Next: , Previous: , Up: Invoking GCC   [Contents][Index]


3.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ programs. You can also use most of the GNU compiler options regardless of what language your program is in. For example, you might compile a file firstClass.C like this:

g++ -g -fstrict-enums -O -c firstClass.C

In this example, only -fstrict-enums is an option meant only for C++ programs; you can use the other options with any language supported by GCC.

Some options for compiling C programs, such as -std, are also relevant for C++ programs. See Options Controlling C Dialect.

Here is a list of options that are only for compiling C++ programs:

-fabi-version=n

Use version n of the C++ ABI. The default is version 0.

Version 0 refers to the version conforming most closely to the C++ ABI specification. Therefore, the ABI obtained using version 0 will change in different versions of G++ as ABI bugs are fixed.

Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.

Version 2 is the version of the C++ ABI that first appeared in G++ 3.4, and was the default through G++ 4.9.

Version 3 corrects an error in mangling a constant address as a template argument.

Version 4, which first appeared in G++ 4.5, implements a standard mangling for vector types.

Version 5, which first appeared in G++ 4.6, corrects the mangling of attribute const/volatile on function pointer types, decltype of a plain decl, and use of a function parameter in the declaration of another parameter.

Version 6, which first appeared in G++ 4.7, corrects the promotion behavior of C++11 scoped enums and the mangling of template argument packs, const/static_cast, prefix ++ and –, and a class scope function used as a template argument.

Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a builtin type and corrects the mangling of lambdas in default argument scope.

Version 8, which first appeared in G++ 4.9, corrects the substitution behavior of function types with function-cv-qualifiers.

Version 9, which first appeared in G++ 5.2, corrects the alignment of nullptr_t.

Version 10, which first appeared in G++ 6.1, adds mangling of attributes that affect type identity, such as ia32 calling convention attributes (e.g. ‘stdcall’).

Version 11, which first appeared in G++ 7, corrects the mangling of sizeof... expressions and operator names. For multiple entities with the same name within a function, that are declared in different scopes, the mangling now changes starting with the twelfth occurrence. It also implies -fnew-inheriting-ctors.

Version 12, which first appeared in G++ 8, corrects the calling conventions for empty classes on the x86_64 target and for classes with only deleted copy/move constructors. It accidentally changes the calling convention for classes with a deleted copy constructor and a trivial move constructor.

Version 13, which first appeared in G++ 8.2, fixes the accidental change in version 12.

Version 14, which first appeared in G++ 10, corrects the mangling of the nullptr expression.

Version 15, which first appeared in G++ 11, changes the mangling of __alignof__ to be distinct from that of alignof, and dependent operator names.

See also -Wabi.

-fabi-compat-version=n

On targets that support strong aliases, G++ works around mangling changes by creating an alias with the correct mangled name when defining a symbol with an incorrect mangled name. This switch specifies which ABI version to use for the alias.

With -fabi-version=0 (the default), this defaults to 11 (GCC 7 compatibility). If another ABI version is explicitly selected, this defaults to 0. For compatibility with GCC versions 3.2 through 4.9, use -fabi-compat-version=2.

If this option is not provided but -Wabi=n is, that version is used for compatibility aliases. If this option is provided along with -Wabi (without the version), the version from this option is used for the warning.

-fno-access-control

Turn off all access checking. This switch is mainly useful for working around bugs in the access control code.

-faligned-new

Enable support for C++17 new of types that require more alignment than void* ::operator new(std::size_t) provides. A numeric argument such as -faligned-new=32 can be used to specify how much alignment (in bytes) is provided by that function, but few users will need to override the default of alignof(std::max_align_t).

This flag is enabled by default for -std=c++17.

-fchar8_t
-fno-char8_t

Enable support for char8_t as adopted for C++20. This includes the addition of a new char8_t fundamental type, changes to the types of UTF-8 string and character literals, new signatures for user-defined literals, associated standard library updates, and new __cpp_char8_t and __cpp_lib_char8_t feature test macros.

This option enables functions to be overloaded for ordinary and UTF-8 strings:

int f(const char *);    // #1
int f(const char8_t *); // #2
int v1 = f("text");     // Calls #1
int v2 = f(u8"text");   // Calls #2

and introduces new signatures for user-defined literals:

int operator""_udl1(char8_t);
int v3 = u8'x'_udl1;
int operator""_udl2(const char8_t*, std::size_t);
int v4 = u8"text"_udl2;
template<typename T, T...> int operator""_udl3();
int v5 = u8"text"_udl3;

The change to the types of UTF-8 string and character literals introduces incompatibilities with ISO C++11 and later standards. For example, the following code is well-formed under ISO C++11, but is ill-formed when -fchar8_t is specified.

char ca[] = u8"xx";     // error: char-array initialized from wide
                        //        string
const char *cp = u8"xx";// error: invalid conversion from
                        //        `const char8_t*' to `const char*'
int f(const char*);
auto v = f(u8"xx");     // error: invalid conversion from
                        //        `const char8_t*' to `const char*'
std::string s{u8"xx"};  // error: no matching function for call to
                        //        `std::basic_string<char>::basic_string()'
using namespace std::literals;
s = u8"xx"s;            // error: conversion from
                        //        `basic_string<char8_t>' to non-scalar
                        //        type `basic_string<char>' requested
-fcheck-new

Check that the pointer returned by operator new is non-null before attempting to modify the storage allocated. This check is normally unnecessary because the C++ standard specifies that operator new only returns 0 if it is declared throw(), in which case the compiler always checks the return value even without this option. In all other cases, when operator new has a non-empty exception specification, memory exhaustion is signalled by throwing std::bad_alloc. See also ‘new (nothrow)’.

-fconcepts
-fconcepts-ts

Below -std=c++20, -fconcepts enables support for the C++ Extensions for Concepts Technical Specification, ISO 19217 (2015).

With -std=c++20 and above, Concepts are part of the language standard, so -fconcepts defaults to on. But the standard specification of Concepts differs significantly from the TS, so some constructs that were allowed in the TS but didn’t make it into the standard can still be enabled by -fconcepts-ts.

-fconstexpr-depth=n

Set the maximum nested evaluation depth for C++11 constexpr functions to n. A limit is needed to detect endless recursion during constant expression evaluation. The minimum specified by the standard is 512.

-fconstexpr-cache-depth=n

Set the maximum level of nested evaluation depth for C++11 constexpr functions that will be cached to n. This is a heuristic that trades off compilation speed (when the cache avoids repeated calculations) against memory consumption (when the cache grows very large from highly recursive evaluations). The default is 8. Very few users are likely to want to adjust it, but if your code does heavy constexpr calculations you might want to experiment to find which value works best for you.

-fconstexpr-fp-except

Annex F of the C standard specifies that IEC559 floating point exceptions encountered at compile time should not stop compilation. C++ compilers have historically not followed this guidance, instead treating floating point division by zero as non-constant even though it has a well defined value. This flag tells the compiler to give Annex F priority over other rules saying that a particular operation is undefined.

constexpr float inf = 1./0.; // OK with -fconstexpr-fp-except
-fconstexpr-loop-limit=n

Set the maximum number of iterations for a loop in C++14 constexpr functions to n. A limit is needed to detect infinite loops during constant expression evaluation. The default is 262144 (1<<18).

-fconstexpr-ops-limit=n

Set the maximum number of operations during a single constexpr evaluation. Even when number of iterations of a single loop is limited with the above limit, if there are several nested loops and each of them has many iterations but still smaller than the above limit, or if in a body of some loop or even outside of a loop too many expressions need to be evaluated, the resulting constexpr evaluation might take too long. The default is 33554432 (1<<25).

-fcoroutines

Enable support for the C++ coroutines extension (experimental).

-fno-elide-constructors

The C++ standard allows an implementation to omit creating a temporary that is only used to initialize another object of the same type. Specifying this option disables that optimization, and forces G++ to call the copy constructor in all cases. This option also causes G++ to call trivial member functions which otherwise would be expanded inline.

In C++17, the compiler is required to omit these temporaries, but this option still affects trivial member functions.

-fno-enforce-eh-specs

Don’t generate code to check for violation of exception specifications at run time. This option violates the C++ standard, but may be useful for reducing code size in production builds, much like defining NDEBUG. This does not give user code permission to throw exceptions in violation of the exception specifications; the compiler still optimizes based on the specifications, so throwing an unexpected exception results in undefined behavior at run time.

-fextern-tls-init
-fno-extern-tls-init

The C++11 and OpenMP standards allow thread_local and threadprivate variables to have dynamic (runtime) initialization. To support this, any use of such a variable goes through a wrapper function that performs any necessary initialization. When the use and definition of the variable are in the same translation unit, this overhead can be optimized away, but when the use is in a different translation unit there is significant overhead even if the variable doesn’t actually need dynamic initialization. If the programmer can be sure that no use of the variable in a non-defining TU needs to trigger dynamic initialization (either because the variable is statically initialized, or a use of the variable in the defining TU will be executed before any uses in another TU), they can avoid this overhead with the -fno-extern-tls-init option.

On targets that support symbol aliases, the default is -fextern-tls-init. On targets that do not support symbol aliases, the default is -fno-extern-tls-init.

-ffold-simple-inlines
-fno-fold-simple-inlines

Permit the C++ frontend to fold calls to std::move, std::forward, std::addressof and std::as_const. In contrast to inlining, this means no debug information will be generated for such calls. Since these functions are rarely interesting to debug, this flag is enabled by default unless -fno-inline is active.

-fno-gnu-keywords

Do not recognize typeof as a keyword, so that code can use this word as an identifier. You can use the keyword __typeof__ instead. This option is implied by the strict ISO C++ dialects: -ansi, -std=c++98, -std=c++11, etc.

-fimplicit-constexpr

Make inline functions implicitly constexpr, if they satisfy the requirements for a constexpr function. This option can be used in C++14 mode or later. This can result in initialization changing from dynamic to static and other optimizations.

-fno-implicit-templates

Never emit code for non-inline templates that are instantiated implicitly (i.e. by use); only emit code for explicit instantiations. If you use this option, you must take care to structure your code to include all the necessary explicit instantiations to avoid getting undefined symbols at link time. See Template Instantiation, for more information.

-fno-implicit-inline-templates

Don’t emit code for implicit instantiations of inline templates, either. The default is to handle inlines differently so that compiles with and without optimization need the same set of explicit instantiations.

-fno-implement-inlines

To save space, do not emit out-of-line copies of inline functions controlled by #pragma implementation. This causes linker errors if these functions are not inlined everywhere they are called.

-fmodules-ts
-fno-modules-ts

Enable support for C++20 modules (see C++ Modules). The -fno-modules-ts is usually not needed, as that is the default. Even though this is a C++20 feature, it is not currently implicitly enabled by selecting that standard version.

-fmodule-header
-fmodule-header=user
-fmodule-header=system

Compile a header file to create an importable header unit.

-fmodule-implicit-inline

Member functions defined in their class definitions are not implicitly inline for modular code. This is different to traditional C++ behavior, for good reasons. However, it may result in a difficulty during code porting. This option makes such function definitions implicitly inline. It does however generate an ABI incompatibility, so you must use it everywhere or nowhere. (Such definitions outside of a named module remain implicitly inline, regardless.)

-fno-module-lazy

Disable lazy module importing and module mapper creation.

-fmodule-mapper=[hostname]:port[?ident]
-fmodule-mapper=|program[?ident] args...
-fmodule-mapper==socket[?ident]
-fmodule-mapper=<>[inout][?ident]
-fmodule-mapper=<in>out[?ident]
-fmodule-mapper=file[?ident]

An oracle to query for module name to filename mappings. If unspecified the CXX_MODULE_MAPPER environment variable is used, and if that is unset, an in-process default is provided.

-fmodule-only

Only emit the Compiled Module Interface, inhibiting any object file.

-fms-extensions

Disable Wpedantic warnings about constructs used in MFC, such as implicit int and getting a pointer to member function via non-standard syntax.

-fnew-inheriting-ctors

Enable the P0136 adjustment to the semantics of C++11 constructor inheritance. This is part of C++17 but also considered to be a Defect Report against C++11 and C++14. This flag is enabled by default unless -fabi-version=10 or lower is specified.

-fnew-ttp-matching

Enable the P0522 resolution to Core issue 150, template template parameters and default arguments: this allows a template with default template arguments as an argument for a template template parameter with fewer template parameters. This flag is enabled by default for -std=c++17.

-fno-nonansi-builtins

Disable built-in declarations of functions that are not mandated by ANSI/ISO C. These include ffs, alloca, _exit, index, bzero, conjf, and other related functions.

-fnothrow-opt

Treat a throw() exception specification as if it were a noexcept specification to reduce or eliminate the text size overhead relative to a function with no exception specification. If the function has local variables of types with non-trivial destructors, the exception specification actually makes the function smaller because the EH cleanups for those variables can be optimized away. The semantic effect is that an exception thrown out of a function with such an exception specification results in a call to terminate rather than unexpected.

-fno-operator-names

Do not treat the operator name keywords and, bitand, bitor, compl, not, or and xor as synonyms as keywords.

-fno-optional-diags

Disable diagnostics that the standard says a compiler does not need to issue. Currently, the only such diagnostic issued by G++ is the one for a name having multiple meanings within a class.

-fpermissive

Downgrade some diagnostics about nonconformant code from errors to warnings. Thus, using -fpermissive allows some nonconforming code to compile.

-fno-pretty-templates

When an error message refers to a specialization of a function template, the compiler normally prints the signature of the template followed by the template arguments and any typedefs or typenames in the signature (e.g. void f(T) [with T = int] rather than void f(int)) so that it’s clear which template is involved. When an error message refers to a specialization of a class template, the compiler omits any template arguments that match the default template arguments for that template. If either of these behaviors make it harder to understand the error message rather than easier, you can use -fno-pretty-templates to disable them.

-fno-rtti

Disable generation of information about every class with virtual functions for use by the C++ run-time type identification features (dynamic_cast and typeid). If you don’t use those parts of the language, you can save some space by using this flag. Note that exception handling uses the same information, but G++ generates it as needed. The dynamic_cast operator can still be used for casts that do not require run-time type information, i.e. casts to void * or to unambiguous base classes.

Mixing code compiled with -frtti with that compiled with -fno-rtti may not work. For example, programs may fail to link if a class compiled with -fno-rtti is used as a base for a class compiled with -frtti.

-fsized-deallocation

Enable the built-in global declarations

void operator delete (void *, std::size_t) noexcept;
void operator delete[] (void *, std::size_t) noexcept;

as introduced in C++14. This is useful for user-defined replacement deallocation functions that, for example, use the size of the object to make deallocation faster. Enabled by default under -std=c++14 and above. The flag -Wsized-deallocation warns about places that might want to add a definition.

-fstrict-enums

Allow the compiler to optimize using the assumption that a value of enumerated type can only be one of the values of the enumeration (as defined in the C++ standard; basically, a value that can be represented in the minimum number of bits needed to represent all the enumerators). This assumption may not be valid if the program uses a cast to convert an arbitrary integer value to the enumerated type.

-fstrong-eval-order

Evaluate member access, array subscripting, and shift expressions in left-to-right order, and evaluate assignment in right-to-left order, as adopted for C++17. Enabled by default with -std=c++17. -fstrong-eval-order=some enables just the ordering of member access and shift expressions, and is the default without -std=c++17.

-ftemplate-backtrace-limit=n

Set the maximum number of template instantiation notes for a single warning or error to n. The default value is 10.

-ftemplate-depth=n

Set the maximum instantiation depth for template classes to n. A limit on the template instantiation depth is needed to detect endless recursions during template class instantiation. ANSI/ISO C++ conforming programs must not rely on a maximum depth greater than 17 (changed to 1024 in C++11). The default value is 900, as the compiler can run out of stack space before hitting 1024 in some situations.

-fno-threadsafe-statics

Do not emit the extra code to use the routines specified in the C++ ABI for thread-safe initialization of local statics. You can use this option to reduce code size slightly in code that doesn’t need to be thread-safe.

-fuse-cxa-atexit

Register destructors for objects with static storage duration with the __cxa_atexit function rather than the atexit function. This option is required for fully standards-compliant handling of static destructors, but only works if your C library supports __cxa_atexit.

-fno-use-cxa-get-exception-ptr

Don’t use the __cxa_get_exception_ptr runtime routine. This causes std::uncaught_exception to be incorrect, but is necessary if the runtime routine is not available.

-fvisibility-inlines-hidden

This switch declares that the user does not attempt to compare pointers to inline functions or methods where the addresses of the two functions are taken in different shared objects.

The effect of this is that GCC may, effectively, mark inline methods with __attribute__ ((visibility ("hidden"))) so that they do not appear in the export table of a DSO and do not require a PLT indirection when used within the DSO. Enabling this option can have a dramatic effect on load and link times of a DSO as it massively reduces the size of the dynamic export table when the library makes heavy use of templates.

The behavior of this switch is not quite the same as marking the methods as hidden directly, because it does not affect static variables local to the function or cause the compiler to deduce that the function is defined in only one shared object.

You may mark a method as having a visibility explicitly to negate the effect of the switch for that method. For example, if you do want to compare pointers to a particular inline method, you might mark it as having default visibility. Marking the enclosing class with explicit visibility has no effect.

Explicitly instantiated inline methods are unaffected by this option as their linkage might otherwise cross a shared library boundary. See Template Instantiation.

-fvisibility-ms-compat

This flag attempts to use visibility settings to make GCC’s C++ linkage model compatible with that of Microsoft Visual Studio.

The flag makes these changes to GCC’s linkage model:

  1. It sets the default visibility to hidden, like -fvisibility=hidden.
  2. Types, but not their members, are not hidden by default.
  3. The One Definition Rule is relaxed for types without explicit visibility specifications that are defined in more than one shared object: those declarations are permitted if they are permitted when this option is not used.

In new code it is better to use -fvisibility=hidden and export those classes that are intended to be externally visible. Unfortunately it is possible for code to rely, perhaps accidentally, on the Visual Studio behavior.

Among the consequences of these changes are that static data members of the same type with the same name but defined in different shared objects are different, so changing one does not change the other; and that pointers to function members defined in different shared objects may not compare equal. When this flag is given, it is a violation of the ODR to define types with the same name differently.

-fno-weak

Do not use weak symbol support, even if it is provided by the linker. By default, G++ uses weak symbols if they are available. This option exists only for testing, and should not be used by end-users; it results in inferior code and has no benefits. This option may be removed in a future release of G++.

-fext-numeric-literals (C++ and Objective-C++ only)

Accept imaginary, fixed-point, or machine-defined literal number suffixes as GNU extensions. When this option is turned off these suffixes are treated as C++11 user-defined literal numeric suffixes. This is on by default for all pre-C++11 dialects and all GNU dialects: -std=c++98, -std=gnu++98, -std=gnu++11, -std=gnu++14. This option is off by default for ISO C++11 onwards (-std=c++11, ...).

-nostdinc++

Do not search for header files in the standard directories specific to C++, but do still search the other standard directories. (This option is used when building the C++ library.)

-flang-info-include-translate
-flang-info-include-translate-not
-flang-info-include-translate=header

Inform of include translation events. The first will note accepted include translations, the second will note declined include translations. The header form will inform of include translations relating to that specific header. If header is of the form "user" or <system> it will be resolved to a specific user or system header using the include path.

-flang-info-module-cmi
-flang-info-module-cmi=module

Inform of Compiled Module Interface pathnames. The first will note all read CMI pathnames. The module form will not reading a specific module’s CMI. module may be a named module or a header-unit (the latter indicated by either being a pathname containing directory separators or enclosed in <> or "").

-stdlib=libstdc++,libc++

When G++ is configured to support this option, it allows specification of alternate C++ runtime libraries. Two options are available: libstdc++ (the default, native C++ runtime for G++) and libc++ which is the C++ runtime installed on some operating systems (e.g. Darwin versions from Darwin11 onwards). The option switches G++ to use the headers from the specified library and to emit -lstdc++ or -lc++ respectively, when a C++ runtime is required for linking.

In addition, these warning options have meanings only for C++ programs:

-Wabi-tag (C++ and Objective-C++ only)

Warn when a type with an ABI tag is used in a context that does not have that ABI tag. See C++ Attributes for more information about ABI tags.

-Wcomma-subscript (C++ and Objective-C++ only)

Warn about uses of a comma expression within a subscripting expression. This usage was deprecated in C++20 and is going to be removed in C++23. However, a comma expression wrapped in ( ) is not deprecated. Example:

void f(int *a, int b, int c) {
    a[b,c];     // deprecated in C++20, invalid in C++23
    a[(b,c)];   // OK
}

In C++23 it is valid to have comma separated expressions in a subscript when an overloaded subscript operator is found and supports the right number and types of arguments. G++ will accept the formerly valid syntax for code that is not valid in C++23 but used to be valid but deprecated in C++20 with a pedantic warning that can be disabled with -Wno-comma-subscript.

Enabled by default with -std=c++20 unless -Wno-deprecated, and with -std=c++23 regardless of -Wno-deprecated.

-Wctad-maybe-unsupported (C++ and Objective-C++ only)

Warn when performing class template argument deduction (CTAD) on a type with no explicitly written deduction guides. This warning will point out cases where CTAD succeeded only because the compiler synthesized the implicit deduction guides, which might not be what the programmer intended. Certain style guides allow CTAD only on types that specifically "opt-in"; i.e., on types that are designed to support CTAD. This warning can be suppressed with the following pattern:

struct allow_ctad_t; // any name works
template <typename T> struct S {
  S(T) { }
};
S(allow_ctad_t) -> S<void>; // guide with incomplete parameter type will never be considered
-Wctor-dtor-privacy (C++ and Objective-C++ only)

Warn when a class seems unusable because all the constructors or destructors in that class are private, and it has neither friends nor public static member functions. Also warn if there are no non-private methods, and there’s at least one private member function that isn’t a constructor or destructor.

-Wdelete-non-virtual-dtor (C++ and Objective-C++ only)

Warn when delete is used to destroy an instance of a class that has virtual functions and non-virtual destructor. It is unsafe to delete an instance of a derived class through a pointer to a base class if the base class does not have a virtual destructor. This warning is enabled by -Wall.

-Wdeprecated-copy (C++ and Objective-C++ only)

Warn that the implicit declaration of a copy constructor or copy assignment operator is deprecated if the class has a user-provided copy constructor or copy assignment operator, in C++11 and up. This warning is enabled by -Wextra. With -Wdeprecated-copy-dtor, also deprecate if the class has a user-provided destructor.

-Wno-deprecated-enum-enum-conversion (C++ and Objective-C++ only)

Disable the warning about the case when the usual arithmetic conversions are applied on operands where one is of enumeration type and the other is of a different enumeration type. This conversion was deprecated in C++20. For example:

enum E1 { e };
enum E2 { f };
int k = f - e;

-Wdeprecated-enum-enum-conversion is enabled by default with -std=c++20. In pre-C++20 dialects, this warning can be enabled by -Wenum-conversion.

-Wno-deprecated-enum-float-conversion (C++ and Objective-C++ only)

Disable the warning about the case when the usual arithmetic conversions are applied on operands where one is of enumeration type and the other is of a floating-point type. This conversion was deprecated in C++20. For example:

enum E1 { e };
enum E2 { f };
bool b = e <= 3.7;

-Wdeprecated-enum-float-conversion is enabled by default with -std=c++20. In pre-C++20 dialects, this warning can be enabled by -Wenum-conversion.

-Wno-init-list-lifetime (C++ and Objective-C++ only)

Do not warn about uses of std::initializer_list that are likely to result in dangling pointers. Since the underlying array for an initializer_list is handled like a normal C++ temporary object, it is easy to inadvertently keep a pointer to the array past the end of the array’s lifetime. For example:

-Winvalid-imported-macros

Verify all imported macro definitions are valid at the end of compilation. This is not enabled by default, as it requires additional processing to determine. It may be useful when preparing sets of header-units to ensure consistent macros.

-Wno-literal-suffix (C++ and Objective-C++ only)

Do not warn when a string or character literal is followed by a ud-suffix which does not begin with an underscore. As a conforming extension, GCC treats such suffixes as separate preprocessing tokens in order to maintain backwards compatibility with code that uses formatting macros from <inttypes.h>. For example:

#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#include <stdio.h>

int main() {
  int64_t i64 = 123;
  printf("My int64: %" PRId64"\n", i64);
}

In this case, PRId64 is treated as a separate preprocessing token.

This option also controls warnings when a user-defined literal operator is declared with a literal suffix identifier that doesn’t begin with an underscore. Literal suffix identifiers that don’t begin with an underscore are reserved for future standardization.

These warnings are enabled by default.

-Wno-narrowing (C++ and Objective-C++ only)

For C++11 and later standards, narrowing conversions are diagnosed by default, as required by the standard. A narrowing conversion from a constant produces an error, and a narrowing conversion from a non-constant produces a warning, but -Wno-narrowing suppresses the diagnostic. Note that this does not affect the meaning of well-formed code; narrowing conversions are still considered ill-formed in SFINAE contexts.

With -Wnarrowing in C++98, warn when a narrowing conversion prohibited by C++11 occurs within ‘{ }’, e.g.

int i = { 2.2 }; // error: narrowing from double to int

This flag is included in -Wall and -Wc++11-compat.

-Wnoexcept (C++ and Objective-C++ only)

Warn when a noexcept-expression evaluates to false because of a call to a function that does not have a non-throwing exception specification (i.e. throw() or noexcept) but is known by the compiler to never throw an exception.

-Wnoexcept-type (C++ and Objective-C++ only)

Warn if the C++17 feature making noexcept part of a function type changes the mangled name of a symbol relative to C++14. Enabled by -Wabi and -Wc++17-compat.

As an example:

template <class T> void f(T t) { t(); };
void g() noexcept;
void h() { f(g); } 

In C++14, f calls f<void(*)()>, but in C++17 it calls f<void(*)()noexcept>.

-Wclass-memaccess (C++ and Objective-C++ only)

Warn when the destination of a call to a raw memory function such as memset or memcpy is an object of class type, and when writing into such an object might bypass the class non-trivial or deleted constructor or copy assignment, violate const-correctness or encapsulation, or corrupt virtual table pointers. Modifying the representation of such objects may violate invariants maintained by member functions of the class. For example, the call to memset below is undefined because it modifies a non-trivial class object and is, therefore, diagnosed. The safe way to either initialize or clear the storage of objects of such types is by using the appropriate constructor or assignment operator, if one is available.

std::string str = "abc";
memset (&str, 0, sizeof str);

The -Wclass-memaccess option is enabled by -Wall. Explicitly casting the pointer to the class object to void * or to a type that can be safely accessed by the raw memory function suppresses the warning.

-Wnon-virtual-dtor (C++ and Objective-C++ only)

Warn when a class has virtual functions and an accessible non-virtual destructor itself or in an accessible polymorphic base class, in which case it is possible but unsafe to delete an instance of a derived class through a pointer to the class itself or base class. This warning is automatically enabled if -Weffc++ is specified.

-Wregister (C++ and Objective-C++ only)

Warn on uses of the register storage class specifier, except when it is part of the GNU Explicit Register Variables extension. The use of the register keyword as storage class specifier has been deprecated in C++11 and removed in C++17. Enabled by default with -std=c++17.

-Wreorder (C++ and Objective-C++ only)

Warn when the order of member initializers given in the code does not match the order in which they must be executed. For instance:

struct A {
  int i;
  int j;
  A(): j (0), i (1) { }
};

The compiler rearranges the member initializers for i and j to match the declaration order of the members, emitting a warning to that effect. This warning is enabled by -Wall.

-Wno-pessimizing-move (C++ and Objective-C++ only)

This warning warns when a call to std::move prevents copy elision. A typical scenario when copy elision can occur is when returning in a function with a class return type, when the expression being returned is the name of a non-volatile automatic object, and is not a function parameter, and has the same type as the function return type.

struct T {
…
};
T fn()
{
  T t;
  …
  return std::move (t);
}

But in this example, the std::move call prevents copy elision.

This warning is enabled by -Wall.

-Wno-redundant-move (C++ and Objective-C++ only)

This warning warns about redundant calls to std::move; that is, when a move operation would have been performed even without the std::move call. This happens because the compiler is forced to treat the object as if it were an rvalue in certain situations such as returning a local variable, where copy elision isn’t applicable. Consider:

struct T {
…
};
T fn(T t)
{
  …
  return std::move (t);
}

Here, the std::move call is redundant. Because G++ implements Core Issue 1579, another example is:

struct T { // convertible to U
…
};
struct U {
…
};
U fn()
{
  T t;
  …
  return std::move (t);
}

In this example, copy elision isn’t applicable because the type of the expression being returned and the function return type differ, yet G++ treats the return value as if it were designated by an rvalue.

This warning is enabled by -Wextra.

-Wrange-loop-construct (C++ and Objective-C++ only)

This warning warns when a C++ range-based for-loop is creating an unnecessary copy. This can happen when the range declaration is not a reference, but probably should be. For example:

struct S { char arr[128]; };
void fn () {
  S arr[5];
  for (const auto x : arr) { … }
}

It does not warn when the type being copied is a trivially-copyable type whose size is less than 64 bytes.

This warning also warns when a loop variable in a range-based for-loop is initialized with a value of a different type resulting in a copy. For example:

void fn() {
  int arr[10];
  for (const double &x : arr) { … }
}

In the example above, in every iteration of the loop a temporary value of type double is created and destroyed, to which the reference const double & is bound.

This warning is enabled by -Wall.

-Wredundant-tags (C++ and Objective-C++ only)

Warn about redundant class-key and enum-key in references to class types and enumerated types in contexts where the key can be eliminated without causing an ambiguity. For example:

struct foo;
struct foo *p;   // warn that keyword struct can be eliminated

On the other hand, in this example there is no warning:

struct foo;
void foo ();   // "hides" struct foo
void bar (struct foo&);  // no warning, keyword struct is necessary
-Wno-subobject-linkage (C++ and Objective-C++ only)

Do not warn if a class type has a base or a field whose type uses the anonymous namespace or depends on a type with no linkage. If a type A depends on a type B with no or internal linkage, defining it in multiple translation units would be an ODR violation because the meaning of B is different in each translation unit. If A only appears in a single translation unit, the best way to silence the warning is to give it internal linkage by putting it in an anonymous namespace as well. The compiler doesn’t give this warning for types defined in the main .C file, as those are unlikely to have multiple definitions. -Wsubobject-linkage is enabled by default.

-Weffc++ (C++ and Objective-C++ only)

Warn about violations of the following style guidelines from Scott Meyers’ Effective C++ series of books:

This option also enables -Wnon-virtual-dtor, which is also one of the effective C++ recommendations. However, the check is extended to warn about the lack of virtual destructor in accessible non-polymorphic bases classes too.

When selecting this option, be aware that the standard library headers do not obey all of these guidelines; use ‘grep -v’ to filter out those warnings.

-Wno-exceptions (C++ and Objective-C++ only)

Disable the warning about the case when an exception handler is shadowed by another handler, which can point out a wrong ordering of exception handlers.

-Wstrict-null-sentinel (C++ and Objective-C++ only)

Warn about the use of an uncasted NULL as sentinel. When compiling only with GCC this is a valid sentinel, as NULL is defined to __null. Although it is a null pointer constant rather than a null pointer, it is guaranteed to be of the same size as a pointer. But this use is not portable across different compilers.

-Wno-non-template-friend (C++ and Objective-C++ only)

Disable warnings when non-template friend functions are declared within a template. In very old versions of GCC that predate implementation of the ISO standard, declarations such as ‘friend int foo(int)’, where the name of the friend is an unqualified-id, could be interpreted as a particular specialization of a template function; the warning exists to diagnose compatibility problems, and is enabled by default.

-Wold-style-cast (C++ and Objective-C++ only)

Warn if an old-style (C-style) cast to a non-void type is used within a C++ program. The new-style casts (dynamic_cast, static_cast, reinterpret_cast, and const_cast) are less vulnerable to unintended effects and much easier to search for.

-Woverloaded-virtual (C++ and Objective-C++ only)

Warn when a function declaration hides virtual functions from a base class. For example, in:

struct A {
  virtual void f();
};

struct B: public A {
  void f(int);
};

the A class version of f is hidden in B, and code like:

B* b;
b->f();

fails to compile.

-Wno-pmf-conversions (C++ and Objective-C++ only)

Disable the diagnostic for converting a bound pointer to member function to a plain pointer.

-Wsign-promo (C++ and Objective-C++ only)

Warn when overload resolution chooses a promotion from unsigned or enumerated type to a signed type, over a conversion to an unsigned type of the same size. Previous versions of G++ tried to preserve unsignedness, but the standard mandates the current behavior.

-Wtemplates (C++ and Objective-C++ only)

Warn when a primary template declaration is encountered. Some coding rules disallow templates, and this may be used to enforce that rule. The warning is inactive inside a system header file, such as the STL, so one can still use the STL. One may also instantiate or specialize templates.

-Wmismatched-new-delete (C++ and Objective-C++ only)

Warn for mismatches between calls to operator new or operator delete and the corresponding call to the allocation or deallocation function. This includes invocations of C++ operator delete with pointers returned from either mismatched forms of operator new, or from other functions that allocate objects for which the operator delete isn’t a suitable deallocator, as well as calls to other deallocation functions with pointers returned from operator new for which the deallocation function isn’t suitable.

For example, the delete expression in the function below is diagnosed because it doesn’t match the array form of the new expression the pointer argument was returned from. Similarly, the call to free is also diagnosed.

void f ()
{
  int *a = new int[n];
  delete a;   // warning: mismatch in array forms of expressions

  char *p = new char[n];
  free (p);   // warning: mismatch between new and free
}

The related option -Wmismatched-dealloc diagnoses mismatches involving allocation and deallocation functions other than operator new and operator delete.

-Wmismatched-new-delete is included in -Wall.

-Wmismatched-tags (C++ and Objective-C++ only)

Warn for declarations of structs, classes, and class templates and their specializations with a class-key that does not match either the definition or the first declaration if no definition is provided.

For example, the declaration of struct Object in the argument list of draw triggers the warning. To avoid it, either remove the redundant class-key struct or replace it with class to match its definition.

class Object {
public:
  virtual ~Object () = 0;
};
void draw (struct Object*);

It is not wrong to declare a class with the class-key struct as the example above shows. The -Wmismatched-tags option is intended to help achieve a consistent style of class declarations. In code that is intended to be portable to Windows-based compilers the warning helps prevent unresolved references due to the difference in the mangling of symbols declared with different class-keys. The option can be used either on its own or in conjunction with -Wredundant-tags.

-Wmultiple-inheritance (C++ and Objective-C++ only)

Warn when a class is defined with multiple direct base classes. Some coding rules disallow multiple inheritance, and this may be used to enforce that rule. The warning is inactive inside a system header file, such as the STL, so one can still use the STL. One may also define classes that indirectly use multiple inheritance.

-Wvirtual-inheritance

Warn when a class is defined with a virtual direct base class. Some coding rules disallow multiple inheritance, and this may be used to enforce that rule. The warning is inactive inside a system header file, such as the STL, so one can still use the STL. One may also define classes that indirectly use virtual inheritance.

-Wno-virtual-move-assign

Suppress warnings about inheriting from a virtual base with a non-trivial C++11 move assignment operator. This is dangerous because if the virtual base is reachable along more than one path, it is moved multiple times, which can mean both objects end up in the moved-from state. If the move assignment operator is written to avoid moving from a moved-from object, this warning can be disabled.

-Wnamespaces

Warn when a namespace definition is opened. Some coding rules disallow namespaces, and this may be used to enforce that rule. The warning is inactive inside a system header file, such as the STL, so one can still use the STL. One may also use using directives and qualified names.

-Wno-terminate (C++ and Objective-C++ only)

Disable the warning about a throw-expression that will immediately result in a call to terminate.

-Wno-vexing-parse (C++ and Objective-C++ only)

Warn about the most vexing parse syntactic ambiguity. This warns about the cases when a declaration looks like a variable definition, but the C++ language requires it to be interpreted as a function declaration. For instance:

void f(double a) {
  int i();        // extern int i (void);
  int n(int(a));  // extern int n (int);
}

Another example:

struct S { S(int); };
void f(double a) {
  S x(int(a));   // extern struct S x (int);
  S y(int());    // extern struct S y (int (*) (void));
  S z();         // extern struct S z (void);
}

The warning will suggest options how to deal with such an ambiguity; e.g., it can suggest removing the parentheses or using braces instead.

This warning is enabled by default.

-Wno-class-conversion (C++ and Objective-C++ only)

Do not warn when a conversion function converts an object to the same type, to a base class of that type, or to void; such a conversion function will never be called.

-Wvolatile (C++ and Objective-C++ only)

Warn about deprecated uses of the volatile qualifier. This includes postfix and prefix ++ and -- expressions of volatile-qualified types, using simple assignments where the left operand is a volatile-qualified non-class type for their value, compound assignments where the left operand is a volatile-qualified non-class type, volatile-qualified function return type, volatile-qualified parameter type, and structured bindings of a volatile-qualified type. This usage was deprecated in C++20.

Enabled by default with -std=c++20.

-Wzero-as-null-pointer-constant (C++ and Objective-C++ only)

Warn when a literal ‘0’ is used as null pointer constant. This can be useful to facilitate the conversion to nullptr in C++11.

-Waligned-new

Warn about a new-expression of a type that requires greater alignment than the alignof(std::max_align_t) but uses an allocation function without an explicit alignment parameter. This option is enabled by -Wall.

Normally this only warns about global allocation functions, but -Waligned-new=all also warns about class member allocation functions.

-Wno-placement-new
-Wplacement-new=n

Warn about placement new expressions with undefined behavior, such as constructing an object in a buffer that is smaller than the type of the object. For example, the placement new expression below is diagnosed because it attempts to construct an array of 64 integers in a buffer only 64 bytes large.

char buf [64];
new (buf) int[64];

This warning is enabled by default.

-Wplacement-new=1

This is the default warning level of -Wplacement-new. At this level the warning is not issued for some strictly undefined constructs that GCC allows as extensions for compatibility with legacy code. For example, the following new expression is not diagnosed at this level even though it has undefined behavior according to the C++ standard because it writes past the end of the one-element array.

struct S { int n, a[1]; };
S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);
new (s->a)int [32]();
-Wplacement-new=2

At this level, in addition to diagnosing all the same constructs as at level 1, a diagnostic is also issued for placement new expressions that construct an object in the last member of structure whose type is an array of a single element and whose size is less than the size of the object being constructed. While the previous example would be diagnosed, the following construct makes use of the flexible member array extension to avoid the warning at level 2.

struct S { int n, a[]; };
S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);
new (s->a)int [32]();
-Wcatch-value
-Wcatch-value=n (C++ and Objective-C++ only)

Warn about catch handlers that do not catch via reference. With -Wcatch-value=1 (or -Wcatch-value for short) warn about polymorphic class types that are caught by value. With -Wcatch-value=2 warn about all class types that are caught by value. With -Wcatch-value=3 warn about all types that are not caught by reference. -Wcatch-value is enabled by -Wall.

-Wconditionally-supported (C++ and Objective-C++ only)

Warn for conditionally-supported (C++11 [intro.defs]) constructs.

-Wno-delete-incomplete (C++ and Objective-C++ only)

Do not warn when deleting a pointer to incomplete type, which may cause undefined behavior at runtime. This warning is enabled by default.

-Wextra-semi (C++, Objective-C++ only)

Warn about redundant semicolons after in-class function definitions.

-Wno-inaccessible-base (C++, Objective-C++ only)

This option controls warnings when a base class is inaccessible in a class derived from it due to ambiguity. The warning is enabled by default. Note that the warning for ambiguous virtual bases is enabled by the -Wextra option.

struct A { int a; };

struct B : A { };

struct C : B, A { };
-Wno-inherited-variadic-ctor

Suppress warnings about use of C++11 inheriting constructors when the base class inherited from has a C variadic constructor; the warning is on by default because the ellipsis is not inherited.

-Wno-invalid-offsetof (C++ and Objective-C++ only)

Suppress warnings from applying the offsetof macro to a non-POD type. According to the 2014 ISO C++ standard, applying offsetof to a non-standard-layout type is undefined. In existing C++ implementations, however, offsetof typically gives meaningful results. This flag is for users who are aware that they are writing nonportable code and who have deliberately chosen to ignore the warning about it.

The restrictions on offsetof may be relaxed in a future version of the C++ standard.

-Wsized-deallocation (C++ and Objective-C++ only)

Warn about a definition of an unsized deallocation function

void operator delete (void *) noexcept;
void operator delete[] (void *) noexcept;

without a definition of the corresponding sized deallocation function

void operator delete (void *, std::size_t) noexcept;
void operator delete[] (void *, std::size_t) noexcept;

or vice versa. Enabled by -Wextra along with -fsized-deallocation.

-Wsuggest-final-types

Warn about types with virtual methods where code quality would be improved if the type were declared with the C++11 final specifier, or, if possible, declared in an anonymous namespace. This allows GCC to more aggressively devirtualize the polymorphic calls. This warning is more effective with link-time optimization, where the information about the class hierarchy graph is more complete.

-Wsuggest-final-methods

Warn about virtual methods where code quality would be improved if the method were declared with the C++11 final specifier, or, if possible, its type were declared in an anonymous namespace or with the final specifier. This warning is more effective with link-time optimization, where the information about the class hierarchy graph is more complete. It is recommended to first consider suggestions of -Wsuggest-final-types and then rebuild with new annotations.

-Wsuggest-override

Warn about overriding virtual functions that are not marked with the override keyword.

-Wuse-after-free
-Wuse-after-free=n

Warn about uses of pointers to dynamically allocated objects that have been rendered indeterminate by a call to a deallocation function. The warning is enabled at all optimization levels but may yield different results with optimization than without.

-Wuse-after-free=1

At level 1 the warning attempts to diagnose only unconditional uses of pointers made indeterminate by a deallocation call or a successful call to realloc, regardless of whether or not the call resulted in an actual reallocatio of memory. This includes double-free calls as well as uses in arithmetic and relational expressions. Although undefined, uses of indeterminate pointers in equality (or inequality) expressions are not diagnosed at this level.

-Wuse-after-free=2

At level 2, in addition to unconditional uses, the warning also diagnoses conditional uses of pointers made indeterminate by a deallocation call. As at level 2, uses in equality (or inequality) expressions are not diagnosed. For example, the second call to free in the following function is diagnosed at this level:

struct A { int refcount; void *data; };

void release (struct A *p)
{
  int refcount = --p->refcount;
  free (p);
  if (refcount == 0)
    free (p->data);   // warning: p may be used after free
}
-Wuse-after-free=3

At level 3, the warning also diagnoses uses of indeterminate pointers in equality expressions. All uses of indeterminate pointers are undefined but equality tests sometimes appear after calls to realloc as an attempt to determine whether the call resulted in relocating the object to a different address. They are diagnosed at a separate level to aid legacy code gradually transition to safe alternatives. For example, the equality test in the function below is diagnosed at this level:

void adjust_pointers (int**, int);

void grow (int **p, int n)
{
  int **q = (int**)realloc (p, n *= 2);
  if (q == p)
    return;
  adjust_pointers ((int**)q, n);
}

To avoid the warning at this level, store offsets into allocated memory instead of pointers. This approach obviates needing to adjust the stored pointers after reallocation.

-Wuse-after-free=2 is included in -Wall.

-Wuseless-cast (C++ and Objective-C++ only)

Warn when an expression is casted to its own type.

-Wno-conversion-null (C++ and Objective-C++ only)

Do not warn for conversions between NULL and non-pointer types. -Wconversion-null is enabled by default.


Next: , Previous: , Up: Invoking GCC   [Contents][Index]