*
    malloc - memory allocator.
void *malloc(size_t size);

malloc() returns a pointer to a block of at least size bytes, which is appropriately aligned. If size is zero, malloc() returns a non-NULL pointer, but this pointer should not be dereferenced.

PROCEDURE malloc (size: CSIZE_T) : ADDRESS ;

(*

free - memory deallocator.

free (void *ptr);

free() releases a previously allocated block. Its argument is a pointer to a block previously allocated by malloc, calloc, realloc, malloc, or memalign.

*)

PROCEDURE free (ptr: ADDRESS) ;

(*

void *realloc (void *ptr, size_t size);

realloc changes the size of the memory block pointed to by ptr to size bytes. The contents will be unchanged to the minimum of the old and new sizes; newly allocated memory will be uninitialized. If ptr is NIL, the call is equivalent to malloc(size); if size is equal to zero, the call is equivalent to free(ptr). Unless ptr is NIL, it must have been returned by an earlier call to malloc(), realloc.

*)

PROCEDURE realloc (ptr: ADDRESS; size: CSIZE_T) : ADDRESS ;

(*

isatty - does this descriptor refer to a terminal.

*)

PROCEDURE isatty (fd: INTEGER) : INTEGER ;
(*
exit - returns control to the invoking process. Result, r, is returned.
*)

PROCEDURE exit (r: INTEGER) <+ noreturn +> ;

(*
getenv - returns the C string for the equivalent C environment variable.
*)

PROCEDURE getenv (s: ADDRESS) : ADDRESS ;

(*
putenv - change or add an environment variable.
*)

PROCEDURE putenv (s: ADDRESS) : INTEGER ;

(*
getpid - returns the UNIX process identification number.
*)

PROCEDURE getpid () : INTEGER ;

(*
dup - duplicates the file descriptor, d.
*)

PROCEDURE dup (d: INTEGER) : INTEGER ;

(*
close - closes the file descriptor, d.
*)

PROCEDURE close (d: INTEGER) : [ INTEGER ] ;

(*
open - open the file, filename with flag and mode.
*)
PROCEDURE open (filename: ADDRESS; oflag: INTEGER; ...) : INTEGER ;

(*
  creat - creates a new file
*)

PROCEDURE creat (filename: ADDRESS; mode: CARDINAL) : INTEGER;

(*
  lseek - calls unix lseek:
     off_t lseek(int fildes, off_t offset, int whence);
*)

PROCEDURE lseek (fd: INTEGER; offset: CSSIZE_T; whence: INTEGER) : [ CSSIZE_T ] ;

(*
  perror - writes errno and string. (ARRAY OF CHAR is translated onto ADDRESS).
*)

PROCEDURE perror (string: ARRAY OF CHAR);

(*
  readv - reads an io vector of bytes.
*)

PROCEDURE readv (fd: INTEGER; v: ADDRESS; n: INTEGER) : [ INTEGER ] ;

(*
  writev - writes an io vector of bytes.
*)

PROCEDURE writev (fd: INTEGER; v: ADDRESS; n: INTEGER) : [ INTEGER ] ;

(*
  getcwd - copies the absolute pathname of the
          current working directory to the array pointed to by buf,
          which is of length size.

          If the current absolute path name would require a buffer
          with

          ...
longer than size elements, NULL is returned, and errno is set to ERANGE; an application should check for this error, and allocate a larger buffer if necessary.

*)

PROCEDURE getcwd (buf: ADDRESS; size: CSIZE_T) : ADDRESS ;

(*
  chown - The owner of the file specified by path or by fd is changed. Only the super-user may change the owner of a file. The owner of a file may change the group of the file to any group of which that owner is a member. The super-user may change the group arbitrarily.

  If the owner or group is specified as -1, then that ID is not changed.

  On success, zero is returned. On error, -1 is returned, and errno is set appropriately.
*)

PROCEDURE chown (filename: ADDRESS; uid, gid: INTEGER) : [ INTEGER ] ;

(*
  strlen - returns the length of string, a.
*)

PROCEDURE strlen (a: ADDRESS) : CSIZE_T ;

(*
  strcpy - copies string, src, into, dest.
  It returns dest.
*)

PROCEDURE strcpy (dest, src: ADDRESS) : [ ADDRESS ] ;

(*
  strncpy - copies string, src, into, dest, copying at most, n, bytes.
  It returns dest.
*)

PROCEDURE strncpy (dest, src: ADDRESS; n: CARDINAL) : [ ADDRESS ] ;
PROCEDURE unlink (file: ADDRESS) : [ INTEGER ] ;

PROCEDURE memcpy (dest, src: ADDRESS; size: CSIZE_T) : [ ADDRESS ] ;

PROCEDURE memset (s: ADDRESS; c: INTEGER; size: CSIZE_T) : [ ADDRESS ] ;

PROCEDURE memmove (dest, src: ADDRESS; size: CSIZE_T) : [ ADDRESS ] ;
PROCEDURE memmove (dest, src: ADDRESS; size: CSIZE_T) : [ ADDRESS ] ;

(*
    int printf(const char *format, ...);
*)

PROCEDURE printf (format: ARRAY OF CHAR; ...) : [ INTEGER ] ;

(*
    int snprintf(char *str, size_t size, const char *format, ...);
*)

PROCEDURE snprintf (dest: ADDRESS; size: CSIZE_T; format: ARRAY OF CHAR; ...) : [ INTEGER ] ;

(*
    setenv - sets environment variable, name, to value.
            It will overwrite an existing value if, overwrite, 
            is true. It returns 0 on success and -1 for an error.
*)

PROCEDURE setenv (name: ADDRESS; value: ADDRESS; overwrite: INTEGER) : [ INTEGER ] ;

(*
    srand - initialize the random number seed.
*)

PROCEDURE srand (seed: INTEGER) ;

(*
    rand - return a random integer.
*)

PROCEDURE rand () : INTEGER ;

(*
    time - returns a pointer to the time_t value. If, a, 
            is not NIL then the libc value is copied into 
            memory at address, a.
*)

PROCEDURE time (a: ADDRESS) : time_t ;
PROCEDURE localtime (VAR t: time_t) : ADDRESS ;

PROCEDURE ftime (VAR t: timeb) : [ INTEGER ] ;

PROCEDURE shutdown (s: INTEGER; how: INTEGER) : [ INTEGER ] ;

PROCEDURE rename (oldpath, newpath: ADDRESS) : [ INTEGER ] ;

PROCEDURE setjmp (env: ADDRESS) : INTEGER ;

PROCEDURE longjmp (env: ADDRESS) : INTEGER ;
continues as if the corresponding call of setjmp had just returned the value val. The value of val must not be zero.

*)

PROCEDURE longjmp (env: ADDRESS; val: INTEGER) ;

(*
   atexit - execute, proc, when the function exit is called.
*)

PROCEDURE atexit (proc: exitP) : [ INTEGER ] ;

(*
   ttyname - returns a pointer to a string determining the ttyname.
*)

PROCEDURE ttyname (filedes: INTEGER) : ADDRESS ;

(*
   sleep - calling thread sleeps for seconds.
*)

PROCEDURE sleep (seconds: CARDINAL) : [ CARDINAL ] ;

(*
   execv - execute a file.
*)

PROCEDURE execv (pathname: ADDRESS; argv: ADDRESS) : [ INTEGER ] ;

END libc.
4.1.55 gm2-libs/libm

DEFINITION MODULE FOR "C" libm ;

(* Users are strongly advised to use MathLib0 or RealMath as calls to functions within these modules will generate inline code. This module is used by MathLib0 and RealMath when inline code cannot be generated. *)

EXPORT UNQUALIFIED sin, sinl, sinf,
cos, cosl, cosf,
tan, tanl, tanf,
sqrt, sqrtl, sqrtf,
asin, asinl, asinf,
acos, acosl, acosf,
atan, atanl, atanf,
atan2, atan2l, atan2f,
exp, expl, expf,
log, logl, logf,
exp10, exp10l, exp10f,
pow, powl, powf,
floor, floorl, floorf,
ceil, ceil, ceilf;

PROCEDURE sin (x: REAL) : REAL ;
PROCEDURE sinl (x: LONGREAL) : LONGREAL ;
PROCEDURE sinf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE cos (x: REAL) : REAL ;
PROCEDURE cosl (x: LONGREAL) : LONGREAL ;
PROCEDURE cosf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE tan (x: REAL) : REAL ;
PROCEDURE tanl (x: LONGREAL) : LONGREAL ;
PROCEDURE tanf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE sqrt (x: REAL) : REAL ;
PROCEDURE sqrtl (x: LONGREAL) : LONGREAL ;
PROCEDURE sqrtf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE asin (x: REAL) : REAL ;
PROCEDURE asinl (x: LONGREAL) : LONGREAL ;
PROCEDURE asinf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE acos (x: REAL) : REAL ;
PROCEDURE acosl (x: LONGREAL) : LONGREAL ;
PROCEDURE acosf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE atan (x: REAL) : REAL ;
PROCEDURE atanl (x: LONGREAL) : LONGREAL ;
PROCEDURE atanf (x: SHORTREAL) : SHORTREAL ;
PROCEDURE atan2 (x, y: REAL) : REAL ;
PROCEDURE atan2l (x, y: LONGREAL) : LONGREAL ;
PROCEDURE atan2f (x, y: SHORTREAL) : SHORTREAL;
PROCEDURE exp (x: REAL) : REAL;
PROCEDURE expl (x: LONGREAL) : LONGREAL;
PROCEDURE expf (x: SHORTREAL) : SHORTREAL;
PROCEDURE log (x: REAL) : REAL;
PROCEDURE logl (x: LONGREAL) : LONGREAL;
PROCEDURE logf (x: SHORTREAL) : SHORTREAL;
PROCEDURE exp10 (x: REAL) : REAL;
PROCEDURE exp10l (x: LONGREAL) : LONGREAL;
PROCEDURE exp10f (x: SHORTREAL) : SHORTREAL;
PROCEDURE pow (x, y: REAL) : REAL;
PROCEDURE powl (x, y: LONGREAL) : LONGREAL;
PROCEDURE powf (x, y: SHORTREAL) : SHORTREAL;
PROCEDURE floor (x: REAL) : REAL;
PROCEDURE floorl (x: LONGREAL) : LONGREAL;
PROCEDURE floorf (x: SHORTREAL) : SHORTREAL;
PROCEDURE ceil (x: REAL) : REAL;
PROCEDURE ceil (x: LONGREAL) : LONGREAL;
PROCEDURE ceil (x: SHORTREAL) : SHORTREAL;

END libm.
4.1.56 gm2-libs/sckt

DEFINITION MODULE sckt ;

FROM SYSTEM IMPORT ADDRESS ;
EXPORT QUALIFIED tcpServerState,
    tcpServerEstablish, tcpServerEstablishPort,
    tcpServerAccept, getLocalIP,
    tcpServerPortNo, tcpServerIP, tcpServerSocketFd,
    tcpServerClientIP, tcpServerClientPortNo,
    tcpClientState,
    tcpClientSocket, tcpClientSocketIP, tcpClientConnect,
    tcpClientPortNo, tcpClientIP, tcpClientSocketFd ;

TYPE
    tcpServerState = ADDRESS ;
    tcpClientState = ADDRESS ;

(*
    tcpServerEstablish - returns a tcpState containing the relevant
    information about a socket declared to receive
    tcp connections.
*)

PROCEDURE tcpServerEstablish () : tcpServerState ;

(*
    tcpServerEstablishPort - returns a tcpState containing the relevant
    information about a socket declared to receive
    tcp connections. This method attempts to use
    the port specified by the parameter.
*)

PROCEDURE tcpServerEstablishPort (port: CARDINAL) : tcpServerState ;

(*
    tcpServerAccept - returns a file descriptor once a client has connected and
    been accepted.
*)

PROCEDURE tcpServerAccept (s: tcpServerState) : INTEGER ;

(*
tcpServerPortNo - returns the portNo from structure, s.

PROCEDURE tcpServerPortNo (s: tcpServerState) : CARDINAL;

(* tcpSocketFd - returns the sockFd from structure, s. *)

PROCEDURE tcpServerSocketFd (s: tcpServerState) : INTEGER;

(* getLocalIP - returns the IP address of this machine. *)

PROCEDURE getLocalIP (s: tcpServerState) : CARDINAL;

(* tcpServerIP - returns the IP address from structure, s. *)

PROCEDURE tcpServerIP (s: tcpServerState) : CARDINAL;

(* tcpServerClientIP - returns the IP address of the client who
has connected to server, s. *)

PROCEDURE tcpServerClientIP (s: tcpServerState) : CARDINAL;

(* tcpServerClientPortNo - returns the port number of the client who
has connected to server, s. *)

PROCEDURE tcpServerClientPortNo (s: tcpServerState) : CARDINAL;

(* tcpClientSocket - returns a file descriptor (socket) which has
connected to, serverName:portNo. *)
PROCEDURE tcpClientSocket (serverName: ADDRESS; portNo: CARDINAL) : tcpClientState ;

(*
   tcpClientSocketIP - returns a file descriptor (socket) which has
   connected to, ip:portNo.
*)

PROCEDURE tcpClientSocketIP (ip: CARDINAL; portNo: CARDINAL) : tcpClientState ;

(*
   tcpClientConnect - returns the file descriptor associated with, s,
   once a connect has been performed.
*)

PROCEDURE tcpClientConnect (s: tcpClientState) : INTEGER ;

(*
   tcpClientPortNo - returns the portNo from structure, s.
*)

PROCEDURE tcpClientPortNo (s: tcpClientState) : INTEGER ;

(*
   tcpClientSocketFd - returns the sockFd from structure, s.
*)

PROCEDURE tcpClientSocketFd (s: tcpClientState) : INTEGER ;

(*
   tcpClientIP - returns the IP address from structure, s.
*)

PROCEDURE tcpClientIP (s: tcpClientState) : CARDINAL ;

END sckt.
**4.1.57 gm2-libs/termios**

**DEFINITION MODULE termios ;**

**FROM SYSTEM IMPORT ADDRESS ;**

**TYPE**

TERMOIS = ADDRESS ;

ControlChar = (vintr, vquit, verase, vkill, veof, vtime, vmin, vswtc, vstart, vstop, vsusp, veol, vreprint, vdiscard, vverase, vlnext, veol2) ;

Flag = (  
(* input flag bits *)
ignbrk, ibrkint, ignpar, iparmrk, inpck, istrip, inlcr,
igncr, icrnl, iuc1c, ixon, ixany, ixoff, imaxbel,
(* output flag bits *)
opost, olcuc, onlcr, ocrnl, onocr, onlret, ofill, ofdel,
on10, onl1, ocr0, ocr1, ocr2, ocr3,
oatab0, oatab1, oatab2, oatab3, obs0, obs1, off0, off1, ovt0, ovt1,
(* baud rate *)
b0, b50, b75, b110, b135, b150, b200, b300, b600, b1200,
b1800, b2400, b4800, b9600, b19200, b38400,
b57600, b115200, b240400, b460800, b500000, b576000,
b921600, b1000000, b1152000, b1500000, b2000000, b2500000,
b3000000, b3500000, b4000000, maxbaud, crtscts,
(* character size *)
cs5, cs6, cs7, cs8, cstopb, cread, parenb, parodd, hupcl, clocal,
(* local flags *)
lisig, licanon, lxcase, lecho, lechoe, lechok, lechonl, lnoflsh,
ltopstop, lechoctl, lechopr, lechoke, lflusho, lpendin, liexten) ;

(*)

PROCEDURE InitTermios () : TERMOIS ;

(*
    InitTermios - new data structure.
*)

PROCEDURE KillTermios (t: TERMOIS) : TERMOIS ;
Chapter 4: PIM and ISO library definitions

(*
   cfgetospeed - return output baud rate.
*)
PROCEDURE cfgetospeed (t: TERMIOS) : INTEGER ;

(*
   cfgetispeed - return input baud rate.
*)
PROCEDURE cfgetispeed (t: TERMIOS) : INTEGER ;

(*
   cfsetospeed - set output baud rate.
*)
PROCEDURE cfsetospeed (t: TERMIOS; b: CARDINAL) : INTEGER ;

(*
   cfsetispeed - set input baud rate.
*)
PROCEDURE cfsetispeed (t: TERMIOS; b: CARDINAL) : INTEGER ;

(*
   cfsetspeed - set input and output baud rate.
*)
PROCEDURE cfsetspeed (t: TERMIOS; b: CARDINAL) : INTEGER ;

(*
   tcgetattr - get state of, fd, into, t.
*)
PROCEDURE tcgetattr (fd: INTEGER; t: TERMIOS) : INTEGER ;

(*
   The following three functions return the different option values.
*)
PROCEDURE tcsnow () : INTEGER ; (* alter fd now *)
PROCEDURE tcsdrain () : INTEGER ; (* alter when all output has been sent *)
PROCEDURE tcsflush () : INTEGER ; (* like drain, except discard any pending input *)

(*
  tcsetattr - set state of, fd, to, t, using option.
*)
PROCEDURE tcsetattr (fd: INTEGER; option: INTEGER; t: TERMIOS) : INTEGER ;

(*
  cfmakeraw - sets, t, to raw mode.
*)
PROCEDURE cfmakeraw (t: TERMIOS) ;

(*
  tcsendbreak - send zero bits for duration.
*)
PROCEDURE tcsendbreak (fd: INTEGER; duration: INTEGER) : INTEGER ;

(*
  tcdrain - waits for pending output to be written on, fd.
*)
PROCEDURE tcdrain (fd: INTEGER) : INTEGER ;

(*
  tcflushi - flush input.
*)
PROCEDURE tcflushi (fd: INTEGER) : INTEGER ;

(*
  tcflusho - flush output.
*)
PROCEDURE tcflusho (fd: INTEGER) : INTEGER ;
PROCEDURE tcflushio (fd: INTEGER) : INTEGER;

PROCEDURE tcflowoni (fd: INTEGER) : INTEGER;

PROCEDURE tcflowoffi (fd: INTEGER) : INTEGER;

PROCEDURE tcflowono (fd: INTEGER) : INTEGER;

PROCEDURE tcflowoffo (fd: INTEGER) : INTEGER;

PROCEDURE GetFlag (t: TERMIOS; f: Flag; VAR b: BOOLEAN) : BOOLEAN;

PROCEDURE SetFlag - sets a flag value in, t, to, b, and returns TRUE if this flag value is supported.

(*)

/*
   tcflushio - flush input and output.
*/

PROCEDURE tcflushio (fd: INTEGER) : INTEGER;

/*
   tcflowoni - restart input on, fd.
*/

PROCEDURE tcflowoni (fd: INTEGER) : INTEGER;

/*
   tcflowoffi - stop input on, fd.
*/

PROCEDURE tcflowoffi (fd: INTEGER) : INTEGER;

/*
   tcflowono - restart output on, fd.
*/

PROCEDURE tcflowono (fd: INTEGER) : INTEGER;

/*
   tcflowoffo - stop output on, fd.
*/

PROCEDURE tcflowoffo (fd: INTEGER) : INTEGER;

/*
   GetFlag - sets a flag value from, t, in, b, and returns TRUE if, t, supports, f.
*/

PROCEDURE GetFlag (t: TERMIOS; f: Flag; VAR b: BOOLEAN) : BOOLEAN;

/*
   SetFlag - sets a flag value in, t, to, b, and returns TRUE if this flag value is supported.
*/
PROCEDURE SetFlag (t: TERMIOS; f: Flag; b: BOOLEAN) : BOOLEAN;

(*
   GetChar - sets a CHAR, ch, value from, t, and returns TRUE if this value is supported.
*)

PROCEDURE GetChar (t: TERMIOS; c: ControlChar; VAR ch: CHAR) : BOOLEAN;

(*
   SetChar - sets a CHAR value in, t, and returns TRUE if, c, is supported.
*)

PROCEDURE SetChar (t: TERMIOS; c: ControlChar; ch: CHAR) : BOOLEAN;

END termios.
4.1.58 gm2-libs/wrapc

DEFINITION MODULE wrapc ;

FROM SYSTEM IMPORT ADDRESS ;

(*
   strftime - returns the C string for the equivalent C asctime
   function.
*)

PROCEDURE strftime () : ADDRESS ;

(*
   filesize - assigns the size of a file, f, into low, high and
   returns zero if successful.
*)

PROCEDURE filesize (f: INTEGER; VAR low, high: CARDINAL) : INTEGER ;

(*
   fileinode - return the inode associated with file, f.
*)

PROCEDURE fileinode (f: INTEGER; VAR low, high: CARDINAL) : INTEGER ;

(*
   filemtime - returns the mtime of a file, f.
*)

PROCEDURE filemtime (f: INTEGER) : INTEGER ;

(*
   getrand - returns a random number between 0..n-1
*)

PROCEDURE getrand (n: INTEGER) : INTEGER ;

(*
   getusername - returns a C string describing the current user.
*)
PROCEDURE getusername () : ADDRESS ;

(*
    getnameuidgid - fills in the, uid, and, gid, which represents
    user, name.
*)

PROCEDURE getnameuidgid (name: ADDRESS; VAR uid, gid: INTEGER) ;

(*
    in C these procedure functions are really macros, so we provide
    real C functions and let gm2 call these if the builtins
    are unavailable.
*)

PROCEDURE signbit (r: REAL) : INTEGER ;
PROCEDURE signbitf (s: SHORTREAL) : INTEGER ;
PROCEDURE signbitl (l: LONGREAL) : INTEGER ;

(*
    isfinite - provide non builtin alternative to the gcc builtin isfinite.
    Returns 1 if x is finite and 0 if it is not.
*)

PROCEDURE isfinite (x: REAL) : INTEGER ;

(*
    isfinitef - provide non builtin alternative to the gcc builtin isfinite.
    Returns 1 if x is finite and 0 if it is not.
*)

PROCEDURE isfinitef (x: SHORTREAL) : INTEGER ;

(*
    isfinitel - provide non builtin alternative to the gcc builtin isfinite.
    Returns 1 if x is finite and 0 if it is not.
*)

PROCEDURE isfinitel (x: LONGREAL) : INTEGER ;
(*)
  isnan - provide non builtin alternative to the gcc builtin isnan.
  Returns 1 if x is a NaN otherwise return 0.
*)

PROCEDURE isnan (x: REAL) : INTEGER ;

(*)
  isnanf - provide non builtin alternative to the gcc builtin isnanf.
  Returns 1 if x is a NaN otherwise return 0.
*)

PROCEDURE isnanf (x: SHORTREAL) : INTEGER ;

(*)
  isnanl - provide non builtin alternative to the gcc builtin isnanl.
  Returns 1 if x is a NaN otherwise return 0.
*)

PROCEDURE isnanl (x: LONGREAL) : INTEGER ;

(*)
  SeekSet - return the system libc SEEK_SET value.
*)

PROCEDURE SeekSet () : INTEGER ;

(*)
  SeekEnd - return the system libc SEEK_END value.
*)

PROCEDURE SeekEnd () : INTEGER ;

(*)
  ReadOnly - return the system value of O_RDONLY.
*)

PROCEDURE ReadOnly () : BITSET ;

(*)
  WriteOnly - return the system value of O_WONLY.
PROCEDURE WriteOnly (): BITSET;

END wrapc.
4.2 PIM and Logitech 3.0 Compatible

These modules are provided to enable legacy Modula-2 applications to build with GNU Modula-2. It is advised that these module should not be used for new projects, maybe the ISO libraries or the native compiler PIM libraries (FIO) should be used instead.

Here is an outline of the module layering:

```
InOut RealInOut LongIO CardinalIO
 \ \ / /
 Terminal

|\|
Termbase
/ \
```

```
Keyboard Display
```

Above the line are user level PIM [234] and Logitech 3.0 compatible modules. Below the line Logitech 3.0 advised that these modules should be considered part of the runtime system. The libraries do not provide all the features found in the Logitech libraries as a number of these features were MS-DOS related. Essentially the basic input/output, file system, string manipulation and conversion routines are provided. Access to DOSCALL, graphics, time and date are not as these were constrained by the limitations of MS-DOS.

The following libraries are contained within the base GNU Modula-2 libraries and are also Logitech-3.0 compatible: See Section 4.1.1 [gm2-libs/ASCII], page 80, See Section 4.1.38 [gm2-libs/Storage], page 161, and See Section 4.1.22 [gm2-libs/MathLib0], page 129. These libraries are always available for any dialect of the language (although their implementation and behaviour might differ, for example Storage ISO and PIM).

The following libraries are Logitech-3.0 compatible but fall outside the base GNU Modula-2 libraries.

4.2.1 gm2-libs-log/BitBlockOps

```
DEFINITION MODULE BitBlockOps ;

FROM SYSTEM IMPORT ADDRESS ;

(*
 BlockAnd - performs a bitwise AND on blocks
 [dest..dest+size-1] := [dest..dest+size-1] AND
 [src..src+size-1]
*)

PROCEDURE BlockAnd (dest, src: ADDRESS; size: CARDINAL) ;
```
(*
    BlockOr - performs a bitwise OR on blocks
    \[\text{dest..dest+size-1}] := [\text{dest..dest+size-1}] \lor
    [\text{src..src+size-1}]
*)

PROCEDURE BlockOr (dest, src: ADDRESS; size: CARDINAL);

(*
    BlockXor - performs a bitwise XOR on blocks
    \[\text{dest..dest+size-1}] := [\text{dest..dest+size-1}] \oplus
    [\text{src..src+size-1}]
*)

PROCEDURE BlockXor (dest, src: ADDRESS; size: CARDINAL);

(*
    BlockNot - performs a bitsize NOT on the block as defined
    by: \[\text{dest..dest+size-1}\]
*)

PROCEDURE BlockNot (dest: ADDRESS; size: CARDINAL);

(*
    BlockShr - performs a block shift right of, count, bits.
    Where the block is defined as:
    \[\text{dest..dest+size-1}\].
    The block is considered to be an ARRAY OF BYTES
    which is shifted, bit at a time over each byte in
    turn. The left most byte is considered the byte
    located at the lowest address.
    If you require an endianness SHIFT use
    the SYSTEM.SHIFT procedure and declare the
    block as a POINTER TO set type.
*)

PROCEDURE BlockShr (dest: ADDRESS; size, count: CARDINAL);

(*
    BlockShl - performs a block shift left of, count, bits.
    Where the block is defined as:
    \[\text{dest..dest+size-1}\].
    The block is considered to be an ARRAY OF BYTES
which is shifted, bit at a time over each byte in turn. The left most byte is considered the byte located at the lowest address. If you require an endianness SHIFT use the SYSTEM.SHIFT procedure and declare the block as a POINTER TO set type.

*)

PROCEDURE BlockShl (dest: ADDRESS; size, count: CARDINAL) ;

(*
    BlockRor - performs a block rotate right of, count, bits.
    Where the block is defined as:
    [dest..dest+size-1].
    The block is considered to be an ARRAY OF BYTES which is rotated, bit at a time over each byte in turn. The left most byte is considered the byte located at the lowest address.
    If you require an endianness ROTATE use the SYSTEM.ROTATE procedure and declare the block as a POINTER TO set type.
*

PROCEDURE BlockRor (dest: ADDRESS; size, count: CARDINAL) ;

(*
    BlockRol - performs a block rotate left of, count, bits.
    Where the block is defined as:
    [dest..dest+size-1].
    The block is considered to be an ARRAY OF BYTES which is rotated, bit at a time over each byte in turn. The left most byte is considered the byte located at the lowest address.
    If you require an endianness ROTATE use the SYSTEM.ROTATE procedure and declare the block as a POINTER TO set type.
*

PROCEDURE BlockRol (dest: ADDRESS; size, count: CARDINAL) ;

END BitBlockOps.
4.2.2 gm2-libs-log/BitByteOps

DEFINITION MODULE BitByteOps ;

FROM SYSTEM IMPORT BYTE ;

(*
   GetBits - returns the bits firstBit..lastBit from source.
   Bit 0 of byte maps onto the firstBit of source.
*)

PROCEDURE GetBits (source: BYTE; firstBit, lastBit: CARDINAL) : BYTE ;

(*
   SetBits - sets bits in, byte, starting at, firstBit, and ending at,
   lastBit, with, pattern. The bit zero of, pattern, will
   be placed into, byte, at position, firstBit.
*)

PROCEDURE SetBits (VAR byte: BYTE; firstBit, lastBit: CARDINAL;
   pattern: BYTE) ;

(*
   ByteAnd - returns a bitwise (left AND right)
*)

PROCEDURE ByteAnd (left, right: BYTE) : BYTE ;

(*
   ByteOr - returns a bitwise (left OR right)
*)

PROCEDURE ByteOr (left, right: BYTE) : BYTE ;

(*
   ByteXor - returns a bitwise (left XOR right)
*)

PROCEDURE ByteXor (left, right: BYTE) : BYTE ;
PROCEDURE ByteNot (byte: BYTE) : BYTE;

PROCEDURE ByteShr (byte: BYTE; count: CARDINAL) : BYTE;

PROCEDURE ByteShl (byte: BYTE; count: CARDINAL) : BYTE;

PROCEDURE ByteSar (byte: BYTE; count: CARDINAL) : BYTE;

PROCEDURE ByteRor (byte: BYTE; count: CARDINAL) : BYTE;

PROCEDURE ByteRol (byte: BYTE; count: CARDINAL) : BYTE;
HighNibble - returns the top nibble only from byte. The top nibble of byte is extracted and returned in the bottom nibble of the return value.

PROCEDURE HighNibble (byte: BYTE) : BYTE ;

(*
  LowNibble - returns the low nibble only from byte. The top nibble is replaced by zeros.
*)

PROCEDURE LowNibble (byte: BYTE) : BYTE ;

(*
  Swap - swaps the low and high nibbles in byte.
*)

PROCEDURE Swap (byte: BYTE) : BYTE ;

END BitByteOps.
4.2.3 gm2-libs-log/BitWordOps

DEFINITION MODULE BitWordOps ;

FROM SYSTEM IMPORT WORD ;

(*
   GetBits - returns the bits firstBit..lastBit from source.
   Bit 0 of word maps onto the firstBit of source.
*)
PROCEDURE GetBits (source: WORD; firstBit, lastBit: CARDINAL) : WORD ;

(*
   SetBits - sets bits in, word, starting at, firstBit, and ending at,
   lastBit, with, pattern. The bit zero of, pattern, will
   be placed into, word, at position, firstBit.
*)
PROCEDURE SetBits (VAR word: WORD; firstBit, lastBit: CARDINAL;
   pattern: WORD) ;

(*
   WordAnd - returns a bitwise (left AND right)
*)
PROCEDURE WordAnd (left, right: WORD) : WORD ;

(*
   WordOr - returns a bitwise (left OR right)
*)
PROCEDURE WordOr (left, right: WORD) : WORD ;

(*
   WordXor - returns a bitwise (left XOR right)
*)
PROCEDURE WordXor (left, right: WORD) : WORD ;

(*
WordNot - returns a word with all bits inverted.
*)

PROCEDURE WordNot (word: WORD) : WORD ;

(*
  WordShr - returns a, word, which has been shifted, count
   bits to the right.
*)

PROCEDURE WordShr (word: WORD; count: CARDINAL) : WORD ;

(*
  WordShl - returns a, word, which has been shifted, count
   bits to the left.
*)

PROCEDURE WordShl (word: WORD; count: CARDINAL) : WORD ;

(*
  WordSar - shift word arthematic right. Preserves the top
   end bit and as the value is shifted right.
*)

PROCEDURE WordSar (word: WORD; count: CARDINAL) : WORD ;

(*
  WordRor - returns a, word, which has been rotated, count
   bits to the right.
*)

PROCEDURE WordRor (word: WORD; count: CARDINAL) : WORD ;

(*
  WordRol - returns a, word, which has been rotated, count
   bits to the left.
*)

PROCEDURE WordRol (word: WORD; count: CARDINAL) : WORD ;

(*
HighByte - returns the top byte only from, word.
The byte is returned in the bottom byte in the return value.
*)

PROCEDURE HighByte (word: WORD) : WORD ;

(*
LowByte - returns the low byte only from, word.
The byte is returned in the bottom byte in the return value.
*)

PROCEDURE LowByte (word: WORD) : WORD ;

(*
Swap - byte flips the contents of word.
*)

PROCEDURE Swap (word: WORD) : WORD ;

END BitWordOps.
4.2.4 gm2-libs-log/BlockOps

DEFINITION MODULE BlockOps ;

FROM SYSTEM IMPORT ADDRESS ;

(*
   MoveBlockForward - moves, n, bytes from, src, to, dest.
   Starts copying from src and keep copying
   until, n, bytes have been copied.
*)

PROCEDURE BlockMoveForward (dest, src: ADDRESS; n: CARDINAL) ;

(*
   MoveBlockBackward - moves, n, bytes from, src, to, dest.
   Starts copying from src+n and keeps copying
   until, n, bytes have been copied.
   The last datum to be copied will be the byte
   at address, src.
*)

PROCEDURE BlockMoveBackward (dest, src: ADDRESS; n: CARDINAL) ;

(*
   BlockClear - fills, block..block+n-1, with zero's.
*)

PROCEDURE BlockClear (block: ADDRESS; n: CARDINAL) ;

(*
   BlockSet - fills, n, bytes starting at, block, with a pattern
   defined at address pattern..pattern+patternSize-1.
*)

PROCEDURE BlockSet (block: ADDRESS; n: CARDINAL;
              pattern: ADDRESS; patternSize: CARDINAL) ;

(*
   BlockEqual - returns TRUE if the blocks defined, a..a+n-1, and,
              b..b+n-1 contain the same bytes.
*)
PROCEDURE BlockEqual (a, b: ADDRESS; n: CARDINAL): BOOLEAN;

(*
BlockPosition - searches for a pattern as defined by pattern..patternSize-1 in the block, block..block+blockSize-1. It returns the offset from block indicating the first occurrence of, pattern. MAX(CARDINAL) is returned if no match is detected.
*)

PROCEDURE BlockPosition (block: ADDRESS; blockSize: CARDINAL;
pattern: ADDRESS; patternSize: CARDINAL): CARDINAL;

END BlockOps.
4.2.5 gm2-libs-log/Break

DEFINITION MODULE Break;

EXPORT QUALIFIED EnableBreak, DisableBreak, InstallBreak, UnInstallBreak;

(*
 EnableBreak - enable the current break handler.
*)
PROCEDURE EnableBreak;

(*
 DisableBreak - disable the current break handler (and all installed handlers).
*)
PROCEDURE DisableBreak;

(*
 InstallBreak - installs a procedure, p, to be invoked when a ctrl-c is caught. Any number of these procedures may be stacked. Only the top procedure is run when ctrl-c is caught.
*)
PROCEDURE InstallBreak (p: PROC);

(*
 UnInstallBreak - pops the break handler stack.
*)
PROCEDURE UnInstallBreak;

END Break.
4.2.6 gm2-libs-log/CardinalIO

DEFINITION MODULE CardinalIO;

EXPORT QUALIFIED Done,
    ReadCardinal, WriteCardinal, ReadHex, WriteHex,
    ReadLongCardinal, WriteLongCardinal, ReadLongHex,
    WriteLongHex,
    ReadShortCardinal, WriteShortCardinal, ReadShortHex,
    WriteShortHex;

VAR
    Done: BOOLEAN;

(*
    ReadCardinal - read an unsigned decimal number from the terminal.
    The read continues until a space, newline, esc or
    end of file is reached.
*)
PROCEDURE ReadCardinal (VAR c: CARDINAL);

(*
    WriteCardinal - writes the value, c, to the terminal and ensures
    that at least, n, characters are written. The number
    will be padded out by preceding spaces if necessary.
*)
PROCEDURE WriteCardinal (c: CARDINAL; n: CARDINAL);

(*
    ReadHex - reads in an unsigned hexadecimal number from the terminal.
    The read continues until a space, newline, esc or
    end of file is reached.
*)
PROCEDURE ReadHex (VAR c: CARDINAL);

(*
    WriteHex - writes out a CARDINAL, c, in hexadecimal format padding
    with, n, characters (leading with '0')
*)
PROCEDURE WriteHex (c: CARDINAL; n: CARDINAL) ;

(*
    ReadLongCardinal - read an unsigned decimal number from the terminal.
    The read continues until a space, newline, esc or end of file is reached.
*)
PROCEDURE ReadLongCardinal (VAR c: LONGCARD) ;

(*
    WriteLongCardinal - writes the value, c, to the terminal and ensures that at least, n, characters are written. The number will be padded out by preceding spaces if necessary.
*)
PROCEDURE WriteLongCardinal (c: LONGCARD; n: CARDINAL) ;

(*
    ReadLongHex - reads in an unsigned hexadecimal number from the terminal.
    The read continues until a space, newline, esc or end of file is reached.
*)
PROCEDURE ReadLongHex (VAR c: LONGCARD) ;

(*
    WriteLongHex - writes out a LONGCARD, c, in hexadecimal format padding with, n, characters (leading with '0')
*)
PROCEDURE WriteLongHex (c: LONGCARD; n: CARDINAL) ;

(*
    WriteShortCardinal - writes the value, c, to the terminal and ensures that at least, n, characters are written. The number will be padded out by preceding spaces if necessary.
*)
PROCEDURE WriteShortCardinal (c: SHORTCARD; n: CARDINAL) ;
(*
   ReadShortCardinal - read an unsigned decimal number from the terminal. The read continues until a space, newline, esc or end of file is reached.
*)
PROCEDURE ReadShortCardinal (VAR c: SHORTCARD);

(*
   ReadShortHex - reads in an unsigned hexadecimal number from the terminal. The read continues until a space, newline, esc or end of file is reached.
*)
PROCEDURE ReadShortHex (VAR c: SHORTCARD);

(*
   WriteShortHex - writes out a SHORTCARD, c, in hexadecimal format padding with, n, characters (leading with '0')
*)
PROCEDURE WriteShortHex (c: SHORTCARD; n: CARDINAL);

END CardinalIO.
4.2.7 gm2-libs-log/Conversions

DEFINITION MODULE Conversions;

EXPORT QUALIFIED ConvertOctal, ConvertHex, ConvertCardinal,
    ConvertInteger, ConvertLongInt, ConvertShortInt;

(*
   ConvertOctal - converts a CARDINAL, num, into an octal/hex/decimal
   string and right justifies the string. It adds
   spaces rather than '0' to pad out the string
   to len characters.
   
   If the length of str is < num then the number is
   truncated on the right.
*)

PROCEDURE ConvertOctal (num, len: CARDINAL; VAR str: ARRAY OF CHAR);
PROCEDURE ConvertHex (num, len: CARDINAL; VAR str: ARRAY OF CHAR);
PROCEDURE ConvertCardinal (num, len: CARDINAL; VAR str: ARRAY OF CHAR);

(*
   The INTEGER counterparts will add a '-' if, num, is <0
*)

PROCEDURE ConvertInteger (num: INTEGER; len: CARDINAL; VAR str: ARRAY OF CHAR);
PROCEDURE ConvertLongInt (num: LONGINT; len: CARDINAL; VAR str: ARRAY OF CHAR);
PROCEDURE ConvertShortInt (num: SHORTINT; len: CARDINAL; VAR str: ARRAY OF CHAR);

END Conversions.
4.2.8 gm2-libs-log/DebugPMD

    DEFINITION MODULE DebugPMD ;

    END DebugPMD.
4.2.9 gm2-libs-log/DebugTrace

    DEFINITION MODULE DebugTrace ;

    END DebugTrace.
4.2.10 gm2-libs-log/Delay

DEFINITION MODULE Delay;

EXPORT QUALIFIED Delay;

(*
 milliSec - delays the program by approximately, milliSec, milliseconds.*
*)

PROCEDURE Delay (milliSec: INTEGER);

END Delay.
4.2.11 gm2-libs-log/Display

DEFINITION MODULE Display;

EXPORT QUALIFIED Write;

(*
  Write - display a character to the stdout.
  ASCII.EOL moves to the beginning of the next line.
  ASCII.del erases the character to the left of the cursor.
*)

PROCEDURE Write (ch: CHAR);

END Display.
4.2.12 gm2-libs-log/ErrorCode

DEFINITION MODULE ErrorCode ;

EXPORT QUALIFIED SetErrorCode, GetErrorCode, ExitToOS ;

(*
    SetErrorCode - sets the exit value which will be used if
    the application terminates normally.
*)

PROCEDURE SetErrorCode (value: INTEGER) ;

(*
    GetErrorCode - returns the current value to be used upon
    application termination.
*)

PROCEDURE GetErrorCode (VAR value: INTEGER) ;

(*
    ExitToOS - terminate the application and exit returning
    the last value set by SetErrorCode to the OS.
*)

PROCEDURE ExitToOS ;

END ErrorCode.
4.2.13 gm2-libs-log/FileSystem

DEFINITION MODULE FileSystem ;

(* Use this module sparingly, FIO or the ISO file modules have a much cleaner interface. *)

FROM SYSTEM IMPORT WORD, BYTE, ADDRESS ;
IMPORT FIO ;
FROM DynamicStrings IMPORT String ;

EXPORT QUALIFIED File, Response, Flag, FlagSet,
Create, Close, Lookup, Rename, Delete,
SetRead, SetWrite, SetModify, SetOpen,
Doio, SetPos, GetPos, Length, Reset,
ReadWord, ReadChar, ReadByte, ReadNBytes,
WriteWord, WriteChar, WriteByte, WriteNBytes ;

TYPE
File = RECORD
    res : Response ;
    flags : FlagSet ;
    eof : BOOLEAN ;
    lastWord: WORD ;
    lastByte: BYTE ;
    fio : FIO.File ;
    highpos,
    lowpos : CARDINAL ;
    name : String ;
END ;

Flag = ( read, (* read access mode *)
    write, (* write access mode *)
    modify, truncate, (* truncate file when closed *)
    again, (* reread the last character *)
    temporary, (* file is temporary *)
    opened (* file has been opened *)
);

FlagSet = SET OF Flag;

Response = (done, notdone, notsupported, callerror,
    unknownfile, paramerror, toomanyfiles,
userdeverror);

Command = (create, close, lookup, rename, delete, setread, setwrite, setmodify, setopen, doio, setpos, getpos, length);

(*
Create - creates a temporary file. To make the file permanent the file must be renamed.
*)

PROCEDURE Create (VAR f: File);

(*
Close - closes an open file.
*)

PROCEDURE Close (f: File);

(*
Lookup - looks for a file, filename. If the file is found then, f, is opened. If it is not found and, newFile, is TRUE then a new file is created and attached to, f. If, newFile, is FALSE and no file was found then f.res is set to notdone.
*)

PROCEDURE Lookup (VAR f: File; filename: ARRAY OF CHAR; newFile: BOOLEAN);

(*
Rename - rename a file and change a temporary file to a permanent file. f.res is set appropriately.
*)

PROCEDURE Rename (VAR f: File; newname: ARRAY OF CHAR);

(*
Delete - deletes a file, name, and sets the f.res field. f.res is set appropriately.
*)

PROCEDURE Delete (name: ARRAY OF CHAR; VAR f: File);
(* ReadWord - reads a WORD, \( w \), from file, \( f \).
   \( f\).res is set appropriately. *)

PROCEDURE ReadWord (VAR f: File; VAR w: WORD);

(* WriteWord - writes one word to a file, \( f \).
   \( f\).res is set appropriately. *)

PROCEDURE WriteWord (VAR f: File; w: WORD);

(* ReadChar - reads one character from a file, \( f \).
*)

PROCEDURE ReadChar (VAR f: File; VAR ch: CHAR);

(* WriteChar - writes a character, \( ch \), to a file, \( f \).
   \( f\).res is set appropriately. *)

PROCEDURE WriteChar (VAR f: File; ch: CHAR);

(* ReadByte - reads a BYTE, \( b \), from file, \( f \).
   \( f\).res is set appropriately. *)

PROCEDURE ReadByte (VAR f: File; VAR b: BYTE);

(* WriteByte - writes one BYTE, \( b \), to a file, \( f \).
   \( f\).res is set appropriately. *)

PROCEDURE WriteByte (VAR f: File; b: BYTE);
PROCEDURE ReadNBytes (VAR f: File; a: ADDRESS; amount: CARDINAL;
VAR actuallyRead: CARDINAL) ;

PROCEDURE WriteNBytes (VAR f: File; a: ADDRESS; amount: CARDINAL;
VAR actuallyWritten: CARDINAL) ;

PROCEDURE Again (VAR f: File) ;

PROCEDURE SetRead (VAR f: File) ;

PROCEDURE SetWrite (VAR f: File) ;

PROCEDURE SetModify (VAR f: File) ;
PROCEDURE SetModify (VAR f: File) ;

(*
   SetOpen - places a file, f, into the open state. The file may have been in the read/write/modify state before and in which case the previous buffer contents are flushed and the file state is reset to open. The position is unaltered.
*)

PROCEDURE SetOpen (VAR f: File) ;

(*
   Reset - places a file, f, into the open state and reset the position to the start of the file.
*)

PROCEDURE Reset (VAR f: File) ;

(*
   SetPos - lseek to a position within a file.
*)

PROCEDURE SetPos (VAR f: File; high, low: CARDINAL) ;

(*
   GetPos - return the position within a file.
*)

PROCEDURE GetPos (VAR f: File; VAR high, low: CARDINAL) ;

(*
   Length - returns the length of file, in, high, and, low.
*)

PROCEDURE Length (VAR f: File; VAR high, low: CARDINAL) ;

(*
   Doio - effectively flushes a file in write mode, rereads the current buffer from disk if in read mode and writes
and rereads the buffer if in modify mode.

PROCEDURE Doio (VAR f: File);

(*
   FileNameChar - checks to see whether the character, ch, is
   legal in a filename. nul is returned if the
   character was illegal.
*)

PROCEDURE FileNameChar (ch: CHAR);

END FileSystem.
4.2.14 gm2-libs-log/FloatingUtilities

DEFINITION MODULE FloatingUtilities ;

EXPORT QUALIFIED Frac, Round, Float, Trunc,
        Fracl, Roundl, Floatl, Truncl ;

(*
   Frac - returns the fractional component of, r.
*)

PROCEDURE Frac (r: REAL) : REAL ;

(*
   Int - returns the integer part of r. It rounds the value towards zero.
*)

PROCEDURE Int (r: REAL) : INTEGER ;

(*
   Round - returns the number rounded to the nearest integer.
*)

PROCEDURE Round (r: REAL) : INTEGER ;

(*
   Float - returns a REAL value corresponding to, i.
*)

PROCEDURE Float (i: INTEGER) : REAL ;

(*
   Trunc - round to the nearest integer not larger in absolute value.
*)

PROCEDURE Trunc (r: REAL) : INTEGER ;

(*
   Fracl - returns the fractional component of, r.
*)
PROCEDURE Fracl (r: LONGREAL) : LONGREAL ;

(*
   Intl - returns the integer part of r. It rounds the value towards zero. *)
PROCEDURE Intl (r: LONGREAL) : LONGINT ;

(*
   Roundl - returns the number rounded to the nearest integer. *)
PROCEDURE Roundl (r: LONGREAL) : LONGINT ;

(*
   Floatl - returns a REAL value corresponding to, i. *)
PROCEDURE Floatl (i: INTEGER) : LONGREAL ;

(*
   Truncl - round to the nearest integer not larger in absolute value. *)
PROCEDURE Truncl (r: LONGREAL) : LONGINT ;

END FloatingUtilities.
4.2.15 gm2-libs-log/InOut

DEFINITION MODULE InOut;

IMPORT ASCII;
FROM DynamicStrings IMPORT String;
EXPORT QUALIFIED EOL, Done, termCH, OpenInput, OpenOutput,
CloseInput, CloseOutput,
Read, ReadString, ReadInt, ReadCard,
Write, WriteLn, WriteString, WriteInt, WriteCard,
WriteOct, WriteHex,
ReadS, WriteS;

CONST
  EOL = ASCII.EOL;

VAR
  Done : BOOLEAN;
  termCH: CHAR;

(*
  OpenInput - reads a string from stdin as the filename for reading.
  If the filename ends with `.' then it appends the defext extension. The global variable Done is set if all
  was successful.
*)
PROCEDURE OpenInput (defext: ARRAY OF CHAR);

(*
  CloseInput - closes an opened input file and returns input back to
  StdIn.
*)
PROCEDURE CloseInput;

(*
  OpenOutput - reads a string from stdin as the filename for writing.
  If the filename ends with `.' then it appends the defext extension. The global variable Done is set if all
  was successful.
*)
PROCEDURE OpenOutput (defext: ARRAY OF CHAR);
Chapter 4: PIM and ISO library definitions

(*
    CloseOutput - closes an opened output file and returns output back to
    StdOut.
*)

PROCEDURE CloseOutput ;

(*
    Read - reads a single character from the current input file.
    Done is set to FALSE if end of file is reached or an
    error occurs.
*)

PROCEDURE Read (VAR ch: CHAR) ;

(*
    ReadString - reads a sequence of characters. Leading white space
    is ignored and the string is terminated with a character
    <= ' '
*)

PROCEDURE ReadString (VAR s: ARRAY OF CHAR) ;

(*
    WriteString - writes a string to the output file.
*)

PROCEDURE WriteString (s: ARRAY OF CHAR) ;

(*
    Write - writes out a single character, ch, to the current output file.
*)

PROCEDURE Write (ch: CHAR) ;

(*
    WriteLn - writes a newline to the output file.
*)

PROCEDURE WriteLn ;
PROCEDURE ReadInt (VAR x: INTEGER) ;

PROCEDURE ReadCard (VAR x: CARDINAL) ;

PROCEDURE WriteCard (x, n: CARDINAL) ;

PROCEDURE WriteInt (x: INTEGER; n: CARDINAL) ;

PROCEDURE WriteOct (x, n: CARDINAL) ;

PROCEDURE WriteHex (x, n: CARDINAL) ;
It ensures that the number occupies, \( n \), characters. Leading spaces are added if required.

*)

PROCEDURE WriteHex \( (x, n: \text{CARDINAL}) \); 

(*
ReadS - returns a string which has a sequence of characters. Leading white space is ignored and string is terminated with a character \( \leq ' ' \).
*)

PROCEDURE ReadS () : String ; 

(*
WriteS - writes a string to the output device. It returns the string, \( s \).
*)

PROCEDURE WriteS \( (s: \text{String}) \) : String ; 

END InOut.
4.2.16 gm2-libs-log/Keyboard

DEFINITION MODULE Keyboard ;

EXPORT QUALIFIED Read, KeyPressed ;

(*
  Read - reads a character from StdIn. If necessary it will wait
  for a key to become present on StdIn.
*)

PROCEDURE Read (VAR ch: CHAR) ;

(*
  KeyPressed - returns TRUE if a character can be read from StdIn
  without blocking the caller.
*)

PROCEDURE KeyPressed (): BOOLEAN ;

END Keyboard.
4.2.17 gm2-libs-log/LongIO

DEFINITION MODULE LongIO ;

EXPORT QUALIFIED Done, ReadLongInt, WriteLongInt ;

VAR
  Done: BOOLEAN ;

PROCEDURE ReadLongInt (VAR i: LONGINT) ;
PROCEDURE WriteLongInt (i: LONGINT; n: CARDINAL) ;

END LongIO.
4.2.18 gm2-libs-log/NumberConversion

   DEFINITION MODULE NumberConversion ;

   (* --fixme-- finish this. *)

END NumberConversion.
4.2.19 gm2-libs-log/Random

DEFINITION MODULE Random ;

FROM SYSTEM IMPORT BYTE ;
EXPORT QUALIFIED Randomize, RandomInit, RandomBytes, RandomCard, RandomInt, RandomReal ;

(*
    Randomize - initialize the random number generator with a seed
    based on the microseconds.
*)
PROCEDURE Randomize ;

(*
    RandomInit - initialize the random number generator with value, seed.
*)
PROCEDURE RandomInit (seed: CARDINAL) ;

(*
    RandomBytes - fills in an array with random values.
*)
PROCEDURE RandomBytes (VAR a: ARRAY OF BYTE) ;

(*
    RandomInt - return an INTEGER in the range 0..bound-1
*)
PROCEDURE RandomInt (bound: INTEGER) : INTEGER ;

(*
    RandomCard - return a CARDINAL in the range 0..bound-1
*)
PROCEDURE RandomCard (bound: CARDINAL) : CARDINAL ;

(*
    RandomReal - return a REAL number in the range 0.0..1.0
*)
PROCEDURE RandomReal () : REAL ;

(*
  RandomLongReal - return a LONGREAL number in the range 0..1.0
*)

PROCEDURE RandomLongReal () : LONGREAL ;

END Random.
4.2.20 gm2-libs-log/RealConversions

DEFINITION MODULE RealConversions;

EXPORT QUALIFIED SetNoOfExponentDigits,
   RealToString, StringToReal,
   LongRealToString, StringToLongReal;

(*)
   SetNoOfExponentDigits - sets the number of exponent digits to be
   used during future calls of LongRealToString
   and RealToString providing that the width
   is sufficient.
   If this value is set to 0 (the default) then
   the number digits used is the minimum necessary.

*)

PROCEDURE SetNoOfExponentDigits (places: CARDINAL);

(*)
   RealToString - converts a real, r, into a right justified string, str.
   The number of digits to the right of the decimal point
   is given in, digits. The value, width, represents the
   maximum number of characters to be used in the string,
   str.

   If digits is negative then exponent notation is used
   whereas if digits is positive then fixed point notation
   is used.

   If, r, is less than 0.0 then a '-' preceeds the value,
   str. However, if, r, is >= 0.0 a '+' is not added.

   If the conversion of, r, to a string requires more
   than, width, characters then the string, str, is set
   to a nul string and, ok is assigned FALSE.

   For fixed point notation the minimum width required is
   ABS(width)+8

   For exponent notation the minimum width required is
   ABS(digits)+2+log10(magnitude).

   if r is a NaN then the string 'nan' is returned formatted and
   ok will be FALSE.
PROCEDURE RealToString (r: REAL; digits, width: INTEGER;
            VAR str: ARRAY OF CHAR; VAR ok: BOOLEAN) ;

(*
  LongRealToString - converts a real, r, into a right justified string, str. The number of
  digits to the right of the decimal point is given in, digits. The value, width, represents the
  maximum number of characters to be used in the string, str.

  If digits is negative then exponent notation is used whereas if digits is positive then fixed point notation
  is used.

  If, r, is less than 0.0 then a '-' precedes the value, str. However, if, r, is >= 0.0 a '+' is not added.

  If the conversion of, r, to a string requires more than, width, characters then the string, str, is set
  to a nul string and, ok is assigned FALSE.

  For fixed point notation the minimum width required is
  ABS(width)+8

  For exponent notation the minimum width required is
  ABS(digits)+2+log10(magnitude).

Examples:
RealToString(100.0, 10, 10, a, ok) -> '100.000000'
RealToString(100.0, -5, 12, a, ok) -> ' 1.00000E+2'
RealToString(123.456789, 10, 10, a, ok) -> '123.456789'
RealToString(123.456789, -5, 13, a, ok) -> ' 1.23456E+2'
RealToString(123.456789, -2, 15, a, ok) -> ' 1.23E+2'

  if r is a NaN then the string 'nan' is returned formatted and ok will be FALSE.
*)

PROCEDURE LongRealToString (r: LONGREAL; digits, width: INTEGER;
            VAR str: ARRAY OF CHAR; VAR ok: BOOLEAN) ;
PROCEDURE StringToReal (str: ARRAY OF CHAR; VAR r: REAL; VAR ok: BOOLEAN);

PROCEDURE StringToLongReal (str: ARRAY OF CHAR; VAR r: LONGREAL; VAR ok: BOOLEAN);
4.2.21 gm2-libs-log/RealInOut

DEFINITION MODULE RealInOut ;

EXPORT QUALIFIED SetNoOfDecimalPlaces,
    ReadReal, WriteReal, WriteRealOct,
    ReadLongReal, WriteLongReal, WriteLongRealOct,
    ReadShortReal, WriteShortReal, WriteShortRealOct,
    Done ;

CONST
    DefaultDecimalPlaces = 6 ;

VAR
    Done: BOOLEAN ;

(*
SetNoOfDecimalPlaces - number of decimal places WriteReal and
WriteLongReal should emit. This procedure
can be used to override the default
DefaultDecimalPlaces constant.
*)

PROCEDURE SetNoOfDecimalPlaces (places: CARDINAL) ;

(*
ReadReal - reads a real number, legal syntaxes include:
    100, 100.0, 100e0, 100E0, 100E-1, E2, +1E+2, 1e+2
*)

PROCEDURE ReadReal (VAR x: REAL) ;

(*
WriteReal - writes a real to the terminal. The real number
    is right justified and, n, is the minimum field
    width.
*)

PROCEDURE WriteReal (x: REAL; n: CARDINAL) ;

(*
WriteRealOct - writes the real to terminal in octal words.
*)
PROCEDURE WriteRealOct (x: REAL) ;

(*
ReadLongReal - reads a LONGREAL number, legal syntaxes include:
  100, 100.0, 100e0, 100E0, 100E-1, E2, +1E+2, 1e+2
*)

PROCEDURE ReadLongReal (VAR x: LONGREAL) ;

(*
WriteLongReal - writes a LONGREAL to the terminal. The real number
  is right justified and, n, is the minimum field
  width.
*)

PROCEDURE WriteLongReal (x: LONGREAL; n: CARDINAL) ;

(*
  WriteLongRealOct - writes the LONGREAL to terminal in octal words.
*)

PROCEDURE WriteLongRealOct (x: LONGREAL) ;

(*
ReadShortReal - reads a SHORTREAL number, legal syntaxes include:
  100, 100.0, 100e0, 100E0, 100E-1, E2, +1E+2, 1e+2
*)

PROCEDURE ReadShortReal (VAR x: SHORTREAL) ;

(*
WriteShortReal - writes a SHORTREAL to the terminal. The real number
  is right justified and, n, is the minimum field
  width.
*)

PROCEDURE WriteShortReal (x: SHORTREAL; n: CARDINAL) ;

(*
  WriteShortRealOct - writes the SHORTREAL to terminal in octal words.
*)
PROCEDURE WriteShortRealOct (x: SHORTREAL);
4.2.22 gm2-libs-log/Strings

DEFINITION MODULE Strings ;

EXPORT QUALIFIED Assign, Insert, Delete, Pos, Copy, ConCat, Length,
            CompareStr ;

(*
   Assign - dest := source.
*)
PROCEDURE Assign (VAR dest: ARRAY OF CHAR; source: ARRAY OF CHAR) ;

(*
   Insert - insert the string, substr, into str at position, index.
   substr, is added to the end of, str, if, index >= length(str)
*)
PROCEDURE Insert (substr: ARRAY OF CHAR; VAR str: ARRAY OF CHAR;
                  index: CARDINAL) ;

(*
   Delete - delete len characters from, str, starting at, index.
*)
PROCEDURE Delete (VAR str: ARRAY OF CHAR; index: CARDINAL; length: CARDINAL) ;

(*
   Pos - return the first position of, substr, in, str.
*)
PROCEDURE Pos (substr, str: ARRAY OF CHAR) : CARDINAL ;

(*
   Copy - copy at most, length, characters in, substr, to, str,
   starting at position, index.
*)
PROCEDURE Copy (str: ARRAY OF CHAR;
                index, length: CARDINAL; VAR result: ARRAY OF CHAR) ;

(*
   ConCat - concatenates two strings, s1, and, s2

and places the result into, dest.
*)

PROCEDURE ConCat (s1, s2: ARRAY OF CHAR; VAR dest: ARRAY OF CHAR);

(*
   Length - return the length of string, s.
*)

PROCEDURE Length (s: ARRAY OF CHAR) : CARDINAL;

(*
   CompareStr - compare two strings, left, and, right.
*)

PROCEDURE CompareStr (left, right: ARRAY OF CHAR) : INTEGER;

END Strings.
4.2.23 gm2-libs-log/Termbase

DEFINITION MODULE Termbase;

(*
Initially the read routines from Keyboard and the
write routine from Display is assigned to the Read,
KeyPressed and Write procedures.
*)

EXPORT QUALIFIED ReadProcedure, StatusProcedure, WriteProcedure,
AssignRead, AssignWrite, UnAssignRead, UnAssignWrite,
Read, KeyPressed, Write;

TYPE
  ReadProcedure = PROCEDURE (VAR CHAR);
  WriteProcedure = PROCEDURE (CHAR);
  StatusProcedure = PROCEDURE () : BOOLEAN;

(*
AssignRead - assigns a read procedure and status procedure for terminal
input. Done is set to TRUE if successful. Subsequent
Read and KeyPressed calls are mapped onto the user supplied
procedures. The previous read and status procedures are
uncovered and reused after UnAssignRead is called.
*)

PROCEDURE AssignRead (rp: ReadProcedure; sp: StatusProcedure;
  VAR Done: BOOLEAN);

(*
UnAssignRead - undo the last call to AssignRead and set Done to TRUE
on success.
*)

PROCEDURE UnAssignRead (VAR Done: BOOLEAN);

(*
Read - reads a single character using the currently active read
procedure.
*)

PROCEDURE Read (VAR ch: CHAR);
Chapter 4: PIM and ISO library definitions

(*
   KeyPressed - returns TRUE if a character is available to be read.
*)

PROCEDURE KeyPressed (): BOOLEAN;

(*
   AssignWrite - assigns a write procedure for terminal output.
   Done is set to TRUE if successful. Subsequent Write calls are mapped onto
   the user supplied procedure. The previous write procedure is uncovered
   and reused after UnAssignWrite is called.
*)

PROCEDURE AssignWrite (wp: WriteProcedure; VAR Done: BOOLEAN);

(*
   UnAssignWrite - undo the last call to AssignWrite and set Done to TRUE
   on success.
*)

PROCEDURE UnAssignWrite (VAR Done: BOOLEAN);

(*
   Write - writes a single character using the currently active write
   procedure.
*)

PROCEDURE Write (VAR ch: CHAR);

END Termbase.
4.2.24 gm2-libs-log/Terminal

DEFINITION MODULE Terminal ;

(*
    It provides simple terminal input output
    routines which all utilize the TermBase module.
*)

EXPORT QUALIFIED Read, KeyPressed, ReadAgain, ReadString, Write,
        WriteString, WriteLn ;

(*
    Read - reads a single character.
*)

PROCEDURE Read (VAR ch: CHAR) ;

(*
    KeyPressed - returns TRUE if a character can be read without blocking
    the caller.
*)

PROCEDURE KeyPressed () : BOOLEAN ;

(*
    ReadString - reads a sequence of characters.
    Tabs are expanded into 8 spaces and \texttt{<cr>} or \texttt{<lf>} terminates
    the string.
*)

PROCEDURE ReadString (VAR s: ARRAY OF CHAR) ;

(*
    ReadAgain - makes the last character readable again.
*)

PROCEDURE ReadAgain ;

(*
    Write - writes a single character to the TermBase module.
*)
PROCEDURE Write (ch: CHAR) ;

(*
  WriteString - writes out a string which is terminated by a <nul>
  character or the end of string HIGH(s).
*)

PROCEDURE WriteString (s: ARRAY OF CHAR) ;

(*
  WriteLn - writes a lf character.
*)

PROCEDURE WriteLn ;

END Terminal.
4.2.25 gm2-libs-log/TimeDate

DEFINITION MODULE TimeDate ;

(*
    Legacy compatibility - you are advised to use cleaner
designed modules based on 'man 3 strftime'
    and friends for new projects as the day value here is ugly.
    [it was mapped onto MSDOS pre 2000].
*)

EXPORT QUALIFIED Time, GetTime, SetTime, CompareTime, TimeToZero,
               TimeToString ;

TYPE
(*
    day holds: bits 0..4 = day of month (1..31)
          5..8 = month of year (1..12)
           9.. = year - 1900
    minute holds: hours * 60 + minutes
    millisec holds: seconds * 1000 + millisec
                   which is reset to 0 every minute
*)

    Time = RECORD
         day, minute, millisec: CARDINAL ;
    END ;

(*
    GetTime - returns the current date and time.
*)

PROCEDURE GetTime (VAR curTime: Time) ;

(*
    SetTime - does nothing, but provides compatibility with
              the Logitech-3.0 library.
*)

PROCEDURE SetTime (curTime: Time) ;

(*
    CompareTime - compare two dates and time which returns:
PROCEDURE CompareTime (t1, t2: Time) : INTEGER ;

(*
  TimeToZero - initializes, t, to zero.
*)
PROCEDURE TimeToZero (VAR t: Time) ;

(*
  TimeToString - convert time, t, to a string.
  The string, s, should be at least 19 characters
  long and the returned string will be
  yyyy-mm-dd hh:mm:ss
*)
PROCEDURE TimeToString (t: Time; VAR s: ARRAY OF CHAR) ;

END TimeDate.
4.3 PIM coroutine support

This directory contains a PIM SYSTEM containing the PROCESS primitives built on top of gthreads.

4.3.1 gm2-libs-coroutines/Executive

```
DEFINITION MODULE Executive;

EXPORT QUALIFIED SEMAPHORE, DESCRIPTOR,
 InitProcess, KillProcess, Resume, Suspend, InitSemaphore,
 Wait, Signal, WaitForIO, Ps, GetCurrentProcess,
 RotateRunQueue, ProcessName, DebugProcess;

TYPE
 SEMAPHORE ; (* defines Dijkstra's semaphores *)
 DESCRIPTOR ; (* handle onto a process *)

(*
 InitProcess - initializes a process which is held in the suspended state. When the process is resumed it will start executing procedure, p. The process has a maximum stack size of, StackSize, bytes and its textual name is, Name. The StackSize should be at least 5000 bytes.
*)

PROCEDURE InitProcess (p: PROC; StackSize: CARDINAL;
 Name: ARRAY OF CHAR) : DESCRIPTOR ;

(*
 KillProcess - kills the current process. Notice that if InitProcess is called again, it might reuse the DESCRIPTOR of the killed process. It is the responsibility of the caller to ensure all other processes understand this process is different.
*)

PROCEDURE KillProcess ;

(*
 Resume - resumes a suspended process. If all is successful then the process, p, is returned. If it fails then NIL is returned.
*)

PROCEDURE Resume (d: DESCRIPTOR) : DESCRIPTOR ;
```
Suspend - suspend the calling process. The process can only continue running if another process Resumes it.

PROCEDURE Suspend ;

InitSemaphore - creates a semaphore whose initial value is, v, and whose name is, Name.

PROCEDURE InitSemaphore (v: CARDINAL; Name: ARRAY OF CHAR) : SEMAPHORE ;

Wait - performs dijkstra's P operation on a semaphore. A process which calls this procedure will wait until the value of the semaphore is > 0 and then it will decrement this value.

PROCEDURE Wait (s: SEMAPHORE) ;

Signal - performs dijkstra's V operation on a semaphore. A process which calls the procedure will increment the semaphores value.

PROCEDURE Signal (s: SEMAPHORE) ;

WaitForIO - waits for an interrupt to occur on vector, VectorNo.

PROCEDURE WaitForIO (VectorNo: CARDINAL) ;

Ps - displays a process list together with process status.
PROCEDURE Ps;

(* GetCurrentProcess - returns the descriptor of the current running process. *)
PROCEDURE GetCurrentProcess () : DESRIPTOR ;

(* RotateRunQueue - rotates the process run queue. It does not call the scheduler. *)
PROCEDURE RotateRunQueue ;

(* ProcessName - displays the name of process, d, through DebugString. *)
PROCEDURE ProcessName (d: DESRIPTOR) ;

(* DebugProcess - gdb debug handle to enable users to debug deadlocked semaphore processes. *)
PROCEDURE DebugProcess (d: DESRIPTOR) ;

END Executive.
4.3.2 gm2-libs-coroutines/KeyBoardLEDs

DEFINITION MODULE KeyBoardLEDs ;

EXPORT QUALIFIED SwitchLeds,  
   SwitchScroll, SwitchNum, SwitchCaps ;

(*  
   SwitchLeds - switch the keyboard LEDs to the state defined  
       by the BOOLEAN variables. TRUE = ON.  
*)

PROCEDURE SwitchLeds (NumLock, CapsLock, ScrollLock: BOOLEAN) ;

(*  
   SwitchScroll - switchs the scroll LED on or off.  
*)

PROCEDURE SwitchScroll (Scroll: BOOLEAN) ;

(*  
   SwitchNum - switches the Num LED on or off.  
*)

PROCEDURE SwitchNum (Num: BOOLEAN) ;

(*  
   SwitchCaps - switches the Caps LED on or off.  
*)

PROCEDURE SwitchCaps (Caps: BOOLEAN) ;

END KeyBoardLEDs.
4.3.3 gm2-libs-coroutines/SYSTEM

DEFINITION MODULE SYSTEM;

(* This module is designed to be used on a native operating system rather than an embedded system as it implements the coroutine primitives TRANSFER, IOTRANSFER and NEWPROCESS through the GNU Pthread library. *)

FROM COROUTINES IMPORT PROTECTION;

EXPORT QUALIFIED (* the following are built into the compiler: *)
ADDRESS, WORD, BYTE, CSIZE_T, CSSIZE_T, (* Target specific data types. *)
ADR, TSIZE, ROTATE, SHIFT, THROW, TBITSIZE, (* SIZE is exported depending upon -fpim2 and -fpedantic. *)
(* The rest are implemented in SYSTEM.mod. *)
PROCESS, TRANSFER, NEWPROCESS, IOTRANSFER, LISTEN,
ListenLoop, TurnInterrupts, (* Internal GM2 compiler functions. *)
ShiftVal, ShiftLeft, ShiftRight,
RotateVal, RotateLeft, RotateRight;

TYPE
  PROCESS = RECORD
    context: INTEGER;
  END;

(* Note that the full list of system and sized datatypes include: LOC, WORD, BYTE, ADDRESS,

(and the non language standard target types)

INTEGER8, INTEGER16, INTEGER32, INTEGER64,
CARDINAL8, CARDINAL16, CARDINAL32, CARDINAL64,
WORD16, WORD32, WORD64, BITSET8, BITSET16,
BITSET32, REAL32, REAL64, REAL128, COMPLEX32,
COMPLEX64, COMPLEX128, CSIZE_T, CSSIZE_T.

Also note that the non-standard data types will move into another module in the future. *)

(* The following types are supported on this target: (* Target specific data types. *)
Chapter 4: PIM and ISO library definitions

*)

(*
    TRANSFER - save the current volatile environment into, p1.
    Restore the volatile environment from, p2.
*)

PROCEDURE TRANSFER (VAR p1: PROCESS; p2: PROCESS);

(*
    NEWPROCESS - p is a parameterless procedure, a, is the origin of
    the workspace used for the process stack and containing
    the volatile environment of the process. StackSize, is
    the maximum size of the stack in bytes which can be used
    by this process. new, is the new process.
*)

PROCEDURE NEWPROCESS (p: PROC; a: ADDRESS; StackSize: CARDINAL; VAR new: PROCESS);

(*
    IOTRANSFER - saves the current volatile environment into, First,
    and restores volatile environment, Second. When an interrupt, InterruptNo, is encountered then
    the reverse takes place. (The then current volatile
    environment is shelved onto Second and First is resumed).
    NOTE: that upon interrupt the Second might not be the
    same process as that before the original call to
    IOTRANSFER.
*)

PROCEDURE IOTRANSFER (VAR First, Second: PROCESS; InterruptNo: CARDINAL);

(*
    LISTEN - briefly listen for any interrupts.
*)

PROCEDURE LISTEN;

(*
    ListenLoop - should be called instead of users writing:
LOOP
   LISTEN
END

It performs the same function but yields control back to the underlying operating system via a call to pth_select. It also checks for deadlock. This function returns when an interrupt occurs ie a file descriptor becomes ready or a time event expires. See the module RTint.

*)

PROCEDURE ListenLoop ;

(*
   TurnInterrupts - switches processor interrupts to the protection level, to. It returns the old value.
*)

PROCEDURE TurnInterrupts (to: PROTECTION) : PROTECTION ;

(*
   all the functions below are declared internally to gm2
====================================================
PROCEDURE ADR (VAR v: <anytype>): ADDRESS;
   (* Returns the address of variable v. *)

PROCEDURE SIZE (v: <type>) : ZType;
   (* Returns the number of BYTES used to store a v of any specified <type>. Only available if -fpim2 is used.
*)

PROCEDURE TSIZE (<type>) : CARDINAL;
   (* Returns the number of BYTES used to store a value of the specified <type>.
*)

PROCEDURE ROTATE (val: <a set type>
                      num: INTEGER): <type of first parameter>;
   (* Returns a bit sequence obtained from val by rotating up or down (left or right) by the absolute value of num. The direction is down if the sign of num is negative, otherwise the direction is up.
*)
PROCEDURE SHIFT (val: <a set type>; 
               num: INTEGER): <type of first parameter>; 
(* Returns a bit sequence obtained from val by shifting up or down 
   (left or right) by the absolute value of num, introducing 
   zeros as necessary. The direction is down if the sign of 
   num is negative, otherwise the direction is up. *)

PROCEDURE THROW (i: INTEGER) <*> noreturn >; 
(* 
   THROW is a GNU extension and was not part of the PIM or ISO 
   standards. It throws an exception which will be caught by the EXCEPT 
   block (assuming it exists). This is a compiler builtin function which 
   interfaces to the GCC exception handling runtime system. 
   GCC uses the term throw, hence the naming distinction between 
   the GCC builtin and the Modula-2 runtime library procedure Raise. 
   The later library procedure Raise will call SYSTEM.THROW after 
   performing various housekeeping activities. *)

PROCEDURE TBITSIZE (<type>) : CARDINAL ; 
(* Returns the minimum number of bits necessary to represent 
   <type>. This procedure function is only useful for determining 
   the number of bits used for any type field within a packed RECORD. 
   It is not particularly useful elsewhere since <type> might be 
   optimized for speed, for example a BOOLEAN could occupy a WORD. *)

(* The following procedures are invoked by GNU Modula-2 to 
   shift non word sized set types. They are not strictly part 
   of the core PIM Modula-2, however they are used 
   to implement the SHIFT procedure defined above, 
   which are in turn used by the Logitech compatible libraries. 

Users will access these procedures by using the procedure 
SHIFT above and GNU Modula-2 will map SHIFT onto one of 
the following procedures. *)

(* 
   ShiftVal - is a runtime procedure whose job is to implement 
   the SHIFT procedure of ISO SYSTEM. GNU Modula-2 will 
   inline a SHIFT of a single WORD sized set and will 
   only call this routine for larger sets. *)
PROCEDURE ShiftVal (VAR s, d: ARRAY OF BITSET;
    SetSizeInBits: CARDINAL;
    ShiftCount: INTEGER) ;

(*
    ShiftLeft - performs the shift left for a multi word set.
    This procedure might be called by the back end of
    GNU Modula-2 depending whether amount is known at
    compile time.
*)

PROCEDURE ShiftLeft (VAR s, d: ARRAY OF BITSET;
    SetSizeInBits: CARDINAL;
    ShiftCount: CARDINAL) ;

(*
    ShiftRight - performs the shift left for a multi word set.
    This procedure might be called by the back end of
    GNU Modula-2 depending whether amount is known at
    compile time.
*)

PROCEDURE ShiftRight (VAR s, d: ARRAY OF BITSET;
    SetSizeInBits: CARDINAL;
    ShiftCount: CARDINAL) ;

(*
    RotateVal - is a runtime procedure whose job is to implement
    the ROTATE procedure of ISO SYSTEM. GNU Modula-2 will
    inline a ROTATE of a single WORD (or less)
    sized set and will only call this routine for
    larger sets.
*)

PROCEDURE RotateVal (VAR s, d: ARRAY OF BITSET;
    SetSizeInBits: CARDINAL;
    RotateCount: INTEGER) ;

(*
    RotateLeft - performs the rotate left for a multi word set.
    This procedure might be called by the back end of
    GNU Modula-2 depending whether amount is known
    at compile time.
*)
PROCEDURE RotateLeft (VAR s, d: ARRAY OF BITSET;
  SetSizeInBits: CARDINAL;
  RotateCount: CARDINAL);

(*
  RotateRight - performs the rotate right for a multi word set.
  This procedure might be called by the back end of
  GNU Modula-2 depending whether amount is known at
  compile time.
*)

PROCEDURE RotateRight (VAR s, d: ARRAY OF BITSET;
  SetSizeInBits: CARDINAL;
  RotateCount: CARDINAL);

END SYSTEM.
4.3.4 gm2-libs-coroutines/TimerHandler

DEFINITION MODULE TimerHandler ;

(* It also provides the Executive with a basic round robin scheduler. *)

EXPORT QUALIFIED TicksPerSecond, GetTicks,
EVENT,
Sleep, ArmEvent, WaitOn, Cancel, ReArmEvent ;

CONST
   TicksPerSecond = 25 ; (* Number of ticks per second. *)

TYPE
   EVENT ;

(*
   GetTicks - returns the number of ticks since boottime.
*)

PROCEDURE GetTicks () : CARDINAL ;

(*
   Sleep - suspends the current process for a time, t.
   The time is measured in ticks.
*)

PROCEDURE Sleep (t: CARDINAL) ;

(*
   ArmEvent - initializes an event, e, to occur at time, t.
   The time, t, is measured in ticks.
   The event is NOT placed onto the event queue.
*)

PROCEDURE ArmEvent (t: CARDINAL) : EVENT ;

(*
   WaitOn - places event, e, onto the event queue and then the calling
   process suspends. It is resumed up by either the event
   expiring or the event, e, being cancelled.
   TRUE is returned if the event was cancelled
   FALSE otherwise.
*)

PROCEDURE WaitOn (e: EVENT) : BOOLEAN ;
FALSE is returned if the event expires.
The event, e, is always assigned to NIL when the function
finishes.
*)

PROCEDURE WaitOn (VAR e: EVENT) : BOOLEAN ;

(*
   Cancel - cancels the event, e, on the event queue and makes
   the appropriate process runnable again.
   TRUE is returned if the event was cancelled and
   FALSE is returned is the event was not found or
   no process was waiting on this event.
*)

PROCEDURE Cancel (e: EVENT) : BOOLEAN ;

(*
   ReArmEvent - removes an event, e, from the event queue. A new time
   is given to this event and it is then re-inserted onto the
   event queue in the correct place.
   TRUE is returned if this occurred
   FALSE is returned if the event was not found.
*)

PROCEDURE ReArmEvent (e: EVENT; t: CARDINAL) : BOOLEAN ;

END TimerHandler.
4.4 M2 ISO Libraries


All implementation modules and ClientSocket.def, LongWholeIO.def, M2RTS.def, MemStream.def, pth.def, RandomNumber.def, RTdata.def, RTentity.def, RTfio.def, RTio.def, ShortComplexMath.def, ShortIO.def, ShortWholeIO.def, SimpleCipher.def, SLongWholeIO.def, SShortIO.def, SShortWholeIO.def, StringChan.def and wraptme.def are Copyright of the FSF and are held under the GPLv3 with runtime exceptions.

Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see http://www.gnu.org/licenses/.

Notice that GNU Modula-2 contains additional libraries for input/output of SHORTREAL, SHORTCARD, SHORTINT, LONGCARD, LONGINT data types. It also provides a RandomNumber, SimpleCipher and ClientSocket modules as well as low level modules which allow the IO libraries to coexist with their PIM counterparts.
4.4.1 gm2-libs-iso/COROUTINES

DEFINITION MODULE COROUTINES;

(* Facilities for coroutines and the handling of interrupts *)

IMPORT SYSTEM ;

CONST
    UnassignedPriority = 0 ;

TYPE
    COROUTINE ; (* Values of this type are created dynamically by NEWCOROUTINE and identify the coroutine in subsequent operations *)
    INTERRUPTSOURCE = CARDINAL ;
    PROTECTION = [UnassignedPriority..7] ;

PROCEDURE NEWCOROUTINE (procBody: PROC;
    workspace: SYSTEM.ADDRESS;
    size: CARDINAL;
    VAR cr: COROUTINE;
    [initProtection: PROTECTION = UnassignedPriority]) ;

(* Creates a new coroutine whose body is given by procBody, and returns the identity of the coroutine in cr. workspace is a pointer to the work space allocated to the coroutine; size specifies the size of this workspace in terms of SYSTEM.LOC. The optarg, initProtection, may contain a single parameter which specifies the initial protection level of the coroutine. *)

PROCEDURE TRANSFER (VAR from: COROUTINE; to: COROUTINE);

(* Returns the identity of the calling coroutine in from, and transfers control to the coroutine specified by to. *)

PROCEDURE IOTRANSFER (VAR from: COROUTINE; to: COROUTINE);

(* Returns the identity of the calling coroutine in from and transfers control to the coroutine specified by to. On occurrence of an interrupt, associated with the caller, control is transferred back to the caller, and the identity of the interrupted coroutine is returned in from. The calling coroutine must be associated with a source of interrupts. *)
PROCEDURE ATTACH (source: INTERRUPTSOURCE);
    (* Associates the specified source of interrupts with the calling coroutine. *)

PROCEDURE DETACH (source: INTERRUPTSOURCE);
    (* Dissociates the specified source of interrupts from the calling coroutine. *)

PROCEDURE IsATTACHED (source: INTERRUPTSOURCE): BOOLEAN;
    (* Returns TRUE if and only if the specified source of interrupts is currently associated with a coroutine; otherwise returns FALSE. *)

PROCEDURE HANDLER (source: INTERRUPTSOURCE): COROUTINE;
    (* Returns the coroutine, if any, that is associated with the source of interrupts. The result is undefined if IsATTACHED(source) = FALSE. *)

PROCEDURE CURRENT (): COROUTINE;
    (* Returns the identity of the calling coroutine. *)

PROCEDURE LISTEN (p: PROTECTION);
    (* Momentarily changes the protection of the calling coroutine to p. *)

PROCEDURE PROT (): PROTECTION;
    (* Returns the protection of the calling coroutine. *)

(*
    TurnInterrupts - switches processor interrupts to the protection level, to. It returns the old value.
*)

PROCEDURE TurnInterrupts (to: PROTECTION) : PROTECTION ;

(*
    ListenLoop - should be called instead of users writing:

    LOOP
        LISTEN
    END

    It performs the same function but yields control back to the underlying operating system.
*)
It also checks for deadlock.
Note that this function does return when an interrupt occurs. (File descriptor becomes ready or time event expires).

*)

PROCEDURE ListenLoop;

END COROUTINES.
4.4.2 gm2-libs-iso/ChanConsts

DEFINITION MODULE ChanConsts;

(* Common types and values for channel open requests and results *)

TYPE
ChanFlags = (* Request flags possibly given when a channel is opened */
( readFlag, (* input operations are requested/available *)
  writeFlag, (* output operations are requested/available *)
  oldFlag, (* a file may/must/did exist before the channel is opened *)
  textFlag, (* text operations are requested/available *)
  rawFlag, (* raw operations are requested/available *)
  interactiveFlag, (* interactive use is requested/applies *)
  echoFlag (* echoing by interactive device on removal of characters from input stream requested/applies *)
);

FlagSet = SET OF ChanFlags;

(* Singleton values of FlagSet, to allow for example, read + write *)

CONST
read = FlagSet{readFlag}; (* input operations are requested/available *)
write = FlagSet{writeFlag}; (* output operations are requested/available *)
old = FlagSet{oldFlag}; (* a file may/must/did exist before the channel is opened *)
text = FlagSet{textFlag}; (* text operations are requested/available *)
raw = FlagSet{rawFlag}; (* raw operations are requested/available *)
interactive = FlagSet{interactiveFlag}; (* interactive use is requested/applies *)
echo = FlagSet{echoFlag}; (* echoing by interactive device on removal of characters from input stream requested/applies *)

TYPE
OpenResults = (* Possible results of open requests *)
(opened, (* the open succeeded as requested *)
  wrongNameFormat, (* given name is in the wrong format for the implementation *)
  wrongFlags, (* given flags include a value that does not apply to the device *)
  tooManyOpen, (* this device cannot support any more open channels *)
  outOfChans, (* no more channels can be allocated *)
  wrongPermissions, (* file or directory permissions do not allow request *)
  noRoomOnDevice, (* storage limits on the device prevent the open *)
  noSuchFile, (* a needed file does not exist *)
  fileExists, (* a file of the given name already exists when a new one is required *)
  wrongFileType, (* the file is of the wrong type to support the required operations *)
  noTextOperations, (* text operations have been requested, but are not supported *)
  noRawOperations, (* raw operations have been requested, but are not supported *)
  noMixedOperations, (* text and raw operations have been requested, but they*)
are not supported in combination *)
alreadyOpen, (* the source/destination is already open for operations not supported
in combination with the requested operations *)
otherProblem (* open failed for some other reason *)
);

END ChanConsts.
4.4.3 gm2-libs-iso/CharClass

DEFINITION MODULE CharClass;

(* Classification of values of the type CHAR *)

PROCEDURE IsNumeric (ch: CHAR): BOOLEAN;
(* Returns TRUE if and only if ch is classified as a numeric character *)

PROCEDURE IsLetter (ch: CHAR): BOOLEAN;
(* Returns TRUE if and only if ch is classified as a letter *)

PROCEDURE IsUpper (ch: CHAR): BOOLEAN;
(* Returns TRUE if and only if ch is classified as an upper case letter *)

PROCEDURE IsLower (ch: CHAR): BOOLEAN;
(* Returns TRUE if and only if ch is classified as a lower case letter *)

PROCEDURE IsControl (ch: CHAR): BOOLEAN;
(* Returns TRUE if and only if ch represents a control function *)

PROCEDURE IsWhiteSpace (ch: CHAR): BOOLEAN;
(* Returns TRUE if and only if ch represents a space character or a format effector *)

END CharClass.
4.4.4 gm2-libs-iso/ClientSocket

DEFINITION MODULE ClientSocket ;

FROM IOChan IMPORT ChanId ;
FROM ChanConsts IMPORT FlagSet, OpenResults ;

(*
  OpenSocket - opens a TCP client connection to host:port.
*)

PROCEDURE OpenSocket (VAR cid: ChanId; 
  host: ARRAY OF CHAR; port: CARDINAL;
  f: FlagSet; VAR res: OpenResults) ;

(*
  Close - if the channel identified by cid is not open to a socket stream, the exception wrongDevice is raised; otherwise closes the channel, and assigns the value identifying the invalid channel to cid.
*)

PROCEDURE Close (VAR cid: ChanId) ;

(*
  IsSocket - tests if the channel identified by cid is open as a client socket stream.
*)

PROCEDURE IsSocket (cid: ChanId) : BOOLEAN ;

END ClientSocket.
4.4.5 gm2-libs-iso/ComplexMath

DEFINITION MODULE ComplexMath;

(* Mathematical functions for the type COMPLEX *)

CONST
i = CMPLX (0.0, 1.0);
one = CMPLX (1.0, 0.0);
zero = CMPLX (0.0, 0.0);

PROCEDURE __BUILTIN__ abs (z: COMPLEX): REAL;
(* Returns the length of z *)

PROCEDURE __BUILTIN__ arg (z: COMPLEX): REAL;
(* Returns the angle that z subtends to the positive real axis *)

PROCEDURE __BUILTIN__ conj (z: COMPLEX): COMPLEX;
(* Returns the complex conjugate of z *)

PROCEDURE __BUILTIN__ power (base: COMPLEX; exponent: REAL): COMPLEX;
(* Returns the value of the number base raised to the power exponent *)

PROCEDURE __BUILTIN__ sqrt (z: COMPLEX): COMPLEX;
(* Returns the principal square root of z *)

PROCEDURE __BUILTIN__ exp (z: COMPLEX): COMPLEX;
(* Returns the complex exponential of z *)

PROCEDURE __BUILTIN__ ln (z: COMPLEX): COMPLEX;
(* Returns the principal value of the natural logarithm of z *)

PROCEDURE __BUILTIN__ sin (z: COMPLEX): COMPLEX;
(* Returns the sine of z *)

PROCEDURE __BUILTIN__ cos (z: COMPLEX): COMPLEX;
(* Returns the cosine of z *)

PROCEDURE __BUILTIN__ tan (z: COMPLEX): COMPLEX;
(* Returns the tangent of z *)

PROCEDURE __BUILTIN__ arcsin (z: COMPLEX): COMPLEX;
(* Returns the arcsine of z *)

PROCEDURE __BUILTIN__ arccos (z: COMPLEX): COMPLEX;
(* Returns the arccosine of z *)
PROCEDURE __BUILTIN__ arctan (z: COMPLEX): COMPLEX;
  (* Returns the arctangent of z *)

PROCEDURE polarToComplex (abs, arg: REAL): COMPLEX;
  (* Returns the complex number with the specified polar coordinates *)

PROCEDURE scalarMult (scalar: REAL; z: COMPLEX): COMPLEX;
  (* Returns the scalar product of scalar with z *)

PROCEDURE IsCMathException (): BOOLEAN;
  (* Returns TRUE if the current coroutine is in the exceptional
     execution state because of the raising of an exception in a
     routine from this module; otherwise returns FALSE. *)

END ComplexMath.
4.4.6 gm2-libs-iso/ConvStringLong

DEFINITION MODULE ConvStringLong ;

FROM DynamicStrings IMPORT String ;

(*
   RealToFloatString - converts a real with, sigFigs, into a string
   and returns the result as a string.
*)

PROCEDURE RealToFloatString (real: LONGREAL; sigFigs: CARDINAL) : String ;

(*
   RealToEngString - converts the value of real to floating-point
   string form, with sigFigs significant figures. The number is scaled with one to three digits
   in the whole number part and with an exponent that is a multiple of three.
*)

PROCEDURE RealToEngString (real: LONGREAL; sigFigs: CARDINAL) : String ;

(*
   RealToFixedString - returns the number of characters in the fixed-point
   string representation of real rounded to the given place relative to the decimal point.
*)

PROCEDURE RealToFixedString (real: LONGREAL; place: INTEGER) : String ;

END ConvStringLong.
4.4.7 gm2-libs-iso/ConvStringReal

DEFINITION MODULE ConvStringReal ;

FROM DynamicStrings IMPORT String ;

(*
RealToFloatString - converts a real with, sigFigs, into a string and returns the result as a string.
*)

PROCEDURE RealToFloatString (real: REAL; sigFigs: CARDINAL) : String ;

(*
RealToEngString - converts the value of real to floating-point string form, with sigFigs significant figures. The number is scaled with one to three digits in the whole number part and with an exponent that is a multiple of three.
*)

PROCEDURE RealToEngString (real: REAL; sigFigs: CARDINAL) : String ;

(*
RealToFixedString - returns the number of characters in the fixed-point string representation of real rounded to the given place relative to the decimal point.
*)

PROCEDURE RealToFixedString (real: REAL; place: INTEGER) : String ;

END ConvStringReal.
4.4.8 gm2-libs-iso/ConvStringShort

DEFINITION MODULE ConvStringShort ;

FROM DynamicStrings IMPORT String ;

(*
    RealToFloatString - converts a real with, sigFigs, into a string
    and returns the result as a string.
*)

PROCEDURE RealToFloatString (real: SHORTREAL; sigFigs: CARDINAL) : String ;

(*
    RealToEngString - converts the value of real to floating-point
    string form, with sigFigs significant figures. The number is scaled with one to three digits
    in the whole number part and with an exponent
    that is a multiple of three.
*)

PROCEDURE RealToEngString (real: SHORTREAL; sigFigs: CARDINAL) : String ;

(*
    RealToFixedString - returns the number of characters in the fixed-point
    string representation of real rounded to the given
    place relative to the decimal point.
*)

PROCEDURE RealToFixedString (real: SHORTREAL; place: INTEGER) : String ;

END ConvStringShort.
DEFINITION MODULE ConvTypes;

(* Common types used in the string conversion modules *)

TYPE
  ConvResults = (* Values of this type are used to express the format of a string *)
    (strAllRight, (* the string format is correct for the corresponding conversion *)
     strOutOfRange, (* the string is well-formed but the value cannot be represented *)
     strWrongFormat, (* the string is in the wrong format for the conversion *)
     strEmpty (* the given string is empty *)
   );

  ScanClass = (* Values of this type are used to classify input to finite state scanners *)
    (padding, (* a leading or padding character at this point in the scan - ignore it *)
     valid, (* a valid character at this point in the scan - accept it *)
     invalid, (* an invalid character at this point in the scan - reject it *)
     terminator (* a terminating character at this point in the scan (not part of token *)
   );

  ScanState = (* The type of lexical scanning control procedures *)
    PROCEDURE (CHAR, VAR ScanClass, VAR ScanState);
END ConvTypes.
4.4.10 gm2-libs-iso/EXCEPTIONS

DEFINITION MODULE EXCEPTIONS;

(* Provides facilities for raising user exceptions
    and for making enquiries concerning the current execution state. *)

TYPE
    ExceptionSource; (* values of this type are used within library
                      modules to identify the source of raised
                      exceptions *)
    ExceptionNumber = CARDINAL;

PROCEDURE AllocateSource(VAR newSource: ExceptionSource);
    (* Allocates a unique value of type ExceptionSource *)

PROCEDURE RAISE (source: ExceptionSource;
                  number: ExceptionNumber; message: ARRAY OF CHAR)
    <* noreturn *> ;
    (* Associates the given values of source, number and message with
       the current context and raises an exception. *)

PROCEDURE CurrentNumber (source: ExceptionSource): ExceptionNumber;
    (* If the current coroutine is in the exceptional execution state
       because of the raising of an exception from source, returns
       the corresponding number, and otherwise raises an exception. *)

PROCEDURE GetMessage (VAR text: ARRAY OF CHAR);
    (* If the current coroutine is in the exceptional execution state,
       returns the possibly truncated string associated with the
       current context. Otherwise, in normal execution state,
       returns the empty string. *)

PROCEDURE IsCurrentSource (source: ExceptionSource): BOOLEAN;
    (* If the current coroutine is in the exceptional execution state
       because of the raising of an exception from source, returns
       TRUE, and otherwise returns FALSE. *)

PROCEDURE IsExceptionalExecution (): BOOLEAN;
    (* If the current coroutine is in the exceptional execution state
       because of the raising of an exception, returns TRUE, and
       otherwise returns FALSE. *)
*)

END EXCEPTIONS.
4.4.11 gm2-libs-iso/ErrnoCategory

DEFINITION MODULE ErrnoCategory ;

(*
  provides an interface to errno (if the system
  supports it) which determines whether the current
  errno is a hard or soft error. These distinctions
  are needed by the ISO Modula-2 libraries. Not all
  errno values are tested, only those which could be
  related to a device.
*)

IMPORT ChanConsts ;

(*
  IsErrnoHard - returns TRUE if the value of errno is associated with
  a hard device error.
*)

PROCEDURE IsErrnoHard (e: INTEGER) : BOOLEAN ;

(*
  IsErrnoSoft - returns TRUE if the value of errno is associated with
  a soft device error.
*)

PROCEDURE IsErrnoSoft (e: INTEGER) : BOOLEAN ;

(*
  UnAvailable - returns TRUE if the value of errno indicates that
  the resource or device is unavailable for some
  reason.
*)

PROCEDURE UnAvailable (e: INTEGER) : BOOLEAN ;

(*
  GetOpenResults - maps errno onto the ISO Modula-2 enumerated
  type, OpenResults.
*)

PROCEDURE GetOpenResults (e: INTEGER) : ChanConsts.OpenResults ;
END ErrnoCategory.
4.4.12 gm2-libs-iso/GeneralUserExceptions

DEFINITION MODULE GeneralUserExceptions;

(* Provides facilities for general user-defined exceptions *)

TYPE
   GeneralExceptions = (problem, disaster);

PROCEDURE RaiseGeneralException (exception: GeneralExceptions;
       text: ARRAY OF CHAR);
(* Raises exception using text as the associated message *)

PROCEDURE IsGeneralException (): BOOLEAN;
(* Returns TRUE if the current coroutine is in the exceptional
   execution state because of the raising of an exception from
   GeneralExceptions; otherwise returns FALSE. *)

PROCEDURE GeneralException(): GeneralExceptions;
(* If the current coroutine is in the exceptional execution
   state because of the raising of an exception from
   GeneralExceptions, returns the corresponding enumeration value,
   and otherwise raises an exception. *)

END GeneralUserExceptions.
4.4.13 gm2-libs-iso/IOChan

DEFINITION MODULE IOChan;

(* Types and procedures forming the interface to channels for  
device-independent data transfer modules  *)

IMPORT IOConsts, ChanConsts, SYSTEM;

TYPE
  ChanId; (* Values of this type are used to identify channels *)

(* There is one pre-defined value identifying an invalid channel  
on which no data transfer operations are available. It may  
be used to initialize variables of type ChanId.  *)

PROCEDURE InvalidChan (): ChanId;
  (* Returns the value identifying the invalid channel. *)

(* For each of the following operations, if the device supports  
the operation on the channel, the behaviour of the procedure  
conforms with the description below. The full behaviour is  
defined for each device module. If the device does not  
support the operation on the channel, the behaviour of the  
procedure is to raise the exception notAvailable.  *)

(* Text operations - these perform any required translation between the  
internal and external representation of text. *)

PROCEDURE Look (cid: ChanId; VAR ch: CHAR; VAR res: IOConsts.ReadResults);
  (* If there is a character as the next item in the input stream  
cid, assigns its value to ch without removing it from the stream;  
otherwise the value of ch is not defined. res (and the stored  
read result) are set to the value allRight, endOfLine, or endOfInput. *)

PROCEDURE Skip (cid: ChanId);
  (* If the input stream cid has ended, the exception skipAtEnd  
is raised; otherwise the next character or line mark in cid is  
removed, and the stored read result is set to the value  
allRight. *)
PROCEDURE SkipLook (cid: ChanId; VAR ch: CHAR; VAR res: IOConsts.ReadResults);
  (* If the input stream cid has ended, the exception skipAtEnd is raised; otherwise the next character or line mark in cid is removed. If there is a character as the next item in cid stream, assigns its value to ch without removing it from the stream. Otherwise, the value of ch is not defined. res (and the stored read result) are set to the value allRight, endOfLine, or endOfInput. *)

PROCEDURE WriteLn (cid: ChanId);
  (* Writes a line mark over the channel cid. *)

PROCEDURE TextRead (cid: ChanId; to: SYSTEM.ADDRESS; maxChars: CARDINAL;
  VAR charsRead: CARDINAL);
  (* Reads at most maxChars characters from the current line in cid, and assigns corresponding values to successive components of an ARRAY OF CHAR variable for which the address of the first component is to. The number of characters read is assigned to charsRead. The stored read result is set to allRight, endOfLine, or endOfInput. *)

PROCEDURE TextWrite (cid: ChanId; from: SYSTEM.ADDRESS;
  charsToWrite: CARDINAL);
  (* Writes a number of characters given by the value of charsToWrite, from successive components of an ARRAY OF CHAR variable for which the address of the first component is from, to the channel cid. *)

  (* Direct raw operations - these do not effect translation between the internal and external representation of data *)

PROCEDURE RawRead (cid: ChanId; to: SYSTEM.ADDRESS; maxLocs: CARDINAL;
  VAR locsRead: CARDINAL);
  (* Reads at most maxLocs items from cid, and assigns corresponding values to successive components of an ARRAY OF LOC variable for which the address of the first component is to. The number of characters read is assigned to charsRead. The stored read result is set to the value allRight, or endOfInput. *)

PROCEDURE RawWrite (cid: ChanId; from: SYSTEM.ADDRESS; locsToWrite: CARDINAL);
  (* Writes a number of items given by the value of charsToWrite, from successive components of an ARRAY OF LOC variable for which the address of the first component is from, to the channel cid. *)
(* Common operations *)

PROCEDURE GetName (cid: ChanId; VAR s: ARRAY OF CHAR);
(* Copies to s a name associated with the channel cid, possibly truncated
(depending on the capacity of s). *)

PROCEDURE Reset (cid: ChanId);
(* Resets the channel cid to a state defined by the device module. *)

PROCEDURE Flush (cid: ChanId);
(* Flushes any data buffered by the device module out to the channel cid. *)

(* Access to read results *)

PROCEDURE SetReadResult (cid: ChanId; res: IOConsts.ReadResults);
(* Sets the read result value for the channel cid to the value res. *)

PROCEDURE ReadResult (cid: ChanId): IOConsts.ReadResults;
(* Returns the stored read result value for the channel cid.
(This is initially the value notKnown). *)

(* Users can discover which flags actually apply to a channel *)

PROCEDURE CurrentFlags (cid: ChanId): ChanConsts.FlagSet;
(* Returns the set of flags that currently apply to the channel cid. *)

(* The following exceptions are defined for this module and its clients *)

TYPE
ChanExceptions =
  (wrongDevice, (* device specific operation on wrong device *)
  notAvailable, (* operation attempted that is not available on that
  channel *)
  skipAtEnd, (* attempt to skip data from a stream that has ended *)
  softDeviceError, (* device specific recoverable error *)
  hardDeviceError, (* device specific non-recoverable error *)
  textParseError, (* input data does not correspond to a character or
  line mark - optional detection *)
  notAChannel (* given value does not identify a channel -
  optional detection *)
);

PROCEDURE IsChanException (): BOOLEAN;
(* Returns TRUE if the current coroutine is in the exceptional
PROCEDURE ChanException (): ChanExceptions;

(* If the current coroutine is in the exceptional execution state because of the raising of an exception from ChanExceptions, returns the corresponding enumeration value, and otherwise raises an exception. *)

(* When a device procedure detects a device error, it raises the exception softDeviceError or hardDeviceError. If these exceptions are handled, the following facilities may be used to discover an implementation-defined error number for the channel. *)

TYPE
  DeviceErrNum = INTEGER;

PROCEDURE DeviceError (cid: ChanId): DeviceErrNum;

(* If a device error exception has been raised for the channel cid, returns the error number stored by the device module. *)

END IOChan.
4.4.14 gm2-libs-iso/IOConsts

DEFINITION MODULE IOConsts;

(* Types and constants for input/output modules *)

TYPE
  ReadResults = (* This type is used to classify the result of an input operation *)
  (notKnown, (* no read result is set *)
    allRight, (* data is as expected or as required *)
    outOfRange, (* data cannot be represented *)
    wrongFormat, (* data not in expected format *)
    endOfLine, (* end of line seen before expected data *)
    endOfInput (* end of input seen before expected data *)
  );

END IOConsts.
4.4.15 gm2-libs-iso/IOLink

DEFINITION MODULE IOLink;

(* Types and procedures for the standard implementation of channels *)

IMPORT IOChan, IOConsts, ChanConsts, SYSTEM;

TYPE
  DeviceId;
  (* Values of this type are used to identify new device modules,
     and are normally obtained by them during their initialization. *)
  *
PROCEDURE AllocateDeviceId (VAR did: DeviceId);
  (* Allocates a unique value of type DeviceId, and assigns this
     value to did. *)

PROCEDURE MakeChan (did: DeviceId; VAR cid: IOChan.ChanId);
  (* Attempts to make a new channel for the device module identified
     by did. If no more channels can be made, the identity of
     the invalid channel is assigned to cid. Otherwise, the identity
     of a new channel is assigned to cid. *)

PROCEDURE UnMakeChan (did: DeviceId; VAR cid: IOChan.ChanId);
  (* If the device module identified by did is not the module that
     made the channel identified by cid, the exception wrongDevice is
     raised; otherwise the channel is deallocated, and the value
     identifying the invalid channel is assigned to cid. *)

TYPE
  DeviceTablePtr = POINTER TO DeviceTable;
  (* Values of this type are used to refer to device tables *)

TYPE
  LookProc = PROCEDURE (DeviceTablePtr, VAR CHAR, VAR IOConsts.ReadResults);
  SkipProc = PROCEDURE (DeviceTablePtr);
  SkipLookProc = PROCEDURE (DeviceTablePtr, VAR CHAR, VAR IOConsts.ReadResults);
  WriteLnProc = PROCEDURE (DeviceTablePtr);
  TextReadProc = PROCEDURE (DeviceTablePtr, SYSTEM.ADDRESS, CARDINAL, VAR CARDINAL);
  TextWriteProc = PROCEDURE (DeviceTablePtr, SYSTEM.ADDRESS, CARDINAL);
  RawReadProc = PROCEDURE (DeviceTablePtr, SYSTEM.ADDRESS, CARDINAL, VAR CARDINAL);
  RawWriteProc = PROCEDURE (DeviceTablePtr, SYSTEM.ADDRESS, CARDINAL);
  GetNameProc = PROCEDURE (DeviceTablePtr, VAR ARRAY OF CHAR);
  ResetProc = PROCEDURE (DeviceTablePtr);
FlushProc = PROCEDURE (DeviceTablePtr);
FreeProc = PROCEDURE (DeviceTablePtr);
(* Carry out the operations involved in closing the corresponding channel, including flushing buffers, but do not unmake the channel. *)

TYPE
DeviceData = SYSTEM.ADDRESS;
DeviceTable = RECORD
  cd: DeviceData; (* the value NIL *)
  did: DeviceId; (* the value given in the call of MakeChan *)
  cid: IOChan.ChanId; (* the identity of the channel *)
  result: IOConsts.ReadResults; (* the value notKnown *)
  errNum: IOChan.DeviceErrNum; (* undefined *)
  flags: ChanConsts.FlagSet; (* ChanConsts.FlagSet{} *)
  doLook: LookProc; (* raise exception notAvailable *)
  doSkip: SkipProc; (* raise exception notAvailable *)
  doSkipLook: SkipLookProc; (* raise exception notAvailable *)
  doLnWrite: WriteLnProc; (* raise exception notAvailable *)
  doTextRead: TextReadProc; (* raise exception notAvailable *)
  doTextWrite: TextWriteProc; (* raise exception notAvailable *)
  doRawRead: RawReadProc; (* raise exception notAvailable *)
  doRawWrite: RawWriteProc; (* raise exception notAvailable *)
  doGetName: GetNameProc; (* return the empty string *)
  doReset: ResetProc; (* do nothing *)
  doFlush: FlushProc; (* do nothing *)
  doFree: FreeProc; (* do nothing *)
END;

(* The pointer to the device table for a channel is obtained using the following procedure: *)

(*
If the device module identified by did is not the module that made the channel identified by cid, the exception wrongDevice is raised.
*)

PROCEDURE DeviceTablePtrValue (cid: IOChan.ChanId; did: DeviceId): DeviceTablePtr;

(* Tests if the device module identified by did is the module

that made the channel identified by cid.
*)

PROCEDURE IsDevice (cid: IOChan.ChanId; did: DeviceId) : BOOLEAN;

TYPE
  DevExceptionRange = IOChan.ChanExceptions;

(*
  ISO standard states defines

  DevExceptionRange = [IOChan.notAvailable .. IOChan.textParseError];

  however this must be a bug as other modules need to raise
  IOChan.wrongDevice exceptions.
*)

PROCEDURE RAISEdevException (cid: IOChan.ChanId; did: DeviceId;
  x: DevExceptionRange; s: ARRAY OF CHAR) <* noreturn *> ;

(* If the device module identified by did is not the module that made the channel
  identified by cid, the exception wrongDevice is raised; otherwise the given exception
  is raised, and the string value in s is included in the exception message.
*)

PROCEDURE IsIOException () : BOOLEAN;
(* Returns TRUE if the current coroutine is in the exceptional execution state
 because of the raising of an exception from ChanExceptions;
 otherwise FALSE.
*)

PROCEDURE IOException () : IOChan.ChanExceptions;
(* If the current coroutine is in the exceptional execution state because of the
 raising of an exception from ChanExceptions, returns the corresponding
 enumeration value, and otherwise raises an exception.
*)

END IOLink.
4.4.16 gm2-libs-iso/IOResult

DEFINITION MODULE IOResult;

(* Read results for specified channels *)

IMPORT IOConsts, IOChan;

TYPE
  ReadResults = IOConsts.ReadResults;

(*
  ReadResults = (* This type is used to classify the result of an input operation *)
  (* This type is used to classify the result of an input operation *)
  (notKnown, (* no read result is set *)
  allRight, (* data is as expected or as required *)
  outOfRange, (* data cannot be represented *)
  wrongFormat, (* data not in expected format *)
  endOfLine, (* end of line seen before expected data *)
  endOfInput (* end of input seen before expected data *)
  );
(*)

PROCEDURE ReadResult (cid: IOChan.ChanId): ReadResults;
  (* Returns the result for the last read operation on the channel cid. *)
END IOResult.
4.4.17 gm2-libs-iso/LongComplexMath

DEFINITION MODULE LongComplexMath;

(* Mathematical functions for the type LONGCOMPLEX *)

CONST
  i = CMPLX (0.0, 1.0);
  one = CMPLX (1.0, 0.0);
  zero = CMPLX (0.0, 0.0);

PROCEDURE abs (z: LONGCOMPLEX): LONGREAL;
  (* Returns the length of z *)

PROCEDURE arg (z: LONGCOMPLEX): LONGREAL;
  (* Returns the angle that z subtends to the positive real axis *)

PROCEDURE conj (z: LONGCOMPLEX): LONGCOMPLEX;
  (* Returns the complex conjugate of z *)

PROCEDURE power (base: LONGCOMPLEX; exponent: LONGREAL): LONGCOMPLEX;
  (* Returns the value of the number base raised to the power exponent *)

PROCEDURE sqrt (z: LONGCOMPLEX): LONGCOMPLEX;
  (* Returns the principal square root of z *)

PROCEDURE exp (z: LONGCOMPLEX): LONGCOMPLEX;
  (* Returns the complex exponential of z *)

PROCEDURE ln (z: LONGCOMPLEX): LONGCOMPLEX;
  (* Returns the principal value of the natural logarithm of z *)

PROCEDURE sin (z: LONGCOMPLEX): LONGCOMPLEX;
  (* Returns the sine of z *)

PROCEDURE cos (z: LONGCOMPLEX): LONGCOMPLEX;
  (* Returns the cosine of z *)

PROCEDURE tan (z: LONGCOMPLEX): LONGCOMPLEX;
  (* Returns the tangent of z *)

PROCEDURE arcsin (z: LONGCOMPLEX): LONGCOMPLEX;
  (* Returns the arcsine of z *)

PROCEDURE arccos (z: LONGCOMPLEX): LONGCOMPLEX;
  (* Returns the arccosine of z *)
PROCEDURE arctan (z: LONGCOMPLEX): LONGCOMPLEX;
    (* Returns the arctangent of z *)

PROCEDURE polarToComplex (abs, arg: LONGREAL): LONGCOMPLEX;
    (* Returns the complex number with the specified polar coordinates *)

PROCEDURE scalarMult (scalar: LONGREAL; z: LONGCOMPLEX): LONGCOMPLEX;
    (* Returns the scalar product of scalar with z *)

PROCEDURE IsCMathException (): BOOLEAN;
    (* Returns TRUE if the current coroutine is in the exceptional execution state
       because of the raising of an exception in a routine from this module; otherwise
       returns FALSE. *)

END LongComplexMath.
4.4.18 gm2-libs-iso/LongConv

DEFINITION MODULE LongConv;

(* Low-level LONGREAL/string conversions *)

IMPORT ConvTypes;

TYPE ConvResults = ConvTypes.ConvResults; (* strAllRight, strOutOfRange, strWrongFormat, strEmpty *)

PROCEDURE ScanReal (inputCh: CHAR; VAR chClass: ConvTypes.ScanClass; VAR nextState: ConvTypes.ScanState);
(* Represents the start state of a finite state scanner for real numbers - assigns class of inputCh to chClass and a procedure representing the next state to nextState. *)

PROCEDURE FormatReal (str: ARRAY OF CHAR): ConvResults;
(* Returns the format of the string value for conversion to LONGREAL. *)

PROCEDURE ValueReal (str: ARRAY OF CHAR): LONGREAL;
(* Returns the value corresponding to the real number string value str if str is well-formed; otherwise raises the LongConv exception. *)

PROCEDURE LengthFloatReal (real: LONGREAL; sigFigs: CARDINAL): CARDINAL;
(* Returns the number of characters in the floating-point string representation of real with sigFigs significant figures. *)

PROCEDURE LengthEngReal (real: LONGREAL; sigFigs: CARDINAL): CARDINAL;
(* Returns the number of characters in the floating-point engineering string representation of real with sigFigs significant figures. *)

PROCEDURE LengthFixedReal (real: LONGREAL; place: INTEGER): CARDINAL;
(* Returns the number of characters in the fixed-point string representation of real rounded to the given place relative to the decimal point. *)

PROCEDURE IsRConvException (): BOOLEAN;
(* Returns TRUE if the current coroutine is in the exceptional execution state because of the raising of an exception in a
routine from this module; otherwise returns FALSE.
*)

END LongConv.
4.4.19 gm2-libs-iso/LongIO

DEFINITION MODULE LongIO;

(* Input and output of long real numbers in decimal text form over specified channels. The read result is of the type IOConstats.ReadResults. *)

IMPORT IOChan;

(* The text form of a signed fixed-point real number is
["+" | "-"], decimal digit, {decimal digit}, [".",
{decimal digit}]

The text form of a signed floating-point real number is
signed fixed-point real number,
"E", ["+" | "-"], decimal digit, {decimal digit} *)

PROCEDURE ReadReal (cid: IOChan.ChanId; VAR real: LONGREAL);
(* Skips leading spaces, and removes any remaining characters from cid that form part of a signed fixed or floating point number. The value of this number is assigned to real. The read result is set to the value allRight, outOfRange, wrongFormat, endOfLine, or endOfInput. *)

PROCEDURE WriteFloat (cid: IOChan.ChanId; real: LONGREAL;
sigFigs: CARDINAL; width: CARDINAL);
(* Writes the value of real to cid in floating-point text form, with sigFigs significant figures, in a field of the given minimum width. *)

PROCEDURE WriteEng (cid: IOChan.ChanId; real: LONGREAL;
sigFigs: CARDINAL; width: CARDINAL);
(* As for WriteFloat, except that the number is scaled with one to three digits in the whole number part, and with an exponent that is a multiple of three. *)

PROCEDURE WriteFixed (cid: IOChan.ChanId; real: LONGREAL;
place: INTEGER; width: CARDINAL);
(* Writes the value of real to cid in fixed-point text form, rounded to the given place relative to the decimal point, in a field of the given minimum width. *)
PROCEDURE WriteReal (cid: IOChan.ChanId; real: LONGREAL;
       width: CARDINAL);
(* Writes the value of real to cid, as WriteFixed if the
    sign and magnitude can be shown in the given width, or
    otherwise as WriteFloat. The number of places or
    significant digits depends on the given width. *)
END LongIO.
4.4.20 gm2-libs-iso/LongMath

DEFINITION MODULE LongMath;

(* Mathematical functions for the type LONGREAL *)

CONST
  pi   = 3.1415926535897932384626433832795028841972;
  exp1 = 2.7182818284590452353602874713526624977572;

PROCEDURE __BUILTIN__ sqrt (x: LONGREAL): LONGREAL;
  (* Returns the positive square root of x *)

PROCEDURE __BUILTIN__ exp (x: LONGREAL): LONGREAL;
  (* Returns the exponential of x *)

PROCEDURE __BUILTIN__ ln (x: LONGREAL): LONGREAL;
  (* Returns the natural logarithm of x *)

  (* The angle in all trigonometric functions is measured in radians *)

PROCEDURE __BUILTIN__ sin (x: LONGREAL): LONGREAL;
  (* Returns the sine of x *)

PROCEDURE __BUILTIN__ cos (x: LONGREAL): LONGREAL;
  (* Returns the cosine of x *)

PROCEDURE tan (x: LONGREAL): LONGREAL;
  (* Returns the tangent of x *)

PROCEDURE arcsin (x: LONGREAL): LONGREAL;
  (* Returns the arcsine of x *)

PROCEDURE arccos (x: LONGREAL): LONGREAL;
  (* Returns the arccosine of x *)

PROCEDURE arctan (x: LONGREAL): LONGREAL;
  (* Returns the arctangent of x *)

PROCEDURE power (base, exponent: LONGREAL): LONGREAL;
  (* Returns the value of the number base raised to the power exponent *)

PROCEDURE round (x: LONGREAL): INTEGER;
  (* Returns the value of x rounded to the nearest integer *)

PROCEDURE IsRMathException (): BOOLEAN;
  (* Returns TRUE if the current coroutine is in the exceptional
execution state because of the raising of an exception in a routine from this module; otherwise returns FALSE.
*)

END LongMath.
DEFINITION MODULE LongStr;

(* LONGREAL/string conversions *)

IMPORT ConvTypes;

TYPE (* strAllRight, strOutOfRange, strWrongFormat, strEmpty *)
  ConvResults = ConvTypes.ConvResults;

(* the string form of a signed fixed-point real number is
  ["+" | "]", decimal digit, {decimal digit}, 
  {decimal digit}]
*)

(* the string form of a signed floating-point real number is
  signed fixed-point real number, 
  "E", ["+" | "]", decimal digit, {decimal digit}]
*)

PROCEDURE StrToReal (str: ARRAY OF CHAR; VAR real: LONGREAL;
  VAR res: ConvResults);
  (* Ignores any leading spaces in str. If the subsequent characters
     in str are in the format of a signed real number, assigns a
     corresponding value to real. Assigns a value indicating the
     format of str to res. *)
)

PROCEDURE RealToFloat (real: LONGREAL; sigFigs: CARDINAL;
  VAR str: ARRAY OF CHAR);
  (* Converts the value of real to floating-point string form, with
    sigFigs significant figures, and copies the possibly truncated
    result to str. *)
)

PROCEDURE RealToEng (real: LONGREAL; sigFigs: CARDINAL;
  VAR str: ARRAY OF CHAR);
  (* Converts the value of real to floating-point string form, with
    sigFigs significant figures, and copies the possibly truncated
    result to str. The number is scaled with one to three digits
    in the whole number part and with an exponent that is a
    multiple of three. *)
)
PROCEDURE RealToFixed (real: LONGREAL; place: INTEGER;
VAR str: ARRAY OF CHAR);
(* Converts the value of real to fixed-point string form, rounded
  to the given place relative to the decimal point, and copies
  the possibly truncated result to str.
*)

PROCEDURE RealToStr (real: LONGREAL; VAR str: ARRAY OF CHAR);
(* Converts the value of real as RealToFixed if the sign and
  magnitude can be shown within the capacity of str, or
  otherwise as RealToFloat, and copies the possibly truncated
  result to str. The number of places or significant digits
  depend on the capacity of str.
*)

END LongStr.
4.4.22 gm2-libs-iso/LongWholeIO

DEFINITION MODULE LongWholeIO;

(* Input and output of whole numbers in decimal text form over specified channels. The read result is of the type IOConsts.ReadResults. *)

IMPORT IOChan;

(* The text form of a signed whole number is ["+" | "-"], decimal digit, {decimal digit} The text form of an unsigned whole number is decimal digit, {decimal digit} *)

PROCEDURE ReadInt (cid: IOChan.ChanId; VAR int: LONGINT);
(* Skips leading spaces, and removes any remaining characters from cid that form part of a signed whole number. The value of this number is assigned to int. The read result is set to the value allRight, outOfRange, wrongFormat, endOfLine, or endOfInput. *)

PROCEDURE WriteInt (cid: IOChan.ChanId; int: LONGINT; width: CARDINAL);
(* Writes the value of int to cid in text form, in a field of the given minimum width. *)

PROCEDURE ReadCard (cid: IOChan.ChanId; VAR card: LONGCARD);
(* Skips leading spaces, and removes any remaining characters from cid that form part of an unsigned whole number. The value of this number is assigned to card. The read result is set to the value allRight, outOfRange, wrongFormat, endOfLine, or endOfInput. *)

PROCEDURE WriteCard (cid: IOChan.ChanId; card: LONGCARD; width: CARDINAL);
(* Writes the value of card to cid in text form, in a field of the given minimum width. *)

END LongWholeIO.
4.4.23 gm2-libs-iso/LowLong

DEFINITION MODULE LowLong;

(* Access to underlying properties of the type LONGREAL *)

CONST
  radix = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, radix>)); (* ZType *)
  places = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, places>)); (* ZType *)
  expoMin = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, expoMin>)); (* ZType *)
  expoMax = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, expoMax>)); (* ZType *)
  large = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, large>)); (* RType *)
  small = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, small>)); (* RType *)
  IEC559 = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, IEC559>)); (* BOOLEAN *)
  LIA1 = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, LIA1>)); (* BOOLEAN *)
  ISO = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, ISO>)); (* BOOLEAN *)
  IEEE = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, IEEE>)); (* BOOLEAN *)
  rounds = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, rounds>)); (* BOOLEAN *)
  gUnderflow = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, gUnderflow>)); (* BOOLEAN *)
  exception = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, exception>)); (* BOOLEAN *)
  extend = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, extend>)); (* BOOLEAN *)
  nModes = __ATTRIBUTE__ __BUILTIN__ ((<LONGREAL, nModes>)); (* ZType *)

TYPE
  Modes = PACKEDSET OF [0 .. nModes-1];

PROCEDURE exponent (x: LONGREAL): INTEGER;
  (* Returns the exponent value of x *)

PROCEDURE fraction (x: LONGREAL): LONGREAL;
  (* Returns the significand (or significant part) of x *)

PROCEDURE sign (x: LONGREAL): LONGREAL;
  (* Returns the signum of x *)

PROCEDURE succ (x: LONGREAL): LONGREAL;
  (* Returns the next value of the type LONGREAL greater than x *)

PROCEDURE ulp (x: LONGREAL): LONGREAL;
  (* Returns the value of a unit in the last place of x *)

PROCEDURE pred (x: LONGREAL): LONGREAL;
  (* Returns the previous value of the type LONGREAL less than x *)

PROCEDURE intpart (x: LONGREAL): LONGREAL;
  (* Returns the integer part of x *)
PROCEDURE fractpart (x: LONGREAL): LONGREAL;
(* Returns the fractional part of x *)

PROCEDURE scale (x: LONGREAL; n: INTEGER): LONGREAL;
(* Returns the value of x * radix ** n *)

PROCEDURE trunc (x: LONGREAL; n: INTEGER): LONGREAL;
(* Returns the value of the first n places of x *)

PROCEDURE round (x: LONGREAL; n: INTEGER): LONGREAL;
(* Returns the value of x rounded to the first n places *)

PROCEDURE synthesize (expart: INTEGER; frapart: LONGREAL): LONGREAL;
(* Returns a value of the type LONGREAL constructed from the given expart and frapart *)

PROCEDURE setMode (m: Modes);
(* Sets status flags appropriate to the underlying implementation of the type LONGREAL *)

PROCEDURE currentMode (): Modes;
(* Returns the current status flags in the form set by setMode *)

PROCEDURE IsLowException (): BOOLEAN;
(* Returns TRUE if the current coroutine is in the exceptional execution state because of the raising of an exception in a routine from this module; otherwise returns FALSE. *)

END LowLong.
4.4.24 gm2-libs-iso/LowReal

DEFINITION MODULE LowReal;

(* Access to underlying properties of the type REAL *)

CONST
  radix = __ATTRIBUTE__ __BUILTIN__ (( <REAL, radix> )) ; (* ZType *)
  places = __ATTRIBUTE__ __BUILTIN__ (( <REAL, places> )) ; (* ZType *)
  expoMin = __ATTRIBUTE__ __BUILTIN__ (( <REAL, expoMin> )) ; (* ZType *)
  expoMax = __ATTRIBUTE__ __BUILTIN__ (( <REAL, expoMax> )) ; (* ZType *)
  large = __ATTRIBUTE__ __BUILTIN__ (( <REAL, large> )) ; (* RType *)
  small = __ATTRIBUTE__ __BUILTIN__ (( <REAL, small> )) ; (* RType *)
  IEC559 = __ATTRIBUTE__ __BUILTIN__ (( <REAL, IEC559> )) ; (* BOOLEAN *)
  LIA1 = __ATTRIBUTE__ __BUILTIN__ (( <REAL, LIA1> )) ; (* BOOLEAN *)
  ISO = __ATTRIBUTE__ __BUILTIN__ (( <REAL, ISO> )) ; (* BOOLEAN *)
  IEEE = __ATTRIBUTE__ __BUILTIN__ (( <REAL, IEEE> )) ; (* BOOLEAN *)
  rounds = __ATTRIBUTE__ __BUILTIN__ (( <REAL, rounds> )) ; (* BOOLEAN *)
  gUnderflow = __ATTRIBUTE__ __BUILTIN__ (( <REAL, gUnderflow> )) ; (* BOOLEAN *)
  exception = __ATTRIBUTE__ __BUILTIN__ (( <REAL, exception> )) ; (* BOOLEAN *)
  extend = __ATTRIBUTE__ __BUILTIN__ (( <REAL, extend> )) ; (* BOOLEAN *)
  nModes = __ATTRIBUTE__ __BUILTIN__ (( <REAL, nModes> )) ; (* ZType *)

TYPE
  Modes = PACKEDSET OF [0..nModes-1];

PROCEDURE exponent (x: REAL): INTEGER;
  (* Returns the exponent value of x *)

PROCEDURE fraction (x: REAL): REAL;
  (* Returns the significand (or significant part) of x *)

PROCEDURE sign (x: REAL): REAL;
  (* Returns the signum of x *)

PROCEDURE succ (x: REAL): REAL;
  (* Returns the next value of the type REAL greater than x *)

PROCEDURE ulp (x: REAL): REAL;
  (* Returns the value of a unit in the last place of x *)

PROCEDURE pred (x: REAL): REAL;
  (* Returns the previous value of the type REAL less than x *)

PROCEDURE intpart (x: REAL): REAL;
  (* Returns the integer part of x *)
PROCEDURE fractpart (x: REAL): REAL;
    (* Returns the fractional part of x *)

PROCEDURE scale (x: REAL; n: INTEGER): REAL;
    (* Returns the value of x * radix ** n *)

PROCEDURE trunc (x: REAL; n: INTEGER): REAL;
    (* Returns the value of the first n places of x *)

PROCEDURE round (x: REAL; n: INTEGER): REAL;
    (* Returns the value of x rounded to the first n places *)

PROCEDURE synthesize (expart: INTEGER; frapart: REAL): REAL;
    (* Returns a value of the type REAL constructed from the given expart and frapart *)

PROCEDURE setMode (m: Modes);
    (* Sets status flags appropriate to the underlying implementation of the type REAL *)

PROCEDURE currentMode (): Modes;
    (* Returns the current status flags in the form set by setMode *)

PROCEDURE IsLowException (): BOOLEAN;
    (* Returns TRUE if the current coroutine is in the exceptional execution state because of the raising of an exception in a routine from this module; otherwise returns FALSE. *)

END LowReal.
4.4.25 gm2-libs-iso/LowShort

DEFINITION MODULE LowShort;

(* Access to underlying properties of the type SHORTREAL *)

CONST
  radix = __ATTRIBUTE__ __BUILTIN__ (( <SHORTREAL, radix> )) ; (* ZType *)
  places = __ATTRIBUTE__ __BUILTIN__ (( <SHORTREAL, places> )) ; (* ZType *)
  expoMin = __ATTRIBUTE__ __BUILTIN__ (( <SHORTREAL, expoMin> )) ; (* ZType *)
  expoMax = __ATTRIBUTE__ __BUILTIN__ (( <SHORTREAL, expoMax> )) ; (* ZType *)
  large = __ATTRIBUTE__ __BUILTIN__ (( <SHORTREAL, large> )) ; (* RType *)
  small = __ATTRIBUTE__ __BUILTIN__ (( <SHORTREAL, small> )) ; (* RType *)
  IEC559 = __ATTRIBUTE__ __BUILTIN__ (( <SHORTREAL, IEC559> )) ; (* BOOLEAN *)
  LIA1 = __ATTRIBUTE__ __BUILTIN__ (( <SHORTREAL, LIA1> )) ; (* BOOLEAN *)
  ISO = __ATTRIBUTE__ __BUILTIN__ (( <SHORTREAL, ISO> )) ; (* BOOLEAN *)
  IEEE = __ATTRIBUTE__ __BUILTIN__ (( <SHORTREAL, IEEE> )) ; (* BOOLEAN *)
  rounds = __ATTRIBUTE__ __BUILTIN__ (( <SHORTREAL, rounds> )) ; (* BOOLEAN *)
  gUnderflow = __ATTRIBUTE__ __BUILTIN__ (( <SHORTREAL, gUnderflow> )) ; (* BOOLEAN *)
  exception = __ATTRIBUTE__ __BUILTIN__ (( <SHORTREAL, exception> )) ; (* BOOLEAN *)
  extend = __ATTRIBUTE__ __BUILTIN__ (( <SHORTREAL, extend> )) ; (* BOOLEAN *)
  nModes = __ATTRIBUTE__ __BUILTIN__ (( <SHORTREAL, nModes> )) ; (* ZType *)

TYPE
  Modes = PACKEDSET OF [0 .. nModes-1];

PROCEDURE exponent (x: SHORTREAL): INTEGER;
  (* Returns the exponent value of x *)

PROCEDURE fraction (x: SHORTREAL): SHORTREAL;
  (* Returns the significand (or significant part) of x *)

PROCEDURE sign (x: SHORTREAL): SHORTREAL;
  (* Returns the signum of x *)

PROCEDURE succ (x: SHORTREAL): SHORTREAL;
  (* Returns the next value of the type SHORTREAL greater than x *)

PROCEDURE ulp (x: SHORTREAL): SHORTREAL;
  (* Returns the value of a unit in the last place of x *)

PROCEDURE pred (x: SHORTREAL): SHORTREAL;
  (* Returns the previous value of the type SHORTREAL less than x *)

PROCEDURE intpart (x: SHORTREAL): SHORTREAL;
  (* Returns the integer part of x *)
PROCEDURE fractpart (x: SHORTREAL): SHORTREAL;
(* Returns the fractional part of x *)

PROCEDURE scale (x: SHORTREAL; n: INTEGER): SHORTREAL;
(* Returns the value of x * radix ** n *)

PROCEDURE trunc (x: SHORTREAL; n: INTEGER): SHORTREAL;
(* Returns the value of the first n places of x *)

PROCEDURE round (x: SHORTREAL; n: INTEGER): SHORTREAL;
(* Returns the value of x rounded to the first n places *)

PROCEDURE synthesize (expart: INTEGER; frapart: SHORTREAL): SHORTREAL;
(* Returns a value of the type SHORTREAL constructed from the given expart and frapart *)

PROCEDURE setMode (m: Modes);
(* Sets status flags appropriate to the underlying implementation of the type SHORTREAL *)

PROCEDURE currentMode (): Modes;
(* Returns the current status flags in the form set by setMode *)

PROCEDURE IsLowException (): BOOLEAN;
(* Returns TRUE if the current coroutine is in the exceptional execution state
because of the raising of an exception in a routine from this module; otherwise returns FALSE.
*)

END LowShort.
4.4.26 gm2-libs-iso/M2EXCEPTION

DEFINITION MODULE M2EXCEPTION;

(* Provides facilities for identifying language exceptions *)

TYPE
    M2Exceptions =
        (indexException, rangeException, caseSelectException, invalidLocation, functionException, wholeValueException, wholeDivException, realValueException, realDivException, complexValueException, complexDivException, protException, sysException, coException, exException);

PROCEDURE M2Exception (): M2Exceptions;
    (* If the current coroutine is in the exceptional execution state because of the raising of a language exception, returns the corresponding enumeration value, and otherwise raises an exception. *)

    PROCEDURE IsM2Exception (): BOOLEAN;
        (* If the current coroutine is in the exceptional execution state because of the raising of a language exception, returns TRUE, and otherwise returns FALSE. *)

END M2EXCEPTION.
4.4.27 gm2-libs-iso/M2RTS

DEFINITION MODULE M2RTS ;

FROM SYSTEM IMPORT ADDRESS ;

TYPE
ArgCVEnvP = PROCEDURE (INTEGER, ADDRESS, ADDRESS) ;

PROCEDURE ConstructModules (applicationmodule, libname: ADDRESS;
overrideliborder: ADDRESS;
argc: INTEGER; argv, envp: ADDRESS) ;

PROCEDURE DeconstructModules (applicationmodule, libname: ADDRESS;
argc: INTEGER; argv, envp: ADDRESS) ;

(*
RegisterModule - adds module name to the list of outstanding
modules which need to have their dependencies
explored to determine initialization order.
*)

PROCEDURE RegisterModule (name, libname: ADDRESS;
init, fini: ArgCVEnvP;
dependencies: PROC) ;

(*
RequestDependant - used to specify that modulename is dependant upon
module dependantmodule.
*)

PROCEDURE RequestDependant (modulename, libname,
dependantmodule, dependantlibname: ADDRESS) ;

(*
ExecuteTerminationProcedures - calls each installed termination
procedure in reverse order.
*)

PROCEDURE ExecuteTerminationProcedures ;
(*
    InstallTerminationProcedure - installs a procedure, p, which will
    be called when the procedure
    ExecuteTerminationProcedures
    is invoked. It returns TRUE is the
    procedure is installed.
*)

PROCEDURE InstallTerminationProcedure (p: PROC) : BOOLEAN ;

(*
    ExecuteInitialProcedures - executes the initial procedures installed
    by InstallInitialProcedure.
*)

PROCEDURE ExecuteInitialProcedures ;

(*
    InstallInitialProcedure - installs a procedure to be executed just
    before the BEGIN code section of the main
    program module.
*)

PROCEDURE InstallInitialProcedure (p: PROC) : BOOLEAN ;

(*
    HALT - terminate the current program. The procedure
    ExecuteTerminationProcedures
    is called before the program is stopped. The parameter
    exitcode is optional. If the parameter is not supplied
    HALT will call libc 'abort', otherwise it will exit with
    the code supplied. Supplying a parameter to HALT has the
    same effect as calling ExitOnHalt with the same code and
    then calling HALT with no parameter.
*)

PROCEDURE HALT ([exitcode: INTEGER = -1]) <* noreturn *> ;

(*
    Halt - provides a more user friendly version of HALT, which takes
    four parameters to aid debugging. It writes an error message
    to stderr and calls exit (1).
*)
PROCEDURE Halt (description, filename, function: ARRAY OF CHAR;
    line: CARDINAL) <* noreturn *>;

(*
    HaltC - provides a more user friendly version of HALT, which takes
    four parameters to aid debugging. It writes an error message
    to stderr and calls exit (1).
*)

PROCEDURE HaltC (description, filename, function: ADDRESS;
    line: CARDINAL) <* noreturn *>;

(*
    ExitOnHalt - if HALT is executed then call exit with the exit code, e.
*)

PROCEDURE ExitOnHalt (e: INTEGER);

(*
    ErrorMessage - emits an error message to stderr and then calls exit (1).
*)

PROCEDURE ErrorMessage (message: ARRAY OF CHAR;
    filename: ARRAY OF CHAR;
    line: CARDINAL;
    function: ARRAY OF CHAR) <* noreturn *>;

(*
    IsTerminating - Returns true if any coroutine has started program termination
    and false otherwise.
*)

PROCEDURE IsTerminating (): BOOLEAN;

(*
    HasHalted - Returns true if a call to HALT has been made and false otherwise.
*)

PROCEDURE HasHalted (): BOOLEAN;
Chapter 4: PIM and ISO library definitions

(*

Length - returns the length of a string, a. This is called whenever
the user calls LENGTH and the parameter cannot be calculated
at compile time.
*)

PROCEDURE Length (a: ARRAY OF CHAR) : CARDINAL;

(*

The following are the runtime exception handler routines.
*)

PROCEDURE AssignmentException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;
PROCEDURE ReturnException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;
PROCEDURE IncException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;
PROCEDURE DecException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;
PROCEDURE InclException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;
PROCEDURE ExclException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;
PROCEDURE ShiftException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;
PROCEDURE RotateException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;
PROCEDURE StaticArraySubscriptException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;
PROCEDURE DynamicArraySubscriptException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;
PROCEDURE ForLoopBeginException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;
PROCEDURE ForLoopToException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;
PROCEDURE ForLoopEndException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;
PROCEDURE PointerNilException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;
PROCEDURE NoReturnException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;
PROCEDURE CaseException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;
PROCEDURE WholeNonPosDivException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;
PROCEDURE WholeNonPosModException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;
PROCEDURE WholeZeroDivException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;
PROCEDURE WholeZeroRemException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;
PROCEDURE WholeValueException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;
PROCEDURE RealValueException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;
PROCEDURE ParameterException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;
PROCEDURE NoException (filename: ADDRESS; line, column: CARDINAL; scope, message: ADDRESS) noreturn;

END M2RTS.
4.4.28 gm2-libs-iso/MemStream

DEFINITION MODULE MemStream ;

(*
   Description: provides an ISO module which can write to a memory buffer or read from a memory buffer.
*)

FROM IOChan IMPORT ChanId ;
FROM ChanConsts IMPORT FlagSet, OpenResults ;
FROM SYSTEM IMPORT ADDRESS, LOC ;

(*
   Attempts to obtain and open a channel connected to a contiguous buffer in memory. The write flag is implied; without the raw flag, text is implied. If successful, assigns to cid the identity of the opened channel, assigns the value opened to res. If a channel cannot be opened as required, the value of res indicates the reason, and cid identifies the invalid channel.

   The parameters, buffer, length and used maybe updated as data is written. The buffer maybe reallocated and its address might alter, however the parameters will always reflect the current active buffer. When this channel is closed the buffer is deallocated and buffer will be set to NIL, length and used will be set to zero.
*)

PROCEDURE OpenWrite (VAR cid: ChanId; flags: FlagSet;
                     VAR res: OpenResults;
                     VAR buffer: ADDRESS;
                     VAR length: CARDINAL;
                     VAR used: CARDINAL;
                     deallocOnClose: BOOLEAN) ;
res indicates the reason, and cid identifies the invalid channel.
*

PROCEDURE OpenRead (VAR cid: ChanId; flags: FlagSet;
VAR res: OpenResults;
buffer: ADDRESS; length: CARDINAL;
deallocOnClose: BOOLEAN) ;

(*
  Close - if the channel identified by cid is not open to
  a memory stream, the exception wrongDevice is
  raised; otherwise closes the channel, and assigns
  the value identifying the invalid channel to cid.
*)

PROCEDURE Close (VAR cid: ChanId) ;

(*
  Rewrite - assigns the buffer index to zero. Subsequent
  writes will overwrite the previous buffer contents.
*)

PROCEDURE Rewrite (cid: ChanId) ;

(*
  Reread - assigns the buffer index to zero. Subsequent
  reads will read the previous buffer contents.
*)

PROCEDURE Reread (cid: ChanId) ;

(*
  IsMem - tests if the channel identified by cid is open as
  a memory stream.
*)

PROCEDURE IsMem (cid: ChanId) : BOOLEAN ;

END MemStream.
4.4.29 gm2-libs-iso/Preemptive

DEFINITION MODULE Preemptive;

(*
  initPreemptive - if microsecs > 0 then turn on preemptive scheduling.
  if microsecs = 0 then preemptive scheduling is turned off.*
*)

PROCEDURE initPreemptive (seconds, microsecs: CARDINAL);

END Preemptive.
4.4.30 gm2-libs-iso/Processes

DEFINITION MODULE Processes;

(* This module allows concurrent algorithms to be expressed using processes. A process is a unit of a program that has the potential to run in parallel with other processes. *)

IMPORT SYSTEM;

TYPE
  ProcessId; (* Used to identify processes *)
  Parameter = SYSTEM.ADDRESS; (* Used to pass data between processes *)
  Body = PROC; (* Used as the type of a process body *)
  Urgency = INTEGER; (* Used by the internal scheduler *)
  Sources = CARDINAL; (* Used to identify event sources *)
  ProcessesExceptions = (* Exceptions raised by this module *)
    (passiveProgram, processError);

(* The following procedures create processes and switch control between them. *)

PROCEDURE Create (procBody: Body; extraSpace: CARDINAL; procUrg: Urgency;
  procParams: Parameter; VAR procId: ProcessId);
(* Creates a new process with procBody as its body, and with urgency and parameters given by procUrg and procParams. At least as much workspace (in units of SYSTEM.LOC) as is specified by extraSpace is allocated to the process. An identity for the new process is returned in procId. The process is created in the passive state; it will not run until activated. *)

PROCEDURE Start (procBody: Body; extraSpace: CARDINAL; procUrg: Urgency;
  procParams: Parameter; VAR procId: ProcessId);
(* Creates a new process, with parameters as for Create. The process is created in the ready state; it is eligible to run immediately. *)

PROCEDURE StopMe ()
(* Terminates the calling process. The process must not be associated with a source of events. *)

PROCEDURE SuspendMe ();
PROCEDURE Activate (procId: ProcessId);
(* Causes the process identified by procId to enter the ready state, and thus to become eligible to run again. *)

PROCEDURE SuspendMeAndActivate (procId: ProcessId);
(* Executes an atomic sequence of SuspendMe() and Activate(procId). *)

PROCEDURE Switch (procId: ProcessId; VAR info: Parameter);
(* Causes the calling process to enter the passive state; the process identified by procId becomes the currently executing process. info is used to pass parameter information from the calling to the activated process. On return, info will contain information from the process that chooses to switch back to this one (or will be NIL if Activate or SuspendMeAndActivate are used instead of Switch). *)

PROCEDURE Wait ();
(* Causes the calling process to enter the waiting state. The procedure will return when the calling process is activated by another process, or when one of its associated eventSources has generated an event. *)

(* The following procedures allow the association of processes with sources of external events. *)

PROCEDURE Attach (eventSource: Sources);
(* Associates the specified eventSource with the calling process. *)

PROCEDURE Detach (eventSource: Sources);
(* Dissociates the specified eventSource from the program. *)

PROCEDURE IsAttached (eventSource: Sources): BOOLEAN;
(* Returns TRUE if and only if the specified eventSource is currently associated with one of the processes of the program. *)
PROCEDURE Handler (eventSource: Sources): ProcessId;
(* Returns the identity of the process, if any, that is
associated with the specified eventSource.
*)

(* The following procedures allow processes to obtain their
identity, parameters, and urgency. *)

PROCEDURE Me (): ProcessId;
(* Returns the identity of the calling process (as assigned
when the process was first created). *)

PROCEDURE MyParam (): Parameter;
(* Returns the value specified as procParams when the calling
process was created. *)

PROCEDURE UrgencyOf (procId: ProcessId): Urgency;
(* Returns the urgency established when the process identified
by procId was first created. *)

(* The following procedure provides facilities for exception
handlers. *)

PROCEDURE ProcessesException (): ProcessesExceptions;
(* If the current coroutine is in the exceptional execution state
because of the raising of a language exception, returns the
 corresponding enumeration value, and otherwise raises an
exception. *)

PROCEDURE IsProcessesException (): BOOLEAN;
(* Returns TRUE if the current coroutine is in the exceptional
execution state because of the raising of an exception in
a routine from this module; otherwise returns FALSE. *)

(* Reschedule - rotates the ready queue and transfers to the process
 with the highest run priority. *)

PROCEDURE Reschedule ;
(*
   displayProcesses -
*)

PROCEDURE displayProcesses (message: ARRAY OF CHAR) ;

END Processes.
4.4.31 gm2-libs-iso/ProgramArgs

DEFINITION MODULE ProgramArgs;

(* Access to program arguments *)

IMPORT IOChan;

TYPE
  ChanId = IOChan.ChanId;

PROCEDURE ArgChan (): ChanId;
  (* Returns a value that identifies a channel for reading
     program arguments *)

PROCEDURE IsArgPresent (): BOOLEAN;
  (* Tests if there is a current argument to read from. If not,
     read <= IOChan.CurrentFlags() will be FALSE, and attempting
     to read from the argument channel will raise the exception
     notAvailable. *)

PROCEDURE NextArg ();
  (* If there is another argument, causes subsequent input from the
     argument device to come from the start of the next argument.
     Otherwise there is no argument to read from, and a call of
     IsArgPresent will return FALSE. *)

END ProgramArgs.
4.4.32 gm2-libs-iso/RTco

DEFINITION MODULE FOR "C" RTco ;

FROM SYSTEM IMPORT ADDRESS ;

IMPORT RTentity ; (* Imported so the initialization call graph
understands that RTco.cc depends upon RTentity. *)

(* init initializes the module and allows the application to lazily invoke threads. *)
PROCEDURE init () : INTEGER ;

PROCEDURE initThread (p: PROC; stackSize: CARDINAL; interruptLevel: CARDINAL) : INTEGER ;

PROCEDURE initSemaphore (value: CARDINAL) : INTEGER ;

PROCEDURE wait (semaphore: INTEGER) ;

PROCEDURE signal (semaphore: INTEGER) ;

PROCEDURE transfer (VAR p1: INTEGER; p2: INTEGER) ;

PROCEDURE waitThread (tid: INTEGER) ;

PROCEDURE signalThread (tid: INTEGER) ;

PROCEDURE currentThread () : INTEGER ;

(* currentInterruptLevel returns the interrupt level of the current thread. *)
PROCEDURE currentInterruptLevel () : CARDINAL ;

(* turnInterrupts returns the old interrupt level and assigns the interrupt level
 to newLevel. *)
PROCEDURE turnInterrupts (newLevel: CARDINAL) : CARDINAL ;

(*
    select access to the select system call which will be thread safe.
    This is typically called from the idle process to wait for an interrupt.
*)
PROCEDURE select (p1: INTEGER;
p2: ADDRESS;
p3: ADDRESS;
p4: ADDRESS;
p5: ADDRESS) : INTEGER ;

END RTco.
4.4.33 gm2-libs-iso/RTdata

DEFINITION MODULE RTdata;

(*
Description: provides a mechanism whereby devices can store
data attached to a device.
*)

FROM SYSTEM IMPORT ADDRESS;
FROM IOLink IMPORT DeviceTablePtr;

TYPE
   ModuleId;
   FreeProcedure = PROCEDURE (ADDRESS);

(*
MakeModuleId - creates a unique module Id.
*)
PROCEDURE MakeModuleId (VAR m: ModuleId);

(*
InitData - adds, datum, to the device, d. The datum
is associated with ModuleID, m.
*)
PROCEDURE InitData (d: DeviceTablePtr; m: ModuleId;
datum: ADDRESS; f: FreeProcedure);

(*
GetData - returns the datum associated with ModuleId, m.
*)
PROCEDURE GetData (d: DeviceTablePtr; m: ModuleId): ADDRESS;

(*
KillData - destroys the datum associated with ModuleId, m,
in device, d. It invokes the free procedure
given during InitData.
*)
PROCEDURE KillData (d: DeviceTablePtr; m: ModuleId);
END RTdata.
4.4.34 gm2-libs-iso/RTentity

DEFINITION MODULE RTentity;

(*
   Description: provides a set of routines for maintaining an
efficient mechanism to group opaque (or pointer)
data structures together. Internally the
entities are grouped together using a binary
tree. It does not use Storage - and instead
uses malloc, free from libc as Storage uses the
module to detect erroneous deallocations.
*)

IMPORT SYSTEM;

TYPE
   Group;

PROCEDURE InitGroup (): Group;
PROCEDURE KillGroup (g: Group): Group;
PROCEDURE GetKey (g: Group; a: SYSTEM.ADDRESS): CARDINAL;
PROCEDURE PutKey (g: Group; a: SYSTEM.ADDRESS; key: CARDINAL);
PROCEDURE DelKey (g: Group; a: SYSTEM.ADDRESS);
PROCEDURE IsIn (g: Group; a: SYSTEM.ADDRESS): BOOLEAN);

END RTentity.
4.4.35 gm2-libs-iso/RTfio

DEFINITION MODULE RTfio ;

(*
   Description: provides default FIO based methods for the RTgenif
   procedures. These will be used by StreamFile, SeqFile, StdChans, TermFile and RndFile.
*)

FROM SYSTEM IMPORT ADDRESS ;
FROM IOLink IMPORT DeviceTablePtr;
FROM RTgenif IMPORT GenDevIF ;

(*
   doreadchar - returns a CHAR from the file associated with, g.
*)
PROCEDURE doreadchar (g: GenDevIF; d: DeviceTablePtr) : CHAR ;

(*
   dounreadchar - pushes a CHAR back onto the file associated
   with, g.
*)
PROCEDURE dounreadchar (g: GenDevIF; d: DeviceTablePtr; ch: CHAR) : CHAR ;

(*
   dogeterrno - returns the errno relating to the generic device.
*)
PROCEDURE dogeterrno (g: GenDevIF; d: DeviceTablePtr) : INTEGER ;

(*
   dorbytes - reads upto, max, bytes setting, actual, and
   returning FALSE if an error (not due to eof) occurred.
*)
PROCEDURE dorbytes (g: GenDevIF;
   d: DeviceTablePtr;
   to: ADDRESS;
   max: CARDINAL;
VAR actual: CARDINAL) : BOOLEAN ;

(*
   dowbytes - writes up to, nBytes. It returns FALSE if an error occurred and it sets actual to the amount of data written.
*)

PROCEDURE dowbytes (g: GenDevIF;
   d: DeviceTablePtr;
   from: ADDRESS;
   nBytes: CARDINAL;
   VAR actual: CARDINAL) : BOOLEAN ;

(*
   dowriteln - attempt to write an end of line marker to the file and returns TRUE if successful.
*)

PROCEDURE dowriteln (g: GenDevIF; d: DeviceTablePtr) : BOOLEAN ;

(*
   iseof - returns TRUE if end of file has been seen.
*)

PROCEDURE iseof (g: GenDevIF; d: DeviceTablePtr) : BOOLEAN ;

(*
   iseoln - returns TRUE if end of line has been seen.
*)

PROCEDURE iseoln (g: GenDevIF; d: DeviceTablePtr) : BOOLEAN ;

(*
   iserror - returns TRUE if an error was seen on the device. Note that reaching EOF is not classified as an error.
*)

PROCEDURE iserror (g: GenDevIF; d: DeviceTablePtr) : BOOLEAN ;

END RTfio.
4.4.36 gm2-libs-iso/RTgen

DEFINITION MODULE RTgen ;

(*
   Description: provides a generic device interface between
   ISO channels and the underlying PIM style
   FIO procedure calls.
*)

FROM RTgenif IMPORT GenDevIF ;
FROM IOLink IMPORT DeviceId, DeviceTablePtr;
FROM IOConsts IMPORT ReadResults ;
FROM SYSTEM IMPORT ADDRESS ;

TYPE
CHANDEV ;
DeviceType = (seqfile, streamfile, programargs, stdchans, term, socket, rndfile) ;

(*
   InitChanDev - initialize and return a ChanDev.
*)
PROCEDURE InitChanDev (t: DeviceType; d: DeviceId; g: GenDevIF) : ChanDev ;

(*
   KillChanDev - deallocates, g.
*)
PROCEDURE KillChanDev (g: GenDevIF) : GenDevIF ;

(*
   RaiseEOFinLook - returns TRUE if the Look procedure
   should raise an exception if it
   sees end of file.
*)
PROCEDURE RaiseEOFinLook (g: ChanDev) : BOOLEAN ;

(*
   RaiseEOFinSkip - returns TRUE if the Skip procedure
   should raise an exception if it
PROCEDURE RaiseEOFinSkip (g: ChanDev) : BOOLEAN ;

PROCEDURE doLook (g: ChanDev;
   d: DeviceTablePtr;
   VAR ch: CHAR;
   VAR r: ReadResults) ;

PROCEDURE doSkip (g: ChanDev;
   d: DeviceTablePtr) ;

PROCEDURE doSkipLook (g: ChanDev;
   d: DeviceTablePtr;
   VAR ch: CHAR;
   VAR r: ReadResults) ;

PROCEDURE doWriteLn (g: ChanDev;
   d: DeviceTablePtr) ;

PROCEDURE doReadText (g: ChanDev;
   d: DeviceTablePtr;
   to: ADDRESS;
   maxChars: CARDINAL;
   VAR charsRead: CARDINAL) ;

PROCEDURE doWriteText (g: ChanDev;
   d: DeviceTablePtr;
   from: ADDRESS;
   charsToWrite: CARDINAL) ;

PROCEDURE doGetLocs (g: ChanDev;
   d: DeviceTablePtr;
   to: ADDRESS;
   maxLocs: CARDINAL;
   VAR locsRead: CARDINAL) ;

PROCEDURE doWriteLocs (g: ChanDev;
   d: DeviceTablePtr;
   from: ADDRESS;
   locsToWrite: CARDINAL) ;

(*
   checkErrno - checks a number of errno conditions and raises
   appropriate ISO exceptions if they occur.
   *)
PROCEDURE checkErrno (g: ChanDev; d: DeviceTablePtr) ;

END RTgen.
**4.4.37 gm2-libs-is/RTgenif**

DEFINITION MODULE RTgenif;

(*
   Description: provides a generic interface mechanism used
   by RTgen. This is not an ISO module but rather
   a runtime support module.
*)

FROM SYSTEM IMPORT ADDRESS;
FROM IOLink IMPORT DeviceId, DeviceTablePtr;

TYPE
   GenDevIF;
   readchar = PROCEDURE (GenDevIF, DeviceTablePtr) : CHAR;
   unreadchar = PROCEDURE (GenDevIF, DeviceTablePtr, CHAR) : CHAR;
   geterrno = PROCEDURE (GenDevIF, DeviceTablePtr) : INTEGER;
   readbytes = PROCEDURE (GenDevIF, DeviceTablePtr, ADDRESS, CARDINAL, VAR CARDINAL)
   writebytes = PROCEDURE (GenDevIF, DeviceTablePtr, ADDRESS, CARDINAL, VAR CARDINAL)
   writeln = PROCEDURE (GenDevIF, DeviceTablePtr) : BOOLEAN;
   isof = PROCEDURE (GenDevIF, DeviceTablePtr) : BOOLEAN;
   iseln = PROCEDURE (GenDevIF, DeviceTablePtr) : BOOLEAN;
   iserror = PROCEDURE (GenDevIF, DeviceTablePtr) : BOOLEAN;

(*
   InitGenDevIF - initializes a generic device.
*)

PROCEDURE InitGenDevIF (d : DeviceId;
   rc : readchar;
   urc : unreadchar;
   geterr: geterrno;
   rbytes: readbytes;
   wbytes: writebytes;
   wl : writeln;
   eof : isof;
   eoln : iseln;
   iserr : iserror) : GenDevIF;

(*
   getDID - returns the device id this generic interface.
*)

PROCEDURE getDID (g: GenDevIF) : DeviceId;
PROCEDURE doReadChar (g: GenDevIF; d: DeviceTablePtr) : CHAR ;

PROCEDURE doUnReadChar (g: GenDevIF; d: DeviceTablePtr; ch: CHAR) : CHAR ;

PROCEDURE doGetErrno (g: GenDevIF; d: DeviceTablePtr) : INTEGER ;

PROCEDURE doRBytes (g: GenDevIF; d: DeviceTablePtr;
                      to: ADDRESS; max: CARDINAL;
                      VAR actual: CARDINAL) : BOOLEAN ;

PROCEDURE doWBytes (g: GenDevIF; d: DeviceTablePtr;
                     from: ADDRESS; max: CARDINAL;
                     VAR actual: CARDINAL) : BOOLEAN ;
doWrLn - writes an end of line marker and returns
TRUE if successful.
*)

PROCEDURE doWrLn (g: GenDevIF; d: DeviceTablePtr) : BOOLEAN ;

(*
isEOF - returns true if the end of file was reached.
*)

PROCEDURE isEOF (g: GenDevIF; d: DeviceTablePtr) : BOOLEAN ;

(*
isEOLN - returns true if the end of line was reached.
*)

PROCEDURE isEOLN (g: GenDevIF; d: DeviceTablePtr) : BOOLEAN ;

(*
isError - returns true if an error was seen in the device.
*)

PROCEDURE isError (g: GenDevIF; d: DeviceTablePtr) : BOOLEAN ;

(*
KillGenDevIF - deallocates a generic device.
*)

PROCEDURE KillGenDevIF (g: GenDevIF) : GenDevIF ;

END RTgenif.
**4.4.38 gm2-libs-iso/RTio**

DEFINITION MODULE RTio ;

(*
Description: provides low level routines for creating and destroying
ChanIds. This is necessary to allow multiple modules
to create, ChanId values, where ChanId is an opaque
type.
*)

IMPORT FIO, IOLink ;

TYPE
  ChanId ;

(*
  InitChanId - return a new ChanId.
*)

PROCEDURE InitChanId (): ChanId ;

(*
  KillChanId - deallocate a ChanId.
*)

PROCEDURE KillChanId (c: ChanId) : ChanId ;

(*
  NilChanId - return a NIL pointer.
*)

PROCEDURE NilChanId (): ChanId ;

(*
  GetDeviceId - returns the device id, from, c.
*)

PROCEDURE GetDeviceId (c: ChanId) : IOLink.DeviceId ;

(*
  SetDeviceId - sets the device id in, c.
* )
PROCEDURE SetDeviceId (c: ChanId; d: IOLink.DeviceId) ;

(*
    GetDevicePtr - returns the device table ptr, from, c.
*)
PROCEDURE GetDevicePtr (c: ChanId) : IOLink.DeviceTablePtr ;

(*
    SetDevicePtr - sets the device table ptr in, c.
*)
PROCEDURE SetDevicePtr (c: ChanId; p: IOLink.DeviceTablePtr) ;

(*
    GetFile - returns the file field from, c.
*)
PROCEDURE GetFile (c: ChanId) : FIO.File ;

(*
    SetFile - sets the file field in, c.
*)
PROCEDURE SetFile (c: ChanId; f: FIO.File) ;

END RTio.
4.4.39 gm2-libs-iso/RandomNumber

DEFINITION MODULE RandomNumber ;

(*
  Description: provides primitives for obtaining random numbers on
  pervasive data types.
*)

FROM SYSTEM IMPORT BYTE ;
EXPORT QUALIFIED Randomize, RandomInit, RandomBytes, 
  RandomCard, RandomShortCard, RandomLongCard, 
  RandomInt, RandomShortInt, RandomLongInt, 
  RandomReal, RandomLongReal, RandomShortReal ;

(*
  Randomize - initialize the random number generator with a seed
  based on the microseconds.
*)
PROCEDURE Randomize ;

(*
  RandomInit - initialize the random number generator with value, seed.
*)
PROCEDURE RandomInit (seed: CARDINAL) ;

(*
  RandomBytes - fills in an array with random values.
*)
PROCEDURE RandomBytes (VAR a: ARRAY OF BYTE) ;

(*
  RandomInt - return an INTEGER in the range [low .. high].
*)
PROCEDURE RandomInt (low, high: INTEGER) : INTEGER ;

(*
  RandomShortInt - return an SHORTINT in the range [low..high].
*
PROCEDURE RandomShortInt (low, high: SHORTINT) : SHORTINT;

PROCEDURE RandomLongInt (low, high: LONGINT) : LONGINT;

PROCEDURE RandomShortCard (low, high: CARDINAL) : CARDINAL;

PROCEDURE RandomCard (low, high: CARDINAL) : CARDINAL;

PROCEDURE RandomLongCard (low, high: LONGCARD) : LONGCARD;

PROCEDURE RandomReal () : REAL;

PROCEDURE RandomShortReal () : SHORTREAL;
(*
   RandomLongReal - return a LONGREAL number in the range 0.0..1.0
*)

PROCEDURE RandomLongReal () : LONGREAL ;

END RandomNumber.
4.4.40 gm2-libs-iso/RawIO

DEFINITION MODULE RawIO;

(* Reading and writing data over specified channels using raw operations, that is, with no conversion or interpretation. The read result is of the type IOConsts.ReadResults. *)

IMPORT IOChan, SYSTEM;

PROCEDURE Read (cid: IOChan.ChanId; VAR to: ARRAY OF SYSTEM.LOC);

(* Reads storage units from cid, and assigns them to successive components of to. The read result is set to the value allRight, wrongFormat, or endOfInput. *)

PROCEDURE Write (cid: IOChan.ChanId; from: ARRAY OF SYSTEM.LOC);

(* Writes storage units to cid from successive components of from. *)

END RawIO.
4.4.41 gm2-libs-iso/RealConv

DEFINITION MODULE RealConv;

(* Low-level REAL/string conversions *)

IMPORT
ConvTypes;

TYPE
(* strAllRight, strOutOfRange, strWrongFormat, strEmpty *)
ConvResults = ConvTypes.ConvResults;

PROCEDURE ScanReal (inputCh: CHAR; VAR chClass: ConvTypes.ScanClass;
VAR nextState: ConvTypes.ScanState);
(* Represents the start state of a finite state scanner for real
numbers - assigns class of inputCh to chClass and a procedure
representing the next state to nextState. *)

PROCEDURE FormatReal (str: ARRAY OF CHAR): ConvResults;
(* Returns the format of the string value for conversion to REAL. *)

PROCEDURE ValueReal (str: ARRAY OF CHAR): REAL;
(* Returns the value corresponding to the real number string value
str if str is well-formed; otherwise raises the RealConv
exception. *)

PROCEDURE LengthFloatReal (real: REAL; sigFigs: CARDINAL): CARDINAL;
(* Returns the number of characters in the floating-point string
representation of real with sigFigs significant figures. *)

PROCEDURE LengthEngReal (real: REAL; sigFigs: CARDINAL): CARDINAL;
(* Returns the number of characters in the floating-point engineering
string representation of real with sigFigs significant figures. *)

PROCEDURE LengthFixedReal (real: REAL; place: INTEGER): CARDINAL;
(* Returns the number of characters in the fixed-point string
representation of real rounded to the given place relative to the
decimal point. *)

PROCEDURE IsRConvException (): BOOLEAN;
(* Returns TRUE if the current coroutine is in the exceptional
execution state because of the raising of an exception in a
routine from this module; otherwise returns FALSE.
*)

END RealConv.
4.4.42 gm2-libs-iso/RealIO

DEFINITION MODULE RealIO;

(* Input and output of real numbers in decimal text form over specified channels. The read result is of the type IOConsts.ReadResults. *)

IMPORT IOChan;

(* The text form of a signed fixed-point real number is
"+" | "-", decimal digit, \{decimal digit\},
["."], \{decimal digit\}

The text form of a signed floating-point real number is
signed fixed-point real number,
"E", [+" | "-"], decimal digit, \{decimal digit\} 
*)

PROCEDURE ReadReal (cid: IOChan.ChanId; VAR real: REAL);
(* Skips leading spaces, and removes any remaining characters from cid that form part of a signed fixed or floating point number. The value of this number is assigned to real. The read result is set to the value allRight, outOfRange, wrongFormat, endOfLine, or endOfInput. *)

PROCEDURE WriteFloat (cid: IOChan.ChanId; real: REAL;
sigFigs: CARDINAL; width: CARDINAL);
(* Writes the value of real to cid in floating-point text form, with sigFigs significant figures, in a field of the given minimum width. *)

PROCEDURE WriteEng (cid: IOChan.ChanId; real: REAL;
sigFigs: CARDINAL; width: CARDINAL);
(* As for WriteFloat, except that the number is scaled with one to three digits in the whole number part, and with an exponent that is a multiple of three. *)

PROCEDURE WriteFixed (cid: IOChan.ChanId; real: REAL;
place: INTEGER; width: CARDINAL);
(* Writes the value of real to cid in fixed-point text form, rounded to the given place relative to the decimal point, in a field of the given minimum width. *)
PROCEDURE WriteReal (cid: IOChan.ChanId;
       real: REAL; width: CARDINAL);
(* Writes the value of real to cid, as WriteFixed if the sign
   and magnitude can be shown in the given width, or otherwise
   as WriteFloat. The number of places or significant digits
   depends on the given width. *)
)
END RealIO.
4.4.43 gm2-libs-iso/RealMath

DEFINITION MODULE RealMath;

(* Mathematical functions for the type REAL *)

CONST
   pi = 3.1415926535897932384626433832795028841972;  
   exp1 = 2.7182818284590452353602874713526624977572;

PROCEDURE __BUILTIN__ sqrt (x: REAL): REAL;
   (* Returns the positive square root of x *)

PROCEDURE __BUILTIN__ exp (x: REAL): REAL;
   (* Returns the exponential of x *)

PROCEDURE __BUILTIN__ ln (x: REAL): REAL;
   (* Returns the natural logarithm of x *)

   (* The angle in all trigonometric functions is measured in radians *)

PROCEDURE __BUILTIN__ sin (x: REAL): REAL;
   (* Returns the sine of x *)

PROCEDURE __BUILTIN__ cos (x: REAL): REAL;
   (* Returns the cosine of x *)

PROCEDURE tan (x: REAL): REAL;
   (* Returns the tangent of x *)

PROCEDURE arcsin (x: REAL): REAL;
   (* Returns the arcsine of x *)

PROCEDURE arccos (x: REAL): REAL;
   (* Returns the arccosine of x *)

PROCEDURE arctan (x: REAL): REAL;
   (* Returns the arctangent of x *)

PROCEDURE power (base, exponent: REAL) : REAL;
   (* Returns the value of the number base raised to the power exponent *)

PROCEDURE round (x: REAL) : INTEGER;
   (* Returns the value of x rounded to the nearest integer *)

PROCEDURE IsRMathException () : BOOLEAN;
   (* Returns TRUE if the current coroutine is in the exceptional execution state *)
because of the raising of an exception in a routine from this module; otherwise
returns FALSE.
*)

END RealMath.
4.4.44 gm2-libs-iso/RealStr

DEFINITION MODULE RealStr;

(* REAL/string conversions *)

IMPORT
  ConvTypes;

TYPE
  (* strAllRight, strOutOfRange, strWrongFormat, strEmpty *)
  ConvResults = ConvTypes.ConvResults;

(* the string form of a signed fixed-point real number is
  ["+" | "+"], decimal digit, {decimal digit}, [".",
  {decimal digit}]
*)

(* the string form of a signed floating-point real number is
  signed fixed-point real number, "E", ["+" | "+"],
  decimal digit, {decimal digit}
*)

PROCEDURE StrToReal (str: ARRAY OF CHAR; VAR real: REAL;
  VAR res: ConvResults);
  (* Ignores any leading spaces in str. If the subsequent characters
     in str are in the format of a signed real number, assigns a
     corresponding value to real. Assigns a value indicating the
     format of str to res. *)

PROCEDURE RealToFloat (real: REAL; sigFigs: CARDINAL;
  VAR str: ARRAY OF CHAR);
  (* Converts the value of real to floating-point string form, with
     sigFigs significant figures, and copies the possibly truncated
     result to str. *)

PROCEDURE RealToEng (real: REAL; sigFigs: CARDINAL;
  VAR str: ARRAY OF CHAR);
  (* Converts the value of real to floating-point string form, with
     sigFigs significant figures, and copies the possibly truncated
     result to str. The number is scaled with one to three digits
     in the whole number part and with an exponent that is a multiple
     of three. *)
PROCEDURE RealToFixed (real: REAL; place: INTEGER;
    VAR str: ARRAY OF CHAR);
    (* Converts the value of real to fixed-point string form, rounded
       to the given place relative to the decimal point, and copies
       the possibly truncated result to str. *)
PROCEDURE RealToStr (real: REAL; VAR str: ARRAY OF CHAR);
    (* Converts the value of real as RealToFixed if the sign and
       magnitude can be shown within the capacity of str, or
       otherwise as RealToFloa, and copies the possibly truncated
       result to str. The number of places or significant digits are
       implementation-defined. *)
END RealStr.
4.4.45 gm2-libs-iso/RndFile

DEFINITION MODULE RndFile;

(* Random access files *)

IMPORT IOChan, ChanConsts, SYSTEM;

TYPE
  ChanId = IOChan.ChanId;
  FlagSet = ChanConsts.FlagSet;
  OpenResults = ChanConsts.OpenResults;

  (* Accepted singleton values of FlagSet *)

CONST
  (* input operations are requested/available *)
  read = FlagSet{ChanConsts.readFlag};
  /* output operations are requested/available */
  write = FlagSet{ChanConsts.writeFlag};
  /* a file may/must/did exist before the channel is opened */
  old = FlagSet{ChanConsts.oldFlag};
  /* text operations are requested/available */
  text = FlagSet{ChanConsts.textFlag};
  /* raw operations are requested/available */
  raw = FlagSet{ChanConsts.rawFlag};

PROCEDURE OpenOld (VAR cid: ChanId; name: ARRAY OF CHAR; flags: FlagSet;
                      VAR res: OpenResults);
  (* Attempts to obtain and open a channel connected to a stored random
     access file of the given name.
     The old flag is implied; without the write flag, read is implied;
     without the text flag, raw is implied.
     If successful, assigns to cid the identity of the opened channel,
     assigns the value opened to res, and sets the read/write position
     to the start of the file.
     If a channel cannot be opened as required, the value of res indicates
     the reason, and cid identifies the invalid channel. *)

PROCEDURE OpenClean (VAR cid: ChanId; name: ARRAY OF CHAR; flags: FlagSet;
                      VAR res: OpenResults);
  (* Attempts to obtain and open a channel connected to a stored random
     access file of the given name.
     The write flag is implied; without the text flag, raw is implied.
     If successful, assigns to cid the identity of the opened channel,
     assigns the value opened to res, and truncates the file to zero length. *)
If a channel cannot be opened as required, the value of res indicates the reason, and cid identifies the invalid channel.

PROCEDURE IsRndFile (cid: ChanId): BOOLEAN;
(* Tests if the channel identified by cid is open to a random access file. *)

PROCEDURE IsRndFileException (): BOOLEAN;
(* Returns TRUE if the current coroutine is in the exceptional execution state because of the raising of a RndFile exception; otherwise returns FALSE. *)

CONST
FilePosSize = SIZE(LONGINT);
(* <implementation-defined whole number greater than zero>; *)

TYPE
FilePos = LONGINT;
(* ARRAY [1 .. FilePosSize] OF SYSTEM.LOC; *)

PROCEDURE StartPos (cid: ChanId): FilePos;
(* If the channel identified by cid is not open to a random access file, the exception wrongDevice is raised; otherwise returns the position of the start of the file. *)

PROCEDURE CurrentPos (cid: ChanId): FilePos;
(* If the channel identified by cid is not open to a random access file, the exception wrongDevice is raised; otherwise returns the position of the current read/write position. *)

PROCEDURE EndPos (cid: ChanId): FilePos;
(* If the channel identified by cid is not open to a random access file, the exception wrongDevice is raised; otherwise returns the first position after which there have been no writes. *)

PROCEDURE NewPos (cid: ChanId; chunks: INTEGER; chunkSize: CARDINAL; from: FilePos): FilePos;
(* If the channel identified by cid is not open to a random access file, the exception wrongDevice is raised; otherwise returns the position (chunks * chunkSize) relative to the position given by from, or raises the exception posRange if the required position cannot be represented as a value of type FilePos. *)
PROCEDURE SetPos (cid: ChanId; pos: FilePos);
(* If the channel identified by cid is not open to a random access file, the exception wrongDevice is raised; otherwise sets the read/write position to the value given by pos. *)

PROCEDURE Close (VAR cid: ChanId);
(* If the channel identified by cid is not open to a random access file, the exception wrongDevice is raised; otherwise closes the channel, and assigns the value identifying the invalid channel to cid. *)

END RndFile.
4.4.46 gm2-libs-iso/SIOResult

DEFINITION MODULE SIOResult;

(* Read results for the default input channel *)

IMPORT IOConsts;

TYPE
  ReadResults = IOConsts.ReadResults;

(*
  ReadResults = (* This type is used to classify the result of an input operation *)
  (notKnown, (* no read result is set *)
   allRight, (* data is as expected or as required *)
   outOfRange, (* data cannot be represented *)
   wrongFormat, (* data not in expected format *)
   endOfLine, (* end of line seen before expected data *)
   endOfInput (* end of input seen before expected data *)
  );
*)

PROCEDURE ReadResult (): ReadResults;
  (* Returns the result for the last read operation on the default input channel. *)
END SIOResult.
### 4.4.47 gm2-libs-iso/SLongIO

**DEFINITION MODULE SLongIO;**

(* Input and output of long real numbers in decimal text form using default channels. The read result is of the type IOConstats.ReadResults. *)

(* The text form of a signed fixed-point real number is 
"["+" | ","]", decimal digit, 
"[".","",{decimal digit}]"

The text form of a signed floating-point real number is 
signed fixed-point real number,  
"E", ["+" | ","]", decimal digit, 
[decimal digit] *)

PROCEDURE ReadReal (VAR real: LONGREAL);
(* Skips leading spaces, and removes any remaining characters from the default input channel that form part of a signed fixed or floating point number. The value of this number is assigned to real. The read result is set to the value allRight, outOfRange, wrongFormat, endOfLine, or endOfInput. *)

PROCEDURE WriteFloat (real: LONGREAL; sigFigs: CARDINAL;
width: CARDINAL);
(* Writes the value of real to the default output channel in floating-point text form, with sigFigs significant figures, in a field of the given minimum width. *)

PROCEDURE WriteEng (real: LONGREAL; sigFigs: CARDINAL;
width: CARDINAL);
(* As for WriteFloat, except that the number is scaled with one to three digits in the whole number part, and with an exponent that is a multiple of three. *)

PROCEDURE WriteFixed (real: LONGREAL; place: INTEGER;
width: CARDINAL);
(* Writes the value of real to the default output channel in fixed-point text form, rounded to the given place relative to the decimal point, in a field of the given minimum width. *)
PROCEDURE WriteReal (real: LONGREAL; width: CARDINAL);
(* Writes the value of real to the default output channel, as
 WriteFixed if the sign and magnitude can be shown in the
given width, or otherwise as WriteFloat. The number of
places or significant digits depends on the given width. *)

END SLongIO.
4.4.48 gm2-libs-iso/SLongWholeIO
DEFINITION MODULE SLongWholeIO;
(* Input and output of whole numbers in decimal text form over
default channels. The read result is of the type
IOConstats.ReadResults. *)

(* The text form of a signed whole number is
["+" | "-"], decimal digit, \{decimal digit\}
The text form of an unsigned whole number is
decimal digit, \{decimal digit\} *)

PROCEDURE ReadInt (VAR int: LONGINT);
(* Skips leading spaces, and removes any remaining characters
from the default input channel that form part of a signed
whole number. The value of this number is assigned
to int. The read result is set to the value allRight,
outOfRange, wrongFormat, endOfLine, or endOfInput. *)

PROCEDURE WriteInt (int: LONGINT; width: CARDINAL);
(* Writes the value of int to the default output channel in
text form, in a field of the given minimum width. *)

PROCEDURE ReadCard (VAR card: LONGCARD);
(* Skips leading spaces, and removes any remaining characters
from the default input channel that form part of an
unsigned whole number. The value of this number is
assigned to card. The read result is set to the value
allRight, outOfRange, wrongFormat, endOfLine, or endOfInput. *)

PROCEDURE WriteCard (card: LONGCARD; width: CARDINAL);
(* Writes the value of card to the default output channel in
text form, in a field of the given minimum width. *)

END SLongWholeIO.
4.4.49 gm2-libs-iso/SRawIO

DEFINITION MODULE SRawIO;

(* Reading and writing data over default channels using raw operations, that is, without conversion or interpretation. The read result is of the type IOconsts.ReadResults.*)

IMPORT SYSTEM;

PROCEDURE Read (VAR to: ARRAY OF SYSTEM.LOC);
(* Reads storage units from the default input channel, and assigns them to successive components of to. The read result is set to the value allRight, wrongFormat, or endOfInput.*)

PROCEDURE Write (from: ARRAY OF SYSTEM.LOC);
(* Writes storage units to the default output channel from successive components of from.*)

END SRawIO.
4.4.50 gm2-libs-iso/SRealIO

DEFINITION MODULE SRealIO;

(* Input and output of real numbers in decimal text form over
default channels. The read result is of the type
IOConsts.ReadResults.
*)

(* The text form of a signed fixed-point real number is
["+" | "]", decimal digit, {decimal digit},
[".", {decimal digit}]

The text form of a signed floating-point real number is
signed fixed-point real number,
"E", ["+" | "]", decimal digit, {decimal digit}
*)

PROCEDURE ReadReal (VAR real: REAL);
(* Skips leading spaces, and removes any remaining characters
from the default input channel that form part of a signed
fixed or floating point number. The value of this number
is assigned to real. The read result is set to the value
allRight, outOfRange, wrongFormat, endOfLine, or endOfInput.
*)

PROCEDURE WriteFloat (real: REAL; sigFigs: CARDINAL; width: CARDINAL);
(* Writes the value of real to the default output channel in
floating-point text form, with sigFigs significant figures,
in a field of the given minimum width.
*)

PROCEDURE WriteEng (real: REAL; sigFigs: CARDINAL; width: CARDINAL);
(* As for WriteFloat, except that the number is scaled with one to
three digits in the whole number part, and with an exponent that
is a multiple of three.
*)

PROCEDURE WriteFixed (real: REAL; place: INTEGER; width: CARDINAL);
(* Writes the value of real to the default output channel in
fixed-point text form, rounded to the given place relative
to the decimal point, in a field of the given minimum width.
*)

PROCEDURE WriteReal (real: REAL; width: CARDINAL);
(* Writes the value of real to the default output channel, as
WriteFixed if the sign and magnitude can be shown in the
given width, or otherwise as WriteFloat. The number of places or significant digits depends on the given width.

*)

END SRealIO.
**4.4.51 gm2-libs-iso/SShortIO**

**DEFINITION MODULE SShortIO;**

(* Input and output of short real numbers in decimal text form using default channels. The read result is of the type IOConsts.ReadResults. *)

(* The text form of a signed fixed-point real number is 
["+" | "-"], decimal digit, {decimal digit},
[".""], {decimal digit}]

The text form of a signed floating-point real number is 
signed fixed-point real number, 
"E", ["+" | "-"], decimal digit, {decimal digit}
*)

PROCEDURE ReadReal (VAR real: SHORTREAL);

(* Skips leading spaces, and removes any remaining characters from the default input channel that form part of a signed fixed or floating point number. The value of this number is assigned to real. The read result is set to the value allRight, outOfRange, wrongFormat, endOfLine, or endOfInput. *)

PROCEDURE WriteFloat (real: SHORTREAL; sigFigs: CARDINAL; width: CARDINAL);

(* Writes the value of real to the default output channel in floating-point text form, with sigFigs significant figures, in a field of the given minimum width. *)

PROCEDURE WriteEng (real: SHORTREAL; sigFigs: CARDINAL; width: CARDINAL);

(* As for WriteFloat, except that the number is scaled with one to three digits in the whole number part, and with an exponent that is a multiple of three. *)

PROCEDURE WriteFixed (real: SHORTREAL; place: INTEGER; width: CARDINAL);

(* Writes the value of real to the default output channel in fixed-point text form, rounded to the given place relative to the decimal point, in a field of the given minimum width. *)
PROCEDURE WriteReal (real: SHORTREAL; width: CARDINAL);
   (* Writes the value of real to the default output channel, as
      WriteFixed if the sign and magnitude can be shown in the
      given width, or otherwise as WriteFloat. The number of
      places or significant digits depends on the given width. *)

END SShortIO.
4.4.52 gm2-libs-iso/SShortWholeIO

DEFINITION MODULE SShortWholeIO;

(* Input and output of whole numbers in decimal text form over
default channels. The read result is of the type
IOConstats.ReadResults.*)

(* The text form of a signed whole number is
 ["+" | "-"], decimal digit, {decimal digit}
The text form of an unsigned whole number is
decimal digit, {decimal digit}
*)

PROCEDURE ReadInt (VAR int: SHORTINT);
(* Skips leading spaces, and removes any remaining characters
 from the default input channel that form part of a signed
 whole number. The value of this number is assigned
to int. The read result is set to the value allRight,
outOfRange, wrongFormat, endOfLine, or endOfInput.
*)

PROCEDURE WriteInt (int: SHORTINT; width: CARDINAL);
(* Writes the value of int to the default output channel in
text form, in a field of the given minimum width.
*)

PROCEDURE ReadCard (VAR card: SHORTCARD);
(* Skips leading spaces, and removes any remaining characters
 from the default input channel that form part of an
unsigned whole number. The value of this number is
assigned to card. The read result is set to the value
allRight, outOfRange, wrongFormat, endOfLine, or endOfInput.
*)

PROCEDURE WriteCard (card: SHORTCARD; width: CARDINAL);
(* Writes the value of card to the default output channel in
text form, in a field of the given minimum width.
*)

END SShortWholeIO.
4.4.53 gm2-libs-iso/STextIO

DEFINITION MODULE STextIO;

(* Input and output of character and string types over default channels. The read result is of the type IOConstats.ReadResults. *)

(* The following procedures do not read past line marks *)

PROCEDURE ReadChar (VAR ch: CHAR);
(* If possible, removes a character from the default input stream, and assigns the corresponding value to ch. The read result is set to allRight, endOfLine or endOfInput. *)

PROCEDURE ReadRestLine (VAR s: ARRAY OF CHAR);
(* Removes any remaining characters from the default input stream before the next line mark, copying to s as many as can be accommodated as a string value. The read result is set to the value allRight, outOfRange, endOfLine, or endOfInput. *)

PROCEDURE ReadString (VAR s: ARRAY OF CHAR);
(* Removes only those characters from the default input stream before the next line mark that can be accommodated in s as a string value, and copies them to s. The read result is set to the value allRight, endOfLine, or endOfInput. *)

PROCEDURE ReadToken (VAR s: ARRAY OF CHAR);
(* Skips leading spaces, and then removes characters from the default input stream before the next space or line mark, copying to s as many as can be accommodated as a string value. The read result is set to the value allRight, outOfRange, endOfLine, or endOfInput. *)

(* The following procedure reads past the next line mark *)

PROCEDURE SkipLine;
(* Removes successive items from the default input stream up to and including the next line mark or until the end of input is reached. The read result is set to the value allRight, or endOfInput. *)

(* Output procedures *)

PROCEDURE WriteChar (ch: CHAR);
("* Writes the value of ch to the default output stream. *)

PROCEDURE WriteLn;
(* Writes a line mark to the default output stream. *)

PROCEDURE WriteString (s: ARRAY OF CHAR);
(* Writes the string value of s to the default output stream. *)

END STextIO.
DEFINITION MODULE SWholeIO;

(* Input and output of whole numbers in decimal text form over
default channels. The read result is of the type
IOConsts.ReadResults. *)

(* The text form of a signed whole number is
["+" | "-"], decimal digit, {decimal digit}
The text form of an unsigned whole number is
decimal digit, {decimal digit} *)

PROCEDURE ReadInt (VAR int: INTEGER);
(* Skips leading spaces, and removes any remaining characters
from the default input channel that form part of a signed
whole number. The value of this number is assigned
to int. The read result is set to the value allRight,
outOfRange, wrongFormat, endOfFile, or endOfInput. *)

PROCEDURE WriteInt (int: INTEGER; width: CARDINAL);
(* Writes the value of int to the default output channel in
text form, in a field of the given minimum width. *)

PROCEDURE ReadCard (VAR card: CARDINAL);
(* Skips leading spaces, and removes any remaining characters
from the default input channel that form part of an
unsigned whole number. The value of this number is
assigned to card. The read result is set to the value
allRight, outOfRange, wrongFormat, endOfFile, or endOfInput. *)

PROCEDURE WriteCard (card: CARDINAL; width: CARDINAL);
(* Writes the value of card to the default output channel in
text form, in a field of the given minimum width. *)
Chapter 4: PIM and ISO library definitions 378

4.4.55 gm2-libs-iso/SYSTEM

DEFINITION MODULE SYSTEM;

(* Gives access to system programming facilities that are probably non portable. *)

(* The constants and types define underlying properties of storage *)

EXPORT QUALIFIED BITSPERLOC, LOCSPERWORD, LOC, BYTE, WORD, ADDRESS, CSIZE_T, CSSIZE_T, (* Target specific data types. *) ADDADR, SUBADR, DIFADR, MAKEADR, ADR, ROTATE, SHIFT, CAST, TSIZE,

(* Internal GM2 compiler functions *)
ShiftVal, ShiftLeft, ShiftRight, RotateVal, RotateLeft, RotateRight, THROW, TBITSIZE;

CONST

(* <implementation-defined constant> ; *)
BITSPERLOC = __ATTRIBUTE__ __BUILTIN__ ((BITS_PER_UNIT));
(* <implementation-defined constant> ; *)
LOCSPERWORD = __ATTRIBUTE__ __BUILTIN__ ((UNITS_PER_WORD));
(* <implementation-defined constant> ; *)
LOCSPERBYTE = 8 DIV BITSPERLOC;

(* Note that the full list of system and sized datatypes include:
LOC, WORD, BYTE, ADDRESS,
(and the non language standard target types)

INTEGER8, INTEGER16, INTEGER32, INTEGER64, CARDINAL8, CARDINAL16, CARDINAL32, CARDINAL64, WORD16, WORD32, WORD64, BITSET8, BITSET16, BITSET32, REAL32, REAL64, REAL128, COMPLEX32, COMPLEX64, COMPLEX128, CSIZE_T, CSSIZE_T.

Also note that the non-standard data types will move into another module in the future. *)

(* All the data types and procedures below are declared internally.
=================================================================

TYPE
TYPE
LOC; (* A system basic type. Values are the uninterpreted contents of the smallest addressable unit of storage *)
ADDRESS = POINTER TO LOC;
WORD = ARRAY [0 .. LOCSPERWORD-1] OF LOC;

(* BYTE and LOCSPERBYTE are provided if appropriate for machine *)

TYPE
BYTE = ARRAY [0 .. LOCSPERBYTE-1] OF LOC;

PROCEDURE ADDADR (addr: ADDRESS; offset: CARDINAL): ADDRESS;
(* Returns address given by (addr + offset), or may raise an exception if this address is not valid. *)

PROCEDURE SUBADR (addr: ADDRESS; offset: CARDINAL): ADDRESS;
(* Returns address given by (addr - offset), or may raise an exception if this address is not valid. *)

PROCEDURE DIFADR (addr1, addr2: ADDRESS): INTEGER;
(* Returns the difference between addresses (addr1 - addr2), or may raise an exception if the arguments are invalid or address space is non-contiguous. *)

PROCEDURE MAKEADR (high: <some type>; ...): ADDRESS;
(* Returns an address constructed from a list of values whose types are implementation-defined, or may raise an exception if this address is not valid. *)

In GNU Modula-2, MAKEADR can take any number of arguments which are mapped onto the type ADDRESS. The first parameter maps onto the high address bits and subsequent parameters map onto lower address bits. For example:

a := MAKEADR(BYTE(0FEH), BYTE(0DCH), BYTE(0BAH), BYTE(098H), BYTE(076H), BYTE(054H), BYTE(032H), BYTE(010H)) ;

then the value of, a, on a 64 bit machine is: 0FEDCBA9876543210H

The parameters do not have to be the same type, but constants _must_ be typed.
PROCEDURE ADR (VAR v: <anytype>): ADDRESS;
 (* Returns the address of variable v. *)

PROCEDURE ROTATE (val: <a packedset type>;
 num: INTEGER): <type of first parameter>;
 (* Returns a bit sequence obtained from val by rotating up/right
 or down/right by the absolute value of num. The direction is
 down/right if the sign of num is negative, otherwise the direction
 is up/left. *)

PROCEDURE SHIFT (val: <a packedset type>;
 num: INTEGER): <type of first parameter>;
 (* Returns a bit sequence obtained from val by shifting up/left
 or down/right by the absolute value of num, introducing
 zeros as necessary. The direction is down/right if the sign of
 num is negative, otherwise the direction is up/left. *)

PROCEDURE CAST (<targettype>; val: <anytype>): <targettype>;
 (* CAST is a type transfer function. Given the expression
 denoted by val, it returns a value of the type <targettype>. An
 invalid value for the target value or a
 physical address alignment problem may raise an exception. *)

PROCEDURE TSIZE (<type>; ... ): CARDINAL;
 (* Returns the number of LOCS used to store a value of the
 specified <type>. The extra parameters, if present,
 are used to distinguish variants in a variant record. *)

PROCEDURE THROW (i: INTEGER) <* noreturn *> ;
 (*
 THROWS is a GNU extension and was not part of the PIM or ISO
 standards. It throws an exception which will be caught by the
 EXCEPT block (assuming it exists). This is a compiler builtin
 function which interfaces to the GCC exception handling runtime
 system.
 GCC uses the term throw, hence the naming distinction between
 the GCC builtin and the Modula-2 runtime library procedure Raise.
 The later library procedure Raise will call SYSTEM.THROW after
 performing various housekeeping activities. *)

PROCEDURE TBITSIZE (<type>): CARDINAL ;

(* Returns the minimum number of bits necessary to represent <type>. This procedure function is only useful for determining the number of bits used for any type field within a packed RECORD. It is not particularly useful elsewhere since <type> might be optimized for speed, for example a BOOLEAN could occupy a WORD. *)

(* The following procedures are invoked by GNU Modula-2 to shift non word set types. They are not part of ISO Modula-2 but are used to implement the SHIFT procedure defined above. *)

(* ShiftVal - is a runtime procedure whose job is to implement the SHIFT procedure of ISO SYSTEM. GNU Modula-2 will inline a SHIFT of a single WORD sized set and will only call this routine for larger sets. *)

PROCEDURE ShiftVal (VAR s, d: ARRAY OF BITSET;
                   SetSizeInBits: CARDINAL;
                   ShiftCount: INTEGER) ;

(* ShiftLeft - performs the shift left for a multi word set. This procedure might be called by the back end of GNU Modula-2 depending whether amount is known at compile time. *)

PROCEDURE ShiftLeft (VAR s, d: ARRAY OF BITSET;
                     SetSizeInBits: CARDINAL;
                     ShiftCount: CARDINAL) ;

(* ShiftRight - performs the shift left for a multi word set. This procedure might be called by the back end of GNU Modula-2 depending whether amount is known at compile time. *)

PROCEDURE ShiftRight (VAR s, d: ARRAY OF BITSET;
                      SetSizeInBits: CARDINAL;
                      ShiftCount: CARDINAL) ;
Chapter 4: PIM and ISO library definitions

(*
    RotateVal - is a runtime procedure whose job is to implement
    the ROTATE procedure of ISO SYSTEM. GNU Modula-2 will
    inline a ROTATE of a single WORD (or less)
    sized set and will only call this routine for larger
    sets.
*)

PROCEDURE RotateVal (VAR s, d: ARRAY OF BITSET;
    SetSizeInBits: CARDINAL;
    RotateCount: INTEGER) ;

(*
    RotateLeft - performs the rotate left for a multi word set.
    This procedure might be called by the back end of
    GNU Modula-2 depending whether amount is known at
    compile time.
*)

PROCEDURE RotateLeft (VAR s, d: ARRAY OF BITSET;
    SetSizeInBits: CARDINAL;
    RotateCount: CARDINAL) ;

(*
    RotateRight - performs the rotate right for a multi word set.
    This procedure might be called by the back end of
    GNU Modula-2 depending whether amount is known at
    compile time.
*)

PROCEDURE RotateRight (VAR s, d: ARRAY OF BITSET;
    SetSizeInBits: CARDINAL;
    RotateCount: CARDINAL) ;

END SYSTEM.
4.4.56 gm2-libs-iso/Semaphores

DEFINITION MODULE Semaphores;

(* Provides mutual exclusion facilities for use by processes. *)

TYPE
  SEMAPHORE;

PROCEDURE Create (VAR s: SEMAPHORE; initialCount: CARDINAL);
(* Creates and returns s as the identity of a new semaphore that has its associated count initialized to initialCount, and has no processes yet waiting on it. *)

PROCEDURE Destroy (VAR s: SEMAPHORE);
(* Recovers the resources used to implement the semaphore s, provided that no process is waiting for s to become free. *)

PROCEDURE Claim (s: SEMAPHORE);
(* If the count associated with the semaphore s is non-zero, decrements this count and allows the calling process to continue; otherwise suspends the calling process until s is released. *)

PROCEDURE Release (s: SEMAPHORE);
(* If there are any processes waiting on the semaphore s, allows one of them to enter the ready state; otherwise increments the count associated with s. *)

PROCEDURE CondClaim (s: SEMAPHORE): BOOLEAN;
(* Returns FALSE if the call Claim(s) would cause the calling process to be suspended; in this case the count associated with s is not changed. Otherwise returns TRUE and the associated count is decremented. *)

END Semaphores.
4.4.57 gm2-libs-iso/SeqFile

DEFINITION MODULE SeqFile;

(* Rewindable sequential files *)

IMPORT IOChan, ChanConsts;

TYPE
  ChanId = IOChan.ChanId;
  FlagSet = ChanConsts.FlagSet;
  OpenResults = ChanConsts.OpenResults;

  (* Accepted singleton values of FlagSet *)

CONST
  (* input operations are requested/available *)
  read = FlagSet{ChanConsts.readFlag};

  (* output operations are requested/available *)
  write = FlagSet{ChanConsts.writeFlag};

  (* a file may/must/did exist before the channel is opened *)
  old = FlagSet{ChanConsts.oldFlag};

  (* text operations are requested/available *)
  text = FlagSet{ChanConsts.textFlag};

  (* raw operations are requested/available *)
  raw = FlagSet{ChanConsts.rawFlag};

PROCEDURE OpenWrite (VAR cid: ChanId; name: ARRAY OF CHAR;
                     flags: FlagSet; VAR res: OpenResults);

  (* Attempts to obtain and open a channel connected to a stored
  rewritable file of the given name.
  The write flag is implied; without the raw flag, text is
  implied. If successful, assigns to cid the identity of
  the opened channel, assigns the value opened to res, and
  selects output mode, with the write position at the start
  of the file (i.e. the file is of zero length).
  If a channel cannot be opened as required, the value of
  res indicates the reason, and cid identifies the invalid
  channel. *)

PROCEDURE OpenAppend (VAR cid: ChanId; name: ARRAY OF CHAR;
flags: FlagSet; VAR res: OpenResults);

(*
Attempts to obtain and open a channel connected to a stored
rewindable file of the given name. The write and old flags
are implied; without the raw flag, text is implied. If
successful, assigns to cid the identity of the opened channel,
assigns the value opened to res, and selects output mode,
with the write position corresponding to the length of the
file. If a channel cannot be opened as required, the value
of res indicates the reason, and cid identifies the invalid
channel.
*)

PROCEDURE OpenRead (VAR cid: ChanId; name: ARRAY OF CHAR;
  flags: FlagSet; VAR res: OpenResults);
(* Attempts to obtain and open a channel connected to a stored
rewindable file of the given name.
The read and old flags are implied; without the raw flag,
text is implied. If successful, assigns to cid the
identity of the opened channel, assigns the value opened to
res, and selects input mode, with the read position
 corresponding to the start of the file.
If a channel cannot be opened as required, the value
of res indicates the reason, and cid identifies the invalid
channel. 
*)

PROCEDURE IsSeqFile (cid: ChanId): BOOLEAN;
(* Tests if the channel identified by cid is open to a
rewindable sequential file. *)

PROCEDURE Reread (cid: ChanId);
(* If the channel identified by cid is not open to a rewindable
sequential file, the exception wrongDevice is raised;
otherwise attempts to set the read position to the
start of the file, and to select input mode.
If the operation cannot be performed (perhaps because of
insufficient permissions) neither input mode nor output
mode is selected.
*)

PROCEDURE Rewrite (cid: ChanId);
(* If the channel identified by cid is not open to a
rewindable sequential file, the exception wrongDevice is
raised; otherwise, attempts to truncate the file to zero
length, and to select output mode. If the operation
cannot be performed (perhaps because of insufficient
permissions) neither input mode nor output mode is selected.
*)

PROCEDURE Close (VAR cid: ChanId);
(* If the channel identified by cid is not open to a rewindable sequential file, the exception wrongDevice is raised; otherwise closes the channel, and assigns the value identifying the invalid channel to cid.
*)

END SeqFile.
4.4.58 gm2-libs.iso/ShortComplexMath

DEFINITION MODULE ShortComplexMath;

(* Mathematical functions for the type SHORTCOMPLEX *)

CONST
  i = CMPLX (0.0, 1.0);
  one = CMPLX (1.0, 0.0);
  zero = CMPLX (0.0, 0.0);

PROCEDURE abs (z: SHORTCOMPLEX): SHORTREAL;
  (* Returns the length of z *)

PROCEDURE arg (z: SHORTCOMPLEX): SHORTREAL;
  (* Returns the angle that z subtends to the positive real axis *)

PROCEDURE conj (z: SHORTCOMPLEX): SHORTCOMPLEX;
  (* Returns the complex conjugate of z *)

PROCEDURE power (base: SHORTCOMPLEX; exponent: SHORTREAL): SHORTCOMPLEX;
  (* Returns the value of the number base raised to the power exponent *)

PROCEDURE sqrt (z: SHORTCOMPLEX): SHORTCOMPLEX;
  (* Returns the principal square root of z *)

PROCEDURE exp (z: SHORTCOMPLEX): SHORTCOMPLEX;
  (* Returns the complex exponential of z *)

PROCEDURE ln (z: SHORTCOMPLEX): SHORTCOMPLEX;
  (* Returns the principal value of the natural logarithm of z *)

PROCEDURE sin (z: SHORTCOMPLEX): SHORTCOMPLEX;
  (* Returns the sine of z *)

PROCEDURE cos (z: SHORTCOMPLEX): SHORTCOMPLEX;
  (* Returns the cosine of z *)

PROCEDURE tan (z: SHORTCOMPLEX): SHORTCOMPLEX;
  (* Returns the tangent of z *)

PROCEDURE arcsin (z: SHORTCOMPLEX): SHORTCOMPLEX;
  (* Returns the arcsine of z *)

PROCEDURE arccos (z: SHORTCOMPLEX): SHORTCOMPLEX;
  (* Returns the arccosine of z *)
PROCEDURE arctan (z: SHORTCOMPLEX): SHORTCOMPLEX;
    (* Returns the arctangent of z *)

PROCEDURE polarToComplex (abs, arg: SHORTREAL): SHORTCOMPLEX;
    (* Returns the complex number with the specified polar coordinates *)

PROCEDURE scalarMult (scalar: SHORTREAL; z: SHORTCOMPLEX): SHORTCOMPLEX;
    (* Returns the scalar product of scalar with z *)

PROCEDURE IsCMathException (): BOOLEAN;
    (* Returns TRUE if the current coroutine is in the exceptional execution state
       because of the raising of an exception in a routine from this module; otherwise
       returns FALSE.
    *)

END ShortComplexMath.
DEFINITION MODULE ShortConv;

IMPORT
  ConvTypes;

TYPE
  ConvResults = ConvTypes.ConvResults; (* strAllRight, strOutOfRange,
  strWrongFormat, strEmpty *)

PROCEDURE ScanReal (inputCh: CHAR; VAR chClass: ConvTypes.ScanClass;
  VAR nextState: ConvTypes.ScanState);
  (* Represents the start state of a finite state scanner for real
  numbers - assigns class of inputCh to chClass and a procedure
  representing the next state to nextState. *)

PROCEDURE FormatReal (str: ARRAY OF CHAR): ConvResults;
  (* Returns the format of the string value for conversion to LONGREAL. *)

PROCEDURE ValueReal (str: ARRAY OF CHAR): SHORTREAL;
  (* Returns the value corresponding to the real number string value
  str if str is well-formed; otherwise raises the ShortConv exception. *)

PROCEDURE LengthFloatReal (real: SHORTREAL; sigFigs: CARDINAL): CARDINAL;
  (* Returns the number of characters in the floating-point string
  representation of real with sigFigs significant figures. *)

PROCEDURE LengthEngReal (real: SHORTREAL; sigFigs: CARDINAL): CARDINAL;
  (* Returns the number of characters in the floating-point engineering
  string representation of real with sigFigs significant figures. *)

PROCEDURE LengthFixedReal (real: SHORTREAL; place: INTEGER): CARDINAL;
  (* Returns the number of characters in the fixed-point string
  representation of real rounded to the given place relative to the
  decimal point. *)

PROCEDURE IsRConvException (): BOOLEAN;
  (* Returns TRUE if the current coroutine is in the exceptional
  execution state because of the raising of an exception in a
  routine from this module; otherwise returns FALSE. *)
END ShortConv.
4.4.60 gm2-libs-iso/ShortIO

**DEFINITION MODULE ShortIO;**

(* Input and output of short real numbers in decimal text form over specified channels. The read result is of the type IOConsts.ReadResults. *)

**IMPORT IOChan;**

(* The text form of a signed fixed-point real number is 
"["+" | "-"], decimal digit, {decimal digit}, [".",
{decimal digit}]

The text form of a signed floating-point real number is
signed fixed-point real number,
"E", ["+" | "-"], decimal digit, {decimal digit} *)

**PROCEDURE ReadReal (cid: IOChan.ChanId; VAR real: SHORTREAL);**
(* Skips leading spaces, and removes any remaining characters from cid that form part of a signed fixed or floating point number. The value of this number is assigned to real. The read result is set to the value allRight, outOfRange, wrongFormat, endOfLine, or endOfInput. *)

**PROCEDURE WriteFloat (cid: IOChan.ChanId; real: SHORTREAL;
sigFigs: CARDINAL; width: CARDINAL);**
(* Writes the value of real to cid in floating-point text form, with sigFigs significant figures, in a field of the given minimum width. *)

**PROCEDURE WriteEng (cid: IOChan.ChanId; real: SHORTREAL;
sigFigs: CARDINAL; width: CARDINAL);**
(* As for WriteFloat, except that the number is scaled with one to three digits in the whole number part, and with an exponent that is a multiple of three. *)

**PROCEDURE WriteFixed (cid: IOChan.ChanId; real: SHORTREAL;
place: INTEGER; width: CARDINAL);**
(* Writes the value of real to cid in fixed-point text form, rounded to the given place relative to the decimal point, in a field of the given minimum width. *)
PROCEDURE WriteReal (cid: IOChan.ChanId; real: SHORTREAL;
   width: CARDINAL);
(* Writes the value of real to cid, as WriteFixed if the
   sign and magnitude can be shown in the given width, or
   otherwise as WriteFloat. The number of places or
   significant digits depends on the given width. *)

END ShortIO.
4.4.61 gm2-libs-iso/ShortMath

DEFINITION MODULE ShortMath;

(* Mathematical functions for the type LONGREAL *)

CONST
    pi = 3.1415926535897932384626433832795028841972;
    exp1 = 2.7182818284590452353602874713526624977572;

PROCEDURE __BUILTIN__ sqrt (x: SHORTREAL): SHORTREAL;
    (* Returns the positive square root of x *)

PROCEDURE __BUILTIN__ exp (x: SHORTREAL): SHORTREAL;
    (* Returns the exponential of x *)

PROCEDURE __BUILTIN__ ln (x: SHORTREAL): SHORTREAL;
    (* Returns the natural logarithm of x *)

    (* The angle in all trigonometric functions is measured in radians *)

PROCEDURE __BUILTIN__ sin (x: SHORTREAL): SHORTREAL;
    (* Returns the sine of x *)

PROCEDURE __BUILTIN__ cos (x: SHORTREAL): SHORTREAL;
    (* Returns the cosine of x *)

PROCEDURE tan (x: SHORTREAL): SHORTREAL;
    (* Returns the tangent of x *)

PROCEDURE arcsin (x: SHORTREAL): SHORTREAL;
    (* Returns the arcsine of x *)

PROCEDURE arccos (x: SHORTREAL): SHORTREAL;
    (* Returns the arccosine of x *)

PROCEDURE arctan (x: SHORTREAL): SHORTREAL;
    (* Returns the arctangent of x *)

PROCEDURE power (base, exponent: SHORTREAL): SHORTREAL;
    (* Returns the value of the number base raised to the power exponent *)

PROCEDURE round (x: SHORTREAL): INTEGER;
    (* Returns the value of x rounded to the nearest integer *)

PROCEDURE IsRMathException (): BOOLEAN;
    (* Returns TRUE if the current coroutine is in the exceptional
execution state because of the raising of an exception in a routine from this module; otherwise returns FALSE.

*)

END ShortMath.
DEFINITION MODULE ShortStr;

(* SHORTREAL/string conversions *)

IMPORT ConvTypes;

TYPE
  (* strAllRight, strOutOfRange, strWrongFormat, strEmpty *)
  ConvResults = ConvTypes.ConvResults;

  (* the string form of a signed fixed-point real number is
   ["+" | "]", decimal digit, {decimal digit}, [".", {decimal digit}] *)

  (* the string form of a signed floating-point real number is
   signed fixed-point real number, "E", ["+" | "]", decimal digit, {decimal digit}] *)

PROCEDURE StrToReal (str: ARRAY OF CHAR; VAR real: SHORTREAL;
                      VAR res: ConvResults);

  (* Ignores any leading spaces in str. If the subsequent characters
   in str are in the format of a signed real number, assigns a
   corresponding value to real. Assigns a value indicating the
   format of str to res. *)

PROCEDURE RealToFloat (real: SHORTREAL; sigFigs: CARDINAL;
                        VAR str: ARRAY OF CHAR);

  (* Converts the value of real to floating-point string form, with
   sigFigs significant figures, and copies the possibly truncated
   result to str. *)

PROCEDURE RealToEng (real: SHORTREAL; sigFigs: CARDINAL;
                     VAR str: ARRAY OF CHAR);

  (* Converts the value of real to floating-point string form, with
   sigFigs significant figures, and copies the possibly truncated
   result to str. The number is scaled with one to three digits
   in the whole number part and with an exponent that is a
   multiple of three. *)
PROCEDURE RealToFixed (real: SHORTREAL; place: INTEGER;
    VAR str: ARRAY OF CHAR);
    (* Converts the value of real to fixed-point string form, rounded
    to the given place relative to the decimal point, and copies
    the possibly truncated result to str.
    *)

PROCEDURE RealToStr (real: SHORTREAL; VAR str: ARRAY OF CHAR);
    (* Converts the value of real as RealToFixed if the sign and
    magnitude can be shown within the capacity of str, or
    otherwise as RealToFloat, and copies the possibly truncated
    result to str. The number of places or significant digits
    depend on the capacity of str.
    *)

END ShortStr.
4.4.63 gm2-libs-iso/ShortWholeIO

DEFINITION MODULE ShortWholeIO;

(* Input and output of whole numbers in decimal text form
   over specified channels. The read result is of the
   type IOConsts.ReadResults. *)

IMPORT IOChan;

(* The text form of a signed whole number is
   ["+" | "+"] , decimal digit, {decimal digit}

   The text form of an unsigned whole number is
   decimal digit, {decimal digit}
   *)

PROCEDURE ReadInt (cid: IOChan.ChanId; VAR int: SHORTINT);
   (* Skips leading spaces, and removes any remaining characters
      from cid that form part of a signed whole number. The
      value of this number is assigned to int. The read result
      is set to the value allRight, outOfRange, wrongFormat,
      endOfLine, or endOfInput. *)

PROCEDURE WriteInt (cid: IOChan.ChanId; int: SHORTINT;
   width: CARDINAL);
   (* Writes the value of int to cid in text form, in a field of
      the given minimum width. *)

PROCEDURE ReadCard (cid: IOChan.ChanId; VAR card: SHORTCARD);
   (* Skips leading spaces, and removes any remaining characters
      from cid that form part of an unsigned whole number. The
      value of this number is assigned to card. The read result
      is set to the value allRight, outOfRange, wrongFormat,
      endOfLine, or endOfInput. *)

PROCEDURE WriteCard (cid: IOChan.ChanId; card: SHORTCARD;
   width: CARDINAL);
   (* Writes the value of card to cid in text form, in a field
      of the given minimum width. *)

END ShortWholeIO.
Chapter 4: PIM and ISO library definitions

4.4.64 gm2-libs-iso/SimpleCipher

DEFINITION MODULE SimpleCipher ;

(*
  Description: provides a simple Caesar cipher layer which can be attached to any channel device. This, pedagogical, module is designed to show how it is possible to add further layers underneath the channel devices.
*)

FROM IOChan IMPORT ChanId ;

(*
  InsertCipherLayer - inserts a caesar cipher below channel, cid. The encryption, key, is specified.
*)

PROCEDURE InsertCipherLayer (cid: ChanId; key: INTEGER) ;

(*
  RemoveCipherLayer - removes a Caesar cipher below channel, cid.
*)

PROCEDURE RemoveCipherLayer (cid: ChanId) ;

END SimpleCipher.
4.4.65 gm2-libs-iso/StdChans

DEFINITION MODULE StdChans;

(* Access to standard and default channels *)

IMPORT IOChan;

TYPE
  ChanId = IOChan.ChanId;
  (* Values of this type are used to identify channels *)

  (* The following functions return the standard channel values. 
     These channels cannot be closed. *)

PROCEDURE StdInChan (): ChanId;
  (* Returns the identity of the implementation-defined standard source for program 
     input. *)

PROCEDURE StdOutChan (): ChanId;
  (* Returns the identity of the implementation-defined standard source for program 
     output. *)

PROCEDURE StdErrChan (): ChanId;
  (* Returns the identity of the implementation-defined standard destination for program 
     error messages. *)

PROCEDURE NullChan (): ChanId;
  (* Returns the identity of a channel open to the null device. *)

  (* The following functions return the default channel values *)

PROCEDURE InChan (): ChanId;
  (* Returns the identity of the current default input channel. *)

PROCEDURE OutChan (): ChanId;
  (* Returns the identity of the current default output channel. *)

PROCEDURE ErrChan (): ChanId;
  (* Returns the identity of the current default error message channel. *)

  (* The following procedures allow for redirection of the default channels *)
PROCEDURE SetInChan (cid: ChanId);
 (* Sets the current default input channel to that identified by cid. *)

PROCEDURE SetOutChan (cid: ChanId);
 (* Sets the current default output channel to that identified by cid. *)

PROCEDURE SetErrChan (cid: ChanId);
 (* Sets the current default error channel to that identified by cid. *)

END StdChans.
4.4.66 gm2-library/Storage

DEFINITION MODULE Storage;

(* Facilities for dynamically allocating and deallocating storage *)

IMPORT SYSTEM;

PROCEDURE ALLOCATE (VAR addr: SYSTEM.ADDRESS; amount: CARDINAL);
(* Allocates storage for a variable of size amount and assigns
the address of this variable to addr. If there is insufficient
unallocated storage to do this, the value NIL is assigned to addr.
*)

PROCEDURE DEALLOCATE (VAR addr: SYSTEM.ADDRESS; amount: CARDINAL);
(* Deallocates amount locations allocated by ALLOCATE for
the storage of the variable addressed by addr and assigns
the value NIL to addr.
*)

PROCEDURE REALLOCATE (VAR addr: SYSTEM.ADDRESS; amount: CARDINAL);
(* Attempts to reallocate, amount of storage. Effectively it
calls ALLOCATE, copies the amount of data pointed to by
addr into the new space and DEALLOCATES the addr.
This procedure is a GNU extension.
*)

TYPE
StorageExceptions = (
  nilDeallocation, (* first argument to DEALLOCATE is NIL *)
  pointerToUnallocatedStorage, (* storage to deallocate not allocated by ALLOCATE *)
  wrongStorageToUnallocate (* amount to deallocate is not amount allocated *)
);

PROCEDURE IsStorageException (): BOOLEAN;
(* Returns TRUE if the current coroutine is in the exceptional
execution state because of the raising of an exception from
StorageExceptions; otherwise returns FALSE.
*)

PROCEDURE StorageException (): StorageExceptions;
(* If the current coroutine is in the exceptional execution
state because of the raising of an exception from
StorageExceptions, returns the corresponding
enumeration value, and otherwise raises an exception.
*)
END Storage.
DEFINITION MODULE StreamFile;

/* Independent sequential data streams */

IMPORT IOChan, ChanConsts;

TYPE
  ChanId = IOChan.ChanId;
  FlagSet = ChanConsts.FlagSet;
  OpenResults = ChanConsts.OpenResults;

/* Accepted singleton values of FlagSet */

CONST
  read = FlagSet{ChanConsts.readFlag}; (* input operations are requested/available *)
  write = FlagSet{ChanConsts.writeFlag}; (* output operations are requested/available *)
  old = FlagSet{ChanConsts.oldFlag}; (* a file may/must/did exist before the channel opened *)
  text = FlagSet{ChanConsts.textFlag}; (* text operations are requested/available *)
  raw = FlagSet{ChanConsts.rawFlag}; (* raw operations are requested/available *)

PROCEDURE Open (VAR cid: ChanId; name: ARRAY OF CHAR;
  flags: FlagSet; VAR res: OpenResults);
(* Attempts to obtain and open a channel connected to a sequential stream of the given name. The read flag implies old; without the raw flag, text is implied. If successful, assigns to cid the identity of the opened channel, and assigns the value opened to res. If a channel cannot be opened as required, the value of res indicates the reason, and cid identifies the invalid channel. *)

PROCEDURE IsStreamFile (cid: ChanId): BOOLEAN;
(* Tests if the channel identified by cid is open to a sequential stream. *)

PROCEDURE Close (VAR cid: ChanId);
(* If the channel identified by cid is not open to a sequential stream, the exception wrongDevice is raised; otherwise closes the channel, and assigns the value identifying the invalid channel to cid. *)

END StreamFile.
4.4.68 gm2-libs-iso/StringChan

DEFINITION MODULE StringChan;

(*
   Description: provides a set of Channel and String input and output procedures.
*)

FROM DynamicStrings IMPORT String;
IMPORT IOChan;

(*
   writeString - writes a string, s, to ChanId, cid.
   The string, s, is not destroyed.
*)

PROCEDURE writeString (cid: IOChan.ChanId; s: String);

(*
   writeFieldWidth - writes a string, s, to ChanId, cid.
   The string, s, is not destroyed and it is prefixed by spaces so that at least,
   width, characters are written. If the string, s, is longer than width then
   no spaces are prefixed to the output and the entire string is written.
*)

PROCEDURE writeFieldWidth (cid: IOChan.ChanId;
                               s: String; width: CARDINAL);

END StringChan.
**4.4.69 gm2-libs-iso/Strings**

DEFINITION MODULE Strings;

(* Facilities for manipulating strings *)

TYPE
String1 = ARRAY [0..0] OF CHAR;
(* String1 is provided for constructing a value of a single-character string type from a
single character value in order to pass CHAR values to ARRAY OF CHAR parameters.*)

PROCEDURE Length (stringVal: ARRAY OF CHAR): CARDINAL;
(* Returns the length of stringVal (the same value as would be returned by the
pervasive function LENGTH). *)

(* The following seven procedures construct a string value, and attempt to assign it to
a variable parameter. They all have the property that if the length of the constructed
string value exceeds the capacity of the variable parameter, a truncated value is assigned;
if the length of the constructed string value is less than the capacity of the variable
parameter, a string terminator is appended before assignment is performed.*)

PROCEDURE Assign (source: ARRAY OF CHAR; VAR destination: ARRAY OF CHAR);
(* Copies source to destination *)

PROCEDURE Extract (source: ARRAY OF CHAR; startIndex, numberToExtract: CARDINAL;
VAR destination: ARRAY OF CHAR);
(* Copies at most numberToExtract characters from source to destination, starting at
startIndex in source. *)

PROCEDURE Delete (VAR stringVar: ARRAY OF CHAR; startIndex, numberToDelete: CARDINAL);
(* Deletes at most numberToDelete characters from stringVar, starting at position
startIndex.*)

PROCEDURE Insert (source: ARRAY OF CHAR; startIndex: CARDINAL;
VAR destination: ARRAY OF CHAR);
(* Inserts source into destination at position startIndex *)

PROCEDURE Replace (source: ARRAY OF CHAR; startIndex: CARDINAL;
VAR destination: ARRAY OF CHAR);
(* Copies source into destination, starting at position startIndex. Copying stops when...*)
all of source has been copied, or when the last character of the string value in destination has been replaced.

PROCEDURE Append (source: ARRAY OF CHAR; VAR destination: ARRAY OF CHAR);
(* Appends source to destination. *)

PROCEDURE Concat (source1, source2: ARRAY OF CHAR; VAR destination: ARRAY OF CHAR);
(* Concatenates source2 onto source1 and copies the result into destination. *)

(* The following predicates provide for pre-testing of the operation-completion conditions for the procedures above. *)

PROCEDURE CanAssignAll (sourceLength: CARDINAL; VAR destination: ARRAY OF CHAR): BOOLEAN;
(* Returns TRUE if a number of characters, indicated by sourceLength, will fit into destination; otherwise returns FALSE. *)

PROCEDURE CanExtractAll (sourceLength, startIndex, numberToExtract: CARDINAL; VAR destination: ARRAY OF CHAR): BOOLEAN;
(* Returns TRUE if there are numberToExtract characters starting at startIndex and within the sourceLength of some string, and if the capacity of destination is sufficient to hold numberToExtract characters; otherwise returns FALSE. *)

PROCEDURE CanDeleteAll (stringLength, startIndex, numberToDelete: CARDINAL): BOOLEAN;
(* Returns TRUE if there are numberToDelete characters starting at startIndex and within the stringLength of some string; otherwise returns FALSE. *)

PROCEDURE CanInsertAll (sourceLength, startIndex: CARDINAL; VAR destination: ARRAY OF CHAR): BOOLEAN;
(* Returns TRUE if there is room for the insertion of sourceLength characters from some string into destination starting at startIndex; otherwise returns FALSE. *)

PROCEDURE CanReplaceAll (sourceLength, startIndex: CARDINAL; VAR destination: ARRAY OF CHAR): BOOLEAN;
(* Returns TRUE if there is room for the replacement of sourceLength characters in destination starting at startIndex; otherwise returns FALSE. *)

PROCEDURE CanAppendAll (sourceLength: CARDINAL; VAR destination: ARRAY OF CHAR): BOOLEAN;
(* Returns TRUE if there is sufficient room in destination to append a string of length sourceLength to the string in destination; otherwise returns FALSE. *)
PROCEDURE CanConcatAll (source1Length, source2Length: CARDINAL;
VAR destination: ARRAY OF CHAR): BOOLEAN;
(* Returns TRUE if there is sufficient room in destination for a two strings of
lengths source1Length and source2Length; otherwise returns FALSE. *)

(* The following type and procedures provide for the comparison of string values, and location of substrings within strings. *)

TYPE
  CompareResults = (less, equal, greater);

PROCEDURE Compare (stringVal1, stringVal2: ARRAY OF CHAR): CompareResults;
(* Returns less, equal, or greater, according as stringVal1 is lexically less than,
equal to, or greater than stringVal2. *)

PROCEDURE Equal (stringVal1, stringVal2: ARRAY OF CHAR): BOOLEAN;
(* Returns Strings.Compare(stringVal1, stringVal2) = Strings.equal *)

PROCEDURE FindNext (pattern, stringToSearch: ARRAY OF CHAR; startIndex: CARDINAL;
VAR patternFound: BOOLEAN; VAR posOfPattern: CARDINAL);
(* Looks forward for next occurrence of pattern in stringToSearch, starting the search at position startIndex. If startIndex < LENGTH(stringToSearch) and pattern is found, patternFound is returned as TRUE, and posOfPattern contains the start position in stringToSearch of pattern. Otherwise patternFound is returned as FALSE, and posOfPattern is unchanged. *)

PROCEDURE FindPrev (pattern, stringToSearch: ARRAY OF CHAR; startIndex: CARDINAL;
VAR patternFound: BOOLEAN; VAR posOfPattern: CARDINAL);
(* Looks backward for the previous occurrence of pattern in stringToSearch and returns the position of the first character of the pattern if found. The search for the pattern begins at startIndex. If pattern is found, patternFound is returned as TRUE, and posOfPattern contains the start position in stringToSearch of pattern in the range [0..startIndex]. Otherwise patternFound is returned as FALSE, and posOfPattern is unchanged. *)

PROCEDURE FindDiff (stringVal1, stringVal2: ARRAY OF CHAR;
VAR differenceFound: BOOLEAN; VAR posOfDifference: CARDINAL);
(* Compares the string values in stringVal1 and stringVal2 for differences. If they are equal, differenceFound is returned as FALSE, and TRUE otherwise. If differenceFound is TRUE, posOfDifference is set to the position of the first difference; otherwise posOfDifference is unchanged. *)
PROCEDURE Capitalize (VAR stringVar: ARRAY OF CHAR);
   (* Applies the function CAP to each character of the string value in stringVar. *)

END Strings.
4.4.70 gm2-libs-iso/SysClock

DEFINITION MODULE SysClock;

(* Facilities for accessing a system clock that records the date and time of day *)

CONST
    maxSecondParts = 1000000;

TYPE
    Month = [1 .. 12];
    Day = [1 .. 31];
    Hour = [0 .. 23];
    Min = [0 .. 59];
    Sec = [0 .. 59];
    Fraction = [0 .. maxSecondParts];
    UTCDiff = [-780 .. 720];

    DateTime = RECORD
        year: CARDINAL;
        month: Month;
        day: Day;
        hour: Hour;
        minute: Min;
        second: Sec;
        fractions: Fraction; (* parts of a second *)
        zone: UTCDiff; (* Time zone differential factor which is the number of minutes to add to local time to obtain UTC. *)
        summerTimeFlag: BOOLEAN; (* Interpretation of flag depends on local usage. *)
    END;

PROCEDURE CanGetClock(): BOOLEAN;
(* Tests if the clock can be read *)

PROCEDURE CanSetClock(): BOOLEAN;
(* Tests if the clock can be set *)

PROCEDURE IsValidDateTime(userData: DateTime): BOOLEAN;
(* Tests if the value of userData is a valid *)

PROCEDURE GetClock(VAR userData: DateTime);
(* Assigns local date and time of the day to userData *)
PROCEDURE SetClock(userData: DateTime);
(* Sets the system time clock to the given local date and time *)

END SysClock.
Chapter 4: PIM and ISO library definitions

4.4.71 gm2-libs-iso/TERMINATION

DEFINITION MODULE TERMINATION;

(* Provides facilities for enquiries concerning the occurrence of termination events. *)

PROCEDURE IsTerminating (): BOOLEAN;
(* Returns true if any coroutine has started program termination and false otherwise. *)

PROCEDURE HasHalted (): BOOLEAN;
(* Returns true if a call to HALT has been made and false otherwise. *)

END TERMINATION.
4.4.72 gm2-libs-iso/TermFile

DEFINITION MODULE TermFile;

(* Access to the terminal device *)

(* Channels opened by this module are connected to a single
terminal device; typed characters are distributed between
channels according to the sequence of read requests. *)

IMPORT IOChan, ChanConsts;

TYPE
  ChanId = IOChan.ChanId;
  FlagSet = ChanConsts.FlagSet;
  OpenResults = ChanConsts.OpenResults;

(* Accepted singleton values of FlagSet *)

CONST
  read = FlagSet{ChanConsts.readFlag};
  write = FlagSet{ChanConsts.writeFlag};
  text = FlagSet{ChanConsts.textFlag};
  raw = FlagSet{ChanConsts.rawFlag};
  echo = FlagSet{ChanConsts.echoFlag};

PROCEDURE Open (VAR cid: ChanId; flagset: FlagSet; VAR res: OpenResults);
(* Attempts to obtain and open a channel connected to
the terminal. Without the raw flag, text is implied.
Without the echo flag, line mode is requested,
otherwise single character mode is requested.
If successful, assigns to cid the identity of
the opened channel, and assigns the value opened to res.
If a channel cannot be opened as required, the value of
res indicates the reason, and cid identifies the
invalid channel. *)

PROCEDURE IsTermFile (cid: ChanId): BOOLEAN;
(* Tests if the channel identified by cid is open to the terminal. *)

PROCEDURE Close (VAR cid: ChanId);
(* If the channel identified by cid is not open to the terminal, the exception wrongDevice is raised; otherwise closes the channel and assigns the value identifying the invalid channel to cid. *)

END TermFile.
4.4.73 gm2-libs-iso/TextIO

DEFINITION MODULE TextIO;

(* Input and output of character and string types over specified channels. The read result is of the type IOConsts.ReadResults.*)

IMPORT IOChan;

(* The following procedures do not read past line marks *)

PROCEDURE ReadChar (cid: IOChan.ChanId; VAR ch: CHAR);
(* If possible, removes a character from the input stream cid and assigns the corresponding value to ch. The read result is set to the value allRight, endOfLine, or endOfInput. *)

PROCEDURE ReadRestLine (cid: IOChan.ChanId; VAR s: ARRAY OF CHAR);
(* Removes any remaining characters from the input stream cid before the next line mark, copying to s as many as can be accommodated as a string value. The read result is set to the value allRight, outOfRange, endOfLine, or endOfInput. *)

PROCEDURE ReadString (cid: IOChan.ChanId; VAR s: ARRAY OF CHAR);
(* Removes only those characters from the input stream cid before the next line mark that can be accommodated in s as a string value, and copies them to s. The read result is set to the value allRight, endOfLine, or endOfInput. *)

PROCEDURE ReadToken (cid: IOChan.ChanId; VAR s: ARRAY OF CHAR);
(* Skips leading spaces, and then removes characters from the input stream cid before the next space or line mark, copying to s as many as can be accommodated as a string value. The read result is set to the value allRight, outOfRange, endOfLine, or endOfInput. *)

(* The following procedure reads past the next line mark *)

PROCEDURE SkipLine (cid: IOChan.ChanId);
(* Removes successive items from the input stream cid up
to and including the next line mark, or until the end
of input is reached. The read result is set to the
value allRight, or endOfInput.
*)

(* Output procedures *)

PROCEDURE WriteChar (cid: IOChan.ChanId; ch: CHAR);
(* Writes the value of ch to the output stream cid. *)

PROCEDURE WriteLn (cid: IOChan.ChanId);
(* Writes a line mark to the output stream cid. *)

PROCEDURE WriteString (cid: IOChan.ChanId; s: ARRAY OF CHAR);
(* Writes the string value in s to the output stream cid. *)

END TextIO.
4.4.74 gm2-libs-iso/TextUtil

DEFINITION MODULE TextUtil ;

(* Description: provides text manipulation routines. *)

IMPORT IOChan ;

(* SkipSpaces – skips any spaces. *)

PROCEDURE SkipSpaces (cid: IOChan.ChanId) ;

(* The following procedures do not read past line marks. *)

PROCEDURE CharAvailable (cid: IOChan.ChanId) : BOOLEAN ;

PROCEDURE EofOrEoln (cid: IOChan.ChanId) : BOOLEAN ;

END TextUtil.
DEFINITION MODULE WholeConv;

(* Low-level whole-number/string conversions *)

IMPORT ConvTypes;

TYPE
  ConvResults = ConvTypes.ConvResults;
  (* strAllRight, strOutOfRange, strWrongFormat, strEmpty *)

PROCEDURE ScanInt (inputCh: CHAR;
  VAR chClass: ConvTypes.ScanClass;
  VAR nextState: ConvTypes.ScanState);
  (* Represents the start state of a finite state scanner for signed whole numbers - assigns class of inputCh to chClass and a procedure representing the next state to nextState. *)

PROCEDURE FormatInt (str: ARRAY OF CHAR): ConvResults;
  (* Returns the format of the string value for conversion to INTEGER. *)

PROCEDURE ValueInt (str: ARRAY OF CHAR): INTEGER;
  (* Returns the value corresponding to the signed whole number string value str if str is well-formed; otherwise raises the WholeConv exception. *)

PROCEDURE LengthInt (int: INTEGER): CARDINAL;
  (* Returns the number of characters in the string representation of int. *)

PROCEDURE ScanCard (inputCh: CHAR;
  VAR chClass: ConvTypes.ScanClass;
  VAR nextState: ConvTypes.ScanState);
  (* Represents the start state of a finite state scanner for unsigned whole numbers - assigns class of inputCh to chClass and a procedure representing the next state to nextState. *)

PROCEDURE FormatCard (str: ARRAY OF CHAR): ConvResults;
  (* Returns the format of the string value for conversion to CARDINAL. *)

PROCEDURE ValueCard (str: ARRAY OF CHAR): CARDINAL;
PROCEDURE LengthCard (card: CARDINAL): CARDINAL;
(* Returns the number of characters in the string representation of card. *)

PROCEDURE IsWholeConvException (): BOOLEAN;
(* Returns TRUE if the current coroutine is in the exceptional execution state because of the raising of an exception in a routine from this module; otherwise returns FALSE. *)

END WholeConv.
DEFINITION MODULE WholeIO;

(* Input and output of whole numbers in decimal text form
over specified channels. The read result is of the
 type IOConsts.ReadResults. *)

IMPORT IOChan;

(* The text form of a signed whole number is
 ["+" | "] decimal digit, {decimal digit}
The text form of an unsigned whole number is
    decimal digit, {decimal digit}
*)

PROCEDURE ReadInt (cid: IOChan.ChanId; VAR int: INTEGER);
(* Skips leading spaces, and removes any remaining characters
   from cid that form part of a signed whole number. The
   value of this number is assigned to int. The read result
   is set to the value allRight, outOfRange, wrongFormat,
   endOfLine, or endOfInput. *)

PROCEDURE WriteInt (cid: IOChan.ChanId; int: INTEGER;
   width: CARDINAL);
(* Writes the value of int to cid in text form, in a field of
   the given minimum width. *)

PROCEDURE ReadCard (cid: IOChan.ChanId; VAR card: CARDINAL);
(* Skips leading spaces, and removes any remaining characters
   from cid that form part of an unsigned whole number. The
   value of this number is assigned to card. The read result
   is set to the value allRight, outOfRange, wrongFormat,
   endOfLine, or endOfInput. *)

PROCEDURE WriteCard (cid: IOChan.ChanId; card: CARDINAL;
   width: CARDINAL);
(* Writes the value of card to cid in text form, in a field
   of the given minimum width. *)

END WholeIO.
4.4.77 gm2-libs-iso/WholeStr

DEFINITION MODULE WholeStr;

(* Whole-number/string conversions *)

IMPORT
  ConvTypes;

TYPE
  ConvResults = ConvTypes.ConvResults;
  (* strAllRight, strOutOfRange, strWrongFormat, strEmpty *)

  (* the string form of a signed whole number is
     ["+" | "]-, decimal digit, {decimal digit} *)

PROCEDURE StrToInt (str: ARRAY OF CHAR; VAR int: INTEGER;
      VAR res: ConvResults);
  (* Ignores any leading spaces in str. If the subsequent
      characters in str are in the format of a signed whole
      number, assigns a corresponding value to int. Assigns
      a value indicating the format of str to res. *)

PROCEDURE IntToStr (int: INTEGER; VAR str: ARRAY OF CHAR);
  (* Converts the value of int to string form and copies the
      possibly truncated result to str. *)

  (* the string form of an unsigned whole number is
     decimal digit, {decimal digit} *)

PROCEDURE StrToCard (str: ARRAY OF CHAR;
      VAR card: CARDINAL;
      VAR res: ConvResults);
  (* Ignores any leading spaces in str. If the subsequent
      characters in str are in the format of an unsigned
      whole number, assigns a corresponding value to card.
      Assigns a value indicating the format of str to res. *)

PROCEDURE CardToStr (card: CARDINAL; VAR str: ARRAY OF CHAR);
  (* Converts the value of card to string form and copies the
     possibly truncated result to str. *)

END WholeStr.
4.4.78 gm2-libs-iso/wrapclock

DEFINITION MODULE wrapclock ;

FROM SYSTEM IMPORT ADDRESS ;

TYPE
timespec = ADDRESS ;

(*
timezone - return the glibc timezone value.
This contains the difference between UTC and the latest
local standard time, in seconds west of UTC.
If the underlying timezone is unavailable and
clock_gettime, localtime_r, tm_gmtoff
is unavailable then 0 is returned.
*)

PROCEDURE timezone () : LONGINT ;

(*
istimezone returns 1 if timezone in wrapclock.cc can resolve the
timezone value using the timezone C library call or by using

clock_gettime, localtime_r and tm_gmtoff.
*)

PROCEDURE istimezone () : INTEGER ;

(*
daylight - return the glibc daylight value.
This variable has a nonzero value if Daylight Saving
Time rules apply.
A nonzero value does not necessarily mean that Daylight
Saving Time is now in effect; it means only that Daylight
Saving Time is sometimes in effect.
*)

PROCEDURE daylight () : INTEGER ;

(*
isdst - returns 1 if daylight saving time is currently in effect and
returns 0 if it is not.
*)
PROCEDURE isdst () : INTEGER ;

(*
    tzname - returns the string associated with the local timezone.
    The daylight value is 0 or 1. The value 0 returns the non
    daylight saving timezone string and the value of 1 returns
    the daylight saving timezone string.
*)

PROCEDURE tzname (daylight: INTEGER) : ADDRESS ;

(*
    InitTimespec - returns a newly created opaque type.
*)

PROCEDURE InitTimespec () : timespec ;

(*
    KillTimespec - deallocates the memory associated with an
    opaque type.
*)

PROCEDURE KillTimespec (tv: timespec) : timespec ;

(*
    GetTimespec - retrieves the number of seconds and nanoseconds
    from the timespec. A return value of 0 means timespec
    is unavailable and a return value of 1 indicates success.
*)

PROCEDURE GetTimespec (ts: timespec; VAR sec, nano: LONGCARD) : INTEGER ;

(*
    SetTimespec - sets the number of seconds and nanoseconds
    into timespec. A return value of 0 means timespec
    is unavailable and a return value of 1 indicates success.
*)

PROCEDURE SetTimespec (ts: timespec; sec, nano: LONGCARD) : INTEGER ;
(*
    GetTimeRealtime - performs return_gettime (CLOCK_REALTIME, ts).
    gettime returns 0 on success and -1 on failure.
    If the underlying system does not have gettime then GetTimeRealtime returns 1.
*)

PROCEDURE GetTimeRealtime (ts: timespec) : INTEGER ;

(*
    SetTimeRealtime - performs return_settime (CLOCK_REALTIME, ts).
    gettime returns 0 on success and -1 on failure.
    If the underlying system does not have gettime then SetTimeRealtime returns 1.
*)

PROCEDURE SetTimeRealtime (ts: timespec) : INTEGER ;

END wrapclock.
4.4.79 gm2-libs-iso/wrapsock

DEFINITION MODULE wrapsock ;

(*
   Description: provides a set of wrappers to some client side
tcp socket primatives.
*)

FROM SYSTEM IMPORT ADDRESS ;
FROM ChanConsts IMPORT OpenResults ;

TYPE
   clientInfo = ADDRESS ;

(*
   clientOpen - returns an ISO Modula-2 OpenResult.
   It attempts to connect to: hostname:portNo.
   If successful then the data structure, c, 
   will have its fields initialized.
*)

PROCEDURE clientOpen (c: clientInfo;
   hostname: ADDRESS;
   length: CARDINAL;
   portNo: CARDINAL) : OpenResults ;

(*
   clientOpenIP - returns an ISO Modula-2 OpenResult.
   It attempts to connect to: ipaddress:portNo.
   If successful then the data structure, c, 
   will have its fields initialized.
*)

PROCEDURE clientOpenIP (c: clientInfo;
   ip: CARDINAL;
   portNo: CARDINAL) : OpenResults ;

(*
   getClientPortNo - returns the portNo from structure, c.
*)

PROCEDURE getClientPortNo (c: clientInfo) : CARDINAL ;
Chapter 4: PIM and ISO library definitions

(*
ggetClientHostname - fills in the hostname of the server
the to which the client is connecting.
*)

PROCEDURE getClientHostname (c: clientInfo;
                          hostname: ADDRESS; high: CARDINAL);

(*
ggetClientSocketFd - returns the sockFd from structure, c.
*)

PROCEDUREgetClientSocketFd (c: clientInfo) : INTEGER;

(*
ggetClientIP - returns the sockFd from structure, s.
*)

PROCEDURE getClientIP (c: clientInfo) : CARDINAL;

(*
ggetPushBackChar - returns TRUE if a pushed back character
is available.
*)

PROCEDURE getPushBackChar (c: clientInfo; VAR ch: CHAR) : BOOLEAN;

(*
gsetPushBackChar - returns TRUE if it is able to push back a
character.
*)

PROCEDURE setPushBackChar (c: clientInfo; ch: CHAR) : BOOLEAN;

(*
ggetSizeOfClientInfo - returns the sizeof (opaque data type).
*)

PROCEDURE getSizeOfClientInfo () : CARDINAL;
END wrapsock.
4.4.80 gm2-libs-iso/wraptime

DEFINITION MODULE wraptime ;

(*
Description: provides an interface to various time related
entities on the underlying host operating system.
It provides access to the glibc/libc functions:
gettimeofday, settimeofday and localtime_r.
*)

FROM SYSTEM IMPORT ADDRESS ;

TYPE
timeval  = ADDRESS ;
timezone = ADDRESS ;
tm       = ADDRESS ;

(*
InitTimeval - returns a newly created opaque type.
*)
PROCEDURE InitTimeval () : timeval ;

(*
KillTimeval - deallocates the memory associated with an
opaque type.
*)
PROCEDURE KillTimeval (tv: timeval) : timeval ;

(*
InitTimezone - returns a newly created opaque type.
*)
PROCEDURE InitTimezone () : timezone ;

(*
KillTimezone - deallocates the memory associated with an
opaque type.
*)
PROCEDURE KillTimezone (tv: timezone) : timezone ;
Chapter 4: PIM and ISO library definitions

(
InitTM - returns a newly created opaque type.
*)

PROCEDURE InitTM (): tm;

(*
KillTM - deallocates the memory associated with an
opaque type.
*)

PROCEDURE KillTM (tv: tm): tm;

(*
gmtimeofday - calls gmtimeofday(2) with the same parameters, tv,
and, tz. It returns 0 on success.
*)

PROCEDURE gmtimeofday (tv: timeval; tz: timezone): INTEGER;

(*
settimeofday - calls settimeofday(2) with the same parameters, tv,
and, tz. It returns 0 on success.
*)

PROCEDURE settimeofday (tv: timeval; tz: timezone): INTEGER;

(*
GetFractions - returns the tv_usec field inside the timeval structure
as a CARDINAL.
*)

PROCEDURE GetFractions (tv: timeval): CARDINAL;

(*
localtime_r - returns the tm parameter, m, after it has been assigned with
appropriate contents determined by, tv. Notice that
this procedure function expects, timeval, as its first
parameter and not a time_t (as expected by the posix
equivalent). This avoids having to expose a time_t
PROCEDURE localtime_r (tv: timeval; m: tm) : tm ;

(*
    GetYear - returns the year from the structure, m.
*)
PROCEDURE GetYear (m: tm) : CARDINAL ;

(*
    GetMonth - returns the month from the structure, m.
*)
PROCEDURE GetMonth (m: tm) : CARDINAL ;

(*
    GetDay - returns the day of the month from the structure, m.
*)
PROCEDURE GetDay (m: tm) : CARDINAL ;

(*
    GetHour - returns the hour of the day from the structure, m.
*)
PROCEDURE GetHour (m: tm) : CARDINAL ;

(*
    GetMinute - returns the minute within the hour from the structure, m.
*)
PROCEDURE GetMinute (m: tm) : CARDINAL ;

(*
    GetSecond - returns the seconds in the minute from the structure, m.
The return value will always be in the range 0..59.
A leap minute of value 60 will be truncated to 59.
*)
PROCEDURE GetSecond (m: tm) : CARDINAL ;

(*
    GetSummerTime - returns a boolean indicating whether summer time is
    set.
*)
PROCEDURE GetSummerTime (tz: timezone) : BOOLEAN ;

(*
    GetDST - returns the number of minutes west of GMT.
*)
PROCEDURE GetDST (tz: timezone) : INTEGER ;

(*
    SetTimeval - sets the fields in timeval, tv, with:
        second, minute, hour, day, month, year, fractions.
*)
PROCEDURE SetTimeval (tv: timeval;
    second, minute, hour, day,
    month, year, yday, wday, isdst: CARDINAL) ;

(*
    SetTimezone - set the timezone field inside timeval, tv.
*)
PROCEDURE SetTimezone (tv: timeval;
    zone: CARDINAL; minuteswest: INTEGER) ;

END wraptime.
# 4.5 Indices

<table>
<thead>
<tr>
<th>A</th>
<th>Chapter 4: PIM and ISO library definitions</th>
<th>431</th>
</tr>
</thead>
<tbody>
<tr>
<td>_cxabegin catch</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>_cxacatch</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>_cxa_rethrow</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>abort</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>abs</td>
<td>265, 305, 387</td>
<td></td>
</tr>
<tr>
<td>ABS</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>ack (const)</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>acos</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>acosf</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>acosl</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>activate</td>
<td>331</td>
<td></td>
</tr>
<tr>
<td>actualparameters (ebnf)</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>add</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>addadr</td>
<td>52, 379</td>
<td></td>
</tr>
<tr>
<td>addlongoption</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>addoperator (ebnf)</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>address (type)</td>
<td>52, 379</td>
<td></td>
</tr>
<tr>
<td>adr</td>
<td>48, 53, 151, 271, 380</td>
<td></td>
</tr>
<tr>
<td>again</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>alignment (ebnf)</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>alloc</td>
<td>46, 87, 178</td>
<td></td>
</tr>
<tr>
<td>alloc_trace</td>
<td>47, 89</td>
<td></td>
</tr>
<tr>
<td>allocate</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>allocateDeviceId</td>
<td>291</td>
<td></td>
</tr>
<tr>
<td>allocatesource</td>
<td>161, 174, 401</td>
<td></td>
</tr>
<tr>
<td>append</td>
<td>406</td>
<td></td>
</tr>
<tr>
<td>arccos</td>
<td>285, 305, 311, 358, 387, 393</td>
<td></td>
</tr>
<tr>
<td>arcsin</td>
<td>285, 305, 311, 358, 387, 393</td>
<td></td>
</tr>
<tr>
<td>arctan</td>
<td>120, 129, 150, 285, 305, 311, 358, 387, 393</td>
<td></td>
</tr>
<tr>
<td>arg</td>
<td>285, 305, 387</td>
<td></td>
</tr>
<tr>
<td>argchan</td>
<td>334</td>
<td></td>
</tr>
<tr>
<td>argcvent (type)</td>
<td>122, 125, 323</td>
<td></td>
</tr>
<tr>
<td>armevent</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>arraysetrecordvalue (ebnf)</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>arraytype (ebnf)</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>asin</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>asinf</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>asinl</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>asmelement (ebnf)</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>asmList (ebnf)</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>asmOperandName (ebnf)</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>asmOperands (ebnf)</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>asmstatement (ebnf)</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>assert</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>assign</td>
<td>95, 257, 405</td>
<td></td>
</tr>
<tr>
<td>assignmentException</td>
<td>128, 326</td>
<td></td>
</tr>
<tr>
<td>assignmentOrProcedureCall (ebnf)</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>assignread</td>
<td>259</td>
<td></td>
</tr>
<tr>
<td>assignWrite</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>atan</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>atan2</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>atan2f</td>
<td>42, 84, 179, 199</td>
<td></td>
</tr>
<tr>
<td>atan2l</td>
<td>42, 84, 179, 199</td>
<td></td>
</tr>
<tr>
<td>atanf</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>atanl</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>atexit</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>attach</td>
<td>331</td>
<td></td>
</tr>
<tr>
<td>attachvector</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>attach</td>
<td>278</td>
<td></td>
</tr>
<tr>
<td>attributeexpression (ebnf)</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>attributeNoReturn (ebnf)</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>attributeUnused (ebnf)</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>available</td>
<td>161, 174</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BaseExceptionsThrow</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>bel</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>BinToStr</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>bitsperbyte (const)</td>
<td>47, 151</td>
<td></td>
</tr>
<tr>
<td>bitperloc (const)</td>
<td>52, 378</td>
<td></td>
</tr>
<tr>
<td>block (ebnf)</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>blockAnd</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>blockBody (ebnf)</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>blockClear</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>blockEqual</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>blockMoveBackward</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>blockMoveForward</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>blockNot</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>blockOr</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>blockPosition</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>blockRoi</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>blockRor</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>blockSet</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>blockShl</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>blockShr</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>blockXor</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>body (type)</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>bs</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>bstoc</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>bstoi</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>bufferedMode</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>builtin (ebnf)</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>BYTE</td>
<td>52, 379</td>
<td></td>
</tr>
<tr>
<td>bytealignment (ebnf)</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>byteAnd</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>byteNot</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>byteOr</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>byteRoi</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>byteRor</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>byteSar</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>byteShl</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>byteShr</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>bytesperword (const)</td>
<td>47, 151</td>
<td></td>
</tr>
<tr>
<td>byteXor</td>
<td>216</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 4: PIM and ISO library definitions

C

cabs .......................... 44, 86, 180
cabsf .......................... 44, 86, 180
cabsl .......................... 44, 86, 180
cacos ........................................ 181
cacosf .......................... 181
cacosl .......................... 181
can ........................................ 181
CanAppendAll ......................... 406
CanAssignAll ......................... 406
Cancel .................................... 276
CanConcatAll ......................... 407
CanDeleteAll ......................... 406
CanExtractAll ......................... 406
CanGetClock ............................ 409
CanInsertAll ......................... 406
CanReplaceAll ......................... 406
CanSetClock ............................ 409
Cap ....................................... 162
Capitize .................................. 408
carccos ...................................... 11
carccosf .......................... 45, 87
carccosl .......................... 45, 87
carcsin ...................................... 45, 87
carcsinf .......................... 45, 87
carcsinl .......................... 45, 87
carctan ...................................... 45, 87
carctanf .......................... 45, 87
carctanl .......................... 45, 87
CardinalToString ..................... 166
CardToStr ............................. 131, 420
carg ........................................ 44, 86, 180
cargf .......................... 44, 86, 180
cargl .......................... 44, 86, 180
Case (ebnf) ......................... 76
CaseException ......................... 128, 326
CaseLabelList (ebnf) ................. 74
CaseLabels (ebnf) ................. 74
CaseStatement (ebnf) ............... 76
CaseTag (ebnf) ....................... 74
casin ..................................... 181
casinf ..................................... 181
casinl ..................................... 181
CAST .................................... 54, 380
cat .......................................... 181
cat .......................................... 181
cocos ...................................... 45, 87, 181
ccosf .......................... 45, 87, 181
cosl ........................................ 45, 87, 181
ceil ........................................ 200
ceilf ........................................ 200
ceill ........................................ 200
cexp ........................................ 45, 87, 180
cexpf ........................................ 45, 87, 180
cexpl ........................................ 45, 87, 180
cfgetispeed ............................. 205
cfgetospeed ............................. 205
cfgetopt ................................ 206
cfgetoptav ................................ 206
cfgetoptf ............................... 205
cfgetoptl ............................... 205
ChanDev (type) ......................... 342
ChanException ......................... 209
ChanExceptions (type) .............. 208
ChanFlags (type) ....................... 281
ChanId (type) ....................... 334, 348, 362, 384, 399, 403, 412
char ....................................... 98
CharAvailable ......................... 416
checkErrno ............................. 344
chown ..................................... 194
CHR ........................................ 11
Claim ..................................... 383
clientInfo (type) ...................... 424
clientOpen ............................. 424
clientOpenIP ........................... 424
c1n ........................................ 45, 87
c1nf ........................................ 45, 87
c1nl ........................................ 45, 87
clog ........................................ 180
clogf ........................................ 180
clogl ........................................ 180
close ....................................... 192
Close ... 104, 136, 235, 284, 328, 364, 386, 403, 413
CloseInput ............................. 242
CloseOutput ............................ 243
CloseSource ........................... 155
Command (type) ....................... 235
Compare .................................. 407
CompareResults (type) .............. 407
CompareStr ............................. 258
CompareTime ............................ 264
ComponentElement (ebnf) .......... 72
ComponentValue (ebnf) .............. 72
ConCat ...................................... 94, 134, 258
Concat .................................... 406
ConCatChar ............................. 94
CondClaim ............................ 383
conj ........................................ 45, 86, 180, 285, 305, 387
conjf ........................................ 45, 86, 180
conjl ........................................ 45, 86, 180
connectSpin ........................... 187
ConstActualParameters (ebnf) ..... 72
ConstantDeclaration (ebnf) ...... 71
ConstantDeclaration (ebnf) ...... 72
ConstantExpression (ebnf) ...... 71
ConstFactor (ebnf) ................. 72
ConstructModules ..................... 122, 125, 323
Constructor (ebnf) ................. 72
ConstSetOrQualidentOrFunction (ebnf) 72
ConstString (ebnf) ................. 72
ConstTerm (ebnf) .................... 72
ControlChar (type) .................... 204
ConvertCardinal ........................ 228
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConvertHex</td>
<td>228</td>
</tr>
<tr>
<td>ConvertInteger</td>
<td>228</td>
</tr>
<tr>
<td>ConvertLongInt</td>
<td>228</td>
</tr>
<tr>
<td>ConvertOctal</td>
<td>228</td>
</tr>
<tr>
<td>ConvertShortInt</td>
<td>228</td>
</tr>
<tr>
<td>ConvResults (type)</td>
<td>290, 307, 313, 354, 360, 389, 395, 417, 420</td>
</tr>
<tr>
<td>Copy</td>
<td>257</td>
</tr>
<tr>
<td>CopyOut</td>
<td>98</td>
</tr>
<tr>
<td>COROUTINE (type)</td>
<td>278</td>
</tr>
<tr>
<td>cos</td>
<td>42, 84, 120, 129, 150, 179, 199, 285, 305, 311, 358, 387, 393</td>
</tr>
<tr>
<td>cosf</td>
<td>42, 84, 179, 199</td>
</tr>
<tr>
<td>cosl</td>
<td>42, 84, 179, 199</td>
</tr>
<tr>
<td>cpow</td>
<td>180</td>
</tr>
<tr>
<td>cpowf</td>
<td>45, 86</td>
</tr>
<tr>
<td>cpowrl</td>
<td>45, 86</td>
</tr>
<tr>
<td>cpowf</td>
<td>180</td>
</tr>
<tr>
<td>cpl</td>
<td>180</td>
</tr>
<tr>
<td>cr (const)</td>
<td>80</td>
</tr>
<tr>
<td>create</td>
<td>193</td>
</tr>
<tr>
<td>Create</td>
<td>235, 330, 383</td>
</tr>
<tr>
<td>csin</td>
<td>45, 87, 180</td>
</tr>
<tr>
<td>csinf</td>
<td>45, 87, 180</td>
</tr>
<tr>
<td>csinl</td>
<td>45, 87, 181</td>
</tr>
<tr>
<td>csqrt</td>
<td>45, 87, 180</td>
</tr>
<tr>
<td>csqrf</td>
<td>45, 86, 180</td>
</tr>
<tr>
<td>csqrtl</td>
<td>45, 87, 180</td>
</tr>
<tr>
<td>ctan</td>
<td>45, 87, 181</td>
</tr>
<tr>
<td>ctanf</td>
<td>45, 87, 181</td>
</tr>
<tr>
<td>ctanl</td>
<td>45, 87, 181</td>
</tr>
<tr>
<td>cts</td>
<td>169</td>
</tr>
<tr>
<td>CurrentFlags</td>
<td>298</td>
</tr>
<tr>
<td>currentInterruptLevel</td>
<td>335</td>
</tr>
<tr>
<td>currentMode</td>
<td>317, 319, 321</td>
</tr>
<tr>
<td>CurrentNumber</td>
<td>291</td>
</tr>
<tr>
<td>CurrentPos</td>
<td>363</td>
</tr>
<tr>
<td>currentThread</td>
<td>335</td>
</tr>
<tr>
<td>CURRENT</td>
<td>279</td>
</tr>
</tbody>
</table>

**D**

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DateTime (type)</td>
<td>409</td>
</tr>
<tr>
<td>Day (type)</td>
<td>409</td>
</tr>
<tr>
<td>dayligh</td>
<td>421</td>
</tr>
<tr>
<td>dc1 (const)</td>
<td>80</td>
</tr>
<tr>
<td>dc2 (const)</td>
<td>80</td>
</tr>
<tr>
<td>dc3 (const)</td>
<td>80</td>
</tr>
<tr>
<td>dc4 (const)</td>
<td>80</td>
</tr>
<tr>
<td>DEALLOCATE</td>
<td>161, 174, 401</td>
</tr>
<tr>
<td>DebugIndex</td>
<td>117</td>
</tr>
<tr>
<td>DebugProcess</td>
<td>267</td>
</tr>
<tr>
<td>DebugString</td>
<td>92</td>
</tr>
<tr>
<td>DecException</td>
<td>128, 326</td>
</tr>
<tr>
<td>Declaration (ebnf)</td>
<td>77</td>
</tr>
<tr>
<td>DeconstructModules</td>
<td>122, 125, 323</td>
</tr>
<tr>
<td>DEC.</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DefaultDecimalPlaces (const)</td>
<td>254</td>
</tr>
<tr>
<td>DefaultErrorCatch</td>
<td>140</td>
</tr>
<tr>
<td>DefaultRecordAttributes (ebnf)</td>
<td>73</td>
</tr>
<tr>
<td>DefExtendedFP (ebnf)</td>
<td>77</td>
</tr>
<tr>
<td>DefFormalParameters (ebnf)</td>
<td>77</td>
</tr>
<tr>
<td>DefineBuiltinProcedure (ebnf)</td>
<td>76</td>
</tr>
<tr>
<td>DefineComments</td>
<td>156</td>
</tr>
<tr>
<td>Definition (ebnf)</td>
<td>78</td>
</tr>
<tr>
<td>DefinitionModule (ebnf)</td>
<td>78</td>
</tr>
<tr>
<td>DefMultiFPSection (ebnf)</td>
<td>77</td>
</tr>
<tr>
<td>DefOptArg (ebnf)</td>
<td>78</td>
</tr>
<tr>
<td>DefProcedureHeading (ebnf)</td>
<td>76</td>
</tr>
<tr>
<td>del (const)</td>
<td>80</td>
</tr>
<tr>
<td>Delay</td>
<td>231</td>
</tr>
<tr>
<td>Delete</td>
<td>235, 257, 405</td>
</tr>
<tr>
<td>DeleteIndice</td>
<td>119</td>
</tr>
<tr>
<td>DelKey</td>
<td>339</td>
</tr>
<tr>
<td>DESCRIBOR (type)</td>
<td>265</td>
</tr>
<tr>
<td>Designator (ebnf)</td>
<td>74</td>
</tr>
<tr>
<td>Destroy</td>
<td>383</td>
</tr>
<tr>
<td>Detach</td>
<td>331</td>
</tr>
<tr>
<td>DETACH</td>
<td>279</td>
</tr>
<tr>
<td>DevExceptionRange (type)</td>
<td>303</td>
</tr>
<tr>
<td>DeviceData (type)</td>
<td>302</td>
</tr>
<tr>
<td>DeviceErrNum (type)</td>
<td>299</td>
</tr>
<tr>
<td>DeviceError</td>
<td>299</td>
</tr>
<tr>
<td>DeviceTable (type)</td>
<td>302</td>
</tr>
<tr>
<td>DeviceTablePtr (type)</td>
<td>301</td>
</tr>
<tr>
<td>DeviceTablePtrValue</td>
<td>302</td>
</tr>
<tr>
<td>DeviceType (type)</td>
<td>342</td>
</tr>
<tr>
<td>DIFADR</td>
<td>53, 379</td>
</tr>
<tr>
<td>DisableBreak</td>
<td>224</td>
</tr>
<tr>
<td>DispatchVector (type)</td>
<td>142</td>
</tr>
<tr>
<td>displayProcesses</td>
<td>333</td>
</tr>
<tr>
<td>DISPOSE</td>
<td>11</td>
</tr>
<tr>
<td>dle (const)</td>
<td>80</td>
</tr>
<tr>
<td>doGetErrno</td>
<td>346</td>
</tr>
<tr>
<td>doGetErrno</td>
<td>340</td>
</tr>
<tr>
<td>Doio</td>
<td>239</td>
</tr>
<tr>
<td>doLook</td>
<td>343</td>
</tr>
<tr>
<td>Done (var)</td>
<td>225, 242, 247, 254</td>
</tr>
<tr>
<td>dobytes</td>
<td>340</td>
</tr>
<tr>
<td>doBytes</td>
<td>346</td>
</tr>
<tr>
<td>doreadchar</td>
<td>340</td>
</tr>
<tr>
<td>doReadChar</td>
<td>346</td>
</tr>
<tr>
<td>doReadLocs</td>
<td>343</td>
</tr>
<tr>
<td>doReadText</td>
<td>343</td>
</tr>
<tr>
<td>doSkip</td>
<td>343</td>
</tr>
<tr>
<td>doSkipLook</td>
<td>343</td>
</tr>
<tr>
<td>doUnReadChar</td>
<td>346</td>
</tr>
<tr>
<td>dounreadchar</td>
<td>340</td>
</tr>
<tr>
<td>dowbytes</td>
<td>341</td>
</tr>
<tr>
<td>doBytes</td>
<td>346</td>
</tr>
<tr>
<td>dowBytes</td>
<td>346</td>
</tr>
<tr>
<td>dowteln</td>
<td>343</td>
</tr>
<tr>
<td>dowteln</td>
<td>341</td>
</tr>
<tr>
<td>dowWriteLocs</td>
<td>343</td>
</tr>
<tr>
<td>dowWriteText</td>
<td>343</td>
</tr>
<tr>
<td>dowWriteText</td>
<td>343</td>
</tr>
</tbody>
</table>

Chapter 4: PIM and ISO library definitions 433
dtoa ........................................ 185
dup ...................................... 192
Dup .................................... 95, 133
DupDB .................................. 99
DynamicArraySubscriptException .... 128, 326

E

echo (const) .............................. 281, 412
EchoOff .................................. 116
EchoOn .................................. 115
EHBlock (type) .......................... 138
em (const) ................................ 80
EnableBreak ................................ 224
END (type) ............................... 189, 190, 234, 269
EndPos .................................. 363
eq (const) ................................ 80
Enumeration (ebnf) ...................... 73
eof (const) ................................ 80
EscForEoln ................................ 416
ED ......................................... 105
EDL (const) ............................... 80, 242
EDLN .................................... 105
eot (const) ................................ 80
Equal ..................................... 95, 407
EqualArray ................................ 96
EqualCharStar ............................. 95
ErrChan .................................. 399
Error ..................................... 115, 136
ErrorMessage ............................ 127, 325
e 
esc (const) ............................... 80
etb (const) ................................ 80
etx (const) ................................ 80
EVENT (type) ............................. 275
exception (const) ......................... 316, 318, 320
ExceptionalPart (ebnf) ................ 77
ExceptionNumber (type) ................ 291
ExclException ........................... 128, 326
ExcludeVector ........................... 143
EXCL ..................................... 11
ExecuteInitialProcedures .............. 123, 126, 324
ExecuteTerminationProcedures ...... 123, 126, 323
execv .................................... 198
exists .................................... 104
Exists ................................... 103, 148
exit ....................................... 192
ExitOnHalt ............................... 127, 325
exitP (type) .............................. 190
ExitToOS ................................ 233
exp ........................................ 43, 84, 120, 129, 150, 179, 200, 285, 305, 311, 358, 387, 393
exp1 (const) ............................. 311, 358, 393
exp10 ..................................... 43, 85, 179, 200
exp10f ................................... 43, 85, 179, 200
exp10l ................................... 43, 85, 179, 200
expf ....................................... 43, 84, 179, 200
expl ....................................... 43, 84, 179, 200

ExpList (ebnf) ............................ 75
expoMax (const) .......................... 316, 318, 320
expoMin (const) .......................... 316, 318, 320
exponent .................................. 316, 318, 320
Export (ebnf) ............................. 78
Expression (ebnf) ....................... 75
extend (const) ............................ 316, 318, 320
ExtendedFP (ebnf) ...................... 77
Extract .................................. 405

F

fabs ....................................... 42, 84, 179
fabsf ..................................... 42, 84, 179
fabsl ..................................... 42, 84, 179

Factor (ebnf) ............................. 75
FdClr ..................................... 157
FdIsSet ................................... 157
FdSet ...................................... 157
FDZero .................................... 157
ff (const) ................................ 80
FieldList (ebnf) .......................... 73
FieldListSequence (ebnf) ............... 73
FieldListStatement (ebnf) ............. 73
FieldPragmaExpression (ebnf) ......... 73
File (type) ................................ 102, 234
Fileinode ................................ 209
Filemtime ................................ 209
FileNameChar ............................ 239
FilePos (type) ............................ 363
FilePosSize (const) ...................... 363
filesize .................................. 209
FileVersion (ebnf) ...................... 71

Fin ....................................... 93
FinalBlock (ebnf) ......................... 77
FindDiff .................................. 407
FindNext .................................. 407
FindPosition .............................. 108
FindPrev .................................. 407
finishSpin ............................... 187
Flag (type) ................................ 204, 234
FlagSet (type) ............................ 234, 281, 362, 384, 403, 412

Float ...................................... 240
Float1 .................................... 241
FDAT ..................................... 12
FDATL .................................... 12
FDATS .................................... 12
door ....................................... 200
doorf ..................................... 200
doorl ..................................... 200

Flush ..................................... 298
FlushBuffer ................................ 104
FlushOutErr .............................. 108
FlushProc (type) ......................... 301
ForLoopBeginException .................. 128, 326
ForLoopEndException ..................... 128, 326
ForLoopToException ...................... 128, 326
Chapter 4: PIM and ISO library definitions

FormalParameters (ebnf) . 77
FormalReturnType (ebnf) . 74
FormalType (ebnf) . 78
FormalTypeList (ebnf) . 74
FormatCard . 417
FormatInt . 417
FormatReal . 307, 354, 389
ForStatement (ebnf) . 76
FPSection (ebnf) . 77
Frac . 240
FracVertical . 241
fraction . 316, 318, 320
Fraction (type) . 409
fracpart . 316, 318, 320
frame_address . 47, 88
free . 191
FreeProc (type) . 302
FreeProcedure (type) . 337
fs (const) . 80
ftime . 197

G
GenDevIF (type) . 345
GeneralException . 295
GeneralExceptions (type) . 295
GetArg . 81, 91, 145, 146
GetArgc . 134
GetArgc2 . 177
GetArgv . 134
GetArgv2 . 177
GetBaseExceptionBlock . 141
GetBits . 216, 219
GetCh . 135
GetChar . 208
getClientHostname . 425
getClientIP . 425
gClientPortNo . 424
gClientSocketFd . 425
GetClock . 409
GetColumnPosition . 137
GetCurrentInput . 160
GetCurrentLine . 137
GetCurrentOutput . 160
GetCurrentProcess . 267
gcd . 194
GetData . 337
GetDay . 429
GetDeviceId . 348
GetDevicePtr . 349
getDID . 345
getDST . 430
getenv . 192
GetEnvironment . 101, 147
GetEnvV . 177
gerrno . 186
geterrno (type) . 345
GetErrorCode . 233
GetExceptionBlock . 139
GetExceptionSource . 141
GetExitStatus . 136
GetFile . 349
getFileName . 108
GetFileName . 108
getFileNameLength . 108
GetFlag . 207
GetFractions . 428
GetHour . 429
GetIndice . 118
GetKey . 339
getLocalIP . 202
GetLongOptionArray . 183
GetMessage . 291
GetMinute . 429
GetMonth . 429
GetName . 298
GetNameProc (type) . 301
gnameuuid . 210
GetNextSymbol . 155
GetNumber . 139
GetOpenResults . 293
gopt . 182
GetOpt . 112
getopt_long . 182
gopt_long_only . 182
GetOptLong . 113
GetOptLongOnly . 113
gpid . 192
GetPos . 238
gPushBackChar . 425
getrand . 209
GetSecond . 429
getSizeOfClientInfo . 425
GetSummerTime . 430
GetTextBuffer . 139
GetTextBufferSize . 139
GetTicks . 275
GetTime . 157, 263
GetTimeOfDay . 157
gtimeofday . 428
GetTimeRealtime . 423
GetTimespec . 422
GetTimeString . 176
GetTimeVector . 143
GetUnixFileDescriptor . 107
getusername . 210
GetYear . 429
Group (type) . 339
gs (const) . 80
gUnderflow (const) . 316, 318, 320
Chapter 4: PIM and ISO library definitions

# H

<table>
<thead>
<tr>
<th>Function</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halt</td>
<td>92, 127, 325</td>
</tr>
<tr>
<td>HaltC</td>
<td>127, 325</td>
</tr>
<tr>
<td>HALT</td>
<td>12, 127, 324</td>
</tr>
<tr>
<td>HandleEscape</td>
<td>110</td>
</tr>
<tr>
<td>Handler</td>
<td>332</td>
</tr>
<tr>
<td>HANDLER</td>
<td>279</td>
</tr>
<tr>
<td>HasHalted</td>
<td>325, 411</td>
</tr>
<tr>
<td>HexToStr</td>
<td>131</td>
</tr>
<tr>
<td>HighByte</td>
<td>221</td>
</tr>
<tr>
<td>HighIndec</td>
<td>118</td>
</tr>
<tr>
<td>HighNibble</td>
<td>218</td>
</tr>
<tr>
<td>HIGH</td>
<td>12</td>
</tr>
<tr>
<td>Hour (type)</td>
<td>400</td>
</tr>
<tr>
<td>htons</td>
<td>170</td>
</tr>
<tr>
<td>htonl</td>
<td>169</td>
</tr>
<tr>
<td>ht (const)</td>
<td>80</td>
</tr>
<tr>
<td>huge_val</td>
<td>43, 85</td>
</tr>
<tr>
<td>huge_valf</td>
<td>43, 85</td>
</tr>
<tr>
<td>huge_vall</td>
<td>43, 85</td>
</tr>
</tbody>
</table>

# I

<table>
<thead>
<tr>
<th>Function</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>i (const)</td>
<td>285, 305, 387</td>
</tr>
<tr>
<td>Ident (ebnf)</td>
<td>71</td>
</tr>
<tr>
<td>IdentList (ebnf)</td>
<td>73</td>
</tr>
<tr>
<td>IEC559 (const)</td>
<td>316, 318, 320</td>
</tr>
<tr>
<td>IEEE (const)</td>
<td>316, 318, 320</td>
</tr>
<tr>
<td>IfStatement (ebnf)</td>
<td>75</td>
</tr>
<tr>
<td>ilogb</td>
<td>43, 85, 179</td>
</tr>
<tr>
<td>ilogbf</td>
<td>43, 85, 179</td>
</tr>
<tr>
<td>ilogbl</td>
<td>43, 85, 179</td>
</tr>
<tr>
<td>ImplementationModule (ebnf)</td>
<td>71</td>
</tr>
<tr>
<td>ImplementationOrProgramModule (ebnf)</td>
<td>71</td>
</tr>
<tr>
<td>Import (ebnf)</td>
<td>78</td>
</tr>
<tr>
<td>IM</td>
<td>15</td>
</tr>
<tr>
<td>InBounds</td>
<td>118</td>
</tr>
<tr>
<td>IncException</td>
<td>128, 326</td>
</tr>
<tr>
<td>IncException</td>
<td>128, 326</td>
</tr>
<tr>
<td>IncludeIndeIntoIndex</td>
<td>119</td>
</tr>
<tr>
<td>IncludeVector</td>
<td>143</td>
</tr>
<tr>
<td>INC</td>
<td>13</td>
</tr>
<tr>
<td>InChan</td>
<td>399</td>
</tr>
<tr>
<td>INC1</td>
<td>13</td>
</tr>
<tr>
<td>index</td>
<td>46, 87, 181</td>
</tr>
<tr>
<td>Index</td>
<td>96</td>
</tr>
<tr>
<td>Index (type)</td>
<td>117</td>
</tr>
<tr>
<td>IndexProcedure (type)</td>
<td>117</td>
</tr>
<tr>
<td>IndexStrCmp</td>
<td>134</td>
</tr>
<tr>
<td>IndexStrNCmp</td>
<td>134</td>
</tr>
<tr>
<td>Init</td>
<td>144, 175</td>
</tr>
<tr>
<td>init</td>
<td>335</td>
</tr>
<tr>
<td>InitChanDev</td>
<td>342</td>
</tr>
<tr>
<td>InitChanId</td>
<td>348</td>
</tr>
<tr>
<td>InitData</td>
<td>337</td>
</tr>
<tr>
<td>InitExceptionBlock</td>
<td>139</td>
</tr>
<tr>
<td>InitExceptionHanders</td>
<td>173</td>
</tr>
<tr>
<td>InitGenDevF</td>
<td>345</td>
</tr>
<tr>
<td>InitGroup</td>
<td>339</td>
</tr>
<tr>
<td>InitialBlock (ebnf)</td>
<td>77</td>
</tr>
<tr>
<td>InitIndex</td>
<td>117</td>
</tr>
<tr>
<td>InitIndexTuned</td>
<td>117</td>
</tr>
<tr>
<td>InitInputVector</td>
<td>142</td>
</tr>
<tr>
<td>InitLongOptions</td>
<td>112</td>
</tr>
<tr>
<td>InitOption</td>
<td>133</td>
</tr>
<tr>
<td>InitOptions</td>
<td>183</td>
</tr>
<tr>
<td>InitOutputVector</td>
<td>142</td>
</tr>
<tr>
<td>initPreemptive</td>
<td>329</td>
</tr>
<tr>
<td>InitProcess</td>
<td>265</td>
</tr>
<tr>
<td>InitSemaphore</td>
<td>266</td>
</tr>
<tr>
<td>initSemaphore</td>
<td>335</td>
</tr>
<tr>
<td>InitSet</td>
<td>157</td>
</tr>
<tr>
<td>InitString</td>
<td>93</td>
</tr>
<tr>
<td>InitStringChar</td>
<td>94</td>
</tr>
<tr>
<td>InitStringCharDB</td>
<td>99</td>
</tr>
<tr>
<td>InitStringCharStar</td>
<td>94</td>
</tr>
<tr>
<td>InitStringCharStarDB</td>
<td>99</td>
</tr>
<tr>
<td>InitStringDB</td>
<td>99</td>
</tr>
<tr>
<td>InitTermios</td>
<td>204</td>
</tr>
<tr>
<td>initThread</td>
<td>335</td>
</tr>
<tr>
<td>InitTime</td>
<td>157</td>
</tr>
<tr>
<td>InitTimespec</td>
<td>422</td>
</tr>
<tr>
<td>InitTimeval</td>
<td>427</td>
</tr>
<tr>
<td>InitTimeVector</td>
<td>142</td>
</tr>
<tr>
<td>InitTimezone</td>
<td>427</td>
</tr>
<tr>
<td>InitTM</td>
<td>428</td>
</tr>
<tr>
<td>Insert</td>
<td>257, 405</td>
</tr>
<tr>
<td>InsertCipherLayer</td>
<td>398</td>
</tr>
<tr>
<td>InstallBreak</td>
<td>224</td>
</tr>
<tr>
<td>InstallInitialProcedure</td>
<td>123, 126, 324</td>
</tr>
<tr>
<td>InstallTerminationProcedure</td>
<td>123, 125, 324</td>
</tr>
<tr>
<td>Int</td>
<td>240</td>
</tr>
<tr>
<td>Integer (ebnf)</td>
<td>71</td>
</tr>
<tr>
<td>IntegerToString</td>
<td>166</td>
</tr>
<tr>
<td>interactive (const)</td>
<td>281</td>
</tr>
<tr>
<td>INTERRUPTSOURCE (type)</td>
<td>90, 278</td>
</tr>
<tr>
<td>Int1</td>
<td>241</td>
</tr>
<tr>
<td>intpart</td>
<td>316, 318, 320</td>
</tr>
<tr>
<td>IntToStr</td>
<td>131, 420</td>
</tr>
<tr>
<td>INT</td>
<td>15</td>
</tr>
<tr>
<td>InvalidChan</td>
<td>296</td>
</tr>
<tr>
<td>IIOException</td>
<td>303</td>
</tr>
<tr>
<td>ITRANSFER</td>
<td>270, 278</td>
</tr>
<tr>
<td>IsActive</td>
<td>103</td>
</tr>
<tr>
<td>IsArgPresent</td>
<td>334</td>
</tr>
<tr>
<td>IsAttached</td>
<td>331</td>
</tr>
<tr>
<td>IsATTACHED</td>
<td>279</td>
</tr>
<tr>
<td>isatty</td>
<td>191</td>
</tr>
<tr>
<td>IsChanException</td>
<td>298</td>
</tr>
<tr>
<td>IsCMathException</td>
<td>286, 306, 388</td>
</tr>
<tr>
<td>IsControl</td>
<td>283</td>
</tr>
<tr>
<td>IsCurrentSource</td>
<td>291</td>
</tr>
<tr>
<td>IsDevice</td>
<td>303</td>
</tr>
<tr>
<td>isdst</td>
<td>422</td>
</tr>
<tr>
<td>isEmpty</td>
<td>119</td>
</tr>
<tr>
<td>iseof</td>
<td>341</td>
</tr>
</tbody>
</table>
## Chapter 4: PIM and ISO library definitions

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>iseof (type)</td>
<td>345</td>
</tr>
<tr>
<td>isEOF</td>
<td>347</td>
</tr>
<tr>
<td>isFEOF</td>
<td>341</td>
</tr>
<tr>
<td>isEOLN</td>
<td>345</td>
</tr>
<tr>
<td>isEOLN (type)</td>
<td>347</td>
</tr>
<tr>
<td>iseqlng</td>
<td>44, 86</td>
</tr>
<tr>
<td>iseqlngf</td>
<td>44, 86</td>
</tr>
<tr>
<td>iseqlngl</td>
<td>44, 86</td>
</tr>
<tr>
<td>IsErrnoHard</td>
<td>293</td>
</tr>
<tr>
<td>IsErrnoSoft</td>
<td>293</td>
</tr>
<tr>
<td>iserror</td>
<td>341</td>
</tr>
<tr>
<td>isError</td>
<td>347</td>
</tr>
<tr>
<td>iserror (type)</td>
<td>345</td>
</tr>
<tr>
<td>IsExceptionalExecution</td>
<td>291</td>
</tr>
<tr>
<td>isfinite</td>
<td>42, 84, 178, 210</td>
</tr>
<tr>
<td>isfinitef</td>
<td>42, 84, 179, 210</td>
</tr>
<tr>
<td>isfinite1</td>
<td>42, 84, 179, 210</td>
</tr>
<tr>
<td>IsGeneralException</td>
<td>295</td>
</tr>
<tr>
<td>isgreater</td>
<td>44, 85</td>
</tr>
<tr>
<td>isgreaterequal</td>
<td>44, 85</td>
</tr>
<tr>
<td>isgreaterequalf</td>
<td>44, 85</td>
</tr>
<tr>
<td>isgreaterequal1</td>
<td>44, 85</td>
</tr>
<tr>
<td>isgreaterf</td>
<td>44, 85</td>
</tr>
<tr>
<td>IsIn</td>
<td>339</td>
</tr>
<tr>
<td>IsIndiceInIndex</td>
<td>118</td>
</tr>
<tr>
<td>IsInExceptionState</td>
<td>140</td>
</tr>
<tr>
<td>isinf_sign</td>
<td>44, 86, 179</td>
</tr>
<tr>
<td>isinf_signf</td>
<td>44, 86, 179</td>
</tr>
<tr>
<td>isinf_signl</td>
<td>44, 86, 179</td>
</tr>
<tr>
<td>IsIOException</td>
<td>303</td>
</tr>
<tr>
<td>isless</td>
<td>44, 85</td>
</tr>
<tr>
<td>islessequal</td>
<td>44, 86</td>
</tr>
<tr>
<td>islessequalf</td>
<td>44, 86</td>
</tr>
<tr>
<td>islessequal1</td>
<td>44, 86</td>
</tr>
<tr>
<td>islessf</td>
<td>44, 85</td>
</tr>
<tr>
<td>islessgreater</td>
<td>44, 86</td>
</tr>
<tr>
<td>islessgreaterf</td>
<td>44, 86</td>
</tr>
<tr>
<td>islessgreaterl</td>
<td>44, 86</td>
</tr>
<tr>
<td>islessl</td>
<td>44, 86</td>
</tr>
<tr>
<td>IsLetter</td>
<td>283</td>
</tr>
<tr>
<td>IsLower</td>
<td>283</td>
</tr>
<tr>
<td>IsLowException</td>
<td>317, 319, 321</td>
</tr>
<tr>
<td>IsM2Exception</td>
<td>124, 322</td>
</tr>
<tr>
<td>IsMem</td>
<td>328</td>
</tr>
<tr>
<td>isnan</td>
<td>42, 84, 211</td>
</tr>
<tr>
<td>isnanf</td>
<td>42, 84, 211</td>
</tr>
<tr>
<td>isnan1</td>
<td>42, 84, 211</td>
</tr>
<tr>
<td>IsNoError</td>
<td>102</td>
</tr>
<tr>
<td>isnormal</td>
<td>44, 86</td>
</tr>
<tr>
<td>isnormalf</td>
<td>44, 86</td>
</tr>
<tr>
<td>isnormall</td>
<td>44, 86</td>
</tr>
<tr>
<td>IsNumeric</td>
<td>283</td>
</tr>
<tr>
<td>IS0 (const)</td>
<td>316, 318, 320</td>
</tr>
<tr>
<td>IsProcessesException</td>
<td>332</td>
</tr>
<tr>
<td>IsRConvException</td>
<td>307, 354, 389</td>
</tr>
<tr>
<td>IsRMathException</td>
<td>301, 358, 393</td>
</tr>
<tr>
<td>IsRndFile</td>
<td>363</td>
</tr>
</tbody>
</table>

### K

- KeyPressed                                | 246, 260, 261 |
- KillChanDev                               | 342  |
- KillChanId                                | 348  |
- KillData                                  | 337  |
- KillExceptionBlock                        | 139  |
- KillGenDevIF                              | 347  |
- KillGroup                                 | 339  |
- KillIndex                                 | 117  |
- KillLongOptions                           | 113  |
- KillOption                                | 133  |
- KillOptions                               | 183  |
- KillProcess                               | 265  |
- KillSet                                   | 157  |
- KillString                                | 93   |
- KillTermios                               | 204  |
- KillTime                                  | 157  |
- KillTimespec                              | 422  |
- KillTimeval                               | 427  |
- KillTimezone                              | 427  |
- KillTM                                    | 428  |

### L

- large (const)                             | 316, 318, 320 |
- ldtoa                                     | 188  |
- Length                                    | 94, 127, 238, 258, 326, 405 |
- LengthCard                                | 418  |
- LengthEngReal                             | 307, 354, 389 |
- LengthFixedReal                           | 307, 354, 389 |
- LengthFloatReal                           | 307, 354, 389 |
- LengthInt                                 | 417  |
- LENGTH                                    | 15   |
- if (const)                                | 80   |
- LFLOAT                                    | 13   |
- LI1 (const)                               | 316, 318, 320 |
- Listen                                    | 143  |
- ListenLoop                                | 271, 280 |
- LISTEN                                    | 270, 279 |
Chapter 4: PIM and ISO library definitions

ln ........ 120, 129, 150, 285, 305, 311, 358, 387, 393
localtime ...................... 197
localtime_r .................... 420
LOCSPERBYTE (const) .......... 52, 378
LOCSPERWORD (const) .......... 52, 378
log .................. 43, 84, 179, 200
log10 .................. 43, 84, 179
log10f .................. 43, 84, 179
log10l .................. 43, 84, 179
logf .................. 43, 84, 179, 200
LongCardinalToString .......... 168
LongIntegerToString .......... 167
Longjmp .................. 46, 88, 198
LongOptions (type) .......... 112
LongRealToString .......... 252
LongrealToString .......... 171
Look ..................... 296
LookProc (type) ............. 301
Lookup .................... 235
LoopStatement (ebnf) ........ 76
LowByte .................. 221
Lower ...................... 162
LowIndice ................. 118
LowNibble ................. 218
lseek ...................... 193
LTRUNC ..................... 13

M
M2Exception .................. 124, 322
M2Exceptions (type) ........ 124, 322
MAKEADR ..................... 53, 379
MakeChan .................... 301
MakeModuleId ................ 337
malloc ..................... 191
Mark ........................ 94
MaxFdsPlusOne ............... 157
maxSecondParts (const) ...... 409
MAX .......................... 13
Me .......................... 332
memcmp ..................... 46, 87, 181
MemCopy ..................... 130
memcpy ..................... 46, 87, 178, 195
memmove ..................... 46, 87, 181, 195
memset ..................... 46, 87, 181, 195
MemZero ..................... 130
Min (type) .................. 409
MIN ........................ 13
Mode (type) ................. 185, 188
Modes (type) ............... 316, 318, 320
modf ........................ 43, 85, 179
modff ........................ 43, 85, 179
modf1 ........................ 43, 85, 179
ModuleDeclaration (ebnf) .... 78
ModuleId (type) ............. 337
Month (type) ................ 409
MulOperator (ebnf) .......... 72
Mul .......................... 96
MultDB ........................ 99
MultiFPSSection (ebnf) ...... 77
MyParam ..................... 332

N
nak (const) .................. 80
NamedOperand (ebnf) ......... 78
Narg .......................... 81, 91, 145, 146
NEWCOROUTINE ................. 25, 278
NewPos ...................... 363
NEW .......................... 14
NEWPROCESS .................. 270
nextafter .................... 43, 85, 179
nextafterf ................... 43, 85, 179
nextafterl ................... 43, 85, 179
NextArg ..................... 334
nexttoward ................... 43, 85, 180
nexttowardf .................. 43, 85, 180
nexttowardl .................. 43, 85, 180
NilChanId ................... 348
nl (const) ................... 80
nModes (const) ............... 316, 318, 320
no_argument (const) .......... 112
NoException .................. 128, 326
NoVarFPSSection (ebnf) ..... 77
NoReturnException .......... 128, 326
NormalPart (ebnf) .......... 128, 77
np (const) ................... 80
nul (const) ................... 80
NullChan ..................... 399
Number (ebnf) ................ 71

O
OctToStr ..................... 131
ODD ........................ 14, 16
old (const) ................. 281, 362, 384, 403
one (const) ................. 285, 305, 387
Open ......................... 135, 403, 412
open .......................... 193
OpenAppend .................. 384
OpenClean .................... 362
openForRandom ................ 104
OpenForRandom ............... 103, 149
OpenInput ................... 242
OpenOld ..................... 362
OpenOutput .................. 242
OpenRead ..................... 328, 385
OpenResults (type) ........ 281, 362, 384, 403, 412
OpenSocket .................. 284
OpenSource ................... 155
openToRead .................. 104
OpenToRead .................. 103, 148
OpenToWrite .................. 103, 148
openToWrite ........................................ 104
OpenWrite ...................................... 327, 384
OptArg (ebnf) ...................................... 78
optar (var) ........................................ 182
opterr (var) ........................................ 182
optind (var) ......................................... 182
Option (type) ........................................ 133
optional_argument (const) ................. 112
Options (type) ...................................... 182
optopt (var) .......................................... 182
OptReturnType (ebnf) ......................... 74
osito ............................................... 170
osito ............................................... 170
OutChan ............................................. 399

P
Parameter (type) ...................................... 330
ParameterException ......................... 128, 326
perror ............................................... 193
pi (const) ......................................... 311, 358, 393
places (const) ............................... 316, 318, 320
PointerNilException ....................... 128, 326
PointerType (ebnf) ............................. 74
polarToComplex .................................... 286, 306, 388
PopAllocation ....................................... 100
PopAllocationExemption ..................... 100
PopHandler ......................................... 140
PopInput ........................................... 160
PopOutput .......................................... 159
Pos .................................................... 257
pow .................................................... 200
power ............................................... 285, 305, 311, 358, 387, 393
powf .................................................. 200
powl .................................................. 200
pred ............................................... 316, 318, 320
printf .............................................. 196
Priority (ebnf) .................................... 78
ProcedureBlock (ebnf) ...................... 77
ProcedureDeclaration (ebnf) ............. 76
ProcedureHandler (type) ................. 138
ProcedureHeading (ebnf) ................. 76
ProcedureParameter (ebnf) ............... 74
ProcedureParameters (ebnf) ............. 74
ProcedureType (ebnf) ...................... 74
PROCESS (type) ..................................... 269
ProcessesException ....................... 332
ProcessesExceptions (type) ............. 330
ProcessName ....................................... 267
PROCEPTION (type) .............................. 173
ProcRead (type) ................................. 159
ProcWrite (type) ................................. 159
ProgramModule (ebnf) ..................... 71
PRO .................................................... 279
PROTECTION (type) ......................... 90, 278
Pa ................................................. 267
PtrToInteger (type) ......................... 112
ptrToTN (type) ..................................... 189
PushAllocation ..................................... 100
PushHandler ....................................... 139
PushInput .......................................... 160
PushOutput ........................................ 159
PutCh ............................................... 135
putenv ............................................ 192
PutEnvironment .................................... 101, 147
PutIndice ......................................... 118
PutKey ............................................. 339
PutStr .............................................. 135
PutString ........................................... 135

Q
Qualident (ebnf) ..................................... 71

R
radix (const) ..................................... 316, 318, 320
Raise ............................................... 138
RaiseEOFinLook ................................. 342
RaiseEOFinSkip ............................... 343
RaiseGeneralException ..................... 295
RAISE ............................................. 291
RAISEDevException ............................ 303
rand ............................................... 196
RandomBytes ......................... 249, 350
RandomCard ....................... 249, 351
RandomInit ....................... 249, 350
RandomInt ....................... 249, 350
Randomize ............................ 249, 350
RandomLongCard ...................... 351
RandomLongInt ...................... 351
RandomLongReal ..................... 250, 352
RandomReal ......................... 250, 351
RandomShortCard ................. 351
RandomShortInt ................. 351
RandomShortReal .................. 351
raw (const) .................. 281, 362, 384, 403, 412
RawRead ........................................... 297
RawReadProc (type) ..................... 301
RawWrite .......................................... 297
RawWriteProc (type) ..................... 301
read .............................................. 190
Read .............................................. 115, 159, 243, 246, 259, 261, 353, 369
read (const) ................. 281, 362, 384, 403, 412
ReadAgain ......................................... 261
ReadAny ............................................ 105
ReadBin .......................................... 131
ReadByte .......................................... 236
readbytes (type) ......................... 345
ReadCard .... 131, 244, 315, 368, 374, 377, 397, 419
ReadCardinal .................................... 107, 225
ReadChar .... 106, 236, 375, 414
readchar (type) ......................... 345
ReadCharRaw ..................................... 157
ReadHex ............................................ 131, 225
ReadInt .... 131, 244, 315, 368, 374, 377, 397, 419
Chapter 4: PIM and ISO library definitions

48, 53, 152, 271, 380

43, 85, 180

43, 85, 180

43, 85, 180

43, 85, 180

43, 85, 180

43, 85, 180

43, 85, 180

43, 85, 180

417, 317, 319, 321

307, 354, 389

307, 354, 389

316, 318, 320

141

398

317, 319, 321

157

140

138

141

140

136

349

265

208

208

349

349

349

400

400

308, 314, 361, 396


Reset

328, 385

Reset

332

Reset

238, 298

Reset

301

Reset

234

Reset

265

Reset

75

return_address

ReturnException

ReverseIndex

Rewrite

RE

RIndex

index

RotateException

RotateLeft

RotateRight

RotateRunQueue

RotateVal

Rotate

Round

Round

rounds (const)

rs (const)

S

scalarMult

scalb

scalbf

scalbl

scalbln

scalblnf

scalblnl

scalbn

scalbnf

scalb

scale

ScanCard

ScanClass (type)

ScanInt

ScanReal

ScanState (type)

Sec (type)

SeekEnd

SeekSet

select

Select

SEMAPHORE (type)

SetBits

SetChar

SetClock

SetDebug

SetDeviceId

SetDevicePtr

setenv

SetErrChan

SetErrorCode

SetExceptionBlock

SetExceptionSource

SetExceptionState

SetFile

SetFlag

SetInChan
Chapter 4: PIM and ISO library definitions

<table>
<thead>
<tr>
<th>Function</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>StringToReal</td>
<td>253</td>
</tr>
<tr>
<td>StringToShortCardinal</td>
<td>169</td>
</tr>
<tr>
<td>strlen</td>
<td>46, 88, 181, 194</td>
</tr>
<tr>
<td>StrLen</td>
<td>164</td>
</tr>
<tr>
<td>StrLess</td>
<td>164</td>
</tr>
<tr>
<td>strncat</td>
<td>46, 88, 181</td>
</tr>
<tr>
<td>strncmp</td>
<td>46, 88, 181</td>
</tr>
<tr>
<td>strncpy</td>
<td>46, 88, 181, 194</td>
</tr>
<tr>
<td>strpbrk</td>
<td>46, 88, 181</td>
</tr>
<tr>
<td>strrchr</td>
<td>46, 88, 181</td>
</tr>
<tr>
<td>StrRemoveWhitePrefix</td>
<td>165</td>
</tr>
<tr>
<td>strspn</td>
<td>46, 88, 181</td>
</tr>
<tr>
<td>strstr</td>
<td>209</td>
</tr>
<tr>
<td>StrToBin</td>
<td>132</td>
</tr>
<tr>
<td>StrToBinInt</td>
<td>132</td>
</tr>
<tr>
<td>StrToCard</td>
<td>131, 420</td>
</tr>
<tr>
<td>Strtod</td>
<td>185</td>
</tr>
<tr>
<td>StrToHex</td>
<td>131</td>
</tr>
<tr>
<td>StrToHexInt</td>
<td>132</td>
</tr>
<tr>
<td>StrToInt</td>
<td>131, 420</td>
</tr>
<tr>
<td>strmold</td>
<td>188</td>
</tr>
<tr>
<td>StrToLongInt</td>
<td>111</td>
</tr>
<tr>
<td>StrToLongReal</td>
<td>111</td>
</tr>
<tr>
<td>StrToLowerCase</td>
<td>162</td>
</tr>
<tr>
<td>StrToOct</td>
<td>131</td>
</tr>
<tr>
<td>StrToOctInt</td>
<td>132</td>
</tr>
<tr>
<td>StrToReal</td>
<td>111, 313, 360, 395</td>
</tr>
<tr>
<td>StrToUtcCase</td>
<td>162</td>
</tr>
<tr>
<td>STRUNC</td>
<td>14</td>
</tr>
<tr>
<td>sx (const)</td>
<td>80</td>
</tr>
<tr>
<td>sub (const)</td>
<td>80</td>
</tr>
<tr>
<td>SUBADR</td>
<td>53, 379</td>
</tr>
<tr>
<td>SubDesignator (ebnf)</td>
<td>74</td>
</tr>
<tr>
<td>SubrangeType (ebnf)</td>
<td>73</td>
</tr>
<tr>
<td>succ</td>
<td>316, 318, 320</td>
</tr>
<tr>
<td>suspend</td>
<td>266</td>
</tr>
<tr>
<td>suspendMe</td>
<td>330</td>
</tr>
<tr>
<td>suspendMeAndActivate</td>
<td>331</td>
</tr>
<tr>
<td>Swap</td>
<td>218, 221</td>
</tr>
<tr>
<td>Switch</td>
<td>331</td>
</tr>
<tr>
<td>SwitchCaps</td>
<td>268</td>
</tr>
<tr>
<td>SwitchExceptionState</td>
<td>141</td>
</tr>
<tr>
<td>SwitchLeds</td>
<td>268</td>
</tr>
<tr>
<td>SwitchNum</td>
<td>268</td>
</tr>
<tr>
<td>SwitchScroll</td>
<td>268</td>
</tr>
<tr>
<td>syn (const)</td>
<td>80</td>
</tr>
<tr>
<td>synthesize</td>
<td>317, 319, 321</td>
</tr>
<tr>
<td>system</td>
<td>190</td>
</tr>
</tbody>
</table>

T

- tab (const)          80
- TagIdent (ebnf)      73
- tan                120, 129, 150, 199, 285, 305, 311, 358, 387, 393
- tanf                 199
- tan1                199
- TBITSIZE            49, 54, 152, 272, 380
- tcdrain             206
- tcflowoffi          207
- tcflowoffo          207
- tcflowomi           207
- tcflowono           207
- tcflushi            206
- tcflushio           207
- tcflusho            206
- tcgetattr           205
- tcpClientConnect    203
- tcpClientIP         203
- tcpClientPortNo     203
- tcpClientSocket     203
- tcpClientSocketFd   203
- tcpClientSocketIP   203
- tcpClientState      201
- tcpServerAccept     201
- tcpServerClientIP   202
- tcpServerClientPortNo  202
- tcpServerEstablish  201
- tcpServerEstablishPort  201
- tcpServerIP         202
- tcpServerPortNo     202
- tcpServerSocketFd   202
- tcpServerState      201
- tcdrain             206
- tcseterr            206
- tcsetflog           206
- tcflush             206
- tcsnow              205
- Term (ebnf)         75
- termCH (var)        242
- Terminate           126
- TerminateOnError    155
- TERMIO (type)       204
- text (const)        281, 362, 384, 403, 412
- TextRead            207
- TextReadProc (type) 301
- TextWrite           207
- TextWriteProc (type) 301
- THRIO               49, 54, 152, 272, 380
- TickPerSecond (const) 275
- time                 196
- time_t (type)       189
- timeb (type)        189
- timespec (type)     421
- TimeToString        264
- TimeToZero          264
- Timeval (type)      157
- timeval (type)      427
- timezone            421
Chapter 4: PIM and ISO library definitions 443

W

Wait .................................................... 266, 331
wait .................................................... 335
WaitForIO .............................................. 266
WaitOn ............................................... 276
waitThread .......................................... 335
WarnError .......................................... 136
WarnString ........................................... 136
WasEQLN ............................................. 106
WhileStatement (ebnf) .............................. 76
WholeNonPosDivException ......................... 128, 326
WholeNonPosModException ........................ 128, 326
WholeValueException .............................. 128, 326
WholeZeroDivException ......................... 128, 326
WholeZeroRemException .......................... 128, 326
WithStatement (ebnf) ............................... 76
WORD (type) ........................................ 52, 379
WordAnd .............................................. 219
WordNot .............................................. 220
WordOr ............................................... 220
WordShl .............................................. 220
WordShr .............................................. 220
WordRol .............................................. 220
WordShl .............................................. 220
WordShr .............................................. 220
WordRol .............................................. 220
WordShl .............................................. 220
Write ................................................. 115, 159, 232, 243, 260, 262, 353, 369
write ............................................... 190
write (const) ...................................... 281, 362, 374, 377, 397
writeByte .......................................... 412
WriteAny ............................................. 105
WriteBin ............................................. 131
WriteByte .......................................... 236
writebytes (type) .................................. 345
WriteCard ............................................ 131, 244, 315, 368, 374, 377, 397, 419
WriteCardinal ..................................... 107, 225
WriteChar .......................................... 105, 236, 375, 415
WriteCharRaw ...................................... 157
WriteEng ............................................ 309, 356, 366, 370, 372, 391
WriteError .......................................... 155
writeFieldWidth ................................... 404
WriteFixed .......................................... 309, 356, 366, 370, 372, 391
WriteFloat ......................................... 309, 356, 366, 370, 372, 391
WriteHex ............................................ 131, 226, 245
WriteInt ............................................. 131, 244, 315, 368, 374, 377, 397, 419
WriteLine .......................................... 106
WriteLn .............................................. 163, 243, 262, 297, 376, 415
writeln (type) .................................... 345
WriteLnProc (type) ................................ 301
WriteLongCardinal ................................ 226
WriteLongHex ....................................... 226
WriteLongInt ....................................... 111, 247
WriteLongReal ..................................... 111, 255
WriteLongReal1Oct ................................ 255
WriteNBytes ....................................... 105, 237
WriteOct ............................................ 131, 244
WriteOnly .......................................... 212
WriteProcedure (type) ............................. 259
WriteReal ......................................... 111, 254, 310, 357, 366, 370, 372, 392
<table>
<thead>
<tr>
<th>Function</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>WriteRealOct</td>
<td>255</td>
</tr>
<tr>
<td>WriteS</td>
<td>149, 245</td>
</tr>
<tr>
<td>WriteShortCardinal</td>
<td>226</td>
</tr>
<tr>
<td>WriteShortHex</td>
<td>227</td>
</tr>
<tr>
<td>WriteShortReal</td>
<td>255</td>
</tr>
<tr>
<td>WriteShortRealOct</td>
<td>256</td>
</tr>
<tr>
<td>writeString</td>
<td>404</td>
</tr>
<tr>
<td>WriteString</td>
<td>106, 163, 243, 262, 376, 415</td>
</tr>
<tr>
<td>writev</td>
<td>193</td>
</tr>
<tr>
<td>WriteWord</td>
<td>236</td>
</tr>
</tbody>
</table>

Z

zero (const)          | 285, 305, 387 |
Short Contents

1 Overview of GNU Modula-2 .................................. 1
2 Using GNU Modula-2 ........................................... 3
GNU General Public License ................................. 59
3 EBNF of GNU Modula-2 ...................................... 71
4 PIM and ISO library definitions ......................... 80
# Table of Contents

1 Overview of GNU Modula-2 ........................................ 1
   1.1 What is GNU Modula-2 ........................................ 1
   1.2 Why use GNU Modula-2 ........................................ 1
   1.3 How to get source code using git ............................ 1
   1.4 GNU Modula-2 Features ....................................... 2

2 Using GNU Modula-2 ............................................. 3
   2.1 Example compile and link ...................................... 3
   2.2 Compiler options ............................................ 3
   2.3 Elementary data types ....................................... 9
   2.4 Permanently accessible base procedures .................... 10
      2.4.1 Standard procedures and functions common to PIM and ISO . 10
      2.4.2 ISO specific standard procedures and functions ........... 15
   2.5 Behavior of the high procedure function ................... 16
   2.6 GNU Modula-2 supported dialects ............................ 18
      2.6.1 Integer division, remainder and modulus ................ 18
   2.7 Exception implementation .................................... 19
   2.8 How to detect run time problems at compile time ........... 19
   2.9 GNU Modula-2 language extensions ........................... 22
      2.9.1 Optional procedure parameter ............................ 25
   2.10 Type compatibility .......................................... 25
      2.10.1 Expression compatibility ................................. 27
      2.10.2 Assignment compatibility ................................ 27
      2.10.3 Parameter compatibility .................................. 28
   2.11 Unbounded by reference ...................................... 28
   2.12 Building a shared library ................................... 30
   2.13 How to produce swig interface files ......................... 30
      2.13.1 Limitations of automatic generated of Swig files ....... 31
   2.14 How to produce a Python module ............................. 32
   2.15 Interfacing GNU Modula-2 to C ............................... 35
   2.16 Interface to assembly language .............................. 37
   2.17 Data type alignment ......................................... 37
   2.18 Packing data types .......................................... 39
   2.19 Accessing GNU Modula-2 Built-ins ........................... 41
   2.20 The PIM system module ....................................... 47
   2.21 The ISO system module ...................................... 51
   2.22 Release map .................................................. 56
   2.23 Documentation .............................................. 56
   2.24 Regression tests for gm2 in the repository ................ 56
   2.25 Limitations .................................................. 57
   2.26 Objectives .................................................. 57
   2.27 FAQ .......................................................... 57
2.27.1 Why use the C++ exception mechanism in GCC, rather than a bespoke Modula-2 mechanism? .................. 57
2.28 Community ......................................................... 57
2.29 Other languages for GCC ........................................ 57
2.30 License of GNU Modula-2 ....................................... 58

GNU General Public License ......................... 59
Contributing to GNU Modula-2 ......................... 69

3 EBNF of GNU Modula-2 .......................... 71

4 PIM and ISO library definitions ............... 80

4.1 Base libraries ...................................................... 80
4.1.1 gm2-libs/ASCII ........................................... 80
4.1.2 gm2-libs/Args ........................................ 81
4.1.3 gm2-libs/Assertion ....................................... 82
4.1.4 gm2-libs/Break ........................................ 83
4.1.5 gm2-libs/Builtins ......................................... 84
4.1.6 gm2-libs/COROUTINES .................................. 90
4.1.7 gm2-libs/CmdArgs ..................................... 91
4.1.8 gm2-libs/Debug ........................................ 92
4.1.9 gm2-libs/DynamicStrings ................................. 93
4.1.10 gm2-libs/Environment ................................. 101
4.1.11 gm2-libs/FIO ........................................ 102
4.1.12 gm2-libs/FormatStrings ............................... 109
4.1.13 gm2-libs/FpuIO ......................................... 111
4.1.14 gm2-libs/GetOpt ....................................... 112
4.1.15 gm2-libs/IO ............................................... 115
4.1.16 gm2-libs/Indexing .................................. 117
4.1.17 gm2-libs/LMathLib0 .................................. 120
4.1.18 gm2-libs/LegacyReal ................................. 121
4.1.19 gm2-libs/M2Dependent ................................. 122
4.1.20 gm2-libs/M2EXCEPTION ................................ 124
4.1.21 gm2-libs/M2RTS ......................................... 125
4.1.22 gm2-libs/MathLib0 ..................................... 129
4.1.23 gm2-libs/MemUtils .................................... 130
4.1.24 gm2-libs/NumberIO .................................... 131
4.1.25 gm2-libs/OptLib ....................................... 133
4.1.26 gm2-libs/PushBackInput ............................... 135
4.1.27 gm2-libs/RTExceptions ............................... 138
4.1.28 gm2-libs/RTint ........................................ 142
4.1.29 gm2-libs/SArgs ....................................... 145
4.1.30 gm2-libs/SCmdArgs ................................... 146
4.1.31 gm2-libs/SEnvironment ............................... 147
4.1.32 gm2-libs/SFIO .......................................... 148
### PIM and Logitech 3.0 Compatible

<table>
<thead>
<tr>
<th>Section</th>
<th>Directory Path</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.33</td>
<td>gm2-libs/SMathLib0</td>
<td>150</td>
</tr>
<tr>
<td>4.1.34</td>
<td>gm2-libs/SYSTEM</td>
<td>151</td>
</tr>
<tr>
<td>4.1.35</td>
<td>gm2-libs/Scan</td>
<td>155</td>
</tr>
<tr>
<td>4.1.36</td>
<td>gm2-libs/Selective</td>
<td>157</td>
</tr>
<tr>
<td>4.1.37</td>
<td>gm2-libs/StdIO</td>
<td>159</td>
</tr>
<tr>
<td>4.1.38</td>
<td>gm2-libs/Storage</td>
<td>161</td>
</tr>
<tr>
<td>4.1.39</td>
<td>gm2-libs/StrCase</td>
<td>162</td>
</tr>
<tr>
<td>4.1.40</td>
<td>gm2-libs/StrIO</td>
<td>163</td>
</tr>
<tr>
<td>4.1.41</td>
<td>gm2-libs/StrLib</td>
<td>164</td>
</tr>
<tr>
<td>4.1.42</td>
<td>gm2-libs/StringConvert</td>
<td>166</td>
</tr>
<tr>
<td>4.1.43</td>
<td>gm2-libs/SysExceptions</td>
<td>173</td>
</tr>
<tr>
<td>4.1.44</td>
<td>gm2-libs/SysStorage</td>
<td>174</td>
</tr>
<tr>
<td>4.1.45</td>
<td>gm2-libs/TimeString</td>
<td>176</td>
</tr>
<tr>
<td>4.1.46</td>
<td>gm2-libs/UnixArgs</td>
<td>177</td>
</tr>
<tr>
<td>4.1.47</td>
<td>gm2-libs/cbuiltn</td>
<td>178</td>
</tr>
<tr>
<td>4.1.48</td>
<td>gm2-libs/cgetopt</td>
<td>182</td>
</tr>
<tr>
<td>4.1.49</td>
<td>gm2-libs/cxxabi</td>
<td>184</td>
</tr>
<tr>
<td>4.1.50</td>
<td>gm2-libs/dtoa</td>
<td>185</td>
</tr>
<tr>
<td>4.1.51</td>
<td>gm2-libs/errno</td>
<td>186</td>
</tr>
<tr>
<td>4.1.52</td>
<td>gm2-libs/gdbif</td>
<td>187</td>
</tr>
<tr>
<td>4.1.53</td>
<td>gm2-libs/ldtoa</td>
<td>188</td>
</tr>
<tr>
<td>4.1.54</td>
<td>gm2-libs/libc</td>
<td>189</td>
</tr>
<tr>
<td>4.1.55</td>
<td>gm2-libs/libm</td>
<td>199</td>
</tr>
<tr>
<td>4.1.56</td>
<td>gm2-libs/sckt</td>
<td>201</td>
</tr>
<tr>
<td>4.1.57</td>
<td>gm2-libs/termios</td>
<td>204</td>
</tr>
<tr>
<td>4.1.58</td>
<td>gm2-libs/wrapc</td>
<td>209</td>
</tr>
<tr>
<td>4.2.1</td>
<td>gm2-libs-log/BitBlockOps</td>
<td>213</td>
</tr>
<tr>
<td>4.2.2</td>
<td>gm2-libs-log/BitByteOps</td>
<td>216</td>
</tr>
<tr>
<td>4.2.3</td>
<td>gm2-libs-log/BitWordOps</td>
<td>219</td>
</tr>
<tr>
<td>4.2.4</td>
<td>gm2-libs-log/BlockOps</td>
<td>222</td>
</tr>
<tr>
<td>4.2.5</td>
<td>gm2-libs-log/Break</td>
<td>224</td>
</tr>
<tr>
<td>4.2.6</td>
<td>gm2-libs-log/CardinalIO</td>
<td>225</td>
</tr>
<tr>
<td>4.2.7</td>
<td>gm2-libs-log/Conversions</td>
<td>228</td>
</tr>
<tr>
<td>4.2.8</td>
<td>gm2-libs-log/DebugPMD</td>
<td>229</td>
</tr>
<tr>
<td>4.2.9</td>
<td>gm2-libs-log/DebugTrace</td>
<td>230</td>
</tr>
<tr>
<td>4.2.10</td>
<td>gm2-libs-log/Delay</td>
<td>231</td>
</tr>
<tr>
<td>4.2.11</td>
<td>gm2-libs-log/Display</td>
<td>232</td>
</tr>
<tr>
<td>4.2.12</td>
<td>gm2-libs-log/ErrorCode</td>
<td>233</td>
</tr>
<tr>
<td>4.2.13</td>
<td>gm2-libs-log/FileSystem</td>
<td>234</td>
</tr>
<tr>
<td>4.2.14</td>
<td>gm2-libs-log/FloatingUtilities</td>
<td>240</td>
</tr>
<tr>
<td>4.2.15</td>
<td>gm2-libs-log/InOut</td>
<td>242</td>
</tr>
<tr>
<td>4.2.16</td>
<td>gm2-libs-log/Keyboard</td>
<td>246</td>
</tr>
<tr>
<td>4.2.17</td>
<td>gm2-libs-log/LongIO</td>
<td>247</td>
</tr>
<tr>
<td>4.2.18</td>
<td>gm2-libs-log/NumberConversion</td>
<td>248</td>
</tr>
<tr>
<td>4.2.19</td>
<td>gm2-libs-log/Random</td>
<td>249</td>
</tr>
<tr>
<td>4.2.20</td>
<td>gm2-libs-log/RealConversions</td>
<td>251</td>
</tr>
</tbody>
</table>
4.2.21 gm2-libs-log/RealInOut ........................................ 254
4.2.22 gm2-libs-log/Strings ............................................. 257
4.2.23 gm2-libs-log/Termbase ........................................... 259
4.2.24 gm2-libs-log/Terminal ............................................ 261
4.2.25 gm2-libs-log/TimeDate ............................................ 263

4.3 PIM coroutine support ............................................ 265
4.3.1 gm2-libs-coroutines/Executive ................................. 265
4.3.2 gm2-libs-coroutines/KeyBoardLEDs ............................... 268
4.3.3 gm2-libs-coroutines/SYSTEM ...................................... 269
4.3.4 gm2-libs-coroutines/TimerHandler ............................... 275

4.4 M2 ISO Libraries .................................................. 277
4.4.1 gm2-libs-iso/COROUTINES ..................................... 278
4.4.2 gm2-libs-iso/ChanConsts ........................................ 281
4.4.3 gm2-libs-iso/CharClass .......................................... 283
4.4.4 gm2-libs-iso/ClientSocket ........................................ 284
4.4.5 gm2-libs-iso/ComplexMath ....................................... 285
4.4.6 gm2-libs-iso/ConvStringLong .................................... 287
4.4.7 gm2-libs-iso/ConvStringReal .................................... 288
4.4.8 gm2-libs-iso/ConvStringShort ................................... 289
4.4.9 gm2-libs-iso/ConvTypes .......................................... 290
4.4.10 gm2-libs-iso/EXCEPTIONS ....................................... 291
4.4.11 gm2-libs-iso/ErrnoCategory ..................................... 293
4.4.12 gm2-libs-iso/GeneralUserExceptions ............................ 295
4.4.13 gm2-libs-iso/IOChan ............................................. 296
4.4.14 gm2-libs-iso/IOConsts ........................................... 300
4.4.15 gm2-libs-iso/IOLink ............................................. 301
4.4.16 gm2-libs-iso/IOResult ........................................... 304
4.4.17 gm2-libs-iso/LongComplexMath ............................... 305
4.4.18 gm2-libs-iso/LongConv .......................................... 307
4.4.19 gm2-libs-iso/LongIO ............................................. 309
4.4.20 gm2-libs-iso/LongMath .......................................... 311
4.4.21 gm2-libs-iso/LongStr ............................................ 313
4.4.22 gm2-libs-iso/LongWholeIO ..................................... 315
4.4.23 gm2-libs-iso/LowLong ........................................... 316
4.4.24 gm2-libs-iso/LowReal ........................................... 318
4.4.25 gm2-libs-iso/LowShort .......................................... 320
4.4.26 gm2-libs-iso/M2EXCEPTION ..................................... 322
4.4.27 gm2-libs-iso/M2RTS ............................................. 323
4.4.28 gm2-libs-iso/MemStream ......................................... 327
4.4.29 gm2-libs-iso/Preemptive ......................................... 329
4.4.30 gm2-libs-iso/Processes ......................................... 330
4.4.31 gm2-libs-iso/ProgramArgs ....................................... 334
4.4.32 gm2-libs-iso/RTco ............................................... 335
4.4.33 gm2-libs-iso/RTdata ............................................. 337
4.4.34 gm2-libs-iso/RTentity ........................................... 339
4.4.35 gm2-libs-iso/RTfio ............................................. 340
4.4.36 gm2-libs-iso/RTgen ............................................. 342
4.4.37 gm2-libs-iso/RTgenif ................................. 345
4.4.38 gm2-libs-iso/RTio ........................................ 348
4.4.39 gm2-libs-iso/RandomNumber ................................. 350
4.4.40 gm2-libs-iso/RawIO ........................................ 353
4.4.41 gm2-libs-iso/RealConv ................................. 354
4.4.42 gm2-libs-iso/RealIO ........................................ 356
4.4.43 gm2-libs-iso/RealMath ................................. 358
4.4.44 gm2-libs-iso/RealStr ................................. 360
4.4.45 gm2-libs-iso/RndFile ................................. 362
4.4.46 gm2-libs-iso/SIOResult ................................. 365
4.4.47 gm2-libs-iso/SLongIO ................................. 366
4.4.48 gm2-libs-iso/SLongWholeIO ................................. 368
4.4.49 gm2-libs-iso/SRawIO ................................. 369
4.4.50 gm2-libs-iso/SRealIO ................................. 370
4.4.51 gm2-libs-iso/SShortIO ................................. 372
4.4.52 gm2-libs-iso/SShortWholeIO ................................. 374
4.4.53 gm2-libs-iso/STextIO ................................. 375
4.4.54 gm2-libs-iso/SWholeIO ................................. 377
4.4.55 gm2-libs-iso/SYSTEM ................................. 378
4.4.56 gm2-libs-iso/Semaphores ................................. 383
4.4.57 gm2-libs-iso/SeqFile ................................. 384
4.4.58 gm2-libs-iso/ShortComplexMath ................................. 387
4.4.59 gm2-libs-iso/ShortConv ................................. 389
4.4.60 gm2-libs-iso/ShortIO ................................. 391
4.4.61 gm2-libs-iso/ShortMath ................................. 393
4.4.62 gm2-libs-iso/ShortStr ................................. 395
4.4.63 gm2-libs-iso/ShortWholeIO ................................. 397
4.4.64 gm2-libs-iso/SimpleCipher ................................. 398
4.4.65 gm2-libs-iso/StdChans ................................. 399
4.4.66 gm2-libs-iso/Storage ................................. 401
4.4.67 gm2-libs-iso/StreamFile ................................. 403
4.4.68 gm2-libs-iso/StringChan ................................. 404
4.4.69 gm2-libs-iso/Strings ................................. 405
4.4.70 gm2-libs-iso/SysClock ................................. 409
4.4.71 gm2-libs-iso/TERMINATION ................................. 411
4.4.72 gm2-libs-iso/TermFile ................................. 412
4.4.73 gm2-libs-iso/TextIO ................................. 414
4.4.74 gm2-libs-iso/TextUtil ................................. 416
4.4.75 gm2-libs-iso/WholeConv ................................. 417
4.4.76 gm2-libs-iso/WholeIO ................................. 419
4.4.77 gm2-libs-iso/WholeStr ................................. 420
4.4.78 gm2-libs-iso/wrapclock ................................. 421
4.4.79 gm2-libs-iso/wrapsock ................................. 424
4.4.80 gm2-libs-iso/wraptime ................................. 427
4.5 Indices ............................................... 431