libstdc++
simd.h
1 // Definition of the public simd interfaces -*- C++ -*-
2 
3 // Copyright (C) 2020-2022 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 #ifndef _GLIBCXX_EXPERIMENTAL_SIMD_H
26 #define _GLIBCXX_EXPERIMENTAL_SIMD_H
27 
28 #if __cplusplus >= 201703L
29 
30 #include "simd_detail.h"
31 #include "numeric_traits.h"
32 #include <bit>
33 #include <bitset>
34 #ifdef _GLIBCXX_DEBUG_UB
35 #include <cstdio> // for stderr
36 #endif
37 #include <cstring>
38 #include <cmath>
39 #include <functional>
40 #include <iosfwd>
41 #include <utility>
42 
43 #if _GLIBCXX_SIMD_X86INTRIN
44 #include <x86intrin.h>
45 #elif _GLIBCXX_SIMD_HAVE_NEON
46 #include <arm_neon.h>
47 #endif
48 
49 /** @ingroup ts_simd
50  * @{
51  */
52 /* There are several closely related types, with the following naming
53  * convention:
54  * _Tp: vectorizable (arithmetic) type (or any type)
55  * _TV: __vector_type_t<_Tp, _Np>
56  * _TW: _SimdWrapper<_Tp, _Np>
57  * _TI: __intrinsic_type_t<_Tp, _Np>
58  * _TVT: _VectorTraits<_TV> or _VectorTraits<_TW>
59  * If one additional type is needed use _U instead of _T.
60  * Otherwise use _T\d, _TV\d, _TW\d, TI\d, _TVT\d.
61  *
62  * More naming conventions:
63  * _Ap or _Abi: An ABI tag from the simd_abi namespace
64  * _Ip: often used for integer types with sizeof(_Ip) == sizeof(_Tp),
65  * _IV, _IW as for _TV, _TW
66  * _Np: number of elements (not bytes)
67  * _Bytes: number of bytes
68  *
69  * Variable names:
70  * __k: mask object (vector- or bitmask)
71  */
72 _GLIBCXX_SIMD_BEGIN_NAMESPACE
73 
74 #if !_GLIBCXX_SIMD_X86INTRIN
75 using __m128 [[__gnu__::__vector_size__(16)]] = float;
76 using __m128d [[__gnu__::__vector_size__(16)]] = double;
77 using __m128i [[__gnu__::__vector_size__(16)]] = long long;
78 using __m256 [[__gnu__::__vector_size__(32)]] = float;
79 using __m256d [[__gnu__::__vector_size__(32)]] = double;
80 using __m256i [[__gnu__::__vector_size__(32)]] = long long;
81 using __m512 [[__gnu__::__vector_size__(64)]] = float;
82 using __m512d [[__gnu__::__vector_size__(64)]] = double;
83 using __m512i [[__gnu__::__vector_size__(64)]] = long long;
84 #endif
85 
86 namespace simd_abi {
87 // simd_abi forward declarations {{{
88 // implementation details:
89 struct _Scalar;
90 
91 template <int _Np>
92  struct _Fixed;
93 
94 // There are two major ABIs that appear on different architectures.
95 // Both have non-boolean values packed into an N Byte register
96 // -> #elements = N / sizeof(T)
97 // Masks differ:
98 // 1. Use value vector registers for masks (all 0 or all 1)
99 // 2. Use bitmasks (mask registers) with one bit per value in the corresponding
100 // value vector
101 //
102 // Both can be partially used, masking off the rest when doing horizontal
103 // operations or operations that can trap (e.g. FP_INVALID or integer division
104 // by 0). This is encoded as the number of used bytes.
105 template <int _UsedBytes>
106  struct _VecBuiltin;
107 
108 template <int _UsedBytes>
109  struct _VecBltnBtmsk;
110 
111 template <typename _Tp, int _Np>
112  using _VecN = _VecBuiltin<sizeof(_Tp) * _Np>;
113 
114 template <int _UsedBytes = 16>
115  using _Sse = _VecBuiltin<_UsedBytes>;
116 
117 template <int _UsedBytes = 32>
118  using _Avx = _VecBuiltin<_UsedBytes>;
119 
120 template <int _UsedBytes = 64>
121  using _Avx512 = _VecBltnBtmsk<_UsedBytes>;
122 
123 template <int _UsedBytes = 16>
124  using _Neon = _VecBuiltin<_UsedBytes>;
125 
126 // implementation-defined:
127 using __sse = _Sse<>;
128 using __avx = _Avx<>;
129 using __avx512 = _Avx512<>;
130 using __neon = _Neon<>;
131 using __neon128 = _Neon<16>;
132 using __neon64 = _Neon<8>;
133 
134 // standard:
135 template <typename _Tp, size_t _Np, typename...>
136  struct deduce;
137 
138 template <int _Np>
139  using fixed_size = _Fixed<_Np>;
140 
141 using scalar = _Scalar;
142 
143 // }}}
144 } // namespace simd_abi
145 // forward declarations is_simd(_mask), simd(_mask), simd_size {{{
146 template <typename _Tp>
147  struct is_simd;
148 
149 template <typename _Tp>
150  struct is_simd_mask;
151 
152 template <typename _Tp, typename _Abi>
153  class simd;
154 
155 template <typename _Tp, typename _Abi>
156  class simd_mask;
157 
158 template <typename _Tp, typename _Abi>
159  struct simd_size;
160 
161 // }}}
162 // load/store flags {{{
163 struct element_aligned_tag
164 {
165  template <typename _Tp, typename _Up = typename _Tp::value_type>
166  static constexpr size_t _S_alignment = alignof(_Up);
167 
168  template <typename _Tp, typename _Up>
169  _GLIBCXX_SIMD_INTRINSIC static constexpr _Up*
170  _S_apply(_Up* __ptr)
171  { return __ptr; }
172 };
173 
174 struct vector_aligned_tag
175 {
176  template <typename _Tp, typename _Up = typename _Tp::value_type>
177  static constexpr size_t _S_alignment
178  = std::__bit_ceil(sizeof(_Up) * _Tp::size());
179 
180  template <typename _Tp, typename _Up>
181  _GLIBCXX_SIMD_INTRINSIC static constexpr _Up*
182  _S_apply(_Up* __ptr)
183  {
184  return static_cast<_Up*>(
185  __builtin_assume_aligned(__ptr, _S_alignment<_Tp, _Up>));
186  }
187 };
188 
189 template <size_t _Np> struct overaligned_tag
190 {
191  template <typename _Tp, typename _Up = typename _Tp::value_type>
192  static constexpr size_t _S_alignment = _Np;
193 
194  template <typename _Tp, typename _Up>
195  _GLIBCXX_SIMD_INTRINSIC static constexpr _Up*
196  _S_apply(_Up* __ptr)
197  { return static_cast<_Up*>(__builtin_assume_aligned(__ptr, _Np)); }
198 };
199 
200 inline constexpr element_aligned_tag element_aligned = {};
201 
202 inline constexpr vector_aligned_tag vector_aligned = {};
203 
204 template <size_t _Np>
205  inline constexpr overaligned_tag<_Np> overaligned = {};
206 
207 // }}}
208 template <size_t _Xp>
209  using _SizeConstant = integral_constant<size_t, _Xp>;
210 // constexpr feature detection{{{
211 constexpr inline bool __have_mmx = _GLIBCXX_SIMD_HAVE_MMX;
212 constexpr inline bool __have_sse = _GLIBCXX_SIMD_HAVE_SSE;
213 constexpr inline bool __have_sse2 = _GLIBCXX_SIMD_HAVE_SSE2;
214 constexpr inline bool __have_sse3 = _GLIBCXX_SIMD_HAVE_SSE3;
215 constexpr inline bool __have_ssse3 = _GLIBCXX_SIMD_HAVE_SSSE3;
216 constexpr inline bool __have_sse4_1 = _GLIBCXX_SIMD_HAVE_SSE4_1;
217 constexpr inline bool __have_sse4_2 = _GLIBCXX_SIMD_HAVE_SSE4_2;
218 constexpr inline bool __have_xop = _GLIBCXX_SIMD_HAVE_XOP;
219 constexpr inline bool __have_avx = _GLIBCXX_SIMD_HAVE_AVX;
220 constexpr inline bool __have_avx2 = _GLIBCXX_SIMD_HAVE_AVX2;
221 constexpr inline bool __have_bmi = _GLIBCXX_SIMD_HAVE_BMI1;
222 constexpr inline bool __have_bmi2 = _GLIBCXX_SIMD_HAVE_BMI2;
223 constexpr inline bool __have_lzcnt = _GLIBCXX_SIMD_HAVE_LZCNT;
224 constexpr inline bool __have_sse4a = _GLIBCXX_SIMD_HAVE_SSE4A;
225 constexpr inline bool __have_fma = _GLIBCXX_SIMD_HAVE_FMA;
226 constexpr inline bool __have_fma4 = _GLIBCXX_SIMD_HAVE_FMA4;
227 constexpr inline bool __have_f16c = _GLIBCXX_SIMD_HAVE_F16C;
228 constexpr inline bool __have_popcnt = _GLIBCXX_SIMD_HAVE_POPCNT;
229 constexpr inline bool __have_avx512f = _GLIBCXX_SIMD_HAVE_AVX512F;
230 constexpr inline bool __have_avx512dq = _GLIBCXX_SIMD_HAVE_AVX512DQ;
231 constexpr inline bool __have_avx512vl = _GLIBCXX_SIMD_HAVE_AVX512VL;
232 constexpr inline bool __have_avx512bw = _GLIBCXX_SIMD_HAVE_AVX512BW;
233 constexpr inline bool __have_avx512dq_vl = __have_avx512dq && __have_avx512vl;
234 constexpr inline bool __have_avx512bw_vl = __have_avx512bw && __have_avx512vl;
235 constexpr inline bool __have_avx512bitalg = _GLIBCXX_SIMD_HAVE_AVX512BITALG;
236 constexpr inline bool __have_avx512vbmi2 = _GLIBCXX_SIMD_HAVE_AVX512VBMI2;
237 constexpr inline bool __have_avx512vbmi = _GLIBCXX_SIMD_HAVE_AVX512VBMI;
238 constexpr inline bool __have_avx512ifma = _GLIBCXX_SIMD_HAVE_AVX512IFMA;
239 constexpr inline bool __have_avx512cd = _GLIBCXX_SIMD_HAVE_AVX512CD;
240 constexpr inline bool __have_avx512vnni = _GLIBCXX_SIMD_HAVE_AVX512VNNI;
241 constexpr inline bool __have_avx512vpopcntdq = _GLIBCXX_SIMD_HAVE_AVX512VPOPCNTDQ;
242 constexpr inline bool __have_avx512vp2intersect = _GLIBCXX_SIMD_HAVE_AVX512VP2INTERSECT;
243 
244 constexpr inline bool __have_neon = _GLIBCXX_SIMD_HAVE_NEON;
245 constexpr inline bool __have_neon_a32 = _GLIBCXX_SIMD_HAVE_NEON_A32;
246 constexpr inline bool __have_neon_a64 = _GLIBCXX_SIMD_HAVE_NEON_A64;
247 constexpr inline bool __support_neon_float =
248 #if defined __GCC_IEC_559
249  __GCC_IEC_559 == 0;
250 #elif defined __FAST_MATH__
251  true;
252 #else
253  false;
254 #endif
255 
256 #ifdef _ARCH_PWR10
257 constexpr inline bool __have_power10vec = true;
258 #else
259 constexpr inline bool __have_power10vec = false;
260 #endif
261 #ifdef __POWER9_VECTOR__
262 constexpr inline bool __have_power9vec = true;
263 #else
264 constexpr inline bool __have_power9vec = false;
265 #endif
266 #if defined __POWER8_VECTOR__
267 constexpr inline bool __have_power8vec = true;
268 #else
269 constexpr inline bool __have_power8vec = __have_power9vec;
270 #endif
271 #if defined __VSX__
272 constexpr inline bool __have_power_vsx = true;
273 #else
274 constexpr inline bool __have_power_vsx = __have_power8vec;
275 #endif
276 #if defined __ALTIVEC__
277 constexpr inline bool __have_power_vmx = true;
278 #else
279 constexpr inline bool __have_power_vmx = __have_power_vsx;
280 #endif
281 
282 // }}}
283 
284 namespace __detail
285 {
286 #ifdef math_errhandling
287  // Determines _S_handle_fpexcept from math_errhandling if it is defined and expands to a constant
288  // expression. math_errhandling may expand to an extern symbol, in which case a constexpr value
289  // must be guessed.
290  template <int = math_errhandling>
291  constexpr bool __handle_fpexcept_impl(int)
292  { return math_errhandling & MATH_ERREXCEPT; }
293 #endif
294 
295  // Fallback if math_errhandling doesn't work: with fast-math assume floating-point exceptions are
296  // ignored, otherwise implement correct exception behavior.
297  constexpr bool __handle_fpexcept_impl(float)
298  {
299 #if defined __FAST_MATH__
300  return false;
301 #else
302  return true;
303 #endif
304  }
305 
306  /// True if math functions must raise floating-point exceptions as specified by C17.
307  static constexpr bool _S_handle_fpexcept = __handle_fpexcept_impl(0);
308 
309  constexpr std::uint_least64_t
310  __floating_point_flags()
311  {
312  std::uint_least64_t __flags = 0;
313  if constexpr (_S_handle_fpexcept)
314  __flags |= 1;
315 #ifdef __FAST_MATH__
316  __flags |= 1 << 1;
317 #elif __FINITE_MATH_ONLY__
318  __flags |= 2 << 1;
319 #elif __GCC_IEC_559 < 2
320  __flags |= 3 << 1;
321 #endif
322  __flags |= (__FLT_EVAL_METHOD__ + 1) << 3;
323  return __flags;
324  }
325 
326  constexpr std::uint_least64_t
327  __machine_flags()
328  {
329  if constexpr (__have_mmx || __have_sse)
330  return __have_mmx
331  | (__have_sse << 1)
332  | (__have_sse2 << 2)
333  | (__have_sse3 << 3)
334  | (__have_ssse3 << 4)
335  | (__have_sse4_1 << 5)
336  | (__have_sse4_2 << 6)
337  | (__have_xop << 7)
338  | (__have_avx << 8)
339  | (__have_avx2 << 9)
340  | (__have_bmi << 10)
341  | (__have_bmi2 << 11)
342  | (__have_lzcnt << 12)
343  | (__have_sse4a << 13)
344  | (__have_fma << 14)
345  | (__have_fma4 << 15)
346  | (__have_f16c << 16)
347  | (__have_popcnt << 17)
348  | (__have_avx512f << 18)
349  | (__have_avx512dq << 19)
350  | (__have_avx512vl << 20)
351  | (__have_avx512bw << 21)
352  | (__have_avx512bitalg << 22)
353  | (__have_avx512vbmi2 << 23)
354  | (__have_avx512vbmi << 24)
355  | (__have_avx512ifma << 25)
356  | (__have_avx512cd << 26)
357  | (__have_avx512vnni << 27)
358  | (__have_avx512vpopcntdq << 28)
359  | (__have_avx512vp2intersect << 29);
360  else if constexpr (__have_neon)
361  return __have_neon
362  | (__have_neon_a32 << 1)
363  | (__have_neon_a64 << 2)
364  | (__have_neon_a64 << 2)
365  | (__support_neon_float << 3);
366  else if constexpr (__have_power_vmx)
367  return __have_power_vmx
368  | (__have_power_vsx << 1)
369  | (__have_power8vec << 2)
370  | (__have_power9vec << 3)
371  | (__have_power10vec << 4);
372  else
373  return 0;
374  }
375 
376  namespace
377  {
378  struct _OdrEnforcer {};
379  }
380 
381  template <std::uint_least64_t...>
382  struct _MachineFlagsTemplate {};
383 
384  /**@internal
385  * Use this type as default template argument to all function templates that
386  * are not declared always_inline. It ensures, that a function
387  * specialization, which the compiler decides not to inline, has a unique symbol
388  * (_OdrEnforcer) or a symbol matching the machine/architecture flags
389  * (_MachineFlagsTemplate). This helps to avoid ODR violations in cases where
390  * users link TUs compiled with different flags. This is especially important
391  * for using simd in libraries.
392  */
393  using __odr_helper
394  = conditional_t<__machine_flags() == 0, _OdrEnforcer,
395  _MachineFlagsTemplate<__machine_flags(), __floating_point_flags()>>;
396 
397  struct _Minimum
398  {
399  template <typename _Tp>
400  _GLIBCXX_SIMD_INTRINSIC constexpr
401  _Tp
402  operator()(_Tp __a, _Tp __b) const
403  {
404  using std::min;
405  return min(__a, __b);
406  }
407  };
408 
409  struct _Maximum
410  {
411  template <typename _Tp>
412  _GLIBCXX_SIMD_INTRINSIC constexpr
413  _Tp
414  operator()(_Tp __a, _Tp __b) const
415  {
416  using std::max;
417  return max(__a, __b);
418  }
419  };
420 } // namespace __detail
421 
422 // unrolled/pack execution helpers
423 // __execute_n_times{{{
424 template <typename _Fp, size_t... _I>
425  [[__gnu__::__flatten__]] _GLIBCXX_SIMD_INTRINSIC constexpr
426  void
427  __execute_on_index_sequence(_Fp&& __f, index_sequence<_I...>)
428  { ((void)__f(_SizeConstant<_I>()), ...); }
429 
430 template <typename _Fp>
431  _GLIBCXX_SIMD_INTRINSIC constexpr void
432  __execute_on_index_sequence(_Fp&&, index_sequence<>)
433  { }
434 
435 template <size_t _Np, typename _Fp>
436  _GLIBCXX_SIMD_INTRINSIC constexpr void
437  __execute_n_times(_Fp&& __f)
438  {
439  __execute_on_index_sequence(static_cast<_Fp&&>(__f),
440  make_index_sequence<_Np>{});
441  }
442 
443 // }}}
444 // __generate_from_n_evaluations{{{
445 template <typename _R, typename _Fp, size_t... _I>
446  [[__gnu__::__flatten__]] _GLIBCXX_SIMD_INTRINSIC constexpr
447  _R
448  __execute_on_index_sequence_with_return(_Fp&& __f, index_sequence<_I...>)
449  { return _R{__f(_SizeConstant<_I>())...}; }
450 
451 template <size_t _Np, typename _R, typename _Fp>
452  _GLIBCXX_SIMD_INTRINSIC constexpr _R
453  __generate_from_n_evaluations(_Fp&& __f)
454  {
455  return __execute_on_index_sequence_with_return<_R>(
456  static_cast<_Fp&&>(__f), make_index_sequence<_Np>{});
457  }
458 
459 // }}}
460 // __call_with_n_evaluations{{{
461 template <size_t... _I, typename _F0, typename _FArgs>
462  [[__gnu__::__flatten__]] _GLIBCXX_SIMD_INTRINSIC constexpr
463  auto
464  __call_with_n_evaluations(index_sequence<_I...>, _F0&& __f0, _FArgs&& __fargs)
465  { return __f0(__fargs(_SizeConstant<_I>())...); }
466 
467 template <size_t _Np, typename _F0, typename _FArgs>
468  _GLIBCXX_SIMD_INTRINSIC constexpr auto
469  __call_with_n_evaluations(_F0&& __f0, _FArgs&& __fargs)
470  {
471  return __call_with_n_evaluations(make_index_sequence<_Np>{},
472  static_cast<_F0&&>(__f0),
473  static_cast<_FArgs&&>(__fargs));
474  }
475 
476 // }}}
477 // __call_with_subscripts{{{
478 template <size_t _First = 0, size_t... _It, typename _Tp, typename _Fp>
479  [[__gnu__::__flatten__]] _GLIBCXX_SIMD_INTRINSIC constexpr
480  auto
481  __call_with_subscripts(_Tp&& __x, index_sequence<_It...>, _Fp&& __fun)
482  { return __fun(__x[_First + _It]...); }
483 
484 template <size_t _Np, size_t _First = 0, typename _Tp, typename _Fp>
485  _GLIBCXX_SIMD_INTRINSIC constexpr auto
486  __call_with_subscripts(_Tp&& __x, _Fp&& __fun)
487  {
488  return __call_with_subscripts<_First>(static_cast<_Tp&&>(__x),
489  make_index_sequence<_Np>(),
490  static_cast<_Fp&&>(__fun));
491  }
492 
493 // }}}
494 
495 // vvv ---- type traits ---- vvv
496 // integer type aliases{{{
497 using _UChar = unsigned char;
498 using _SChar = signed char;
499 using _UShort = unsigned short;
500 using _UInt = unsigned int;
501 using _ULong = unsigned long;
502 using _ULLong = unsigned long long;
503 using _LLong = long long;
504 
505 //}}}
506 // __first_of_pack{{{
507 template <typename _T0, typename...>
508  struct __first_of_pack
509  { using type = _T0; };
510 
511 template <typename... _Ts>
512  using __first_of_pack_t = typename __first_of_pack<_Ts...>::type;
513 
514 //}}}
515 // __value_type_or_identity_t {{{
516 template <typename _Tp>
517  typename _Tp::value_type
518  __value_type_or_identity_impl(int);
519 
520 template <typename _Tp>
521  _Tp
522  __value_type_or_identity_impl(float);
523 
524 template <typename _Tp>
525  using __value_type_or_identity_t
526  = decltype(__value_type_or_identity_impl<_Tp>(int()));
527 
528 // }}}
529 // __is_vectorizable {{{
530 template <typename _Tp>
531  struct __is_vectorizable : public is_arithmetic<_Tp> {};
532 
533 template <>
534  struct __is_vectorizable<bool> : public false_type {};
535 
536 template <typename _Tp>
537  inline constexpr bool __is_vectorizable_v = __is_vectorizable<_Tp>::value;
538 
539 // Deduces to a vectorizable type
540 template <typename _Tp, typename = enable_if_t<__is_vectorizable_v<_Tp>>>
541  using _Vectorizable = _Tp;
542 
543 // }}}
544 // _LoadStorePtr / __is_possible_loadstore_conversion {{{
545 template <typename _Ptr, typename _ValueType>
546  struct __is_possible_loadstore_conversion
547  : conjunction<__is_vectorizable<_Ptr>, __is_vectorizable<_ValueType>> {};
548 
549 template <>
550  struct __is_possible_loadstore_conversion<bool, bool> : true_type {};
551 
552 // Deduces to a type allowed for load/store with the given value type.
553 template <typename _Ptr, typename _ValueType,
554  typename = enable_if_t<
555  __is_possible_loadstore_conversion<_Ptr, _ValueType>::value>>
556  using _LoadStorePtr = _Ptr;
557 
558 // }}}
559 // __is_bitmask{{{
560 template <typename _Tp, typename = void_t<>>
561  struct __is_bitmask : false_type {};
562 
563 template <typename _Tp>
564  inline constexpr bool __is_bitmask_v = __is_bitmask<_Tp>::value;
565 
566 // the __mmaskXX case:
567 template <typename _Tp>
568  struct __is_bitmask<_Tp,
569  void_t<decltype(declval<unsigned&>() = declval<_Tp>() & 1u)>>
570  : true_type {};
571 
572 // }}}
573 // __int_for_sizeof{{{
574 #pragma GCC diagnostic push
575 #pragma GCC diagnostic ignored "-Wpedantic"
576 template <size_t _Bytes>
577  constexpr auto
578  __int_for_sizeof()
579  {
580  if constexpr (_Bytes == sizeof(int))
581  return int();
582  #ifdef __clang__
583  else if constexpr (_Bytes == sizeof(char))
584  return char();
585  #else
586  else if constexpr (_Bytes == sizeof(_SChar))
587  return _SChar();
588  #endif
589  else if constexpr (_Bytes == sizeof(short))
590  return short();
591  #ifndef __clang__
592  else if constexpr (_Bytes == sizeof(long))
593  return long();
594  #endif
595  else if constexpr (_Bytes == sizeof(_LLong))
596  return _LLong();
597  #ifdef __SIZEOF_INT128__
598  else if constexpr (_Bytes == sizeof(__int128))
599  return __int128();
600  #endif // __SIZEOF_INT128__
601  else if constexpr (_Bytes % sizeof(int) == 0)
602  {
603  constexpr size_t _Np = _Bytes / sizeof(int);
604  struct _Ip
605  {
606  int _M_data[_Np];
607 
608  _GLIBCXX_SIMD_INTRINSIC constexpr _Ip
609  operator&(_Ip __rhs) const
610  {
611  return __generate_from_n_evaluations<_Np, _Ip>(
612  [&](auto __i) { return __rhs._M_data[__i] & _M_data[__i]; });
613  }
614 
615  _GLIBCXX_SIMD_INTRINSIC constexpr _Ip
616  operator|(_Ip __rhs) const
617  {
618  return __generate_from_n_evaluations<_Np, _Ip>(
619  [&](auto __i) { return __rhs._M_data[__i] | _M_data[__i]; });
620  }
621 
622  _GLIBCXX_SIMD_INTRINSIC constexpr _Ip
623  operator^(_Ip __rhs) const
624  {
625  return __generate_from_n_evaluations<_Np, _Ip>(
626  [&](auto __i) { return __rhs._M_data[__i] ^ _M_data[__i]; });
627  }
628 
629  _GLIBCXX_SIMD_INTRINSIC constexpr _Ip
630  operator~() const
631  {
632  return __generate_from_n_evaluations<_Np, _Ip>(
633  [&](auto __i) { return ~_M_data[__i]; });
634  }
635  };
636  return _Ip{};
637  }
638  else
639  static_assert(_Bytes != _Bytes, "this should be unreachable");
640  }
641 #pragma GCC diagnostic pop
642 
643 template <typename _Tp>
644  using __int_for_sizeof_t = decltype(__int_for_sizeof<sizeof(_Tp)>());
645 
646 template <size_t _Np>
647  using __int_with_sizeof_t = decltype(__int_for_sizeof<_Np>());
648 
649 // }}}
650 // __is_fixed_size_abi{{{
651 template <typename _Tp>
652  struct __is_fixed_size_abi : false_type {};
653 
654 template <int _Np>
655  struct __is_fixed_size_abi<simd_abi::fixed_size<_Np>> : true_type {};
656 
657 template <typename _Tp>
658  inline constexpr bool __is_fixed_size_abi_v = __is_fixed_size_abi<_Tp>::value;
659 
660 // }}}
661 // __is_scalar_abi {{{
662 template <typename _Abi>
663  constexpr bool
664  __is_scalar_abi()
665  { return is_same_v<simd_abi::scalar, _Abi>; }
666 
667 // }}}
668 // __abi_bytes_v {{{
669 template <template <int> class _Abi, int _Bytes>
670  constexpr int
671  __abi_bytes_impl(_Abi<_Bytes>*)
672  { return _Bytes; }
673 
674 template <typename _Tp>
675  constexpr int
676  __abi_bytes_impl(_Tp*)
677  { return -1; }
678 
679 template <typename _Abi>
680  inline constexpr int __abi_bytes_v
681  = __abi_bytes_impl(static_cast<_Abi*>(nullptr));
682 
683 // }}}
684 // __is_builtin_bitmask_abi {{{
685 template <typename _Abi>
686  constexpr bool
687  __is_builtin_bitmask_abi()
688  { return is_same_v<simd_abi::_VecBltnBtmsk<__abi_bytes_v<_Abi>>, _Abi>; }
689 
690 // }}}
691 // __is_sse_abi {{{
692 template <typename _Abi>
693  constexpr bool
694  __is_sse_abi()
695  {
696  constexpr auto _Bytes = __abi_bytes_v<_Abi>;
697  return _Bytes <= 16 && is_same_v<simd_abi::_VecBuiltin<_Bytes>, _Abi>;
698  }
699 
700 // }}}
701 // __is_avx_abi {{{
702 template <typename _Abi>
703  constexpr bool
704  __is_avx_abi()
705  {
706  constexpr auto _Bytes = __abi_bytes_v<_Abi>;
707  return _Bytes > 16 && _Bytes <= 32
708  && is_same_v<simd_abi::_VecBuiltin<_Bytes>, _Abi>;
709  }
710 
711 // }}}
712 // __is_avx512_abi {{{
713 template <typename _Abi>
714  constexpr bool
715  __is_avx512_abi()
716  {
717  constexpr auto _Bytes = __abi_bytes_v<_Abi>;
718  return _Bytes <= 64 && is_same_v<simd_abi::_Avx512<_Bytes>, _Abi>;
719  }
720 
721 // }}}
722 // __is_neon_abi {{{
723 template <typename _Abi>
724  constexpr bool
725  __is_neon_abi()
726  {
727  constexpr auto _Bytes = __abi_bytes_v<_Abi>;
728  return _Bytes <= 16 && is_same_v<simd_abi::_VecBuiltin<_Bytes>, _Abi>;
729  }
730 
731 // }}}
732 // __make_dependent_t {{{
733 template <typename, typename _Up>
734  struct __make_dependent
735  { using type = _Up; };
736 
737 template <typename _Tp, typename _Up>
738  using __make_dependent_t = typename __make_dependent<_Tp, _Up>::type;
739 
740 // }}}
741 // ^^^ ---- type traits ---- ^^^
742 
743 // __invoke_ub{{{
744 template <typename... _Args>
745  [[noreturn]] _GLIBCXX_SIMD_ALWAYS_INLINE void
746  __invoke_ub([[maybe_unused]] const char* __msg,
747  [[maybe_unused]] const _Args&... __args)
748  {
749 #ifdef _GLIBCXX_DEBUG_UB
750  __builtin_fprintf(stderr, __msg, __args...);
751  __builtin_trap();
752 #else
753  __builtin_unreachable();
754 #endif
755  }
756 
757 // }}}
758 // __assert_unreachable{{{
759 template <typename _Tp>
760  struct __assert_unreachable
761  { static_assert(!is_same_v<_Tp, _Tp>, "this should be unreachable"); };
762 
763 // }}}
764 // __size_or_zero_v {{{
765 template <typename _Tp, typename _Ap, size_t _Np = simd_size<_Tp, _Ap>::value>
766  constexpr size_t
767  __size_or_zero_dispatch(int)
768  { return _Np; }
769 
770 template <typename _Tp, typename _Ap>
771  constexpr size_t
772  __size_or_zero_dispatch(float)
773  { return 0; }
774 
775 template <typename _Tp, typename _Ap>
776  inline constexpr size_t __size_or_zero_v
777  = __size_or_zero_dispatch<_Tp, _Ap>(0);
778 
779 // }}}
780 // __div_roundup {{{
781 inline constexpr size_t
782 __div_roundup(size_t __a, size_t __b)
783 { return (__a + __b - 1) / __b; }
784 
785 // }}}
786 // _ExactBool{{{
787 class _ExactBool
788 {
789  const bool _M_data;
790 
791 public:
792  _GLIBCXX_SIMD_INTRINSIC constexpr _ExactBool(bool __b) : _M_data(__b) {}
793 
794  _ExactBool(int) = delete;
795 
796  _GLIBCXX_SIMD_INTRINSIC constexpr operator bool() const { return _M_data; }
797 };
798 
799 // }}}
800 // __may_alias{{{
801 /**@internal
802  * Helper __may_alias<_Tp> that turns _Tp into the type to be used for an
803  * aliasing pointer. This adds the __may_alias attribute to _Tp (with compilers
804  * that support it).
805  */
806 template <typename _Tp>
807  using __may_alias [[__gnu__::__may_alias__]] = _Tp;
808 
809 // }}}
810 // _UnsupportedBase {{{
811 // simd and simd_mask base for unsupported <_Tp, _Abi>
812 struct _UnsupportedBase
813 {
814  _UnsupportedBase() = delete;
815  _UnsupportedBase(const _UnsupportedBase&) = delete;
816  _UnsupportedBase& operator=(const _UnsupportedBase&) = delete;
817  ~_UnsupportedBase() = delete;
818 };
819 
820 // }}}
821 // _InvalidTraits {{{
822 /**
823  * @internal
824  * Defines the implementation of __a given <_Tp, _Abi>.
825  *
826  * Implementations must ensure that only valid <_Tp, _Abi> instantiations are
827  * possible. Static assertions in the type definition do not suffice. It is
828  * important that SFINAE works.
829  */
830 struct _InvalidTraits
831 {
832  using _IsValid = false_type;
833  using _SimdBase = _UnsupportedBase;
834  using _MaskBase = _UnsupportedBase;
835 
836  static constexpr size_t _S_full_size = 0;
837  static constexpr bool _S_is_partial = false;
838 
839  static constexpr size_t _S_simd_align = 1;
840  struct _SimdImpl;
841  struct _SimdMember {};
842  struct _SimdCastType;
843 
844  static constexpr size_t _S_mask_align = 1;
845  struct _MaskImpl;
846  struct _MaskMember {};
847  struct _MaskCastType;
848 };
849 
850 // }}}
851 // _SimdTraits {{{
852 template <typename _Tp, typename _Abi, typename = void_t<>>
853  struct _SimdTraits : _InvalidTraits {};
854 
855 // }}}
856 // __private_init, __bitset_init{{{
857 /**
858  * @internal
859  * Tag used for private init constructor of simd and simd_mask
860  */
861 inline constexpr struct _PrivateInit {} __private_init = {};
862 
863 inline constexpr struct _BitsetInit {} __bitset_init = {};
864 
865 // }}}
866 // __is_narrowing_conversion<_From, _To>{{{
867 template <typename _From, typename _To, bool = is_arithmetic_v<_From>,
868  bool = is_arithmetic_v<_To>>
869  struct __is_narrowing_conversion;
870 
871 // ignore "signed/unsigned mismatch" in the following trait.
872 // The implicit conversions will do the right thing here.
873 template <typename _From, typename _To>
874  struct __is_narrowing_conversion<_From, _To, true, true>
875  : public __bool_constant<(
876  __digits_v<_From> > __digits_v<_To>
877  || __finite_max_v<_From> > __finite_max_v<_To>
878  || __finite_min_v<_From> < __finite_min_v<_To>
879  || (is_signed_v<_From> && is_unsigned_v<_To>))> {};
880 
881 template <typename _Tp>
882  struct __is_narrowing_conversion<_Tp, bool, true, true>
883  : public true_type {};
884 
885 template <>
886  struct __is_narrowing_conversion<bool, bool, true, true>
887  : public false_type {};
888 
889 template <typename _Tp>
890  struct __is_narrowing_conversion<_Tp, _Tp, true, true>
891  : public false_type {};
892 
893 template <typename _From, typename _To>
894  struct __is_narrowing_conversion<_From, _To, false, true>
895  : public negation<is_convertible<_From, _To>> {};
896 
897 // }}}
898 // __converts_to_higher_integer_rank{{{
899 template <typename _From, typename _To, bool = (sizeof(_From) < sizeof(_To))>
900  struct __converts_to_higher_integer_rank : public true_type {};
901 
902 // this may fail for char -> short if sizeof(char) == sizeof(short)
903 template <typename _From, typename _To>
904  struct __converts_to_higher_integer_rank<_From, _To, false>
905  : public is_same<decltype(declval<_From>() + declval<_To>()), _To> {};
906 
907 // }}}
908 // __data(simd/simd_mask) {{{
909 template <typename _Tp, typename _Ap>
910  _GLIBCXX_SIMD_INTRINSIC constexpr const auto&
911  __data(const simd<_Tp, _Ap>& __x);
912 
913 template <typename _Tp, typename _Ap>
914  _GLIBCXX_SIMD_INTRINSIC constexpr auto&
915  __data(simd<_Tp, _Ap>& __x);
916 
917 template <typename _Tp, typename _Ap>
918  _GLIBCXX_SIMD_INTRINSIC constexpr const auto&
919  __data(const simd_mask<_Tp, _Ap>& __x);
920 
921 template <typename _Tp, typename _Ap>
922  _GLIBCXX_SIMD_INTRINSIC constexpr auto&
923  __data(simd_mask<_Tp, _Ap>& __x);
924 
925 // }}}
926 // _SimdConverter {{{
927 template <typename _FromT, typename _FromA, typename _ToT, typename _ToA,
928  typename = void>
929  struct _SimdConverter;
930 
931 template <typename _Tp, typename _Ap>
932  struct _SimdConverter<_Tp, _Ap, _Tp, _Ap, void>
933  {
934  template <typename _Up>
935  _GLIBCXX_SIMD_INTRINSIC const _Up&
936  operator()(const _Up& __x)
937  { return __x; }
938  };
939 
940 // }}}
941 // __to_value_type_or_member_type {{{
942 template <typename _V>
943  _GLIBCXX_SIMD_INTRINSIC constexpr auto
944  __to_value_type_or_member_type(const _V& __x) -> decltype(__data(__x))
945  { return __data(__x); }
946 
947 template <typename _V>
948  _GLIBCXX_SIMD_INTRINSIC constexpr const typename _V::value_type&
949  __to_value_type_or_member_type(const typename _V::value_type& __x)
950  { return __x; }
951 
952 // }}}
953 // __bool_storage_member_type{{{
954 template <size_t _Size>
955  struct __bool_storage_member_type;
956 
957 template <size_t _Size>
958  using __bool_storage_member_type_t =
959  typename __bool_storage_member_type<_Size>::type;
960 
961 // }}}
962 // _SimdTuple {{{
963 // why not tuple?
964 // 1. tuple gives no guarantee about the storage order, but I require
965 // storage
966 // equivalent to array<_Tp, _Np>
967 // 2. direct access to the element type (first template argument)
968 // 3. enforces equal element type, only different _Abi types are allowed
969 template <typename _Tp, typename... _Abis>
970  struct _SimdTuple;
971 
972 //}}}
973 // __fixed_size_storage_t {{{
974 template <typename _Tp, int _Np>
975  struct __fixed_size_storage;
976 
977 template <typename _Tp, int _Np>
978  using __fixed_size_storage_t = typename __fixed_size_storage<_Tp, _Np>::type;
979 
980 // }}}
981 // _SimdWrapper fwd decl{{{
982 template <typename _Tp, size_t _Size, typename = void_t<>>
983  struct _SimdWrapper;
984 
985 template <typename _Tp>
986  using _SimdWrapper8 = _SimdWrapper<_Tp, 8 / sizeof(_Tp)>;
987 template <typename _Tp>
988  using _SimdWrapper16 = _SimdWrapper<_Tp, 16 / sizeof(_Tp)>;
989 template <typename _Tp>
990  using _SimdWrapper32 = _SimdWrapper<_Tp, 32 / sizeof(_Tp)>;
991 template <typename _Tp>
992  using _SimdWrapper64 = _SimdWrapper<_Tp, 64 / sizeof(_Tp)>;
993 
994 // }}}
995 // __is_simd_wrapper {{{
996 template <typename _Tp>
997  struct __is_simd_wrapper : false_type {};
998 
999 template <typename _Tp, size_t _Np>
1000  struct __is_simd_wrapper<_SimdWrapper<_Tp, _Np>> : true_type {};
1001 
1002 template <typename _Tp>
1003  inline constexpr bool __is_simd_wrapper_v = __is_simd_wrapper<_Tp>::value;
1004 
1005 // }}}
1006 // _BitOps {{{
1007 struct _BitOps
1008 {
1009  // _S_bit_iteration {{{
1010  template <typename _Tp, typename _Fp>
1011  static void
1012  _S_bit_iteration(_Tp __mask, _Fp&& __f)
1013  {
1014  static_assert(sizeof(_ULLong) >= sizeof(_Tp));
1015  conditional_t<sizeof(_Tp) <= sizeof(_UInt), _UInt, _ULLong> __k;
1016  if constexpr (is_convertible_v<_Tp, decltype(__k)>)
1017  __k = __mask;
1018  else
1019  __k = __mask.to_ullong();
1020  while(__k)
1021  {
1022  __f(std::__countr_zero(__k));
1023  __k &= (__k - 1);
1024  }
1025  }
1026 
1027  //}}}
1028 };
1029 
1030 //}}}
1031 // __increment, __decrement {{{
1032 template <typename _Tp = void>
1033  struct __increment
1034  { constexpr _Tp operator()(_Tp __a) const { return ++__a; } };
1035 
1036 template <>
1037  struct __increment<void>
1038  {
1039  template <typename _Tp>
1040  constexpr _Tp
1041  operator()(_Tp __a) const
1042  { return ++__a; }
1043  };
1044 
1045 template <typename _Tp = void>
1046  struct __decrement
1047  { constexpr _Tp operator()(_Tp __a) const { return --__a; } };
1048 
1049 template <>
1050  struct __decrement<void>
1051  {
1052  template <typename _Tp>
1053  constexpr _Tp
1054  operator()(_Tp __a) const
1055  { return --__a; }
1056  };
1057 
1058 // }}}
1059 // _ValuePreserving(OrInt) {{{
1060 template <typename _From, typename _To,
1061  typename = enable_if_t<negation<
1062  __is_narrowing_conversion<__remove_cvref_t<_From>, _To>>::value>>
1063  using _ValuePreserving = _From;
1064 
1065 template <typename _From, typename _To,
1066  typename _DecayedFrom = __remove_cvref_t<_From>,
1067  typename = enable_if_t<conjunction<
1068  is_convertible<_From, _To>,
1069  disjunction<
1070  is_same<_DecayedFrom, _To>, is_same<_DecayedFrom, int>,
1071  conjunction<is_same<_DecayedFrom, _UInt>, is_unsigned<_To>>,
1072  negation<__is_narrowing_conversion<_DecayedFrom, _To>>>>::value>>
1073  using _ValuePreservingOrInt = _From;
1074 
1075 // }}}
1076 // __intrinsic_type {{{
1077 template <typename _Tp, size_t _Bytes, typename = void_t<>>
1078  struct __intrinsic_type;
1079 
1080 template <typename _Tp, size_t _Size>
1081  using __intrinsic_type_t =
1082  typename __intrinsic_type<_Tp, _Size * sizeof(_Tp)>::type;
1083 
1084 template <typename _Tp>
1085  using __intrinsic_type2_t = typename __intrinsic_type<_Tp, 2>::type;
1086 template <typename _Tp>
1087  using __intrinsic_type4_t = typename __intrinsic_type<_Tp, 4>::type;
1088 template <typename _Tp>
1089  using __intrinsic_type8_t = typename __intrinsic_type<_Tp, 8>::type;
1090 template <typename _Tp>
1091  using __intrinsic_type16_t = typename __intrinsic_type<_Tp, 16>::type;
1092 template <typename _Tp>
1093  using __intrinsic_type32_t = typename __intrinsic_type<_Tp, 32>::type;
1094 template <typename _Tp>
1095  using __intrinsic_type64_t = typename __intrinsic_type<_Tp, 64>::type;
1096 
1097 // }}}
1098 // _BitMask {{{
1099 template <size_t _Np, bool _Sanitized = false>
1100  struct _BitMask;
1101 
1102 template <size_t _Np, bool _Sanitized>
1103  struct __is_bitmask<_BitMask<_Np, _Sanitized>, void> : true_type {};
1104 
1105 template <size_t _Np>
1106  using _SanitizedBitMask = _BitMask<_Np, true>;
1107 
1108 template <size_t _Np, bool _Sanitized>
1109  struct _BitMask
1110  {
1111  static_assert(_Np > 0);
1112 
1113  static constexpr size_t _NBytes = __div_roundup(_Np, __CHAR_BIT__);
1114 
1115  using _Tp = conditional_t<_Np == 1, bool,
1116  make_unsigned_t<__int_with_sizeof_t<std::min(
1117  sizeof(_ULLong), std::__bit_ceil(_NBytes))>>>;
1118 
1119  static constexpr int _S_array_size = __div_roundup(_NBytes, sizeof(_Tp));
1120 
1121  _Tp _M_bits[_S_array_size];
1122 
1123  static constexpr int _S_unused_bits
1124  = _Np == 1 ? 0 : _S_array_size * sizeof(_Tp) * __CHAR_BIT__ - _Np;
1125 
1126  static constexpr _Tp _S_bitmask = +_Tp(~_Tp()) >> _S_unused_bits;
1127 
1128  constexpr _BitMask() noexcept = default;
1129 
1130  constexpr _BitMask(unsigned long long __x) noexcept
1131  : _M_bits{static_cast<_Tp>(__x)} {}
1132 
1133  _BitMask(bitset<_Np> __x) noexcept : _BitMask(__x.to_ullong()) {}
1134 
1135  constexpr _BitMask(const _BitMask&) noexcept = default;
1136 
1137  template <bool _RhsSanitized, typename = enable_if_t<_RhsSanitized == false
1138  && _Sanitized == true>>
1139  constexpr _BitMask(const _BitMask<_Np, _RhsSanitized>& __rhs) noexcept
1140  : _BitMask(__rhs._M_sanitized()) {}
1141 
1142  constexpr operator _SimdWrapper<bool, _Np>() const noexcept
1143  {
1144  static_assert(_S_array_size == 1);
1145  return _M_bits[0];
1146  }
1147 
1148  // precondition: is sanitized
1149  constexpr _Tp
1150  _M_to_bits() const noexcept
1151  {
1152  static_assert(_S_array_size == 1);
1153  return _M_bits[0];
1154  }
1155 
1156  // precondition: is sanitized
1157  constexpr unsigned long long
1158  to_ullong() const noexcept
1159  {
1160  static_assert(_S_array_size == 1);
1161  return _M_bits[0];
1162  }
1163 
1164  // precondition: is sanitized
1165  constexpr unsigned long
1166  to_ulong() const noexcept
1167  {
1168  static_assert(_S_array_size == 1);
1169  return _M_bits[0];
1170  }
1171 
1172  constexpr bitset<_Np>
1173  _M_to_bitset() const noexcept
1174  {
1175  static_assert(_S_array_size == 1);
1176  return _M_bits[0];
1177  }
1178 
1179  constexpr decltype(auto)
1180  _M_sanitized() const noexcept
1181  {
1182  if constexpr (_Sanitized)
1183  return *this;
1184  else if constexpr (_Np == 1)
1185  return _SanitizedBitMask<_Np>(_M_bits[0]);
1186  else
1187  {
1188  _SanitizedBitMask<_Np> __r = {};
1189  for (int __i = 0; __i < _S_array_size; ++__i)
1190  __r._M_bits[__i] = _M_bits[__i];
1191  if constexpr (_S_unused_bits > 0)
1192  __r._M_bits[_S_array_size - 1] &= _S_bitmask;
1193  return __r;
1194  }
1195  }
1196 
1197  template <size_t _Mp, bool _LSanitized>
1198  constexpr _BitMask<_Np + _Mp, _Sanitized>
1199  _M_prepend(_BitMask<_Mp, _LSanitized> __lsb) const noexcept
1200  {
1201  constexpr size_t _RN = _Np + _Mp;
1202  using _Rp = _BitMask<_RN, _Sanitized>;
1203  if constexpr (_Rp::_S_array_size == 1)
1204  {
1205  _Rp __r{{_M_bits[0]}};
1206  __r._M_bits[0] <<= _Mp;
1207  __r._M_bits[0] |= __lsb._M_sanitized()._M_bits[0];
1208  return __r;
1209  }
1210  else
1211  __assert_unreachable<_Rp>();
1212  }
1213 
1214  // Return a new _BitMask with size _NewSize while dropping _DropLsb least
1215  // significant bits. If the operation implicitly produces a sanitized bitmask,
1216  // the result type will have _Sanitized set.
1217  template <size_t _DropLsb, size_t _NewSize = _Np - _DropLsb>
1218  constexpr auto
1219  _M_extract() const noexcept
1220  {
1221  static_assert(_Np > _DropLsb);
1222  static_assert(_DropLsb + _NewSize <= sizeof(_ULLong) * __CHAR_BIT__,
1223  "not implemented for bitmasks larger than one ullong");
1224  if constexpr (_NewSize == 1)
1225  // must sanitize because the return _Tp is bool
1226  return _SanitizedBitMask<1>(_M_bits[0] & (_Tp(1) << _DropLsb));
1227  else
1228  return _BitMask<_NewSize,
1229  ((_NewSize + _DropLsb == sizeof(_Tp) * __CHAR_BIT__
1230  && _NewSize + _DropLsb <= _Np)
1231  || ((_Sanitized || _Np == sizeof(_Tp) * __CHAR_BIT__)
1232  && _NewSize + _DropLsb >= _Np))>(_M_bits[0]
1233  >> _DropLsb);
1234  }
1235 
1236  // True if all bits are set. Implicitly sanitizes if _Sanitized == false.
1237  constexpr bool
1238  all() const noexcept
1239  {
1240  if constexpr (_Np == 1)
1241  return _M_bits[0];
1242  else if constexpr (!_Sanitized)
1243  return _M_sanitized().all();
1244  else
1245  {
1246  constexpr _Tp __allbits = ~_Tp();
1247  for (int __i = 0; __i < _S_array_size - 1; ++__i)
1248  if (_M_bits[__i] != __allbits)
1249  return false;
1250  return _M_bits[_S_array_size - 1] == _S_bitmask;
1251  }
1252  }
1253 
1254  // True if at least one bit is set. Implicitly sanitizes if _Sanitized ==
1255  // false.
1256  constexpr bool
1257  any() const noexcept
1258  {
1259  if constexpr (_Np == 1)
1260  return _M_bits[0];
1261  else if constexpr (!_Sanitized)
1262  return _M_sanitized().any();
1263  else
1264  {
1265  for (int __i = 0; __i < _S_array_size - 1; ++__i)
1266  if (_M_bits[__i] != 0)
1267  return true;
1268  return _M_bits[_S_array_size - 1] != 0;
1269  }
1270  }
1271 
1272  // True if no bit is set. Implicitly sanitizes if _Sanitized == false.
1273  constexpr bool
1274  none() const noexcept
1275  {
1276  if constexpr (_Np == 1)
1277  return !_M_bits[0];
1278  else if constexpr (!_Sanitized)
1279  return _M_sanitized().none();
1280  else
1281  {
1282  for (int __i = 0; __i < _S_array_size - 1; ++__i)
1283  if (_M_bits[__i] != 0)
1284  return false;
1285  return _M_bits[_S_array_size - 1] == 0;
1286  }
1287  }
1288 
1289  // Returns the number of set bits. Implicitly sanitizes if _Sanitized ==
1290  // false.
1291  constexpr int
1292  count() const noexcept
1293  {
1294  if constexpr (_Np == 1)
1295  return _M_bits[0];
1296  else if constexpr (!_Sanitized)
1297  return _M_sanitized().none();
1298  else
1299  {
1300  int __result = __builtin_popcountll(_M_bits[0]);
1301  for (int __i = 1; __i < _S_array_size; ++__i)
1302  __result += __builtin_popcountll(_M_bits[__i]);
1303  return __result;
1304  }
1305  }
1306 
1307  // Returns the bit at offset __i as bool.
1308  constexpr bool
1309  operator[](size_t __i) const noexcept
1310  {
1311  if constexpr (_Np == 1)
1312  return _M_bits[0];
1313  else if constexpr (_S_array_size == 1)
1314  return (_M_bits[0] >> __i) & 1;
1315  else
1316  {
1317  const size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__);
1318  const size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__);
1319  return (_M_bits[__j] >> __shift) & 1;
1320  }
1321  }
1322 
1323  template <size_t __i>
1324  constexpr bool
1325  operator[](_SizeConstant<__i>) const noexcept
1326  {
1327  static_assert(__i < _Np);
1328  constexpr size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__);
1329  constexpr size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__);
1330  return static_cast<bool>(_M_bits[__j] & (_Tp(1) << __shift));
1331  }
1332 
1333  // Set the bit at offset __i to __x.
1334  constexpr void
1335  set(size_t __i, bool __x) noexcept
1336  {
1337  if constexpr (_Np == 1)
1338  _M_bits[0] = __x;
1339  else if constexpr (_S_array_size == 1)
1340  {
1341  _M_bits[0] &= ~_Tp(_Tp(1) << __i);
1342  _M_bits[0] |= _Tp(_Tp(__x) << __i);
1343  }
1344  else
1345  {
1346  const size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__);
1347  const size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__);
1348  _M_bits[__j] &= ~_Tp(_Tp(1) << __shift);
1349  _M_bits[__j] |= _Tp(_Tp(__x) << __shift);
1350  }
1351  }
1352 
1353  template <size_t __i>
1354  constexpr void
1355  set(_SizeConstant<__i>, bool __x) noexcept
1356  {
1357  static_assert(__i < _Np);
1358  if constexpr (_Np == 1)
1359  _M_bits[0] = __x;
1360  else
1361  {
1362  constexpr size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__);
1363  constexpr size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__);
1364  constexpr _Tp __mask = ~_Tp(_Tp(1) << __shift);
1365  _M_bits[__j] &= __mask;
1366  _M_bits[__j] |= _Tp(_Tp(__x) << __shift);
1367  }
1368  }
1369 
1370  // Inverts all bits. Sanitized input leads to sanitized output.
1371  constexpr _BitMask
1372  operator~() const noexcept
1373  {
1374  if constexpr (_Np == 1)
1375  return !_M_bits[0];
1376  else
1377  {
1378  _BitMask __result{};
1379  for (int __i = 0; __i < _S_array_size - 1; ++__i)
1380  __result._M_bits[__i] = ~_M_bits[__i];
1381  if constexpr (_Sanitized)
1382  __result._M_bits[_S_array_size - 1]
1383  = _M_bits[_S_array_size - 1] ^ _S_bitmask;
1384  else
1385  __result._M_bits[_S_array_size - 1] = ~_M_bits[_S_array_size - 1];
1386  return __result;
1387  }
1388  }
1389 
1390  constexpr _BitMask&
1391  operator^=(const _BitMask& __b) & noexcept
1392  {
1393  __execute_n_times<_S_array_size>(
1394  [&](auto __i) { _M_bits[__i] ^= __b._M_bits[__i]; });
1395  return *this;
1396  }
1397 
1398  constexpr _BitMask&
1399  operator|=(const _BitMask& __b) & noexcept
1400  {
1401  __execute_n_times<_S_array_size>(
1402  [&](auto __i) { _M_bits[__i] |= __b._M_bits[__i]; });
1403  return *this;
1404  }
1405 
1406  constexpr _BitMask&
1407  operator&=(const _BitMask& __b) & noexcept
1408  {
1409  __execute_n_times<_S_array_size>(
1410  [&](auto __i) { _M_bits[__i] &= __b._M_bits[__i]; });
1411  return *this;
1412  }
1413 
1414  friend constexpr _BitMask
1415  operator^(const _BitMask& __a, const _BitMask& __b) noexcept
1416  {
1417  _BitMask __r = __a;
1418  __r ^= __b;
1419  return __r;
1420  }
1421 
1422  friend constexpr _BitMask
1423  operator|(const _BitMask& __a, const _BitMask& __b) noexcept
1424  {
1425  _BitMask __r = __a;
1426  __r |= __b;
1427  return __r;
1428  }
1429 
1430  friend constexpr _BitMask
1431  operator&(const _BitMask& __a, const _BitMask& __b) noexcept
1432  {
1433  _BitMask __r = __a;
1434  __r &= __b;
1435  return __r;
1436  }
1437 
1438  _GLIBCXX_SIMD_INTRINSIC
1439  constexpr bool
1440  _M_is_constprop() const
1441  {
1442  if constexpr (_S_array_size == 0)
1443  return __builtin_constant_p(_M_bits[0]);
1444  else
1445  {
1446  for (int __i = 0; __i < _S_array_size; ++__i)
1447  if (!__builtin_constant_p(_M_bits[__i]))
1448  return false;
1449  return true;
1450  }
1451  }
1452  };
1453 
1454 // }}}
1455 
1456 // vvv ---- builtin vector types [[gnu::vector_size(N)]] and operations ---- vvv
1457 // __min_vector_size {{{
1458 template <typename _Tp = void>
1459  static inline constexpr int __min_vector_size = 2 * sizeof(_Tp);
1460 
1461 #if _GLIBCXX_SIMD_HAVE_NEON
1462 template <>
1463  inline constexpr int __min_vector_size<void> = 8;
1464 #else
1465 template <>
1466  inline constexpr int __min_vector_size<void> = 16;
1467 #endif
1468 
1469 // }}}
1470 // __vector_type {{{
1471 template <typename _Tp, size_t _Np, typename = void>
1472  struct __vector_type_n {};
1473 
1474 // substition failure for 0-element case
1475 template <typename _Tp>
1476  struct __vector_type_n<_Tp, 0, void> {};
1477 
1478 // special case 1-element to be _Tp itself
1479 template <typename _Tp>
1480  struct __vector_type_n<_Tp, 1, enable_if_t<__is_vectorizable_v<_Tp>>>
1481  { using type = _Tp; };
1482 
1483 // else, use GNU-style builtin vector types
1484 template <typename _Tp, size_t _Np>
1485  struct __vector_type_n<_Tp, _Np,
1486  enable_if_t<__is_vectorizable_v<_Tp> && _Np >= 2>>
1487  {
1488  static constexpr size_t _S_Np2 = std::__bit_ceil(_Np * sizeof(_Tp));
1489 
1490  static constexpr size_t _S_Bytes =
1491 #ifdef __i386__
1492  // Using [[gnu::vector_size(8)]] would wreak havoc on the FPU because
1493  // those objects are passed via MMX registers and nothing ever calls EMMS.
1494  _S_Np2 == 8 ? 16 :
1495 #endif
1496  _S_Np2 < __min_vector_size<_Tp> ? __min_vector_size<_Tp>
1497  : _S_Np2;
1498 
1499  using type [[__gnu__::__vector_size__(_S_Bytes)]] = _Tp;
1500  };
1501 
1502 template <typename _Tp, size_t _Bytes, size_t = _Bytes % sizeof(_Tp)>
1503  struct __vector_type;
1504 
1505 template <typename _Tp, size_t _Bytes>
1506  struct __vector_type<_Tp, _Bytes, 0>
1507  : __vector_type_n<_Tp, _Bytes / sizeof(_Tp)> {};
1508 
1509 template <typename _Tp, size_t _Size>
1510  using __vector_type_t = typename __vector_type_n<_Tp, _Size>::type;
1511 
1512 template <typename _Tp>
1513  using __vector_type2_t = typename __vector_type<_Tp, 2>::type;
1514 template <typename _Tp>
1515  using __vector_type4_t = typename __vector_type<_Tp, 4>::type;
1516 template <typename _Tp>
1517  using __vector_type8_t = typename __vector_type<_Tp, 8>::type;
1518 template <typename _Tp>
1519  using __vector_type16_t = typename __vector_type<_Tp, 16>::type;
1520 template <typename _Tp>
1521  using __vector_type32_t = typename __vector_type<_Tp, 32>::type;
1522 template <typename _Tp>
1523  using __vector_type64_t = typename __vector_type<_Tp, 64>::type;
1524 
1525 // }}}
1526 // __is_vector_type {{{
1527 template <typename _Tp, typename = void_t<>>
1528  struct __is_vector_type : false_type {};
1529 
1530 template <typename _Tp>
1531  struct __is_vector_type<
1532  _Tp, void_t<typename __vector_type<
1533  remove_reference_t<decltype(declval<_Tp>()[0])>, sizeof(_Tp)>::type>>
1534  : is_same<_Tp, typename __vector_type<
1535  remove_reference_t<decltype(declval<_Tp>()[0])>,
1536  sizeof(_Tp)>::type> {};
1537 
1538 template <typename _Tp>
1539  inline constexpr bool __is_vector_type_v = __is_vector_type<_Tp>::value;
1540 
1541 // }}}
1542 // __is_intrinsic_type {{{
1543 #if _GLIBCXX_SIMD_HAVE_SSE_ABI
1544 template <typename _Tp>
1545  using __is_intrinsic_type = __is_vector_type<_Tp>;
1546 #else // not SSE (x86)
1547 template <typename _Tp, typename = void_t<>>
1548  struct __is_intrinsic_type : false_type {};
1549 
1550 template <typename _Tp>
1551  struct __is_intrinsic_type<
1552  _Tp, void_t<typename __intrinsic_type<
1553  remove_reference_t<decltype(declval<_Tp>()[0])>, sizeof(_Tp)>::type>>
1554  : is_same<_Tp, typename __intrinsic_type<
1555  remove_reference_t<decltype(declval<_Tp>()[0])>,
1556  sizeof(_Tp)>::type> {};
1557 #endif
1558 
1559 template <typename _Tp>
1560  inline constexpr bool __is_intrinsic_type_v = __is_intrinsic_type<_Tp>::value;
1561 
1562 // }}}
1563 // _VectorTraits{{{
1564 template <typename _Tp, typename = void_t<>>
1565  struct _VectorTraitsImpl;
1566 
1567 template <typename _Tp>
1568  struct _VectorTraitsImpl<_Tp, enable_if_t<__is_vector_type_v<_Tp>
1569  || __is_intrinsic_type_v<_Tp>>>
1570  {
1571  using type = _Tp;
1572  using value_type = remove_reference_t<decltype(declval<_Tp>()[0])>;
1573  static constexpr int _S_full_size = sizeof(_Tp) / sizeof(value_type);
1574  using _Wrapper = _SimdWrapper<value_type, _S_full_size>;
1575  template <typename _Up, int _W = _S_full_size>
1576  static constexpr bool _S_is
1577  = is_same_v<value_type, _Up> && _W == _S_full_size;
1578  };
1579 
1580 template <typename _Tp, size_t _Np>
1581  struct _VectorTraitsImpl<_SimdWrapper<_Tp, _Np>,
1582  void_t<__vector_type_t<_Tp, _Np>>>
1583  {
1584  using type = __vector_type_t<_Tp, _Np>;
1585  using value_type = _Tp;
1586  static constexpr int _S_full_size = sizeof(type) / sizeof(value_type);
1587  using _Wrapper = _SimdWrapper<_Tp, _Np>;
1588  static constexpr bool _S_is_partial = (_Np == _S_full_size);
1589  static constexpr int _S_partial_width = _Np;
1590  template <typename _Up, int _W = _S_full_size>
1591  static constexpr bool _S_is
1592  = is_same_v<value_type, _Up>&& _W == _S_full_size;
1593  };
1594 
1595 template <typename _Tp, typename = typename _VectorTraitsImpl<_Tp>::type>
1596  using _VectorTraits = _VectorTraitsImpl<_Tp>;
1597 
1598 // }}}
1599 // __as_vector{{{
1600 template <typename _V>
1601  _GLIBCXX_SIMD_INTRINSIC constexpr auto
1602  __as_vector(_V __x)
1603  {
1604  if constexpr (__is_vector_type_v<_V>)
1605  return __x;
1606  else if constexpr (is_simd<_V>::value || is_simd_mask<_V>::value)
1607  return __data(__x)._M_data;
1608  else if constexpr (__is_vectorizable_v<_V>)
1609  return __vector_type_t<_V, 2>{__x};
1610  else
1611  return __x._M_data;
1612  }
1613 
1614 // }}}
1615 // __as_wrapper{{{
1616 template <size_t _Np = 0, typename _V>
1617  _GLIBCXX_SIMD_INTRINSIC constexpr auto
1618  __as_wrapper(_V __x)
1619  {
1620  if constexpr (__is_vector_type_v<_V>)
1621  return _SimdWrapper<typename _VectorTraits<_V>::value_type,
1622  (_Np > 0 ? _Np : _VectorTraits<_V>::_S_full_size)>(__x);
1623  else if constexpr (is_simd<_V>::value || is_simd_mask<_V>::value)
1624  {
1625  static_assert(_V::size() == _Np);
1626  return __data(__x);
1627  }
1628  else
1629  {
1630  static_assert(_V::_S_size == _Np);
1631  return __x;
1632  }
1633  }
1634 
1635 // }}}
1636 // __intrin_bitcast{{{
1637 template <typename _To, typename _From>
1638  _GLIBCXX_SIMD_INTRINSIC constexpr _To
1639  __intrin_bitcast(_From __v)
1640  {
1641  static_assert((__is_vector_type_v<_From> || __is_intrinsic_type_v<_From>)
1642  && (__is_vector_type_v<_To> || __is_intrinsic_type_v<_To>));
1643  if constexpr (sizeof(_To) == sizeof(_From))
1644  return reinterpret_cast<_To>(__v);
1645  else if constexpr (sizeof(_From) > sizeof(_To))
1646  if constexpr (sizeof(_To) >= 16)
1647  return reinterpret_cast<const __may_alias<_To>&>(__v);
1648  else
1649  {
1650  _To __r;
1651  __builtin_memcpy(&__r, &__v, sizeof(_To));
1652  return __r;
1653  }
1654 #if _GLIBCXX_SIMD_X86INTRIN && !defined __clang__
1655  else if constexpr (__have_avx && sizeof(_From) == 16 && sizeof(_To) == 32)
1656  return reinterpret_cast<_To>(__builtin_ia32_ps256_ps(
1657  reinterpret_cast<__vector_type_t<float, 4>>(__v)));
1658  else if constexpr (__have_avx512f && sizeof(_From) == 16
1659  && sizeof(_To) == 64)
1660  return reinterpret_cast<_To>(__builtin_ia32_ps512_ps(
1661  reinterpret_cast<__vector_type_t<float, 4>>(__v)));
1662  else if constexpr (__have_avx512f && sizeof(_From) == 32
1663  && sizeof(_To) == 64)
1664  return reinterpret_cast<_To>(__builtin_ia32_ps512_256ps(
1665  reinterpret_cast<__vector_type_t<float, 8>>(__v)));
1666 #endif // _GLIBCXX_SIMD_X86INTRIN
1667  else if constexpr (sizeof(__v) <= 8)
1668  return reinterpret_cast<_To>(
1669  __vector_type_t<__int_for_sizeof_t<_From>, sizeof(_To) / sizeof(_From)>{
1670  reinterpret_cast<__int_for_sizeof_t<_From>>(__v)});
1671  else
1672  {
1673  static_assert(sizeof(_To) > sizeof(_From));
1674  _To __r = {};
1675  __builtin_memcpy(&__r, &__v, sizeof(_From));
1676  return __r;
1677  }
1678  }
1679 
1680 // }}}
1681 // __vector_bitcast{{{
1682 template <typename _To, size_t _NN = 0, typename _From,
1683  typename _FromVT = _VectorTraits<_From>,
1684  size_t _Np = _NN == 0 ? sizeof(_From) / sizeof(_To) : _NN>
1685  _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_To, _Np>
1686  __vector_bitcast(_From __x)
1687  {
1688  using _R = __vector_type_t<_To, _Np>;
1689  return __intrin_bitcast<_R>(__x);
1690  }
1691 
1692 template <typename _To, size_t _NN = 0, typename _Tp, size_t _Nx,
1693  size_t _Np
1694  = _NN == 0 ? sizeof(_SimdWrapper<_Tp, _Nx>) / sizeof(_To) : _NN>
1695  _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_To, _Np>
1696  __vector_bitcast(const _SimdWrapper<_Tp, _Nx>& __x)
1697  {
1698  static_assert(_Np > 1);
1699  return __intrin_bitcast<__vector_type_t<_To, _Np>>(__x._M_data);
1700  }
1701 
1702 // }}}
1703 // __convert_x86 declarations {{{
1704 #ifdef _GLIBCXX_SIMD_WORKAROUND_PR85048
1705 template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
1706  _To __convert_x86(_Tp);
1707 
1708 template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
1709  _To __convert_x86(_Tp, _Tp);
1710 
1711 template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
1712  _To __convert_x86(_Tp, _Tp, _Tp, _Tp);
1713 
1714 template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
1715  _To __convert_x86(_Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp);
1716 
1717 template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>>
1718  _To __convert_x86(_Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp,
1719  _Tp, _Tp, _Tp, _Tp);
1720 #endif // _GLIBCXX_SIMD_WORKAROUND_PR85048
1721 
1722 //}}}
1723 // __bit_cast {{{
1724 template <typename _To, typename _From>
1725  _GLIBCXX_SIMD_INTRINSIC constexpr _To
1726  __bit_cast(const _From __x)
1727  {
1728 #if __has_builtin(__builtin_bit_cast)
1729  return __builtin_bit_cast(_To, __x);
1730 #else
1731  static_assert(sizeof(_To) == sizeof(_From));
1732  constexpr bool __to_is_vectorizable
1733  = is_arithmetic_v<_To> || is_enum_v<_To>;
1734  constexpr bool __from_is_vectorizable
1735  = is_arithmetic_v<_From> || is_enum_v<_From>;
1736  if constexpr (__is_vector_type_v<_To> && __is_vector_type_v<_From>)
1737  return reinterpret_cast<_To>(__x);
1738  else if constexpr (__is_vector_type_v<_To> && __from_is_vectorizable)
1739  {
1740  using _FV [[gnu::vector_size(sizeof(_From))]] = _From;
1741  return reinterpret_cast<_To>(_FV{__x});
1742  }
1743  else if constexpr (__to_is_vectorizable && __from_is_vectorizable)
1744  {
1745  using _TV [[gnu::vector_size(sizeof(_To))]] = _To;
1746  using _FV [[gnu::vector_size(sizeof(_From))]] = _From;
1747  return reinterpret_cast<_TV>(_FV{__x})[0];
1748  }
1749  else if constexpr (__to_is_vectorizable && __is_vector_type_v<_From>)
1750  {
1751  using _TV [[gnu::vector_size(sizeof(_To))]] = _To;
1752  return reinterpret_cast<_TV>(__x)[0];
1753  }
1754  else
1755  {
1756  _To __r;
1757  __builtin_memcpy(reinterpret_cast<char*>(&__r),
1758  reinterpret_cast<const char*>(&__x), sizeof(_To));
1759  return __r;
1760  }
1761 #endif
1762  }
1763 
1764 // }}}
1765 // __to_intrin {{{
1766 template <typename _Tp, typename _TVT = _VectorTraits<_Tp>,
1767  typename _R
1768  = __intrinsic_type_t<typename _TVT::value_type, _TVT::_S_full_size>>
1769  _GLIBCXX_SIMD_INTRINSIC constexpr _R
1770  __to_intrin(_Tp __x)
1771  {
1772  static_assert(sizeof(__x) <= sizeof(_R),
1773  "__to_intrin may never drop values off the end");
1774  if constexpr (sizeof(__x) == sizeof(_R))
1775  return reinterpret_cast<_R>(__as_vector(__x));
1776  else
1777  {
1778  using _Up = __int_for_sizeof_t<_Tp>;
1779  return reinterpret_cast<_R>(
1780  __vector_type_t<_Up, sizeof(_R) / sizeof(_Up)>{__bit_cast<_Up>(__x)});
1781  }
1782  }
1783 
1784 // }}}
1785 // __make_vector{{{
1786 template <typename _Tp, typename... _Args>
1787  _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, sizeof...(_Args)>
1788  __make_vector(const _Args&... __args)
1789  {
1790  return __vector_type_t<_Tp, sizeof...(_Args)>{static_cast<_Tp>(__args)...};
1791  }
1792 
1793 // }}}
1794 // __vector_broadcast{{{
1795 template <size_t _Np, typename _Tp>
1796  _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np>
1797  __vector_broadcast(_Tp __x)
1798  {
1799  return __call_with_n_evaluations<_Np>(
1800  [](auto... __xx) { return __vector_type_t<_Tp, _Np>{__xx...}; },
1801  [&__x](int) { return __x; });
1802  }
1803 
1804 // }}}
1805 // __generate_vector{{{
1806  template <typename _Tp, size_t _Np, typename _Gp, size_t... _I>
1807  _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np>
1808  __generate_vector_impl(_Gp&& __gen, index_sequence<_I...>)
1809  {
1810  return __vector_type_t<_Tp, _Np>{
1811  static_cast<_Tp>(__gen(_SizeConstant<_I>()))...};
1812  }
1813 
1814 template <typename _V, typename _VVT = _VectorTraits<_V>, typename _Gp>
1815  _GLIBCXX_SIMD_INTRINSIC constexpr _V
1816  __generate_vector(_Gp&& __gen)
1817  {
1818  if constexpr (__is_vector_type_v<_V>)
1819  return __generate_vector_impl<typename _VVT::value_type,
1820  _VVT::_S_full_size>(
1821  static_cast<_Gp&&>(__gen), make_index_sequence<_VVT::_S_full_size>());
1822  else
1823  return __generate_vector_impl<typename _VVT::value_type,
1824  _VVT::_S_partial_width>(
1825  static_cast<_Gp&&>(__gen),
1826  make_index_sequence<_VVT::_S_partial_width>());
1827  }
1828 
1829 template <typename _Tp, size_t _Np, typename _Gp>
1830  _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np>
1831  __generate_vector(_Gp&& __gen)
1832  {
1833  return __generate_vector_impl<_Tp, _Np>(static_cast<_Gp&&>(__gen),
1834  make_index_sequence<_Np>());
1835  }
1836 
1837 // }}}
1838 // __xor{{{
1839 template <typename _TW>
1840  _GLIBCXX_SIMD_INTRINSIC constexpr _TW
1841  __xor(_TW __a, _TW __b) noexcept
1842  {
1843  if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>)
1844  {
1845  using _Tp = typename conditional_t<__is_simd_wrapper_v<_TW>, _TW,
1846  _VectorTraitsImpl<_TW>>::value_type;
1847  if constexpr (is_floating_point_v<_Tp>)
1848  {
1849  using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>;
1850  return __vector_bitcast<_Tp>(__vector_bitcast<_Ip>(__a)
1851  ^ __vector_bitcast<_Ip>(__b));
1852  }
1853  else if constexpr (__is_vector_type_v<_TW>)
1854  return __a ^ __b;
1855  else
1856  return __a._M_data ^ __b._M_data;
1857  }
1858  else
1859  return __a ^ __b;
1860  }
1861 
1862 // }}}
1863 // __or{{{
1864 template <typename _TW>
1865  _GLIBCXX_SIMD_INTRINSIC constexpr _TW
1866  __or(_TW __a, _TW __b) noexcept
1867  {
1868  if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>)
1869  {
1870  using _Tp = typename conditional_t<__is_simd_wrapper_v<_TW>, _TW,
1871  _VectorTraitsImpl<_TW>>::value_type;
1872  if constexpr (is_floating_point_v<_Tp>)
1873  {
1874  using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>;
1875  return __vector_bitcast<_Tp>(__vector_bitcast<_Ip>(__a)
1876  | __vector_bitcast<_Ip>(__b));
1877  }
1878  else if constexpr (__is_vector_type_v<_TW>)
1879  return __a | __b;
1880  else
1881  return __a._M_data | __b._M_data;
1882  }
1883  else
1884  return __a | __b;
1885  }
1886 
1887 // }}}
1888 // __and{{{
1889 template <typename _TW>
1890  _GLIBCXX_SIMD_INTRINSIC constexpr _TW
1891  __and(_TW __a, _TW __b) noexcept
1892  {
1893  if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>)
1894  {
1895  using _Tp = typename conditional_t<__is_simd_wrapper_v<_TW>, _TW,
1896  _VectorTraitsImpl<_TW>>::value_type;
1897  if constexpr (is_floating_point_v<_Tp>)
1898  {
1899  using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>;
1900  return __vector_bitcast<_Tp>(__vector_bitcast<_Ip>(__a)
1901  & __vector_bitcast<_Ip>(__b));
1902  }
1903  else if constexpr (__is_vector_type_v<_TW>)
1904  return __a & __b;
1905  else
1906  return __a._M_data & __b._M_data;
1907  }
1908  else
1909  return __a & __b;
1910  }
1911 
1912 // }}}
1913 // __andnot{{{
1914 #if _GLIBCXX_SIMD_X86INTRIN && !defined __clang__
1915 static constexpr struct
1916 {
1917  _GLIBCXX_SIMD_INTRINSIC __v4sf
1918  operator()(__v4sf __a, __v4sf __b) const noexcept
1919  { return __builtin_ia32_andnps(__a, __b); }
1920 
1921  _GLIBCXX_SIMD_INTRINSIC __v2df
1922  operator()(__v2df __a, __v2df __b) const noexcept
1923  { return __builtin_ia32_andnpd(__a, __b); }
1924 
1925  _GLIBCXX_SIMD_INTRINSIC __v2di
1926  operator()(__v2di __a, __v2di __b) const noexcept
1927  { return __builtin_ia32_pandn128(__a, __b); }
1928 
1929  _GLIBCXX_SIMD_INTRINSIC __v8sf
1930  operator()(__v8sf __a, __v8sf __b) const noexcept
1931  { return __builtin_ia32_andnps256(__a, __b); }
1932 
1933  _GLIBCXX_SIMD_INTRINSIC __v4df
1934  operator()(__v4df __a, __v4df __b) const noexcept
1935  { return __builtin_ia32_andnpd256(__a, __b); }
1936 
1937  _GLIBCXX_SIMD_INTRINSIC __v4di
1938  operator()(__v4di __a, __v4di __b) const noexcept
1939  {
1940  if constexpr (__have_avx2)
1941  return __builtin_ia32_andnotsi256(__a, __b);
1942  else
1943  return reinterpret_cast<__v4di>(
1944  __builtin_ia32_andnpd256(reinterpret_cast<__v4df>(__a),
1945  reinterpret_cast<__v4df>(__b)));
1946  }
1947 
1948  _GLIBCXX_SIMD_INTRINSIC __v16sf
1949  operator()(__v16sf __a, __v16sf __b) const noexcept
1950  {
1951  if constexpr (__have_avx512dq)
1952  return _mm512_andnot_ps(__a, __b);
1953  else
1954  return reinterpret_cast<__v16sf>(
1955  _mm512_andnot_si512(reinterpret_cast<__v8di>(__a),
1956  reinterpret_cast<__v8di>(__b)));
1957  }
1958 
1959  _GLIBCXX_SIMD_INTRINSIC __v8df
1960  operator()(__v8df __a, __v8df __b) const noexcept
1961  {
1962  if constexpr (__have_avx512dq)
1963  return _mm512_andnot_pd(__a, __b);
1964  else
1965  return reinterpret_cast<__v8df>(
1966  _mm512_andnot_si512(reinterpret_cast<__v8di>(__a),
1967  reinterpret_cast<__v8di>(__b)));
1968  }
1969 
1970  _GLIBCXX_SIMD_INTRINSIC __v8di
1971  operator()(__v8di __a, __v8di __b) const noexcept
1972  { return _mm512_andnot_si512(__a, __b); }
1973 } _S_x86_andnot;
1974 #endif // _GLIBCXX_SIMD_X86INTRIN && !__clang__
1975 
1976 template <typename _TW>
1977  _GLIBCXX_SIMD_INTRINSIC constexpr _TW
1978  __andnot(_TW __a, _TW __b) noexcept
1979  {
1980  if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>)
1981  {
1982  using _TVT = conditional_t<__is_simd_wrapper_v<_TW>, _TW,
1983  _VectorTraitsImpl<_TW>>;
1984  using _Tp = typename _TVT::value_type;
1985 #if _GLIBCXX_SIMD_X86INTRIN && !defined __clang__
1986  if constexpr (sizeof(_TW) >= 16)
1987  {
1988  const auto __ai = __to_intrin(__a);
1989  const auto __bi = __to_intrin(__b);
1990  if (!__builtin_is_constant_evaluated()
1991  && !(__builtin_constant_p(__ai) && __builtin_constant_p(__bi)))
1992  {
1993  const auto __r = _S_x86_andnot(__ai, __bi);
1994  if constexpr (is_convertible_v<decltype(__r), _TW>)
1995  return __r;
1996  else
1997  return reinterpret_cast<typename _TVT::type>(__r);
1998  }
1999  }
2000 #endif // _GLIBCXX_SIMD_X86INTRIN
2001  using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>;
2002  return __vector_bitcast<_Tp>(~__vector_bitcast<_Ip>(__a)
2003  & __vector_bitcast<_Ip>(__b));
2004  }
2005  else
2006  return ~__a & __b;
2007  }
2008 
2009 // }}}
2010 // __not{{{
2011 template <typename _Tp, typename _TVT = _VectorTraits<_Tp>>
2012  _GLIBCXX_SIMD_INTRINSIC constexpr _Tp
2013  __not(_Tp __a) noexcept
2014  {
2015  if constexpr (is_floating_point_v<typename _TVT::value_type>)
2016  return reinterpret_cast<typename _TVT::type>(
2017  ~__vector_bitcast<unsigned>(__a));
2018  else
2019  return ~__a;
2020  }
2021 
2022 // }}}
2023 // __concat{{{
2024 template <typename _Tp, typename _TVT = _VectorTraits<_Tp>,
2025  typename _R = __vector_type_t<typename _TVT::value_type,
2026  _TVT::_S_full_size * 2>>
2027  constexpr _R
2028  __concat(_Tp a_, _Tp b_)
2029  {
2030 #ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_1
2031  using _W
2032  = conditional_t<is_floating_point_v<typename _TVT::value_type>, double,
2033  conditional_t<(sizeof(_Tp) >= 2 * sizeof(long long)),
2034  long long, typename _TVT::value_type>>;
2035  constexpr int input_width = sizeof(_Tp) / sizeof(_W);
2036  const auto __a = __vector_bitcast<_W>(a_);
2037  const auto __b = __vector_bitcast<_W>(b_);
2038  using _Up = __vector_type_t<_W, sizeof(_R) / sizeof(_W)>;
2039 #else
2040  constexpr int input_width = _TVT::_S_full_size;
2041  const _Tp& __a = a_;
2042  const _Tp& __b = b_;
2043  using _Up = _R;
2044 #endif
2045  if constexpr (input_width == 2)
2046  return reinterpret_cast<_R>(_Up{__a[0], __a[1], __b[0], __b[1]});
2047  else if constexpr (input_width == 4)
2048  return reinterpret_cast<_R>(
2049  _Up{__a[0], __a[1], __a[2], __a[3], __b[0], __b[1], __b[2], __b[3]});
2050  else if constexpr (input_width == 8)
2051  return reinterpret_cast<_R>(
2052  _Up{__a[0], __a[1], __a[2], __a[3], __a[4], __a[5], __a[6], __a[7],
2053  __b[0], __b[1], __b[2], __b[3], __b[4], __b[5], __b[6], __b[7]});
2054  else if constexpr (input_width == 16)
2055  return reinterpret_cast<_R>(
2056  _Up{__a[0], __a[1], __a[2], __a[3], __a[4], __a[5], __a[6],
2057  __a[7], __a[8], __a[9], __a[10], __a[11], __a[12], __a[13],
2058  __a[14], __a[15], __b[0], __b[1], __b[2], __b[3], __b[4],
2059  __b[5], __b[6], __b[7], __b[8], __b[9], __b[10], __b[11],
2060  __b[12], __b[13], __b[14], __b[15]});
2061  else if constexpr (input_width == 32)
2062  return reinterpret_cast<_R>(
2063  _Up{__a[0], __a[1], __a[2], __a[3], __a[4], __a[5], __a[6],
2064  __a[7], __a[8], __a[9], __a[10], __a[11], __a[12], __a[13],
2065  __a[14], __a[15], __a[16], __a[17], __a[18], __a[19], __a[20],
2066  __a[21], __a[22], __a[23], __a[24], __a[25], __a[26], __a[27],
2067  __a[28], __a[29], __a[30], __a[31], __b[0], __b[1], __b[2],
2068  __b[3], __b[4], __b[5], __b[6], __b[7], __b[8], __b[9],
2069  __b[10], __b[11], __b[12], __b[13], __b[14], __b[15], __b[16],
2070  __b[17], __b[18], __b[19], __b[20], __b[21], __b[22], __b[23],
2071  __b[24], __b[25], __b[26], __b[27], __b[28], __b[29], __b[30],
2072  __b[31]});
2073  }
2074 
2075 // }}}
2076 // __zero_extend {{{
2077 template <typename _Tp, typename _TVT = _VectorTraits<_Tp>>
2078  struct _ZeroExtendProxy
2079  {
2080  using value_type = typename _TVT::value_type;
2081  static constexpr size_t _Np = _TVT::_S_full_size;
2082  const _Tp __x;
2083 
2084  template <typename _To, typename _ToVT = _VectorTraits<_To>,
2085  typename
2086  = enable_if_t<is_same_v<typename _ToVT::value_type, value_type>>>
2087  _GLIBCXX_SIMD_INTRINSIC operator _To() const
2088  {
2089  constexpr size_t _ToN = _ToVT::_S_full_size;
2090  if constexpr (_ToN == _Np)
2091  return __x;
2092  else if constexpr (_ToN == 2 * _Np)
2093  {
2094 #ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_3
2095  if constexpr (__have_avx && _TVT::template _S_is<float, 4>)
2096  return __vector_bitcast<value_type>(
2097  _mm256_insertf128_ps(__m256(), __x, 0));
2098  else if constexpr (__have_avx && _TVT::template _S_is<double, 2>)
2099  return __vector_bitcast<value_type>(
2100  _mm256_insertf128_pd(__m256d(), __x, 0));
2101  else if constexpr (__have_avx2 && _Np * sizeof(value_type) == 16)
2102  return __vector_bitcast<value_type>(
2103  _mm256_insertf128_si256(__m256i(), __to_intrin(__x), 0));
2104  else if constexpr (__have_avx512f && _TVT::template _S_is<float, 8>)
2105  {
2106  if constexpr (__have_avx512dq)
2107  return __vector_bitcast<value_type>(
2108  _mm512_insertf32x8(__m512(), __x, 0));
2109  else
2110  return reinterpret_cast<__m512>(
2111  _mm512_insertf64x4(__m512d(),
2112  reinterpret_cast<__m256d>(__x), 0));
2113  }
2114  else if constexpr (__have_avx512f
2115  && _TVT::template _S_is<double, 4>)
2116  return __vector_bitcast<value_type>(
2117  _mm512_insertf64x4(__m512d(), __x, 0));
2118  else if constexpr (__have_avx512f && _Np * sizeof(value_type) == 32)
2119  return __vector_bitcast<value_type>(
2120  _mm512_inserti64x4(__m512i(), __to_intrin(__x), 0));
2121 #endif
2122  return __concat(__x, _Tp());
2123  }
2124  else if constexpr (_ToN == 4 * _Np)
2125  {
2126 #ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_3
2127  if constexpr (__have_avx512dq && _TVT::template _S_is<double, 2>)
2128  {
2129  return __vector_bitcast<value_type>(
2130  _mm512_insertf64x2(__m512d(), __x, 0));
2131  }
2132  else if constexpr (__have_avx512f
2133  && is_floating_point_v<value_type>)
2134  {
2135  return __vector_bitcast<value_type>(
2136  _mm512_insertf32x4(__m512(), reinterpret_cast<__m128>(__x),
2137  0));
2138  }
2139  else if constexpr (__have_avx512f && _Np * sizeof(value_type) == 16)
2140  {
2141  return __vector_bitcast<value_type>(
2142  _mm512_inserti32x4(__m512i(), __to_intrin(__x), 0));
2143  }
2144 #endif
2145  return __concat(__concat(__x, _Tp()),
2146  __vector_type_t<value_type, _Np * 2>());
2147  }
2148  else if constexpr (_ToN == 8 * _Np)
2149  return __concat(operator __vector_type_t<value_type, _Np * 4>(),
2150  __vector_type_t<value_type, _Np * 4>());
2151  else if constexpr (_ToN == 16 * _Np)
2152  return __concat(operator __vector_type_t<value_type, _Np * 8>(),
2153  __vector_type_t<value_type, _Np * 8>());
2154  else
2155  __assert_unreachable<_Tp>();
2156  }
2157  };
2158 
2159 template <typename _Tp, typename _TVT = _VectorTraits<_Tp>>
2160  _GLIBCXX_SIMD_INTRINSIC _ZeroExtendProxy<_Tp, _TVT>
2161  __zero_extend(_Tp __x)
2162  { return {__x}; }
2163 
2164 // }}}
2165 // __extract<_Np, By>{{{
2166 template <int _Offset,
2167  int _SplitBy,
2168  typename _Tp,
2169  typename _TVT = _VectorTraits<_Tp>,
2170  typename _R = __vector_type_t<typename _TVT::value_type,
2171  _TVT::_S_full_size / _SplitBy>>
2172  _GLIBCXX_SIMD_INTRINSIC constexpr _R
2173  __extract(_Tp __in)
2174  {
2175  using value_type = typename _TVT::value_type;
2176 #if _GLIBCXX_SIMD_X86INTRIN // {{{
2177  if constexpr (sizeof(_Tp) == 64 && _SplitBy == 4 && _Offset > 0)
2178  {
2179  if constexpr (__have_avx512dq && is_same_v<double, value_type>)
2180  return _mm512_extractf64x2_pd(__to_intrin(__in), _Offset);
2181  else if constexpr (is_floating_point_v<value_type>)
2182  return __vector_bitcast<value_type>(
2183  _mm512_extractf32x4_ps(__intrin_bitcast<__m512>(__in), _Offset));
2184  else
2185  return reinterpret_cast<_R>(
2186  _mm512_extracti32x4_epi32(__intrin_bitcast<__m512i>(__in),
2187  _Offset));
2188  }
2189  else
2190 #endif // _GLIBCXX_SIMD_X86INTRIN }}}
2191  {
2192 #ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_1
2193  using _W = conditional_t<
2194  is_floating_point_v<value_type>, double,
2195  conditional_t<(sizeof(_R) >= 16), long long, value_type>>;
2196  static_assert(sizeof(_R) % sizeof(_W) == 0);
2197  constexpr int __return_width = sizeof(_R) / sizeof(_W);
2198  using _Up = __vector_type_t<_W, __return_width>;
2199  const auto __x = __vector_bitcast<_W>(__in);
2200 #else
2201  constexpr int __return_width = _TVT::_S_full_size / _SplitBy;
2202  using _Up = _R;
2203  const __vector_type_t<value_type, _TVT::_S_full_size>& __x
2204  = __in; // only needed for _Tp = _SimdWrapper<value_type, _Np>
2205 #endif
2206  constexpr int _O = _Offset * __return_width;
2207  return __call_with_subscripts<__return_width, _O>(
2208  __x, [](auto... __entries) {
2209  return reinterpret_cast<_R>(_Up{__entries...});
2210  });
2211  }
2212  }
2213 
2214 // }}}
2215 // __lo/__hi64[z]{{{
2216 template <typename _Tp,
2217  typename _R
2218  = __vector_type8_t<typename _VectorTraits<_Tp>::value_type>>
2219  _GLIBCXX_SIMD_INTRINSIC constexpr _R
2220  __lo64(_Tp __x)
2221  {
2222  _R __r{};
2223  __builtin_memcpy(&__r, &__x, 8);
2224  return __r;
2225  }
2226 
2227 template <typename _Tp,
2228  typename _R
2229  = __vector_type8_t<typename _VectorTraits<_Tp>::value_type>>
2230  _GLIBCXX_SIMD_INTRINSIC constexpr _R
2231  __hi64(_Tp __x)
2232  {
2233  static_assert(sizeof(_Tp) == 16, "use __hi64z if you meant it");
2234  _R __r{};
2235  __builtin_memcpy(&__r, reinterpret_cast<const char*>(&__x) + 8, 8);
2236  return __r;
2237  }
2238 
2239 template <typename _Tp,
2240  typename _R
2241  = __vector_type8_t<typename _VectorTraits<_Tp>::value_type>>
2242  _GLIBCXX_SIMD_INTRINSIC constexpr _R
2243  __hi64z([[maybe_unused]] _Tp __x)
2244  {
2245  _R __r{};
2246  if constexpr (sizeof(_Tp) == 16)
2247  __builtin_memcpy(&__r, reinterpret_cast<const char*>(&__x) + 8, 8);
2248  return __r;
2249  }
2250 
2251 // }}}
2252 // __lo/__hi128{{{
2253 template <typename _Tp>
2254  _GLIBCXX_SIMD_INTRINSIC constexpr auto
2255  __lo128(_Tp __x)
2256  { return __extract<0, sizeof(_Tp) / 16>(__x); }
2257 
2258 template <typename _Tp>
2259  _GLIBCXX_SIMD_INTRINSIC constexpr auto
2260  __hi128(_Tp __x)
2261  {
2262  static_assert(sizeof(__x) == 32);
2263  return __extract<1, 2>(__x);
2264  }
2265 
2266 // }}}
2267 // __lo/__hi256{{{
2268 template <typename _Tp>
2269  _GLIBCXX_SIMD_INTRINSIC constexpr auto
2270  __lo256(_Tp __x)
2271  {
2272  static_assert(sizeof(__x) == 64);
2273  return __extract<0, 2>(__x);
2274  }
2275 
2276 template <typename _Tp>
2277  _GLIBCXX_SIMD_INTRINSIC constexpr auto
2278  __hi256(_Tp __x)
2279  {
2280  static_assert(sizeof(__x) == 64);
2281  return __extract<1, 2>(__x);
2282  }
2283 
2284 // }}}
2285 // __auto_bitcast{{{
2286 template <typename _Tp>
2287  struct _AutoCast
2288  {
2289  static_assert(__is_vector_type_v<_Tp>);
2290 
2291  const _Tp __x;
2292 
2293  template <typename _Up, typename _UVT = _VectorTraits<_Up>>
2294  _GLIBCXX_SIMD_INTRINSIC constexpr operator _Up() const
2295  { return __intrin_bitcast<typename _UVT::type>(__x); }
2296  };
2297 
2298 template <typename _Tp>
2299  _GLIBCXX_SIMD_INTRINSIC constexpr _AutoCast<_Tp>
2300  __auto_bitcast(const _Tp& __x)
2301  { return {__x}; }
2302 
2303 template <typename _Tp, size_t _Np>
2304  _GLIBCXX_SIMD_INTRINSIC constexpr
2305  _AutoCast<typename _SimdWrapper<_Tp, _Np>::_BuiltinType>
2306  __auto_bitcast(const _SimdWrapper<_Tp, _Np>& __x)
2307  { return {__x._M_data}; }
2308 
2309 // }}}
2310 // ^^^ ---- builtin vector types [[gnu::vector_size(N)]] and operations ---- ^^^
2311 
2312 #if _GLIBCXX_SIMD_HAVE_SSE_ABI
2313 // __bool_storage_member_type{{{
2314 #if _GLIBCXX_SIMD_HAVE_AVX512F && _GLIBCXX_SIMD_X86INTRIN
2315 template <size_t _Size>
2316  struct __bool_storage_member_type
2317  {
2318  static_assert((_Size & (_Size - 1)) != 0,
2319  "This trait may only be used for non-power-of-2 sizes. "
2320  "Power-of-2 sizes must be specialized.");
2321  using type =
2322  typename __bool_storage_member_type<std::__bit_ceil(_Size)>::type;
2323  };
2324 
2325 template <>
2326  struct __bool_storage_member_type<1> { using type = bool; };
2327 
2328 template <>
2329  struct __bool_storage_member_type<2> { using type = __mmask8; };
2330 
2331 template <>
2332  struct __bool_storage_member_type<4> { using type = __mmask8; };
2333 
2334 template <>
2335  struct __bool_storage_member_type<8> { using type = __mmask8; };
2336 
2337 template <>
2338  struct __bool_storage_member_type<16> { using type = __mmask16; };
2339 
2340 template <>
2341  struct __bool_storage_member_type<32> { using type = __mmask32; };
2342 
2343 template <>
2344  struct __bool_storage_member_type<64> { using type = __mmask64; };
2345 #endif // _GLIBCXX_SIMD_HAVE_AVX512F
2346 
2347 // }}}
2348 // __intrinsic_type (x86){{{
2349 // the following excludes bool via __is_vectorizable
2350 #if _GLIBCXX_SIMD_HAVE_SSE
2351 template <typename _Tp, size_t _Bytes>
2352  struct __intrinsic_type<_Tp, _Bytes,
2353  enable_if_t<__is_vectorizable_v<_Tp> && _Bytes <= 64>>
2354  {
2355  static_assert(!is_same_v<_Tp, long double>,
2356  "no __intrinsic_type support for long double on x86");
2357 
2358  static constexpr size_t _S_VBytes = _Bytes <= 16 ? 16
2359  : _Bytes <= 32 ? 32
2360  : 64;
2361 
2362  using type [[__gnu__::__vector_size__(_S_VBytes)]]
2363  = conditional_t<is_integral_v<_Tp>, long long int, _Tp>;
2364  };
2365 #endif // _GLIBCXX_SIMD_HAVE_SSE
2366 
2367 // }}}
2368 #endif // _GLIBCXX_SIMD_HAVE_SSE_ABI
2369 // __intrinsic_type (ARM){{{
2370 #if _GLIBCXX_SIMD_HAVE_NEON
2371 template <>
2372  struct __intrinsic_type<float, 8, void>
2373  { using type = float32x2_t; };
2374 
2375 template <>
2376  struct __intrinsic_type<float, 16, void>
2377  { using type = float32x4_t; };
2378 
2379 #if _GLIBCXX_SIMD_HAVE_NEON_A64
2380 template <>
2381  struct __intrinsic_type<double, 8, void>
2382  { using type = float64x1_t; };
2383 
2384 template <>
2385  struct __intrinsic_type<double, 16, void>
2386  { using type = float64x2_t; };
2387 #endif
2388 
2389 #define _GLIBCXX_SIMD_ARM_INTRIN(_Bits, _Np) \
2390 template <> \
2391  struct __intrinsic_type<__int_with_sizeof_t<_Bits / 8>, \
2392  _Np * _Bits / 8, void> \
2393  { using type = int##_Bits##x##_Np##_t; }; \
2394 template <> \
2395  struct __intrinsic_type<make_unsigned_t<__int_with_sizeof_t<_Bits / 8>>, \
2396  _Np * _Bits / 8, void> \
2397  { using type = uint##_Bits##x##_Np##_t; }
2398 _GLIBCXX_SIMD_ARM_INTRIN(8, 8);
2399 _GLIBCXX_SIMD_ARM_INTRIN(8, 16);
2400 _GLIBCXX_SIMD_ARM_INTRIN(16, 4);
2401 _GLIBCXX_SIMD_ARM_INTRIN(16, 8);
2402 _GLIBCXX_SIMD_ARM_INTRIN(32, 2);
2403 _GLIBCXX_SIMD_ARM_INTRIN(32, 4);
2404 _GLIBCXX_SIMD_ARM_INTRIN(64, 1);
2405 _GLIBCXX_SIMD_ARM_INTRIN(64, 2);
2406 #undef _GLIBCXX_SIMD_ARM_INTRIN
2407 
2408 template <typename _Tp, size_t _Bytes>
2409  struct __intrinsic_type<_Tp, _Bytes,
2410  enable_if_t<__is_vectorizable_v<_Tp> && _Bytes <= 16>>
2411  {
2412  static constexpr int _SVecBytes = _Bytes <= 8 ? 8 : 16;
2413  using _Ip = __int_for_sizeof_t<_Tp>;
2414  using _Up = conditional_t<
2415  is_floating_point_v<_Tp>, _Tp,
2416  conditional_t<is_unsigned_v<_Tp>, make_unsigned_t<_Ip>, _Ip>>;
2417  static_assert(!is_same_v<_Tp, _Up> || _SVecBytes != _Bytes,
2418  "should use explicit specialization above");
2419  using type = typename __intrinsic_type<_Up, _SVecBytes>::type;
2420  };
2421 #endif // _GLIBCXX_SIMD_HAVE_NEON
2422 
2423 // }}}
2424 // __intrinsic_type (PPC){{{
2425 #ifdef __ALTIVEC__
2426 template <typename _Tp>
2427  struct __intrinsic_type_impl;
2428 
2429 #define _GLIBCXX_SIMD_PPC_INTRIN(_Tp) \
2430  template <> \
2431  struct __intrinsic_type_impl<_Tp> { using type = __vector _Tp; }
2432 _GLIBCXX_SIMD_PPC_INTRIN(float);
2433 _GLIBCXX_SIMD_PPC_INTRIN(double);
2434 _GLIBCXX_SIMD_PPC_INTRIN(signed char);
2435 _GLIBCXX_SIMD_PPC_INTRIN(unsigned char);
2436 _GLIBCXX_SIMD_PPC_INTRIN(signed short);
2437 _GLIBCXX_SIMD_PPC_INTRIN(unsigned short);
2438 _GLIBCXX_SIMD_PPC_INTRIN(signed int);
2439 _GLIBCXX_SIMD_PPC_INTRIN(unsigned int);
2440 _GLIBCXX_SIMD_PPC_INTRIN(signed long);
2441 _GLIBCXX_SIMD_PPC_INTRIN(unsigned long);
2442 _GLIBCXX_SIMD_PPC_INTRIN(signed long long);
2443 _GLIBCXX_SIMD_PPC_INTRIN(unsigned long long);
2444 #undef _GLIBCXX_SIMD_PPC_INTRIN
2445 
2446 template <typename _Tp, size_t _Bytes>
2447  struct __intrinsic_type<_Tp, _Bytes,
2448  enable_if_t<__is_vectorizable_v<_Tp> && _Bytes <= 16>>
2449  {
2450  static constexpr bool _S_is_ldouble = is_same_v<_Tp, long double>;
2451  // allow _Tp == long double with -mlong-double-64
2452  static_assert(!(_S_is_ldouble && sizeof(long double) > sizeof(double)),
2453  "no __intrinsic_type support for long double on PPC");
2454 #ifndef __VSX__
2455  static_assert(!is_same_v<_Tp, double>,
2456  "no __intrinsic_type support for double on PPC w/o VSX");
2457 #endif
2458  using type =
2459  typename __intrinsic_type_impl<
2460  conditional_t<is_floating_point_v<_Tp>,
2461  conditional_t<_S_is_ldouble, double, _Tp>,
2462  __int_for_sizeof_t<_Tp>>>::type;
2463  };
2464 #endif // __ALTIVEC__
2465 
2466 // }}}
2467 // _SimdWrapper<bool>{{{1
2468 template <size_t _Width>
2469  struct _SimdWrapper<bool, _Width,
2470  void_t<typename __bool_storage_member_type<_Width>::type>>
2471  {
2472  using _BuiltinType = typename __bool_storage_member_type<_Width>::type;
2473  using value_type = bool;
2474 
2475  static constexpr size_t _S_full_size = sizeof(_BuiltinType) * __CHAR_BIT__;
2476 
2477  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper<bool, _S_full_size>
2478  __as_full_vector() const { return _M_data; }
2479 
2480  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper() = default;
2481  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(_BuiltinType __k)
2482  : _M_data(__k) {};
2483 
2484  _GLIBCXX_SIMD_INTRINSIC operator const _BuiltinType&() const
2485  { return _M_data; }
2486 
2487  _GLIBCXX_SIMD_INTRINSIC operator _BuiltinType&()
2488  { return _M_data; }
2489 
2490  _GLIBCXX_SIMD_INTRINSIC _BuiltinType __intrin() const
2491  { return _M_data; }
2492 
2493  _GLIBCXX_SIMD_INTRINSIC constexpr value_type operator[](size_t __i) const
2494  { return _M_data & (_BuiltinType(1) << __i); }
2495 
2496  template <size_t __i>
2497  _GLIBCXX_SIMD_INTRINSIC constexpr value_type
2498  operator[](_SizeConstant<__i>) const
2499  { return _M_data & (_BuiltinType(1) << __i); }
2500 
2501  _GLIBCXX_SIMD_INTRINSIC constexpr void _M_set(size_t __i, value_type __x)
2502  {
2503  if (__x)
2504  _M_data |= (_BuiltinType(1) << __i);
2505  else
2506  _M_data &= ~(_BuiltinType(1) << __i);
2507  }
2508 
2509  _GLIBCXX_SIMD_INTRINSIC
2510  constexpr bool _M_is_constprop() const
2511  { return __builtin_constant_p(_M_data); }
2512 
2513  _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_none_of() const
2514  {
2515  if (__builtin_constant_p(_M_data))
2516  {
2517  constexpr int __nbits = sizeof(_BuiltinType) * __CHAR_BIT__;
2518  constexpr _BuiltinType __active_mask
2519  = ~_BuiltinType() >> (__nbits - _Width);
2520  return (_M_data & __active_mask) == 0;
2521  }
2522  return false;
2523  }
2524 
2525  _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_all_of() const
2526  {
2527  if (__builtin_constant_p(_M_data))
2528  {
2529  constexpr int __nbits = sizeof(_BuiltinType) * __CHAR_BIT__;
2530  constexpr _BuiltinType __active_mask
2531  = ~_BuiltinType() >> (__nbits - _Width);
2532  return (_M_data & __active_mask) == __active_mask;
2533  }
2534  return false;
2535  }
2536 
2537  _BuiltinType _M_data;
2538  };
2539 
2540 // _SimdWrapperBase{{{1
2541 template <bool _MustZeroInitPadding, typename _BuiltinType>
2542  struct _SimdWrapperBase;
2543 
2544 template <typename _BuiltinType>
2545  struct _SimdWrapperBase<false, _BuiltinType> // no padding or no SNaNs
2546  {
2547  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase() = default;
2548  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase(_BuiltinType __init)
2549  : _M_data(__init)
2550  {}
2551 
2552  _BuiltinType _M_data;
2553  };
2554 
2555 template <typename _BuiltinType>
2556  struct _SimdWrapperBase<true, _BuiltinType> // with padding that needs to
2557  // never become SNaN
2558  {
2559  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase() : _M_data() {}
2560  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase(_BuiltinType __init)
2561  : _M_data(__init)
2562  {}
2563 
2564  _BuiltinType _M_data;
2565  };
2566 
2567 // }}}
2568 // _SimdWrapper{{{
2569 template <typename _Tp, size_t _Width>
2570  struct _SimdWrapper<
2571  _Tp, _Width,
2572  void_t<__vector_type_t<_Tp, _Width>, __intrinsic_type_t<_Tp, _Width>>>
2573  : _SimdWrapperBase<__has_iec559_behavior<__signaling_NaN, _Tp>::value
2574  && sizeof(_Tp) * _Width
2575  == sizeof(__vector_type_t<_Tp, _Width>),
2576  __vector_type_t<_Tp, _Width>>
2577  {
2578  using _Base
2579  = _SimdWrapperBase<__has_iec559_behavior<__signaling_NaN, _Tp>::value
2580  && sizeof(_Tp) * _Width
2581  == sizeof(__vector_type_t<_Tp, _Width>),
2582  __vector_type_t<_Tp, _Width>>;
2583 
2584  static_assert(__is_vectorizable_v<_Tp>);
2585  static_assert(_Width >= 2); // 1 doesn't make sense, use _Tp directly then
2586 
2587  using _BuiltinType = __vector_type_t<_Tp, _Width>;
2588  using value_type = _Tp;
2589 
2590  static inline constexpr size_t _S_full_size
2591  = sizeof(_BuiltinType) / sizeof(value_type);
2592  static inline constexpr int _S_size = _Width;
2593  static inline constexpr bool _S_is_partial = _S_full_size != _S_size;
2594 
2595  using _Base::_M_data;
2596 
2597  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper<_Tp, _S_full_size>
2598  __as_full_vector() const
2599  { return _M_data; }
2600 
2601  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(initializer_list<_Tp> __init)
2602  : _Base(__generate_from_n_evaluations<_Width, _BuiltinType>(
2603  [&](auto __i) { return __init.begin()[__i.value]; })) {}
2604 
2605  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper() = default;
2606  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(const _SimdWrapper&)
2607  = default;
2608  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(_SimdWrapper&&) = default;
2609 
2610  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper&
2611  operator=(const _SimdWrapper&) = default;
2612  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper&
2613  operator=(_SimdWrapper&&) = default;
2614 
2615  template <typename _V, typename = enable_if_t<disjunction_v<
2616  is_same<_V, __vector_type_t<_Tp, _Width>>,
2617  is_same<_V, __intrinsic_type_t<_Tp, _Width>>>>>
2618  _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(_V __x)
2619  // __vector_bitcast can convert e.g. __m128 to __vector(2) float
2620  : _Base(__vector_bitcast<_Tp, _Width>(__x)) {}
2621 
2622  template <typename... _As,
2623  typename = enable_if_t<((is_same_v<simd_abi::scalar, _As> && ...)
2624  && sizeof...(_As) <= _Width)>>
2625  _GLIBCXX_SIMD_INTRINSIC constexpr
2626  operator _SimdTuple<_Tp, _As...>() const
2627  {
2628  const auto& dd = _M_data; // workaround for GCC7 ICE
2629  return __generate_from_n_evaluations<sizeof...(_As),
2630  _SimdTuple<_Tp, _As...>>([&](
2631  auto __i) constexpr { return dd[int(__i)]; });
2632  }
2633 
2634  _GLIBCXX_SIMD_INTRINSIC constexpr operator const _BuiltinType&() const
2635  { return _M_data; }
2636 
2637  _GLIBCXX_SIMD_INTRINSIC constexpr operator _BuiltinType&()
2638  { return _M_data; }
2639 
2640  _GLIBCXX_SIMD_INTRINSIC constexpr _Tp operator[](size_t __i) const
2641  { return _M_data[__i]; }
2642 
2643  template <size_t __i>
2644  _GLIBCXX_SIMD_INTRINSIC constexpr _Tp operator[](_SizeConstant<__i>) const
2645  { return _M_data[__i]; }
2646 
2647  _GLIBCXX_SIMD_INTRINSIC constexpr void _M_set(size_t __i, _Tp __x)
2648  { _M_data[__i] = __x; }
2649 
2650  _GLIBCXX_SIMD_INTRINSIC
2651  constexpr bool _M_is_constprop() const
2652  { return __builtin_constant_p(_M_data); }
2653 
2654  _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_none_of() const
2655  {
2656  if (__builtin_constant_p(_M_data))
2657  {
2658  bool __r = true;
2659  if constexpr (is_floating_point_v<_Tp>)
2660  {
2661  using _Ip = __int_for_sizeof_t<_Tp>;
2662  const auto __intdata = __vector_bitcast<_Ip>(_M_data);
2663  __execute_n_times<_Width>(
2664  [&](auto __i) { __r &= __intdata[__i.value] == _Ip(); });
2665  }
2666  else
2667  __execute_n_times<_Width>(
2668  [&](auto __i) { __r &= _M_data[__i.value] == _Tp(); });
2669  return __r;
2670  }
2671  return false;
2672  }
2673 
2674  _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_all_of() const
2675  {
2676  if (__builtin_constant_p(_M_data))
2677  {
2678  bool __r = true;
2679  if constexpr (is_floating_point_v<_Tp>)
2680  {
2681  using _Ip = __int_for_sizeof_t<_Tp>;
2682  const auto __intdata = __vector_bitcast<_Ip>(_M_data);
2683  __execute_n_times<_Width>(
2684  [&](auto __i) { __r &= __intdata[__i.value] == ~_Ip(); });
2685  }
2686  else
2687  __execute_n_times<_Width>(
2688  [&](auto __i) { __r &= _M_data[__i.value] == ~_Tp(); });
2689  return __r;
2690  }
2691  return false;
2692  }
2693  };
2694 
2695 // }}}
2696 
2697 // __vectorized_sizeof {{{
2698 template <typename _Tp>
2699  constexpr size_t
2700  __vectorized_sizeof()
2701  {
2702  if constexpr (!__is_vectorizable_v<_Tp>)
2703  return 0;
2704 
2705  if constexpr (sizeof(_Tp) <= 8)
2706  {
2707  // X86:
2708  if constexpr (__have_avx512bw)
2709  return 64;
2710  if constexpr (__have_avx512f && sizeof(_Tp) >= 4)
2711  return 64;
2712  if constexpr (__have_avx2)
2713  return 32;
2714  if constexpr (__have_avx && is_floating_point_v<_Tp>)
2715  return 32;
2716  if constexpr (__have_sse2)
2717  return 16;
2718  if constexpr (__have_sse && is_same_v<_Tp, float>)
2719  return 16;
2720  /* The following is too much trouble because of mixed MMX and x87 code.
2721  * While nothing here explicitly calls MMX instructions of registers,
2722  * they are still emitted but no EMMS cleanup is done.
2723  if constexpr (__have_mmx && sizeof(_Tp) <= 4 && is_integral_v<_Tp>)
2724  return 8;
2725  */
2726 
2727  // PowerPC:
2728  if constexpr (__have_power8vec
2729  || (__have_power_vmx && (sizeof(_Tp) < 8))
2730  || (__have_power_vsx && is_floating_point_v<_Tp>) )
2731  return 16;
2732 
2733  // ARM:
2734  if constexpr (__have_neon_a64
2735  || (__have_neon_a32 && !is_same_v<_Tp, double>) )
2736  return 16;
2737  if constexpr (__have_neon
2738  && sizeof(_Tp) < 8
2739  // Only allow fp if the user allows non-ICE559 fp (e.g.
2740  // via -ffast-math). ARMv7 NEON fp is not conforming to
2741  // IEC559.
2742  && (__support_neon_float || !is_floating_point_v<_Tp>))
2743  return 16;
2744  }
2745 
2746  return sizeof(_Tp);
2747  }
2748 
2749 // }}}
2750 namespace simd_abi {
2751 // most of simd_abi is defined in simd_detail.h
2752 template <typename _Tp>
2753  inline constexpr int max_fixed_size
2754  = (__have_avx512bw && sizeof(_Tp) == 1) ? 64 : 32;
2755 
2756 // compatible {{{
2757 #if defined __x86_64__ || defined __aarch64__
2758 template <typename _Tp>
2759  using compatible = conditional_t<(sizeof(_Tp) <= 8), _VecBuiltin<16>, scalar>;
2760 #elif defined __ARM_NEON
2761 // FIXME: not sure, probably needs to be scalar (or dependent on the hard-float
2762 // ABI?)
2763 template <typename _Tp>
2764  using compatible
2765  = conditional_t<(sizeof(_Tp) < 8
2766  && (__support_neon_float || !is_floating_point_v<_Tp>)),
2767  _VecBuiltin<16>, scalar>;
2768 #else
2769 template <typename>
2770  using compatible = scalar;
2771 #endif
2772 
2773 // }}}
2774 // native {{{
2775 template <typename _Tp>
2776  constexpr auto
2777  __determine_native_abi()
2778  {
2779  constexpr size_t __bytes = __vectorized_sizeof<_Tp>();
2780  if constexpr (__bytes == sizeof(_Tp))
2781  return static_cast<scalar*>(nullptr);
2782  else if constexpr (__have_avx512vl || (__have_avx512f && __bytes == 64))
2783  return static_cast<_VecBltnBtmsk<__bytes>*>(nullptr);
2784  else
2785  return static_cast<_VecBuiltin<__bytes>*>(nullptr);
2786  }
2787 
2788 template <typename _Tp, typename = enable_if_t<__is_vectorizable_v<_Tp>>>
2789  using native = remove_pointer_t<decltype(__determine_native_abi<_Tp>())>;
2790 
2791 // }}}
2792 // __default_abi {{{
2793 #if defined _GLIBCXX_SIMD_DEFAULT_ABI
2794 template <typename _Tp>
2795  using __default_abi = _GLIBCXX_SIMD_DEFAULT_ABI<_Tp>;
2796 #else
2797 template <typename _Tp>
2798  using __default_abi = compatible<_Tp>;
2799 #endif
2800 
2801 // }}}
2802 } // namespace simd_abi
2803 
2804 // traits {{{1
2805 // is_abi_tag {{{2
2806 template <typename _Tp, typename = void_t<>>
2807  struct is_abi_tag : false_type {};
2808 
2809 template <typename _Tp>
2810  struct is_abi_tag<_Tp, void_t<typename _Tp::_IsValidAbiTag>>
2811  : public _Tp::_IsValidAbiTag {};
2812 
2813 template <typename _Tp>
2814  inline constexpr bool is_abi_tag_v = is_abi_tag<_Tp>::value;
2815 
2816 // is_simd(_mask) {{{2
2817 template <typename _Tp>
2818  struct is_simd : public false_type {};
2819 
2820 template <typename _Tp>
2821  inline constexpr bool is_simd_v = is_simd<_Tp>::value;
2822 
2823 template <typename _Tp>
2824  struct is_simd_mask : public false_type {};
2825 
2826 template <typename _Tp>
2827 inline constexpr bool is_simd_mask_v = is_simd_mask<_Tp>::value;
2828 
2829 // simd_size {{{2
2830 template <typename _Tp, typename _Abi, typename = void>
2831  struct __simd_size_impl {};
2832 
2833 template <typename _Tp, typename _Abi>
2834  struct __simd_size_impl<
2835  _Tp, _Abi,
2836  enable_if_t<conjunction_v<__is_vectorizable<_Tp>, is_abi_tag<_Abi>>>>
2837  : _SizeConstant<_Abi::template _S_size<_Tp>> {};
2838 
2839 template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>>
2840  struct simd_size : __simd_size_impl<_Tp, _Abi> {};
2841 
2842 template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>>
2843  inline constexpr size_t simd_size_v = simd_size<_Tp, _Abi>::value;
2844 
2845 // simd_abi::deduce {{{2
2846 template <typename _Tp, size_t _Np, typename = void>
2847  struct __deduce_impl;
2848 
2849 namespace simd_abi {
2850 /**
2851  * @tparam _Tp The requested `value_type` for the elements.
2852  * @tparam _Np The requested number of elements.
2853  * @tparam _Abis This parameter is ignored, since this implementation cannot
2854  * make any use of it. Either __a good native ABI is matched and used as `type`
2855  * alias, or the `fixed_size<_Np>` ABI is used, which internally is built from
2856  * the best matching native ABIs.
2857  */
2858 template <typename _Tp, size_t _Np, typename...>
2859  struct deduce : __deduce_impl<_Tp, _Np> {};
2860 
2861 template <typename _Tp, size_t _Np, typename... _Abis>
2862  using deduce_t = typename deduce<_Tp, _Np, _Abis...>::type;
2863 } // namespace simd_abi
2864 
2865 // }}}2
2866 // rebind_simd {{{2
2867 template <typename _Tp, typename _V, typename = void>
2868  struct rebind_simd;
2869 
2870 template <typename _Tp, typename _Up, typename _Abi>
2871  struct rebind_simd<
2872  _Tp, simd<_Up, _Abi>,
2873  void_t<simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>>
2874  {
2875  using type
2876  = simd<_Tp, simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>;
2877  };
2878 
2879 template <typename _Tp, typename _Up, typename _Abi>
2880  struct rebind_simd<
2881  _Tp, simd_mask<_Up, _Abi>,
2882  void_t<simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>>
2883  {
2884  using type
2885  = simd_mask<_Tp, simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>;
2886  };
2887 
2888 template <typename _Tp, typename _V>
2889  using rebind_simd_t = typename rebind_simd<_Tp, _V>::type;
2890 
2891 // resize_simd {{{2
2892 template <int _Np, typename _V, typename = void>
2893  struct resize_simd;
2894 
2895 template <int _Np, typename _Tp, typename _Abi>
2896  struct resize_simd<_Np, simd<_Tp, _Abi>,
2897  void_t<simd_abi::deduce_t<_Tp, _Np, _Abi>>>
2898  { using type = simd<_Tp, simd_abi::deduce_t<_Tp, _Np, _Abi>>; };
2899 
2900 template <int _Np, typename _Tp, typename _Abi>
2901  struct resize_simd<_Np, simd_mask<_Tp, _Abi>,
2902  void_t<simd_abi::deduce_t<_Tp, _Np, _Abi>>>
2903  { using type = simd_mask<_Tp, simd_abi::deduce_t<_Tp, _Np, _Abi>>; };
2904 
2905 template <int _Np, typename _V>
2906  using resize_simd_t = typename resize_simd<_Np, _V>::type;
2907 
2908 // }}}2
2909 // memory_alignment {{{2
2910 template <typename _Tp, typename _Up = typename _Tp::value_type>
2911  struct memory_alignment
2912  : public _SizeConstant<vector_aligned_tag::_S_alignment<_Tp, _Up>> {};
2913 
2914 template <typename _Tp, typename _Up = typename _Tp::value_type>
2915  inline constexpr size_t memory_alignment_v = memory_alignment<_Tp, _Up>::value;
2916 
2917 // class template simd [simd] {{{1
2918 template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>>
2919  class simd;
2920 
2921 template <typename _Tp, typename _Abi>
2922  struct is_simd<simd<_Tp, _Abi>> : public true_type {};
2923 
2924 template <typename _Tp>
2925  using native_simd = simd<_Tp, simd_abi::native<_Tp>>;
2926 
2927 template <typename _Tp, int _Np>
2928  using fixed_size_simd = simd<_Tp, simd_abi::fixed_size<_Np>>;
2929 
2930 template <typename _Tp, size_t _Np>
2931  using __deduced_simd = simd<_Tp, simd_abi::deduce_t<_Tp, _Np>>;
2932 
2933 // class template simd_mask [simd_mask] {{{1
2934 template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>>
2935  class simd_mask;
2936 
2937 template <typename _Tp, typename _Abi>
2938  struct is_simd_mask<simd_mask<_Tp, _Abi>> : public true_type {};
2939 
2940 template <typename _Tp>
2941  using native_simd_mask = simd_mask<_Tp, simd_abi::native<_Tp>>;
2942 
2943 template <typename _Tp, int _Np>
2944  using fixed_size_simd_mask = simd_mask<_Tp, simd_abi::fixed_size<_Np>>;
2945 
2946 template <typename _Tp, size_t _Np>
2947  using __deduced_simd_mask = simd_mask<_Tp, simd_abi::deduce_t<_Tp, _Np>>;
2948 
2949 // casts [simd.casts] {{{1
2950 // static_simd_cast {{{2
2951 template <typename _Tp, typename _Up, typename _Ap, bool = is_simd_v<_Tp>,
2952  typename = void>
2953  struct __static_simd_cast_return_type;
2954 
2955 template <typename _Tp, typename _A0, typename _Up, typename _Ap>
2956  struct __static_simd_cast_return_type<simd_mask<_Tp, _A0>, _Up, _Ap, false,
2957  void>
2958  : __static_simd_cast_return_type<simd<_Tp, _A0>, _Up, _Ap> {};
2959 
2960 template <typename _Tp, typename _Up, typename _Ap>
2961  struct __static_simd_cast_return_type<
2962  _Tp, _Up, _Ap, true, enable_if_t<_Tp::size() == simd_size_v<_Up, _Ap>>>
2963  { using type = _Tp; };
2964 
2965 template <typename _Tp, typename _Ap>
2966  struct __static_simd_cast_return_type<_Tp, _Tp, _Ap, false,
2967 #ifdef _GLIBCXX_SIMD_FIX_P2TS_ISSUE66
2968  enable_if_t<__is_vectorizable_v<_Tp>>
2969 #else
2970  void
2971 #endif
2972  >
2973  { using type = simd<_Tp, _Ap>; };
2974 
2975 template <typename _Tp, typename = void>
2976  struct __safe_make_signed { using type = _Tp;};
2977 
2978 template <typename _Tp>
2979  struct __safe_make_signed<_Tp, enable_if_t<is_integral_v<_Tp>>>
2980  {
2981  // the extra make_unsigned_t is because of PR85951
2982  using type = make_signed_t<make_unsigned_t<_Tp>>;
2983  };
2984 
2985 template <typename _Tp>
2986  using safe_make_signed_t = typename __safe_make_signed<_Tp>::type;
2987 
2988 template <typename _Tp, typename _Up, typename _Ap>
2989  struct __static_simd_cast_return_type<_Tp, _Up, _Ap, false,
2990 #ifdef _GLIBCXX_SIMD_FIX_P2TS_ISSUE66
2991  enable_if_t<__is_vectorizable_v<_Tp>>
2992 #else
2993  void
2994 #endif
2995  >
2996  {
2997  using type = conditional_t<
2998  (is_integral_v<_Up> && is_integral_v<_Tp> &&
2999 #ifndef _GLIBCXX_SIMD_FIX_P2TS_ISSUE65
3000  is_signed_v<_Up> != is_signed_v<_Tp> &&
3001 #endif
3002  is_same_v<safe_make_signed_t<_Up>, safe_make_signed_t<_Tp>>),
3003  simd<_Tp, _Ap>, fixed_size_simd<_Tp, simd_size_v<_Up, _Ap>>>;
3004  };
3005 
3006 template <typename _Tp, typename _Up, typename _Ap,
3007  typename _R
3008  = typename __static_simd_cast_return_type<_Tp, _Up, _Ap>::type>
3009  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _R
3010  static_simd_cast(const simd<_Up, _Ap>& __x)
3011  {
3012  if constexpr (is_same<_R, simd<_Up, _Ap>>::value)
3013  return __x;
3014  else
3015  {
3016  _SimdConverter<_Up, _Ap, typename _R::value_type, typename _R::abi_type>
3017  __c;
3018  return _R(__private_init, __c(__data(__x)));
3019  }
3020  }
3021 
3022 namespace __proposed {
3023 template <typename _Tp, typename _Up, typename _Ap,
3024  typename _R
3025  = typename __static_simd_cast_return_type<_Tp, _Up, _Ap>::type>
3026  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR typename _R::mask_type
3027  static_simd_cast(const simd_mask<_Up, _Ap>& __x)
3028  {
3029  using _RM = typename _R::mask_type;
3030  return {__private_init, _RM::abi_type::_MaskImpl::template _S_convert<
3031  typename _RM::simd_type::value_type>(__x)};
3032  }
3033 
3034 template <typename _To, typename _Up, typename _Abi>
3035  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
3036  _To
3037  simd_bit_cast(const simd<_Up, _Abi>& __x)
3038  {
3039  using _Tp = typename _To::value_type;
3040  using _ToMember = typename _SimdTraits<_Tp, typename _To::abi_type>::_SimdMember;
3041  using _From = simd<_Up, _Abi>;
3042  using _FromMember = typename _SimdTraits<_Up, _Abi>::_SimdMember;
3043  // with concepts, the following should be constraints
3044  static_assert(sizeof(_To) == sizeof(_From));
3045  static_assert(is_trivially_copyable_v<_Tp> && is_trivially_copyable_v<_Up>);
3046  static_assert(is_trivially_copyable_v<_ToMember> && is_trivially_copyable_v<_FromMember>);
3047 #if __has_builtin(__builtin_bit_cast)
3048  return {__private_init, __builtin_bit_cast(_ToMember, __data(__x))};
3049 #else
3050  return {__private_init, __bit_cast<_ToMember>(__data(__x))};
3051 #endif
3052  }
3053 
3054 template <typename _To, typename _Up, typename _Abi>
3055  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
3056  _To
3057  simd_bit_cast(const simd_mask<_Up, _Abi>& __x)
3058  {
3059  using _From = simd_mask<_Up, _Abi>;
3060  static_assert(sizeof(_To) == sizeof(_From));
3061  static_assert(is_trivially_copyable_v<_From>);
3062  // _To can be simd<T, A>, specifically simd<T, fixed_size<N>> in which case _To is not trivially
3063  // copyable.
3064  if constexpr (is_simd_v<_To>)
3065  {
3066  using _Tp = typename _To::value_type;
3067  using _ToMember = typename _SimdTraits<_Tp, typename _To::abi_type>::_SimdMember;
3068  static_assert(is_trivially_copyable_v<_ToMember>);
3069 #if __has_builtin(__builtin_bit_cast)
3070  return {__private_init, __builtin_bit_cast(_ToMember, __x)};
3071 #else
3072  return {__private_init, __bit_cast<_ToMember>(__x)};
3073 #endif
3074  }
3075  else
3076  {
3077  static_assert(is_trivially_copyable_v<_To>);
3078 #if __has_builtin(__builtin_bit_cast)
3079  return __builtin_bit_cast(_To, __x);
3080 #else
3081  return __bit_cast<_To>(__x);
3082 #endif
3083  }
3084  }
3085 } // namespace __proposed
3086 
3087 // simd_cast {{{2
3088 template <typename _Tp, typename _Up, typename _Ap,
3089  typename _To = __value_type_or_identity_t<_Tp>>
3090  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR auto
3091  simd_cast(const simd<_ValuePreserving<_Up, _To>, _Ap>& __x)
3092  -> decltype(static_simd_cast<_Tp>(__x))
3093  { return static_simd_cast<_Tp>(__x); }
3094 
3095 namespace __proposed {
3096 template <typename _Tp, typename _Up, typename _Ap,
3097  typename _To = __value_type_or_identity_t<_Tp>>
3098  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR auto
3099  simd_cast(const simd_mask<_ValuePreserving<_Up, _To>, _Ap>& __x)
3100  -> decltype(static_simd_cast<_Tp>(__x))
3101  { return static_simd_cast<_Tp>(__x); }
3102 } // namespace __proposed
3103 
3104 // }}}2
3105 // resizing_simd_cast {{{
3106 namespace __proposed {
3107 /* Proposed spec:
3108 
3109 template <class T, class U, class Abi>
3110 T resizing_simd_cast(const simd<U, Abi>& x)
3111 
3112 p1 Constraints:
3113  - is_simd_v<T> is true and
3114  - T::value_type is the same type as U
3115 
3116 p2 Returns:
3117  A simd object with the i^th element initialized to x[i] for all i in the
3118  range of [0, min(T::size(), simd_size_v<U, Abi>)). If T::size() is larger
3119  than simd_size_v<U, Abi>, the remaining elements are value-initialized.
3120 
3121 template <class T, class U, class Abi>
3122 T resizing_simd_cast(const simd_mask<U, Abi>& x)
3123 
3124 p1 Constraints: is_simd_mask_v<T> is true
3125 
3126 p2 Returns:
3127  A simd_mask object with the i^th element initialized to x[i] for all i in
3128 the range of [0, min(T::size(), simd_size_v<U, Abi>)). If T::size() is larger
3129  than simd_size_v<U, Abi>, the remaining elements are initialized to false.
3130 
3131  */
3132 
3133 template <typename _Tp, typename _Up, typename _Ap>
3134  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR enable_if_t<
3135  conjunction_v<is_simd<_Tp>, is_same<typename _Tp::value_type, _Up>>, _Tp>
3136  resizing_simd_cast(const simd<_Up, _Ap>& __x)
3137  {
3138  if constexpr (is_same_v<typename _Tp::abi_type, _Ap>)
3139  return __x;
3140  else if constexpr (simd_size_v<_Up, _Ap> == 1)
3141  {
3142  _Tp __r{};
3143  __r[0] = __x[0];
3144  return __r;
3145  }
3146  else if constexpr (_Tp::size() == 1)
3147  return __x[0];
3148  else if constexpr (sizeof(_Tp) == sizeof(__x)
3149  && !__is_fixed_size_abi_v<_Ap>)
3150  return {__private_init,
3151  __vector_bitcast<typename _Tp::value_type, _Tp::size()>(
3152  _Ap::_S_masked(__data(__x))._M_data)};
3153  else
3154  {
3155  _Tp __r{};
3156  __builtin_memcpy(&__data(__r), &__data(__x),
3157  sizeof(_Up)
3158  * std::min(_Tp::size(), simd_size_v<_Up, _Ap>));
3159  return __r;
3160  }
3161  }
3162 
3163 template <typename _Tp, typename _Up, typename _Ap>
3164  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
3165  enable_if_t<is_simd_mask_v<_Tp>, _Tp>
3166  resizing_simd_cast(const simd_mask<_Up, _Ap>& __x)
3167  {
3168  return {__private_init, _Tp::abi_type::_MaskImpl::template _S_convert<
3169  typename _Tp::simd_type::value_type>(__x)};
3170  }
3171 } // namespace __proposed
3172 
3173 // }}}
3174 // to_fixed_size {{{2
3175 template <typename _Tp, int _Np>
3176  _GLIBCXX_SIMD_INTRINSIC fixed_size_simd<_Tp, _Np>
3177  to_fixed_size(const fixed_size_simd<_Tp, _Np>& __x)
3178  { return __x; }
3179 
3180 template <typename _Tp, int _Np>
3181  _GLIBCXX_SIMD_INTRINSIC fixed_size_simd_mask<_Tp, _Np>
3182  to_fixed_size(const fixed_size_simd_mask<_Tp, _Np>& __x)
3183  { return __x; }
3184 
3185 template <typename _Tp, typename _Ap>
3186  _GLIBCXX_SIMD_INTRINSIC auto
3187  to_fixed_size(const simd<_Tp, _Ap>& __x)
3188  {
3189  return simd<_Tp, simd_abi::fixed_size<simd_size_v<_Tp, _Ap>>>([&__x](
3190  auto __i) constexpr { return __x[__i]; });
3191  }
3192 
3193 template <typename _Tp, typename _Ap>
3194  _GLIBCXX_SIMD_INTRINSIC auto
3195  to_fixed_size(const simd_mask<_Tp, _Ap>& __x)
3196  {
3197  constexpr int _Np = simd_mask<_Tp, _Ap>::size();
3198  fixed_size_simd_mask<_Tp, _Np> __r;
3199  __execute_n_times<_Np>([&](auto __i) constexpr { __r[__i] = __x[__i]; });
3200  return __r;
3201  }
3202 
3203 // to_native {{{2
3204 template <typename _Tp, int _Np>
3205  _GLIBCXX_SIMD_INTRINSIC
3206  enable_if_t<(_Np == native_simd<_Tp>::size()), native_simd<_Tp>>
3207  to_native(const fixed_size_simd<_Tp, _Np>& __x)
3208  {
3209  alignas(memory_alignment_v<native_simd<_Tp>>) _Tp __mem[_Np];
3210  __x.copy_to(__mem, vector_aligned);
3211  return {__mem, vector_aligned};
3212  }
3213 
3214 template <typename _Tp, size_t _Np>
3215  _GLIBCXX_SIMD_INTRINSIC
3216  enable_if_t<(_Np == native_simd_mask<_Tp>::size()), native_simd_mask<_Tp>>
3217  to_native(const fixed_size_simd_mask<_Tp, _Np>& __x)
3218  {
3219  return native_simd_mask<_Tp>([&](auto __i) constexpr { return __x[__i]; });
3220  }
3221 
3222 // to_compatible {{{2
3223 template <typename _Tp, size_t _Np>
3224  _GLIBCXX_SIMD_INTRINSIC enable_if_t<(_Np == simd<_Tp>::size()), simd<_Tp>>
3225  to_compatible(const simd<_Tp, simd_abi::fixed_size<_Np>>& __x)
3226  {
3227  alignas(memory_alignment_v<simd<_Tp>>) _Tp __mem[_Np];
3228  __x.copy_to(__mem, vector_aligned);
3229  return {__mem, vector_aligned};
3230  }
3231 
3232 template <typename _Tp, size_t _Np>
3233  _GLIBCXX_SIMD_INTRINSIC
3234  enable_if_t<(_Np == simd_mask<_Tp>::size()), simd_mask<_Tp>>
3235  to_compatible(const simd_mask<_Tp, simd_abi::fixed_size<_Np>>& __x)
3236  { return simd_mask<_Tp>([&](auto __i) constexpr { return __x[__i]; }); }
3237 
3238 // masked assignment [simd_mask.where] {{{1
3239 
3240 // where_expression {{{1
3241 // const_where_expression<M, T> {{{2
3242 template <typename _M, typename _Tp>
3243  class const_where_expression
3244  {
3245  using _V = _Tp;
3246  static_assert(is_same_v<_V, __remove_cvref_t<_Tp>>);
3247 
3248  struct _Wrapper { using value_type = _V; };
3249 
3250  protected:
3251  using _Impl = typename _V::_Impl;
3252 
3253  using value_type =
3254  typename conditional_t<is_arithmetic_v<_V>, _Wrapper, _V>::value_type;
3255 
3256  _GLIBCXX_SIMD_INTRINSIC friend const _M&
3257  __get_mask(const const_where_expression& __x)
3258  { return __x._M_k; }
3259 
3260  _GLIBCXX_SIMD_INTRINSIC friend const _Tp&
3261  __get_lvalue(const const_where_expression& __x)
3262  { return __x._M_value; }
3263 
3264  const _M& _M_k;
3265  _Tp& _M_value;
3266 
3267  public:
3268  const_where_expression(const const_where_expression&) = delete;
3269  const_where_expression& operator=(const const_where_expression&) = delete;
3270 
3271  _GLIBCXX_SIMD_INTRINSIC const_where_expression(const _M& __kk, const _Tp& dd)
3272  : _M_k(__kk), _M_value(const_cast<_Tp&>(dd)) {}
3273 
3274  _GLIBCXX_SIMD_INTRINSIC _V
3275  operator-() const&&
3276  {
3277  return {__private_init,
3278  _Impl::template _S_masked_unary<negate>(__data(_M_k),
3279  __data(_M_value))};
3280  }
3281 
3282  template <typename _Up, typename _Flags>
3283  [[nodiscard]] _GLIBCXX_SIMD_INTRINSIC _V
3284  copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _Flags) const&&
3285  {
3286  return {__private_init,
3287  _Impl::_S_masked_load(__data(_M_value), __data(_M_k),
3288  _Flags::template _S_apply<_V>(__mem))};
3289  }
3290 
3291  template <typename _Up, typename _Flags>
3292  _GLIBCXX_SIMD_INTRINSIC void
3293  copy_to(_LoadStorePtr<_Up, value_type>* __mem, _Flags) const&&
3294  {
3295  _Impl::_S_masked_store(__data(_M_value),
3296  _Flags::template _S_apply<_V>(__mem),
3297  __data(_M_k));
3298  }
3299  };
3300 
3301 // const_where_expression<bool, T> {{{2
3302 template <typename _Tp>
3303  class const_where_expression<bool, _Tp>
3304  {
3305  using _M = bool;
3306  using _V = _Tp;
3307 
3308  static_assert(is_same_v<_V, __remove_cvref_t<_Tp>>);
3309 
3310  struct _Wrapper { using value_type = _V; };
3311 
3312  protected:
3313  using value_type =
3314  typename conditional_t<is_arithmetic_v<_V>, _Wrapper, _V>::value_type;
3315 
3316  _GLIBCXX_SIMD_INTRINSIC friend const _M&
3317  __get_mask(const const_where_expression& __x)
3318  { return __x._M_k; }
3319 
3320  _GLIBCXX_SIMD_INTRINSIC friend const _Tp&
3321  __get_lvalue(const const_where_expression& __x)
3322  { return __x._M_value; }
3323 
3324  const bool _M_k;
3325  _Tp& _M_value;
3326 
3327  public:
3328  const_where_expression(const const_where_expression&) = delete;
3329  const_where_expression& operator=(const const_where_expression&) = delete;
3330 
3331  _GLIBCXX_SIMD_INTRINSIC const_where_expression(const bool __kk, const _Tp& dd)
3332  : _M_k(__kk), _M_value(const_cast<_Tp&>(dd)) {}
3333 
3334  _GLIBCXX_SIMD_INTRINSIC _V operator-() const&&
3335  { return _M_k ? -_M_value : _M_value; }
3336 
3337  template <typename _Up, typename _Flags>
3338  [[nodiscard]] _GLIBCXX_SIMD_INTRINSIC _V
3339  copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _Flags) const&&
3340  { return _M_k ? static_cast<_V>(__mem[0]) : _M_value; }
3341 
3342  template <typename _Up, typename _Flags>
3343  _GLIBCXX_SIMD_INTRINSIC void
3344  copy_to(_LoadStorePtr<_Up, value_type>* __mem, _Flags) const&&
3345  {
3346  if (_M_k)
3347  __mem[0] = _M_value;
3348  }
3349  };
3350 
3351 // where_expression<M, T> {{{2
3352 template <typename _M, typename _Tp>
3353  class where_expression : public const_where_expression<_M, _Tp>
3354  {
3355  using _Impl = typename const_where_expression<_M, _Tp>::_Impl;
3356 
3357  static_assert(!is_const<_Tp>::value,
3358  "where_expression may only be instantiated with __a non-const "
3359  "_Tp parameter");
3360 
3361  using typename const_where_expression<_M, _Tp>::value_type;
3362  using const_where_expression<_M, _Tp>::_M_k;
3363  using const_where_expression<_M, _Tp>::_M_value;
3364 
3365  static_assert(
3366  is_same<typename _M::abi_type, typename _Tp::abi_type>::value, "");
3367  static_assert(_M::size() == _Tp::size(), "");
3368 
3369  _GLIBCXX_SIMD_INTRINSIC friend _Tp& __get_lvalue(where_expression& __x)
3370  { return __x._M_value; }
3371 
3372  public:
3373  where_expression(const where_expression&) = delete;
3374  where_expression& operator=(const where_expression&) = delete;
3375 
3376  _GLIBCXX_SIMD_INTRINSIC where_expression(const _M& __kk, _Tp& dd)
3377  : const_where_expression<_M, _Tp>(__kk, dd) {}
3378 
3379  template <typename _Up>
3380  _GLIBCXX_SIMD_INTRINSIC void operator=(_Up&& __x) &&
3381  {
3382  _Impl::_S_masked_assign(__data(_M_k), __data(_M_value),
3383  __to_value_type_or_member_type<_Tp>(
3384  static_cast<_Up&&>(__x)));
3385  }
3386 
3387 #define _GLIBCXX_SIMD_OP_(__op, __name) \
3388  template <typename _Up> \
3389  _GLIBCXX_SIMD_INTRINSIC void operator __op##=(_Up&& __x)&& \
3390  { \
3391  _Impl::template _S_masked_cassign( \
3392  __data(_M_k), __data(_M_value), \
3393  __to_value_type_or_member_type<_Tp>(static_cast<_Up&&>(__x)), \
3394  [](auto __impl, auto __lhs, auto __rhs) constexpr { \
3395  return __impl.__name(__lhs, __rhs); \
3396  }); \
3397  } \
3398  static_assert(true)
3399  _GLIBCXX_SIMD_OP_(+, _S_plus);
3400  _GLIBCXX_SIMD_OP_(-, _S_minus);
3401  _GLIBCXX_SIMD_OP_(*, _S_multiplies);
3402  _GLIBCXX_SIMD_OP_(/, _S_divides);
3403  _GLIBCXX_SIMD_OP_(%, _S_modulus);
3404  _GLIBCXX_SIMD_OP_(&, _S_bit_and);
3405  _GLIBCXX_SIMD_OP_(|, _S_bit_or);
3406  _GLIBCXX_SIMD_OP_(^, _S_bit_xor);
3407  _GLIBCXX_SIMD_OP_(<<, _S_shift_left);
3408  _GLIBCXX_SIMD_OP_(>>, _S_shift_right);
3409 #undef _GLIBCXX_SIMD_OP_
3410 
3411  _GLIBCXX_SIMD_INTRINSIC void operator++() &&
3412  {
3413  __data(_M_value)
3414  = _Impl::template _S_masked_unary<__increment>(__data(_M_k),
3415  __data(_M_value));
3416  }
3417 
3418  _GLIBCXX_SIMD_INTRINSIC void operator++(int) &&
3419  {
3420  __data(_M_value)
3421  = _Impl::template _S_masked_unary<__increment>(__data(_M_k),
3422  __data(_M_value));
3423  }
3424 
3425  _GLIBCXX_SIMD_INTRINSIC void operator--() &&
3426  {
3427  __data(_M_value)
3428  = _Impl::template _S_masked_unary<__decrement>(__data(_M_k),
3429  __data(_M_value));
3430  }
3431 
3432  _GLIBCXX_SIMD_INTRINSIC void operator--(int) &&
3433  {
3434  __data(_M_value)
3435  = _Impl::template _S_masked_unary<__decrement>(__data(_M_k),
3436  __data(_M_value));
3437  }
3438 
3439  // intentionally hides const_where_expression::copy_from
3440  template <typename _Up, typename _Flags>
3441  _GLIBCXX_SIMD_INTRINSIC void
3442  copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _Flags) &&
3443  {
3444  __data(_M_value)
3445  = _Impl::_S_masked_load(__data(_M_value), __data(_M_k),
3446  _Flags::template _S_apply<_Tp>(__mem));
3447  }
3448  };
3449 
3450 // where_expression<bool, T> {{{2
3451 template <typename _Tp>
3452  class where_expression<bool, _Tp> : public const_where_expression<bool, _Tp>
3453  {
3454  using _M = bool;
3455  using typename const_where_expression<_M, _Tp>::value_type;
3456  using const_where_expression<_M, _Tp>::_M_k;
3457  using const_where_expression<_M, _Tp>::_M_value;
3458 
3459  public:
3460  where_expression(const where_expression&) = delete;
3461  where_expression& operator=(const where_expression&) = delete;
3462 
3463  _GLIBCXX_SIMD_INTRINSIC where_expression(const _M& __kk, _Tp& dd)
3464  : const_where_expression<_M, _Tp>(__kk, dd) {}
3465 
3466 #define _GLIBCXX_SIMD_OP_(__op) \
3467  template <typename _Up> \
3468  _GLIBCXX_SIMD_INTRINSIC void operator __op(_Up&& __x)&& \
3469  { if (_M_k) _M_value __op static_cast<_Up&&>(__x); }
3470 
3471  _GLIBCXX_SIMD_OP_(=)
3472  _GLIBCXX_SIMD_OP_(+=)
3473  _GLIBCXX_SIMD_OP_(-=)
3474  _GLIBCXX_SIMD_OP_(*=)
3475  _GLIBCXX_SIMD_OP_(/=)
3476  _GLIBCXX_SIMD_OP_(%=)
3477  _GLIBCXX_SIMD_OP_(&=)
3478  _GLIBCXX_SIMD_OP_(|=)
3479  _GLIBCXX_SIMD_OP_(^=)
3480  _GLIBCXX_SIMD_OP_(<<=)
3481  _GLIBCXX_SIMD_OP_(>>=)
3482  #undef _GLIBCXX_SIMD_OP_
3483 
3484  _GLIBCXX_SIMD_INTRINSIC void operator++() &&
3485  { if (_M_k) ++_M_value; }
3486 
3487  _GLIBCXX_SIMD_INTRINSIC void operator++(int) &&
3488  { if (_M_k) ++_M_value; }
3489 
3490  _GLIBCXX_SIMD_INTRINSIC void operator--() &&
3491  { if (_M_k) --_M_value; }
3492 
3493  _GLIBCXX_SIMD_INTRINSIC void operator--(int) &&
3494  { if (_M_k) --_M_value; }
3495 
3496  // intentionally hides const_where_expression::copy_from
3497  template <typename _Up, typename _Flags>
3498  _GLIBCXX_SIMD_INTRINSIC void
3499  copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _Flags) &&
3500  { if (_M_k) _M_value = __mem[0]; }
3501  };
3502 
3503 // where {{{1
3504 template <typename _Tp, typename _Ap>
3505  _GLIBCXX_SIMD_INTRINSIC where_expression<simd_mask<_Tp, _Ap>, simd<_Tp, _Ap>>
3506  where(const typename simd<_Tp, _Ap>::mask_type& __k, simd<_Tp, _Ap>& __value)
3507  { return {__k, __value}; }
3508 
3509 template <typename _Tp, typename _Ap>
3510  _GLIBCXX_SIMD_INTRINSIC
3511  const_where_expression<simd_mask<_Tp, _Ap>, simd<_Tp, _Ap>>
3512  where(const typename simd<_Tp, _Ap>::mask_type& __k,
3513  const simd<_Tp, _Ap>& __value)
3514  { return {__k, __value}; }
3515 
3516 template <typename _Tp, typename _Ap>
3517  _GLIBCXX_SIMD_INTRINSIC
3518  where_expression<simd_mask<_Tp, _Ap>, simd_mask<_Tp, _Ap>>
3519  where(const remove_const_t<simd_mask<_Tp, _Ap>>& __k,
3520  simd_mask<_Tp, _Ap>& __value)
3521  { return {__k, __value}; }
3522 
3523 template <typename _Tp, typename _Ap>
3524  _GLIBCXX_SIMD_INTRINSIC
3525  const_where_expression<simd_mask<_Tp, _Ap>, simd_mask<_Tp, _Ap>>
3526  where(const remove_const_t<simd_mask<_Tp, _Ap>>& __k,
3527  const simd_mask<_Tp, _Ap>& __value)
3528  { return {__k, __value}; }
3529 
3530 template <typename _Tp>
3531  _GLIBCXX_SIMD_INTRINSIC where_expression<bool, _Tp>
3532  where(_ExactBool __k, _Tp& __value)
3533  { return {__k, __value}; }
3534 
3535 template <typename _Tp>
3536  _GLIBCXX_SIMD_INTRINSIC const_where_expression<bool, _Tp>
3537  where(_ExactBool __k, const _Tp& __value)
3538  { return {__k, __value}; }
3539 
3540  template <typename _Tp, typename _Ap>
3541  void where(bool __k, simd<_Tp, _Ap>& __value) = delete;
3542 
3543  template <typename _Tp, typename _Ap>
3544  void where(bool __k, const simd<_Tp, _Ap>& __value) = delete;
3545 
3546 // proposed mask iterations {{{1
3547 namespace __proposed {
3548 template <size_t _Np>
3549  class where_range
3550  {
3551  const bitset<_Np> __bits;
3552 
3553  public:
3554  where_range(bitset<_Np> __b) : __bits(__b) {}
3555 
3556  class iterator
3557  {
3558  size_t __mask;
3559  size_t __bit;
3560 
3561  _GLIBCXX_SIMD_INTRINSIC void __next_bit()
3562  { __bit = __builtin_ctzl(__mask); }
3563 
3564  _GLIBCXX_SIMD_INTRINSIC void __reset_lsb()
3565  {
3566  // 01100100 - 1 = 01100011
3567  __mask &= (__mask - 1);
3568  // __asm__("btr %1,%0" : "+r"(__mask) : "r"(__bit));
3569  }
3570 
3571  public:
3572  iterator(decltype(__mask) __m) : __mask(__m) { __next_bit(); }
3573  iterator(const iterator&) = default;
3574  iterator(iterator&&) = default;
3575 
3576  _GLIBCXX_SIMD_ALWAYS_INLINE size_t operator->() const
3577  { return __bit; }
3578 
3579  _GLIBCXX_SIMD_ALWAYS_INLINE size_t operator*() const
3580  { return __bit; }
3581 
3582  _GLIBCXX_SIMD_ALWAYS_INLINE iterator& operator++()
3583  {
3584  __reset_lsb();
3585  __next_bit();
3586  return *this;
3587  }
3588 
3589  _GLIBCXX_SIMD_ALWAYS_INLINE iterator operator++(int)
3590  {
3591  iterator __tmp = *this;
3592  __reset_lsb();
3593  __next_bit();
3594  return __tmp;
3595  }
3596 
3597  _GLIBCXX_SIMD_ALWAYS_INLINE bool operator==(const iterator& __rhs) const
3598  { return __mask == __rhs.__mask; }
3599 
3600  _GLIBCXX_SIMD_ALWAYS_INLINE bool operator!=(const iterator& __rhs) const
3601  { return __mask != __rhs.__mask; }
3602  };
3603 
3604  iterator begin() const
3605  { return __bits.to_ullong(); }
3606 
3607  iterator end() const
3608  { return 0; }
3609  };
3610 
3611 template <typename _Tp, typename _Ap>
3612  where_range<simd_size_v<_Tp, _Ap>>
3613  where(const simd_mask<_Tp, _Ap>& __k)
3614  { return __k.__to_bitset(); }
3615 
3616 } // namespace __proposed
3617 
3618 // }}}1
3619 // reductions [simd.reductions] {{{1
3620 template <typename _Tp, typename _Abi, typename _BinaryOperation = plus<>>
3621  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _Tp
3622  reduce(const simd<_Tp, _Abi>& __v,
3623  _BinaryOperation __binary_op = _BinaryOperation())
3624  { return _Abi::_SimdImpl::_S_reduce(__v, __binary_op); }
3625 
3626 template <typename _M, typename _V, typename _BinaryOperation = plus<>>
3627  _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3628  reduce(const const_where_expression<_M, _V>& __x,
3629  typename _V::value_type __identity_element,
3630  _BinaryOperation __binary_op)
3631  {
3632  if (__builtin_expect(none_of(__get_mask(__x)), false))
3633  return __identity_element;
3634 
3635  _V __tmp = __identity_element;
3636  _V::_Impl::_S_masked_assign(__data(__get_mask(__x)), __data(__tmp),
3637  __data(__get_lvalue(__x)));
3638  return reduce(__tmp, __binary_op);
3639  }
3640 
3641 template <typename _M, typename _V>
3642  _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3643  reduce(const const_where_expression<_M, _V>& __x, plus<> __binary_op = {})
3644  { return reduce(__x, 0, __binary_op); }
3645 
3646 template <typename _M, typename _V>
3647  _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3648  reduce(const const_where_expression<_M, _V>& __x, multiplies<> __binary_op)
3649  { return reduce(__x, 1, __binary_op); }
3650 
3651 template <typename _M, typename _V>
3652  _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3653  reduce(const const_where_expression<_M, _V>& __x, bit_and<> __binary_op)
3654  { return reduce(__x, ~typename _V::value_type(), __binary_op); }
3655 
3656 template <typename _M, typename _V>
3657  _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3658  reduce(const const_where_expression<_M, _V>& __x, bit_or<> __binary_op)
3659  { return reduce(__x, 0, __binary_op); }
3660 
3661 template <typename _M, typename _V>
3662  _GLIBCXX_SIMD_INTRINSIC typename _V::value_type
3663  reduce(const const_where_expression<_M, _V>& __x, bit_xor<> __binary_op)
3664  { return reduce(__x, 0, __binary_op); }
3665 
3666 template <typename _Tp, typename _Abi>
3667  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _Tp
3668  hmin(const simd<_Tp, _Abi>& __v) noexcept
3669  {
3670  return _Abi::_SimdImpl::_S_reduce(__v, __detail::_Minimum());
3671  }
3672 
3673 template <typename _Tp, typename _Abi>
3674  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _Tp
3675  hmax(const simd<_Tp, _Abi>& __v) noexcept
3676  {
3677  return _Abi::_SimdImpl::_S_reduce(__v, __detail::_Maximum());
3678  }
3679 
3680 template <typename _M, typename _V>
3681  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
3682  typename _V::value_type
3683  hmin(const const_where_expression<_M, _V>& __x) noexcept
3684  {
3685  using _Tp = typename _V::value_type;
3686  constexpr _Tp __id_elem =
3687 #ifdef __FINITE_MATH_ONLY__
3688  __finite_max_v<_Tp>;
3689 #else
3690  __value_or<__infinity, _Tp>(__finite_max_v<_Tp>);
3691 #endif
3692  _V __tmp = __id_elem;
3693  _V::_Impl::_S_masked_assign(__data(__get_mask(__x)), __data(__tmp),
3694  __data(__get_lvalue(__x)));
3695  return _V::abi_type::_SimdImpl::_S_reduce(__tmp, __detail::_Minimum());
3696  }
3697 
3698 template <typename _M, typename _V>
3699  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
3700  typename _V::value_type
3701  hmax(const const_where_expression<_M, _V>& __x) noexcept
3702  {
3703  using _Tp = typename _V::value_type;
3704  constexpr _Tp __id_elem =
3705 #ifdef __FINITE_MATH_ONLY__
3706  __finite_min_v<_Tp>;
3707 #else
3708  [] {
3709  if constexpr (__value_exists_v<__infinity, _Tp>)
3710  return -__infinity_v<_Tp>;
3711  else
3712  return __finite_min_v<_Tp>;
3713  }();
3714 #endif
3715  _V __tmp = __id_elem;
3716  _V::_Impl::_S_masked_assign(__data(__get_mask(__x)), __data(__tmp),
3717  __data(__get_lvalue(__x)));
3718  return _V::abi_type::_SimdImpl::_S_reduce(__tmp, __detail::_Maximum());
3719  }
3720 
3721 // }}}1
3722 // algorithms [simd.alg] {{{
3723 template <typename _Tp, typename _Ap>
3724  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
3725  min(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
3726  { return {__private_init, _Ap::_SimdImpl::_S_min(__data(__a), __data(__b))}; }
3727 
3728 template <typename _Tp, typename _Ap>
3729  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
3730  max(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
3731  { return {__private_init, _Ap::_SimdImpl::_S_max(__data(__a), __data(__b))}; }
3732 
3733 template <typename _Tp, typename _Ap>
3734  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
3735  pair<simd<_Tp, _Ap>, simd<_Tp, _Ap>>
3736  minmax(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
3737  {
3738  const auto pair_of_members
3739  = _Ap::_SimdImpl::_S_minmax(__data(__a), __data(__b));
3740  return {simd<_Tp, _Ap>(__private_init, pair_of_members.first),
3741  simd<_Tp, _Ap>(__private_init, pair_of_members.second)};
3742  }
3743 
3744 template <typename _Tp, typename _Ap>
3745  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
3746  clamp(const simd<_Tp, _Ap>& __v, const simd<_Tp, _Ap>& __lo,
3747  const simd<_Tp, _Ap>& __hi)
3748  {
3749  using _Impl = typename _Ap::_SimdImpl;
3750  return {__private_init,
3751  _Impl::_S_min(__data(__hi),
3752  _Impl::_S_max(__data(__lo), __data(__v)))};
3753  }
3754 
3755 // }}}
3756 
3757 template <size_t... _Sizes, typename _Tp, typename _Ap,
3758  typename = enable_if_t<((_Sizes + ...) == simd<_Tp, _Ap>::size())>>
3759  inline tuple<simd<_Tp, simd_abi::deduce_t<_Tp, _Sizes>>...>
3760  split(const simd<_Tp, _Ap>&);
3761 
3762 // __extract_part {{{
3763 template <int _Index, int _Total, int _Combine = 1, typename _Tp, size_t _Np>
3764  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_CONST
3765  _SimdWrapper<_Tp, _Np / _Total * _Combine>
3766  __extract_part(const _SimdWrapper<_Tp, _Np> __x);
3767 
3768 template <int Index, int Parts, int _Combine = 1, typename _Tp, typename _A0,
3769  typename... _As>
3770  _GLIBCXX_SIMD_INTRINSIC auto
3771  __extract_part(const _SimdTuple<_Tp, _A0, _As...>& __x);
3772 
3773 // }}}
3774 // _SizeList {{{
3775 template <size_t _V0, size_t... _Values>
3776  struct _SizeList
3777  {
3778  template <size_t _I>
3779  static constexpr size_t _S_at(_SizeConstant<_I> = {})
3780  {
3781  if constexpr (_I == 0)
3782  return _V0;
3783  else
3784  return _SizeList<_Values...>::template _S_at<_I - 1>();
3785  }
3786 
3787  template <size_t _I>
3788  static constexpr auto _S_before(_SizeConstant<_I> = {})
3789  {
3790  if constexpr (_I == 0)
3791  return _SizeConstant<0>();
3792  else
3793  return _SizeConstant<
3794  _V0 + _SizeList<_Values...>::template _S_before<_I - 1>()>();
3795  }
3796 
3797  template <size_t _Np>
3798  static constexpr auto _S_pop_front(_SizeConstant<_Np> = {})
3799  {
3800  if constexpr (_Np == 0)
3801  return _SizeList();
3802  else
3803  return _SizeList<_Values...>::template _S_pop_front<_Np - 1>();
3804  }
3805  };
3806 
3807 // }}}
3808 // __extract_center {{{
3809 template <typename _Tp, size_t _Np>
3810  _GLIBCXX_SIMD_INTRINSIC _SimdWrapper<_Tp, _Np / 2>
3811  __extract_center(_SimdWrapper<_Tp, _Np> __x)
3812  {
3813  static_assert(_Np >= 4);
3814  static_assert(_Np % 4 == 0); // x0 - x1 - x2 - x3 -> return {x1, x2}
3815 #if _GLIBCXX_SIMD_X86INTRIN // {{{
3816  if constexpr (__have_avx512f && sizeof(_Tp) * _Np == 64)
3817  {
3818  const auto __intrin = __to_intrin(__x);
3819  if constexpr (is_integral_v<_Tp>)
3820  return __vector_bitcast<_Tp>(_mm512_castsi512_si256(
3821  _mm512_shuffle_i32x4(__intrin, __intrin,
3822  1 + 2 * 0x4 + 2 * 0x10 + 3 * 0x40)));
3823  else if constexpr (sizeof(_Tp) == 4)
3824  return __vector_bitcast<_Tp>(_mm512_castps512_ps256(
3825  _mm512_shuffle_f32x4(__intrin, __intrin,
3826  1 + 2 * 0x4 + 2 * 0x10 + 3 * 0x40)));
3827  else if constexpr (sizeof(_Tp) == 8)
3828  return __vector_bitcast<_Tp>(_mm512_castpd512_pd256(
3829  _mm512_shuffle_f64x2(__intrin, __intrin,
3830  1 + 2 * 0x4 + 2 * 0x10 + 3 * 0x40)));
3831  else
3832  __assert_unreachable<_Tp>();
3833  }
3834  else if constexpr (sizeof(_Tp) * _Np == 32 && is_floating_point_v<_Tp>)
3835  return __vector_bitcast<_Tp>(
3836  _mm_shuffle_pd(__lo128(__vector_bitcast<double>(__x)),
3837  __hi128(__vector_bitcast<double>(__x)), 1));
3838  else if constexpr (sizeof(__x) == 32 && sizeof(_Tp) * _Np <= 32)
3839  return __vector_bitcast<_Tp>(
3840  _mm_alignr_epi8(__hi128(__vector_bitcast<_LLong>(__x)),
3841  __lo128(__vector_bitcast<_LLong>(__x)),
3842  sizeof(_Tp) * _Np / 4));
3843  else
3844 #endif // _GLIBCXX_SIMD_X86INTRIN }}}
3845  {
3846  __vector_type_t<_Tp, _Np / 2> __r;
3847  __builtin_memcpy(&__r,
3848  reinterpret_cast<const char*>(&__x)
3849  + sizeof(_Tp) * _Np / 4,
3850  sizeof(_Tp) * _Np / 2);
3851  return __r;
3852  }
3853  }
3854 
3855 template <typename _Tp, typename _A0, typename... _As>
3856  _GLIBCXX_SIMD_INTRINSIC
3857  _SimdWrapper<_Tp, _SimdTuple<_Tp, _A0, _As...>::_S_size() / 2>
3858  __extract_center(const _SimdTuple<_Tp, _A0, _As...>& __x)
3859  {
3860  if constexpr (sizeof...(_As) == 0)
3861  return __extract_center(__x.first);
3862  else
3863  return __extract_part<1, 4, 2>(__x);
3864  }
3865 
3866 // }}}
3867 // __split_wrapper {{{
3868 template <size_t... _Sizes, typename _Tp, typename... _As>
3869  auto
3870  __split_wrapper(_SizeList<_Sizes...>, const _SimdTuple<_Tp, _As...>& __x)
3871  {
3872  return split<_Sizes...>(
3873  fixed_size_simd<_Tp, _SimdTuple<_Tp, _As...>::_S_size()>(__private_init,
3874  __x));
3875  }
3876 
3877 // }}}
3878 
3879 // split<simd>(simd) {{{
3880 template <typename _V, typename _Ap,
3881  size_t Parts = simd_size_v<typename _V::value_type, _Ap> / _V::size()>
3882  enable_if_t<simd_size_v<typename _V::value_type, _Ap> == Parts * _V::size()
3883  && is_simd_v<_V>, array<_V, Parts>>
3884  split(const simd<typename _V::value_type, _Ap>& __x)
3885  {
3886  using _Tp = typename _V::value_type;
3887  if constexpr (Parts == 1)
3888  {
3889  return {simd_cast<_V>(__x)};
3890  }
3891  else if (__x._M_is_constprop())
3892  {
3893  return __generate_from_n_evaluations<Parts, array<_V, Parts>>([&](
3894  auto __i) constexpr {
3895  return _V([&](auto __j) constexpr {
3896  return __x[__i * _V::size() + __j];
3897  });
3898  });
3899  }
3900  else if constexpr (
3901  __is_fixed_size_abi_v<_Ap>
3902  && (is_same_v<typename _V::abi_type, simd_abi::scalar>
3903  || (__is_fixed_size_abi_v<typename _V::abi_type>
3904  && sizeof(_V) == sizeof(_Tp) * _V::size() // _V doesn't have padding
3905  )))
3906  {
3907  // fixed_size -> fixed_size (w/o padding) or scalar
3908 #ifdef _GLIBCXX_SIMD_USE_ALIASING_LOADS
3909  const __may_alias<_Tp>* const __element_ptr
3910  = reinterpret_cast<const __may_alias<_Tp>*>(&__data(__x));
3911  return __generate_from_n_evaluations<Parts, array<_V, Parts>>([&](
3912  auto __i) constexpr {
3913  return _V(__element_ptr + __i * _V::size(), vector_aligned);
3914  });
3915 #else
3916  const auto& __xx = __data(__x);
3917  return __generate_from_n_evaluations<Parts, array<_V, Parts>>([&](
3918  auto __i) constexpr {
3919  [[maybe_unused]] constexpr size_t __offset
3920  = decltype(__i)::value * _V::size();
3921  return _V([&](auto __j) constexpr {
3922  constexpr _SizeConstant<__j + __offset> __k;
3923  return __xx[__k];
3924  });
3925  });
3926 #endif
3927  }
3928  else if constexpr (is_same_v<typename _V::abi_type, simd_abi::scalar>)
3929  {
3930  // normally memcpy should work here as well
3931  return __generate_from_n_evaluations<Parts, array<_V, Parts>>([&](
3932  auto __i) constexpr { return __x[__i]; });
3933  }
3934  else
3935  {
3936  return __generate_from_n_evaluations<Parts, array<_V, Parts>>([&](
3937  auto __i) constexpr {
3938  if constexpr (__is_fixed_size_abi_v<typename _V::abi_type>)
3939  return _V([&](auto __j) constexpr {
3940  return __x[__i * _V::size() + __j];
3941  });
3942  else
3943  return _V(__private_init,
3944  __extract_part<decltype(__i)::value, Parts>(__data(__x)));
3945  });
3946  }
3947  }
3948 
3949 // }}}
3950 // split<simd_mask>(simd_mask) {{{
3951 template <typename _V, typename _Ap,
3952  size_t _Parts
3953  = simd_size_v<typename _V::simd_type::value_type, _Ap> / _V::size()>
3954  enable_if_t<is_simd_mask_v<_V> && simd_size_v<typename
3955  _V::simd_type::value_type, _Ap> == _Parts * _V::size(), array<_V, _Parts>>
3956  split(const simd_mask<typename _V::simd_type::value_type, _Ap>& __x)
3957  {
3958  if constexpr (is_same_v<_Ap, typename _V::abi_type>)
3959  return {__x};
3960  else if constexpr (_Parts == 1)
3961  return {__proposed::static_simd_cast<_V>(__x)};
3962  else if constexpr (_Parts == 2 && __is_sse_abi<typename _V::abi_type>()
3963  && __is_avx_abi<_Ap>())
3964  return {_V(__private_init, __lo128(__data(__x))),
3965  _V(__private_init, __hi128(__data(__x)))};
3966  else if constexpr (_V::size() <= __CHAR_BIT__ * sizeof(_ULLong))
3967  {
3968  const bitset __bits = __x.__to_bitset();
3969  return __generate_from_n_evaluations<_Parts, array<_V, _Parts>>([&](
3970  auto __i) constexpr {
3971  constexpr size_t __offset = __i * _V::size();
3972  return _V(__bitset_init, (__bits >> __offset).to_ullong());
3973  });
3974  }
3975  else
3976  {
3977  return __generate_from_n_evaluations<_Parts, array<_V, _Parts>>([&](
3978  auto __i) constexpr {
3979  constexpr size_t __offset = __i * _V::size();
3980  return _V(
3981  __private_init, [&](auto __j) constexpr {
3982  return __x[__j + __offset];
3983  });
3984  });
3985  }
3986  }
3987 
3988 // }}}
3989 // split<_Sizes...>(simd) {{{
3990 template <size_t... _Sizes, typename _Tp, typename _Ap, typename>
3991  _GLIBCXX_SIMD_ALWAYS_INLINE
3992  tuple<simd<_Tp, simd_abi::deduce_t<_Tp, _Sizes>>...>
3993  split(const simd<_Tp, _Ap>& __x)
3994  {
3995  using _SL = _SizeList<_Sizes...>;
3996  using _Tuple = tuple<__deduced_simd<_Tp, _Sizes>...>;
3997  constexpr size_t _Np = simd_size_v<_Tp, _Ap>;
3998  constexpr size_t _N0 = _SL::template _S_at<0>();
3999  using _V = __deduced_simd<_Tp, _N0>;
4000 
4001  if (__x._M_is_constprop())
4002  return __generate_from_n_evaluations<sizeof...(_Sizes), _Tuple>([&](
4003  auto __i) constexpr {
4004  using _Vi = __deduced_simd<_Tp, _SL::_S_at(__i)>;
4005  constexpr size_t __offset = _SL::_S_before(__i);
4006  return _Vi([&](auto __j) constexpr { return __x[__offset + __j]; });
4007  });
4008  else if constexpr (_Np == _N0)
4009  {
4010  static_assert(sizeof...(_Sizes) == 1);
4011  return {simd_cast<_V>(__x)};
4012  }
4013  else if constexpr // split from fixed_size, such that __x::first.size == _N0
4014  (__is_fixed_size_abi_v<
4015  _Ap> && __fixed_size_storage_t<_Tp, _Np>::_S_first_size == _N0)
4016  {
4017  static_assert(
4018  !__is_fixed_size_abi_v<typename _V::abi_type>,
4019  "How can <_Tp, _Np> be __a single _SimdTuple entry but __a "
4020  "fixed_size_simd "
4021  "when deduced?");
4022  // extract first and recurse (__split_wrapper is needed to deduce a new
4023  // _Sizes pack)
4024  return tuple_cat(make_tuple(_V(__private_init, __data(__x).first)),
4025  __split_wrapper(_SL::template _S_pop_front<1>(),
4026  __data(__x).second));
4027  }
4028  else if constexpr ((!is_same_v<simd_abi::scalar,
4029  simd_abi::deduce_t<_Tp, _Sizes>> && ...)
4030  && (!__is_fixed_size_abi_v<
4031  simd_abi::deduce_t<_Tp, _Sizes>> && ...))
4032  {
4033  if constexpr (((_Sizes * 2 == _Np) && ...))
4034  return {{__private_init, __extract_part<0, 2>(__data(__x))},
4035  {__private_init, __extract_part<1, 2>(__data(__x))}};
4036  else if constexpr (is_same_v<_SizeList<_Sizes...>,
4037  _SizeList<_Np / 3, _Np / 3, _Np / 3>>)
4038  return {{__private_init, __extract_part<0, 3>(__data(__x))},
4039  {__private_init, __extract_part<1, 3>(__data(__x))},
4040  {__private_init, __extract_part<2, 3>(__data(__x))}};
4041  else if constexpr (is_same_v<_SizeList<_Sizes...>,
4042  _SizeList<2 * _Np / 3, _Np / 3>>)
4043  return {{__private_init, __extract_part<0, 3, 2>(__data(__x))},
4044  {__private_init, __extract_part<2, 3>(__data(__x))}};
4045  else if constexpr (is_same_v<_SizeList<_Sizes...>,
4046  _SizeList<_Np / 3, 2 * _Np / 3>>)
4047  return {{__private_init, __extract_part<0, 3>(__data(__x))},
4048  {__private_init, __extract_part<1, 3, 2>(__data(__x))}};
4049  else if constexpr (is_same_v<_SizeList<_Sizes...>,
4050  _SizeList<_Np / 2, _Np / 4, _Np / 4>>)
4051  return {{__private_init, __extract_part<0, 2>(__data(__x))},
4052  {__private_init, __extract_part<2, 4>(__data(__x))},
4053  {__private_init, __extract_part<3, 4>(__data(__x))}};
4054  else if constexpr (is_same_v<_SizeList<_Sizes...>,
4055  _SizeList<_Np / 4, _Np / 4, _Np / 2>>)
4056  return {{__private_init, __extract_part<0, 4>(__data(__x))},
4057  {__private_init, __extract_part<1, 4>(__data(__x))},
4058  {__private_init, __extract_part<1, 2>(__data(__x))}};
4059  else if constexpr (is_same_v<_SizeList<_Sizes...>,
4060  _SizeList<_Np / 4, _Np / 2, _Np / 4>>)
4061  return {{__private_init, __extract_part<0, 4>(__data(__x))},
4062  {__private_init, __extract_center(__data(__x))},
4063  {__private_init, __extract_part<3, 4>(__data(__x))}};
4064  else if constexpr (((_Sizes * 4 == _Np) && ...))
4065  return {{__private_init, __extract_part<0, 4>(__data(__x))},
4066  {__private_init, __extract_part<1, 4>(__data(__x))},
4067  {__private_init, __extract_part<2, 4>(__data(__x))},
4068  {__private_init, __extract_part<3, 4>(__data(__x))}};
4069  // else fall through
4070  }
4071 #ifdef _GLIBCXX_SIMD_USE_ALIASING_LOADS
4072  const __may_alias<_Tp>* const __element_ptr
4073  = reinterpret_cast<const __may_alias<_Tp>*>(&__x);
4074  return __generate_from_n_evaluations<sizeof...(_Sizes), _Tuple>([&](
4075  auto __i) constexpr {
4076  using _Vi = __deduced_simd<_Tp, _SL::_S_at(__i)>;
4077  constexpr size_t __offset = _SL::_S_before(__i);
4078  constexpr size_t __base_align = alignof(simd<_Tp, _Ap>);
4079  constexpr size_t __a
4080  = __base_align - ((__offset * sizeof(_Tp)) % __base_align);
4081  constexpr size_t __b = ((__a - 1) & __a) ^ __a;
4082  constexpr size_t __alignment = __b == 0 ? __a : __b;
4083  return _Vi(__element_ptr + __offset, overaligned<__alignment>);
4084  });
4085 #else
4086  return __generate_from_n_evaluations<sizeof...(_Sizes), _Tuple>([&](
4087  auto __i) constexpr {
4088  using _Vi = __deduced_simd<_Tp, _SL::_S_at(__i)>;
4089  const auto& __xx = __data(__x);
4090  using _Offset = decltype(_SL::_S_before(__i));
4091  return _Vi([&](auto __j) constexpr {
4092  constexpr _SizeConstant<_Offset::value + __j> __k;
4093  return __xx[__k];
4094  });
4095  });
4096 #endif
4097  }
4098 
4099 // }}}
4100 
4101 // __subscript_in_pack {{{
4102 template <size_t _I, typename _Tp, typename _Ap, typename... _As>
4103  _GLIBCXX_SIMD_INTRINSIC constexpr _Tp
4104  __subscript_in_pack(const simd<_Tp, _Ap>& __x, const simd<_Tp, _As>&... __xs)
4105  {
4106  if constexpr (_I < simd_size_v<_Tp, _Ap>)
4107  return __x[_I];
4108  else
4109  return __subscript_in_pack<_I - simd_size_v<_Tp, _Ap>>(__xs...);
4110  }
4111 
4112 // }}}
4113 // __store_pack_of_simd {{{
4114 template <typename _Tp, typename _A0, typename... _As>
4115  _GLIBCXX_SIMD_INTRINSIC void
4116  __store_pack_of_simd(char* __mem, const simd<_Tp, _A0>& __x0,
4117  const simd<_Tp, _As>&... __xs)
4118  {
4119  constexpr size_t __n_bytes = sizeof(_Tp) * simd_size_v<_Tp, _A0>;
4120  __builtin_memcpy(__mem, &__data(__x0), __n_bytes);
4121  if constexpr (sizeof...(__xs) > 0)
4122  __store_pack_of_simd(__mem + __n_bytes, __xs...);
4123  }
4124 
4125 // }}}
4126 // concat(simd...) {{{
4127 template <typename _Tp, typename... _As, typename = __detail::__odr_helper>
4128  inline _GLIBCXX_SIMD_CONSTEXPR
4129  simd<_Tp, simd_abi::deduce_t<_Tp, (simd_size_v<_Tp, _As> + ...)>>
4130  concat(const simd<_Tp, _As>&... __xs)
4131  {
4132  using _Rp = __deduced_simd<_Tp, (simd_size_v<_Tp, _As> + ...)>;
4133  if constexpr (sizeof...(__xs) == 1)
4134  return simd_cast<_Rp>(__xs...);
4135  else if ((... && __xs._M_is_constprop()))
4136  return simd<_Tp,
4137  simd_abi::deduce_t<_Tp, (simd_size_v<_Tp, _As> + ...)>>([&](
4138  auto __i) constexpr { return __subscript_in_pack<__i>(__xs...); });
4139  else
4140  {
4141  _Rp __r{};
4142  __store_pack_of_simd(reinterpret_cast<char*>(&__data(__r)), __xs...);
4143  return __r;
4144  }
4145  }
4146 
4147 // }}}
4148 // concat(array<simd>) {{{
4149 template <typename _Tp, typename _Abi, size_t _Np>
4150  _GLIBCXX_SIMD_ALWAYS_INLINE
4151  _GLIBCXX_SIMD_CONSTEXPR __deduced_simd<_Tp, simd_size_v<_Tp, _Abi> * _Np>
4152  concat(const array<simd<_Tp, _Abi>, _Np>& __x)
4153  {
4154  return __call_with_subscripts<_Np>(__x, [](const auto&... __xs) {
4155  return concat(__xs...);
4156  });
4157  }
4158 
4159 // }}}
4160 
4161 /// @cond undocumented
4162 // _SmartReference {{{
4163 template <typename _Up, typename _Accessor = _Up,
4164  typename _ValueType = typename _Up::value_type>
4165  class _SmartReference
4166  {
4167  friend _Accessor;
4168  int _M_index;
4169  _Up& _M_obj;
4170 
4171  _GLIBCXX_SIMD_INTRINSIC constexpr _ValueType _M_read() const noexcept
4172  {
4173  if constexpr (is_arithmetic_v<_Up>)
4174  return _M_obj;
4175  else
4176  return _M_obj[_M_index];
4177  }
4178 
4179  template <typename _Tp>
4180  _GLIBCXX_SIMD_INTRINSIC constexpr void _M_write(_Tp&& __x) const
4181  { _Accessor::_S_set(_M_obj, _M_index, static_cast<_Tp&&>(__x)); }
4182 
4183  public:
4184  _GLIBCXX_SIMD_INTRINSIC constexpr
4185  _SmartReference(_Up& __o, int __i) noexcept
4186  : _M_index(__i), _M_obj(__o) {}
4187 
4188  using value_type = _ValueType;
4189 
4190  _GLIBCXX_SIMD_INTRINSIC _SmartReference(const _SmartReference&) = delete;
4191 
4192  _GLIBCXX_SIMD_INTRINSIC constexpr operator value_type() const noexcept
4193  { return _M_read(); }
4194 
4195  template <typename _Tp,
4196  typename
4197  = _ValuePreservingOrInt<__remove_cvref_t<_Tp>, value_type>>
4198  _GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference operator=(_Tp&& __x) &&
4199  {
4200  _M_write(static_cast<_Tp&&>(__x));
4201  return {_M_obj, _M_index};
4202  }
4203 
4204 #define _GLIBCXX_SIMD_OP_(__op) \
4205  template <typename _Tp, \
4206  typename _TT \
4207  = decltype(declval<value_type>() __op declval<_Tp>()), \
4208  typename = _ValuePreservingOrInt<__remove_cvref_t<_Tp>, _TT>, \
4209  typename = _ValuePreservingOrInt<_TT, value_type>> \
4210  _GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference \
4211  operator __op##=(_Tp&& __x) && \
4212  { \
4213  const value_type& __lhs = _M_read(); \
4214  _M_write(__lhs __op __x); \
4215  return {_M_obj, _M_index}; \
4216  }
4217  _GLIBCXX_SIMD_ALL_ARITHMETICS(_GLIBCXX_SIMD_OP_);
4218  _GLIBCXX_SIMD_ALL_SHIFTS(_GLIBCXX_SIMD_OP_);
4219  _GLIBCXX_SIMD_ALL_BINARY(_GLIBCXX_SIMD_OP_);
4220 #undef _GLIBCXX_SIMD_OP_
4221 
4222  template <typename _Tp = void,
4223  typename
4224  = decltype(++declval<conditional_t<true, value_type, _Tp>&>())>
4225  _GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference operator++() &&
4226  {
4227  value_type __x = _M_read();
4228  _M_write(++__x);
4229  return {_M_obj, _M_index};
4230  }
4231 
4232  template <typename _Tp = void,
4233  typename
4234  = decltype(declval<conditional_t<true, value_type, _Tp>&>()++)>
4235  _GLIBCXX_SIMD_INTRINSIC constexpr value_type operator++(int) &&
4236  {
4237  const value_type __r = _M_read();
4238  value_type __x = __r;
4239  _M_write(++__x);
4240  return __r;
4241  }
4242 
4243  template <typename _Tp = void,
4244  typename
4245  = decltype(--declval<conditional_t<true, value_type, _Tp>&>())>
4246  _GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference operator--() &&
4247  {
4248  value_type __x = _M_read();
4249  _M_write(--__x);
4250  return {_M_obj, _M_index};
4251  }
4252 
4253  template <typename _Tp = void,
4254  typename
4255  = decltype(declval<conditional_t<true, value_type, _Tp>&>()--)>
4256  _GLIBCXX_SIMD_INTRINSIC constexpr value_type operator--(int) &&
4257  {
4258  const value_type __r = _M_read();
4259  value_type __x = __r;
4260  _M_write(--__x);
4261  return __r;
4262  }
4263 
4264  _GLIBCXX_SIMD_INTRINSIC friend void
4265  swap(_SmartReference&& __a, _SmartReference&& __b) noexcept(
4266  conjunction<
4267  is_nothrow_constructible<value_type, _SmartReference&&>,
4268  is_nothrow_assignable<_SmartReference&&, value_type&&>>::value)
4269  {
4270  value_type __tmp = static_cast<_SmartReference&&>(__a);
4271  static_cast<_SmartReference&&>(__a) = static_cast<value_type>(__b);
4272  static_cast<_SmartReference&&>(__b) = std::move(__tmp);
4273  }
4274 
4275  _GLIBCXX_SIMD_INTRINSIC friend void
4276  swap(value_type& __a, _SmartReference&& __b) noexcept(
4277  conjunction<
4278  is_nothrow_constructible<value_type, value_type&&>,
4279  is_nothrow_assignable<value_type&, value_type&&>,
4280  is_nothrow_assignable<_SmartReference&&, value_type&&>>::value)
4281  {
4282  value_type __tmp(std::move(__a));
4283  __a = static_cast<value_type>(__b);
4284  static_cast<_SmartReference&&>(__b) = std::move(__tmp);
4285  }
4286 
4287  _GLIBCXX_SIMD_INTRINSIC friend void
4288  swap(_SmartReference&& __a, value_type& __b) noexcept(
4289  conjunction<
4290  is_nothrow_constructible<value_type, _SmartReference&&>,
4291  is_nothrow_assignable<value_type&, value_type&&>,
4292  is_nothrow_assignable<_SmartReference&&, value_type&&>>::value)
4293  {
4294  value_type __tmp(__a);
4295  static_cast<_SmartReference&&>(__a) = std::move(__b);
4296  __b = std::move(__tmp);
4297  }
4298  };
4299 
4300 // }}}
4301 // __scalar_abi_wrapper {{{
4302 template <int _Bytes>
4303  struct __scalar_abi_wrapper
4304  {
4305  template <typename _Tp> static constexpr size_t _S_full_size = 1;
4306  template <typename _Tp> static constexpr size_t _S_size = 1;
4307  template <typename _Tp> static constexpr size_t _S_is_partial = false;
4308 
4309  template <typename _Tp, typename _Abi = simd_abi::scalar>
4310  static constexpr bool _S_is_valid_v
4311  = _Abi::template _IsValid<_Tp>::value && sizeof(_Tp) == _Bytes;
4312  };
4313 
4314 // }}}
4315 // __decay_abi metafunction {{{
4316 template <typename _Tp>
4317  struct __decay_abi { using type = _Tp; };
4318 
4319 template <int _Bytes>
4320  struct __decay_abi<__scalar_abi_wrapper<_Bytes>>
4321  { using type = simd_abi::scalar; };
4322 
4323 // }}}
4324 // __find_next_valid_abi metafunction {{{1
4325 // Given an ABI tag A<N>, find an N2 < N such that A<N2>::_S_is_valid_v<_Tp> ==
4326 // true, N2 is a power-of-2, and A<N2>::_S_is_partial<_Tp> is false. Break
4327 // recursion at 2 elements in the resulting ABI tag. In this case
4328 // type::_S_is_valid_v<_Tp> may be false.
4329 template <template <int> class _Abi, int _Bytes, typename _Tp>
4330  struct __find_next_valid_abi
4331  {
4332  static constexpr auto _S_choose()
4333  {
4334  constexpr int _NextBytes = std::__bit_ceil(_Bytes) / 2;
4335  using _NextAbi = _Abi<_NextBytes>;
4336  if constexpr (_NextBytes < sizeof(_Tp) * 2) // break recursion
4337  return _Abi<_Bytes>();
4338  else if constexpr (_NextAbi::template _S_is_partial<_Tp> == false
4339  && _NextAbi::template _S_is_valid_v<_Tp>)
4340  return _NextAbi();
4341  else
4342  return __find_next_valid_abi<_Abi, _NextBytes, _Tp>::_S_choose();
4343  }
4344 
4345  using type = decltype(_S_choose());
4346  };
4347 
4348 template <int _Bytes, typename _Tp>
4349  struct __find_next_valid_abi<__scalar_abi_wrapper, _Bytes, _Tp>
4350  { using type = simd_abi::scalar; };
4351 
4352 // _AbiList {{{1
4353 template <template <int> class...>
4354  struct _AbiList
4355  {
4356  template <typename, int> static constexpr bool _S_has_valid_abi = false;
4357  template <typename, int> using _FirstValidAbi = void;
4358  template <typename, int> using _BestAbi = void;
4359  };
4360 
4361 template <template <int> class _A0, template <int> class... _Rest>
4362  struct _AbiList<_A0, _Rest...>
4363  {
4364  template <typename _Tp, int _Np>
4365  static constexpr bool _S_has_valid_abi
4366  = _A0<sizeof(_Tp) * _Np>::template _S_is_valid_v<
4367  _Tp> || _AbiList<_Rest...>::template _S_has_valid_abi<_Tp, _Np>;
4368 
4369  template <typename _Tp, int _Np>
4370  using _FirstValidAbi = conditional_t<
4371  _A0<sizeof(_Tp) * _Np>::template _S_is_valid_v<_Tp>,
4372  typename __decay_abi<_A0<sizeof(_Tp) * _Np>>::type,
4373  typename _AbiList<_Rest...>::template _FirstValidAbi<_Tp, _Np>>;
4374 
4375  template <typename _Tp, int _Np>
4376  static constexpr auto _S_determine_best_abi()
4377  {
4378  static_assert(_Np >= 1);
4379  constexpr int _Bytes = sizeof(_Tp) * _Np;
4380  if constexpr (_Np == 1)
4381  return __make_dependent_t<_Tp, simd_abi::scalar>{};
4382  else
4383  {
4384  constexpr int __fullsize = _A0<_Bytes>::template _S_full_size<_Tp>;
4385  // _A0<_Bytes> is good if:
4386  // 1. The ABI tag is valid for _Tp
4387  // 2. The storage overhead is no more than padding to fill the next
4388  // power-of-2 number of bytes
4389  if constexpr (_A0<_Bytes>::template _S_is_valid_v<
4390  _Tp> && __fullsize / 2 < _Np)
4391  return typename __decay_abi<_A0<_Bytes>>::type{};
4392  else
4393  {
4394  using _Bp =
4395  typename __find_next_valid_abi<_A0, _Bytes, _Tp>::type;
4396  if constexpr (_Bp::template _S_is_valid_v<
4397  _Tp> && _Bp::template _S_size<_Tp> <= _Np)
4398  return _Bp{};
4399  else
4400  return
4401  typename _AbiList<_Rest...>::template _BestAbi<_Tp, _Np>{};
4402  }
4403  }
4404  }
4405 
4406  template <typename _Tp, int _Np>
4407  using _BestAbi = decltype(_S_determine_best_abi<_Tp, _Np>());
4408  };
4409 
4410 // }}}1
4411 
4412 // the following lists all native ABIs, which makes them accessible to
4413 // simd_abi::deduce and select_best_vector_type_t (for fixed_size). Order
4414 // matters: Whatever comes first has higher priority.
4415 using _AllNativeAbis = _AbiList<simd_abi::_VecBltnBtmsk, simd_abi::_VecBuiltin,
4416  __scalar_abi_wrapper>;
4417 
4418 // valid _SimdTraits specialization {{{1
4419 template <typename _Tp, typename _Abi>
4420  struct _SimdTraits<_Tp, _Abi, void_t<typename _Abi::template _IsValid<_Tp>>>
4421  : _Abi::template __traits<_Tp> {};
4422 
4423 // __deduce_impl specializations {{{1
4424 // try all native ABIs (including scalar) first
4425 template <typename _Tp, size_t _Np>
4426  struct __deduce_impl<
4427  _Tp, _Np, enable_if_t<_AllNativeAbis::template _S_has_valid_abi<_Tp, _Np>>>
4428  { using type = _AllNativeAbis::_FirstValidAbi<_Tp, _Np>; };
4429 
4430 // fall back to fixed_size only if scalar and native ABIs don't match
4431 template <typename _Tp, size_t _Np, typename = void>
4432  struct __deduce_fixed_size_fallback {};
4433 
4434 template <typename _Tp, size_t _Np>
4435  struct __deduce_fixed_size_fallback<_Tp, _Np,
4436  enable_if_t<simd_abi::fixed_size<_Np>::template _S_is_valid_v<_Tp>>>
4437  { using type = simd_abi::fixed_size<_Np>; };
4438 
4439 template <typename _Tp, size_t _Np, typename>
4440  struct __deduce_impl : public __deduce_fixed_size_fallback<_Tp, _Np> {};
4441 
4442 //}}}1
4443 /// @endcond
4444 
4445 // simd_mask {{{
4446 template <typename _Tp, typename _Abi>
4447  class simd_mask : public _SimdTraits<_Tp, _Abi>::_MaskBase
4448  {
4449  // types, tags, and friends {{{
4450  using _Traits = _SimdTraits<_Tp, _Abi>;
4451  using _MemberType = typename _Traits::_MaskMember;
4452 
4453  // We map all masks with equal element sizeof to a single integer type, the
4454  // one given by __int_for_sizeof_t<_Tp>. This is the approach
4455  // [[gnu::vector_size(N)]] types take as well and it reduces the number of
4456  // template specializations in the implementation classes.
4457  using _Ip = __int_for_sizeof_t<_Tp>;
4458  static constexpr _Ip* _S_type_tag = nullptr;
4459 
4460  friend typename _Traits::_MaskBase;
4461  friend class simd<_Tp, _Abi>; // to construct masks on return
4462  friend typename _Traits::_SimdImpl; // to construct masks on return and
4463  // inspect data on masked operations
4464  public:
4465  using _Impl = typename _Traits::_MaskImpl;
4466  friend _Impl;
4467 
4468  // }}}
4469  // member types {{{
4470  using value_type = bool;
4471  using reference = _SmartReference<_MemberType, _Impl, value_type>;
4472  using simd_type = simd<_Tp, _Abi>;
4473  using abi_type = _Abi;
4474 
4475  // }}}
4476  static constexpr size_t size() // {{{
4477  { return __size_or_zero_v<_Tp, _Abi>; }
4478 
4479  // }}}
4480  // constructors & assignment {{{
4481  simd_mask() = default;
4482  simd_mask(const simd_mask&) = default;
4483  simd_mask(simd_mask&&) = default;
4484  simd_mask& operator=(const simd_mask&) = default;
4485  simd_mask& operator=(simd_mask&&) = default;
4486 
4487  // }}}
4488  // access to internal representation (optional feature) {{{
4489  _GLIBCXX_SIMD_ALWAYS_INLINE explicit
4490  simd_mask(typename _Traits::_MaskCastType __init)
4491  : _M_data{__init} {}
4492  // conversions to internal type is done in _MaskBase
4493 
4494  // }}}
4495  // bitset interface (extension to be proposed) {{{
4496  // TS_FEEDBACK:
4497  // Conversion of simd_mask to and from bitset makes it much easier to
4498  // interface with other facilities. I suggest adding `static
4499  // simd_mask::from_bitset` and `simd_mask::to_bitset`.
4500  _GLIBCXX_SIMD_ALWAYS_INLINE static simd_mask
4501  __from_bitset(bitset<size()> bs)
4502  { return {__bitset_init, bs}; }
4503 
4504  _GLIBCXX_SIMD_ALWAYS_INLINE bitset<size()>
4505  __to_bitset() const
4506  { return _Impl::_S_to_bits(_M_data)._M_to_bitset(); }
4507 
4508  // }}}
4509  // explicit broadcast constructor {{{
4510  _GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR
4511  simd_mask(value_type __x)
4512  : _M_data(_Impl::template _S_broadcast<_Ip>(__x)) {}
4513 
4514  // }}}
4515  // implicit type conversion constructor {{{
4516  #ifdef _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
4517  // proposed improvement
4518  template <typename _Up, typename _A2,
4519  typename = enable_if_t<simd_size_v<_Up, _A2> == size()>>
4520  _GLIBCXX_SIMD_ALWAYS_INLINE explicit(sizeof(_MemberType)
4521  != sizeof(typename _SimdTraits<_Up, _A2>::_MaskMember))
4522  simd_mask(const simd_mask<_Up, _A2>& __x)
4523  : simd_mask(__proposed::static_simd_cast<simd_mask>(__x)) {}
4524  #else
4525  // conforming to ISO/IEC 19570:2018
4526  template <typename _Up, typename = enable_if_t<conjunction<
4527  is_same<abi_type, simd_abi::fixed_size<size()>>,
4528  is_same<_Up, _Up>>::value>>
4529  _GLIBCXX_SIMD_ALWAYS_INLINE
4530  simd_mask(const simd_mask<_Up, simd_abi::fixed_size<size()>>& __x)
4531  : _M_data(_Impl::_S_from_bitmask(__data(__x), _S_type_tag)) {}
4532  #endif
4533 
4534  // }}}
4535  // load constructor {{{
4536  template <typename _Flags>
4537  _GLIBCXX_SIMD_ALWAYS_INLINE
4538  simd_mask(const value_type* __mem, _Flags)
4539  : _M_data(_Impl::template _S_load<_Ip>(
4540  _Flags::template _S_apply<simd_mask>(__mem))) {}
4541 
4542  template <typename _Flags>
4543  _GLIBCXX_SIMD_ALWAYS_INLINE
4544  simd_mask(const value_type* __mem, simd_mask __k, _Flags)
4545  : _M_data{}
4546  {
4547  _M_data
4548  = _Impl::_S_masked_load(_M_data, __k._M_data,
4549  _Flags::template _S_apply<simd_mask>(__mem));
4550  }
4551 
4552  // }}}
4553  // loads [simd_mask.load] {{{
4554  template <typename _Flags>
4555  _GLIBCXX_SIMD_ALWAYS_INLINE void
4556  copy_from(const value_type* __mem, _Flags)
4557  {
4558  _M_data = _Impl::template _S_load<_Ip>(
4559  _Flags::template _S_apply<simd_mask>(__mem));
4560  }
4561 
4562  // }}}
4563  // stores [simd_mask.store] {{{
4564  template <typename _Flags>
4565  _GLIBCXX_SIMD_ALWAYS_INLINE void
4566  copy_to(value_type* __mem, _Flags) const
4567  { _Impl::_S_store(_M_data, _Flags::template _S_apply<simd_mask>(__mem)); }
4568 
4569  // }}}
4570  // scalar access {{{
4571  _GLIBCXX_SIMD_ALWAYS_INLINE reference
4572  operator[](size_t __i)
4573  {
4574  if (__i >= size())
4575  __invoke_ub("Subscript %d is out of range [0, %d]", __i, size() - 1);
4576  return {_M_data, int(__i)};
4577  }
4578 
4579  _GLIBCXX_SIMD_ALWAYS_INLINE value_type
4580  operator[](size_t __i) const
4581  {
4582  if (__i >= size())
4583  __invoke_ub("Subscript %d is out of range [0, %d]", __i, size() - 1);
4584  if constexpr (__is_scalar_abi<_Abi>())
4585  return _M_data;
4586  else
4587  return static_cast<bool>(_M_data[__i]);
4588  }
4589 
4590  // }}}
4591  // negation {{{
4592  _GLIBCXX_SIMD_ALWAYS_INLINE simd_mask
4593  operator!() const
4594  { return {__private_init, _Impl::_S_bit_not(_M_data)}; }
4595 
4596  // }}}
4597  // simd_mask binary operators [simd_mask.binary] {{{
4598  #ifdef _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
4599  // simd_mask<int> && simd_mask<uint> needs disambiguation
4600  template <typename _Up, typename _A2,
4601  typename
4602  = enable_if_t<is_convertible_v<simd_mask<_Up, _A2>, simd_mask>>>
4603  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4604  operator&&(const simd_mask& __x, const simd_mask<_Up, _A2>& __y)
4605  {
4606  return {__private_init,
4607  _Impl::_S_logical_and(__x._M_data, simd_mask(__y)._M_data)};
4608  }
4609 
4610  template <typename _Up, typename _A2,
4611  typename
4612  = enable_if_t<is_convertible_v<simd_mask<_Up, _A2>, simd_mask>>>
4613  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4614  operator||(const simd_mask& __x, const simd_mask<_Up, _A2>& __y)
4615  {
4616  return {__private_init,
4617  _Impl::_S_logical_or(__x._M_data, simd_mask(__y)._M_data)};
4618  }
4619  #endif // _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
4620 
4621  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4622  operator&&(const simd_mask& __x, const simd_mask& __y)
4623  {
4624  return {__private_init, _Impl::_S_logical_and(__x._M_data, __y._M_data)};
4625  }
4626 
4627  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4628  operator||(const simd_mask& __x, const simd_mask& __y)
4629  {
4630  return {__private_init, _Impl::_S_logical_or(__x._M_data, __y._M_data)};
4631  }
4632 
4633  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4634  operator&(const simd_mask& __x, const simd_mask& __y)
4635  { return {__private_init, _Impl::_S_bit_and(__x._M_data, __y._M_data)}; }
4636 
4637  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4638  operator|(const simd_mask& __x, const simd_mask& __y)
4639  { return {__private_init, _Impl::_S_bit_or(__x._M_data, __y._M_data)}; }
4640 
4641  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask
4642  operator^(const simd_mask& __x, const simd_mask& __y)
4643  { return {__private_init, _Impl::_S_bit_xor(__x._M_data, __y._M_data)}; }
4644 
4645  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask&
4646  operator&=(simd_mask& __x, const simd_mask& __y)
4647  {
4648  __x._M_data = _Impl::_S_bit_and(__x._M_data, __y._M_data);
4649  return __x;
4650  }
4651 
4652  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask&
4653  operator|=(simd_mask& __x, const simd_mask& __y)
4654  {
4655  __x._M_data = _Impl::_S_bit_or(__x._M_data, __y._M_data);
4656  return __x;
4657  }
4658 
4659  _GLIBCXX_SIMD_ALWAYS_INLINE friend simd_mask&
4660  operator^=(simd_mask& __x, const simd_mask& __y)
4661  {
4662  __x._M_data = _Impl::_S_bit_xor(__x._M_data, __y._M_data);
4663  return __x;
4664  }
4665 
4666  // }}}
4667  // simd_mask compares [simd_mask.comparison] {{{
4668  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask
4669  operator==(const simd_mask& __x, const simd_mask& __y)
4670  { return !operator!=(__x, __y); }
4671 
4672  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask
4673  operator!=(const simd_mask& __x, const simd_mask& __y)
4674  { return {__private_init, _Impl::_S_bit_xor(__x._M_data, __y._M_data)}; }
4675 
4676  // }}}
4677  // private_init ctor {{{
4678  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
4679  simd_mask(_PrivateInit, typename _Traits::_MaskMember __init)
4680  : _M_data(__init) {}
4681 
4682  // }}}
4683  // private_init generator ctor {{{
4684  template <typename _Fp, typename = decltype(bool(declval<_Fp>()(size_t())))>
4685  _GLIBCXX_SIMD_INTRINSIC constexpr
4686  simd_mask(_PrivateInit, _Fp&& __gen)
4687  : _M_data()
4688  {
4689  __execute_n_times<size()>([&](auto __i) constexpr {
4690  _Impl::_S_set(_M_data, __i, __gen(__i));
4691  });
4692  }
4693 
4694  // }}}
4695  // bitset_init ctor {{{
4696  _GLIBCXX_SIMD_INTRINSIC simd_mask(_BitsetInit, bitset<size()> __init)
4697  : _M_data(
4698  _Impl::_S_from_bitmask(_SanitizedBitMask<size()>(__init), _S_type_tag))
4699  {}
4700 
4701  // }}}
4702  // __cvt {{{
4703  // TS_FEEDBACK:
4704  // The conversion operator this implements should be a ctor on simd_mask.
4705  // Once you call .__cvt() on a simd_mask it converts conveniently.
4706  // A useful variation: add `explicit(sizeof(_Tp) != sizeof(_Up))`
4707  struct _CvtProxy
4708  {
4709  template <typename _Up, typename _A2,
4710  typename
4711  = enable_if_t<simd_size_v<_Up, _A2> == simd_size_v<_Tp, _Abi>>>
4712  _GLIBCXX_SIMD_ALWAYS_INLINE
4713  operator simd_mask<_Up, _A2>() &&
4714  {
4715  using namespace std::experimental::__proposed;
4716  return static_simd_cast<simd_mask<_Up, _A2>>(_M_data);
4717  }
4718 
4719  const simd_mask<_Tp, _Abi>& _M_data;
4720  };
4721 
4722  _GLIBCXX_SIMD_INTRINSIC _CvtProxy
4723  __cvt() const
4724  { return {*this}; }
4725 
4726  // }}}
4727  // operator?: overloads (suggested extension) {{{
4728  #ifdef __GXX_CONDITIONAL_IS_OVERLOADABLE__
4729  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask
4730  operator?:(const simd_mask& __k, const simd_mask& __where_true,
4731  const simd_mask& __where_false)
4732  {
4733  auto __ret = __where_false;
4734  _Impl::_S_masked_assign(__k._M_data, __ret._M_data, __where_true._M_data);
4735  return __ret;
4736  }
4737 
4738  template <typename _U1, typename _U2,
4739  typename _Rp = simd<common_type_t<_U1, _U2>, _Abi>,
4740  typename = enable_if_t<conjunction_v<
4741  is_convertible<_U1, _Rp>, is_convertible<_U2, _Rp>,
4742  is_convertible<simd_mask, typename _Rp::mask_type>>>>
4743  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend _Rp
4744  operator?:(const simd_mask& __k, const _U1& __where_true,
4745  const _U2& __where_false)
4746  {
4747  _Rp __ret = __where_false;
4748  _Rp::_Impl::_S_masked_assign(
4749  __data(static_cast<typename _Rp::mask_type>(__k)), __data(__ret),
4750  __data(static_cast<_Rp>(__where_true)));
4751  return __ret;
4752  }
4753 
4754  #ifdef _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
4755  template <typename _Kp, typename _Ak, typename _Up, typename _Au,
4756  typename = enable_if_t<
4757  conjunction_v<is_convertible<simd_mask<_Kp, _Ak>, simd_mask>,
4758  is_convertible<simd_mask<_Up, _Au>, simd_mask>>>>
4759  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask
4760  operator?:(const simd_mask<_Kp, _Ak>& __k, const simd_mask& __where_true,
4761  const simd_mask<_Up, _Au>& __where_false)
4762  {
4763  simd_mask __ret = __where_false;
4764  _Impl::_S_masked_assign(simd_mask(__k)._M_data, __ret._M_data,
4765  __where_true._M_data);
4766  return __ret;
4767  }
4768  #endif // _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST
4769  #endif // __GXX_CONDITIONAL_IS_OVERLOADABLE__
4770 
4771  // }}}
4772  // _M_is_constprop {{{
4773  _GLIBCXX_SIMD_INTRINSIC constexpr bool
4774  _M_is_constprop() const
4775  {
4776  if constexpr (__is_scalar_abi<_Abi>())
4777  return __builtin_constant_p(_M_data);
4778  else
4779  return _M_data._M_is_constprop();
4780  }
4781 
4782  // }}}
4783 
4784  private:
4785  friend const auto& __data<_Tp, abi_type>(const simd_mask&);
4786  friend auto& __data<_Tp, abi_type>(simd_mask&);
4787  alignas(_Traits::_S_mask_align) _MemberType _M_data;
4788  };
4789 
4790 // }}}
4791 
4792 /// @cond undocumented
4793 // __data(simd_mask) {{{
4794 template <typename _Tp, typename _Ap>
4795  _GLIBCXX_SIMD_INTRINSIC constexpr const auto&
4796  __data(const simd_mask<_Tp, _Ap>& __x)
4797  { return __x._M_data; }
4798 
4799 template <typename _Tp, typename _Ap>
4800  _GLIBCXX_SIMD_INTRINSIC constexpr auto&
4801  __data(simd_mask<_Tp, _Ap>& __x)
4802  { return __x._M_data; }
4803 
4804 // }}}
4805 /// @endcond
4806 
4807 // simd_mask reductions [simd_mask.reductions] {{{
4808 template <typename _Tp, typename _Abi>
4809  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4810  all_of(const simd_mask<_Tp, _Abi>& __k) noexcept
4811  {
4812  if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4813  {
4814  for (size_t __i = 0; __i < simd_size_v<_Tp, _Abi>; ++__i)
4815  if (!__k[__i])
4816  return false;
4817  return true;
4818  }
4819  else
4820  return _Abi::_MaskImpl::_S_all_of(__k);
4821  }
4822 
4823 template <typename _Tp, typename _Abi>
4824  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4825  any_of(const simd_mask<_Tp, _Abi>& __k) noexcept
4826  {
4827  if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4828  {
4829  for (size_t __i = 0; __i < simd_size_v<_Tp, _Abi>; ++__i)
4830  if (__k[__i])
4831  return true;
4832  return false;
4833  }
4834  else
4835  return _Abi::_MaskImpl::_S_any_of(__k);
4836  }
4837 
4838 template <typename _Tp, typename _Abi>
4839  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4840  none_of(const simd_mask<_Tp, _Abi>& __k) noexcept
4841  {
4842  if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4843  {
4844  for (size_t __i = 0; __i < simd_size_v<_Tp, _Abi>; ++__i)
4845  if (__k[__i])
4846  return false;
4847  return true;
4848  }
4849  else
4850  return _Abi::_MaskImpl::_S_none_of(__k);
4851  }
4852 
4853 template <typename _Tp, typename _Abi>
4854  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4855  some_of(const simd_mask<_Tp, _Abi>& __k) noexcept
4856  {
4857  if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4858  {
4859  for (size_t __i = 1; __i < simd_size_v<_Tp, _Abi>; ++__i)
4860  if (__k[__i] != __k[__i - 1])
4861  return true;
4862  return false;
4863  }
4864  else
4865  return _Abi::_MaskImpl::_S_some_of(__k);
4866  }
4867 
4868 template <typename _Tp, typename _Abi>
4869  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4870  popcount(const simd_mask<_Tp, _Abi>& __k) noexcept
4871  {
4872  if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4873  {
4874  const int __r = __call_with_subscripts<simd_size_v<_Tp, _Abi>>(
4875  __k, [](auto... __elements) { return ((__elements != 0) + ...); });
4876  if (__builtin_is_constant_evaluated() || __builtin_constant_p(__r))
4877  return __r;
4878  }
4879  return _Abi::_MaskImpl::_S_popcount(__k);
4880  }
4881 
4882 template <typename _Tp, typename _Abi>
4883  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4884  find_first_set(const simd_mask<_Tp, _Abi>& __k)
4885  {
4886  if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4887  {
4888  constexpr size_t _Np = simd_size_v<_Tp, _Abi>;
4889  const size_t _Idx = __call_with_n_evaluations<_Np>(
4890  [](auto... __indexes) { return std::min({__indexes...}); },
4891  [&](auto __i) { return __k[__i] ? +__i : _Np; });
4892  if (_Idx >= _Np)
4893  __invoke_ub("find_first_set(empty mask) is UB");
4894  if (__builtin_constant_p(_Idx))
4895  return _Idx;
4896  }
4897  return _Abi::_MaskImpl::_S_find_first_set(__k);
4898  }
4899 
4900 template <typename _Tp, typename _Abi>
4901  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4902  find_last_set(const simd_mask<_Tp, _Abi>& __k)
4903  {
4904  if (__builtin_is_constant_evaluated() || __k._M_is_constprop())
4905  {
4906  constexpr size_t _Np = simd_size_v<_Tp, _Abi>;
4907  const int _Idx = __call_with_n_evaluations<_Np>(
4908  [](auto... __indexes) { return std::max({__indexes...}); },
4909  [&](auto __i) { return __k[__i] ? int(__i) : -1; });
4910  if (_Idx < 0)
4911  __invoke_ub("find_first_set(empty mask) is UB");
4912  if (__builtin_constant_p(_Idx))
4913  return _Idx;
4914  }
4915  return _Abi::_MaskImpl::_S_find_last_set(__k);
4916  }
4917 
4918 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4919 all_of(_ExactBool __x) noexcept
4920 { return __x; }
4921 
4922 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4923 any_of(_ExactBool __x) noexcept
4924 { return __x; }
4925 
4926 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4927 none_of(_ExactBool __x) noexcept
4928 { return !__x; }
4929 
4930 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool
4931 some_of(_ExactBool) noexcept
4932 { return false; }
4933 
4934 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4935 popcount(_ExactBool __x) noexcept
4936 { return __x; }
4937 
4938 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4939 find_first_set(_ExactBool)
4940 { return 0; }
4941 
4942 _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int
4943 find_last_set(_ExactBool)
4944 { return 0; }
4945 
4946 // }}}
4947 
4948 /// @cond undocumented
4949 // _SimdIntOperators{{{1
4950 template <typename _V, typename _Tp, typename _Abi, bool>
4951  class _SimdIntOperators {};
4952 
4953 template <typename _V, typename _Tp, typename _Abi>
4954  class _SimdIntOperators<_V, _Tp, _Abi, true>
4955  {
4956  using _Impl = typename _SimdTraits<_Tp, _Abi>::_SimdImpl;
4957 
4958  _GLIBCXX_SIMD_INTRINSIC const _V& __derived() const
4959  { return *static_cast<const _V*>(this); }
4960 
4961  template <typename _Up>
4962  _GLIBCXX_SIMD_INTRINSIC static _GLIBCXX_SIMD_CONSTEXPR _V
4963  _S_make_derived(_Up&& __d)
4964  { return {__private_init, static_cast<_Up&&>(__d)}; }
4965 
4966  public:
4967  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
4968  _V&
4969  operator%=(_V& __lhs, const _V& __x)
4970  { return __lhs = __lhs % __x; }
4971 
4972  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
4973  _V&
4974  operator&=(_V& __lhs, const _V& __x)
4975  { return __lhs = __lhs & __x; }
4976 
4977  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
4978  _V&
4979  operator|=(_V& __lhs, const _V& __x)
4980  { return __lhs = __lhs | __x; }
4981 
4982  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
4983  _V&
4984  operator^=(_V& __lhs, const _V& __x)
4985  { return __lhs = __lhs ^ __x; }
4986 
4987  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
4988  _V&
4989  operator<<=(_V& __lhs, const _V& __x)
4990  { return __lhs = __lhs << __x; }
4991 
4992  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
4993  _V&
4994  operator>>=(_V& __lhs, const _V& __x)
4995  { return __lhs = __lhs >> __x; }
4996 
4997  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
4998  _V&
4999  operator<<=(_V& __lhs, int __x)
5000  { return __lhs = __lhs << __x; }
5001 
5002  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5003  _V&
5004  operator>>=(_V& __lhs, int __x)
5005  { return __lhs = __lhs >> __x; }
5006 
5007  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5008  _V
5009  operator%(const _V& __x, const _V& __y)
5010  {
5011  return _SimdIntOperators::_S_make_derived(
5012  _Impl::_S_modulus(__data(__x), __data(__y)));
5013  }
5014 
5015  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5016  _V
5017  operator&(const _V& __x, const _V& __y)
5018  {
5019  return _SimdIntOperators::_S_make_derived(
5020  _Impl::_S_bit_and(__data(__x), __data(__y)));
5021  }
5022 
5023  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5024  _V
5025  operator|(const _V& __x, const _V& __y)
5026  {
5027  return _SimdIntOperators::_S_make_derived(
5028  _Impl::_S_bit_or(__data(__x), __data(__y)));
5029  }
5030 
5031  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5032  _V
5033  operator^(const _V& __x, const _V& __y)
5034  {
5035  return _SimdIntOperators::_S_make_derived(
5036  _Impl::_S_bit_xor(__data(__x), __data(__y)));
5037  }
5038 
5039  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5040  _V
5041  operator<<(const _V& __x, const _V& __y)
5042  {
5043  return _SimdIntOperators::_S_make_derived(
5044  _Impl::_S_bit_shift_left(__data(__x), __data(__y)));
5045  }
5046 
5047  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5048  _V
5049  operator>>(const _V& __x, const _V& __y)
5050  {
5051  return _SimdIntOperators::_S_make_derived(
5052  _Impl::_S_bit_shift_right(__data(__x), __data(__y)));
5053  }
5054 
5055  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5056  _V
5057  operator<<(const _V& __x, int __y)
5058  {
5059  if (__y < 0)
5060  __invoke_ub("The behavior is undefined if the right operand of a "
5061  "shift operation is negative. [expr.shift]\nA shift by "
5062  "%d was requested",
5063  __y);
5064  if (size_t(__y) >= sizeof(declval<_Tp>() << __y) * __CHAR_BIT__)
5065  __invoke_ub(
5066  "The behavior is undefined if the right operand of a "
5067  "shift operation is greater than or equal to the width of the "
5068  "promoted left operand. [expr.shift]\nA shift by %d was requested",
5069  __y);
5070  return _SimdIntOperators::_S_make_derived(
5071  _Impl::_S_bit_shift_left(__data(__x), __y));
5072  }
5073 
5074  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend
5075  _V
5076  operator>>(const _V& __x, int __y)
5077  {
5078  if (__y < 0)
5079  __invoke_ub(
5080  "The behavior is undefined if the right operand of a shift "
5081  "operation is negative. [expr.shift]\nA shift by %d was requested",
5082  __y);
5083  if (size_t(__y) >= sizeof(declval<_Tp>() << __y) * __CHAR_BIT__)
5084  __invoke_ub(
5085  "The behavior is undefined if the right operand of a shift "
5086  "operation is greater than or equal to the width of the promoted "
5087  "left operand. [expr.shift]\nA shift by %d was requested",
5088  __y);
5089  return _SimdIntOperators::_S_make_derived(
5090  _Impl::_S_bit_shift_right(__data(__x), __y));
5091  }
5092 
5093  // unary operators (for integral _Tp)
5094  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR
5095  _V
5096  operator~() const
5097  { return {__private_init, _Impl::_S_complement(__derived()._M_data)}; }
5098  };
5099 
5100 //}}}1
5101 /// @endcond
5102 
5103 // simd {{{
5104 template <typename _Tp, typename _Abi>
5105  class simd : public _SimdIntOperators<
5106  simd<_Tp, _Abi>, _Tp, _Abi,
5107  conjunction<is_integral<_Tp>,
5108  typename _SimdTraits<_Tp, _Abi>::_IsValid>::value>,
5109  public _SimdTraits<_Tp, _Abi>::_SimdBase
5110  {
5111  using _Traits = _SimdTraits<_Tp, _Abi>;
5112  using _MemberType = typename _Traits::_SimdMember;
5113  using _CastType = typename _Traits::_SimdCastType;
5114  static constexpr _Tp* _S_type_tag = nullptr;
5115  friend typename _Traits::_SimdBase;
5116 
5117  public:
5118  using _Impl = typename _Traits::_SimdImpl;
5119  friend _Impl;
5120  friend _SimdIntOperators<simd, _Tp, _Abi, true>;
5121 
5122  using value_type = _Tp;
5123  using reference = _SmartReference<_MemberType, _Impl, value_type>;
5124  using mask_type = simd_mask<_Tp, _Abi>;
5125  using abi_type = _Abi;
5126 
5127  static constexpr size_t size()
5128  { return __size_or_zero_v<_Tp, _Abi>; }
5129 
5130  _GLIBCXX_SIMD_CONSTEXPR simd() = default;
5131  _GLIBCXX_SIMD_CONSTEXPR simd(const simd&) = default;
5132  _GLIBCXX_SIMD_CONSTEXPR simd(simd&&) noexcept = default;
5133  _GLIBCXX_SIMD_CONSTEXPR simd& operator=(const simd&) = default;
5134  _GLIBCXX_SIMD_CONSTEXPR simd& operator=(simd&&) noexcept = default;
5135 
5136  // implicit broadcast constructor
5137  template <typename _Up,
5138  typename = enable_if_t<!is_same_v<__remove_cvref_t<_Up>, bool>>>
5139  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR
5140  simd(_ValuePreservingOrInt<_Up, value_type>&& __x)
5141  : _M_data(
5142  _Impl::_S_broadcast(static_cast<value_type>(static_cast<_Up&&>(__x))))
5143  {}
5144 
5145  // implicit type conversion constructor (convert from fixed_size to
5146  // fixed_size)
5147  template <typename _Up>
5148  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR
5149  simd(const simd<_Up, simd_abi::fixed_size<size()>>& __x,
5150  enable_if_t<
5151  conjunction<
5152  is_same<simd_abi::fixed_size<size()>, abi_type>,
5153  negation<__is_narrowing_conversion<_Up, value_type>>,
5154  __converts_to_higher_integer_rank<_Up, value_type>>::value,
5155  void*> = nullptr)
5156  : simd{static_cast<array<_Up, size()>>(__x).data(), vector_aligned} {}
5157 
5158  // explicit type conversion constructor
5159 #ifdef _GLIBCXX_SIMD_ENABLE_STATIC_CAST
5160  template <typename _Up, typename _A2,
5161  typename = decltype(static_simd_cast<simd>(
5162  declval<const simd<_Up, _A2>&>()))>
5163  _GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR
5164  simd(const simd<_Up, _A2>& __x)
5165  : simd(static_simd_cast<simd>(__x)) {}
5166 #endif // _GLIBCXX_SIMD_ENABLE_STATIC_CAST
5167 
5168  // generator constructor
5169  template <typename _Fp>
5170  _GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR
5171  simd(_Fp&& __gen, _ValuePreservingOrInt<decltype(declval<_Fp>()(
5172  declval<_SizeConstant<0>&>())),
5173  value_type>* = nullptr)
5174  : _M_data(_Impl::_S_generator(static_cast<_Fp&&>(__gen), _S_type_tag)) {}
5175 
5176  // load constructor
5177  template <typename _Up, typename _Flags>
5178  _GLIBCXX_SIMD_ALWAYS_INLINE
5179  simd(const _Up* __mem, _Flags)
5180  : _M_data(
5181  _Impl::_S_load(_Flags::template _S_apply<simd>(__mem), _S_type_tag))
5182  {}
5183 
5184  // loads [simd.load]
5185  template <typename _Up, typename _Flags>
5186  _GLIBCXX_SIMD_ALWAYS_INLINE void
5187  copy_from(const _Vectorizable<_Up>* __mem, _Flags)
5188  {
5189  _M_data = static_cast<decltype(_M_data)>(
5190  _Impl::_S_load(_Flags::template _S_apply<simd>(__mem), _S_type_tag));
5191  }
5192 
5193  // stores [simd.store]
5194  template <typename _Up, typename _Flags>
5195  _GLIBCXX_SIMD_ALWAYS_INLINE void
5196  copy_to(_Vectorizable<_Up>* __mem, _Flags) const
5197  {
5198  _Impl::_S_store(_M_data, _Flags::template _S_apply<simd>(__mem),
5199  _S_type_tag);
5200  }
5201 
5202  // scalar access
5203  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR reference
5204  operator[](size_t __i)
5205  { return {_M_data, int(__i)}; }
5206 
5207  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR value_type
5208  operator[]([[maybe_unused]] size_t __i) const
5209  {
5210  if constexpr (__is_scalar_abi<_Abi>())
5211  {
5212  _GLIBCXX_DEBUG_ASSERT(__i == 0);
5213  return _M_data;
5214  }
5215  else
5216  return _M_data[__i];
5217  }
5218 
5219  // increment and decrement:
5220  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd&
5221  operator++()
5222  {
5223  _Impl::_S_increment(_M_data);
5224  return *this;
5225  }
5226 
5227  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd
5228  operator++(int)
5229  {
5230  simd __r = *this;
5231  _Impl::_S_increment(_M_data);
5232  return __r;
5233  }
5234 
5235  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd&
5236  operator--()
5237  {
5238  _Impl::_S_decrement(_M_data);
5239  return *this;
5240  }
5241 
5242  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd
5243  operator--(int)
5244  {
5245  simd __r = *this;
5246  _Impl::_S_decrement(_M_data);
5247  return __r;
5248  }
5249 
5250  // unary operators (for any _Tp)
5251  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR mask_type
5252  operator!() const
5253  { return {__private_init, _Impl::_S_negate(_M_data)}; }
5254 
5255  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd
5256  operator+() const
5257  { return *this; }
5258 
5259  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd
5260  operator-() const
5261  { return {__private_init, _Impl::_S_unary_minus(_M_data)}; }
5262 
5263  // access to internal representation (suggested extension)
5264  _GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR
5265  simd(_CastType __init) : _M_data(__init) {}
5266 
5267  // compound assignment [simd.cassign]
5268  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd&
5269  operator+=(simd& __lhs, const simd& __x)
5270  { return __lhs = __lhs + __x; }
5271 
5272  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd&
5273  operator-=(simd& __lhs, const simd& __x)
5274  { return __lhs = __lhs - __x; }
5275 
5276  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd&
5277  operator*=(simd& __lhs, const simd& __x)
5278  { return __lhs = __lhs * __x; }
5279 
5280  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd&
5281  operator/=(simd& __lhs, const simd& __x)
5282  { return __lhs = __lhs / __x; }
5283 
5284  // binary operators [simd.binary]
5285  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
5286  operator+(const simd& __x, const simd& __y)
5287  { return {__private_init, _Impl::_S_plus(__x._M_data, __y._M_data)}; }
5288 
5289  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
5290  operator-(const simd& __x, const simd& __y)
5291  { return {__private_init, _Impl::_S_minus(__x._M_data, __y._M_data)}; }
5292 
5293  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
5294  operator*(const simd& __x, const simd& __y)
5295  { return {__private_init, _Impl::_S_multiplies(__x._M_data, __y._M_data)}; }
5296 
5297  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
5298  operator/(const simd& __x, const simd& __y)
5299  { return {__private_init, _Impl::_S_divides(__x._M_data, __y._M_data)}; }
5300 
5301  // compares [simd.comparison]
5302  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5303  operator==(const simd& __x, const simd& __y)
5304  { return simd::_S_make_mask(_Impl::_S_equal_to(__x._M_data, __y._M_data)); }
5305 
5306  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5307  operator!=(const simd& __x, const simd& __y)
5308  {
5309  return simd::_S_make_mask(
5310  _Impl::_S_not_equal_to(__x._M_data, __y._M_data));
5311  }
5312 
5313  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5314  operator<(const simd& __x, const simd& __y)
5315  { return simd::_S_make_mask(_Impl::_S_less(__x._M_data, __y._M_data)); }
5316 
5317  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5318  operator<=(const simd& __x, const simd& __y)
5319  {
5320  return simd::_S_make_mask(_Impl::_S_less_equal(__x._M_data, __y._M_data));
5321  }
5322 
5323  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5324  operator>(const simd& __x, const simd& __y)
5325  { return simd::_S_make_mask(_Impl::_S_less(__y._M_data, __x._M_data)); }
5326 
5327  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type
5328  operator>=(const simd& __x, const simd& __y)
5329  {
5330  return simd::_S_make_mask(_Impl::_S_less_equal(__y._M_data, __x._M_data));
5331  }
5332 
5333  // operator?: overloads (suggested extension) {{{
5334 #ifdef __GXX_CONDITIONAL_IS_OVERLOADABLE__
5335  _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd
5336  operator?:(const mask_type& __k, const simd& __where_true,
5337  const simd& __where_false)
5338  {
5339  auto __ret = __where_false;
5340  _Impl::_S_masked_assign(__data(__k), __data(__ret), __data(__where_true));
5341  return __ret;
5342  }
5343 
5344 #endif // __GXX_CONDITIONAL_IS_OVERLOADABLE__
5345  // }}}
5346 
5347  // "private" because of the first arguments's namespace
5348  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
5349  simd(_PrivateInit, const _MemberType& __init)
5350  : _M_data(__init) {}
5351 
5352  // "private" because of the first arguments's namespace
5353  _GLIBCXX_SIMD_INTRINSIC
5354  simd(_BitsetInit, bitset<size()> __init) : _M_data()
5355  { where(mask_type(__bitset_init, __init), *this) = ~*this; }
5356 
5357  _GLIBCXX_SIMD_INTRINSIC constexpr bool
5358  _M_is_constprop() const
5359  {
5360  if constexpr (__is_scalar_abi<_Abi>())
5361  return __builtin_constant_p(_M_data);
5362  else
5363  return _M_data._M_is_constprop();
5364  }
5365 
5366  private:
5367  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR static mask_type
5368  _S_make_mask(typename mask_type::_MemberType __k)
5369  { return {__private_init, __k}; }
5370 
5371  friend const auto& __data<value_type, abi_type>(const simd&);
5372  friend auto& __data<value_type, abi_type>(simd&);
5373  alignas(_Traits::_S_simd_align) _MemberType _M_data;
5374  };
5375 
5376 // }}}
5377 /// @cond undocumented
5378 // __data {{{
5379 template <typename _Tp, typename _Ap>
5380  _GLIBCXX_SIMD_INTRINSIC constexpr const auto&
5381  __data(const simd<_Tp, _Ap>& __x)
5382  { return __x._M_data; }
5383 
5384 template <typename _Tp, typename _Ap>
5385  _GLIBCXX_SIMD_INTRINSIC constexpr auto&
5386  __data(simd<_Tp, _Ap>& __x)
5387  { return __x._M_data; }
5388 
5389 // }}}
5390 namespace __float_bitwise_operators { //{{{
5391 template <typename _Tp, typename _Ap>
5392  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
5393  operator^(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
5394  {
5395  return {__private_init,
5396  _Ap::_SimdImpl::_S_bit_xor(__data(__a), __data(__b))};
5397  }
5398 
5399 template <typename _Tp, typename _Ap>
5400  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
5401  operator|(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
5402  {
5403  return {__private_init,
5404  _Ap::_SimdImpl::_S_bit_or(__data(__a), __data(__b))};
5405  }
5406 
5407 template <typename _Tp, typename _Ap>
5408  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap>
5409  operator&(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b)
5410  {
5411  return {__private_init,
5412  _Ap::_SimdImpl::_S_bit_and(__data(__a), __data(__b))};
5413  }
5414 
5415 template <typename _Tp, typename _Ap>
5416  _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR
5417  enable_if_t<is_floating_point_v<_Tp>, simd<_Tp, _Ap>>
5418  operator~(const simd<_Tp, _Ap>& __a)
5419  { return {__private_init, _Ap::_SimdImpl::_S_complement(__data(__a))}; }
5420 } // namespace __float_bitwise_operators }}}
5421 /// @endcond
5422 
5423 /// @}
5424 _GLIBCXX_SIMD_END_NAMESPACE
5425 
5426 #endif // __cplusplus >= 201703L
5427 #endif // _GLIBCXX_EXPERIMENTAL_SIMD_H
5428 
5429 // vim: foldmethod=marker foldmarker={{{,}}}
constexpr _If_is_unsigned_integer< _Tp, int > popcount(_Tp __x) noexcept
The number of bits set in x.
Definition: bit:426
constexpr complex< _Tp > operator*(const complex< _Tp > &__x, const complex< _Tp > &__y)
Return new complex value x times y.
Definition: complex:392
constexpr complex< _Tp > operator/(const complex< _Tp > &__x, const complex< _Tp > &__y)
Return new complex value x divided by y.
Definition: complex:422
constexpr complex< _Tp > operator-(const complex< _Tp > &__x, const complex< _Tp > &__y)
Return new complex value x minus y.
Definition: complex:362
constexpr complex< _Tp > operator+(const complex< _Tp > &__x, const complex< _Tp > &__y)
Return new complex value x plus y.
Definition: complex:332
typename remove_reference< _Tp >::type remove_reference_t
Alias template for remove_reference.
Definition: type_traits:1670
typename make_unsigned< _Tp >::type make_unsigned_t
Alias template for make_unsigned.
Definition: type_traits:2009
void void_t
A metafunction that always yields void, used for detecting valid types.
Definition: type_traits:2636
integral_constant< bool, true > true_type
The type used as a compile-time boolean with true value.
Definition: type_traits:82
typename conditional< _Cond, _Iftrue, _Iffalse >::type conditional_t
Alias template for conditional.
Definition: type_traits:2618
typename remove_pointer< _Tp >::type remove_pointer_t
Alias template for remove_pointer.
Definition: type_traits:2084
integral_constant< bool, false > false_type
The type used as a compile-time boolean with false value.
Definition: type_traits:85
typename remove_const< _Tp >::type remove_const_t
Alias template for remove_const.
Definition: type_traits:1601
typename enable_if< _Cond, _Tp >::type enable_if_t
Alias template for enable_if.
Definition: type_traits:2614
constexpr auto tuple_cat(_Tpls &&... __tpls) -> typename __tuple_cat_result< _Tpls... >::__type
tuple_cat
Definition: tuple:1730
auto declval() noexcept -> decltype(__declval< _Tp >(0))
Definition: type_traits:2393
constexpr std::remove_reference< _Tp >::type && move(_Tp &&__t) noexcept
Convert a value to an rvalue.
Definition: move.h:104
constexpr const _Tp & max(const _Tp &, const _Tp &)
This does what you think it does.
Definition: stl_algobase.h:254
constexpr const _Tp & min(const _Tp &, const _Tp &)
This does what you think it does.
Definition: stl_algobase.h:230
constexpr _Tp reduce(_InputIterator __first, _InputIterator __last, _Tp __init, _BinaryOperation __binary_op)
Calculate reduction of values in a range.
Definition: numeric:278
std::basic_istream< _CharT, _Traits > & operator>>(std::basic_istream< _CharT, _Traits > &__is, bitset< _Nb > &__x)
Global I/O operators for bitsets.
Definition: bitset:1472
bitset< _Nb > operator^(const bitset< _Nb > &__x, const bitset< _Nb > &__y) noexcept
Global bitwise operations on bitsets.
Definition: bitset:1453
std::basic_ostream< _CharT, _Traits > & operator<<(std::basic_ostream< _CharT, _Traits > &__os, const bitset< _Nb > &__x)
Global I/O operators for bitsets.
Definition: bitset:1540
bitset< _Nb > operator|(const bitset< _Nb > &__x, const bitset< _Nb > &__y) noexcept
Global bitwise operations on bitsets.
Definition: bitset:1444
bitset< _Nb > operator&(const bitset< _Nb > &__x, const bitset< _Nb > &__y) noexcept
Global bitwise operations on bitsets.
Definition: bitset:1435