The GNU C++ Library Manual

, Paolo Carlini, Phil Edwards, Doug Gregor, Benjamin Kosnik, Dhruv Matani, Jason
Merrill, Mark Mitchell, Nathan Myers, Felix Natter, Stefan Olsson, Johannes Singler, Ami
Tavory, and Jonathan Wakely

The GNU C++ Library Manual ii

Copyright © 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017,
2018, 2019, 2020 FSF

https://www.fsf.org

The GNU C++ Library Manual

COLLABORATORS

TITLE :

The GNU C++ Library Manual

ACTION

NAME DATE

SIGNATURE

WRITTEN BY

, Paolo Carlini, Phil April 21, 2022
Edwards, Doug
Gregor, Benjamin
Kosnik, Dhruv
Matani, Jason Merrill,
Mark Mitchell,
Nathan Myers, Felix
Natter, Stefan
Olsson, Johannes
Singler, Ami Tavory,
and Jonathan
Wakely

REVISION HISTORY

NUMBER

DATE DESCRIPTION

NAME

The GNU C++ Library Manual iv

Contents

I Introduction 1
1 Status 2
1.1 Implementation Status L e 2
LIT CH+1998/2003 e 2
1.1.1.1 Implementation Status 0 0 i it e e e e e e e e e e 2

1.1.1.2 Implementation Specific Behavior 2

LI2 CHH2011 . o e e 4
1.1.2.1 Implementation Specific Behavior o L 4

LI3 CH2014 . oo 7
1.1.3.1 Implementation Specific Behavior 0oL 7

1.1.3.1.1 Filesystem TS o e 7

L14 CH+2017 . oo o 7
1.1.4.1 TImplementation Specific Behavior L. 9

1.1.4.1.1 Parallelism2 TS 13

LIS CH+4+2020 . . . oo 13

LI6 CH++TRIL . .o 14
1.1.6.1 Implementation Specific Behavior 0 L. 14

L7 CH+TR24733 . 14

L8 CH+IS20124 o 14
1.1.8.1 Implementation Specific Behavior 18

1.2 LACENSE . . . o o o e e e e e 18
1.2.1 TheCode: GPL 18

1.2.2 The Documentation: GPL, FDL e 21

L3 BUZS . . . o e 21
1.3.1 Implementation Bugs 21

1.3.2 Standard Bugs 21

The GNU C++ Library Manual v
2 Setup 28
2.1 PrerequiSites e e e e e e e e e e 28
22 Configure o i e e 29
23 Make 32
3 Using 33
3.1 Command OPtions o o v o e e e e e e e e e e e e e e 33
32 Headers e 33
32.1 HeaderFiles e e e 33

322 Mixing Headers e e e 36

3.2.3 The C Headers and namespace std i ittt e e e 38

324 Precompiled Headers L 38

3.3 MACIOS . . v ¢ o e e e e e e 39
34 Dual ABL . . . e 40
3.4.1 Troubleshooting e e e e e 41

3.5 NamMESPACES . .« . v v v vt e e e e e e e 41
3.5.1 Available Namespaces ottt e e e e e e e e e 41

3.5.2 mnamespace std L. e e e e e e e e e 41

3.5.3 Using Namespace Composition ittt e e 42

3.6 Linking e e 42
3.6.1 AlmostNothing e e e e e e 42

3.6.2 Finding Dynamic or Shared Libraries 43

3.6.3 Experimental Library Extensions e 43

3.7 CONCUITENCY .+ . v v v v v i e 43
37.1 PrerequiSites oo e e e e e e e e e 44

372 Thread Safety L e e e e 44

373 AOMICS .« . o v vt e e e e e 46

374 O . . o 46
37401 SHrUCtUre oo e e e e e 46

3742 Defaults 46

3743 Future e e 46

3744 AIernatives e e e e e 46

37.5 CONAINEIS . . . v v v vttt et e e e e e e e e e e e e e 47

3.8 EXCEPUONS o o o i e e e e e e e e e 47
3.8.1 Exception Safety e e 47

3.8.2 Exception Neutrality e 48

3.8.3 Doing without L e e e 48

384 Compatibility L e e 49
3841 WithCo 49

The GNU C++ Library Manual vi
3.84.2 WithPOSIXthread cancellation 50

3.8.5 Bibliography e e e 50

3.9 Debugging Support L e 50
301 UsIN@ @H+ . o o o o e e 50

3.9.2 Debug Versions of Library Binary Files 51

393 Memory Leak Hunting 51

3.9.3.1 Non-memory leaks in Pool and MT allocators 52

394 DataRace Hunting L 52

3905 Usinggdb 53

3.9.6 Tracking uncaught eXceptions L e 53

397 DebugMode 53

3.9.8 Compile Time Checking e e e 53

II Standard Contents 54
4 Support 55
41 TYPES o o o e e e e e 55
4.1.1 Fundamental Types o o e e e e e e e e 55

4.1.2 Numeric Properties o L e e e 56

413 NULL . . .o 56

4.2 Dynamic MEMOTY o o it e e e e e e e e e e e e 57
421 Additional Notes e e 58

4.3 Termination o . e e e e e e e e e 58
43.1 Termination Handlers e 58

43.2 Verbose Terminate Handler L 59

5 Diagnostics 61
5.1 BXCEPUONS v o o i e e e e e e e e e 61
5.1.1 APIReference e 61

5.1.2 Adding Datato exception i i e e e e e e 61

52 Useoferrnobythelibrary e e 61

5.3 ConceptChecking o e e e e e e e 62

6 Utilities 63
6.1 Functors L e 63

6.2 Pairs 63

6.3 MEMOTY o e e e e e e e 64
6.3.1 Allocators L e 64

6.3.1.1 Requirements e e e e e e 64

6.3.1.2 Designlssues 64

The GNU C++ Library Manual vii

6.3.1.3 Implementation e e e e 65
6.3.1.3.1 Interface Design L 65

6.3.1.3.2 Selecting Default Allocation Policy 65

6.3.1.3.3 Disabling Memory Caching 65

6.3.1.4 Using a Specific Allocator e 66

6.3.1.5 Custom Allocators L e e 66

6.3.1.6 Extension Allocators e 66

6.3.1.7 Bibliography L e 67

6.3.2 aUtO_PLr e e 67
6.3.2.1 Limitations e e e e e e e e 67

6.3.2.2 Usein CONtAINErS v v v v v it e et e e e e e e e e e e e e 68

6.3.3 shared_ptr. L e 68
6.3.3.1 Requirements e e e e e e e e e e e 68

6.3.3.2 DesignIssues e e 69

6.3.3.3 Implementation e e e 69
6.3.3.3.1 ClassHierarchy 69

6.3.3.3.2 Thread Safety 69

6.3.3.3.3 Selecting Lock Policy 70

6.3.3.3.4 Related functionsand classes 70

6.3.3.4 USe ot 71
6.3.3.4.1 Examples e 71

6.3.3.4.2 Unresolved Issues e 71

6.3.3.5 Acknowledgments e 71

6.3.3.6 Bibliography e e e 71

6.4 Traits e 71
7 Strings 72
7.1 String Classes o o e e e 72
7.1.1 Simple Transformations e 72
7.1.2 0 Case Sensitivity e e e e e 73
7.1.3 Arbitrary Character Types o e e e e 74
714 Tokenizing e e e e e 74
7.1.5 Shrinkto Fit o L 75
7.1.6 CString (MFC) o e 76

The GNU C++ Library Manual viii

8.1 Locales

8.1.1

8.2 Facets
8.2.1

8.2.2

8.2.3

8 Localization 78
.. 78
locale e e 78
8.1.1.1 Requirements e 78
8112 Design 78
8.1.1.3 Implementation e e e e e e e e e 79
8.1.1.3.1 Interacting with "C"locales 79

8.1.1.4 Future e 84
8.1.1.5 Bibliography 84
... 85
CLYPE .« o v o o e e e e e e 85
8.2.1.1 Implementation e e e 85
8.2.1.1.1 Specializations e e e e 85

82.1.2 Future e 85
8.2.1.3 Bibliography 85
COdECVE e 86
8.2.2.1 Requirements i e e e e e e e e e 86
8222 Design e 86
8.2.2.2.1 wchar tSize e 86
8.2.22.2 SupportforUnicode. L 87
82223 OtherlIssues e e 87

8.2.23 Implementation e 88
8224 USe . . . o i 89
8225 Future e 89
8.2.2.6 Bibliography e 90
MESSAZES « . v v o v e 90
8.2.3.1 Requirements e 90
8.2.3.2 Design e e e 91
8.2.3.3 Implementation 91
8.233.1 Models 91
82332 TheGNUModel e 92

8234 Use 92
8.23.5 Future 93

8.2.3.6 Bibliography 93

The GNU C++ Library Manual iX
9 Containers 95
0.1 SeqUENCES v vt e e e e e 95
O0.1.1 LISt « e e 95

9.1.1.1 list:size()iSO(N) o . o e e e e e e e e e e e e e 95

0.2 ASSOCIALIVE v i i e e e e 95
9.2.1 Imsertion Hints e 95

9.2.2 DISEt e e e 96

9.22.1 Size Variable L 96

9.22.2 TypeString e e e e 97

9.3 Unordered ASSOCIAtIVE ot v i e e e e e e e e e e e 98
9.3.1 Imsertion Hints L e 98

9.32 HashCode 98

9.3.2.1 Hash Code Caching Policy 98

9.4 Interacting with C L L e e e e e 99
9.4.1 Containers VS. AITAYS . . .« « v v vttt e et e e e e e e e e e e e 99

10 Iterators 101
10.1 Predefined e 101
10.1.1 Tterators vs. Pointers L 101

10.1.2 OnePastthe End e 101

11 Algorithms 103
TLT MUtating o o o o e e e e e e e e e e e e e e e e 103
T1LL swap . . o o o e e e 103

11.1.1.1 Specializations o o e e e e 103

12 Numerics 104
12.1 Complex oo e 104
12.1.1 complex Processing e e e e e e e e e 104

12.2 Generalized Operations o i i e e e e e e e e e 104
12.3 Interacting with C L L 105
12.3.1 NUMETICS VS. AITAYS . . . v v v e et it e e e e et e e e e e e e 105

1232 CO9 .« e 105

13 Input and Output 106
13.1 Tostream ObJECts v i i e e e e e e e e e e e e 106
13.2 Stream Buffers L 107
13.2.1 Derived streambuf Classes 107

13.2.2 Buffering e e 108

13.3 Memory Based Streams 109

The GNU C++ Library Manual X
13.3.1 Compatibility With strstream e 109

13.4 File Based Streamso e e e 110
13.4.1 CopyingaFile e e e e 110

13.42 Binary Inputand Output 110

13.5 Interacting with C o L L e e e 111
13.5.1 Using FILE* and file descriptors 0 0 i it e e e e e e e e e e e e 111

13.5.2 Performance e e 112

14 Atomics 113
14.1 APIReference e 113

15 Concurrency 114
15.1 APIReference 0 o e e e 114
III Extensions 115
16 Compile Time Checks 117
17 Debug Mode 118
I7.1 INtro o e e e 118
17.2 Semantics o . e e e e e e e 118
173 USING . . o o oo o o e 119
17.3.1 Usingthe DebugMode e 119

17.3.2 Using a Specific Debug Container o o v i it e e e e e 121

17.4 Design o o o e e e e 121
17.4.1 Goals e 121

1742 Methods e e 122

17.4.2.1 The Wrapper Model e 122

17.4.2.1.1 Safe Iterators e 122

17.4.2.1.2 Safe Sequences (Containers) o oo v v v v it it 122

17.4.2.2 Precondition Checking e 123

17.4.2.3 Release- and debug-mode coexistenceo 123

17.4.2.3.1 Compile-time coexistence of release- and debug-mode components 124

17.4.2.3.2 Link- and run-time coexistence of release- and debug-mode components 124

17.4.2.3.3 Alternatives for Coexistence 125

17.4.3 Other Implementations e 126

The GNU C++ Library Manual xi
18 Parallel Mode 127
18.1 INtro o o e 127
18.2 Semantics e e e e e e e e 128
183 USING . . . o o o e e e e 129
18.3.1 Prerequisite Compiler Flags 129
18.3.2 Using Parallel Mode 129
18.3.3 Using Specific Parallel Components e e 129

18.4 Design o o e e e e e 131
18.4.1 Interface Basics L 131
18.4.2 Configuration and Tuning oL 131
18.4.2.1 Setting up the OpenMP Environment 131

18.4.2.2 Compile Time Switches e 132

18.4.2.3 Run Time Settings and Defaults L 132

18.4.3 Implementation NamesSpaces v v v i it e e e e e e e e e 133

18.5 TeStiNg v o vt o e e e e e e e e e 133
18.6 Bibliography L e e 134
19 The mt_allocator 135
19.1 INtro o o e e e 135
19.2 Design ISSUES o e e e 135
19.2.1 OVEIVIEW o o ottt e e e e e 135

19.3 ITmplementation o it e e e e e e e e e e e e e e e 136
19.3.1 Tunable Parameters e 136
19.3.2 Initialization e e e 137
19.3.3 Deallocation NOteS o oot e e e 137

19.4 Single Thread Example e e e e e 138
19.5 Multiple Thread Example o e e e 139
20 The bitmap_allocator 141
20.1 Design o e e e e 141
20.2 Implementation Ll e e 141
20.2.1 Free List Store e e 141
20.2.2 Super Block L e e 142
20.2.3 Super Block DataLayout e e e e 142
20.2.4 Maximum Wasted Percentage L 143
20.2.5 @llocate . . .o e e e e e e e e e 143
20.2.6 deallocateo e 144
20.2.7 QUESLIONS o o e e e e e e e e e e e e e 144
20271 1 o e 144

20.2.7.2 2 L e 144

20273 3 L 144

20.2.8 Locality e e e e e 145
20.2.9 Overhead and Grow Policy e 145

The GNU C++ Library Manual Xii

21 Policy-Based Data Structures 146
211 INtro . . . o o e e 146
21.1.1 PerformancelIssues 146
21111 ASSOCIAtiVE o o o e e e e e 146
21.1.1.2 Priority QUE e e e 147

21.1.2 Goals . . . L e 147
21.1.2.1 ASSOCIALIVE o o i e e e e e e 147
21.1.2.1.1 Policy Choices o v v i e e e e e e e 147

21.1.2.1.2 Underlying Data Structures 148

21.1.2.1.3 Tterators o oo e e e e e e e e 150

21.1.2.1.3.1 Using Point Iterators for Range Operations 151

21.1.2.1.3.2 Cost to Point Iterators to Enable Range Operations 151

21.1.2.1.3.3 Invalidation Guarantees 152

21.1.2.1.4 Functional 154

21.1.2.14.1 erase e e 154

21.1.2.1.42 splitand Join e 155

21.1.2.1.43 insert e e 155

21.1.2.1.44 operator==and operator<= 155

21.1.2.2 Priority QUEUES e e e e e 155
21.1.2.2.1 Policy Choices o v i e e e e e e e e 155

21.1.2.2.2 Underlying Data Structures 156

21.1.2.23 BinaryHeaps e e e e 157

21.2 USING . . . o o e 158
21.2.1 PrerequiSites o i e e e e e e e e e e e e e e e e e e e 158
21.2.2 Organization e e e e e e e e e e 158
21.2.3 Tutorial o e e 159
21.2.3.1 BasicUse e e 159
21.2.3.2 Configuring via Template Parameters 161
21.2.3.3 Querying Container Attributes oL 161
21.2.3.4 Pointand Range Iteration e 162

21.2.4 Examples e e e e e 163
21.2.4.1 Intermediate Use o o e e 163
21.2.42 Querying with container_traits oo 163
21.24.3 By Container Method e 164
21.2.43.1 Hash-Based e 164

21.2.43.1.1 sizeRelated 164

21.2.43.1.2 Hashing FunctionRelated 164

212432 Branch-Based 164

21.2.43.2.1 splitorjoinRelated oL oo 164

The GNU C++ Library Manual xii

21.3 Design
21.3.1

21.3.2

2124322 NodelInvariants 164

2124323 trieo e e 164

21.2.43.3 Priority QUEUES e 164
... 165
CONCEPLS . . . v o o e e e e e e 165
21.3.1.1 Null Policy CIasses o i i e e e e e e e e e e 165
21.3.1.2 Mapand Set Semantics L. e e e 165
21.3.1.2.1 Distinguishing Between Mapsand Sets 165
21.3.1.2.2 Alternatives to std: :multiset and std: :multimap 166
21.3.1.3 Tterator SEMAantiCs o oo e e e e e e e e e e e e 169
21.3.1.3.1 Point and Range Iterators 169
21.3.1.3.2 Distinguishing Point and Range Iterators 169
21.3.1.3.3 Invalidation Guaranteesot 170
21.3.1.4 GeneriCity v v i e e e e e e e e e e e 171
213,141 Tag. . . . o o o 172
21.3.1.4.2 Traits e e e e 173

By Container e e e 173
21.32.1 hasho e 173
21.32.1.1 Interface L e 173
21.32.1.2 Details oo e 174
21.3.2.1.2.1 HashPolicies 174

21.32.1.22 General e 174
21.3.2.1.2.3 RangeHashing 176

21.3.2.1.24 RangedHash 177

21.3.2.1.2.5 Implementation 177

21.3.2.1.2.6 Range-Hashing and Ranged-Hashes in Collision-Chaining Tables 178

21.3.2.1.277 Probingtables o 179

21.3.2.1.2.8 Pre-Defined Policies 179

21.3.2.1.29 Resize Policies e 181
21.3.2.1.2.10 General 181
21.3.2.1.2.11 SizePolicies 181
21.3.2.1.2.12 Trigger Policies e 181
21.3.2.1.2.13 Implementation 182
21.3.2.1.2.14 Decomposition i e e e e e e e 182
21.3.2.1.2.15 Predefined Policies 187
21.3.2.1.2.16 Controling Access to Internals 187
21.3.2.1.2.17 Policy Interactions L 187
21.3.2.1.2.18 probe/size/trigger e e 188

21.3.2.1.2.19 hash/trigger e 188

The GNU C++ Library Manual Xiv

21.3.2.1.2.20 equivalence functors/storing hash values/hash 188
21.3.2.1.2.21 size/load-check trigger 188

21322 HICC .« . v i i e e e e 188
21.322.1 Interface 188
213222 Details e 189
21.3.222.1 NodelInvariants e 189

2132222 Nodelterators e 192

21.3.2223 Node Updator o 0 v it e e 192

2132224 SplitandJoin 197

21323 Trie. . . o o o e e e e 197
21.323.1 Interface 197
213232 Details o e 198
21.3.2.3.2.1 Element Access Traits 198

2132322 NodelInvariants oL e 199

2132323 SplitandJoin 200

21324 LiSt. . . oo o e e e 200
213241 Interface L 200
213242 Details oo e 201
21.3.2.4.2.1 Underlying Data Structure 201

2132422 Policies e 202

2132423 UseinMultimaps 203

21.3.2.5 Priority QUEUE e e e e e e e e e e 203
21.325.1 Interface e 203
213252 Details oo e 204
21.3.2.5.2.1 TteratorS o o i i e e e e e e e e 204
21.3.2.5.2.2 Underlying Data Structure 205

2132523 Traits e 206

214 Testing o o v e e e e e e e 207
21.4.1 Regression e e e e e e e e e e 207
21.42 Performance e 207
21.4.2.1 Hash-Based e 207
214211 Textfind o oo e e 207
21.42.1.1.1 Descriptiono e e e e 207
21.42.1.1.2 Results e 208

21.4.2.1.1.3 Observationsttt e e e e 209

21.42.1.2 Integer £ind oo e e e 209
21.4.2.1.2.1 Description e e 209
2142122 Results e 209

21.4.2.1.2.3 ODbServationS v v i i e e e e e e e e e 211

The GNU C++ Library Manual XV

21.4.2.1.3 Integer Subscript find 212
21.4.2.1.3.1 Description e e e e 212
2142132 Results e 212
21.42.1.33 Observations e e e 214

21.4.2.1.4 Integer Subscript insert o o 214
21.4.2.1.4.1 Description e e e e e e e 214
21.42.1.42 Results e 214
21.42.1.43 Observations e e e 216

21.4.2.1.5 Integer £ind with Skewed-Distribution 217
21.4.2.1.5.1 Description e e e e e e e 217
21.42.1.52 Results 217
21.42.1.53 Observations e e e e 218

21.42.1.6 FEraseMemory Use e 218
21.4.2.1.6.1 Description e e e e e e 218
21.42.1.62 Results L 218
21.42.1.6.3 Observations e e 219

21.4.2.2 Branch-Based e 220

214221 Textinsertot e e e 220
21.42.2. 1.1 Description vt i e 220
2142212 Results e 220
21.4.2.2.1.3 Observationso e e e e e 222

214222 Textfind o e 222
21.42.22.1 Description e e e e 222
2142222 Results e 223
2142223 Observationso e e e e 223

21.4.2.2.3 Text find with Locality-of-Reference 224
21.4223.1 Description e e 224
2142232 Results e 224
21.4.2.23.3 Observationsot e e e e 225

214224 splitand join e e e e e 225
2142241 Description e e e e 225
2142242 Results e 225
21.4.2.2.43 Observationsot e e e e 226

214225 Order-Statistics o v o e e e e e e 227
21.4225.1 Description e e 227
2142252 Results e 227
21.4.2.2.53 Observationso e e e e 228

21423 Multimap oo e e e e e 228

21.423.1 Text £ind with Small Secondary-to-Primary Key Ratios 228

The GNU C++ Library Manual XVi

21.42.3.1.1 Descriptionot e e 228
21.4.23.1.2 Results 228
21.42.3.1.3 Observationsottt e e 231
21.4.2.3.2 Text find with Large Secondary-to-Primary Key Ratios 231
21.4232.1 Description e e 231
2142322 Results 231
2142323 Observationso.i . e 234
21.4.2.3.3 Text insert with Small Secondary-to-Primary Key Ratios 234
21.42.33.1 Description e e 234
2142332 Results 234
21.42.333 Observations oii i e e 237
21.4.2.3.4 Text insert with Small Secondary-to-Primary Key Ratios 237
21.42.3.4.1 Descriptiont e e 237
2142342 Results 237
21.4.2.3.43 Observations o it e e e 240
21.4.2.3.5 Text insert with Small Secondary-to-Primary Key Ratios Memory Use 240
21.42.3.5.1 Description e e 240
2142352 Results 240
21.4.2.3.53 Observationsot e e e e 243
21.4.2.3.6 Text insert with Small Secondary-to-Primary Key Ratios Memory Use 243
21.42.3.6.1 Description e 243
21.4.23.62 Results 243
21.42.3.6.3 Observationst 246
21424 Priority QUEUE o i e e e e e e e e e e e 246
214241 Textpush 0 e 246
21.4.2.4.1.1 Description i e e e e e e e 246
2142412 Results e 246
21.42.4.1.3 Observations e e 248
214242 Textpushandpop o v v i i e e e e e 248
21.4.2.42.1 Description i e e e e e e 248
2142422 Results e 248
21.42.423 Observations e e e 251
214243 Integerpush e 251
21.4.2.4.3.1 Description e e e e e e e 251
2142432 Results 251
2142433 Observations e e 253
214244 Integerpush e 253
21.4.2.4.4.1 Description i e e e e e e 253

2142442 Results e 253

The GNU C++ Library Manual Xvii

21.42.4.43 Observationst e e 254

214245 TextpopMemory Use e 254

21.4.2.4.5.1 Description e e e e e 254

2142452 Results e 254

21.42.453 Observationso.i e e e 255

21.42.4.6 Text JOIN e e e e 256

21.4.2.4.6.1 Description e e e 256

2142462 Results e 256

21.42.4.6.3 Observations 257

214247 Textmodify Up o e 257

21.4.2.477.1 Description e e e e 257

2142472 Results e 257

21.42.477.3 Observations e e 259

214248 TextmodifyDown e e e 259

21.42.4.8.1 Description e 259

2142482 Results 260

21.42.4.8.3 Observationso e e e 261

21.4.2.5 ODbSErvations v v vt e e e e e e e e e e e e e e e e e e 261

21.42.5.1 ASSOCIAtIVEo e e e e e 261

21.425.1.1 Underlying Data-Structure Families 261

21.425.1.2 Hash-Based Containers 262

21.425.1.3 HashPolicies 262

21.42.5.14 Branch-Based Containers 262

21.4.2.5.1.5 Mapping-SemantiCsS e e e e e 263

21.4.2.52 Priority_QuUeue e e e e e 263

21.42.52.1 Complexity 263

2142522 Amortized push and pop operations 264

21.4.2.52.3 Graph Algorithms 265

21.5 Acknowledgments e 265
21.6 Bibliography 265
22 HP/SGI Extensions 268
22.1 Backwards Compatibility e e e e 268
22.2 Deprecated e e e e e e e e e 268
23 Utilities 270
24 Algorithms 271

25 Numerics 272

The GNU C++ Library Manual xviii

26 Iterators 273
27 Input and Output 274
27.1 Derived filebufs e e 274

28 Demangling 275
29 Concurrency 277
20.1 DesigN . . . o o e e e 277
29.1.1 Interface to Locksand Mutexes e 277

29.1.2 Imterface to Atomic Functions 277

29.2 Tmplementation e e e e e e e e 278
29.2.1 Using Built-in Atomic Functions L 278

29.2.2 Thread Abstraction e e e 279

203 USE . . v v e 280
IV Appendices 281
A Contributing 282
A.1 Contributor Checklist e e 282
ALl Reading oL e 282

AL2 Assignmentl e e e 282

A L3 Getting SOUICES v v v v o e e e e e e e e e e e e e e e e 282

A.1.4 Submitting Patches L 283

A.2 Directory Layout and Source Conventions 283
A3 Coding Style e e e e e e 284
A3.1 Badldentifiers e 284

A3.2 ByExample. e e 287

A4 Design NOES o o e e e e e e e e 295

B Porting and Maintenance 311
B.1 Configure and Build Hacking e e 311
B.1.1 Prerequisites e e 311

B.1.2 OVervIew e 311

B.1.2.1 General Process e 311

B.1.2.2 What Comes from Where L 312

B.1.3 Configure e e 312

B.1.3.1 Storing Information in non-AC files (like configure.host) 312

B.1.3.2 Coding and Commenting Conventions 312

B.1.3.3 The acinclude.m4 layout 312

B.1.3.4 GLIBCXX_ENABLE,the ——enablemaker 314

The GNU C++ Library Manual Xix

B.2

B.3

B4

B.1.3.5 Shared Library Versioning e 315
B.l.4 Make e 316
Writing and Generating Documentation e 316
B.2.1 Introduction. 316
B.2.2 Generating Documentation e 316
B.2.3 DOXYZEN e e e e e e 317
B.2.3.1 PrerequiSites e e e e 317
B.2.3.2 Generating the Doxygen Files e 317
B.2.3.3 Debugging Generation e e e 318
B.2.3.4 Markup e e 319
B.2.4 Docbooko e e 320
B.2.4.1 PrerequiSites e e e e e e e e e e 320
B.2.4.2 Generating the DocBook Files 320
B.2.4.3 Debugging Generationttt e e e e e e e e e 321
B.2.4.4 Editing and Validation 322
B.2.4.5 File Organization and Basics e 322
B.24.6 Markup By Example 323
Porting to New Hardware or Operating Systems i v v i ittt e e e e 323
B.3.1 Operating System oL e e e e e e e e e e e 324
B.3.3 Character Types e e e e e e 325
B.3.4 Thread Safety e e e e e e e e 328
B.3.,5 Numeric Limits e 329
B.3.6 Libtool e 0329
TeSting o o e e e e e 329
B.4.1 TestOrganization o i i e 329
B.4.1.1 Directory Layout e 329
B.4.1.2 Naming Conventions v v i it e e e e e 331
B.4.2 Running the Testsuite e e e e 331
B.42.1 Basic33
B.4.2.2 Variations e e 331
B.4.23 Permutations e 333
B43 Writing anew teSt Caset e e e e 333
B.4.3.1 Examplesof TestDirectives o o v i i v i e e e e 335
B.4.3.2 Directives Specific to Libstdc++ Tests L o oL 336
B.4.4 TestHarnessand Utilities 336
B.4.4.1 DejaGnu Harness Details 336
B.4.42 Utilities o o e e e 336

B.4.5 Special Topics e e 337

The GNU C++ Library Manual XX

B.4.5.1 Qualifying Exception Safety Guarantees 337
BA4S51.1 Overview 337

B.4.5.1.2 EXiStingtests e e e e 338

B.4.5.1.3 C++11 Requirements Test Sequence Descriptions 338

B.5 ABIPolicy and Guidelines e 339
B.5.1 TheC++1Interface 339
B.5.2 Versioning e e 339
B5.21 Goals. 339
B.522 HiStOry oo o o e e 340
B.5.2.3 PrerequiSites e e e e e e e e e e e 346
B.5.2.4 Configuring e e 346
B.5.2.5 Checking ACtive e e e e e e 346

B.5.3 Allowed Changes L e e 347
B.5.4 Prohibited Changes e e e e e 347
B.5.5 Implementation L e e e e e e e 348
B.5.6 Testing e e e e e e e 349
B.5.6.1 Single ABITesting e e 349

B.5.6.2 Multiple ABITesting 0 e e e e e 349

B.5.7 Outstanding Issues L e e e e 350
B.5.8 Bibliography L e e 351
B.6 API Evolution and Deprecation History 351
B.6.2 3.1 . 351
B.6.4 3.3 L 352
B.6.6 4.0 . . . 353
B.6.7T 4.1 . o 353
B.6.8 4.2 L 353
B.6.9 4.3 L 354
B.6.10 4.4 . o o 355
B.6.11 4.5 o o o 355
B.6.12 4.6 . . o o 356
B.6.13 4.7 o o 356
B.6.14 4.8 . o L e 356
B.6.15 4.9 o o 356
B.6.16 5 . . 356
B.6.16.1 5.3 . . 357
B.6.17 6 o o e 357

The GNU C++ Library Manual XXi

B.6.18 7 . 357
B.6.18.1 7.2 . 357
B.6.18.2 7.3 e 357

B.6.19 8 . . 357

B.6.20 9 . . 358

B.6.21 10 . . o o e 358

B.6.22 11 . . o e 358

B.7 Backwards Compatibility L 358

B.7.1 First o o e 358

B.7.2 Second e 359

B.7.3 Third 359
B.7.3.1 Pre-ISOheadersremoved 359
B.7.3.2 Extension headers hash_map, hash_set moved to ext or backwards 359
B.7.3.3 Noios::nocreate/ios::noreplacCe. v v v v v ittt e 360
B.7.3.4 Nostream::attach(int £d) @ e 360
B.7.3.5 Support for C++98 dialect. 361
B.7.3.6 Support for C++TR1 dialect. e 362
B.7.3.7 Support for C++11 dialect. 363

B.7.3.8 Container::iterator_type is not necessarily Container: :value_type* . .. 367

C Free Software Needs Free Documentation 368
D GNU General Public License version 3 370
E GNU Free Documentation License 379

30 Index 385

The GNU C++ Library Manual XXii

List of Figures

21.1 Node Invariantso o i e e e e e e e e 148
21.2 Underlying Associative Data Structures L e e e e 149
21.3 Range Iteration in Different Data Structures L 151
21.4 Point Iteration in Hash Data Structures e 152
21.5 Effect of erase in different underlying data structures Lo 153
21.6 Underlying Priority Queue Data Structures L e e 157
21.7 Exception Hierarchy e 159
21.8 Non-unique Mapping Standard Containers o it e e e e e 167
21.9 Effect of embedded lists in std: :multimap o v i v i it e e e e e e 167
21.10Non-unique Mapping CONtainers v v v v vttt it e e e e e e e e e e e 168
21.11Point Iterator Hierarchy e e e e e e e 170
21.12Invalidation Guarantee Tags Hierarchy e 171
21.13Container Tag Hierarchy e 172
21.14Hash functions, ranged-hash functions, and range-hashing functions 175
21.15Insert hash sequence diagram L. e 178
21.16Insert hash sequence diagram with anull policy L 179
21.17Hash policy class diagram e e e e e e e 180
21.18Ballsand bins oL e e e e 181
21.191Insert resize sequence diagram e e e e e e e e e e e e e e 183
21.20Standard resize policy trigger sequence diagramo e e e e e e e e e e e e 185
21.21Standard resize policy size sequence diagram Lol 186
21.22Tree node iNVATIANES o v vt e e e e e e e e e e e e e e e e 190
21.23Tree node invalidation L. e e e 191
21.24A tree and its update pOliCy L L e e e e e e 192
21.25Restoring node invariantso o e e e e e e e e e e e e e e 193
21.26Insert update SEQUENCE« v v i e 194
21.27Uselessupdate path L. 196
21.28A PATRICIA trie o o e e 199
21.29A trieand its update pOLiCY L. e e e e e e e e e e 200

2130Asimple list L L e 201

The GNU C++ Library Manual Xxiii

21.31The counter algorithm e e e 202
21.32Underlying Priority-Queue Data-Structures. 205
21.33Priority-Queue Data-Structure Tags. o . o e e e e 206

B.1 Configure and Build File Dependencies e 312

The GNU C++ Library Manual XXiv

List of Tables

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9
1.10

1.12

3.1
32
33
34
35
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

C++ 1998/2003 Implementation Status e 3
C++ 2011 Implementation Status 0 vttt e e e e e e e 5
C++ 2014 Implementation Status o ot e e e e e e e e e e e 8
C++ Technical Specifications Implementation Status 9
C++ 2017 Library Features 10
C++ 2017 Implementation Status o o vttt e e e e e e e 11
C++ Technical Specifications Implementation Status e 12
Support for Extended ABI Tags e 14
C++ 2020 Library Features e 15
C++ TRI Implementation Status ot i i e e e e e e e e e e e e e e e e 16
C++ TR 24733 Implementation Status o o vttt e e e e e e e e e e 17
C++ Special Functions Implementation Status L 19
CH++Command Options o ottt e e e e e e e e e 33
C++ 1998 Library Headers e 34
C++ 1998 Library Headers for C Library Facilities 34
C++ 1998 Deprecated Library Header e 34
C++ 2011 Library Headers e 35
C++ 2011 Library Headers for C Library Facilities 35
C++ 2014 Library Header e e e e e e 35
C++ 2017 Library Headers o e e e e 35
C++ 2020 Library Headers L 35
C++2020 Obsolete Headers o 35
File System TS Header e e e e 35
Library Fundamentals TS Headers 36
C++ TR 1 Library Headers e 36
C++ TR 1 Library Headers for C Library Facilities 36
C++ TR 24733 Decimal Floating-Point Header 37
C++ ABIHeaders e e e 37
Extension Headers 37

The GNU C++ Library Manual XXV

3.18
3.19

17.1
17.2

18.1

20.1

B.1
B.2
B.3
B4
B.5
B.6
B.7

Extension Debug Headers 37
Extension Parallel Headers e 37
Debugging Containerso e e e 120
Debugging Containers C++11 o L 120
Parallel Algorithms 130
Bitmap Allocator Memory Map e e e e e 142
Doxygen PrerequiSites L e e e e e e e e e e 317
HTML to Doxygen Markup Comparison o it e e e 320
Docbook PrerequiSites e e e 320
HTML to Docbook XML Markup CompariSOn v v vttt et e et e e et e e e e 323
Docbook XML Element Use e 324
Extension Allocators e 353
Extension Allocators Continued L 353

The GNU C++ Library Manual 1/385

Part 1

Introduction

The GNU C++ Library Manual 2/385

Chapter 1

Status

1.1 Implementation Status

1.1.1 C++ 1998/2003

1.1.1.1 Implementation Status

This status table is based on the table of contents of ISO/IEC 14882:2003.

This section describes the C++ support in the GCC 11 release series.

1.1.1.2 Implementation Specific Behavior

The ISO standard defines the following phrase:

[1.3.5] implementation-defined behavior Behavior, fora well-formed program construct and cor-
rect data, that depends on the implementation and that each implementation shall document.

We do so here, for the C++ library only. Behavior of the compiler, linker, runtime loader, and other elements of "the implemen-
tation" are documented elsewhere. Everything listed in Annex B, Implementation Qualities, are also part of the compiler, not the
library.

For each entry, we give the section number of the standard, when applicable. This list is probably incomplet and inkorrekt.
[1.9]/11 #3 If isatty (3) is true, then interactive stream support is implied.

[17.4.4.5] Non-reentrant functions are probably best discussed in the various sections on multithreading (see above).
[18.1]/4 The type of NULL is described under Support.

[18.3]/8 Even though it’s listed in the library sections, libstdc++ has zero control over what the cleanup code hands back to the
runtime loader. Talk to the compiler people. :-)

[18.4.2.1]/5 (bad_alloc), [18.5.2]/5 (bad_cast), [18.5.3]/5 (bad_typeid), [18.6.1]/8 (exception), [18.6.2.1]/5 (bad_exception):
The what () member function of class std: :exception, and these other classes publicly derived from it, returns the name
of the class, e.g. "std: :bad_alloc".

[18.5.1]/7 The return value of std: :type_info: :name () is the mangled type name. You will need to call c++£filt and
pass the names as command-line parameters to demangle them, or call a runtime demangler function.

[20.1.5]/5 "Implementors are encouraged to supply libraries that can accept allocators that encapsulate more general memory
models and that support non-equal instances. In such implementations, any requirements imposed on allocators by containers

The GNU C++ Library Manual

3/385

Section Description Status Comments

18 Language support

18.1 Types Y

18.2 Implementation properties Y

18.2.1 Numeric Limits

182.1.1 Class tqnplate. . %
numeric_limits

18.2.1.2 numeric_limits v
members

18.2.1.3 float_round_style Y

18.2.1.4 float_denorm_style Y

18.2.1.5 pumeric_limits Y
specializations

18.2.2 C Library Y

18.3 Start and termination Y

18.4 Dynamic memory %
management

18.5 Type identification

18.5.1 Class type_info Y

18.5.2 Class bad_cast Y

18.5.3 Class bad_typeid Y

18.6 Exception handling

18.6.1 Class exception Y

18.6.2 Violaton Y
exception-specifications

18.6.3 Abnormal termination Y

18.6.4 uncaught_exception Y

18.7 Other runtime support Y

19 Diagnostics

19.1 Exception classes Y

19.2 Assertions Y

19.3 Error numbers Y

20 General utilities

20.1 Requirements Y

20.2 Utility components

20.2.1 Operators Y

20.2.2 pair Y

20.3 Function objects

20.3.1 Base Y

20.3.2 Arithmetic operation Y

20.3.3 Comparisons Y

20.3.4 Logical operations Y

20.3.5 Negators Y

20.3.6 Binders Y

2037 Adap.tors for pointers to %
functions

203.8 Adaptors for pointers to %
members

20.4 Memory

20.4.1 The default allocator Y

20.4.2 Raw storage iterator Y

20.4.3 Temporary buffers Y

20.4.4 Specialized algorithms Y

20.4.4.1 uninitialized_copy Y

20.4.4.2 uninitialized fill Y

20.4.4.3 uninitialized_fill n Y

20.4.5 Class template auto_ptr Y

20.4.6 C library Y

21 Strings

21.1 Character traits

2111 Char.acter traits v
requirements

21.1.2 traits typedef Y
char traits

The GNU C++ Library Manual 4 /385

beyond those requirements that appear in Table 32, and the semantics of containers and algorithms when allocator instances
compare non-equal, are implementation-defined." There is experimental support for non-equal allocators in the standard contain-
ers in C++98 mode. There are no additional requirements on allocators. It is undefined behaviour to swap two containers if their
allocators are not equal.

[21.1.3.1]/3,4,[21.1.3.2]/2, [21.3]/6 basic_string::iterator, basic_string::const_iterator, [23.*]’s foo: :iterator, [27.*]’s foo:: *_type,
others... Nope, these types are called implementation-defined because you shouldn’t be taking advantage of their underlying
types. Listing them here would defeat the purpose. :-)

[21.1.3.1]/5 1 don’t really know about the mbstate_t stuff... see the codecvt notes for what does exist.

[22.%*] Anything and everything we have on locale implementation will be described under Localization.
[23.*#] All of the containers in this clause define size_type as std::size_t and difference_type as std::ptrdiff_t.
[26.2.8]/9 1 have no idea what complex<T>’s pow (0, 0) returns.

[27.4.2.4]/2 Calling std: :ios_base::sync_with_stdio after I/O has already been performed on the standard stream
objects will flush the buffers, and destroy and recreate the underlying buffer instances. Whether or not the previously-written
I/O is destroyed in this process depends mostly on the ——enable—-1ibio choice: for stdio, if the written data is already in the
stdio buffer, the data may be completely safe!

[27.6.1.1.2], [27.6.2.3] The 1/O sentry ctor and dtor can perform additional work than the minimum required. We are not
currently taking advantage of this yet.

[27.7.1.3]/16, [27.8.1.4]/10 The effects of pubsetbuf/setbuf are described in the Input and Output chapter.

[27.8.1.4]/16 Calling fstream: : sync when a get area exists will... whatever ££1ush () does, I think.

1.1.2 C++ 2011

This table is based on the table of contents of ISO/IEC JTC1 SC22 WG21 Doc No: N3290 Date: 2011-04-11 Final Draft
International Standard, Standard for Programming Language C++

In this implementation the —std=gnu++11 or —std=c++11 flag must be used to enable language and library features. See
dialect options. The pre-defined symbol ___cplusplus is used to check for the presence of the required flag. GCC 5.1 was
the first release with non-experimental C++11 support, so the API and ABI of features added in C++11 is only stable since that
release.

This status table is based on the table of contents of ISO/IEC 14882:2011.

This section describes the C++11 support in the GCC 11 release series.

1.1.2.1 Implementation Specific Behavior
For behaviour which is also specified by the 1998 and 2003 standards, see C++ 1998/2003 Implementation Specific Behavior.
This section only documents behaviour which is new in the 2011 standard.

17.6.5.12 [res.on.exception.handling] There are no implementation-defined exception classes, only standard exception classes
(or classes derived from them) will be thrown.

17.6.5.14 [value.error.codes] The error_category for errors originating outside the OS, and the possible error code values
for each error category, should be documented here.

18.6.2.2 [new.badlength] what () returns "std: :bad_array_new_length".
20.6.9.1 [allocator.member]/5 Over-aligned types are not supported by std: :allocator.

20.7.2.2.1 [util.smartptr.shared.const] When a shared_ptr constructor fails bad_alloc (or types derived from it) will be
thrown, or when an allocator is passed to the constructor then any exceptions thrown by the allocator.

20.7.2.0 [util.smartptr.weakptr] what () returns "bad_weak_ptr".

20.8.9.1.3 [func.bind.place]/I There are 29 placeholders defined and the placeholder types are CopyAssignable.

The GNU C++ Library Manual

5/385

Section Description Status Comments

18 Language support

18.1 General

18.2 Types Y

18.3 Implementation properties

18.3.2 Numeric Limits

18323 Class templat§ . v
numeric_limits

18.3.2.4 numeric_limits v
members

18.3.2.5 float_round_style N

18.3.2.6 float_denorm_style N

18.3.2.7 num.er.ic._limits Y
specializations

18.3.3 C Library Y

18.4 Integer types

18.4.1 Header.<cstdint> v
Synopsis

18.5 Start and termination Partial C 1.1brary .depende:ncy fo.r

quick_exit, at_quick_exit

18.6 Dynamic memory %
management

18.7 Type identification

18.7.1 Class type_info Y

18.7.2 Class bad_cast Y

18.7.3 Class bad_typeid Y

18.8 Exception handling

18.8.1 Class exception Y

18.8.2 Class bad_exception Y

18.8.3 Abnormal termination Y

18.8.4 uncaught_exception Y

18.8.5 Exception Propagation Y

18.8.6 nested_exception Y

18.9 Initializer lists

18.9.1 Initializer list constructors Y

18.9.2 Initializer list access Y

18.9.3 Initializer list range access Y

18.10 Other runtime support Y

19 Diagnostics

19.1 General

19.2 Exception classes Y

19.3 Assertions Y

19.4 Error numbers Y

19.5 System error support

19.5.1 Class error_category Y

19.5.2 Class error_code Y

19.5.3 Class L Y
error_condition

1954 Comparison operators Y

19.5.5 Class system_error Y

20 General utilities

20.1 General

20.2 Utility components

20.2.1 Operators Y

20.2.2 swap Y

20.2.3 forward/move helpers Y
Function template

20.2.4 declval Y

20.3 Pairs

20.3.1 In general

20.3.2 Class template pair Y

20.3.3 Specialized algorithms Y

20.3.4 Tuple-like access to pair Y

272035 Piecewise construction Y

http://www.boost.org/libs/smart_ptr/shared_ptr.htm
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66146

The GNU C++ Library Manual 6 /385

20.11.7.1 [time.clock.system]/3, /4 Time point values are truncated to t ime_t values. There is no loss of precision for conver-
sions in the other direction.

20.15.7 [meta.trans]/2 aligned_storage does not support extended alignment.

21.2.3.2 [char.traits.specializations.charl6_t], 21.2.3.3 [char.traits.specializations.char32_t] The types ul6streampos and
u32streampos are both synonyms for fpos<mbstate_t>. The function eof returns int_type (-1). char_traits<charl
will transform the "noncharacter" U+FFFF to U+FFFD (REPLACEMENT CHARACTER). This is done to ensure that to_int_type
never returns the same value as eof, which is U+FFFF.

22.3.1 [locale] There is one global locale for the whole program, not per-thread.

22.4.5.1.2 [locale.time.get.virtuals], 22.4.5.3.2 [locale.time.put.virtuals] Additional supported formats should be documented
here.

22.4.7.1.2 [locale.messages.virtuals] The mapping should be documented here.
23.3.2.1 [array.overview] array<T, N>::iteratoris T+ and array<T, N>::const_iteratorisconst T=.

23.5.4.2 [unord.map.cnstr], 23.5.5.2 [unord.multimap.cnstr], 23.5.6.2 [unord.set.cnstr], 23.5.7.2 [unord.multiset.cnstr] The de-
fault minimal bucket count is O for the default constructors, range constructors and initializer-list constructors.

25.3.12 [alg.random.shuffle] The two-argument overload of random_shuffle uses rand as the source of randomness.
26.5.5 [rand.predef] The type default_random_engine is a synonym for minstd_rando0.

26.5.6 [rand.device] The token parameter of the random_device constructor can be used to select a specific source of
random bytes. The valid token values are shown in the list below. The default constructor uses the token "default".

"default" Select the first available source from the other entries below. This is the only token that is always valid.
"rand_s" Use the MSVCRT rand_s function. This token is only valid for mingw-w64 targets.

"rdseed", "rdrand" or "rdrnd" Use the [A-32 RDSEED or RDRAND instruction to read from an on-chip hardware ran-
dom number generator. These tokens are only valid for x86 and x86_64 targets when both the assembler and CPU support
the corresponding instruction.

"/dev/urandom", "/dev/random" Use the named character special file to read random bytes from. These tokens are
only valid when the device files are present and readable by the current user.

"mt19937", seed value When no source of nondeterministic random numbers is available amersenne_twister_engine
will be used. An integer seed value can be used as the token and will be converted to an unsigned long using
strtoul. These tokens are only valid when no other source of random bytes is available.

An exception of type runt ime_error will be thrown if a random_device object is constructed with an invalid token, or if
it cannot open or read from the source of random bytes.

26.5.8.1 [rand.dist.general] The algorithms used by the distributions should be documented here.

26.8 [c.math] Whether the rand function introduces data races depends on the C library as the function is not provided by
libstdc++.

27.8.2.1 [stringbuf.cons] Whether the sequence pointers are copied by the basic_stringbuf move constructor should be
documented here.

27.9.1.2 [filebuf.cons] Whether the sequence pointers are copied by the basic_filebuf move constructor should be docu-
mented here.

28.5.1 [re.synopt], 28.5.2 [re.matchflag] , 28.5.3 [re.err] syntax_option_type,match_flag_typeanderror_type
are unscoped enumeration types.

28.7 [re.traits] The blank character class corresponds to the ctype_base: :blank mask.
29.4 [atomics.lockfree] The values of the ATOMIC_xxx_LOCK_FREE macros depend on the target and cannot be listed here.

30.2.3 [thread.req.native]/l native_handle_type and native_handle are provided. The handle types are defined in
terms of the Gthreads abstraction layer, although this is subject to change at any time. Any use of nat ive_handle is inherently
non-portable and not guaranteed to work between major releases of GCC.

The GNU C++ Library Manual 7/385

thread The native handle type is a typedef for __gthread_t i.e. pthread_t when GCC is configured with the posix
thread model. The value of the native handle is undefined for a thread which is not joinable.

mutex, timed_mutex The native handle type is __ gthread_mutex_t« ie. pthread_mutex_t~* for the posix
thread model.

recursive_mutex, recursive_timed_mutex The native handle type is ___gthread_recursive_mutex_tx i.e.
pthread_mutex_t for the posix thread model.

condition_variable The native handle typeis __gthread_cond_t* i.e. pthread_cond_t * for the posix thread
model.

30.6.1 [futures.overview]/2 launch is a scoped enumeration type with overloaded operators to support bitmask operations.
There are no additional bitmask elements defined.

1.1.3 C++ 2014

In this implementation the —std=gnu++14 or —std=c++14 flag must be used to enable language and library features. See
dialect options. The pre-defined symbol ___cplusplus is used to check for the presence of the required flag. GCC 6.1 was
the first release with non-experimental C++14 support, so the API and ABI of features added in C++14 is only stable since that
release.

This status table is based on the table of contents of ISO/IEC 14882:2014. Some subclauses are not shown in the table where the
content is unchanged since C++11 and the implementation is complete.

This section describes the C++14 and library TS support in the GCC 11 release series.

1.1.3.1 Implementation Specific Behavior

1.1.3.1.1 Filesystem TS

2.1 POSIX conformance [fs.conform.9945] The behavior of the filesystem library implementation will depend on the target
operating system. Some features will not be supported on some targets. Symbolic links and file permissions are not supported
on Windows.

15.30 Rename [fs.op.rename] On Windows, experimental: :filesystem: : rename is implemented by calling MoveFileExW
and so does not meet the requirements of POSIX rename when one or both of the paths resolves to an existing directory. Specifi-

cally, it is possible to rename a directory so it replaces a non-directory (POSIX requires an error in that case), and it is not possible

to rename a directory to replace another directory (POSIX requires that to work if the directory being replaced is empty).

1.1.4 C++ 2017

In this implementation the —std=gnu++17 or —std=c++17 flag must be used to enable language and library features. See
dialect options. The pre-defined symbol ___cplusplus is used to check for the presence of the required flag. GCC 9.1 was
the first release with non-experimental C++17 support, so the API and ABI of features added in C++17 is only stable since that
release.

This section describes the C++17 and library TS support in the GCC 11 release series.

The following table lists new library features that are included in the C++17 standard. The "Proposal”" column provides a link
to the ISO C++ committee proposal that describes the feature, while the "Status" column indicates the first version of GCC that
contains an implementation of this feature (if it has been implemented). The "SD-6 Feature Test" column shows the corresponding
macro or header from SD-6: Feature-testing recommendations for C++.

Note 1: This feature is supported in GCC 7.1 and 7.2 but before GCC 7.3 the ___cpp_ 1 ib macro is not defined, and compilation
will fail if the header is included without using —std to enable C++17 support.

Note 2: This feature is supported in older releases but the ___cpp_11ib macro is not defined to the right value (or not defined at
all) until the version shown in parentheses.

https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations

The GNU C++ Library Manual 8/385

Section Description Status Comments

18 Language support

18.1 General

18.2 Types Y

18.3 Implementation properties

18.3.2 Numeric Limits

18323 Class templat§ . v
numeric_limits

18.3.2.4 numeric_limits v
members

18.3.2.5 float_round_style N

18.3.2.6 float_denorm_style N

18.3.2.7 num.er.ic._limits Y
specializations

18.3.3 C Library Y

18.4 Integer types

18.4.1 Header.<cstdint> v
Synopsis

18.5 Start and termination Partial C 1.1brary .depende:ncy fo.r

quick_exit, at_quick_exit

18.6 Dynamic memory %
management

18.7 Type identification

18.7.1 Class type_info Y

18.7.2 Class bad_cast Y

18.7.3 Class bad_typeid Y

18.8 Exception handling

18.8.1 Class exception Y

18.8.2 Class bad_exception Y

18.8.3 Abnormal termination Y

18.8.4 uncaught_exception Y

18.8.5 Exception Propagation Y

18.8.6 nested_exception Y

18.9 Initializer lists

18.9.1 Initializer list constructors Y

18.9.2 Initializer list access Y

18.9.3 Initializer list range access Y

18.10 Other runtime support Y

19 Diagnostics

19.1 General

19.2 Exception classes Y

19.3 Assertions Y

19.4 Error numbers Y

19.5 System error support

19.5.1 Class error_category Y

19.5.2 Class error_code Y

19.5.3 Class L Y
error_condition

1954 Comparison operators Y

19.5.5 Class system_error Y

20 General utilities

20.1 General

20.2 Utility components

20.2.1 Operators Y

20.2.2 swap Y

20.2.3 exchange Y

20.2.4 forward/move helpers Y
Function template

20.2.5 declval Y

20.3 Pairs Y

20.4 Tuples Y

0.5 Compile-time integer
sequences

o ('1ass template e

http://www.boost.org/libs/smart_ptr/shared_ptr.htm
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66146

The GNU C++ Library Manual 9/385

Paper Title Status Comments

N3662 C++ Dynamic Arrays N Array Extensions TS
A proposal to add a utility

N3793 class to represent optional Y Library Fundamentals TS
objects

N3804 Any library proposal Y Library Fundamentals TS
Invocation type traits, but

N3866 dropping N Library Fundamentals TS
function_call_operator.

N3905 gg(s)t;;:g/girie:trfll? £ Y Library Fundamentals TS

N3915 apply() call a function with Y Library Fundamentals TS
arguments from a tuple

7 Polymorphic memory Partial (missing pool

N3916 resource and buffer resource Library Fundamentals TS

resources
classes)

N3920 Extending shared_ptr to Y Library Fundamentals TS
support arrays
string_view: a

N3921 non-owning reference to a Y Library Fundamentals TS
string

N3925 A sample proposal Y Library Fundamentals TS

N3932 Variable Templates For Y Library Fundamentals TS
Type Traits

N4100 File System Y Link with -Istdc++fs

Table 1.4: C++ Technical Specifications Implementation Status

Note 3: The Parallel Algorithms have an external dependency on Intel TBB 2018 or later. If the <execution> header is
included then —1tbb must be used to link to TBB.

Note 4: The mathematical special functions are enabled in C++17 mode from GCC 7.1 onwards. For GCC 6.x or for C++11/C++14
define _ STDCPP_WANT_MATH_SPEC_FUNCS___to anon-zero value and test for __STDCPP_MATH_SPEC_FUNCS__ >=
201003L.

The following status table is based on the table of contents of ISO/IEC 14882:2017. Some subclauses are not shown in the table
where the content is unchanged since C++14 and the implementation is complete.

1.1.4.1 Implementation Specific Behavior

For behaviour which is also specified by previous standards, see C++ 1998/2003 Implementation Specific Behavior and C++
2011 Implementation Specific Behavior. This section only documents behaviour which is new in the 2017 standard.

20.5.1.2 [headers] Whether names from Annex K are declared by C++ headers depends on whether the underlying C library
supports Annex K and declares the names. For the GNU C library, there is no Annex K support and so none of its names are
declared by C++ headers.

23.6.5 [optional.bad_optional_access] what () returns "bad optional access".
23.7.3 [variant.variant] variant supports over-aligned types.

23.7.10 [variant.bad.access] what () returns one of the strings "std: :get: variant is valueless","std::get:
wrong index for variant","std::visit: wvariant is valueless",or"std::visit<R>: variant
is valueless™".

23.12.5.2 [memory.resource.pool.options] Let S equal numeric_limits<size_t>::digits. The limit for maximum
number of blocks in a chunk is given by 2N_1, where N is min(19, 3 + S/2). The largest allocation size that will be allocated from
a pool is 222 when S > 20, otherwise 3072 when S > 16, otherwise 768.

http://www.open-std.org/JTC1/sc22/WG21/docs/papers/2013/n3662.html
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3793.html
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3804.html
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2014/n3866.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3915.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3916.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3920.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3921.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3925.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3932.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4100.pdf

The GNU C++ Library Manual

10/385

Library Feature Proposal

Status

SD-6 Feature Test

constexpr

PO154R1)) No .
std: :hardware_{constructive,destructive}_interference_size

_ cpp_lib_hardware_interfe
>= 201603

Core Issue 1776:
Replacement of class

cpp_lib_launder

objects containing reference POISTRI 71 >= 201606
members
Wording for ' N4259 6.1 _ cpp_lib_uncaught_gxcept:
std: :uncaught_exceptions >= 201411
C++17 should refer to C11
instead of C99 POO63R3 o1
_ has_include (<variant>),
Variant: a type-safe union _ _cpp_lib_variant
for C++17 POOSER3 7.1 >= 201603 (since 7.3, see
Note 1)
Library Fundamentals V1 _igz_iz; lz;: itizi B i
};S fi();?lp;ilent& PO220R1 & >_= 2 OI6 0 3_(since 7.3, see
P Note 1)
__has_include (<any>)|,
Library Fundamentals V1 __cpp_lib_any >=
TS Components: any PO220RT 71 201603 (since 7.3, see
Note 1)
Library Fundamentals V1 —:;;_ii; llslfii(;;tiiZE—VleV
Zi ff;nPOSET;t:qi P0220R1 71 >_: 2 OI6 0 3_(since 7.3 ,_see
9— Note 1)
Library Fundamentals V1 __has_include (<memory_resc
TS Components: P0220R1 9.1 _ cpp_lib_memory_resource
memory_resource >= 201603
Library Fundamentals V1 __cpp_lib_apply >=
TS Components: apply PO220RI 7 201603
Library Fundamentals V1 ,
TS Components: P0O220R1 7.1 —cpp_Lib_shared pty arra;
>= 201603
shared_ptr<T[]>
Library Fundamentals V1 _ _cpp_lib_boyer_moore_sear
TS Components: Searchers PO220RI 7 >= 201603
Library Fundamentals V1 __cpp_lib_sample
TS Components: Sampling PO220R1 7 >= 201603
Constant View: A proposal
forastd::as_const POOO7R1 7.1 __cpp_lib_as_const
helper function template >= 201510
Improving pair and tuple N4387 6.1 N/A
I;la}iegofrrcf)i;futi(l;: P0209R2 7.1 _ cpp_lib_make_from_|tuple
PPy >= 201606
Removing auto_ptr,
random_shuffle (), N4190 No (kept for backwards
And Old <functional> compatibility)
Stuff
Deprecating Vestigial PO174R2 No (kept for backwards
Library Parts in C++17 compatibility)
Making
std::owner_less more PO0074R0 7.1 __cpp_lib_transparent_ope:
flexible >= 201510
Esi;n:sf;id:eSSOf should LWG2296 7.1 __cpp_lib_addressof_|conste
P >= 201603
Saf<.e conversions in N4039 6
unique_ptr<T[]>
LWG 2228: Missing
SFINAE rule in unique_ptr ~ N4366 6

templated assignment

Re-enabline S

co 11 enable chared f1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0137r1.html
http://www.open-std.org/JTC1/sc22/WG21/docs/papers/2014/n4259.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0063r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0088r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0220r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0220r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0220r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0220r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0220r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0220r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0220r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0220r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4387
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0209r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4190.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0174r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0074r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0304r0.html#2296
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4089.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4366.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0033r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4169.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4277.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0005r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0358r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0253r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0040r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0163r0.html
http://www.open-std.org/JTC1/sc22/WG21/docs/papers/2014/n3911.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4389.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0006r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0013r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0185r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0077r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0258r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0092r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0505r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0426r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0254r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0272r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4258.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4284.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4510.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0084r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4279.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0083r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4280.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0031r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0024r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0025r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0295r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0030r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0226r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0218r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0219r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0392r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0317r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0152r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4508.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0156r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0298r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0067r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0032r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0307r2.pdf

The GNU C++ Library Manual 11/385
Section Description Status Comments
21 Language support
21.1 General
21.2 Common definitions
21.3 Implementation properties
21.3.1 General
2139 Header.<limits>

Synopsis
2133 Floating—point type
properties
21.3.3.1 float_round_style N
21.3.3.2 float_denorm_style N
2134 Class teplplatf? . v
numeric_limits
2135 Header'<climits> Y
synopsis
2136 Header.<cfloat> v
Synopsis
21.4 Integer types
2141 Header'<cstdint> Y
synopsis
21.5 Start and termination Partial C 1.1brary .dep endt“tncy fo'r
quick_exit, at_quick_exit
216 Dynamic memory
management
21.6.1 Header <new> synopsis
2162 Storage a}location and %
deallocation
21.6.3 Storage allocation errors Y
21.6.4 Pointer optimization barrier Y
21.6.5 Hardware interference size N
21.7 Type identification Y
21.8 Exception handling
2181 Header.<exceptior1>
synopsis
21.8.2 Class exception Y
21.8.3 Class bad_exception Y
21.84 Abnormal termination Y
21.8.5 uncaught_exceptions Y
21.8.6 Exception Propagation Y
21.8.7 nested_exception Y
21.9 Initializer lists Y
21.10 Other runtime support Y
22 Diagnostics
22.1 General
22.2 Exception classes Y
223 Assertions Y
22.4 Error numbers Y
22.5 System error support
23 General utilities
23.1 General
23.2 Utility components
2321 Header'<utility>
synopsis
23.2.2 Operators Y
2323 swap Y
23.24 exchange Y
23.2.5 Forward/move helpers Y
2396 Function template %
as_const
Function template
23.2.7 declval Y
2328 Primitiv.e numeric output Partial
conver<ion

https://github.com/llvm/llvm-project/tree/main/pstl
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66146

The GNU C++ Library Manual 12/385

Paper Title Status Comments
A generalized callable .

N4076 Y Library Fundamentals 2 TS
negator

N4273 Uniform Container Erasure Y Library Fundamentals 2 TS
Greatest Common Divisor

N4061 and Least Common Y Library Fundamentals 2 TS
Multiple

N4066 Delimited iterators Y Library Fundamentals 2 TS

N4282 The Worl'd s Dumbest Y Library Fundamentals 2 TS
Smart Pointer

N4388 Const-Propagating Wrapper Y Library Fundamentals 2 TS

N4391 make_array, revision 4 Y Library Fundamentals 2 TS

N4502 Support for the C++ Y Library Fundamentals 2 TS

. Detection Idiom, V2 y

N4519 Source-Code Information Y Library Fundamentals 2 TS

Capture
N (components from V1 are

N4521 Merge Fundamentals V1 still in namespace Library Fundamentals 2 TS

into V2
fundamentals_vl)

POO13R1 Loglcal Opgrator Type Y Library Fundamentals 2 TS
Traits (revision 1)

N4531 std::rand replacement, Y Library Fundamentals 2 TS
revision 3

P0O214R9 Data-Parallel Types Y Parallelism 2 TS

Table 1.7: C++ Technical Specifications Implementation Status

23.12.6.1 [memory.resource.monotonic.buffer.ctor] The default next_buffer_sizeis 128 * sizeof (voidx). The de-
fault growth factoris 1. 5.

23.15.4.3 [meta.unary.prop] The predicate condition for has_unique_object_representations is true for all scalar
types except floating point types.

23.19.3 [execpol.type], 28.4.3 [algorithms.parallel.exec] There are no implementation-defined execution policies.

24.4.2 [string.view.template] basic_string_view<C, T>::iteratorisCxandbasic_string_view<C, T>::const_
is const Cx.

28.4.3 [algorithms.parallel.exec] Threads of execution created by std: : thread provide concurrent forward progress guaran-
tees, so threads of execution implicitly created by the library will provide parallel forward progress guarantees.

29.4.1 [cfenv.syn] The effects of the <cfenv> functions depends on whether the FENV_ACCESS pragma is supported, and on
the C library that provides the header.

29.6.9 [c.math.rand] Whether the rand function may introduce data races depends on the target C library that provides the
function.

29.9.5 [sf.cmath] The effect of calling the mathematical special functions with large inputs should be documented here.

30.10.2.1 [fs.conform.9945] The behavior of the filesystem library implementation will depend on the target operating system.
Some features will not be supported on some targets. Symbolic links and file permissions are not supported on Windows.

30.10.5 [fs.filesystem.syn] The clock used for file times is an unspecified type with a signed 64-bit representation, capable of
representing timestamps with nanosecond resolution. The clock’s epoch is unspecified, but is not the same as the system clock’s
epoch.

30.10.7.1 [fs.path.generic] dot-dot in the root-directory refers to the root-directory itself. On Windows, a drive specifier such as
"C:"or "z:"istreated as a root-name. On Cygwin, a path that begins with two successive directory separators is a root-name.
Otherwise (for POSIX-like systems other than Cygwin), the implementation-defined root-name is an unspecified string which
does not appear in any pathnames.

30.10.10.1 [fs.enum.path.format] The character sequence is always interpreted in the native pathname format.

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2014/n4076.html
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2014/n4273.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4061.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4066.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4282.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4388.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4391.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4502.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4519.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4521.html
http://open-std.org/JTC1/SC22/WG21/docs/papers/2015/p0013r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4531.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0214r9.pdf

The GNU C++ Library Manual 13/385

30.10.15.4 [fs.op.file_size] If 'is_regular_file (p), an error is reported.

30.10.15.32 [fs.op.rename] On Windows, filesystem: : rename is implemented by calling MoveF i 1eExW and so does not
meet the requirements of POSIX rename when one or both of the paths resolves to an existing directory. Specifically, it is not
possible to rename a directory to replace another directory (POSIX requires that to work if the directory being replaced is empty).

1.1.4.1.1 Parallelism2TS

9.3 [parallel.simd.abi] max_fixed_size<T> is 32, except when targetting AVX512BW and sizeof (T) is l.

When targeting 32-bit x86, simd_abi: :compatible<T> is an alias for simd_abi: :scalar. When targeting 64-bit
x86 (including x32) or Aarch64, simd_abi: :compatible<T> is an alias for simd_abi::_VecBuiltin<16>, unless
T is long double, in which case it is an alias for simd_abi: :scalar. When targeting ARM (but not Aarch64) with
NEON support, simd_abi: :compatible<T> is an alias for simd_abi::_VecBuiltin<16>, unless sizeof (T) >
4, in which case it is an alias for simd_abi: :scalar. Additionally, simd_abi: :compatible<float> is an alias for
simd_abi: :scalar unless compiling with -ffast-math.

When targeting x86 (both 32-bit and 64-bit), simd_abi: :native<T>isanalias foroneof simd_abi::scalar,simd_abi::__
simd_abi:: _VecBuiltin<32>,or simd_abi::_VecBltnBtmsk<64>, depending on T and the machine options the
compiler was invoked with.

When targeting ARM/Aarch64 or POWER, simd_abi: :native<T>isanaliasfor simd_abi: :scalarorsimd_abi::_VecE
depending on T and the machine options the compiler was invoked with.

For any other targeted machine simd_abi: :compatible<T>and simd_abi: :native<T> arealiases for simd_abi: :scale
(subject to change)

The extended ABI tag types defined in the std::experimental::parallelism_v2::simd_abi namespace are:
simd_abi::_VecBuiltin<Bytes>,and simd_abi::_VecBltnBtmsk<Bytes>.

simd_abi::deduce<T, N, Abis...>::type,withN > 1 isan alias for an extended ABI tag, if a supported extended
ABI tag exists. Otherwise it is an alias for simd_abi::fixed_size<N>. The simd_abi::_VecBltnBtmsk ABItag
is preferred over simd_abi: :_VecBuiltin.

9.4 [parallel.simd.traits] memory_alignment<T, U>::valueis sizeof (U) * T::size () rounded up to the next
power-of-two value.

9.6.1 [parallel.simd.overview] On ARM, simd<T, _VecBuiltin<Bytes>> is supported if __ ARM NEON is defined and
sizeof (T) <= 4. Additionally, sizeof (T) == 8 with integral T is supported if __ARM_ARCH >= 8, and double is
supported if __aarch64__ isdefined. On POWER, simd<T, _VecBuiltin<Bytes>>issupportedif__ALTIVEC__is
defined and sizeof (T) < 8. Additionally, double is supported if ___VSX___is defined, and any T with sizeof (T) <=
8 is supported if __ _POWER8_VECTOR___is defined. On x86, given an extended ABI tag Abi, simd<T, Abi> is supported
according to the following table:

1.1.5 C++ 2020

In this implementation the —std=gnu++20 or —std=c++20 flag must be used to enable language and library features. See
dialect options. The pre-defined symbol ___cplusplus is used to check for the presence of the required flag.

This section describes the C++20 and library TS support in the GCC 11 release series.

The following table lists new library features that have been accepted into the C++20 working draft. The "Proposal” column
provides a link to the ISO C++ committee proposal that describes the feature, while the "Status" column indicates the first version
of GCC that contains an implementation of this feature (if it has been implemented). A dash (—) in the status column indicates
that the changes in the proposal either do not affect the code in libstdc++, or the changes are not required for conformance. The
"SD-6 Feature Test / Notes" column shows the corresponding macro or header from SD-6: Feature-testing recommendations for
C++ (where applicable) or any notes about the implementation.

Note 1: This feature is supported in older releases but the ___cpp_1ib macro is not defined to the right value (or not defined at
all) until the version shown in parentheses.

https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations

The GNU C++ Library Manual 14 /385

ABI tag Abi value type T values for Bytes required machine option
8,12, 16 "-msse"
float 20,24, 28, 32 " mavx”
16 "-msse2"

_VecBuiltin<Bytes> double

24,32 "-mavx"
Bytes < 16 and Bytes

i 2 - 2"
;ntegial types other than divisible by sizeof (T) msse
oo 16 <Bytes < 32 and
Bytes divisible by "-mavx2"
sizeof (T)
,) vectorizable types with " -
_VecBuiltin<Bytes> . 32 <Bytes < 64 and -mavx512f
sizeof (T) >4 R
and Bytes divisible by
< > vectorizable types with i
_VecBltnBtmsk<Bytes vectoriz ypes wi sizeof (T) "-mavx512bw"
sizeof (T) <4
vectorizable types with " "
_VecBltnBtmsk<Bytes> P Bytes < 32 and Bytes -mavx512vl

sizeof (T) >4
vectorizable types with "-mavx512bw" and
sizeof (T) <4 "_mavx512vl"

divisible by sizeof (T)

Table 1.8: Support for Extended ABI Tags

1.1.6 C++ TR1
This table is based on the table of contents of ISO/IEC DTR 19768 Doc No: N1836=05-0096 Date: 2005-06-24 Draft Technical
Report on C++ Library Extensions

In this implementation the header names are prefixed by tr1/, for instance <trl/functional>, <trl/memory>, and so
on.

This page describes the TR1 support in the GCC 11 release series.

1.1.6.1 Implementation Specific Behavior
For behaviour which is specified by the 1998 and 2003 standards, see C++ 1998/2003 Implementation Specific Behavior. This
section documents behaviour which is required by TR1.

3.6.4 [tr.func.bind.place]/I There are 29 placeholders defined and the placeholder types are Assignable.

1.1.7 C++ TR 24733

This table is based on the table of contents of ISO/IEC TR 24733 Date: 2009-08-28 Extension for the programming language
C++ to support decimal floating-point arithmetic

This page describes the TR 24733 support in the GCC 11 release series.

1.1.8 C++1S29124

This table is based on the table of contents of ISO/IEC FDIS 29124 Doc No: N3060 Date: 2010-03-06 Extensions to the C++
Library to support mathematical special functions

Complete support for IS 29124 is in GCC 6.1 and later releases, when using at least C++11 (for older releases or C++98/C++03
use TRI instead). For C++11 and C++14 the additions to the library are not declared by their respective headers unless
__STDCPP_WANT_MATH_SPEC_FUNCS___is defined as a macro that expands to a non-zero integer constant. For C++17
the special functions are always declared (since GCC 7.1).

The GNU C++ Library Manual

15/385

Library Feature Proposal

Status

SD-6 Feature Test / Notes

Compile-time programming

Add constexpr modifiers to

functions in __cpp_lib_constexpr_lalgor:
<algorithm> and PO202R3 10.1 >= 201703L
<utility> Headers
Constexpr for swetp and POST9RO 10.1 _ cpp_lib_constexpr_lalgor:
swap related functions >= 201806L
__cpp_lib_constexpr_|comple
ngs.t?xféiorlex PO415R1 9.1 >= 201711L (since 9.4,
o b see Note 1)
P0O595R2 cpp_lib_is_constant_eva:
P0O595R . _ - - -
std: :is_constant_evalu%tgesd%) o1 >= 201811L
More constexpr containers PO784R7 10.1 —cpp_Lib_constexpr_dynam:
>= 201907L
Making std: :string PO98OR __cpp_lib_constexpr_|strinc
constexpr >= 201907L
Making std: :vector P1004R2 _ _cpp_lib_constexpr_|vecto:
constexpr >= 201907L
. __cpp_lib_constexpr_|memors
Constexpr in . P1006R1 9.1 >= 201811L (since 9.4,
std::pointer_traits
see Note 1)
const.expr for <numeric> P1645R] 101 __cpp_lib_constexpr_|numer:
algorithms >= 201911L
) __cpp_lib_array_constexp:
Cons'texpr 1terator PO858R0 9.1 >= 201803L
requirements __cpp_lib_string vilew
>= 201803L
(both since 9.4, see Note
1)
constexpr comparison c lib_array_constexpr
operators for P1023R0O 10.1 — PP 2 Y— P
>= 201806
std::array
_ cpp_lib_array_constexp:
>= 201811L
__cpp_lib_constexpr_funct
Misc constexpr bits P1032R1 10.1 >= 2018111
__cpp_lib_constexpr_iter:
>= 201811L
_ _cpp_lib_constexpy strir
>= 201811L
__cpp_lib_constexpr_tuple
>= 201811L
__cpp_lib_constexpr_ util:
>= 201811L
__cpp_lib_constexpr_|funct:
constexpr INVOKE P1065R2 10.1 o 201907L
. . __cpp_lib_remove_cvryef
Transformation Trait PO550R2 9.1 >= 201711L (since 9.4,
remove_cvref
see Note 1)
Implicit conversion traits —cpp_Llib_is_nothrow_conve
puett) PO758R1 9.1 >= 201806L (since 9.4,
and utility functions
see Note 1)
. . __cpp_lib_type_identity
The identity POSS7R1 9.1 >= 2018061 (since 9.4,
metafunction
see Note 1)
unwrap_ref_decay and —Cpp_Lib_unwrap_ref
b_res_cecay PO318R1 9.1 >= 201811L (since 9.4,
unwrap_reference
see Note 1)
Improving Completeness
Requirements for Type P1285R0 Partial
Traits
Missing feature test macros ~ P1353R0 9.1

Makino

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0202r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0879r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0415r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0595r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0784r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0980r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1004r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1006r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1645r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0858r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1023r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1032r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1065r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0550r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0758r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0887r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0318r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1285r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1353r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0340r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1357r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0466r5.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0941r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0754r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0019r8.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0020r6.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0053r7.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0753r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0439r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0528r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0718r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0660r10.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1869r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1135r6.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0883r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0898r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1754r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1964r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0896r4.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1035r7.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1716r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1248r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1252r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1739r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0355r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1466r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0972r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0768r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0905r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1614r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0966r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0482r6.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1423r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0645r10.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1361r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1652r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0457r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1025r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0122r7.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1024r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1085r2.md
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1976r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0325r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0458r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0809r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0919r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1690r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1209r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0646r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1115r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1227r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0653r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0674r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0722r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0591r4.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1007r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1020r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1165r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0339r6.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0475r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0600r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0616r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0767r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0777r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0551r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0476r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0556r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1956r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0586r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0619r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0759r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0769r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0788r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0892r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0935r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0771r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0356r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1651r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0357r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0487r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0602r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0608r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0655r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0899r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1123r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1148r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1210r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1236r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0738r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1458r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1458r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1462r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1463r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1464r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1164r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1001r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0912r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0463r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0553r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0811r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0631r8.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1208r6.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0408r7.pdf

The GNU C++ Library Manual

16 /385

Section Description Status Comments

2 General Utilities

2.1 Reference wrappers

211 Additions to header '
<functional> synopsis

219 Class template
reference_wrapper

2121 reference_wrapper v
construct/copy/destroy

2122 reference_wrapper v
assignment

2123 reference_wrapper v
access

2124 .refer.ence_wrapper v
invocation

2125 referencg_wrapper %
helper functions

2.2 Smart pointers

291 Additions to header. v
<memory> Synopsis

222 Class bad_weak_ptr Y
Class template Uses code _from

223 boost::shared_ptr.
shared_ptr

2.2.3.1 shared_ptr constructors Y

2232 shared_ptr destructor Y

2233 shared_ptr assignment Y

2234 shared_ptr modifiers Y

2235 shared_ptr observers Y

2.2.3.6 shared_ptr comparison Y

2.2.3.7 shared_ptr I/O Y

2238 shal?ed_ptr specialized v
algorithms

2.2.3.9 shared_ptr casts Y

2.2.3.10 get_deleter Y

2.2.4 Class template weak_ptr

2241 weak_ptr constructors Y

2242 weak_ptr destructor Y

2243 weak_ptr assignment Y

2244 weak_ptr modifiers Y

2.2.4.5 weak_ptr observers Y

2.24.6 weak_ptr comparison Y

2947 wealf_ptr specialized %
algorithms
Class template

2.25 enable_shared_from_thlfs

3 Function Objects

3.1 Definitions Y
Additions to

3.2 <functional> Y
synopsis

33 Requirements Y

34 Function return types Y

3.5 Function template mem_fn Y

3.6 Function object binders
Class template

3.6.1 . . .
is_bind_expression
Class template

3.6.2 is_placeholder Y

3.6.3 Function template bind Y

3.6.4 Placeholders Y

37 Polymorphic function
wrappers

- ('lass e

http://www.boost.org/libs/smart_ptr/shared_ptr.htm

The GNU C++ Library Manual

17 /385

Section Description Status Comments
0 Introduction
1 Normative references
2 Conventions
3 Decimal floating-point types
3] Characteristics of decimal
’ floating-point types
3.2 Decimal Types
Missing declarations for
formatted input/output;
3.2.1 Class decimal synopsis Partial non-conforming extension
for functions converting to
integral type
Missing 3.2.2.5 conversion
to integral type; conforming
322 Class decimal32 Partial extension for conversion
from scalar decimal
floating-point
Missing 3.2.3.5 conversion
to integral type; conforming
323 Class decimal64 Partial extension for conversion
from scalar decimal
floating-point
Missing 3.2.4.5 conversion
to integral type; conforming
324 Class decimall2s8 Partial extension for conversion
from scalar decimal
floating-point
325 Initiali.zation from %
coefficient and exponent
326 ConYersioq to generic v
floating-point type
3.2.7 Unary arithmetic operators Y
3.2.8 Binary arithmetic operators Y
329 Comparison operators Y
3.2.10 Formatted input N
3.2.11 Formatted output N
33 A(Iidiltions to header N
limits
34 Headers cfloat and
float.h
342 Additions to heafier v
cfloat synopsis
343 Additions to head(?r N
float.h synopsis
344 Maximum finite value Y
345 Epsilon Y
346 Minimum positive normal v
value
347 Minimum positive v
subnormal value
34.8 Evaluation format Y
3.5 Additions to cfenv and Outside the scope of GCC
fenv.h
3.6 Additions to cmath and Outside the scope of GCC
math.h
3.7 Addl,tlons to estdioand Outside the scope of GCC
stdio.h
Additions to cstdlib and .
3.8 stdlib.h Outside the scope of GCC
3.9 Additions to cwehaz and) Gije the scope of GCC
wchar.h
3.10 Facets N
211 Tvpe traits N

The GNU C++ Library Manual 18/385

When the special functions are declared the macro __STDCPP_MATH_SPEC_FUNCS___is defined to 201003L.

In addition to the special functions defined in IS 29124, for non-strict modes (i.e. —std=gnu++NN modes) the hypergeometric
functions and confluent hypergeometric functions from TR1 are also provided, defined in namespace ___gnu_ cxx.

1.1.8.1 Implementation Specific Behavior
For behaviour which is specified by the 2011 standard, see C++ 2011 Implementation Specific Behavior. This section documents
behaviour which is required by IS 29124.

7.2 [macro.user]/3 /4 The functions declared in Clause 8 are only declared when ___STDCPP_WANT_MATH_SPEC_FUNCS___
== 1 (or in C++17 mode, for GCC 7.1 and later).

8.1.1 [sf.cmath.Lnm]/I The effect of calling these functions withn >= 128 orm >= 128 should be described here.
8.1.2 [sf.cmath.Plm]/3 The effect of calling these functions with 1 >= 128 should be described here.
8.1.3 [sf.cmath.1]/3 The effect of calling these functions with nu >= 128 should be described here.
8.1.8 [sf.cmath.J]/3 The effect of calling these functions with nu >= 128 should be described here.
8.1.9 [sf.cmath.K]/3 The effect of calling these functions with nu >= 128 should be described here.
8.1.10 [sf.cmath.N]/3 The effect of calling these functions with nu >= 128 should be described here.
8.1.15 [sf.cmath.Hn]/3 The effect of calling these functions with n >= 128 should be described here.
8.1.16 [sf.cmath.Ln]/3 The effect of calling these functions with n >= 128 should be described here.
8.1.17 [sf.cmath.Pl]/3 The effect of calling these functions with 1 >= 128 should be described here.
8.1.19 [sf.cmath.j]/3 The effect of calling these functions with n >= 128 should be described here.
8.1.20 [sf.cmath.YIm]/3 The effect of calling these functions with 1 >= 128 should be described here.
8.1.21 [sf.cmath.n]/3 The effect of calling these functions with n >= 128 should be described here.

1.2 License

There are two licenses affecting GNU libstdc++: one for the code, and one for the documentation.

There is a license section in the FAQ regarding common questions. If you have more questions, ask the FSF or the gcc mailing
list.

1.2.1 The Code: GPL

The source code is distributed under the GNU General Public License version 3, with the addition under section 7 of an exception
described in the “GCC Runtime Library Exception, version 3.1 as follows (or see the file COPYING.RUNTIME):

GCC RUNTIME LIBRARY EXCEPTION
Version 3.1, 31 March 2009
Copyright (C) 2009 Free Software Foundation, Inc.

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

This GCC Runtime Library Exception ("Exception") is an additional
permission under section 7 of the GNU General Public License, version
3 ("GPLv3"). It applies to a given file (the "Runtime Library") that
bears a notice placed by the copyright holder of the file stating that

http://gcc.gnu.org/lists.html
http://gcc.gnu.org/lists.html

The GNU C++ Library Manual

19/385

Section Description Status Comments
No diagnostic for
7 Macro names Partial inconsistent definitions of
___STDCPP_WANT_ MATH_Y
Mathematical special
8 . Y
functions
3.1 Additions to head(?r %
<cmath> synopsis
311 assoc1ate.d Laguerre v
polynomials
812 assoc'lated Legendre v
functions
8.13 beta function Y
(complete) elliptic integral
8.1.4 of the first kind Y
(complete) elliptic integral
815 of the second kind Y
(complete) elliptic integral
8.1.6 of the third kind Y
317 regular modl.ﬁed cylindrical v
Bessel functions
cylindrical Bessel functions
8.18 (of the first kind) Y
irregular modified
8.1.9 cylindrical Bessel functions Y
8110 cylmflrlcaI Neumann v
functions
(incomplete) elliptic
8.1.11 integral of the first kind Y
(incomplete) elliptic
8.1.12 integral of the second kind Y
(incomplete) elliptic
8.1.13 integral of the third kind Y
8.1.14 exponential integral Y
8.1.15 Hermite polynomials Y
8.1.16 Laguerre polynomials Y
8.1.17 Legendre polynomials Y
8.1.18 Riemann zeta function Y
spherical Bessel functions
8.1.19 (of the first kind) Y
3.1.20 spherical ass001.ated v
Legendre functions
3121 spher'lcal Neumann %
functions
32 Additions to header %
<math.h>
83 The header <ctgmath> Partial Conﬂlcts with C++ 2011
requirements.
8.4 The header <tgmath.h> N Conflicts with C++ 2011
requirements.

Table 1.12: C++ Special Functions Implementation Status

PEC_EFT

The GNU C++ Library Manual 20 /385

the file is governed by GPLv3 along with this Exception.

When you use GCC to compile a program, GCC may combine portions of
certain GCC header files and runtime libraries with the compiled
program. The purpose of this Exception is to allow compilation of
non-GPL (including proprietary) programs to use, in this way, the
header files and runtime libraries covered by this Exception.

0. Definitions.

A file is an "Independent Module" if it either requires the Runtime
Library for execution after a Compilation Process, or makes use of an
interface provided by the Runtime Library, but is not otherwise based
on the Runtime Library.

"GCC" means a version of the GNU Compiler Collection, with or without
modifications, governed by version 3 (or a specified later version) of
the GNU General Public License (GPL) with the option of using any
subsequent versions published by the FSF.

"GPL-compatible Software" is software whose conditions of propagation,
modification and use would permit combination with GCC in accord with
the license of GCC.

"Target Code" refers to output from any compiler for a real or virtual
target processor architecture, in executable form or suitable for
input to an assembler, loader, linker and/or execution

phase. Notwithstanding that, Target Code does not include data in any
format that is used as a compiler intermediate representation, or used
for producing a compiler intermediate representation.

The "Compilation Process" transforms code entirely represented in
non-intermediate languages designed for human-written code, and/or in
Java Virtual Machine byte code, into Target Code. Thus, for example,
use of source code generators and preprocessors need not be considered
part of the Compilation Process, since the Compilation Process can be
understood as starting with the output of the generators or
preprocessors.

A Compilation Process is "Eligible" if it is done using GCC, alone or
with other GPL-compatible software, or if it is done without using any
work based on GCC. For example, using non-GPL-compatible Software to
optimize any GCC intermediate representations would not qualify as an
Eligible Compilation Process.

1. Grant of Additional Permission.

You have permission to propagate a work of Target Code formed by
combining the Runtime Library with Independent Modules, even if such
propagation would otherwise violate the terms of GPLv3, provided that
all Target Code was generated by Eligible Compilation Processes. You
may then convey such a combination under terms of your choice,
consistent with the licensing of the Independent Modules.

2. No Weakening of GCC Copyleft.

The availability of this Exception does not imply any general

The GNU C++ Library Manual 21/385

presumption that third-party software is unaffected by the copyleft
requirements of the license of GCC.

Hopefully that text is self-explanatory. If it isn’t, you need to speak to your lawyer, or the Free Software Foundation.

1.2.2 The Documentation: GPL, FDL

The documentation shipped with the library and made available over the web, excluding the pages generated from source com-
ments, are copyrighted by the Free Software Foundation, and placed under the GNU Free Documentation License version 1.3.
There are no Front-Cover Texts, no Back-Cover Texts, and no Invariant Sections.

For documentation generated by doxygen or other automated tools via processing source code comments and markup, the original
source code license applies to the generated files. Thus, the doxygen documents are licensed GPL.

If you plan on making copies of the documentation, please let us know. We can probably offer suggestions.

1.3 Bugs

1.3.1 Implementation Bugs

Information on known bugs, details on efforts to fix them, and fixed bugs are all available as part of the GCC bug tracking system,
under the component “libstdc++".

1.3.2 Standard Bugs

Everybody’s got issues. Even the C++ Standard Library.

The Library Working Group, or LWG, is the ISO subcommittee responsible for making changes to the library. They periodically
publish an Issues List containing problems and possible solutions. As they reach a consensus on proposed solutions, we often
incorporate the solution.

Here are the issues which have resulted in code changes to the library. The links are to the full version of the Issues List. You
can read the full version online at the ISO C++ Committee homepage.

If a DR is not listed here, we may simply not have gotten to it yet; feel free to submit a patch. Search the include and src
directories for appearances of _GLIBCXX_RESOLVE_LIB_DEFECTS for examples of style. Note that we usually do not make
changes to the code until an issue has reached DR status.

5: string::compare specification questionable This should be two overloaded functions rather than a single function.

17: Bad bool parsing Apparently extracting Boolean values was messed up...

19: "Noconv'' definition too vague If codecvt: :do_inreturns noconv there are no changes to the valuesin [to, to_limit)
22: Member open vs flags Re-opening a file stream does not clear the state flags.

23: Num_get overflow result Implement the proposed resolution.

25: String operator<< uses width() value wrong Padding issues.

48: Use of non-existent exception constructor An instance of ios_base: :failure is constructed instead.

49: Underspecification of ios_base::sync_with_stdio The return type is the previous state of synchronization.

50: Copy constructor and assignment operator of ios_base These members functions are declared private and are thus in-
accessible. Specifying the correct semantics of "copying stream state" was deemed too complicated.

60: What is a formatted input function? This DR made many widespread changestobasic_istreamandbasic_ostream
all of which have been implemented.

https://gcc.gnu.org/bugs/
http://www.open-std.org/jtc1/sc22/wg21/
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-active.html#DR
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#5
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#17
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#19
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#22
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#23
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#25
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#48
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#49
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#50
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#60

The GNU C++ Library Manual 22/385

63: Exception-handling policy for unformatted output Make the policy consistent with that of formatted input, unformatted
input, and formatted output.

68: Extractors for char* should store null at end And they do now. An editing glitch in the last item in the list of [27.6.1.2.3]/7.
74: Garbled text for codecvt::do_max_length The text of the standard was gibberish. Typos gone rampant.

75: Contradiction in codecvt::length’s argument types Change the first parameter to st ateT& and implement the new effects
paragraph.

83: string::npos vs. string::max_size() Safety checks on the size of the string should test against max_size () rather than
npos.

90: Incorrect description of operator>> for strings The effect contain i sspace (c, getloc ()) which must be replaced by
isspace(c,is.getloc()).

91: Description of operator>> and getline() for string<> might cause endless loop They behave as a formatted input function
and as an unformatted input function, respectively (except that get Line is not required to set gcount).

103: set::iterator is required to be modifiable, but this allows modification of keys. For associative containers where the value
type is the same as the key type, both iterator and const_iterator are constant iterators.

109: Missing binders for non-const sequence elements The binderlst and binder2nd didn’t have an operator ()
taking a non-const parameter.

110: istreambuf _iterator::equal not const This was not a const member function. Note that the DR says to replace the function
with a const one; we have instead provided an overloaded version with identical contents.

117: basic_ostream uses nonexistent num_put member functions num_put : :put () was overloaded on the wrong types.
118: basic_istream uses nonexistent num_get member functions Same as 117, but for num_get: :get ().
129: Need error indication from seekp() and seekg() These functions set failbit on error now.

130: Return type of container::erase(iterator) differs for associative containers Make member e rase return iterator for set,
multiset, map, multimap.

136: seekp, seekg setting wrong streams? seekp should only set the output stream, and seekg should only set the input
stream.

167: Improper use of traits_type::length() op<< with a const char* was calculating an incorrect number of characters to
write.

169: Bad efficiency of overflow() mandated Grow efficiently the internal array object.
171: Strange seekpos() semantics due to joint position Quite complex to summarize...

181: make_pair() unintended behavior This function used to take its arguments as reference-to-const, now it copies them (pass
by value).

195: Should basic_istream::sentry’s constructor ever set eofbit? Yes, it can, specifically if EOF is reached while skipping
whitespace.

206: operator new(size_t, nothrow) may become unlinked to ordinary operator newif ordinary version replaced

The nothrow forms of new and delete were changed to call the throwing forms, handling any exception by catching it
and returning a null pointer.

211: operator>>(istreamé&, string&) doesn’t set failbit 1f nothing is extracted into the string, op>> now sets failbit (which
can cause an exception, etc., etc.).

214: set::find() missing const overload Both set and multiset were missing overloaded find, lower_bound, upper_bound,
and equal_range functions for const instances.

231: Precision in iostream? For conversion from a floating-point type, str.precision () is specified in the conversion
specification.

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#63
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#68
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#74
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#75
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#83
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#90
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#91
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#103
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#109
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#110
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#117
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#118
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#129
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#130
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#136
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#167
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#169
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#171
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#181
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#195
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#206
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#211
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#214
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#231

The GNU C++ Library Manual 23/385

233: Insertion hints in associative containers Implement N1780, first check before then check after, insert as close to hint as
possible.

235: No specification of default ctor for reverse_iterator The declaration of reverse_iterator lists a default constructor.
However, no specification is given what this constructor should do.

241: Does unique_copy() require CopyConstructible and Assignable? Add a helper for forward_iterator/output_iterator, fix
the existing one for input_iterator/output_iterator to not rely on Assignability.

243: get and getline when sentry reports failure Store a null character only if the character array has a non-zero size.
251: basic_stringbuf missing allocator_type This nested typedef was originally not specified.

253: valarray helper functions are almost entirely useless Make the copy constructor and copy-assignment operator declara-
tions public in gslice_array, indirect_array, mask_array, slice_array; provide definitions.

265: std::pair::pair() effects overly restrictive The default ctor would build its members from copies of temporaries; now it
simply uses their respective default ctors.

266: bad_exception::~bad_exception() missing Effects clause The bad_* classes no longer have destructors (they are trivial),
since no description of them was ever given.

271: basic_iostream missing typedefs The typedefs it inherits from its base classes can’t be used, since (for example) basic_iostre
is ambiguous.

275: Wrong type in num_get::get() overloads Similarto 118.

280: Comparison of reverse_iterator to const reverse_iterator Add global functions with two template parameters. (NB: not
added for now a templated assignment operator)

292: Effects of a.copyfmt (a) If (this == &rhs) do nothing.
300: List::merge() specification incomplete 1f (this == &x) do nothing.
303: Bitset input operator underspecified Basically, compare the input character to is.widen (0) and is.widen (1).

305: Default behavior of codecvi<wchar_t, char, mbstate_t>::length() Do not specify what codecvt<wchar_t, char,
mbstate_t>::do_length mustreturn.

328: Bad sprintf format modifier in money_put<>::do_put() Change the format string to "%.0Lf".
365: Lack of const-qualification in clause 27 Add const overloads of is_open.

387: std::complex over-encapsulated Add the real (T) and imag (T) members; in C++11 mode, also adjust the existing
real () and imag () members and free functions.

389: Const overload of valarray::operator(] returns by value Change it to return a const Ts&.
396: what are characters zero and one Implement the proposed resolution.

402: Wrong new expression in [some_]Jallocator::construct Replace "new" with "::new".

408: Is vector<reverse_iterator<char®> > forbidden? Tweak the debug-mode checks in _Safe_iterator.

409: Closing an fstream should clear the error state Have open clear the error flags.

431: Swapping containers with unequal allocators Implement Option 3, as per N1599.

432: stringbuf::overflow() makes only one write position available Implement the resolution, beyond DR 169.
434: bitset::to_string() hard to use Add three overloads, taking fewer template arguments.

438: Ambiguity in the ''do the right thing'' clause Implement the resolution, basically cast less.

445: iterator_traits::reference unspecified for some iterator categories Change i streambuf_iterator::referencein
C++11 mode.

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#233
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#235
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#241
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#243
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#251
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#253
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#265
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#266
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#271
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#275
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#280
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#292
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#300
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#303
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#305
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#328
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#365
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#387
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#389
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#396
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#402
../ext/lwg-closed.html#408
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#409
../ext/lwg-closed.html#431
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#432
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#434
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#438
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#445

The GNU C++ Library Manual 24 /385

453: basic_stringbuf::seekoff need not always fail for an empty stream Don’t fail if the next pointer is null and newoff is zero.
455: cerr::tie() and wcerr::tie() are overspecified Initialize cerr tied to cout and wcerr tied to wcout.

464: Suggestion for new member functions in standard containers Add data () tostd::vectorandat (const key_type&
to std: :map.

467: char_traits::lt(), compare(), and memcmp() Change 1t.
508: Bad parameters for ranlux64_base_01 Fix the parameters.

512: Seeding subtract_with_carry_01 from a single unsigned long Construct a 1inear_congruential engine and seed
with it.

526: Is it undefined if a function in the standard changes in parameters? Use &value.

538: 241 again: Does unique_copy() require CopyConstructible and Assignable? In case of input_iterator/output_iterator rely
on Assignability of input_iterator’ value_type.

539: partial_sum and adjacent_difference should mention requirements We were almost doing the right thing, just use std::move
in adjacent_difference.

541: shared_ptr template assignment and void Add an auto_ptr<void> specialization.

543: valarray slice default constructor Follow the straightforward proposed resolution.

550: What should the return type of pow(float,int) be? In C++11 mode, remove the pow(float,int), etc., signatures.
586: string inserter not a formatted function Change it to be a formatted output function (i.e. catch exceptions).
596: 27.8.1.3 Table 112 omits "'a+" and "a+b' modes Add the missing modes to fopen_mode.

630: arrays of valarray Implement the simple resolution.

660: Missing bitwise operations Add the missing operations.

691: const_local_iterator cbegin, cend missing from TR1 In C++11 mode add cbegin(size_type) and cend(size_type) to the
unordered containers.

693: std::bitset::all() missing Add it, consistently with the discussion.

695: ctype<char>::classic_table() not accessible Make the member functions table and classic_table public.
696: istream::operator>>(int&) broken Implement the straightforward resolution.

761: unordered_map needs an at() member function In C++11 mode, add at() and at() const.

775: Tuple indexing should be unsigned? Implement the int -> size_t replacements.

776: Undescribed assign function of std::array In C++11 mode, remove assign, add fill.

781: std::complex should add missing C99 functions In C++11 mode, add std::proj.

809: std::swap should be overloaded for array types Add the overload.

853: to_string needs updating with zero and one Update / add the signatures.

865: More algorithms that throw away information The traditional HP / SGI return type and value is blessed by the resolution
of the DR.

1339: uninitialized_fill_n should return the end of its range Return the end of the filled range.
2021: Further incorrect uses of result_of Correctly decay types in signature of std: :async.
2049: is_destructible underspecified Handle non-object types.

2056: future_errc enums start with value 0 (invalid value for broken_promise) Reorder enumerators.

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#453
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#455
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#464
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#467
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#508
../ext/lwg-closed.html#512
../ext/lwg-closed.html#526
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#538
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#539
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#541
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#543
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#550
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#586
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#596
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#630
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#660
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#691
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#693
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#695
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#696
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#761
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#775
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#776
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#781
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#809
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#853
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#865
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#1339
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2021
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2049
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2056

The GNU C++ Library Manual 25/385

2059: C++0x ambiguity problem with map::erase Add additional overloads.

2062: 2062. Effect contradictions w/o no-throw guarantee of std: : functionswaps Add noexcept to swap functions.
2063: Contradictory requirements for string move assignment Respect propagation trait for move assignment.

2064: More noexcept issues in basic_string Add noexcept to the comparison operators.

2067: packaged_task should have deleted copy c’tor with const parameter Fix signatures.

2101: Some transformation types can produce impossible types Use the referenceable type concept.

2106: move_iterator wrapping iterators returning prvalues Change the reference type.

2108: No way to identify allocator types that always compare equal Define and use is_always_equal even for C++11.

2118: unique_ptr for array does not support cv qualification conversion of actual argument Adjust constraints to allow safe
conversions.

2127: Move-construction with raw_storage_iterator Add assignment operator taking an rvalue.
2132: std: : functionambiguity Constrain the constructor to only accept callable types.

2141: common_type trait produces reference types Use decay for the result type.

2144: Missing noexcept specification in type_index Add noexcept

2145: error._category default constructor Declare a public constexpr constructor.

2162: allocator._traits::max_size missing noexcept Add noexcept.

2187: vector<bool> is missing emplace and emplace back member functions Add emplace andemplace_back
member functions.

2192: Validity and return type of std: : abs (0u) is unclear Move all declarations to a common header and remove the generic
abs which accepted unsigned arguments.

2196: Specification of is_*[copy/move]_ [constructible/assignable] unclear for non-referencable types Use
the referenceable type concept.

2212: tuple_size for const pairrequest <tuple> header Thetuple_sizeand tuple_element partial special-
izations are defined in <utility> which is included by <array>.

2296: std: :addressof should be constexpr Use __builtin_addressof and add constexpr to addressof for
C++17 and later.

2306: match_results: :reference should be value typeé&, not const value type& Change typedef.

2313: tuple_size should always derive from integral_constant<size_t, N> Update definitions of the partial spe-
cializations for const and volatile types.

2328: Rvalue stream extraction should use perfect forwarding Use perfect forwarding for right operand.

2329: regex match () /regex search () with match_results should forbid temporary strings Add deleted overloads
for rvalue strings.

2332: regex_iterator/regex_token_iterator should forbid temporary regexes Add deleted constructors.

2332: Unnecessary copying when inserting into maps with braced-init syntax Add overloads of insert taking value_type&s&
rvalues.

2399: shared_ptr’s constructor from unique_ptr should be constrained Constrain the constructor to require convert-
ibility.

2400: shared ptr’s get_deleter () should use addressof () Use addressof.

2401: std: : function needs more noexcept Add noexcept to the assignment and comparisons.

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2059
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2062
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2063
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2064
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2067
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2101
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2106
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2108
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2118
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2127
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2132
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2141
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2144
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2145
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2162
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2187
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2192
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2196
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2212
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2296
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2306
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2313
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2328
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2329
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2332
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2354
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2399
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2400
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2401

The GNU C++ Library Manual 26 /385

2407:

2408:

2415:
2418:
2440:
2441:
2442:

2454:
2455:
2458:
2459:
2465:

2466:
2484:
2499:

2537:
2566:
2583:
2586:

2684:
2735:

2770:

2781:

2802:
2873:
2921:
2942:
2996:
2993:

packaged_task (allocator_arg t, const Allocatoré&, F&&) should neither be constrained nor explicit
Remove explicit from the constructor.

SFINAE-friendly common_type/iterator._traitsis missing in C++14 Make iterator_traits empty if any
of the types is not present in the iterator. Make common_type<> empty.

Inconsistency between unique_ptrand shared ptr Createempty an shared_ptr from anempty unique_ptr.
apply does not work with member pointers Use mem_fn for member pointers.

seed_seq: :size () should be noexcept Add noexcept.

Exact-width atomic typedefs should be provided Define the typedefs.

call_once () shouldn’t DECAY._COPY () Remove indirection through call wrapper that made copies of arguments
and forward arguments straight to std: : invoke.

Add raw_storage iterator: :base () member Addthebase () member function.

Allocator default construction should be allowed to throw Make noexcept specifications conditional.
N3778 and new library deallocation signatures Remove unused overloads.

std: :polar should require a non-negative rho Add debug mode assertion.

SFINAE-friendly common_type is nearly impossible to specialize correctly and regresses key functionality Detect whether
decay_t changes either type and use the decayed types if so.

allocator_traits::max_size () default behavior is incorrect Divide by the object type.
rethrow_if nested () is doubly unimplementable Avoid using dynamic_cast when it would be ill-formed.

operator>> (basic_istream&, CharTx+) makes it hard to avoid buffer overflows Replace operator>> (basic_:
CharTx*) and other overloads writing through pointers.

Constructors for priority_queue taking allocators should call make _heap Call make_heap.
Requirements on the first template parameter of container adaptors Add static assertions to enforce the requirement.
There is no way to supply an allocator for basic_string(str, pos) Add new constructor.

Wrong value category used in scoped_allocator_adaptor: :construct () Change internal helper for uses-
allocator construction to always check using const lvalue allocators.

priority queue lacking comparator typedef Define the value_compare typedef.

std: :abs (short), std: :abs (signed char) and others should return int instead of double in order to be compa
Resolved by the changes for 2192.

tuple_size<const T> specialization is not SFINAE compatible and breaks decomposition declarations Safely de-
tect tuple_size<T>: :value and only use it if valid.

Contradictory requirements for std: : functionand std: : reference_wrapper Remove special handling for
reference_wrapper arguments and store them directly as the target object.

Add noexcept to several shared_ptr related functions Add noexcept.

shared_ptr constructor requirements for a deleter Use rvalues for deleters.

packaged_task and type-erased allocators For C++17 mode, remove the constructors taking an allocator argument.
LWG 2873’s resolution missed weak_ptr: :owner_before Add noexcept.

Missing rvalue overloads for shared_ptr operations Add additional constructor and cast overloads.

reference_wrapper<T> conversion from T&& Replaced the constructors with a constrained template, to prevent
participation in overload resolution when not valid.

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2407
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2408
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2415
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2418
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2440
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2441
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2442
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2454
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2455
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2458
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2459
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2465
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2466
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2484
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2499
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2537
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2566
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2583
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2586
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2684
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2735
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2770
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2781
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2802
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2873
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2921
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2942
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2996
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2993

The GNU C++ Library Manual 27/385

3074: Non-member functions for valarray should only deduce from the valarray Change scalar operands to be non-
deduced context, so that they will allow conversions from other types to the value_type.

3076: basic_string CTAD ambiguity Change constructors to constrained templates.

3096: path: :lexically relativeis confused by trailing slashes Implement the fix for trailing slashes.

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#3074
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#3076
http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#3096

The GNU C++ Library Manual 28/385

Chapter 2

Setup

To transform libstdc++ sources into installed include files and properly built binaries useful for linking to other software is a
multi-step process. Steps include getting the sources, configuring and building the sources, testing, and installation.

The general outline of commands is something like:

get gcc sources

extract into gccsrcdir

mkdir gccbuilddir

cd gccbuilddir

gccsrcdir/configure —-prefix=destdir —--other-opts...
make

make check

make install

Each step is described in more detail in the following sections.

2.1 Prerequisites

Because libstdc++ is part of GCC, the primary source for installation instructions is the GCC install page. In particular, list of
prerequisite software needed to build the library starts with those requirements. The same pages also list the tools you will need
if you wish to modify the source.

Additional data is given here only where it applies to libstdc++.

As of GCC 4.0.1 the minimum version of binutils required to build libstdc++1is 2.15.90.0.1. 1. Older releases of libstdc++
do not require such a recent version, but to take full advantage of useful space-saving features and bug-fixes you should use
a recent binutils whenever possible. The configure process will automatically detect and use these features if the underlying
support is present.

To generate the API documentation from the sources you will need Doxygen, see Documentation Hacking in the appendix for
full details.

Finally, a few system-specific requirements:

linux If GCC 3.1.0 or later on is being used on GNU/Linux, an attempt will be made to use "C" library functionality necessary
for C++ named locale support. For GCC 4.6.0 and later, this means that glibc 2.3 or later is required.

If the gnu’ locale model is being used, the following locales are used and tested in the libstdc++ testsuites. The first
column is the name of the locale, the second is the character set it is expected to use.

de_DE IS0-8859-1
de_DEReuro IS0-8859-15
en_GB IS0-8859-1

http://gcc.gnu.org/install/
http://gcc.gnu.org/install/prerequisites.html

The GNU C++ Library Manual 29/385

en_HK I50-8859-1
en_PH IS0-8859-1
en_US IS0-8859-1
en_US.IS0O-8859-1 IS0-8859-1
en_US.IS0-8859-15 IS0-8859-15
en_US.UTF-8 UTF-8

es_ES IS0-8859-1
es_MX IS0-8859-1
fr_FR IS0-8859-1
fr_FR@euro IS0-8859-15
is_IS UTF-8

it _IT IS0-8859-1
ja_JP.eucjp EUC-JP
ru_RU.IS0O-8859-5 IS0-8859-5
ru_RU.UTF-8 UTF-8
se_NO.UTF-8 UTF-8

ta_IN UTF-8

zh_ TW BIG5S

Failure to have installed the underlying "C" library locale information for any of the above regions means that the cor-
responding C++ named locale will not work: because of this, the libstdc++ testsuite will skip named locale tests which
need missing information. If this isn’t an issue, don’t worry about it. If a named locale is needed, the underlying locale
information must be installed. Note that rebuilding libstdc++ after "C" locales are installed is not necessary.

To install support for locales, do only one of the following:

* install all locales
* install just the necessary locales

— with Debian GNU/Linux:
Add the above list, as shown, to the file /etc/locale.gen
run /usr/sbin/locale—gen
— on most Unix-like operating systems:
localedef -i de_DE -f IS0O-8859-1 de_DE
(repeat for each entry in the above list)
— Instructions for other operating systems solicited.

2.2 Configure

When configuring libstdc++, you’ll have to configure the entire gccsredir directory. Consider using the toplevel gcc configuration
option ——enable-languages=c++, which saves time by only building the C++ toolchain.

Here are all of the configure options specific to libstdc++. Keep in mind that they all have opposite forms as well (enable/disable
and with/without). The defaults are for the current development sources, which may be different than those for released versions.

The canonical way to find out the configure options that are available for a given set of libstdc++ sources is to go to the source
directory and then type: ./configure --help.

——enable-multilib[default] This is part of the generic multilib support for building cross compilers. As such, targets like
"powerpc-elf" will have libstdc++ built many different ways: "-msoft-float" and not, etc. A different libstdc++ will be built
for each of the different multilib versions. This option is on by default.

——enable-version-specific—runtime—1libs Specify that run-time libraries should be installed in the compiler-
specific subdirectory (i.e., ${1ibdir}/gcc-1lib/${target_alias}/${gcc_version})insteadof ${1libdir}.
This option is useful if you intend to use several versions of gcc in parallel. In addition, libstdc++’s include files will
be installed in ${1libdir}/gcc-1ib/${target_alias}/${gcc_version}/include/g++, unless you also
specify ——with-gxx-include-dir=dirname during configuration.

—-with—-gxx—-include-dir=<include-files dir> Adds support for named libstdc++ include directory. For in-
stance, the following puts all the libstdc++ headers into a directory called "4.4-20090404" instead of the usual "c++/(version)".

http://sourceware.org/autobook/autobook/autobook_14.html

The GNU C++ Library Manual 30/385

——with-gxx—-include-dir=/foo/H-x86-gcc-3-c-gxx—-inc/include/4.4-20090404

——enable-cstdio This is an abbreviated form of ——enable-cstdio=stdio’ (described next).

——enable-cstdio=OPTION Select a target-specific I/O package. At the moment, the only choice is to use ’stdio’, a generic
"C" abstraction. The default is ’stdio’. This option can change the library ABI.

——enable-clocale This is an abbreviated form of ’ ——enable-clocale=generic’ (described next).

——enable-clocale=OPTION Select a target-specific underlying locale package. The choices are ’ieee_1003.1-2001" to
specify an X/Open, Standard Unix (IEEE Std. 1003.1-2001) model based on langinfo/iconv/catgets, gnu’ to specify a
model based on functionality from the GNU C library (langinfo/iconv/gettext) (from glibc, the GNU C library), ’generic’
to use a generic "C" abstraction which consists of "C" locale info, 'newlib’ to specify the Newlib C library model which
only differs from the ’generic’ model in the handling of ctype, or ’darwin’ which omits the wchar_t specializations needed
by the ’generic’ model.

If not explicitly specified, the configure process tries to guess the most suitable package from the choices above. The
default is *generic’. On glibc-based systems of sufficient vintage (2.3 and newer), 'gnu’ is automatically selected. On
newlib-based systems (——with_newlib=yes’) and OpenBSD, ’newlib’ is automatically selected. On Mac OS X
’darwin’ is automatically selected. This option can change the library ABI.

—-—enable-libstdcxx-allocator This is an abbreviated form of ' ——enable-libstdcxx—allocator=auto’
(described next).

——enable-libstdcxx—-allocator=OPTION Select a target-specific underlying std::allocator. The choices are 'new’
to specify a wrapper for new, malloc’ to specify a wrapper for malloc, *'mt’ for a fixed power of two allocator, *pool” for
the SGI pooled allocator or *bitmap’ for a bitmap allocator. See this page for more information on allocator extensions.
This option can change the library ABI.

——enable—-cheaders=0PTION This allows the user to define the approach taken for C header compatibility with C++. Op-
tions are c, c¢_std, and c_global. These correspond to the source directory’s include/c, include/c_std, and include/c_global,
and may also include include/c_compatibility. The default is "c_global’.

——enable-threads This is an abbreviated form of ' ——enable-threads=yes’ (described next).

——enable-threads=0PTION Select a threading library. A full description is given in the general compiler configuration
instructions. This option can change the library ABI.

——enable-libstdcxx-threads Enable C++11 threads support. If not explicitly specified, the configure process enables
it if possible. This option can change the library ABI.

——enable-libstdcxx—time This is an abbreviated form of / ——enable-1ibstdcxx-time=yes’ (described next).

——enable-libstdcxx—time=OPTION Enables link-type checks for the availability of the clock_gettime clocks,
used in the implementation of [time.clock], and of the nanosleep and sched_yield functions, used in the imple-
mentation of [thread.thread.this] of the 2011 ISO C++ standard. The choice OPTION=yes checks for the availability of
the facilities in libc. OPTION=rt also checks in librt (and, if it’s needed, links to it). Note that linking to librt is not
always desirable because for glibc it requires linking to libpthread too, which causes all reference counting to use atomic
operations, resulting in a potentially large overhead for single-threaded programs. OPTION=no skips the tests completely.
The default is OPTION=auto, which skips the checks and enables the features only for targets known to support them. For
Linux targets, if clock_gettime is not used then the [time.clock] implementation will use a system call to access the
realtime and monotonic clocks, which is significantly slower than the C library’s clock_gettime function.

——enable-libstdcxx—debug Build separate debug libraries in addition to what is normally built. By default, the debug
libraries are compiled with CXXFLAGS=’'-g3 -00 -fno-inline’ , are installed in ${1libdir}/debug, and
have the same names and versioning information as the non-debug libraries. This option is off by default.

Note this make command, executed in the build directory, will do much the same thing, without the configuration difference
and without building everything twice: make CXXFLAGS='-g3 -00 -fno-inline’ all

https://www.gnu.org/software/libc/
http://gcc.gnu.org/install/configure.html
http://gcc.gnu.org/install/configure.html

The GNU C++ Library Manual 31/385

——enable-libstdcxx—-debug-flags=FLAGS This option isonly valid when ——enable-1libstdcxx—-debugis also
specified, and applies to the debug builds only. With this option, you can pass a specific string of flags to the compiler to
use when building the debug versions of libstdc++. FLAGS is a quoted string of options, like

——enable-libstdcxx—-debug-flags=’'-g3 -0l —-fno-inline’

——enable-cxx—-flags=FLAGS With this option, you can pass a string of -f (functionality) flags to the compiler to use when
building libstdc++. This option can change the library ABI. FLAGS is a quoted string of options, like

——enable-cxx-flags='-fvtable-gc -fomit-frame-pointer -ansi’

Note that the flags don’t necessarily have to all be -f flags, as shown, but usually those are the ones that will make sense
for experimentation and configure-time overriding.

The advantage of --enable-cxx-flags over setting CXXFLAGS in the 'make’ environment is that, if files are automatically
rebuilt, the same flags will be used when compiling those files as well, so that everything matches.

Fun flags to try might include combinations of

—fstrict-aliasing
—-fno-exceptions
—ffunction-sections
—fvtable—-gc

and opposite forms (-fno-) of the same. Tell us (the libstdc++ mailing list) if you discover more!

——enable-c99 The long long type was introduced in C99, along with many other functions for wide characters, and math
classification macros, etc. If enabled, all C99 functions not specified by the C++ standard will be put into namespace
___gnu_cxx, and then all these names will be injected into namespace std, so that C99 functions can be used "as if" they
were in the C++ standard (as they will eventually be in some future revision of the standard, without a doubt). By default,
C99 support is on, assuming the configure probes find all the necessary functions and bits necessary. This option can
change the library ABIL.

——enable-wchar_t[default] Template specializations for the wchar_t type are required for wide character conversion sup-
port. Disabling wide character specializations may be expedient for initial porting efforts, but builds only a subset of what
is required by ISO, and is not recommended. By default, this option is on. This option can change the library ABI.

——enable-long-long The long long type was introduced in C99. It is provided as a GNU extension to C++98 in g++.
This flag builds support for "long long" into the library (specialized templates and the like for iostreams). This option is
on by default: if enabled, users will have to either use the new-style "C" headers by default (i.e., <cmath> not <math.h>)
or add appropriate compile-time flags to all compile lines to allow "C" visibility of this feature (on GNU/Linux, the flag
is -D_ISOC99_SOURCE, which is added automatically via CPLUSPLUS_CPP_SPEC’s addition of _GNU_SOURCE).
This option can change the library ABI.

——enable-fully-dynamic—-string This option enables a special version of basic_string avoiding the optimization that
allocates empty objects in static memory. Mostly useful together with shared memory allocators, see PR libstdc++/16612
for details.

——enable-concept-checks This turns on additional compile-time checks for instantiated library templates, in the form
of specialized templates described in the Concept Checking section. They can help users discover when they break the
rules of the STL, before their programs run. These checks are based on C++03 rules and some of them are not compatible
with correct C++11 code.

——enable-symvers[=style] In 3.1 and later, tries to turn on symbol versioning in the shared library (if a shared li-
brary has been requested). Values for ’style’ that are currently supported are ’gnu’, ’gnu-versioned-namespace’, ’darwin’,
’darwin-export’, and ’sun’. Both gnu- options require that a recent version of the GNU linker be in use. Both darwin
options are equivalent. With no style given, the configure script will try to guess correct defaults for the host system, probe
to see if additional requirements are necessary and present for activation, and if so, will turn symbol versioning on. This
option can change the library ABIL.

The GNU C++ Library Manual 32/385

——enable-libstdcxx—-visibility In 4.2 and later, enables or disables visibility attributes. If enabled (as by default),
and the compiler seems capable of passing the simple sanity checks thrown at it, adjusts items in namespace std, namespace
std::trl, namespace std::tr2, and namespace __gnu_cxx tohave visibility ("default") so that-fvisibility options
can be used without affecting the normal external-visibility of namespace std entities. Prior to 4.7 this option was spelled
——enable-visibility.

——enable-libstdcxx—-pch In 3.4 and later, tries to turn on the generation of stdc++.h.gch, a pre-compiled file including
all the standard C++ includes. If enabled (as by default), and the compiler seems capable of passing the simple sanity
checks thrown at it, try to build stdc++.h.gch as part of the make process. In addition, this generated file is used later on
(by appending —--include bits/stdc++.h to CXXFLAGS) when running the testsuite.

——enable-extern—template[default] Use extern template to pre-instantiate all required specializations for certain types
defined in the standard libraries. These types include st ring and dependents like char_traits, the templatized IO
classes, allocator, and others. Disabling means that implicit template generation will be used when compiling these
types. By default, this option is on. This option can change the library ABI.

—-disable-hosted-libstdcxx By default, a complete hosted C++ library is built. The C++ Standard also describes a
freestanding environment, in which only a minimal set of headers are provided. This option builds such an environment.

——disable-libstdcxx—-verbose By default, the library is configured to write descriptive messages to standard error for
certain events such as calling a pure virtual function or the invocation of the standard terminate handler. Those messages
cause the library to depend on the demangler and standard I/O facilities, which might be undesirable in a low-memory
environment or when standard error is not available. This option disables those messages. This option does not change the
library ABI.

——-disable-libstdcxx—-dual—-abi Disable support for the new, C++11-conforming implementations of std: : string,
std::1list etc. so that the library only provides definitions of types using the old ABI (see Dual ABI). This option
changes the library ABI.

—-with-default-libstdcxx—-abi=0PTION Set the default value for the _GLIBCXX_USE_CXX11_ABI macro (see
Macros). The default is OP T ION=new which sets the macro to 1, use OPTION=gcc4—-compatible to setitto 0. This
option does not change the library ABIL

—-with-libstdcxx—-lock-policy=OPTION Sets the lock policy that controls how shared_ptr reference counting
is synchronized. The choice OPTION=atomic enables use of atomics for updates to shared_ptr reference counts.
The choice OPTION=mutex enables use of a mutex to synchronize updates to shared_ptr reference counts. If the
compiler’s thread model is "single" then this option has no effect, as no synchronization is used for the reference counts.
The default is OPTION=auto, which checks for the availability of compiler built-ins for 2-byte and 4-byte atomic compare-
and-swap, and uses OPTION=atomic if they’re available, OPTION=mutex otherwise. This option can change the library
ABI. If the library is configured to use atomics and user programs are compiled using a target that doesn’t natively support
the atomic operations (e.g. the library is configured for armv7 and then code is compiled with -march=armv5t) then
the program might rely on support in libgcc to provide the atomics.

——enable-vtable-verify[default] Use —-fvtable-verify=std to compile the C++ runtime with instrumentation
for vtable verification. All virtual functions in the standard library will be verified at runtime. Types impacted include
locale and iostream, and others. Disabling means that the C++ runtime is compiled without support for vtable
verification. By default, this option is off.

——enable-libstdcxx—-filesystem—ts[default] Build 1ibstdc++fs.a as well as the usual libstdc++ and libsupc++
libraries. This is enabled by default on select POSIX targets where it is known to work and disabled otherwise.

2.3 Make

If you have never done this before, you should read the basic GCC Installation Instructions first. Read all of them. Twice.

Then type: make, and congratulations, you’ve started to build.

http://gcc.gnu.org/install/

The GNU C++ Library Manual

33/385

Chapter 3

Using

3.1 Command Options

The set of features available in the GNU C++ library is shaped by several GCC Command Options. Options that impact libstdc++
are enumerated and detailed in the table below.

The standard library conforms to the dialect of C++ specified by the —std option passed to the compiler. By default, g++ is
equivalent to g++ -std=gnu++17 since GCC 11, and g++ -std=gnu++14 in GCC 6, 7, 8, 9, and 10, and g++ -std=gnu++98 for

older releases.

Option Flags Description
-std=c++98 or —std=c++03 Use the 1998 ISO C++ standard plus amendments.
-std=gnu++98 or —std=gnu++03 As directly above, with GNU extensions.
-std=c++11 Use the 2011 ISO C++ standard.
—-std=gnu++11 As directly above, with GNU extensions.
-std=c++14 Use the 2014 ISO C++ standard.
—-std=gnu++14 As directly above, with GNU extensions.
-fexceptions See exception-free dialect
—frtti As above, but RTTI-free dialect.
For ISO C++11 <thread>, <future>, <mutex>, or
-pthread . .
<condition_variable>.
. Linking to 1ibatomic is required for some uses of ISO
—latomic)
C++11 <atomic>.
Linking to 1ibstdc++£s is required for use of the
-1lstdc++£fs Filesystem library extensions in
<experimental/filesystem>.
—fopenmp For parallel mode.
Linking to tbb (Thread Building Blocks) is required for use
-1tbb of the Parallel Standard Algorithms and execution policies
in <execution>.

3.2 Headers

3.2.1 Header Files

Table 3.1: C++ Command Options

The C++ standard specifies the entire set of header files that must be available to all hosted implementations. Actually, the word
"files" is a misnomer, since the contents of the headers don’t necessarily have to be in any kind of external file. The only rule is

http://gcc.gnu.org/onlinedocs/gcc-4.3.2/gcc/Invoking-GCC.html

The GNU C++ Library Manual 34/385

that when one #includes a header, the contents of that header become available, no matter how.
That said, in practice files are used.

There are two main types of include files: header files related to a specific version of the ISO C++ standard (called Standard
Headers), and all others (TS, TR1, C++ ABI, and Extensions).

Multiple dialects of standard headers are supported, corresponding to the 1998 standard as updated for 2003, the 2011 standard,
the 2014 standard, and so on.

Table 3.2 and Table 3.3 and Table 3.4 show the C++98/03 include files. These are available in the C++98 compilation mode, i.e.
—-std=c++98 or —std=gnu++98. Unless specified otherwise below, they are also available in later modes (C++11, C++14
etc).

algorithm bitset complex deque exception
fstream functional iomanip ios iosfwd
iostream istream iterator limits list
locale map memory new numeric
Oostream queue set sstream stack
stdexcept streambuf string utility typeinfo
valarray vector

Table 3.2: C++ 1998 Library Headers

cassert cerrno cctype cfloat ciso646
climits clocale cmath cset jmp csignal
cstdarg cstddef cstdio cstdlib cstring
ctime cwchar cwctype

Table 3.3: C++ 1998 Library Headers for C Library Facilities

The following header is deprecated and might be removed from a future C++ standard.

strstream

Table 3.4: C++ 1998 Deprecated Library Header

Table 3.5 and Table 3.6 show the C++11 include files. These are available in C++11 compilation mode, i.e. —std=c++11
or —std=gnu++11. Including these headers in C++98/03 mode may result in compilation errors. Unless specified otherwise
below, they are also available in later modes (C++14 etc).

Table 3.7 shows the C++14 include file. This is available in C++14 compilation mode, i.e. —std=c++14 or —std=gnu++14.
Including this header in C++98/03 mode or C++11 will not result in compilation errors, but will not define anything. Unless
specified otherwise below, it is also available in later modes (C++17 etc).

Table 3.8 shows the C++17 include files. These are available in C++17 compilation mode, i.e. —std=c++17 or —std=gnu++17.
Including these headers in earlier modes will not result in compilation errors, but will not define anything. Unless specified oth-
erwise below, they are also available in later modes (C++20 etc).

Table 3.9 shows the C++2a include files. These are available in C++2a compilation mode, i.e. ~std=c++2a or —~std=gnu++2a.
Including these headers in earlier modes will not result in compilation errors, but will not define anything.

The following headers have been removed in the C++2a working draft. They are still available when using this implementation,
but in future they might start to produce warnings or errors when included in C++2a mode. Programs that intend to be portable
should not include them.

Table 3.11, shows the additional include file define by the File System Technical Specification, ISO/IEC TS 18822. This is
available in C++11 and later compilation modes. Including this header in earlier modes will not result in compilation errors, but
will not define anything.

The GNU C++ Library Manual

35/385

i condition_
array atomic chrono codecvt .
variable
itall
forward_list future 1r.11ta TEeT— mutex random
list
d
ratio regex Seopec_ system_error thread
allocator
tuple typeindex type_traits unordered_map unordered_set
Table 3.5: C++ 2011 Library Headers
ccomplex cfenv cinttypes cstdalign cstdbool
cstdint ctgmath cuchar
Table 3.6: C++ 2011 Library Headers for C Library Facilities
shared_mutex
Table 3.7: C++ 2014 Library Header
any charconv execution filesystem MEmoTy—
resource
optional string_view variant
Table 3.8: C++ 2017 Library Headers
bit version
Table 3.9: C++ 2020 Library Headers
ccomplex ciso646 \ cstdalign \ cstdbool ctgmath

Table 3.10: C++ 2020 Obsolete Headers

experimental/filesystem

Table 3.11: File System TS Header

The GNU C++ Library Manual 36/385

Table 3.12, shows the additional include files define by the C++ Extensions for Library Fundamentals Technical Specification,
ISO/IEC TS 19568. These are available in C++14 and later compilation modes. Including these headers in earlier modes will

not result in compilation errors, but will not define anything.

experimental/ experimental/ experimental/ experimental/ experimental/
algorithm any array chrono deque
experimental/ experimental/ experimental/ experimental/ experimental/
forward_list functional iterator list map
experimental experimental
experimental/ P / experimental/ experimental/ P /
memory__ , , propagate_
memory numeric optional
resource const
. . . . experimental
experimental/ experimental/ experimental/ experimental/ soirce /
random ratio regex set .
location
experimental/ experimental/ experimental/ experimental/ experimental/
string string_view system_error tuple type_traits
experimental/ experimental/ experimental/ experimental/
unordered_map unordered_set utility vector

Table 3.12: Library Fundamentals TS Headers
In addition, TR1 includes as:
trl/array trl/complex trl/memory trl/functional trl/random
trl/regex tr1/tuple trl(type_ trl/unordered_ trl/unordered_
trailts map set
trl/utility
Table 3.13: C++ TR 1 Library Headers
trl/ccomplex trl/cfenv trl/cfloat trl/cmath trl/cinttypes
trl/climits trl/cstdarg trl/cstdbool trl/cstdint trl/cstdio
trl/cstdlib trl/ctgmath trl/ctime trl/cwchar trl/cwctype

Decimal floating-point arithmetic is available if the C++ compiler supports scalar decimal floating-point types defined via

Table 3.14: C++ TR 1 Library Headers for C Library Facilities

__attribute_ ((mode (SD|DD|LD))).

Also included are files for the C++ ABI interface:

And a large variety of extensions.

3.2.2 Mixing Headers

A few simple rules.

First, mixing different dialects of the standard headers is not possible. It’s an all-or-nothing affair. Thus, code like

#include <array>
#include <functional>

Implies C++11 mode. To use the entities in <array>, the C++11 compilation mode must be used, which implies the C++11

functionality (and deprecations) in <functional> will be present.

Second, the other headers can be included with either dialect of the standard headers, although features and types specific to
C++11 are still only enabled when in C++11 compilation mode. So, to use rvalue references with __gnu_cxx: :vstring, or

The GNU C++ Library Manual

37/385

decimal/decimal

Table 3.15: C++ TR 24733 Decimal Floating-Point Header

cxxabi.h

cxxabi_forced.h

Table 3.16: C++ ABI Headers

. t/at icity. t/bit
ext/algorithm EX /atomicity iilécthi?g ext/cast.h
ext/codecvt
sxeéialiEthons ext/ ext/debug_ ext/enc_ ext/extptr_
hp 1 concurrence.h allocator.h filebuf.h allocator.h
. . ext/malloc_ ext/mt_
ext/functional ext/iterator allocator.h ext/memory allocator.h
t/pb_d t/pb_d
ext/new_) ext/numeric_ ext/pb_ds/ exl/pl_ s/
ext/numeric i assoc_ priority_
allocator.h traits.h .
container.h queue.h
ext/pod_char_ ext/pool_
traits.h -1locator.h ext/rb_tree ext/rope ext/slist
ext/stdio ext/stdio ext/throw , ext/type
- - - t/t list.h -
filebuf.h sync_filebuf.h allocator.h ext/typelis traits.h
ext/vstring.h
Table 3.17: Extension Headers
. deb forward
debug/array debug/bitset debug/deque lisEg/ W — | debug/list
. debug/ debug/
deb deb t deb t
ebug/map ebug/se ebug/string unordered_map unordered_set
debug/vector
Table 3.18: Extension Debug Headers
parallel/algorithm \ parallel/numeric

Table 3.19: Extension Parallel Headers

The GNU C++ Library Manual 38/385

to use the debug-mode versions of std: : unordered_map, one must use the st d=gnu++11 compiler flag. (Or std=c++11,
of course.)

A special case of the second rule is the mixing of TR1 and C++11 facilities. It is possible (although not especially prudent) to
include both the TR1 version and the C++11 version of header in the same translation unit:

#include <trl/type_traits>
#include <type_traits>

Several parts of C++11 diverge quite substantially from TR1 predecessors.

3.2.3 The C Headers and namespace std

The standard specifies that if one includes the C-style header (<math.h> in this case), the symbols will be available in the global
namespace and perhaps in namespace std: : (but this is no longer a firm requirement.) On the other hand, including the
C++-style header (<cmath>) guarantees that the entities will be found in namespace std and perhaps in the global namespace.

Usage of C++-style headers is recommended, as then C-linkage names can be disambiguated by explicit qualification, such as by
std: :abort. In addition, the C++-style headers can use function overloading to provide a simpler interface to certain families
of C-functions. For instance in <cmath>, the function std: : sin has overloads for all the builtin floating-point types. This
means that std: : sin can be used uniformly, instead of a combination of std: :sinf, std: :sin,and std::sinl.

3.2.4 Precompiled Headers

There are three base header files that are provided. They can be used to precompile the standard headers and extensions into
binary files that may then be used to speed up compilations that use these headers.

e stdc++.h

Includes all standard headers. Actual content varies depending on language dialect.

e stdtrlc++.h
Includes all of <stdc++.h>, and adds all the TR1 headers.

e extc++.h

Includes all of <stdc++.h>, and adds all the Extension headers (and in C++98 mode also adds all the TR1 headers by including
all of <stdtrlc++.h>).

To construct a .gch file from one of these base header files, first find the include directory for the compiler. One way to do this is:
gt+ —-v hello.cc

finclude <...> search starts here:
/mnt/share/bld/H-x86-gcc.20071201/include/c++/4.3.0

End of search list.

Then, create a precompiled header file with the same flags that will be used to compile other projects.

g++ -Winvalid-pch -x c++-header -g -02 -o ./stdc++.h.gch /mnt/share/bld/H-x86-gcc.20071201/ <
include/c++/4.3.0/x86_64-unknown-linux—-gnu/bits/stdc++.h

The resulting file will be quite large: the current size is around thirty megabytes.
How to use the resulting file.

g++ -I. —-include stdc++.h -H -g -02 hello.cc

Verification that the PCH file is being used is easy:

The GNU C++ Library Manual 39/385

g++ -Winvalid-pch -I. -include stdc++.h -H -g -02 hello.cc -o test.exe
! . /stdc++.h.gch

/mnt /share/bld/H-x86-gcc.20071201/include/c++/4.3.0/iostream

/mnt /share/bld/H-x86-gcc.20071201linclude/c++/4.3.0/string

The exclamation point to the left of the stdc++.h. gch listing means that the generated PCH file was used.

Detailed information about creating precompiled header files can be found in the GCC documentation.

3.3 Macros

All library macros begin with _GLIBCXX_.

Furthermore, all pre-processor macros, switches, and configuration options are gathered in the file c++config.h, which is
generated during the libstdc++ configuration and build process. This file is then included when needed by files part of the public
libstdc++ API, like <ios>. Most of these macros should not be used by consumers of libstdc++, and are reserved for internal
implementation use. These macros cannot be redefined.

A select handful of macros control libstdc++ extensions and extra features, or provide versioning information for the API. Only
those macros listed below are offered for consideration by the general public.

Below are the macros which users may check for library version information.

_GLIBCXX_RELEASE The major release number for libstdc++. This macro is defined to the GCC major version that the
libstdc++ headers belong to, as an integer constant. When compiling with GCC it has the same value as GCC'’s pre-defined
macro __GNUC__. This macro can be used when libstdc++ is used with a non-GNU compiler where _ GNUC__ is not
defined, or has a different value that doesn’t correspond to the libstdc++ version. This macro first appeared in the GCC 7.1
release and is not defined for GCC 6.x or older releases.

__GLIBCXX___ The revision date of the libstdc++ source code, in compressed ISO date format, as an unsigned long. For notes
about using this macro and details on the value of this macro for a particular release, please consult the ABI History
appendix.

Below are the macros which users may change with #define/#undef or with -D/-U compiler flags. The default state of the symbol
is listed.

“Configurable” (or “Not configurable””) means that the symbol is initially chosen (or not) based on --enable/--disable options
at library build and configure time (documented in Configure), with the various --enable/--disable choices being translated to
#define/#undef).

ABI means that changing from the default value may mean changing the ABI of compiled code. In other words, these choices
control code which has already been compiled (i.e., in a binary such as libstdc++.a/.s0). If you explicitly #define or #undef these
macros, the headers may see different code paths, but the libraries which you link against will not. Experimenting with different
values with the expectation of consistent linkage requires changing the config headers before building/installing the library.

_GLIBCXX_USE_DEPRECATED Defined by default. Not configurable. ABI-changing. Turning this off removes older ARM-
style iostreams code, and other anachronisms from the API. This macro is dependent on the version of the standard being
tracked, and as a result may give different results for —std=c++98 and ~std=c++11. This may be useful in updating
old C++ code which no longer meet the requirements of the language, or for checking current code against new language
standards.

_GLIBCXX_USE_CXX11_ABI Defined to the value 1 by default. Configurable via ~——disable-libstdcxx—-dual-abi
and/or ——with-default-libstdcxx—abi. ABI-changing. When defined to a non-zero value the library headers
will use the new C++11-conforming ABI introduced in GCC 5, rather than the older ABI introduced in GCC 3.4. This
changes the definition of several class templates, including std: string, std: : 1ist and some locale facets. For more
details see Dual ABI.

GLIBCXX CONCEPT_CHECKS Undefined by default. Configurable via ——enable-concept—-checks. When defined,
performs compile-time checking on certain template instantiations to detect violations of the requirements of the standard.
This macro has no effect for freestanding implementations. This is described in more detail in Compile Time Checks.

http://gcc.gnu.org/onlinedocs/gcc/Precompiled-Headers.html

The GNU C++ Library Manual 40/385

_GLIBCXX_ASSERTIONS Undefined by default. When defined, enables extra error checking in the form of precondition
assertions, such as bounds checking in strings and null pointer checks when dereferencing smart pointers.

_GLIBCXX_DEBUG Undefined by default. When defined, compiles user code using the debug mode. When defined, _GLIBCXX_ASSI
is defined automatically, so all the assertions enabled by that macro are also enabled in debug mode.

_GLIBCXX_DEBUG_PEDANTIC Undefined by default. When defined while compiling with the debug mode, makes the debug
mode extremely picky by making the use of libstdc++ extensions and libstdc++-specific behavior into errors.

GLIBCXX PARALLEL Undefined by default. When defined, compiles user code using the parallel mode.

GLIBCXX PARALLEL_ASSERTIONS Undefined by default, but when any parallel mode header is included this macro will
be defined to a non-zero value if _GLIBCXX_ASSERTIONS has a non-zero value, otherwise to zero. When defined to a
non-zero value, it enables extra error checking and assertions in the parallel mode.

__STDCPP_WANT_MATH SPEC_FUNCS___ Undefined by default. When defined to a non-zero integer constant, enables sup-
port for ISO/IEC 29124 Special Math Functions.

_GLIBCXX_SANITIZE_VECTOR Undefined by default. When defined, std: :vector operations will be annotated so
that AddressSanitizer can detect invalid accesses to the unused capacity of a std: :vector. These annotations are
only enabled for std: :vector<T, std::allocator<T>> and only when std::allocator is derived from
new_allocator or malloc_allocator. The annotations must be present on all vector operations or none, so this macro must
be defined to the same value for all translation units that create, destroy or modify vectors.

3.4 Dual ABI

In the GCC 5.1 release libstdc++ introduced a new library ABI that includes new implementations of std: :string and
std::1list. These changes were necessary to conform to the 2011 C++ standard which forbids Copy-On-Write strings and
requires lists to keep track of their size.

In order to maintain backwards compatibility for existing code linked to libstdc++ the library’s soname has not changed and the
old implementations are still supported in parallel with the new ones. This is achieved by defining the new implementations
in an inline namespace so they have different names for linkage purposes, e.g. the new version of std::1list<int> is
actually defined as std::___cxx11l::1list<int>. Because the symbols for the new implementations have different names
the definitions for both versions can be present in the same library.

The _GLIBCXX_USE_CXX11_ABI macro (see Macros) controls whether the declarations in the library headers use the old or
new ABI. So the decision of which ABI to use can be made separately for each source file being compiled. Using the default
configuration options for GCC the default value of the macro is 1 which causes the new ABI to be active, so to use the old ABI
you must explicitly define the macro to 0 before including any library headers. (Be aware that some GNU/Linux distributions
configure GCC 5 differently so that the default value of the macro is 0 and users must define it to 1 to enable the new ABI.)

Although the changes were made for C++11 conformance, the choice of ABI to use is independent of the —std option used to
compile your code, i.e. for a given GCC build the default value of the _GLIBCXX_USE_CXX11_ABI macro is the same for
all dialects. This ensures that the —std does not change the ABI, so that it is straightforward to link C++03 and C++11 code
together.

Because std: : string is used extensively throughout the library a number of other types are also defined twice, including the
stringstream classes and several facets used by std: : locale. The standard facets which are always installed in a locale may
be present twice, with both ABISs, to ensure that code like std: :use_facet<std::time_get<char>> (locale); will
work correctly for both std: :time_get and std::___cxx1l::time_get (even if a user-defined facet that derives from
one or other version of t ime_ get is installed in the locale).

Although the standard exception types defined in < st dexcept > use strings, most are not defined twice, sothata std: : out_of_ran
exception thrown in one file can always be caught by a suitable handler in another file, even if the two files are compiled with
different ABIs.

One exception type does change when using the new ABI, namely std: :ios_base: :failure. This is necessary because
the 2011 standard changed its base class from std: :exception to std::system_error, which causes its layout to
change. Exceptions due to iostream errors are thrown by a function inside 1ibstdc++. so, so whether the thrown exception

The GNU C++ Library Manual 41/385

uses the old std: :ios_base: :failure type or the new one depends on the ABI that was active when 1ibstdc++.so
was built, not the ABI active in the user code that is using iostreams. This means that for a given build of GCC the type thrown
is fixed. In current releases the library throws a special type that can be caught by handlers for either the old or new type, but
for GCC 7.1, 7.2 and 7.3 the library throws the new std: :ios_base: :failure type, and for GCC 5.x and 6.x the library
throws the old type. Catch handlers of type std: :ios_base::failure will only catch the exceptions if using a newer
release, or if the handler is compiled with the same ABI as the type thrown by the library. Handlers for std: : exception will
always catch iostreams exceptions, because the old and new type both inherit from std: : exception.

3.4.1 Troubleshooting

If you get linker errors about undefined references to symbols that involve types in the std: :___cxx11 namespace or the tag
[abi:cxx11] then it probably indicates that you are trying to link together object files that were compiled with different values
for the _GLIBCXX_USE_CXX11_ABI macro. This commonly happens when linking to a third-party library that was compiled

with an older version of GCC. If the third-party library cannot be rebuilt with the new ABI then you will need to recompile your
code with the old ABIL

Not all uses of the new ABI will cause changes in symbol names, for example a class with a std: : st ring member variable
will have the same mangled name whether compiled with the old or new ABI. In order to detect such problems the new types and
functions are annotated with the abi_tag attribute, allowing the compiler to warn about potential ABI incompatibilities in code
using them. Those warnings can be enabled with the -Wabi-tag option.

3.5 Namespaces

3.5.1 Available Namespaces

There are three main namespaces.

e std

The ISO C++ standards specify that "all library entities are defined within namespace std." This includes namespaces nested
within namespace std, such as namespace std: : chrono.

e abi

Specified by the C++ ABI. This ABI specifies a number of type and function APIs supplemental to those required by the ISO
C++ Standard, but necessary for interoperability.

e __gnu_

Indicating one of several GNU extensions. Choices include __gnu_cxx, ___gnu_debug, ___gnu_parallel,and __gnu_pbds.

The library uses a number of inline namespaces as implementation details that are not intended for users to refer to directly, these
include std::__ detail, std::___cxxlland std::_V2.

A complete list of implementation namespaces (including namespace contents) is available in the generated source documenta-
tion.

3.5.2 namespace std

One standard requirement is that the library components are defined in namespace std: :. Thus, in order to use these types
or functions, one must do one of two things:

* put a kind of using-declaration in your source (either using namespace std; orie. using std::string;) This
approach works well for individual source files, but should not be used in a global context, like header files.

* use a fully qualified name for each library symbol (i.e. std::string, std::cout) Always can be used, and usually
enhanced, by strategic use of typedefs. (In the cases where the qualified verbiage becomes unwieldy.)

http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/namespaces.html
http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/namespaces.html

The GNU C++ Library Manual 42 /385

3.5.3 Using Namespace Composition

Best practice in programming suggests sequestering new data or functionality in a sanely-named, unique namespace whenever
possible. This is considered an advantage over dumping everything in the global namespace, as then name look-up can be
explicitly enabled or disabled as above, symbols are consistently mangled without repetitive naming prefixes or macros, etc.

For instance, consider a project that defines most of its classes in namespace gtk. Itis possible to adapt namespace gtk
to namespace std by using a C++-feature called namespace composition. This is what happens if a using-declaration is put
into a namespace-definition: the imported symbol(s) gets imported into the currently active namespace(s). For example:

namespace gtk

{
using std::string;
using std::trl::array;

class Window { ... };

In this example, std: : string gets imported into namespace gtk. The result is that use of std: : st ring inside names-
pace gtk can just use string, without the explicit qualification. As an added bonus, std: : string does not get imported
into the global namespace. Additionally, a more elaborate arrangement can be made for backwards compatibility and porta-
bility, whereby the using-declarations can wrapped in macros that are set based on autoconf-tests to either "" or i.e. using
std: :string; (depending on whether the system has libstdc++ in std: : or not). (ideas from Llewelly and Karl Nelson)

3.6 Linking

3.6.1 Almost Nothing

Or as close as it gets: freestanding. This is a minimal configuration, with only partial support for the standard library. Assume
only the following header files can be used:

* cstdarg

* cstddef

* cstdlib

* exception

e limits

* new

* exception

* typeinfo

In addition, throw in

* cxxabi.h.

In the C++11 dialect add
e initializer_list
* type_traits

There exists a library that offers runtime support for just these headers, and it is called 1ibsupc++. a. To use it, compile with
gcc instead of g++, like so:
gcc foo.cc -lsupc++

No attempt is made to verify that only the minimal subset identified above is actually used at compile time. Violations are
diagnosed as undefined symbols at link time.

The GNU C++ Library Manual 43 /385

3.6.2 Finding Dynamic or Shared Libraries

If the only library built is the static library (1ibstdc++. a), or if specifying static linking, this section is can be skipped. But if
building or using a shared library (1ibstdc++. so), then additional location information will need to be provided.

But how?

A quick read of the relevant part of the GCC manual, Compiling C++ Programs, specifies linking against a C++ library. More
details from the GCC FAQ, which states GCC does not, by default, specify a location so that the dynamic linker can find dynamic
libraries at runtime.

Users will have to provide this information.

Methods vary for different platforms and different styles, and are printed to the screen during installation. To summarize:

e At runtime set LD_LIBRARY_PATH in your environment correctly, so that the shared library for libstdc++ can be found and
loaded. Be certain that you understand all of the other implications and behavior of LD_LIBRARY_PATH first.

» Compile the path to find the library at runtime into the program. This can be done by passing certain options to g++, which
will in turn pass them on to the linker. The exact format of the options is dependent on which linker you use:

— GNU Id (default on GNU/Linux): -W1, -rpath, destdir/1lib
— Solaris 1d: -W1, -Rdestdir/1ib

* Some linkers allow you to specify the path to the library by setting LD_RUN_PATH in your environment when linking.

* On some platforms the system administrator can configure the dynamic linker to always look for libraries in destdir/1lib,
for example by using the ldconfig utility on GNU/Linux or the crle utility on Solaris. This is a system-wide change which can
make the system unusable so if you are unsure then use one of the other methods described above.

Use the 1dd utility on the linked executable to show which 1ibstdc++. so library the system will get at runtime.

A libstdc++. 1a file is also installed, for use with Libtool. If you use Libtool to create your executables, these details are
taken care of for you.

3.6.3 Experimental Library Extensions

GCC 5.3 includes an implementation of the Filesystem library defined by the technical specification ISO/IEC TS 18822:2015.
Because this is an experimental library extension, not part of the C++ standard, it is implemented in a separate library, 1ibstdc+
+fs.a, and there is no shared library for it. To use the library you should include <experimental/filesystem> and
link with ~1stdc++£fs. The library implementation is incomplete on non-POSIX platforms, specifically Windows support is
rudimentary.

Due to the experimental nature of the Filesystem library the usual guarantees about ABI stability and backwards compatibility
do not apply to it. There is no guarantee that the components in any <experimental/xxx> header will remain compatible
between different GCC releases.

3.7 Concurrency

This section discusses issues surrounding the proper compilation of multithreaded applications which use the Standard C++
library. This information is GCC-specific since the C++ standard does not address matters of multithreaded applications.

http://gcc.gnu.org/onlinedocs/gcc/Invoking-G_002b_002b.html#Invoking-G_002b_002b
http://gcc.gnu.org/faq.html#rpath

The GNU C++ Library Manual 44 /385

3.7.1 Prerequisites

All normal disclaimers aside, multithreaded C++ application are only supported when libstdc++ and all user code was built
with compilers which report (via gcc/g++ —v) the same thread model and that model is not single. As long as your final
application is actually single-threaded, then it should be safe to mix user code built with a thread model of single with a libstdc++
and other C++ libraries built with another thread model useful on the platform. Other mixes may or may not work but are not
considered supported. (Thus, if you distribute a shared C++ library in binary form only, it may be best to compile it with a GCC
configured with --enable-threads for maximal interchangeability and usefulness with a user population that may have built GCC
with either --enable-threads or --disable-threads.)

When you link a multithreaded application, you will probably need to add a library or flag to g++. This is a very non-standardized
area of GCC across ports. Some ports support a special flag (the spelling isn’t even standardized yet) to add all required macros to
a compilation (if any such flags are required then you must provide the flag for all compilations not just linking) and link-library
additions and/or replacements at link time. The documentation is weak. On several targets (including GNU/Linux, Solaris and
various BSDs) -pthread is honored. Some other ports use other switches. This is not well documented anywhere other than in
"gcc -dumpspecs" (look at the ’lib” and cpp’ entries).

Some uses of std: : atomic also require linking to 1ibatomic.

3.7.2 Thread Safety

In the terms of the 2011 C++ standard a thread-safe program is one which does not perform any conflicting non-atomic operations
on memory locations and so does not contain any data races. The standard places requirements on the library to ensure that no
data races are caused by the library itself or by programs which use the library correctly (as described below). The C++11
memory model and library requirements are a more formal version of the SGI STL definition of thread safety, which the library
used prior to the 2011 standard.

The library strives to be thread-safe when all of the following conditions are met:

* The system’s libc is itself thread-safe,

* The compiler in use reports a thread model other than ’single’. This can be tested via output from gcc —v. Multi-thread
capable versions of gcc output something like this:

%gcc —-v
Using built-in specs.

Thread model: posix
gcc version 4.1.2 20070925 (Red Hat 4.1.2-33)

Look for "Thread model" lines that aren’t equal to "single."

* Requisite command-line flags are used for atomic operations and threading. Examples of this include —pthread and
-march=native, although specifics vary depending on the host environment. See Command Options and Machine De-
pendent Options.

* An implementation of the atomicity.h functions exists for the architecture in question. See the internals documentation
for more details.

The user code must guard against concurrent function calls which access any particular library object’s state when one or more
of those accesses modifies the state. An object will be modified by invoking a non-const member function on it or passing it as a
non-const argument to a library function. An object will not be modified by invoking a const member function on it or passing it
to a function as a pointer- or reference-to-const. Typically, the application programmer may infer what object locks must be held
based on the objects referenced in a function call and whether the objects are accessed as const or non-const. Without getting
into great detail, here is an example which requires user-level locks:

library_class_a shared_object_a;

void thread_main () {
library_class_b xobject_b = new library_class_b;

https://web.archive.org/web/20171225062613/http://www.sgi.com/tech/stl/thread_safety.html
http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html

The GNU C++ Library Manual 45/385

shared_object_a.add_b (object_b); // must hold lock for shared_object_a
shared_object_a.mutate (); // must hold lock for shared_object_a

// Multiple copies of thread_main() are started in independent threads.

Under the assumption that object_a and object_b are never exposed to another thread, here is an example that does not require
any user-level locks:

void thread_main () {
library_class_a object_a;
library_class_b *xobject_b = new library_class_b;
object_a.add_b (object_Db);
object_a.mutate ();

All library types are safe to use in a multithreaded program if objects are not shared between threads or as long each thread care-
fully locks out access by any other thread while it modifies any object visible to another thread. Unless otherwise documented,
the only exceptions to these rules are atomic operations on the types in <atomic> and lock/unlock operations on the standard
mutex types in <mutex>. These atomic operations allow concurrent accesses to the same object without introducing data races.

The following member functions of standard containers can be considered to be const for the purposes of avoiding data races:
begin, end, rbegin, rend, front, back, data, find, lower_bound, upper_bound, equal_range, at and,
except in associative or unordered associative containers, operator []. In other words, although they are non-const so that
they can return mutable iterators, those member functions will not modify the container. Accessing an iterator might cause a
non-modifying access to the container the iterator refers to (for example incrementing a list iterator must access the pointers
between nodes, which are part of the container and so conflict with other accesses to the container).

Programs which follow the rules above will not encounter data races in library code, even when using library types which share
state between distinct objects. In the example below the shared_ptr objects share a reference count, but because the code
does not perform any non-const operations on the globally-visible object, the library ensures that the reference count updates are
atomic and do not introduce data races:

std::shared_ptr<int> global_sp;

void thread_main () {
auto local_sp = global_sp; // OK, copy constructor’s parameter is reference-to-const

int 1 = *global_sp; // OK, operatorx is const

int j = xlocal_sp; // OK, does not operate on global_sp

// *global_sp = 2; // NOT OK, modifies int visible to other threads
// *local_sp = 2; // NOT OK, modifies int visible to other threads
// global_sp.reset () ; // NOT OK, reset is non-const

local_sp.reset(); // OK, does not operate on global_sp

int main () {
global_sp.reset (new int (1)) ;
std::thread tl (thread_main);
std::thread t2 (thread _main);
tl.join();
t2.join();

For further details of the C++11 memory model see Hans-J. Boehm’s Threads and memory model for C++ pages, particularly
the introduction and FAQ.

https://www.hboehm.info/c++mm/
https://www.hboehm.info/c++mm/threadsintro.html
https://www.hboehm.info/c++mm/user-faq.html

The GNU C++ Library Manual 46 /385

3.7.3 Atomics

3.74 10

This gets a bit tricky. Please read carefully, and bear with me.

3.7.4.1 Structure

A wrapper type called ___basic_file provides our abstraction layer for the std: : filebuf classes. Nearly all decisions
dealing with actual input and output must be made in __basic_file.

A generic locking mechanism is somewhat in place at the filebuf layer, but is not used in the current code. Providing locking at
any higher level is akin to providing locking within containers, and is not done for the same reasons (see the links above).

3.7.4.2 Defaults

The __basic_file type is simply a collection of small wrappers around the C stdio layer (again, see the link under Structure). We
do no locking ourselves, but simply pass through to calls to fopen, fwrite, and so forth.

So, for 3.0, the question of "is multithreading safe for I/O" must be answered with, "is your platform’s C library threadsafe
for I/O?" Some are by default, some are not; many offer multiple implementations of the C library with varying tradeoffs of
threadsafety and efficiency. You, the programmer, are always required to take care with multiple threads.

(As an example, the POSIX standard requires that C stdio FILE» operations are atomic. POSIX-conforming C libraries (e.g,
on Solaris and GNU/Linux) have an internal mutex to serialize operations on F ILE*s. However, you still need to not do stupid
things like calling fclose (fs) in one thread followed by an access of f£s in another.)

So, if your platform’s C library is threadsafe, then your fstream I/O operations will be threadsafe at the lowest level. For
higher-level operations, such as manipulating the data contained in the stream formatting classes (e.g., setting up callbacks inside
an std: :ofstream), you need to guard such accesses like any other critical shared resource.

3.7.4.3 Future

A second choice may be available for I/O implementations: libio. This is disabled by default, and in fact will not currently work
due to other issues. It will be revisited, however.

The libio code is a subset of the guts of the GNU libc (glibc) I/O implementation. When libio is in use, the _ _basic_file
type is basically derived from FILE. (The real situation is more complex than that... it’s derived from an internal type used to
implement FILE. See libio/libioP.h to see scary things done with vtbls.) The result is that there is no "layer" of C stdio to go
through; the filebuf makes calls directly into the same functions used to implement fread, fwrite, and so forth, using internal
data structures. (And when I say "makes calls directly," I mean the function is literally replaced by a jump into an internal
function. Fast but frightening. *grin*)

Also, the libio internal locks are used. This requires pulling in large chunks of glibc, such as a pthreads implementation, and is
one of the issues preventing widespread use of libio as the libstdc++ cstdio implementation.

But we plan to make this work, at least as an option if not a future default. Platforms running a copy of glibc with a recent-enough
version will see calls from libstdc++ directly into the glibc already installed. For other platforms, a copy of the libio subsection
will be built and included in libstdc++.

3.7.4.4 Alternatives

Don’t forget that other cstdio implementations are possible. You could easily write one to perform your own forms of locking, to
solve your "interesting" problems.

The GNU C++ Library Manual 47 /385

3.7.5 Containers

This section discusses issues surrounding the design of multithreaded applications which use Standard C++ containers. All
information in this section is current as of the gcc 3.0 release and all later point releases. Although earlier gcc releases had a
different approach to threading configuration and proper compilation, the basic code design rules presented here were similar.
For information on all other aspects of multithreading as it relates to libstdc++, including details on the proper compilation of
threaded code (and compatibility between threaded and non-threaded code), see Chapter 17.

Two excellent pages to read when working with the Standard C++ containers and threads are SGI’s https://web.archive.org/-
web/20171225062613/http://www.sgi.com/tech/stl/thread_safety.html and SGI’s https://web.archive.org/web/20171225062613/-
http://www.sgi.com/tech/stl/Allocators.html.

However, please ignore all discussions about the user-level configuration of the lock implementation inside the STL container-
memory allocator on those pages. For the sake of this discussion, libstdc++ configures the SGI STL implementation, not you.
This is quite different from how gcc pre-3.0 worked. In particular, past advice was for people using g++ to explicitly define
_PTHREADS or other macros or port-specific compilation options on the command line to get a thread-safe STL. This is no
longer required for any port and should no longer be done unless you really know what you are doing and assume all responsi-
bility.

Since the container implementation of libstdc++ uses the SGI code, we use the same definition of thread safety as SGI when
discussing design. A key point that beginners may miss is the fourth major paragraph of the first page mentioned above (For
most clients...), which points out that locking must nearly always be done outside the container, by client code (that’d be you,
not us). There is a notable exceptions to this rule. Allocators called while a container or element is constructed uses an internal
lock obtained and released solely within libstdc++ code (in fact, this is the reason STL requires any knowledge of the thread
configuration).

For implementing a container which does its own locking, it is trivial to provide a wrapper class which obtains the lock (as SGI
suggests), performs the container operation, and then releases the lock. This could be templatized o a certain extent, on the
underlying container and/or a locking mechanism. Trying to provide a catch-all general template solution would probably be
more trouble than it’s worth.

The library implementation may be configured to use the high-speed caching memory allocator, which complicates thread safety
issues. For all details about how to globally override this at application run-time see here. Also useful are details on allocator
options and capabilities.

3.8 Exceptions

The C++ language provides language support for stack unwinding with t ry and catch blocks and the throw keyword.

These are very powerful constructs, and require some thought when applied to the standard library in order to yield components
that work efficiently while cleaning up resources when unexpectedly killed via exceptional circumstances.

Two general topics of discussion follow: exception neutrality and exception safety.

3.8.1 Exception Safety

What is exception-safe code?

Will define this as reasonable and well-defined behavior by classes and functions from the standard library when used by user-
defined classes and functions that are themselves exception safe.

Please note that using exceptions in combination with templates imposes an additional requirement for exception safety. Instan-
tiating types are required to have destructors that do no throw.

Using the layered approach from Abrahams, can classify library components as providing set levels of safety. These will be
called exception guarantees, and can be divided into three categories.

* One. Don’t throw.
As specified in 23.2.1 general container requirements. Applicable to container and string classes.

Member functions erase, pop_back, pop_front, swap, clear. And iterator copy constructor and assignment operator.

https://web.archive.org/web/20171225062613/http://www.sgi.com/tech/stl/thread_safety.html
https://web.archive.org/web/20171225062613/http://www.sgi.com/tech/stl/thread_safety.html
https://web.archive.org/web/20171225062613/http://www.sgi.com/tech/stl/Allocators.html
https://web.archive.org/web/20171225062613/http://www.sgi.com/tech/stl/Allocators.html

The GNU C++ Library Manual 48 /385

* Two. Don’t leak resources when exceptions are thrown. This is also referred to as the “basic” exception safety guarantee.

This applicable throughout the standard library.

* Three. Commit-or-rollback semantics. This is referred to as “strong” exception safety guarantee.
As specified in 23.2.1 general container requirements. Applicable to container and string classes.
Member functions insert of a single element, push_back, push_front, and rehash.

3.8.2 Exception Neutrality

Simply put, once thrown an exception object should continue in flight unless handled explicitly. In practice, this means propagat-

ing exceptions should not be swallowed in gratuitous catch (. ..) blocks. Instead, matching t ry and catch blocks should
have specific catch handlers and allow un-handed exception objects to propagate. If a terminating catch (.. .) blocks exist
then it should end with a throw to re-throw the current exception.

Why do this?

By allowing exception objects to propagate, a more flexible approach to error handling is made possible (although not required.)
Instead of dealing with an error immediately, one can allow the exception to propagate up until sufficient context is available and
the choice of exiting or retrying can be made in an informed manner.

Unfortunately, this tends to be more of a guideline than a strict rule as applied to the standard library. As such, the following is a
list of known problem areas where exceptions are not propagated.

* Input/Output

The destructor ios_base: :Init::~Init () swallows all exceptions from f1lush called on all open streams at termina-
tion.

All formatted input in basic_1istream or formatted output in basic_ostream can be configured to swallow exceptions
when exceptions is set to ignore ios_base::badbit.

Functions that have been registered with ios_base: :register_callback swallow all exceptions when called as part
of a callback event.

When closing the underlying file, basic_filebuf: :close will swallow (non-cancellation) exceptions thrown and return
NULL.

e Thread

The constructors of t hread that take a callable function argument swallow all exceptions resulting from executing the function
argument.

3.8.3 Doing without

C++ is a language that strives to be as efficient as is possible in delivering features. As such, considerable care is used by both
language implementer and designers to make sure unused features not impose hidden or unexpected costs. The GNU system
tries to be as flexible and as configurable as possible. So, it should come as no surprise that GNU C++ provides an optional
language extension, spelled —-fno—-exceptions, as a way to excise the implicitly generated magic necessary to support try
and catch blocks and thrown objects. (Language support for —fno—exceptions is documented in the GNU GCC manual.)

Before detailing the library support for —fno—exceptions, first a passing note on the things lost when this flag is used: it
will break exceptions trying to pass through code compiled with —~fno—-exceptions whether or not that code has any t ry or
catch constructs. If you might have some code that throws, you shouldn’t use ~fno—exceptions. If you have some code
that uses try or catch, you shouldn’t use —fno-exceptions.

And what it to be gained, tinkering in the back alleys with a language like this? Exception handling overhead can be measured
in the size of the executable binary, and varies with the capabilities of the underlying operating system and specific configuration
of the C++ compiler. On recent hardware with GNU system software of the same age, the combined code and data size overhead
for enabling exception handling is around 7%. Of course, if code size is of singular concern than using the appropriate optimizer
setting with exception handling enabled (ie, -Os —-fexceptions) may save up to twice that, and preserve error checking.

http://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html#Code-Gen-Options

The GNU C++ Library Manual 49/385

So. Hell bent, we race down the slippery track, knowing the brakes are a little soft and that the right front wheel has a tendency
to wobble at speed. Go on: detail the standard library support for ~-fno-exceptions.

In sum, valid C++ code with exception handling is transformed into a dialect without exception handling. In detailed steps: all use
of the C++ keywords try, catch, and throw in the standard library have been permanently replaced with the pre-processor
controlled equivalents spelled __try, ___catch,and __throw_exception_again. They are defined as follows.

#if __ _cpp_exceptions

define __ try try

define _ catch(X) catch (X)

define __ _throw_exception_again throw
#else

define __try if (true)

define _ catch(X) if (false)

define __throw_exception_again
#endif

In addition, for every object derived from class exception, there exists a corresponding function with C language linkage. An
example:

#if _ cpp_exceptions
void ___throw_bad_exception (void)
{ throw bad_exception(); }

felse
void ___throw_bad_exception (void)
{ abort(); 1}

#endif

The last language feature needing to be transformed by —fno—-exceptions is treatment of exception specifications on member
functions. Fortunately, the compiler deals with this by ignoring exception specifications and so no alternate source markup is
needed.

By using this combination of language re-specification by the compiler, and the pre-processor tricks and the functional indirection
layer for thrown exception objects by the library, libstdc++ files can be compiled with —~fno—-exceptions.

User code that uses C++ keywords like throw, try, and cat ch will produce errors even if the user code has included libstdc++
headers and is using constructs like basic_iostream. Even though the standard library has been transformed, user code may
need modification. User code that attempts or expects to do error checking on standard library components compiled with
exception handling disabled should be evaluated and potentially made conditional.

Some issues remain with this approach (see bugzilla entry 25191). Code paths are not equivalent, in particular catch blocks
are not evaluated. Also problematic are throw expressions expecting a user-defined throw handler. Known problem areas in the
standard library include using an instance of basic_istream with exceptions set to specific ios_base::iostate conditions,
or cascading catch blocks that dispatch error handling or recovery efforts based on the type of exception object thrown.

Oh, and by the way: none of this hackery is at all special. (Although perhaps well-deserving of a raised eyebrow.) Support
continues to evolve and may change in the future. Similar and even additional techniques are used in other C++ libraries and
compilers.

C++ hackers with a bent for language and control-flow purity have been successfully consoled by grizzled C veterans lamenting
the substitution of the C language keyword const with the uglified doppelganger ___const.

3.8.4 Compatibility
3.8.4.1 Withc

C language code that is expecting to interoperate with C++ should be compiled with —~fexceptions. This will make debugging
a C language function called as part of C++-induced stack unwinding possible.

In particular, unwinding into a frame with no exception handling data will cause a runtime abort. If the unwinder runs out of
unwind info before it finds a handler, std: :terminate () is called.

Please note that most development environments should take care of getting these details right. For GNU systems, all appropriate
parts of the GNU C library are already compiled with ~fexceptions.

The GNU C++ Library Manual 50/ 385

3.8.4.2 With POSIX thread cancellation

GNU systems re-use some of the exception handling mechanisms to track control flow for POSIX thread cancellation.

Cancellation points are functions defined by POSIX as worthy of special treatment. The standard library may use some of these
functions to implement parts of the ISO C++ standard or depend on them for extensions.

Of note:
nanosleep, read, write, open, close, and wait.

The parts of libstdc++ that use C library functions marked as cancellation points should take pains to be exception neutral. Failing
this, cat ch blocks have been augmented to show that the POSIX cancellation object is in flight.

This augmentation adds a catch block for ___cxxabivl::__ forced_unwind, which is the object representing the POSIX
cancellation object. Like so:

catch (const __ cxxabivl::_ forced_unwindé&)

{
this—->_M_setstate (ios_base::badbit);
throw;

}
catch(...)
{ this—->_M_ setstate (ios_base: :badbit); }

3.8.5 Bibliography

[1]1 System Interface Definitions, Issue 7 (IEEE Std. 1003.1-2008) , 2.9.5 Thread Cancellation , Copyright © 2008
The Open Group/The Institute of Electrical and Electronics Engineers, Inc. .

[2] David Abrahams, Error and Exception Handling , Boost .

[3] David Abrahams, Exception-Safety in Generic Components , Boost .
[4] Matt Austern, Standard Library Exception Policy , WG21 N1077 .
[5] Richard Henderson, ia64 c++ abi exception handling , GNU .

[6] Bjarne Stroustrup, Appendix E: Standard-Library Exception Safety
[7]1 Herb Sutter, Exception-Safety Issues and Techniques .

[8] GCC Bug 25191: exception_defines.h #defines try/catch

3.9 Debugging Support

There are numerous things that can be done to improve the ease with which C++ binaries are debugged when using the GNU
tool chain. Here are some of them.

3.9.1 Using g++

Compiler flags determine how debug information is transmitted between compilation and debug or analysis tools.

The default optimizations and debug flags for a libstdc++ build are —g -02. However, both debug and optimization flags
can be varied to change debugging characteristics. For instance, turning off all optimization via the -g -00 -fno-inline
flags will disable inlining and optimizations, and add debugging information, so that stepping through all functions, (including
inlined constructors and destructors) is possible. In addition, ~-fno-eliminate-unused-debug-types can be used when
additional debug information, such as nested class info, is desired.

http://www.opengroup.org/austin/
https://www.boost.org/community/error_handling.html
https://www.boost.org/community/exception_safety.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1997/N1077.pdf
http://gcc.gnu.org/ml/gcc-patches/2001-03/msg00661.html
https://www.stroustrup.com/3rd_safe.pdf
http://gcc.gnu.org/PR25191

The GNU C++ Library Manual 51/385

Or, the debug format that the compiler and debugger use to communicate information about source constructs can be changed
via —gdwarf-2 or —~gstabs flags: some debugging formats permit more expressive type and scope information to be shown
in GDB. Expressiveness can be enhanced by flags like —g3. The default debug information for a particular platform can be
identified via the value set by the PREFERRED_DEBUGGING_TYPE macro in the GCC sources.

Many other options are available: please see "Options for Debugging Your Program" in Using the GNU Compiler Collection
(GCC) for a complete list.

3.9.2 Debug Versions of Library Binary Files
If you would like debug symbols in libstdc++, there are two ways to build libstdc++ with debug flags. The first is to create a
separate debug build by running make from the top-level of a tree freshly-configured with

——enable-libstdcxx—-debug

and perhaps

——enable-libstdcxx-debug-flags='...’

Both the normal build and the debug build will persist, without having to specify CXXFLAGS, and the debug library will be
installed in a separate directory tree, in (prefix) /1lib/debug. For more information, look at the configuration section.

A second approach is to use the configuration flags

make CXXFLAGS='-g3 -fno-inline -00’ all

This quick and dirty approach is often sufficient for quick debugging tasks, when you cannot or don’t want to recompile your
application to use the debug mode.

3.9.3 Memory Leak Hunting

On many targets GCC supports AddressSanitizer, a fast memory error detector, which is enabled by the -fsanitize=address
option.

There are also various third party memory tracing and debug utilities that can be used to provide detailed memory allocation
information about C++ code. An exhaustive list of tools is not going to be attempted, but includes mtrace, valgrind,
mudflap (no longer supported since GCC 4.9.0), ElectricFence, and the non-free commercial product purify. In addition,
libcwd, jemalloc and TCMalloc have replacements for the global new and delete operators that can track memory allocation
and deallocation and provide useful memory statistics.

For valgrind, there are some specific items to keep in mind. First of all, use a version of valgrind that will work with current
GNU C++ tools: the first that can do this is valgrind 1.0.4, but later versions should work better. Second, using an unoptimized
build might avoid confusing valgrind.

Third, it may be necessary to force deallocation in other libraries as well, namely the "C" library. On GNU/Linux, this can be
accomplished with the appropriate use of the __cxa_atexit or atexit functions.

#include <cstdlib>
extern "C" void __ libc_freeres (void);
void do_something () { }

int main ()

{
atexit (__libc_freeres);
do_something () ;
return 0;

}

http://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html#Debugging%20Options

The GNU C++ Library Manual 52 /385

or,using __cxa_atexit:

extern "C" void __ libc_freeres (void);
extern "C" int __ cxa_atexit (void (*xfunc) (void x), void xarg, void =xd);

void do_something () { }

int main ()

{

extern voidx __ dso_handle _ attribute_ ((__weak_));

_ cxa_atexit ((void (%) (void *)) _ libc_freeres, NULL,
&_dso_handle ? _ dso_handle : NULL);

do_test ();

(
return 0;

Suggested valgrind flags, given the suggestions above about setting up the runtime environment, library, and test file, might be:

valgrind -v —--num-callers=20 --leak-check=yes —--leak-resolution=high --show-reachable= ¢
yes a.out

3.9.3.1 Non-memory leaks in Pool and MT allocators

There are different kinds of allocation schemes that can be used by std: :allocator. Prior to GCC 3.4.0 the default was
to use a pooling allocator, pool_allocator, which is still available as the optional __pool_alloc extension. Another
optional extension, __mt_alloc, is a high-performance pool allocator.

In a suspect executable these pooling allocators can give the mistaken impression that memory is being leaked, when in reality
the memory "leak" is a pool being used by the library’s allocator and is reclaimed after program termination.

If you’re using memory debugging tools on a program that uses one of these pooling allocators, you can set the environment
variable GLIBCXX_FORCE_NEW to keep extraneous pool allocation noise from cluttering debug information. For more details,
see the mt allocator documentation and look specifically for GLIBCXX_FORCE_NEW.

3.9.4 Data Race Hunting

All synchronization primitives used in the library internals need to be understood by race detectors so that they do not produce
false reports.

Two annotation macros are used to explain low-level synchronization to race detectors: _GLIBCXX_SYNCHRONIZATION_HAPPENS_
and _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER (). By default, these macros are defined empty -- anyone who
wants to use a race detector needs to redefine them to call an appropriate API. Since these macros are empty by default when the
library is built, redefining them will only affect inline functions and template instantiations which are compiled in user code. This
allows annotation of templates such as shared_ptr, but not code which is only instantiated in the library. Code which is only
instantiated in the library needs to be recompiled with the annotation macros defined. That can be done by rebuilding the entire
libstdc++. so file but a simpler alternative exists for ELF platforms such as GNU/Linux, because ELF symbol interposition
allows symbols defined in the shared library to be overridden by symbols with the same name that appear earlier in the runtime
search path. This means you only need to recompile the functions that are affected by the annotation macros, which can be done
by recompiling individual files. Annotating std: : stringand std: :wstring reference counting can be done by disabling
extern templates (by defining _ GLIBCXX_EXTERN_TEMPLATE=-1) or by rebuilding the src/string—-inst.cc file. An-
notating the remaining atomic operations (at the time of writing these are in ios_base: :Init::~Init, locale::_Impl,
locale: :facet and thread: :_M_start_thread) requires rebuilding the relevant source files.

The approach described above is known to work with the following race detection tools: DRD, Helgrind, and ThreadSanitizer
(this refers to ThreadSanitizer v1, not the new "tsan" feature built-in to GCC itself).

With DRD, Helgrind and ThreadSanitizer you will need to define the macros like this:

#define _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE (A) ANNOTATE_HAPPENS_BEFORE (A)
#define _GLIBCXX_ SYNCHRONIZATION_HAPPENS_AFTER(A) ANNOTATE_HAPPENS_AFTER (A)

Refer to the documentation of each particular tool for details.

https://valgrind.org/docs/manual/drd-manual.html
https://valgrind.org/docs/manual/hg-manual.html
https://github.com/google/sanitizers

The GNU C++ Library Manual 53 /385

3.9.5 Using gdb

Many options are available for GDB itself: please see "GDB features for C++" in the GDB documentation. Also recommended:
the other parts of this manual.

These settings can either be switched on in at the GDB command line, or putinto a . gdbinit file to establish default debugging
characteristics, like so:

set
set
set
set
set
set

print pretty on

print object on

print static-members on
print vtbl on

print demangle on
demangle-style gnu-v3

Starting with version 7.0, GDB includes support for writing pretty-printers in Python. Pretty printers for containers and other
classes are distributed with GCC from version 4.5.0 and should be installed alongside the libstdc++ shared library files and found
automatically by GDB.

Depending where libstdc++ is installed, GDB might refuse to auto-load the python printers and print a warning instead. If this
happens the python printers can be enabled by following the instructions GDB gives for setting your auto-load safe-path

in your .

gdbinit configuration file.

Once loaded, standard library classes that the printers support should print in a more human-readable format. To print the classes
in the old style, use the /r (raw) switch in the print command (i.e., print /r £oo). This will print the classes as if the Python
pretty-printers were not loaded.

For additional information on STL support and GDB please visit: "GDB Support for STL" in the GDB wiki. Additionally,
in-depth documentation and discussion of the pretty printing feature can be found in "Pretty Printing" node in the GDB manual.
You can find on-line versions of the GDB user manual in GDB’s homepage, at "GDB: The GNU Project Debugger" .

3.9.6 Tracking uncaught exceptions

The verbose termination handler gives information about uncaught exceptions which kill the program.

3.9.7 Debug Mode

The Debug Mode has compile and run-time checks for many containers.

3.9.8 Compile Time Checking

The Compile-Time Checks extension has compile-time checks for many algorithms.

http://sourceware.org/gdb/current/onlinedocs/gdb/
http://sourceware.org/gdb/wiki/STLSupport
http://sourceware.org/gdb/

The GNU C++ Library Manual 54 /385

Part 11

Standard Contents

The GNU C++ Library Manual

55/385

Chapter 4

Support

This part deals with the functions called and objects created automatically during the course of a program’s existence.

While we can’t reproduce the contents of the Standard here (you need to get your own copy from your nation’s member body;
see our homepage for help), we can mention a couple of changes in what kind of support a C++ program gets from the Standard

Library.

4.1 Types

4.1.1 Fundamental Types

C++ has the following builtin types:

* char

* signed char

* unsigned char
* signed short

* signed int

* signed long

* unsigned short
* unsigned int
* unsigned long
* bool

e wchar_t

* float

* double

* long double

These fundamental types are always available, without having to include a header file. These types are exactly the same in either

C++orinC.

Specializing parts of the library on these types is prohibited: instead, use a POD.

The GNU C++ Library Manual 56 /385

4.1.2 Numeric Properties

The header <1imit s> defines traits classes to give access to various implementation defined-aspects of the fundamental types.
The traits classes -- fourteen in total -- are all specializations of the class template numeric_limits and defined as follows:

template<typename T>
struct class
{
static const bool is_specialized;
static T max () throw();
static T min() throw();

static const int digits;

static const int digitslO0;
static const bool is_signed;
static const bool is_integer;
static const bool is_exact;
static const int radix;

static T epsilon() throw();
static T round_error () throw();

static const int min_exponent;
static const int min_exponentl0;
static const int max_exponent;
static const int max_exponentl0;

static const bool has_infinity;

static const bool has_qguiet_NaN;

static const bool has_signaling_NaN;

static const float_denorm_style has_denorm;
static const bool has_denorm_loss;

static T infinity () throw();

static T quiet_NaN() throw();

static T denorm_min () throw();

static const bool is_iec559;
static const bool is_bounded;
static const bool is_modulo;

static const bool traps;
static const bool tinyness_before;
static const float_round_style round_style;

}i

4.1.3 NULL

The only change that might affect people is the type of NULL: while it is required to be a macro, the definition of that macro is
not allowed to be an expression with pointer type such as (voidx) 0, which is often used in C.

For g++, NULL is #define’d tobe __null, a magic keyword extension of g++ that is slightly safer than a plain integer.

The biggest problem of #defining NULL to be something like “OL” is that the compiler will view that as a long integer before it
views it as a pointer, so overloading won’t do what you expect. It might not even have the same size as a pointer, so passing NULL
to a varargs function where a pointer is expected might not even work correctly if sizeof (NULL) < sizeof (voidx). The
G++ __null extension is defined so that sizeof (__null) == sizeof (voidx) to avoid this problem.

Scott Meyers explains this in more detail in his book Effective Modern C++ and as a guideline to solve this problem recommends
to not overload on pointer-vs-integer types to begin with.

The C++ 2011 standard added the nullptr keyword, which is a null pointer constant of a special type, std: :nullptr_t.
Values of this type can be implicitly converted to any pointer type, and cannot convert to integer types or be deduced as an integer
type. Unless you need to be compatible with C++98/C++03 or C you should prefer to use nullptr instead of NULL.

https://www.aristeia.com/books.html

The GNU C++ Library Manual 57 /385

4.2 Dynamic Memory

In C++98 there are six flavors each of operator new and operator delete, so make certain that you’re using the right
ones. Here are quickie descriptions of operator new:

voidx operator new(std::size_t); Single object form. Throws std: :bad_alloc on error. This is what most
people are used to using.

void* operator new(std::size_t, std::nothrow_t) noexcept; Single object “nothrow” form. Calls operator
new (std: :size_t) butif that throws, returns a null pointer instead.

void* operator new[] (std::size_t); Arraynew. Callsoperator new(std::size_t) andsothrows std: :bad_
on error.

void* operator new[] (std::size_t, std::nothrow_t) noexcept; Array “nothrow”’new. Calls operator
new[] (std::size_t) butif that throws, returns a null pointer instead.

voidx operator new(std::size_t, voidx) noexcept; Non-allocating, “placement” single-object new, which
does nothing except return its argument. This function cannot be replaced.

voidx operator new[] (std::size_t, void*) noexcept; Non-allocating, “placement” array new, which also
does nothing except return its argument. This function cannot be replaced.

They are distinguished by the arguments that you pass to them, like any other overloaded function. The six flavors of operator
delete are distinguished the same way, but none of them are allowed to throw an exception under any circumstances anyhow.
(The overloads match up with the ones above, for completeness’ sake.)

The C++ 2014 revision of the standard added two additional overloads of operator delete for “sized deallocation”, allow-
ing the compiler to provide the size of the storage being freed.

The C++ 2017 standard added even more overloads of both operator new and operator delete for allocating and
deallocating storage for overaligned types. These overloads correspond to each of the allocating forms of operator new and
operator delete but with an additional parameter of type std::align_val_t. These new overloads are not interchangeable
with the versions without an aligment parameter, so if memory was allocated by an overload of operator new taking an
alignment parameter, then it must be decallocated by the corresponding overload of operator delete that takes an alignment
parameter.

Apart from the non-allocating forms, the default versions of the array and nothrow operator new functions will all result
in a call to either operator new (std::size_t) or operator new(std::size_t, std::align_val_t),and
similarly the default versions of the array and nothrow operator delete functions will result in a call to either operator
delete (void«) or operator delete (voidx, std::align_val_t) (or the sized versions of those).

Apart from the non-allocating forms, any of these functions can be replaced by defining a function with the same signature in
your program. Replacement versions must preserve certain guarantees, such as memory obtained from a nothrow operator
new being free-able by the normal (non-nothrow) operator delete, and the sized and unsized forms of operator
delete being interchangeable (because it’s unspecified whether the compiler calls the sized delete instead of the normal
one). The simplest way to meet the guarantees is to only replace the ordinary operator new(size_t) and operator
delete (void«) and operator delete(void*, std::size_t) functions, and the replaced versions will be used
by all of operator new(size_t, nothrow_t), operator new[] (size_t) and operator newl[] (size_t,
nothrow_t) and the corresponding operator delete functions. To support types with extended alignment you may
also need to replace operator new(size_t, align_val_t) and operator delete (voidx, align_val_t)
operator delete (void*, size_t, align_val_t) (which will then be used by the nothrow and array forms for
extended alignments). If you do need to replace other forms (e.g. to define the nothrow operator new to allocate memory
directly, so it works with exceptions disabled) then make sure the memory it allocates can still be freed by the non-nothrow forms
of operator delete.

If the default versions of operator new (std::size_t) andoperator new(size_t, std::align_val_t) can’t
allocate the memory requested, they usually throw an exception object of type std: :bad_alloc (or some class derived from
that). However, the program can influence that behavior by registering a “new-handler”, because what operator new actually
does is something like:

The GNU C++ Library Manual 58 /385

while (true)

{

if (void* p = /* try to allocate memory =/)
return p;

else if (std::new_handler h = std::get_new_handler ())
h ();

else

throw bad_alloc{};

This means you can influence what happens on allocation failure by writing your own new-handler and then registering it with
std: :set_new_handler:

typedef void (*PFV) ();

static charx safety;
static PFV old_handler;

void my_new_handler ()
{
delete[] safety;
safety = nullptr;
popup_window ("Dude, you are running low on heap memory. You"
" should, like, close some windows, or something."

" The next time you run out, we’re gonna burn!");
set_new_handler (old_handler);
return;

int main ()

safety = new char[500000];
old_handler = set_new_handler (&my_new_handler);

4.2.1 Additional Notes

Remember that it is perfectly okay to delete a null pointer! Nothing happens, by definition. That is not the same thing as
deleting a pointer twice.

std: :bad_alloc is derived from the base std: : exception class, see Exceptions.

4.3 Termination

4.3.1 Termination Handlers

Not many changes here to <cstdlib>. You should note that the abort () function does not call the destructors of automatic
nor static objects, so if you’re depending on those to do cleanup, it isn’t going to happen. (The functions registered with
atexit () don’t get called either, so you can forget about that possibility, too.)

The good old exit () function can be a bit funky, too, until you look closer. Basically, three points to remember are:

1. Static objects are destroyed in reverse order of their creation.

2. Functions registered with atexit () are called in reverse order of registration, once per registration call. (This isn’t
actually new.)

The GNU C++ Library Manual 59 /385

3. The previous two actions are “interleaved,” that is, given this pseudocode:

extern "C or C++" void f1 ();
extern "C or C++" void f2 ();

static Thing objl;
atexit (f1l);
static Thing obj2;
atexit (£2);

then at a call of exit (), £2 will be called, then obj2 will be destroyed, then £1 will be called, and finally obj1 will
be destroyed. If £1 or £2 allow an exception to propagate out of them, Bad Things happen.

Note also that atexit () is only required to store 32 functions, and the compiler/library might already be using some of those

slots. If you think you may run out, we recommend using the xatexit/xexit combination from 1ibiberty, which has no
such limit.

4.3.2 Verbose Terminate Handler

If you are having difficulty with uncaught exceptions and want a little bit of help debugging the causes of the core dumps, you
can make use of a GNU extension, the verbose terminate handler.

The verbose terminate handler is only available for hosted environments (see Configuring) and will be used by default unless the
library is built with ——disable-1libstdcxx-verbose or with exceptions disabled. If you need to enable it explicitly you
can do so by calling the std: : set_terminate function.

#include <exception>
int main ()

{

std::set_terminate(__gnu_cxx::__verbose_terminate_handler);

throw anything;

The __verbose_terminate_handler function obtains the name of the current exception, attempts to demangle it, and
prints it to stderr. If the exception is derived from std: : exception then the output from what () will be included.

Any replacement termination function is required to kill the program without returning; this one calls std: : abort.
For example:
#include <exception>

#include <stdexcept>

struct argument_error : public std::runtime_error
{
argument_error (const std::string& s): std::runtime_error(s) { }

bi

int main (int argc)

{

std::set_terminate(___gnu_cxx::__verbose_terminate_handler);
if (argc > 5)

throw argument_error ("argc is greater than 5!");
else

throw argc;

With the verbose terminate handler active, this gives:

The GNU C++ Library Manual 60 /385

% ./a.out

terminate called after throwing a ‘int’

Aborted

%$./a.out £ £ f £ £ f £ f £ £ f

terminate called after throwing an instance of ‘argument_error’
what () : argc is greater than 5!

Aborted

The ’Aborted’ line is printed by the shell after the process exits by calling abort ().

As this is the default termination handler, nothing need be done to use it. To go back to the previous “silent death” method,
simply include <exception> and <cstdlib>, and call

std::set_terminate (std::abort);

After this, all calls to terminate will use abort as the terminate handler.

Note: the verbose terminate handler will attempt to write to stderr. If your application closes stderr or redirects it to an
inappropriate location, ___verbose_terminate_handler will behave in an unspecified manner.

The GNU C++ Library Manual 61/385

Chapter 5

Diagnostics

5.1 Exceptions

5.1.1 API Reference

Most exception classes are defined in one of the standard headers <exception>, <stdexcept>, <new>, and <typeinfo>.

The C++ 2011 revision of the standard added more exception types in the headers <functional>, <future>, <regex>,

and <system_error>. The C++ 2017 revision of the standard added more exception types in the headers <any>, <filesystem>,
<optional>,and <variant>.

All exceptions thrown by the library have a base class of type std: :exception, defined in <exception>. This type has
no std: : string member.

Derived from this are several classes that may have a std: :string member. A full hierarchy can be found in the source
documentation.

5.1.2 Adding Data to exception
The standard exception classes carry with them a single string as data (usually describing what went wrong or where the ’throw’
took place). It’s good to remember that you can add your own data to these exceptions when extending the hierarchy:

struct My_Exception : public std::runtime_error

{

public:
My_Exception (const string& whatarg)
std::runtime_error (whatarg), e(errno), id(GetDataBaseID()) { }
int errno_at_time_of throw() const { return e; }
DBID id_of_thing_that_threw() const { return id; }
protected:
int e;
DBID id; // some user—-defined type

}i

5.2 Use of errno by the library

The C and POSIX standards guarantee that errno is never set to zero by any library function. The C++ standard has less to say
about when errno is or isn’t set, but libstdc++ follows the same rule and never sets it to zero.

On the other hand, there are few guarantees about when the C++ library sets errno on error, beyond what is specified for
functions that come from the C library. For example, when std: : stoi throws an exception of type std: :out_of_range,
errno may or may not have been set to ERANGE.

The GNU C++ Library Manual 62 /385

Parts of the C++ library may be implemented in terms of C library functions, which may result in errno being set with no
explicit call to a C function. For example, on a target where operator new uses malloc a failed memory allocation with
operator new might set errno to ENOMEM. Which C++ library functions can set errno in this way is unspecified because
it may vary between platforms and between releases.

5.3 Concept Checking

In 1999, SGI added “concept checkers” to their implementation of the STL: code which checked the template parameters of
instantiated pieces of the STL, in order to insure that the parameters being used met the requirements of the standard. For
example, the Standard requires that types passed as template parameters to vector be "Assignable" (which means what you
think it means). The checking was done during compilation, and none of the code was executed at runtime.

Unfortunately, the size of the compiler files grew significantly as a result. The checking code itself was cumbersome. And bugs
were found in it on more than one occasion.

The primary author of the checking code, Jeremy Siek, had already started work on a replacement implementation. The new
code was formally reviewed and accepted into the Boost libraries, and we are pleased to incorporate it into the GNU C++ library.

The new version imposes a much smaller space overhead on the generated object file. The checks are also cleaner and easier to
read and understand.

They are off by default for all versions of GCC. They can be enabled at configure time with --enable-concept-checks. You can
enable them on a per-translation-unit basis with -D_GLIBCXX_CONCEPT_CHECKS.

Please note that the checks are based on the requirements in the original C++ standard, many of which were relaxed in the C++11
standard and so valid C++11 code may be incorrectly rejected by the concept checks. Additionally, some correct C++03 code
might be rejected by the concept checks, for example template argument types may need to be complete when used in a template
definition, rather than at the point of instantiation. There are no plans to address these shortcomings.

http://www.boost.org/libs/concept_check/concept_check.htm

The GNU C++ Library Manual 63 /385

Chapter 6

Utilities

6.1 Functors

If you don’t know what functors are, you’re not alone. Many people get slightly the wrong idea. In the interest of not rein-
venting the wheel, we will refer you to the introduction to the functor concept written by SGI as part of their STL, in their
https://web.archive.org/web/20171225062613/http://www.sgi.com/tech/stl/functors.html.

6.2 Pairs

The pair<T1, T2> is a simple and handy way to carry around a pair of objects. One is of type T1, and another of type T2; they
may be the same type, but you don’t get anything extra if they are. The two members can be accessed directly, as . first and
. second.

Construction is simple. The default ctor initializes each member with its respective default ctor. The other simple ctor,

pair (const Tl& x, const T2& V);

does what you think it does, first getting x and second getting y.
There is a constructor template for copying pairs of other types:

template <class U, class V> pair (const pair<U,V>& p);

The compiler will convert as necessary from U to T1 and from V to T2 in order to perform the respective initializations.

The comparison operators are done for you. Equality of two pair<T1, T2>s is defined as both £irst members compar-
ing equal and both second members comparing equal; this simply delegates responsibility to the respective operator==
functions (for types like MyClass) or builtin comparisons (for types like int, char, etc).

The less-than operator is a bit odd the first time you see it. It is defined as evaluating to:

x.first < vy.first |
(!'(y.first < x.first) && x.second < vy.second)

The other operators are not defined using the rel_ops functions above, but their semantics are the same.

Finally, there is a template function called make_pair that takes two references-to-const objects and returns an instance of a
pair instantiated on their respective types:

pair<int,MyClass> p = make_pair (4,myobject);

https://web.archive.org/web/20171225062613/http://www.sgi.com/tech/stl/functors.html
https://web.archive.org/web/20171225062613/http://www.sgi.com/tech/stl/functors.html

The GNU C++ Library Manual 64 /385

6.3 Memory

Memory contains three general areas. First, function and operator calls via new and de 1ete operator or member function calls.
Second, allocation via allocator. And finally, smart pointer and intelligent pointer abstractions.

6.3.1 Allocators

Memory management for Standard Library entities is encapsulated in a class template called allocator. The allocator
abstraction is used throughout the library in st ring, container classes, algorithms, and parts of iostreams. This class, and base
classes of it, are the superset of available free store (“heap’”) management classes.

6.3.1.1 Requirements

The C++ standard only gives a few directives in this area:

* When you add elements to a container, and the container must allocate more memory to hold them, the container makes the
request via its Allocator template parameter, which is usually aliased to allocator_type. This includes adding chars to the string
class, which acts as a regular STL container in this respect.

* The default Allocator argument of every container-of-T is allocator<T>.

* The interface of the allocator<T> class is extremely simple. It has about 20 public declarations (nested typedefs, member
functions, etc), but the two which concern us most are:

T* allocate (size_type n, const voidx hint = 0);
void deallocate (Tx p, size_type n);

The n arguments in both those functions is a count of the number of T’s to allocate space for, not their total size. (This is a
simplification; the real signatures use nested typedefs.)

» The storage is obtained by calling : : operator new, but it is unspecified when or how often this function is called. The use
of the hint is unspecified, but intended as an aid to locality if an implementation so desires. [20.4.1.1]1/6

Complete details can be found in the C++ standard, look in [20.4 Memory].

6.3.1.2 Design Issues

The easiest way of fulfilling the requirements is to call operator new each time a container needs memory, and to call
operator delete each time the container releases memory. This method may be slower than caching the allocations and re-
using previously-allocated memory, but has the advantage of working correctly across a wide variety of hardware and operating
systems, including large clusters. The __gnu_cxx: :new_allocator implements the simple operator new and operator
delete semantics, while ___gnu_cxx::malloc_allocator implements much the same thing, only with the C language
functions std: :malloc and std: : free.

Another approach is to use intelligence within the allocator class to cache allocations. This extra machinery can take a variety
of forms: a bitmap index, an index into an exponentially increasing power-of-two-sized buckets, or simpler fixed-size pooling
cache. The cache is shared among all the containers in the program: when your program’s std: :vector<int> gets cut
in half and frees a bunch of its storage, that memory can be reused by the private std: : 1ist<WonkyWidget> brought in
from a KDE library that you linked against. And operators new and delete are not always called to pass the memory on,
either, which is a speed bonus. Examples of allocators that use these techniques are ___gnu_cxx: :bitmap_allocator,
__gnu_cxx::pool_allocator,and __gnu_cxx::___mt_alloc.

Depending on the implementation techniques used, the underlying operating system, and compilation environment, scaling
caching allocators can be tricky. In particular, order-of-destruction and order-of-creation for memory pools may be difficult to
pin down with certainty, which may create problems when used with plugins or loading and unloading shared objects in memory.
As such, using caching allocators on systems that do not support abi::__ cxa_atexit is not recommended.

http://gcc.gnu.org/ml/libstdc++/2001-05/msg00105.html

The GNU C++ Library Manual 65 /385

6.3.1.3 Implementation

6.3.1.3.1 Interface Design

The only allocator interface that is supported is the standard C++ interface. As such, all STL containers have been adjusted, and
all external allocators have been modified to support this change.

The class allocator just has typedef, constructor, and rebind members. It inherits from one of the high-speed extension
allocators, covered below. Thus, all allocation and deallocation depends on the base class.

The base class that allocator is derived from may not be user-configurable.

6.3.1.3.2 Selecting Default Allocation Policy

It’s difficult to pick an allocation strategy that will provide maximum utility, without excessively penalizing some behavior. In
fact, it’s difficult just deciding which typical actions to measure for speed.

Three synthetic benchmarks have been created that provide data that is used to compare different C++ allocators. These tests are:

1. Insertion.
Over multiple iterations, various STL container objects have elements inserted to some maximum amount. A variety of
allocators are tested. Test source for sequence and associative containers.

2. Insertion and erasure in a multi-threaded environment.
This test shows the ability of the allocator to reclaim memory on a per-thread basis, as well as measuring thread contention
for memory resources. Test source here.

3. A threaded producer/consumer model.

Test source for sequence and associative containers.

The current default choice for allocatoris __ _gnu_cxx::new_allocator.

6.3.1.3.3 Disabling Memory Caching

Inuse, allocator may allocate and deallocate using implementation-specific strategies and heuristics. Because of this, a given
call to an allocator object’s allocate member function may not actually call the global operator new and a given call to
to the deallocate member function may not call operator delete.

This can be confusing.

In particular, this can make debugging memory errors more difficult, especially when using third-party tools like valgrind or
debug versions of new.

There are various ways to solve this problem. One would be to use a custom allocator that just called operators new and delete
directly, for every allocation. (See the default allocator, include/ext/new_allocator.h, for instance.) However, that
option may involve changing source code to use a non-default allocator. Another option is to force the default allocator to remove
caching and pools, and to directly allocate with every call of allocate and directly deallocate with every call of deallocate,
regardless of efficiency. As it turns out, this last option is also available.

To globally disable memory caching within the library for some of the optional non-default allocators, merely set GLIBCXX_FORCE_NE
(with any value) in the system’s environment before running the program. If your program crashes with GLIBCXX_FORCE_NEW

in the environment, it likely means that you linked against objects built against the older library (objects which might still using

the cached allocations...).

http://gcc.gnu.org/viewcvs/gcc/trunk/libstdc%2B%2B-v3/testsuite/performance/23_containers/insert/sequence.cc?view=markup
http://gcc.gnu.org/viewcvs/gcc/trunk/libstdc%2B%2B-v3/testsuite/performance/23_containers/insert/associative.cc?view=markup
http://gcc.gnu.org/viewcvs/gcc/trunk/libstdc%2B%2B-v3/testsuite/performance/23_containers/insert_erase/associative.cc?view=markup
http://gcc.gnu.org/viewcvs/gcc/trunk/libstdc++-v3/testsuite/performance/23_containers/producer_consumer/sequence.cc?view=markup
http://gcc.gnu.org/viewcvs/gcc/trunk/libstdc++-v3/testsuite/performance/23_containers/producer_consumer/associative.cc?view=markup

The GNU C++ Library Manual 66 / 385

6.3.1.4 Using a Specific Allocator

You can specify different memory management schemes on a per-container basis, by overriding the default Allocator template
parameter. For example, an easy (but non-portable) method of specifying that only malloc or free should be used instead of
the default node allocator is:

std::1list <int, __gnu_cxx::malloc_allocator<int> > malloc_list;

Likewise, a debugging form of whichever allocator is currently in use:

std::deque <int, __gnu_cxx::debug_allocator<std::allocator<int> > > debug_deque;

6.3.1.5 Custom Allocators

Writing a portable C++ allocator would dictate that the interface would look much like the one specified for allocator.
Additional member functions, but not subtractions, would be permissible.

Probably the best place to start would be to copy one of the extension allocators: say a simple one like new_allocator.

6.3.1.6 Extension Allocators

Several other allocators are provided as part of this implementation. The location of the extension allocators and their names have
changed, but in all cases, functionality is equivalent. Starting with gcc-3.4, all extension allocators are standard style. Before this
point, SGI style was the norm. Because of this, the number of template arguments also changed. Table B.6 tracks the changes.

More details on each of these extension allocators follows.

1. new_allocator

Simply wraps : :operator newand : :operator delete.

2. malloc_allocator
Simply wraps malloc and free. There is also a hook for an out-of-memory handler (for new/delete this is taken care
of elsewhere).

3. debug_allocator

A wrapper around an arbitrary allocator A. It passes on slightly increased size requests to A, and uses the extra memory to
store size information. When a pointer is passed to deallocate (), the stored size is checked, and assert () is used
to guarantee they match.

4. throw_allocator
Includes memory tracking and marking abilities as well as hooks for throwing exceptions at configurable intervals (includ-
ing random, all, none).

5. __pool_alloc

A high-performance, single pool allocator. The reusable memory is shared among identical instantiations of this type. It
calls through : : operator new to obtain new memory when its lists run out. If a client container requests a block larger
than a certain threshold size, then the pool is bypassed, and the allocate/deallocate request is passed to : : operator new
directly.

Older versions of this class take a boolean template parameter, called thr, and an integer template parameter, called inst.

The inst number is used to track additional memory pools. The point of the number is to allow multiple instantiations of
the classes without changing the semantics at all. All three of

typedef _ pool_alloc<true, 0> normal;
typedef _ pool_alloc<true, 1> private;
typedef _ pool_alloc<true, 42> also_private;

The GNU C++ Library Manual 67 /385

behave exactly the same way. However, the memory pool for each type (and remember that different instantiations result
in different types) remains separate.

The library uses 0 in all its instantiations. If you wish to keep separate free lists for a particular purpose, use a different
number.

The thr boolean determines whether the pool should be manipulated atomically or not. When thr = t rue, the allocator
is thread-safe, while thr = false, is slightly faster but unsafe for multiple threads.

For thread-enabled configurations, the pool is locked with a single big lock. In some situations, this implementation detail
may result in severe performance degradation.

(Note that the GCC thread abstraction layer allows us to provide safe zero-overhead stubs for the threading routines, if
threads were disabled at configuration time.)

6. __mt_alloc

A high-performance fixed-size allocator with exponentially-increasing allocations. It has its own chapter in the documen-
tation.

7. bitmap_allocator

A high-performance allocator that uses a bit-map to keep track of the used and unused memory locations. It has its own
chapter in the documentation.

6.3.1.7 Bibliography

[9] Matt Austern, The Standard Librarian: What Are Allocators Good For? , C/IC++ Users Journal , 2000-12.
[10] Emery Berger, The Hoard Memory Allocator

[11] Emery BergerBen ZornKathryn McKinley, Reconsidering Custom Memory Allocation , Copyright © 2002
OOPSLA.

[12] Klaus KreftAngelika Langer, Allocator Types , C/C++ Users Journal .
[13] Bjarne Stroustrup, Copyright © 2000 , 19.4 Allocators, Addison Wesley .
[14] Felix Yen

[isoc++_1998] , 20.4 Memory.

6.3.2 auto_ptr

6.3.2.1 Limitations

Explaining all of the fun and delicious things that can happen with misuse of the auto_ptr class template (called AP here)
would take some time. Suffice it to say that the use of AP safely in the presence of copying has some subtleties.

The AP class is a really nifty idea for a smart pointer, but it is one of the dumbest of all the smart pointers -- and that’s fine.

AP is not meant to be a supersmart solution to all resource leaks everywhere. Neither is it meant to be an effective form of
garbage collection (although it can help, a little bit). And it can norbe used for arrays!

AP is meant to prevent nasty leaks in the presence of exceptions. That’s all. This code is AP-friendly:

// Not a recommend naming scheme, but good for web-based FAQs.
typedef std::auto_ptr<MyClass> APMC;

extern function_taking MyClass_pointer (MyClassx);
extern some_throwable_function ();

void func (int data)

{
APMC ap (new MyClass (data));

https://web.archive.org/web/20190622154249/http://www.drdobbs.com/the-standard-librarian-what-are-allocato/184403759
http://hoard.org
https://people.cs.umass.edu/~emery/pubs/berger-oopsla2002.pdf
http://www.angelikalanger.com/Articles/C++Report/Allocators/Allocators.html

The GNU C++ Library Manual 68 /385

some_throwable_function () ; // this will throw an exception

function_taking MyClass_pointer (ap.get());
}

When an exception gets thrown, the instance of MyClass that’s been created on the heap will be delete’d as the stack is
unwound past func ().

Changing that code as follows is not AP-friendly:

APMC ap (new MyClass[22]);

You will get the same problems as you would without the use of AP:

charx array = new char[10]; // array new...

delete array; // ...but single-object delete

AP cannot tell whether the pointer you’ve passed at creation points to one or many things. If it points to many things, you are
about to die. AP is trivial to write, however, so you could write your own auto_array_ptr for that situation (in fact, this has
been done many times; check the mailing lists, Usenet, Boost, etc).

6.3.2.2 Use in Containers

All of the containers described in the standard library require their contained types to have, among other things, a copy constructor
like this:

struct My_Type

{
My_Type (My_Type consté&);
}i

Note the const keyword; the object being copied shouldn’t change. The template class auto_ptr (called AP here) does not
meet this requirement. Creating a new AP by copying an existing one transfers ownership of the pointed-to object, which means
that the AP being copied must change, which in turn means that the copy ctors of AP do not take const objects.

The resulting rule is simple: Never ever use a container of auto_ptr objects. The standard says that “undefined” behavior is the
result, but it is guaranteed to be messy.

To prevent you from doing this to yourself, the concept checks built in to this implementation will issue an error if you try to
compile code like this:

#include <vector>
#include <memory>

void f ()
{
std::vector< std::auto_ptr<int> > vec_ap_int;

}

Should you try this with the checks enabled, you will see an error.

6.3.3 shared_ptr

The shared_ptr class template stores a pointer, usually obtained via new, and implements shared ownership semantics.

6.3.3.1 Requirements

The standard deliberately doesn’t require a reference-counted implementation, allowing other techniques such as a circular-
linked-list.

The GNU C++ Library Manual 69 /385

6.3.3.2 Design Issues

The shared_ptr code is kindly donated to GCC by the Boost project and the original authors of the code. The basic design
and algorithms are from Boost, the notes below describe details specific to the GCC implementation. Names have been uglified
in this implementation, but the design should be recognisable to anyone familiar with the Boost 1.32 shared_ptr.

The basic design is an abstract base class, _Sp_counted_base that does the reference-counting and calls virtual functions
when the count drops to zero. Derived classes override those functions to destroy resources in a context where the correct
dynamic type is known. This is an application of the technique known as type erasure.

6.3.3.3 Implementation

6.3.3.3.1 Class Hierarchy

A shared_ptr<T> contains a pointer of type T* and an object of type ___shared_count. The shared_count contains a
pointer of type _Sp_counted_base* which points to the object that maintains the reference-counts and destroys the managed
resource.

_Sp_counted_base<Lp> The base of the hierarchy is parameterized on the lock policy (see below.) _Sp_counted_base
doesn’t depend on the type of pointer being managed, it only maintains the reference counts and calls virtual func-
tions when the counts drop to zero. The managed object is destroyed when the last strong reference is dropped, but
the _Sp_counted_base itself must exist until the last weak reference is dropped.

_Sp_counted_base_impl<Ptr, Deleter, Lp> Inherits from _Sp_counted_base and stores a pointer of type Ptr
and a deleter of type Deleter. _Sp_deleter is used when the user doesn’t supply a custom deleter. Unlike Boost’s,
this default deleter is not "checked" because GCC already issues a warning if delete is used with an incomplete type.
This is the only derived type used by trl: :shared_ptr<Ptr> and itis never used by std: : shared_ptr, which
uses one of the following types, depending on how the shared_ptr is constructed.

_Sp_counted_ptr<Ptr, Lp> Inherits from _Sp_counted_base and stores a pointer of type Ptr, which is passedto delete
when the last reference is dropped. This is the simplest form and is used when there is no custom deleter or allocator.

_Sp_counted_deleter<Ptr, Deleter, Alloc> Inherits from _Sp_counted_ptr and adds support for custom deleter
and allocator. Empty Base Optimization is used for the allocator. This class is used even when the user only provides a
custom deleter, in which case allocator is used as the allocator.

_Sp_counted_ptr_inplace<Tp, Alloc, Lp> Usedbyallocate_sharedandmake_shared. Contains aligned
storage to hold an object of type Tp, which is constructed in-place with placement new. Has a variadic template construc-
tor allowing any number of arguments to be forwarded to Tp’s constructor. Unlike the other _Sp_counted_« classes,
this one is parameterized on the type of object, not the type of pointer; this is purely a convenience that simplifies the
implementation slightly.

C++11-only features are: rvalue-ref/move support, allocator support, aliasing constructor, make_shared & allocate_shared. Ad-
ditionally, the constructors taking aut o_pt r parameters are deprecated in C++11 mode.

6.3.3.3.2 Thread Safety

The Thread Safety section of the Boost shared_ptr documentation says "shared_ptr objects offer the same level of thread safety as
built-in types." The implementation must ensure that concurrent updates to separate shared_ptr instances are correct even when
those instances share a reference count e.g.

shared_ptr<A> a(new A);
shared_ptr<A> b(a);

// Thread 1 // Thread 2
a.reset (); b.reset ();

http://www.boost.org/libs/smart_ptr/shared_ptr.htm#ThreadSafety

The GNU C++ Library Manual 70/ 385

The dynamically-allocated object must be destroyed by exactly one of the threads. Weak references make things even more
interesting. The shared state used to implement shared_ptr must be transparent to the user and invariants must be preserved at
all times. The key pieces of shared state are the strong and weak reference counts. Updates to these need to be atomic and
visible to all threads to ensure correct cleanup of the managed resource (which is, after all, shared_ptr’s job!) On multi-processor
systems memory synchronisation may be needed so that reference-count updates and the destruction of the managed resource
are race-free.

The function _Sp_counted_base::_M_add_ref_lock (), called when obtaining a shared_ptr from a weak_ptr, has to
test if the managed resource still exists and either increment the reference count or throw bad_weak_ptr. In a multi-threaded
program there is a potential race condition if the last reference is dropped (and the managed resource destroyed) between testing
the reference count and incrementing it, which could result in a shared_ptr pointing to invalid memory.

The Boost shared_ptr (as used in GCC) features a clever lock-free algorithm to avoid the race condition, but this relies on the
processor supporting an atomic Compare-And-Swap instruction. For other platforms there are fall-backs using mutex locks.
Boost (as of version 1.35) includes several different implementations and the preprocessor selects one based on the compiler,
standard library, platform etc. For the version of shared_ptr in libstdc++ the compiler and library are fixed, which makes things
much simpler: we have an atomic CAS or we don’t, see Lock Policy below for details.

6.3.3.3.3 Selecting Lock Policy

There is a single _Sp_counted_lbase class, which is a template parameterized on the enum __gnu_cxx::_Lock_policy. The

entire family of classes is parameterized on the lock policy, rightupto ___shared_ptr,___weak_ptrand__enable_shared_fr
The actual std: :shared_ptr class inherits from __ shared_ptr with the lock policy parameter selected automatically

based on the thread model and platform that libstdc++ is configured for, so that the best available template specialization will be

used. This design is necessary because it would not be conforming for shared_ptr to have an extra template parameter, even

if it had a default value. The available policies are:

1.

_S_atomic

Selected when GCC supports a builtin atomic compare-and-swap operation on the target processor (see Atomic Builtins.)
The reference counts are maintained using a lock-free algorithm and GCC’s atomic builtins, which provide the required
memory synchronisation.

_S_mutex

The _Sp_counted_base specialization for this policy contains a mutex, which is locked in add_ref_lock(). This policy is
used when GCC’s atomic builtins aren’t available so explicit memory barriers are needed in places.

_S_single

This policy uses a non-reentrant add_ref_lock() with no locking. It is used when libstdc++ is built without ——enable-threads.

For all three policies, reference count increments and decrements are done via the functions in ext /atomicity.h, which
detect if the program is multi-threaded. If only one thread of execution exists in the program then less expensive non-atomic
operations are used.

6.3.3.3.4 Related functions and classes

dynamic_pointer_cast, static_pointer_cast, const_pointer_cast Asnotedin N2351, these functions can

be implemented non-intrusively using the alias constructor. However the aliasing constructor is only available in C++11
mode, so in TR1 mode these casts rely on three non-standard constructors in shared_ptr and __shared_ptr. In C++11 mode
these constructors and the related tag types are not needed.

enable_shared_from_this The clever overload to detect a base class of type enable_shared_from_this comes

straight from Boost. There is an extra overload for __enable_shared_from_this to work smoothly with___shared_ptr:
Lp> using any lock policy.

http://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html

The GNU C++ Library Manual 71/385

make_shared, allocate_shared make_shared simply forwards to allocate_shared with std::allocator
as the allocator. Although these functions can be implemented non-intrusively using the alias constructor, if they have
access to the implementation then it is possible to save storage and reduce the number of heap allocations. The newly
constructed object and the _Sp_counted_* can be allocated in a single block and the standard says implementations
are "encouraged, but not required," to do so. This implementation provides additional non-standard constructors (se-
lected with the type _Sp_make_shared_tag) which create an object of type _Sp_counted_ptr_inplace to
hold the new object. The returned shared_ptr<A> needs to know the address of the new A object embedded in the
_Sp_counted_ptr_inplace, but it has no way to access it. This implementation uses a "covert channel" to return
the address of the embedded object when get_deleter<_Sp_make_shared_tag> () is called. Users should not
try to use this. As well as the extra constructors, this implementation also needs some members of _Sp_counted_deleter to
be protected where they could otherwise be private.

6.3.3.4 Use

6.3.3.4.1 Examples

Examples of use can be found in the testsuite, under testsuite/trl/2_general utilities/shared_ptr,testsuite/
20_util/shared_ptrand testsuite/20_util/weak_ptr.

6.3.3.4.2 Unresolved Issues

The shared_ptr atomic access clause in the C++11 standard is not implemented in GCC.

Unlike Boost, this implementation does not use separate classes for the pointer+deleter and pointer+deleter+allocator cases in
C++11 mode, combining both into _Sp_counted_deleter and using allocator when the user doesn’t specify an allocator. If it
was found to be beneficial an additional class could easily be added. With the current implementation, the _Sp_counted_deleter
and __shared_count constructors taking a custom deleter but no allocator are technically redundant and could be removed,
changing callers to always specify an allocator. If a separate pointer+deleter class was added the __shared_count constructor
would be needed, so it has been kept for now.

The hack used to get the address of the managed object from _Sp_counted_ptr_inplace::_M_get_deleter () is
accessible to users. This could be prevented if get_deleter<_Sp_make_shared_tag> () always returned NULL, since
the hack only needs to work at a lower level, not in the public API. This wouldn’t be difficult, but hasn’t been done since there
is no danger of accidental misuse: users already know they are relying on unsupported features if they refer to implementation
details such as _Sp_make_shared_tag.

trl::_Sp_deleter could be a private member of trl::__shared_count but it would alter the ABI.
6.3.3.5 Acknowledgments

The original authors of the Boost shared_ptr, which is really nice code to work with, Peter Dimov in particular for his help and
invaluable advice on thread safety. Phillip Jordan and Paolo Carlini for the lock policy implementation.

6.3.3.6 Bibliography

[15] Improving shared_ptr for C++0x, Revision 2 ,N2351 .
[16] C++ Standard Library Active Issues List , N2456 .
[17] Working Draft, Standard for Programming Language C++ ,N2461 .

[18] Boost C++ Libraries documentation, shared_ptr , N2461 .

6.4 Traits

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2351.htm
http://open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2456.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2461.pdf
http://www.boost.org/libs/smart_ptr/shared_ptr.htm

The GNU C++ Library Manual 72 /385

Chapter 7

Strings

7.1 String Classes

7.1.1 Simple Transformations

Here are Standard, simple, and portable ways to perform common transformations on a st ring instance, such as "convert to all
upper case.” The word transformations is especially apt, because the standard template function t ransform<> is used.

This code will go through some iterations. Here’s a simple version:

#include <string>
#include <algorithm>
#include <cctype> // old <ctype.h>

struct TolLower

{
char operator() (char c) const { return std::tolower(c); }
}i

struct ToUpper

char operator () (char c) const { return std::toupper(c); }

}i

int main ()

{

std::string s ("Some Kind Of Initial Input Goes Here");

// Change everything into upper case
std::transform (s.begin(), s.end(), s.begin(), ToUpper());

// Change everything into lower case
std::transform (s.begin(), s.end(), s.begin(), ToLower());

// Change everything back into upper case, but store the

// result in a different string

std::string capital_s;

capital_s.resize(s.size());

std::transform (s.begin(), s.end(), capital_s.begin(), ToUpper());

Note that these calls all involve the global C locale through the use of the C functions toupper/tolower. This is absolutely
guaranteed to work -- but only if the string contains only characters from the basic source character set, and there are only 96 of

The GNU C++ Library Manual 73 /385

those. Which means that not even all English text can be represented (certain British spellings, proper names, and so forth). So,
if all your input forevermore consists of only those 96 characters (hahahahahaha), then you’re done.

Note that the ToUpper and ToLower function objects are needed because toupper and tolower are overloaded names
(declared in <cctype> and <locale>) so the template-arguments for t ransform<> cannot be deduced, as explained in
this message. At minimum, you can write short wrappers like

char tolLower (char c)

{
// std::tolower(c) is undefined if ¢ < 0 so cast to unsigned char.
return std::tolower ((unsigned char)c);

(Thanks to James Kanze for assistance and suggestions on all of this.)

Another common operation is trimming off excess whitespace. Much like transformations, this task is trivial with the use of
string’s £ind family. These examples are broken into multiple statements for readability:

std::string str (" \t blah blah blah N\) e

// trim leading whitespace
string::size_type notwhite = str.find_first_not_of (" \t\n");
str.erase (0, notwhite) ;

// trim trailing whitespace
notwhite = str.find_last_not_of (" \t\n");
str.erase (notwhite+1);

Obviously, the calls to £ind could be inserted directly into the calls to erase, in case your compiler does not optimize named
temporaries out of existence.

7.1.2 Case Sensitivity

The well-known-and-if-it-isn’t-well-known-it-ought-to-be Guru of the Week discussions held on Usenet covered this topic in
January of 1998. Briefly, the challenge was, “write a ’ci_string’ class which is identical to the standard ’string’ class, but is
case-insensitive in the same way as the (common but nonstandard) C function stricmp()”.

ci_string s("AbCdE");

// case insensitive
assert (s == "abcde");
assert (s == "ABCDE");

// still case-preserving, of course
assert (strcmp(s.c_str(), "AbCdE") == 0);
assert (strcmp(s.c_str(), "abcde") !'= 0);

The solution is surprisingly easy. The original answer was posted on Usenet, and a revised version appears in Herb Sutter’s book
Exceptional C++ and on his website as GotW 29.

See? Told you it was easy!

Added June 2000: The May 2000 issue of C++ Report contains a fascinating article by Matt Austern (yes, the Matt Austern)
on why case-insensitive comparisons are not as easy as they seem, and why creating a class is the wrong way to go about it in
production code. (The GotW answer mentions one of the principle difficulties; his article mentions more.)

Basically, this is "easy" only if you ignore some things, things which may be too important to your program to ignore. (I chose
to ignore them when originally writing this entry, and am surprised that nobody ever called me on it...) The GotW question and
answer remain useful instructional tools, however.

Added September 2000: James Kanze provided a link to a Unicode Technical Report discussing case handling, which provides
some very good information.

http://gcc.gnu.org/ml/libstdc++/2002-11/msg00180.html
http://www.gotw.ca/gotw/
http://www.gotw.ca/gotw/029.htm
http://lafstern.org/matt/col2_new.pdf
http://www.unicode.org/reports/tr21/tr21-5.html

The GNU C++ Library Manual 74 /385

7.1.3 Arbitrary Character Types

The std: :basic_string is tantalizingly general, in that it is parameterized on the type of the characters which it holds. In
theory, you could whip up a Unicode character class and instantiate std: :basic_string<my_unicode_char>, or as-
suming that integers are wider than characters on your platform, maybe just declare variables of type std: :basic_string<int>.

That’s the theory. Remember however that basic_string has additional type parameters, which take default arguments based on
the character type (called CharT here):

template <typename CharT,

typename Traits = char_traits<CharT>,
typename Alloc = allocator<CharT> >
class basic_string { };

Now, allocator<CharT> will probably Do The Right Thing by default, unless you need to implement your own allocator
for your characters.

But char_traits takes more work. The char_traits template is declared but not defined. That means there is only

template <typename CharT>
struct char_traits

{
static void foo (typel x, type2 y);

}i

and functions such as char_traits<CharT>::foo() are not actually defined anywhere for the general case. The C++ standard
permits this, because writing such a definition to fit all possible CharT’s cannot be done.

The C++ standard also requires that char_traits be specialized for instantiations of char and wchar_t, and it is these template
specializations that permit entities like basic_string<char, char_traits<char>> to work.

If you want to use character types other than char and wchar_t, such as unsigned char and int, you will need suitable
specializations for them. For a time, in earlier versions of GCC, there was a mostly-correct implementation that let programmers
be lazy but it broke under many situations, so it was removed. GCC 3.4 introduced a new implementation that mostly works and
can be specialized even for int and other built-in types.

If you want to use your own special character class, then you have a lot of work to do, especially if you with to use i18n features
(facets require traits information but don’t have a traits argument).

Another example of how to specialize char_traits was given on the mailing list and at a later date was putinto the file include/ext/p
We agree that the way it’s used with basic_string (scroll down to main()) doesn’t look nice, but that’s because the nice-looking
first attempt turned out to not be conforming C++, due to the rule that CharT must be a POD. (See how tricky this is?)

7.1.4 Tokenizing

The Standard C (and C++) function st rtok () leaves a lot to be desired in terms of user-friendliness. It’s unintuitive, it destroys
the character string on which it operates, and it requires you to handle all the memory problems. But it does let the client code
decide what to use to break the string into pieces; it allows you to choose the "whitespace," so to speak.

A C++ implementation lets us keep the good things and fix those annoyances. The implementation here is more intuitive (you
only call it once, not in a loop with varying argument), it does not affect the original string at all, and all the memory allocation
is handled for you.

It’s called stringtok, and it’s a template function. Sources are as below, in a less-portable form than it could be, to keep this
example simple (for example, see the comments on what kind of string it will accept).

#include <string>

template <typename Container>

void

stringtok (Container &container, string const &in,
const char * const delimiters = " \t\n")

http://gcc.gnu.org/ml/libstdc++/2002-08/msg00163.html
http://gcc.gnu.org/ml/libstdc++/2002-08/msg00260.html
http://gcc.gnu.org/ml/libstdc++/2002-08/msg00236.html
http://gcc.gnu.org/ml/libstdc++/2002-08/msg00236.html
http://gcc.gnu.org/ml/libstdc++/2002-08/msg00242.html

The GNU C++ Library Manual 75/385

const string::size_type len = in.length();
string::size_type i = 0;

while (i < len)
{
// Eat leading whitespace
i = in.find_first_not_of (delimiters, 1i);
if (i == string::npos)
return; // Nothing left but white space

// Find the end of the token
string::size_type j = in.find_first_of (delimiters, 1i);

// Push token

if (j == string::npos)

{
container.push_back (in.substr(i));
return;

}
else
container.push_back (in.substr (i, j-i));

// Set up for next loop
i=3+1;

The author uses a more general (but less readable) form of it for parsing command strings and the like. If you compiled and ran
this code using it:

std::list<string> 1ls;

stringtok (ls, " this \t is\t\n a test ");
for (std::list<string>const_iterator i = ls.begin();
i !'= 1ls.end(); ++i)
{
std::cerr << 7’ << (*1) << ":\n";

You would see this as output:

:this:
tis:
ra:
ttest:

with all the whitespace removed. The original s is still available for use, 1s will clean up after itself, and 1s.size () will
return how many tokens there were.

As always, there is a price paid here, in that stringtok is not as fast as strtok. The other benefits usually outweigh that, however.

Added February 2001: Mark Wilden pointed out that the standard std: :getline () function can be used with standard
istringstreams to perform tokenizing as well. Build an istringstream from the input text, and then use std::getline with
varying delimiters (the three-argument signature) to extract tokens into a string.

7.1.5 Shrink to Fit

From GCC 3.4 calling s.reserve (res) ona string s with res < s.capacity () will reduce the string’s capacity
to std: :max(s.size (), res).

This behaviour is suggested, but not required by the standard. Prior to GCC 3.4 the following alternative can be used instead

The GNU C++ Library Manual 76 /385

std::string(str.data(), str.size()).swap(str);

This is similar to the idiom for reducing a vector’s memory usage (see this FAQ entry) but the regular copy constructor cannot
be used because libstdc++’s st ring is Copy-On-Write in GCC 3.

In C++11 mode you can call s.shrink_to_fit () to achieve the same effect as s.reserve (s.size()).

7.1.6 CString (MFC)

A common lament seen in various newsgroups deals with the Standard string class as opposed to the Microsoft Foundation Class
called CString. Often programmers realize that a standard portable answer is better than a proprietary nonportable one, but in
porting their application from a Win32 platform, they discover that they are relying on special functions offered by the CString
class.

Things are not as bad as they seem. In this message, Joe Buck points out a few very important things:

e The Standard st ring supports all the operations that CString does, with three exceptions.
* Two of those exceptions (whitespace trimming and case conversion) are trivial to implement. In fact, we do so on this page.

e The third is CString: : Format, which allows formatting in the style of sprint f. This deserves some mention:

The old libg++ library had a function called form(), which did much the same thing. But for a Standard solution, you should use
the stringstream classes. These are the bridge between the iostream hierarchy and the string class, and they operate with regular
streams seamlessly because they inherit from the iostream hierarchy. An quick example:

#include <iostream>
#include <string>
#include <sstream>

string f (string& incoming) // incoming is "foo N"
{
istringstream incoming_stream(incoming) ;
string the_word;
int the_number;
incoming_stream >> the_word // extract "foo"
>> the_number; // extract N

ostringstream output_stream;
output_stream << "The word was " << the_word
<< " and 3%N was " << (3*the_number);

return output_stream.str();

A serious problem with CString is a design bug in its memory allocation. Specifically, quoting from that same message:

CString suffers from a common programming error that results in
poor performance. Consider the following code:

CString n_copies_of (const CString& foo, unsigned n)
{
CString tmp;
for (unsigned i = 0; i < n; 1i++)
tmp += foo;
return tmp;

This function is O0(n”2), not O(n). The reason is that each +=

http://gcc.gnu.org/ml/gcc/1999-04n/msg00236.html

The GNU C++ Library Manual 77 /385

causes a reallocation and copy of the existing string. Microsoft
applications are full of this kind of thing (quadratic performance
on tasks that can be done in linear time) —-- on the other hand,

we should be thankful, as it’s created such a big market for high-end
ix86 hardware. :-)

If you replace CString with string in the above function, the
performance is O(n).

Joe Buck also pointed out some other things to keep in mind when comparing CString and the Standard string class:

» CString permits access to its internal representation; coders who exploited that may have problems moving to st ring.

* Microsoft ships the source to CString (in the files MFC\SRC\Str{core,ex }.cpp), so you could fix the allocation bug and rebuild
your MFC libraries. Note: It looks like the CString shipped with VC++6.0 has fixed this, although it may in fact have been one
of the VC++ SPs that did it.

* string operations like this have O(n) complexity if the implementors do it correctly. The libstdc++ implementors did it
correctly. Other vendors might not.

* While parts of the SGI STL are used in libstdc++, their string class is not. The SGI st ring is essentially vector<char>
and does not do any reference counting like libstdc++’s does. (It is O(n), though.) So if you’re thinking about SGI’s string or
rope classes, you’re now looking at four possibilities: CString, the libstdc++ string, the SGI string, and the SGI rope, and this
is all before any allocator or traits customizations! (More choices than you can shake a stick at -- want fries with that?)

The GNU C++ Library Manual 78 /385

Chapter 8

Localization

8.1 Locales

8.1.1 locale

Describes the basic locale object, including nested classes id, facet, and the reference-counted implementation object, class
_Impl.

8.1.1.1 Requirements

Class locale is non-templatized and has two distinct types nested inside of it:
class facet 22.1.1.1.2 Class locale: :facet

Facets actually implement locale functionality. For instance, a facet called numpunct is the data object that can be used to query
for the thousands separator in the locale.

Literally, a facet is strictly defined:

* Containing the following public data member:

static locale::id id;

¢ Derived from another facet:

class gnu_codecvt: public std::ctype<user-defined-type>
Of interest in this class are the memory management options explicitly specified as an argument to facet’s constructor. Each
constructor of a facet class takes a std::size_t __refs argument: if __refs == 0, the facet is deleted when the locale containing it is
destroyed. If __refs == 1, the facet is not destroyed, even when it is no longer referenced.

class id 22.1.1.1.3 - Class locale: :id

Provides an index for looking up specific facets.

8.1.1.2 Design

The major design challenge is fitting an object-orientated and non-global locale design on top of POSIX and other relevant
standards, which include the Single Unix (nee X/Open.)

Because C and earlier versions of POSIX fall down so completely, portability is an issue.

The GNU C++ Library Manual 79/385

8.1.1.3 Implementation

8.1.1.3.1 Interacting with "C" locales

* locale -a displays available locales.

af_7A
ar_AE
ar_AE.utf8
ar_BH
ar_BH.utf8
ar_DZ
ar_DZ.utf8
ar_EG
ar_EG.utf8
ar_IN
ar_IQ
ar_IQ.utf8
ar_JoO
ar_JO.utf8
ar_KWw
ar_KWw.utf8
ar_LB
ar_LB.utf8
ar_LY
ar_LY.utf8
ar_MA
ar_MA.utf8
ar_OM
ar_OM.utf8
ar_QA
ar_QA.utf8
ar_SA
ar_SA.utf8
ar_SD
ar_SD.utf8
ar_SY
ar_SY.utfs8
ar_TN
ar_TN.utf8
ar_YE
ar_YE.utf8
be_BY
be_BY.utf8
bg_BG
bg_BG.utf8
br_FR
bs_BA

C

ca_ES
ca_ES@euro
ca_ES.utf8
ca_ES.utf8Reuro
cs_C7Z
cs_CZ.utf8
cy_GB
da_DK
da_DK.1is0885915
da_DK.utf8
de_AT
de_ATQReuro

The GNU C++ Library Manual 80/385

de_AT.utf8
de_AT.utf8Qeuro
de_BE
de_BEReuro
de_BE.utf8
de_BE.utf8@euro
de_CH
de_CH.utf8
de_DE
de_DEQReuro
de_DE.utf8
de_DE.utf8@euro
de_LU
de_LUReuro
de_LU.utf8
de_LU.utf8QReuro
el_GR

el GR.utfs8
en_AU
en_AU.utf8
en_BW
en_BW.utf8
en_CA
en_CA.utf8
en_DK
en_DK.utf8
en_GB
en_GB.1s0885915
en_GB.utf8
en_HK
en_HK.utf8
en_IE
en_IE@euro

en_ IE.utf8
en_IE.utf8Qeuro
en_IN

en_Nz
en_NZ.utf8
en_PH
en_PH.utf8
en_SG
en_SG.utf8
en_US
en_US.iso0885915
en_US.utf8
en_Z7zA
en_ZA.utf8
en_zZW
en_ZW.utf8
es_AR
es_AR.utf8
es_BO
es_BO.utf8
es_CL
es_CL.utf8
es_CO
es_CO.utf8
es_CR
es_CR.utf8
es_DO
es_DO.utf8
es_EC

The GNU C++ Library Manual 81/385

es_EC.utf8
es_ES
es_ES@euro
es_ES.utf8
es_ES.utf8QReuro
es_GT
es_GT.utf8
es_HN
es_HN.utf8
es_MX
es_MX.utf8
es_NI
es_NI.utf8
es_PA
es_PA.utf8
es_PE
es_PE.utf8
es_PR
es_PR.utf8
es_PY
es_PY.utf8
es_SV
es_SV.utf8
es_US
es_US.utf8
es_UY
es_UY.utf8
es_VE
es_VE.utf8
et_EE
et_EE.utf8
eu_ES
eu_ES@euro
eu_ES.utf8
eu_ES.utf8@euro
fa_ IR

fi_ FI
fi_FI@euro

fi_ FI.utfs8

fi FI.utf8Reuro
fo_FO
fo_FO.utf8

fr BE
fr_BE@euro

fr BE.utf8

fr BE.utf8Reuro
fr CA

fr CA.utfs8

fr CH

fr_ CH.utf8

fr FR
fr_FR@euro

fr_ FR.utf8
fr_FR.utf8@euro
fr LU

fr LUGeuro

fr LU.utf8

fr LU.utf8Reuro
ga_IE
ga_IEQeuro
ga_IE.utf8
ga_IE.utf8@euro

The GNU C++ Library Manual

82 /385

gl_ES

gl_ES@euro

gl _ES.
gl_ES.

gv_GB

gv_GB.

he IL

he_ TL.

hi IN
hr HR

hr_ HR.

hu_HU

hu_HU.

id_ID

id_ID.

is_ IS

is_1IS.

it_CH

it_CH.

it_IT

ut£8
utf8Reuro

utf£8

utf£8

utf£8

utf8

ut£8

utf£8

utf8

it_IT@euro

it _IT.
it_IT.

iw_IL

iw_TIL.
ja_JP.
ja_JP.

ka_GE
k1_GL

k1_GL.
ko_KR.
ko_KR.

kw_GB

kw_GB.

1t_LT

1t_LT.

1lv_LV

1lv_LV.

mi_NZ
mk_ MK

mk_MK.

mr_IN
ms_MY

ms_MY.

mt_MT

mt_MT.

nl_BE

utf8
utf8@euro

utf8

eucijp
ut£8

ut£8
euckr
utf8
utf8

ut£8

ut£8

utf£8

ut£8

utf8

nl_BE@euro

nl_BE.
nl_BE.

nl_NL

utf£8
utf8@euro

nl_NLQ@euro

nl_NL.
nl_NL.

nn_NO
nn_NO
no_NO

no_NO.

oc_FR
pl_PL

pl_PL.

POSIX

utf8
utf8@euro

.utf8

utf£8

utf8

The GNU C++ Library Manual 83/385

pt_BR
pt_BR.utf8
pt_PT
pt_PTQeuro
pt_PT.utfs8
pt_PT.utf8@euro
ro_RO
ro_RO.utf8
ru_RU
ru_RU.koi8r
ru_RU.utf8
ru_UA

ru UA.utf8
se_NO

sk_SK
sk_SK.utf8
sl_ST
sl_ST.utf8
sq_AL
sq_AL.utf8
sr_YU
sr_YU@cyrillic
sr_YU.utf8
sr_YU.utf8@cyrillic
sv_FI
sv_FIQeuro
sv_FI.utfs8
sv_FI.utf8Reuro
sv_SE
sv_SE.1is0885915
sv_SE.utf8
ta_IN

te_IN

tg_TJ

th_TH
th_TH.utf8
t1l_PH

tr_TR
tr_TR.utf8
uk_UA
uk_UA.utfs8
ur_PK

uz_Uz7Z

vi_ VN
vi_VN.tcvn
wa_BE
wa_BE@euro
yi_US

zh_CN
zh_CN.gb18030
zh_CN.gbk

zh CN.utf8
zh_HK
zh_HK.utf8
zh_ TW
zh_TW.euctw
zh_TW.utf8

* “locale" displays environmental variables that impact how locale("") will be deduced.

LANG=en_US

The GNU C++ Library Manual 84 /385

LC_CTYPE="en_US"
LC_NUMERIC="en_US"
LC_TIME="en_US"
LC_COLLATE="en_US"
LC_MONETARY="en_US"
LC_MESSAGES="en_US"
LC_PAPER="en_US"
LC_NAME="en_US"
LC_ADDRESS="en_US"
LC_TELEPHONE="en_US"
LC_MEASUREMENT="en_US"
LC_IDENTIFICATION="en_US"
LC_ALL=

From Josuttis, p. 697-698, which says, that "there is only *one* relation (of the C++ locale mechanism) to the C locale mecha-
nism: the global C locale is modified if a named C++ locale object is set as the global locale" (emphasis Paolo), that is:

std::locale::global (std::locale(""));

affects the C functions as if the following call was made:

std::setlocale (LC_ALL, "");

On the other hand, there is *no* vice versa, that is, calling setlocale has *no* whatsoever on the C++ locale mechanism, in
particular on the working of locale(""), which constructs the locale object from the environment of the running program, that is,
in practice, the set of LC_ALL, LANG, etc. variable of the shell.

8.1.1.4 Future

* Locale initialization: at what point does _S_classic, _S_global get initialized? Can named locales assume this initialization
has already taken place?

* Document how named locales error check when filling data members. I.e., a fr_FR locale that doesn’t have numpunct::truename():
does it use "true"? Or is it a blank string? What’s the convention?

» Explain how locale aliasing happens. When does "de_DE" use "de" information? What is the rule for locales composed of just
an ISO language code (say, "de") and locales with both an ISO language code and ISO country code (say, "de_DE").

* What should non-required facet instantiations do? If the generic implementation is provided, then how to end-users provide
specializations?

8.1.1.5 Bibliography

[19] Roland McGrathUlIrich Drepper, Copyright © 2007 FSF, Chapters 6 Character Set Handling and 7 Locales and
Internationalization .

[20] Ulrich Drepper, Copyright © 2002 .
[21] , Copyright © 1998 ISO.
[22] , Copyright © 1999 ISO.

[23] System Interface Definitions, Issue 7 (IEEE Std. 1003.1-2008) , Copyright © 2008 The Open Group/The
Institute of Electrical and Electronics Engineers, Inc. .

[24] Bjarne Stroustrup, Copyright © 2000 Addison Wesley, Inc., Appendix D, Addison Wesley .

[25] Angelika LangerKlaus Kreft, Advanced Programmer’s Guide and Reference , Copyright © 2000 Addison Wes-
ley Longman, Inc., Addison Wesley Longman .

https://pubs.opengroup.org/onlinepubs/9699919799/

The GNU C++ Library Manual 85/385

8.2 Facets

8.2.1 ctype

8.2.1.1 Implementation

8.2.1.1.1 Specializations

For the required specialization codecvt<wchar_t, char, mbstate_t>, conversions are made between the internal
character set (always UCS4 on GNU/Linux) and whatever the currently selected locale for the LC_CTYPE category implements.

The two required specializations are implemented as follows:
ctype<char>

This is simple specialization. Implementing this was a piece of cake.
ctype<wchar_t>

This specialization, by specifying all the template parameters, pretty much ties the hands of implementors. As such, the im-
plementation is straightforward, involving mcsrtombs for the conversions between char to wchar_t and wcsrtombs for
conversions between wchar_t and char.

Neither of these two required specializations deals with Unicode characters.

8.2.1.2 Future

* How to deal with the global locale issue?

* How to deal with types other than char, wchar_t?

* Overlap between codecvt/ctype: narrow/widen

» mask typedef in codecvt_base, argument types in codecvt. what is know about this type?
e Why mask* argument in codecvt?

* Can this be made (more) generic? is there a simple way to straighten out the configure-time mess that is a by-product of this
class?

* Get the ctype<wchar_t>::mask stuff under control. Need to make some kind of static table, and not do lookup every time
somebody hits the do_is. .. functions. Too bad we can’t just redefine mask for ctype<wchar_t>

* Rename abstract base class. See if just smash-overriding is a better approach. Clarify, add sanity to naming.

8.2.1.3 Bibliography

[26] Roland McGrathU]Irich Drepper, Copyright © 2007 FSF, Chapters 6 Character Set Handling and 7 Locales and
Internationalization.

[27] Ulrich Drepper, Copyright © 2002 .
[28] , Copyright © 1998 ISO.
[29] , Copyright © 1999 ISO.

[30] The Open Group Base Specifications, Issue 6 (IEEE Std. 1003.1-2004) , Copyright © 1999 The Open
Group/The Institute of Electrical and Electronics Engineers, Inc..

[31] Bjarne Stroustrup, Copyright © 2000 Addison Wesley, Inc., Appendix D, Addison Wesley .

[32] Angelika LangerKlaus Kreft, Advanced Programmer’s Guide and Reference , Copyright © 2000 Addison Wes-
ley Longman, Inc., Addison Wesley Longman .

http://www.unix.org/version3/ieee_std.html

The GNU C++ Library Manual 86 /385

8.2.2 codecvt

The standard class codecvt attempts to address conversions between different character encoding schemes. In particular, the
standard attempts to detail conversions between the implementation-defined wide characters (hereafter referred to as wchar_t)
and the standard type char that is so beloved in classic “C” (which can now be referred to as narrow characters.) This document
attempts to describe how the GNU libstdc++ implementation deals with the conversion between wide and narrow characters, and
also presents a framework for dealing with the huge number of other encodings that iconv can convert, including Unicode and
UTF8. Design issues and requirements are addressed, and examples of correct usage for both the required specializations for
wide and narrow characters and the implementation-provided extended functionality are given.

8.2.2.1 Requirements

Around page 425 of the C++ Standard, this charming heading comes into view:

22.2.1.5 - Template class codecvt

The text around the codecvt definition gives some clues:

-1- The class codecvt<internT, externT, stateT>is for use when converting from one codeset to another,
such as from wide characters to multibyte characters, between wide character encodings such as Unicode and EUC.

Hmm. So, in some unspecified way, Unicode encodings and translations between other character sets should be handled by this

class.

-2- The stateT argument selects the pair of codesets being mapped between.

Ah ha! Another clue...

-3- The instantiations required in the Table 51 (lib.locale.category), namely codecvt<wchar_t, char, mbstate_t>

and codecvt<char, char, mbstate_t>, convert the implementation-defined native character set. codecvt<char, char
implements a degenerate conversion; it does not convert at all. codecvt<wchar_t, char, mbstate_t> con-

verts between the native character sets for tiny and wide characters. Instantiations on mbstate_t perform conversion

between encodings known to the library implementor. Other encodings can be converted by specializing on a user-

defined stateT type. The stateT object can contain any state that is useful to communicate to or from the specialized
do_convert member.

At this point, a couple points become clear:

One:

The standard clearly implies that attempts to add non-required (yet useful and widely used) conversions need to do so

through the third template parameter, stateT.

Two: The required conversions, by specifying mbstate_t as the third template parameter, imply an implementation strategy that
is mostly (or wholly) based on the underlying C library, and the functions mcsrtombs and wcsrtombs in particular.

8.2.2.2 Design

8.2.2.2.1 wchar_t Size

The simple implementation detail of wchar_t’s size seems to repeatedly confound people. Many systems use a two byte, unsigned
integral type to represent wide characters, and use an internal encoding of Unicode or UCS2. (See AIX, Microsoft NT, Java,
others.) Other systems, use a four byte, unsigned integral type to represent wide characters, and use an internal encoding of
UCS4. (GNU/Linux systems using glibc, in particular.) The C programming language (and thus C++) does not specify a specific
size for the type wchar_t.

Thus,

portable C++ code cannot assume a byte size (or endianness) either.

The GNU C++ Library Manual 87 /385

8.2.2.2.2 Support for Unicode

Probably the most frequently asked question about code conversion is: "So dudes, what’s the deal with Unicode strings?" The
dude part is optional, but apparently the usefulness of Unicode strings is pretty widely appreciated. The Unicode character set
(and useful encodings like UTF-8, UCS-4, ISO 8859-10, etc etc etc) were not mentioned in the first C++ standard. (The 2011
standard added support for string literals with different encodings and some library facilities for converting between encodings,
but the notes below have not been updated to reflect that.)

A couple of comments:

The thought that all one needs to convert between two arbitrary codesets is two types and some kind of state argument is
unfortunate. In particular, encodings may be stateless. The naming of the third parameter as stateT is unfortunate, as what is
really needed is some kind of generalized type that accounts for the issues that abstract encodings will need. The minimum
information that is required includes:

* Identifiers for each of the codesets involved in the conversion. For example, using the iconv family of functions from the Single
Unix Specification (what used to be called X/Open) hosted on the GNU/Linux operating system allows bi-directional mapping
between far more than the following tantalizing possibilities:

(An edited list taken from " iconv —--1ist’ ona Red Hat 6.2/Intel system:

8859_1, 8859 _9, 10646-1:1993, 10646-1:1993/UCS4, ARABIC, ARABIC7,
ASCII, EUC-CN, EUC-JP, EUC-KR, EUC-TW, GREEK-CCIcode, GREEK, GREEK7-OLD,
GREEK7, GREEKS, HEBREW, ISO-8859-1, ISO-8859-2, ISO-8859-3,

I50-8859-4, IS0-8859-5, IS0O-8859-6, IS0O-8859-7, IS0-8859-8,

I150-8859-9, IS0-8859-10, IS0O-8859-11, IS0O-8859-13, IS0-8859-14,
I1S0-8859-15, ISO-10646, ISO-10646/UCS2, ISO-10646/UCS4,

IS0-10646/UTF-8, ISO-10646/UTF8, SHIFT-JIS, SHIFT JIS, UCS-2, UCS-4,
UCS2, UCS4, UNICODE, UNICODEBIG, UNICODELIcodeLE, US-ASCII, US, UTF-8,
UTF-16, UTF8, UTF16).

For iconv-based implementations, string literals for each of the encodings (i.e. "UCS-2" and "UTF-8") are necessary, although
for other, non-iconv implementations a table of enumerated values or some other mechanism may be required.

e Maximum length of the identifying string literal.

* Some encodings require explicit endian-ness. As such, some kind of endian marker or other byte-order marker will be neces-
sary. See "Footnotes for C/C++ developers" in Haible for more information on UCS-2/Unicode endian issues. (Summary: big
endian seems most likely, however implementations, most notably Microsoft, vary.)

* Types representing the conversion state, for conversions involving the machinery in the "C" library, or the conversion descriptor,
for conversions using iconv (such as the type iconv_t.) Note that the conversion descriptor encodes more information than a
simple encoding state type.

 Conversion descriptors for both directions of encoding. (i.e., both UCS-2 to UTF-8 and UTF-8 to UCS-2.)
* Something to indicate if the conversion requested if valid.
* Something to represent if the conversion descriptors are valid.

* Some way to enforce strict type checking on the internal and external types. As part of this, the size of the internal and external
types will need to be known.

8.2.2.2.3 Other Issues

In addition, multi-threaded and multi-locale environments also impact the design and requirements for code conversions. In par-
ticular, they affect the required specialization codecvt<wchar_t, char, mbstate_t> when implemented using stan-
dard "C" functions.

Three problems arise, one big, one of medium importance, and one small.

The GNU C++ Library Manual 88 /385

First, the small: mcsrtombs and wecsrtombs may not be multithread-safe on all systems required by the GNU tools. For
GNU/Linux and glibc, this is not an issue.

Of medium concern, in the grand scope of things, is that the functions used to implement this specialization work on null-
terminated strings. Buffers, especially file buffers, may not be null-terminated, thus giving conversions that end prematurely or
are otherwise incorrect. Yikes!

The last, and fundamental problem, is the assumption of a global locale for all the "C" functions referenced above. For something
like C++ iostreams (where codecvt is explicitly used) the notion of multiple locales is fundamental. In practice, most users may
not run into this limitation. However, as a quality of implementation issue, the GNU C++ library would like to offer a solution
that allows multiple locales and or simultaneous usage with computationally correct results. In short, libstdc++ is trying to offer,
as an option, a high-quality implementation, damn the additional complexity!

For the required specialization codecvt<wchar_t, char, mbstate_t>, conversions are made between the internal
character set (always UCS4 on GNU/Linux) and whatever the currently selected locale for the LC_CTYPE category implements.

8.2.2.3 Implementation

The two required specializations are implemented as follows:
codecvt<char, char, mbstate_t>

This is a degenerate (i.e., does nothing) specialization. Implementing this was a piece of cake.
codecvt<char, wchar_t, mbstate_t>

This specialization, by specifying all the template parameters, pretty much ties the hands of implementors. As such, the im-
plementation is straightforward, involving mcsrtombs for the conversions between char to wchar_t and wcsrtombs for
conversions between wchar_t and char.

Neither of these two required specializations deals with Unicode characters. As such, libstdc++ implements a partial specializa-
tion of the codecvt class with an iconv wrapper class, encoding_state as the third template parameter.

This implementation should be standards conformant. First of all, the standard explicitly points out that instantiations on the
third template parameter, stateT, are the proper way to implement non-required conversions. Second of all, the standard says (in
Chapter 17) that partial specializations of required classes are A-OK. Third of all, the requirements for the stateT type elsewhere
in the standard (see 21.1.2 traits typedefs) only indicate that this type be copy constructible.

As such, the type encoding_state is defined as a non-templatized, POD type to be used as the third type of a codecvt instantiation.
This type is just a wrapper class for iconv, and provides an easy interface to iconv functionality.

There are two constructors for encoding_state:
encoding_state() : __in_desc(0), __out_desc(0)

This default constructor sets the internal encoding to some default (currently UCS4) and the external encoding to whatever is
returned by n1_langinfo (CODESET).

encoding_state (const charx __int, const charx __ext)

This constructor takes as parameters string literals that indicate the desired internal and external encoding. There are no defaults
for either argument.

One of the issues with iconv is that the string literals identifying conversions are not standardized. Because of this, the thought
of mandating and/or enforcing some set of pre-determined valid identifiers seems iffy: thus, a more practical (and non-migraine
inducing) strategy was implemented: end-users can specify any string (subject to a pre-determined length qualifier, currently 32
bytes) for encodings. It is up to the user to make sure that these strings are valid on the target system.

void _M_init ()

Strangely enough, this member function attempts to open conversion descriptors for a given encoding_state object. If the con-
version descriptors are not valid, the conversion descriptors returned will not be valid and the resulting calls to the codecvt
conversion functions will return error.

bool _M good()

The GNU C++ Library Manual 89/385

Provides a way to see if the given encoding_state object has been properly initialized. If the string literals describing the desired
internal and external encoding are not valid, initialization will fail, and this will return false. If the internal and external encodings
are valid, but iconv_open could not allocate conversion descriptors, this will also return false. Otherwise, the object is ready
to convert and will return true.

encoding_state (const encoding_stateé&)

As iconv allocates memory and sets up conversion descriptors, the copy constructor can only copy the member data pertaining to
the internal and external code conversions, and not the conversion descriptors themselves.

Definitions for all the required codecvt member functions are provided for this specialization, and usage of codecvt<internal
character type, external character type, encoding_ state> is consistent with other codecvt usage.

8.2.2.4 Use

A conversion involving a string literal.

typedef codecvt_base::result result;
typedef unsigned short unicode_t;
typedef unicode_t int_type;
typedef char ext_type;
typedef encoding_state state_type;

typedef codecvt<int_type, ext_type, state_type> unicode_codecvt;

const ext_typex e_lit = "black pearl jasmine tea";
int size = strlen(e_1lit);
int_type i_1it _base[24] =

{ 25088, 27648, 24832, 25344, 27392, 8192, 28672, 25856, 24832, 29184,
27648, 8192, 27136, 24832, 29440, 27904, 26880, 28160, 25856, 8192, 29696,
25856, 24832, 2560

}i

const int_typex i_1it = i_1lit_base;

const ext_typex efrom_next;

const int_typex ifrom_next;

ext_typex e_arr = new ext_typelsize + 1];
ext_typex eto_next;

int_typex i_arr = new int_typel[size + 1];
int_typex ito_next;

// construct a locale object with the specialized facet.

locale loc(locale::classic (), new unicode_codecvt) ;

// sanity check the constructed locale has the specialized facet.

VERIFY (has_facet<unicode_codecvt> (loc));

const unicode_codecvt& cvt = use_facet<unicode_codecvt> (loc);

// convert between const char* and unicode strings

unicode_codecvt::state_type stateOl ("UNICODE", "ISO_8859-1");

initialize_state (statell);

result rl = cvt.in(state0l, e_lit, e_lit + size, efrom_next,
i_arr, i_arr + size, ito_next);

VERIFY(rl == codecvt_base::0k);

VERIFY(!int_traits::compare(i_arr, i_lit, size));

VERIFY (efrom_next == e_lit + size);

VERIFY(ito_next == i_arr + size);

8.2.2.5 Future

* a. things that are sketchy, or remain unimplemented: do_encoding, max_length and length member functions are only weakly
implemented. I have no idea how to do this correctly, and in a generic manner. Nathan?

* b. conversions involving std::string

The GNU C++ Library Manual 90/ 385

— how should operators != and == work for string of different/same encoding?
— what is equal? A byte by byte comparison or an encoding then byte comparison?

— conversions between narrow, wide, and unicode strings

* c. conversions involving std::filebuf and std::ostream

— how to initialize the state object in a standards-conformant manner?
— how to synchronize the "C" and "C++" conversion information?

— wchar_t/char internal buffers and conversions between internal/external buffers?

8.2.2.6 Bibliography

[33] Roland McGrathUlIrich Drepper, Copyright © 2007 FSF, Chapters 6 Character Set Handling and 7 Locales and
Internationalization .

[34] Ulrich Drepper, Copyright © 2002 .
[35] , Copyright © 1998 ISO.
[36] , Copyright © 1999 ISO.

[37] System Interface Definitions, Issue 7 (IEEE Std. 1003.1-2008) , Copyright © 2008 The Open Group/The
Institute of Electrical and Electronics Engineers, Inc. .

[38] Bjarne Stroustrup, Copyright © 2000 Addison Wesley, Inc., Appendix D, Addison Wesley .

[39] Angelika LangerKlaus Kreft, Advanced Programmer’s Guide and Reference , Copyright © 2000 Addison Wes-
ley Longman, Inc., Addison Wesley Longman .

[40] Clive Feather, A brief description of Normative Addendum 1 , Extended Character Sets.
[41] Bruno Haible, The Unicode HOWTO
[42] Markus Khun, UTF-8 and Unicode FAQ for Unix/Linux

8.2.3 messages

The std: :messages facet implements message retrieval functionality equivalent to Java’s java.text .MessageFormat
using either GNU gettext or IEEE 1003.1-200 functions.

8.2.3.1 Requirements

The std: :messages facet is probably the most vaguely defined facet in the standard library. It’s assumed that this facility
was built into the standard library in order to convert string literals from one locale to the other. For instance, converting the "C"
locale’s const charx ¢ = "please" toa German-localized "bitte" during program execution.

22.2.7.1 - Template class messages [lib.locale.messages]

This class has three public member functions, which directly correspond to three protected virtual member functions.
The public member functions are:

catalog open(const string&, const locale&) const

string_type get(catalog, int, int, const string_ type&) const

void close(catalog) const

While the virtual functions are:

catalog do_open(const stringé& name, const locale& loc) const

https://pubs.opengroup.org/onlinepubs/9699919799/
http://www.lysator.liu.se/c/na1.html
https://tldp.org/HOWTO/Unicode-HOWTO.html
https://www.cl.cam.ac.uk/~mgk25/unicode.html

The GNU C++ Library Manual 91/385

-1- Returns: A value that may be passed to get () to retrieve a message, from the message catalog identified
by the string name according to an implementation-defined mapping. The result can be used until it is passed to
close (). Returns a value less than 0 if no such catalog can be opened.

string_type do_get (catalog cat, int set , int msgid, const string_type& dfault) const

-3- Requires: A catalog cat obtained from open () and not yet closed. -4- Returns: A message identified by
arguments set, msgid, and dfault, according to an implementation-defined mapping. If no such message can
be found, returns dfault.

void do_close(catalog cat) const

-5- Requires: A catalog cat obtained from open () and not yet closed. -6- Effects: Releases unspecified resources
associated with cat. -7- Notes: The limit on such resources, if any, is implementation-defined.

8.2.3.2 Design

A couple of notes on the standard.

First, why is messages_base: :catalog specified as a typedef to int? This makes sense for implementations that use
catopen and define n1__catd as int, but not for others. Fortunately, it’s not heavily used and so only a minor irritant. This has
been reported as a possible defect in the standard (LWG 2028).

Second, by making the member functions const, it is impossible to save state in them. Thus, storing away information used in
the *open” member function for use in "get’ is impossible. This is unfortunate.

The ’open’ member function in particular seems to be oddly designed. The signature seems quite peculiar. Why specify a const
stringé& argument, for instance, instead of just const charx? Or, why specify a const localeé& argument that is to
be used in the ’get’ member function? How, exactly, is this locale argument useful? What was the intent? It might make sense if
a locale argument was associated with a given default message string in the *open’ member function, for instance. Quite murky
and unclear, on reflection.

Lastly, it seems odd that messages, which explicitly require code conversion, don’t use the codecvt facet. Because the messages
facet has only one template parameter, it is assumed that ctype, and not codecvt, is to be used to convert between character sets.

It is implicitly assumed that the locale for the default message string in "get’ is in the "C" locale. Thus, all source code is assumed
to be written in English, so translations are always from "en_US" to other, explicitly named locales.

8.2.3.3 Implementation

8.2.3.3.1 Models

This is a relatively simple class, on the face of it. The standard specifies very little in concrete terms, so generic implementations
that are conforming yet do very little are the norm. Adding functionality that would be useful to programmers and comparable
to Java’s java.text.MessageFormat takes a bit of work, and is highly dependent on the capabilities of the underlying operating
system.

Three different mechanisms have been provided, selectable via configure flags:

* generic

This model does very little, and is what is used by default.

e gnu

The gnu model is complete and fully tested. It’s based on the GNU gettext package, which is part of glibc. It uses the functions
textdomain, bindtextdomain, gettext toimplement full functionality. Creating message catalogs is a relatively
straight-forward process and is lightly documented below, and fully documented in gettext’s distributed documentation.

The GNU C++ Library Manual 92/385

¢ ieee_1003.1-200x

This is a complete, though untested, implementation based on the IEEE standard. The functions catopen, catgets,
catclose are used to retrieve locale-specific messages given the appropriate message catalogs that have been constructed
for their use. Note, the script po2msg. sed that is part of the gettext distribution can convert gettext catalogs into catalogs
that cat open can use.

A new, standards-conformant non-virtual member function signature was added for open’ so that a directory could be specified
with a given message catalog. This simplifies calling conventions for the gnu model.

8.2.3.3.2 The GNU Model

The messages facet, because it is retrieving and converting between characters sets, depends on the ctype and perhaps the codecvt
facet in a given locale. In addition, underlying "C" library locale support is necessary for more than just the LC_MESSAGES
mask: LC_CTYPE is also necessary. To avoid any unpleasantness, all bits of the "C" mask (i.e. LC_ALL) are set before retrieving
messages.

Making the message catalogs can be initially tricky, but become quite simple with practice. For complete info, see the gettext
documentation. Here’s an idea of what is required:

* Make a source file with the required string literals that need to be translated. See intl/string_literals.cc for an
example.
* Make initial catalog (see "4 Making the PO Template File" from the gettext docs).

xgettext —--ct++ —--debug string_literals.cc -o libstdc++.pot

* Make language and country-specific locale catalogs.
cp libstdc++.pot fr_FR.po
cp libstdc++.pot de_DE.po

* Edit localized catalogs in emacs so that strings are translated.

emacs fr_FR.po

* Make the binary mo files.
msgfmt fr_FR.po -o fr_FR.mo
msgfmt de_DE.po —-o de_DE.mo

» Copy the binary files into the correct directory structure.
cp fr_FR.mo (dir)/fr_FR/LC_MESSAGES/libstdc++.mo
cp de_DE.mo (dir)/de_DE/LC_MESSAGES/libstdc++.mo

* Use the new message catalogs.

locale loc_de("de_DE");

use_facet<messages<char> > (loc_de) .open("libstdc++", locale(), dir);

8.2.3.4 Use

A simple example using the GNU model of message conversion.

#include <iostream>
#include <locale>
using namespace std;

void test01 ()
{

typedef messages<char>::catalog catalog;

The GNU C++ Library Manual 93/385

const char* dir =
"/mnt/egcs/build/1i686-pc-linux—gnu/libstdc++/po/share/locale";
const locale loc_de("de_DE");

const messages<char>& mssg_de = use_facet<messages<char> > (loc_de);

catalog cat_de = mssg_de.open("libstdc++", loc_de, dir);
string s0l1 = mssg_de.get (cat_de, 0, 0, "please");

string s02 = mssg_de.get (cat_de, 0, 0, "thank you");
cout << "please in german:" << s01 << ’\n’;

cout << "thank you in german:" << s02 << ’'\n’;
mssg_de.close (cat_de);

8.2.3.5 Future

* Things that are sketchy, or remain unimplemented:

— _M_convert_from_char, _M_convert_to_char are in flux, depending on how the library ends up doing character set conver-
sions. It might not be possible to do a real character set based conversion, due to the fact that the template parameter for
messages is not enough to instantiate the codecvt facet (1 supplied, need at least 2 but would prefer 3).

— There are issues with gettext needing the global locale set to extract a message. This dependence on the global locale makes
the current "gnu" model non MT-safe. Future versions of glibc, i.e. glibc 2.3.x will fix this, and the C++ library bits are
already in place.

* Development versions of the GNU "C" library, glibc 2.3 will allow a more efficient, MT implementation of std::messages, and
will allow the removal of the _M_name_messages data member. If this is done, it will change the library ABI. The C++ parts
to support glibc 2.3 have already been coded, but are not in use: once this version of the "C" library is released, the marked
parts of the messages implementation can be switched over to the new "C" library functionality.

¢ At some point in the near future, std::numpunct will probably use std::messages facilities to implement truename/falsename
correctly. This is currently not done, but entries in libstdc++.pot have already been made for "true" and "false" string literals,
so all that remains is the std::numpunct coding and the configure/make hassles to make the installed library search its own
catalog. Currently the libstdc++.mo catalog is only searched for the testsuite cases involving messages members.

* The following member functions:
catalog open(const basic_string<char>& __s, const locale& ___loc) const
catalog open(const basic_string<char>&, const locale&, const charx) const;

Don’t actually return a "value less than 0 if no such catalog can be opened" as required by the standard in the "gnu" model. As
of this writing, it is unknown how to query to see if a specified message catalog exists using the gettext package.

8.2.3.6 Bibliography

[43] Roland McGrathUlrich Drepper, Copyright © 2007 FSF, Chapters 6 Character Set Handling, and 7 Locales and
Internationalization .

[44] Ulrich Drepper, Copyright © 2002 .
[45] , Copyright © 1998 ISO.
[46] , Copyright © 1999 ISO.

[47] System Interface Definitions, Issue 7 (IEEE Std. 1003.1-2008) , Copyright © 2008 The Open Group/The
Institute of Electrical and Electronics Engineers, Inc. .

[48] Bjarne Stroustrup, Copyright © 2000 Addison Wesley, Inc., Appendix D, Addison Wesley .

[49] Angelika LangerKlaus Kreft, Advanced Programmer’s Guide and Reference , Copyright © 2000 Addison Wes-
ley Longman, Inc., Addison Wesley Longman .

https://pubs.opengroup.org/onlinepubs/9699919799/

The GNU C++ Library Manual 94 /385

[50]1 API Specifications, Java Platform , java.util.Properties, java.text.MessageFormat, java.util.Locale,
java.util.ResourceBundle .

[511 GNU gettext tools, version 0.10.38, Native Language Support Library and Tools.

https://docs.oracle.com/en/java/
https://www.gnu.org/software/gettext/

The GNU C++ Library Manual 95/385

Chapter 9

Containers

9.1 Sequences

9.1.1 list
9.1.1.1 list::size() is O(n)

Yes it is, at least using the old ABI, and that’s okay. This is a decision that we preserved when we imported SGI’s STL
implementation. The following is quoted from their FAQ:

The size() member function, for list and slist, takes time proportional to the number of elements in the list. This
was a deliberate tradeoff. The only way to get a constant-time size() for linked lists would be to maintain an extra
member variable containing the list’s size. This would require taking extra time to update that variable (it would
make splice() a linear time operation, for example), and it would also make the list larger. Many list algorithms don’t
require that extra word (algorithms that do require it might do better with vectors than with lists), and, when it is
necessary to maintain an explicit size count, it’s something that users can do themselves.

This choice is permitted by the C++ standard. The standard says that size() “should” be constant time, and “should”
does not mean the same thing as “shall”. This is the officially recommended ISO wording for saying that an imple-
mentation is supposed to do something unless there is a good reason not to.

One implication of linear time size(): you should never write

if (L.size() == 0)

Instead, you should write

if (L.empty())

9.2 Associative

9.2.1 Insertion Hints

Section [23.1.2], Table 69, of the C++ standard lists this function for all of the associative containers (map, set, etc):

a.insert (p,t);

https://web.archive.org/web/20171225062613/http://www.sgi.com/tech/stl/FAQ.html

The GNU C++ Library Manual 96 /385

where ’p’ is an iterator into the container ’a’, and ’t’ is the item to insert. The standard says that “t is inserted as close as possible
to the position just prior to p.” (Library DR #233 addresses this topic, referring to N1780. Since version 4.2 GCC implements
the resolution to DR 233, so that insertions happen as close as possible to the hint. For earlier releases the hint was only used as
described below.

Here we’ll describe how the hinting works in the libstdc++ implementation, and what you need to do in order to take advantage
of it. (Insertions can change from logarithmic complexity to amortized constant time, if the hint is properly used.) Also, since
the current implementation is based on the SGI STL one, these points may hold true for other library implementations also, since
the HP/SGI code is used in a lot of places.

In the following text, the phrases greater than and less than refer to the results of the strict weak ordering imposed on the
container by its comparison object, which defaults to (basically) “<”. Using those phrases is semantically sloppy, but I didn’t
want to get bogged down in syntax. I assume that if you are intelligent enough to use your own comparison objects, you are also
intelligent enough to assign “greater” and “lesser” their new meanings in the next paragraph. *grin*

If the hint parameter ("p’ above) is equivalent to:

* begin (), then the item being inserted should have a key less than all the other keys in the container. The item will be inserted
at the beginning of the container, becoming the new entry at begin ().

* end (), then the item being inserted should have a key greater than all the other keys in the container. The item will be inserted
at the end of the container, becoming the new entry before end () .

* neither begin () nor end (), then: Let h be the entry in the container pointed to by hint, thatis, h = shint. Then the
item being inserted should have a key less than that of h, and greater than that of the item preceding h. The new item will be
inserted between h and h’s predecessor.

For multimap and multiset, the restrictions are slightly looser: “greater than” should be replaced by “not less than”and
“less than” should be replaced by “not greater than.” (Why not replace greater with greater-than-or-equal-to? You probably could
in your head, but the mathematicians will tell you that it isn’t the same thing.)

If the conditions are not met, then the hint is not used, and the insertion proceeds as if you had called a.insert (t) instead.
(Note that GCC releases prior to 3.0.2 had a bug in the case with hint == begin () for the map and set classes. You
should not use a hint argument in those releases.)

This behavior goes well with other containers’ insert () functions which take an iterator: if used, the new item will be inserted
before the iterator passed as an argument, same as the other containers.

Note also that the hint in this implementation is a one-shot. The older insertion-with-hint routines check the immediately
surrounding entries to ensure that the new item would in fact belong there. If the hint does not point to the correct place, then no
further local searching is done; the search begins from scratch in logarithmic time.

9.2.2 Dbitset

9.2.2.1 Size Variable

No, you cannot write code of the form
#include <bitset>

void foo (size_t n)

{
std::bitset<n> bits;

because n must be known at compile time. Your compiler is correct; it is not a bug. That’s the way templates work. (Yes, it is a
feature.)

There are a couple of ways to handle this kind of thing. Please consider all of them before passing judgement. They include, in
no particular order:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1780.html

The GNU C++ Library Manual 97 /385

e A very large Nin bitset<N>.
¢ A container<bool>.

* Extremely weird solutions.

A verylarge Nin bitset<N> Ithas been pointed out a few times in newsgroups that N bits only takes up (N/8) bytes on most
systems, and division by a factor of eight is pretty impressive when speaking of memory. Half a megabyte given over to a bitset
(recall that there is zero space overhead for housekeeping info; it is known at compile time exactly how large the set is) will hold
over four million bits. If you’re using those bits as status flags (e.g., “changed”/*unchanged” flags), that’s a lot of state.

You can then keep track of the “maximum bit used” during some testing runs on representative data, make note of how many of
those bits really need to be there, and then reduce N to a smaller number. Leave some extra space, of course. (If you plan to write
code like the incorrect example above, where the bitset is a local variable, then you may have to talk your compiler into allowing
that much stack space; there may be zero space overhead, but it’s all allocated inside the object.)

A container<bool>. The Committee made provision for the space savings possible with that (N/8) usage previously men-
tioned, so that you don’t have to do wasteful things like Container<char> or Container<short int>. Specifically,
vector<bool> is required to be specialized for that space savings.

The problem is that vect or<bool> doesn’t behave like a normal vector anymore. There have been journal articles which dis-
cuss the problems (the ones by Herb Sutter in the May and July/August 1999 issues of C++ Report cover it well). Future revisions
of the ISO C++ Standard will change the requirement for vect or<bool> specialization. In the meantime, deque<bool> is
recommended (although its behavior is sane, you probably will not get the space savings, but the allocation scheme is different
than that of vector).

Extremely weird solutions. 1f you have access to the compiler and linker at runtime, you can do something insane, like figuring
out just how many bits you need, then writing a temporary source code file. That file contains an instantiation of bit set for the
required number of bits, inside some wrapper functions with unchanging signatures. Have your program then call the compiler
on that file using Position Independent Code, then open the newly-created object file and load those wrapper functions. You’ll
have an instantiation of bit set <N> for the exact N that you need at the time. Don’t forget to delete the temporary files. (Yes,
this can be, and has been, done.)

This would be the approach of either a visionary genius or a raving lunatic, depending on your programming and management
style. Probably the latter.

Which of the above techniques you use, if any, are up to you and your intended application. Some time/space profiling is indicated
if it really matters (don’t just guess). And, if you manage to do anything along the lines of the third category, the author would
love to hear from you...

Also note that the implementation of bitset used in libstdc++ has some extensions.

9.2.2.2 Type String

Bitmasks do not take char* nor const char* arguments in their constructors. This is something of an accident, but you can read
about the problem: follow the library’s “Links” from the homepage, and from the C++ information “defect reflector” link, select
the library issues list. Issue number 116 describes the problem.

For now you can simply make a temporary string object using the constructor expression:

std::bitset<5> b (std::string("10110"));

instead of

std::bitset<5> b ("10110"); // invalid

The GNU C++ Library Manual 98 /385

9.3 Unordered Associative

9.3.1 Insertion Hints

Here is how the hinting works in the libstdc++ implementation of unordered containers, and the rationale behind this behavior.

In the following text, the phrase equivalent to refer to the result of the invocation of the equal predicate imposed on the container
by its key_equal object, which defaults to (basically) “==".

Unordered containers can be seen as a std: :vector of std: : forward_list. The std: : vector represents the buckets
and each std: :forward_list is the list of nodes belonging to the same bucket. When inserting an element in such a data
structure we first need to compute the element hash code to find the bucket to insert the element to, the second step depends on
the uniqueness of elements in the container.

In the case of std: :unordered_set and std: :unordered_map you need to look through all bucket’s elements for an
equivalent one. If there is none the insertion can be achieved, otherwise the insertion fails. As we always need to loop though all
bucket’s elements, the hint doesn’t tell us if the element is already present, and we don’t have any constraint on where the new
element is to be inserted, the hint won’t be of any help and will then be ignored.

In the case of std: :unordered_multiset and std: :unordered_multimap equivalent elements must be linked to-
gether so that the equal_range (const key_typeé&) can return the range of iterators pointing to all equivalent elements.
This is where hinting can be used to point to another equivalent element already part of the container and so skip all non equiv-
alent elements of the bucket. So to be useful the hint shall point to an element equivalent to the one being inserted. The new
element will be then inserted right after the hint. Note that because of an implementation detail inserting after a node can require
updating the bucket of the following node. To check if the next bucket is to be modified we need to compute the following node’s
hash code. So if you want your hint to be really efficient it should be followed by another equivalent element, the implementation
will detect this equivalence and won’t compute next element hash code.

It is highly advised to start using unordered containers hints only if you have a benchmark that will demonstrate the benefit of it.
If you don’t then do not use hints, it might do more harm than good.

9.3.2 Hash Code

9.3.2.1 Hash Code Caching Policy

The unordered containers in libstdc++ may cache the hash code for each element alongside the element itself. In some cases not
recalculating the hash code every time it’s needed can improve performance, but the additional memory overhead can also reduce
performance, so whether an unordered associative container caches the hash code or not depends on the properties described
below.

The C++ standard requires that erase and swap operations must not throw exceptions. Those operations might need an
element’s hash code, but cannot use the hash function if it could throw. This means the hash codes will be cached unless the hash
function has a non-throwing exception specification such as noexcept or throw ().

If the hash function is non-throwing then libstdc++ doesn’t need to cache the hash code for correctness, but might still do so
for performance if computing a hash code is an expensive operation, as it may be for arbitrarily long strings. As an extension
libstdc++ provides a trait type to describe whether a hash function is fast. By default hash functions are assumed to be fast unless
the trait is specialized for the hash function and the trait’s value is false, in which case the hash code will always be cached. The
trait can be specialized for user-defined hash functions like so:

#include <unordered_set>

struct hasher

{

std::size_t operator () (int val) const noexcept

{

// Some very slow computation of a hash code from an int !

The GNU C++ Library Manual 99/385

namespace std

{
template<>

struct __is_fast_hash<hasher> : std::false_type
{1

9.4 Interacting with C

9.4.1 Containers vs. Arrays

You’re writing some code and can’t decide whether to use builtin arrays or some kind of container. There are compelling reasons
to use one of the container classes, but you’re afraid that you’ll eventually run into difficulties, change everything back to arrays,
and then have to change all the code that uses those data types to keep up with the change.

If your code makes use of the standard algorithms, this isn’t as scary as it sounds. The algorithms don’t know, nor care, about the
kind of “container” on which they work, since the algorithms are only given endpoints to work with. For the container classes,
these are iterators (usually begin () and end (), but not always). For builtin arrays, these are the address of the first element
and the past-the-end element.

Some very simple wrapper functions can hide all of that from the rest of the code. For example, a pair of functions called
beginof can be written, one that takes an array, another that takes a vector. The first returns a pointer to the first element, and
the second returns the vector’s begin () iterator.

The functions should be made template functions, and should also be declared inline. As pointed out in the comments in the code
below, this can lead to beginof being optimized out of existence, so you pay absolutely nothing in terms of increased code size
or execution time.

The result is that if all your algorithm calls look like

std::transform(beginof (foo), endof (foo), beginof (foo), SomeFunction);

then the type of foo can change from an array of ints to a vector of ints to a deque of ints and back again, without ever changing
any client code.

// beginof

template<typename T>
inline typename vector<T>::iterator
beginof (vector<T> &v)
{ return v.begin(); }

template<typename T, unsigned int sz>
inline Tx
beginof (T (&array) [sz]) { return array; }

// endof

template<typename T>
inline typename vector<T>::iterator
endof (vector<T> &v)
{ return v.end(); }

template<typename T, unsigned int sz>
inline Tx
endof (T (&array) [sz]) { return array + sz; }

// lengthof

template<typename T>
inline typename vector<T>::size_type
lengthof (vector<T> &v)

The GNU C++ Library Manual 100/385

{ return v.size(); }

template<typename T, unsigned int sz>
inline unsigned int
lengthof (T (&) [sz]) { return sz; }

Astute readers will notice two things at once: first, that the container class is still a vector<T> instead of a more general
Container<T>. This would mean that three functions for deque would have to be added, another three for 1ist, and so
on. This is due to problems with getting template resolution correct; I find it easier just to give the extra three lines and avoid
confusion.

Second, the line

inline unsigned int lengthof (T (&) [sz]) { return sz; }

looks just weird! Hint: unused parameters can be left nameless.

The GNU C++ Library Manual 101 /385

Chapter 10

Ilterators

10.1 Predefined

10.1.1 Iterators vs. Pointers

The following FAQ entry points out that iterators are not implemented as pointers. They are a generalization of pointers, but they
are implemented in libstdc++ as separate classes.

Keeping that simple fact in mind as you design your code will prevent a whole lot of difficult-to-understand bugs.

You can think of it the other way 'round, even. Since iterators are a generalization, that means that pointers are iterators, and that
pointers can be used whenever an iterator would be. All those functions in the Algorithms section of the Standard will work just
as well on plain arrays and their pointers.

That doesn’t mean that when you pass in a pointer, it gets wrapped into some special delegating iterator-to-pointer class with a
layer of overhead. (If you think that’s the case anywhere, you don’t understand templates to begin with...) Oh, no; if you pass
in a pointer, then the compiler will instantiate that template using T* as a type, and good old high-speed pointer arithmetic as its
operations, so the resulting code will be doing exactly the same things as it would be doing if you had hand-coded it yourself (for
the 273rd time).

How much overhead is there when using an iterator class? Very little. Most of the layering classes contain nothing but typedefs,
and typedefs are "meta-information" that simply tell the compiler some nicknames; they don’t create code. That information gets
passed down through inheritance, so while the compiler has to do work looking up all the names, your runtime code does not.
(This has been a prime concern from the beginning.)

10.1.2 One Past the End

This starts off sounding complicated, but is actually very easy, especially towards the end. Trust me.

Beginners usually have a little trouble understand the whole ’past-the-end’ thing, until they remember their early algebra classes
(see, they told you that stuff would come in handy!) and the concept of half-open ranges.

First, some history, and a reminder of some of the funkier rules in C and C++ for builtin arrays. The following rules have always
been true for both languages:

1. You can point anywhere in the array, or fo the first element past the end of the array. A pointer that points to one past the
end of the array is guaranteed to be as unique as a pointer to somewhere inside the array, so that you can compare such
pointers safely.

2. You can only dereference a pointer that points into an array. If your array pointer points outside the array -- even to just
one past the end -- and you dereference it, Bad Things happen.

The GNU C++ Library Manual 102 /385

3. Strictly speaking, simply pointing anywhere else invokes undefined behavior. Most programs won’t puke until such a
pointer is actually dereferenced, but the standards leave that up to the platform.

The reason this past-the-end addressing was allowed is to make it easy to write a loop to go over an entire array, e.g., while (*d++
= *s+4);.

So, when you think of two pointers delimiting an array, don’t think of them as indexing O through n-1. Think of them as boundary
markers:

beginning end
\ |
| | This is bad. Always having to
| | remember to add or subtract one.
| | Off-by-one bugs very common here.
\% v

array of N elements

[0 | 1 | ... |N=-2|N-1 |
| === === —— ===
\ \
| \ This is good. This is safe. This
| | is guaranteed to work. Just don’t
| dereference ’"end’.
beginning end

See? Everything between the boundary markers is chapter of the array. Simple.

Now think back to your junior-high school algebra course, when you were learning how to draw graphs. Remember that a
graph terminating with a solid dot meant, "Everything up through this point," and a graph terminating with an open dot meant,
"Everything up to, but not including, this point," respectively called closed and open ranges? Remember how closed ranges were
written with brackets, [a,b], and open ranges were written with parentheses, (a,b)?

The boundary markers for arrays describe a half-open range, starting with (and including) the first element, and ending with (but
not including) the last element: [beginning,end). See, 1 told you it would be simple in the end.

Iterators, and everything working with iterators, follows this same time-honored tradition. A container’s begin () method
returns an iterator referring to the first element, and its end () method returns a past-the-end iterator, which is guaranteed to be
unique and comparable against any other iterator pointing into the middle of the container.

Container constructors, container methods, and algorithms, all take pairs of iterators describing a range of values on which to
operate. All of these ranges are half-open ranges, so you pass the beginning iterator as the starting parameter, and the one-past-
the-end iterator as the finishing parameter.

This generalizes very well. You can operate on sub-ranges quite easily this way; functions accepting a [first,last) range don’t
know or care whether they are the boundaries of an entire {array, sequence, container, whatever}, or whether they only enclose
a few elements from the center. This approach also makes zero-length sequences very simple to recognize: if the two endpoints
compare equal, then the {array, sequence, container, whatever} is empty.

Just don’t dereference end () .

The GNU C++ Library Manual 103 /385

Chapter 11

Algorithms

The neatest accomplishment of the algorithms section is that all the work is done via iterators, not containers directly. This means
two important things:

1. Anything that behaves like an iterator can be used in one of these algorithms. Raw pointers make great candidates, thus
built-in arrays are fine containers, as well as your own iterators.

2. The algorithms do not (and cannot) affect the container as a whole; only the things between the two iterator endpoints. If
you pass a range of iterators only enclosing the middle third of a container, then anything outside that range is inviolate.

Even strings can be fed through the algorithms here, although the string class has specialized versions of many of these functions
(for example, string: : £ind ()). Most of the examples on this page will use simple arrays of integers as a playground for
algorithms, just to keep things simple. The use of N as a size in the examples is to keep things easy to read but probably won’t
be valid code. You can use wrappers such as those described in the containers section to keep real code readable.

The single thing that trips people up the most is the definition of range used with iterators; the famous "past-the-end" rule that
everybody loves to hate. The iterators section of this document has a complete explanation of this simple rule that seems to cause
so much confusion. Once you get range into your head (it’s not that hard, honest!), then the algorithms are a cakewalk.

11.1 Mutating

11.1.1 swap

11.1.1.1 Specializations

If youcall std::swap(x,y); wherex andy are standard containers, then the call will automatically be replaced by a call
to x.swap(y); instead.

This allows member functions of each container class to take over, and containers’ swap functions should have O(1) complexity
according to the standard. (And while "should" allows implementations to behave otherwise and remain compliant, this imple-
mentation does in fact use constant-time swaps.) This should not be surprising, since for two containers of the same type to swap
contents, only some internal pointers to storage need to be exchanged.

The GNU C++ Library Manual 104 /385

Chapter 12

Numerics

12.1 Complex

12.1.1 complex Processing

Using complex<> becomes even more comple- er, sorry, complicated, with the not-quite-gratuitously-incompatible addition of
complex types to the C language. David Tribble has compiled a list of C++98 and C99 conflict points; his description of C’s new
type versus those of C++ and how to get them playing together nicely is here.

complex<> isintended to be instantiated with a floating-point type. As long as you meet that and some other basic requirements,
then the resulting instantiation has all of the usual math operators defined, as well as definitions of op<< and op>> that work
with iostreams: op<< prints (u, v) and op>> canread u, (u), and (u,v).

As an extension to C++11 and for increased compatibility with C, <complex.h> includes both <complex> and the C99
<complex.h> (if the C library provides it).

12.2 Generalized Operations

There are four generalized functions in the <numeric> header that follow the same conventions as those in <algorithm>. Each
of them is overloaded: one signature for common default operations, and a second for fully general operations. Their names are
self-explanatory to anyone who works with numerics on a regular basis:

* accumulate

* inner_product

* partial_sum

* adjacent_difference

Here is a simple example of the two forms of accumulate.

int ar[507];
int someval = somefunction () ;
// ...initialize members of ar to something...

int sum std::accumulate (ar,ar+50,0);
int sum_stuff = std::accumulate (ar,ar+50, someval);
int product = std::accumulate (ar,ar+50,1,std:::multiplies<int>());

http://david.tribble.com/text/cdiffs.htm#C99-complex

The GNU C++ Library Manual 105 /385

The first call adds all the members of the array, using zero as an initial value for sum. The second does the same, but uses
someval as the starting value (thus, sum_stuff == sum + someval). The final call uses the second of the two signa-
tures, and multiplies all the members of the array; here we must obviously use 1 as a starting value instead of 0.

The other three functions have similar dual-signature forms.

12.3 Interacting with C

12.3.1 Numerics vs. Arrays

One of the major reasons why FORTRAN can chew through numbers so well is that it is defined to be free of pointer aliasing, an
assumption that C89 is not allowed to make, and neither is C++98. C99 adds a new keyword, restrict, to apply to individual
pointers. The C++ solution is contained in the library rather than the language (although many vendors can be expected to add
this to their compilers as an extension).

That library solution is a set of two classes, five template classes, and "a whole bunch" of functions. The classes are required to
be free of pointer aliasing, so compilers can optimize the daylights out of them the same way that they have been for FORTRAN.
They are collectively called valarray, although strictly speaking this is only one of the five template classes, and they are
designed to be familiar to people who have worked with the BLAS libraries before.

12.3.2 C99

In addition to the other topics on this page, we’ll note here some of the C99 features that appear in libstdc++.

The C99 features depend on the ——enable-c99 configure flag. This flag is already on by default, but it can be disabled by the
user. Also, the configuration machinery will disable it if the necessary support for C99 (e.g., header files) cannot be found.

As of GCC 3.0, C99 support includes classification functions such as isnormal, isgreater, isnan, etc. The functions
used for ’long long’ support such as st rt o011 are supported, as is the 11div_t typedef. Also supported are the wide character
functions using ’long long’, like wcstoll.

The GNU C++ Library Manual 106 / 385

Chapter 13

Input and Output

13.1 lostream Objects

To minimize the time you have to wait on the compiler, it’s good to only include the headers you really need. Many people
simply include <iostream> when they don’t need to -- and that can penalize your runtime as well. Here are some tips on
which header to use for which situations, starting with the simplest.

<iosfwd> should be included whenever you simply need the name of an I/O-related class, such as "of st ream" or "basic_streaml
Like the name implies, these are forward declarations. (A word to all you fellow old school programmers: trying to forward de-
clare classes like "class istream;" won’t work. Look in the <iosfwd> header if you’d like to know why.) For example,

#include <iosfwd>

class MyClass
{

std::ifstreamé& input_file;
}i

extern std::ostream& operator<< (std::ostream&, MyClass&);

<ios> declares the base classes for the entire I/O stream hierarchy, std: :ios_base and std: :basic_ios<charT>,
the counting types std::streamoff and std::streamsize, the file positioning type std::fpos, and the various manipulators like
std: :hex, std: :fixed, std: :noshowbase, and so forth.

The ios_base class is what holds the format flags, the state flags, and the functions which change them (setf (), width (),
precision (), etc). You can also store extra data and register callback functions through ios_lbase, but that has been
historically underused. Anything which doesn’t depend on the type of characters stored is consolidated here.

The class template basic_ios is the highest class template in the hierarchys; it is the first one depending on the character type,
and holds all general state associated with that type: the pointer to the polymorphic stream buffer, the facet information, etc.

<streamburf> declares the class template basic_streambuf, and two standard instantiations, streambuf and wstreambuf.
If you need to work with the vastly useful and capable stream buffer classes, e.g., to create a new form of storage transport, this
header is the one to include.

<istream> and <ostream> are the headers to include when you are using the overloaded >> and << operators, or any of
the other abstract stream formatting functions. For example,

#include <istream>

std::ostream& operator<< (std::ostreamé& os, MyClassé& c)

{

return os << c.datal () << c.data2();

The GNU C++ Library Manual 107 /385

The std::istream and std::ostream classes are the abstract parents of the various concrete implementations. If you are only using
the interfaces, then you only need to use the appropriate interface header.

<iomanip> provides "extractors and inserters that alter information maintained by class ios_lbase and its derived classes,"
such as std::setprecision and std::setw. If you need to write expressions like os << setw(3); or is >>
setbase (8) ;, you must include <iomanip>.

<sstream> and <fstream> declare the six stringstream and fstream classes. As they are the standard concrete descendants
of istream and ostream, you will already know about them.

Finally, <iostream> provides the eight standard global objects (cin, cout, etc). To do this correctly, this header also
provides the contents of the <istream> and <ostream> headers, but nothing else. The contents of this header look like:

#include <ostream>
#include <istream>

namespace std

{
extern istream cinj;
extern ostream cout;

// this is explained below
static ios_base::Init __ foo; // not its real name

}

Now, the runtime penalty mentioned previously: the global objects must be initialized before any of your own code uses them;
this is guaranteed by the standard. Like any other global object, they must be initialized once and only once. This is typically
done with a construct like the one above, and the nested class 1os_base: : Init is specified in the standard for just this reason.

How does it work? Because the header is included before any of your code, the __foo object is constructed before any of your
objects. (Global objects are built in the order in which they are declared, and destroyed in reverse order.) The first time the
constructor runs, the eight stream objects are set up.

The stat ic keyword means that each object file compiled from a source file containing <iostream> will have its own private
copy of __foo. There is no specified order of construction across object files (it’s one of those pesky NP complete problems that
make life so interesting), so one copy in each object file means that the stream objects are guaranteed to be set up before any of
your code which uses them could run, thereby meeting the requirements of the standard.

The penalty, of course, is that after the first copy of __foo is constructed, all the others are just wasted processor time. The time
spent is merely for an increment-and-test inside a function call, but over several dozen or hundreds of object files, that time can
add up. (It’s not in a tight loop, either.)

The lesson? Only include <iostream> when you need to use one of the standard objects in that source file; you’ll pay less
startup time. Only include the header files you need to in general; your compile times will go down when there’s less parsing
work to do.

13.2 Stream Buffers

13.2.1 Derived streambuf Classes

Creating your own stream buffers for I/O can be remarkably easy. If you are interested in doing so, we highly recommend two
very excellent books: Standard C++ IOStreams and Locales by Langer and Kreft, ISBN 0-201-18395-1, and The C++ Standard
Library by Nicolai Josuttis, ISBN 0-201-37926-0. Both are published by Addison-Wesley, who isn’t paying us a cent for saying
that, honest.

Here is a simple example, io/outbufl, from the Josuttis text. It transforms everything sent through it to uppercase. This version
assumes many things about the nature of the character type being used (for more information, read the books or the newsgroups):

#include <iostream>
#include <streambuf>

http://www.angelikalanger.com/iostreams.html
http://www.josuttis.com/libbook/
http://www.josuttis.com/libbook/

The GNU C++ Library Manual 108 /385

#include <locale>
#include <cstdio>

class outbuf : public std::streambuf

{

protected:
/+ central output function
* — print characters in uppercase mode
*/
virtual int_type overflow (int_type c) {
if (c !'= EOF) {
// convert lowercase to uppercase
c = std::toupper (static_cast<char> (c),getloc());

// and write the character to the standard output
if (putchar(c) == EOF) {
return EOF;

}

return c;
}i

int main ()
{
// create special output buffer
outbuf ob;
// initialize output stream with that output buffer
std::ostream out (&ob);

out << "31 hexadecimal: "
<< std::hex << 31 << std::endl;
return 0;

}

Try it yourself! More examples can be found in 3.1.x code, in include/ext/*_filebuf.h, and in the article Filtering
Streambufs by James Kanze.

13.2.2 Buffering

First, are you sure that you understand buffering? Particularly the fact that C++ may not, in fact, have anything to do with it?

The rules for buffering can be a little odd, but they aren’t any different from those of C. (Maybe that’s why they can be a bit odd.)
Many people think that writing a newline to an output stream automatically flushes the output buffer. This is true only when the
output stream is, in fact, a terminal and not a file or some other device -- and that may not even be true since C++ says nothing
about files nor terminals. All of that is system-dependent. (The "newline-buffer-flushing only occurring on terminals" thing is
mostly true on Unix systems, though.)

Some people also believe that sending endl down an output stream only writes a newline. This is incorrect; after a newline
is written, the buffer is also flushed. Perhaps this is the effect you want when writing to a screen -- get the text out as soon as
possible, etc -- but the buffering is largely wasted when doing this to a file:

output << "a line of text" << endl;
output << some_data_variable << endl;
output << "another line of text" << endl;

The proper thing to do in this case to just write the data out and let the libraries and the system worry about the buffering. If you
need a newline, just write a newline:

output << "a line of text\n"
<< some_data_variable << ’'\n’

http://gabisoft.free.fr/articles/fltrsbf1.html
http://gabisoft.free.fr/articles/fltrsbf1.html

The GNU C++ Library Manual 109 /385

<< "another line of text\n";

I have also joined the output statements into a single statement. You could make the code prettier by moving the single newline
to the start of the quoted text on the last line, for example.

If you do need to flush the buffer above, you can send an end1 if you also need a newline, or just flush the buffer yourself:

output << << flush; // can use std::flush manipulator
output.flush(); // or call a member fn

On the other hand, there are times when writing to a file should be like writing to standard error; no buffering should be done
because the data needs to appear quickly (a prime example is a log file for security-related information). The way to do this is
just to turn off the buffering before any 1/0O operations at all have been done (note that opening counts as an I/O operation):

std::ofstream 0s;
std::ifstream is;
int al g

os.rdbuf () —>pubsetbuf (0, 0) ;
is.rdbuf () ->pubsetbuf (0,0) ;

os.open ("/foo/bar/baz") ;
is.open ("/qux/quux/quuux") ;

0s << "this data is written immediately\n";
is >> 1i; // and this will probably cause a disk read

Since all aspects of buffering are handled by a streambuf-derived member, it is necessary to get at that member with rdbuf ().
Then the public version of setbuf can be called. The arguments are the same as those for the Standard C I/O Library function
(a buffer area followed by its size).

A great deal of this is implementation-dependent. For example, st reambu f does not specify any actions for its own setbuf () -
ish functions; the classes derived from st reambuf each define behavior that "makes sense" for that class: an argument of (0,0)
turns off buffering for £ilebuf but does nothing at all for its siblings stringbuf and strstreambuf, and specifying
anything other than (0,0) has varying effects. User-defined classes derived from st reambuf can do whatever they want. (For
filebuf and arguments for (p, s) other than zeros, libstdc++ does what you’d expect: the first s bytes of p are used as a
buffer, which you must allocate and deallocate.)

A last reminder: there are usually more buffers involved than just those at the language/library level. Kernel buffers, disk buffers,
and the like will also have an effect. Inspecting and changing those are system-dependent.

13.3 Memory Based Streams

13.3.1 Compatibility With strstream

Stringstreams (defined in the header <sstream>) are in this author’s opinion one of the coolest things since sliced time. An
example of their use is in the Received Wisdom section for Sectl 21 (Strings), describing how to format strings.

The quick definition is: they are siblings of ifstream and ofstream, and they do for std: : st ring what their siblings do for
files. All that work you put into writing << and >> functions for your classes now pays off again! Need to format a string before
passing the string to a function? Send your stuff via << to an ostringstream. You’ve read a string as input and need to parse it?
Initialize an istringstream with that string, and then pull pieces out of it with >>. Have a stringstream and need to get a copy of
the string inside? Just call the st r () member function.

This only works if you’ve written your <</>> functions correctly, though, and correctly means that they take istreams and
ostreams as parameters, not ifstreams and of streams. If they take the latter, then your I/O operators will work fine with file
streams, but with nothing else -- including stringstreams.

If you are a user of the strstream classes, you need to update your code. You don’t have to explicitly append ends to terminate
the C-style character array, you don’t have to mess with "freezing" functions, and you don’t have to manage the memory yourself.
The strstreams have been officially deprecated, which means that 1) future revisions of the C++ Standard won’t support them,
and 2) if you use them, people will laugh at you.

The GNU C++ Library Manual 110/385

13.4 File Based Streams

13.4.1 Copying a File
So you want to copy a file quickly and easily, and most important, completely portably. And since this is C++, you have an open
ifstream (call it IN) and an open ofstream (call it OUT):

#include <fstream>

std::ifstream IN ("input_file");
std::ofstream OUT ("output_file");

Here’s the easiest way to get it completely wrong:

OUT << IN;

For those of you who don’t already know why this doesn’t work (probably from having done it before), I invite you to quickly
create a simple text file called "input_file" containing the sentence

The quick brown fox jumped over the lazy dog.

surrounded by blank lines. Code it up and try it. The contents of "output_file" may surprise you.
Seriously, go do it. Get surprised, then come back. It’s worth it.

The thing to remember is that the basic_[io] stream classes handle formatting, nothing else. In particular, they break up
on whitespace. The actual reading, writing, and storing of data is handled by the basic_streambuf family. Fortunately, the
operator<< is overloaded to take an ostream and a pointer-to-streambuf, in order to help with just this kind of "dump the data
verbatim" situation.

Why a pointer to streambuf and not just a streambuf? Well, the [io]streams hold pointers (or references, depending on the
implementation) to their buffers, not the actual buffers. This allows polymorphic behavior on the chapter of the buffers as well
as the streams themselves. The pointer is easily retrieved using the rdbuf () member function. Therefore, the easiest way to
copy the file is:

OUT << IN.rdbuf ();

So what was happening with OUT<<IN? Undefined behavior, since that particular << isn’t defined by the Standard. I have
seen instances where it is implemented, but the character extraction process removes all the whitespace, leaving you with no
blank lines and only "Thequickbrownfox...". With libraries that do not define that operator, IN (or one of IN’s member pointers)
sometimes gets converted to a void*, and the output file then contains a perfect text representation of a hexadecimal address
(quite a big surprise). Others don’t compile at all.

Also note that none of this is specific to o *f*streams. The operators shown above are all defined in the parent basic_ostream class
and are therefore available with all possible descendants.

13.4.2 Binary Input and Output

The first and most important thing to remember about binary I/O is that opening a file with 1ios: :binary is not, repeat not,
the only thing you have to do. It is not a silver bullet, and will not allow you to use the <</>> operators of the normal fstreams
to do binary I/O.

Sorry. Them’s the breaks.

This isn’t going to try and be a complete tutorial on reading and writing binary files (because "binary" covers a lot of ground),
but we will try and clear up a couple of misconceptions and common errors.

First, ios: :binary has exactly one defined effect, no more and no less. Normal text mode has to be concerned with the
newline characters, and the runtime system will translate between (for example) \n’ and the appropriate end-of-line sequence
(LF on Unix, CRLF on DOS, CR on Macintosh, etc). (There are other things that normal mode does, but that’s the most obvious.)

The GNU C++ Library Manual 111/385

Opening a file in binary mode disables this conversion, so reading a CRLF sequence under Windows won’t accidentally get
mapped to a ’\n’ character, etc. Binary mode is not supposed to suddenly give you a bitstream, and if it is doing so in your
program then you’ve discovered a bug in your vendor’s compiler (or some other chapter of the C++ implementation, possibly the
runtime system).

Second, using << to write and >> to read isn’t going to work with the standard file stream classes, even if you use skipws
during reading. Why not? Because ifstream and ofstream exist for the purpose of formatting, not reading and writing. Their job
is to interpret the data into text characters, and that’s exactly what you don’t want to happen during binary 1/O.

Third, using the get () and put () /write () member functions still aren’t guaranteed to help you. These are "unformatted"
I/0 functions, but still character-based. (This may or may not be what you want, see below.)

Notice how all the problems here are due to the inappropriate use of formatting functions and classes to perform something which
requires that formatting not be done? There are a seemingly infinite number of solutions, and a few are listed here:

* “Derive your own fstream-type classes and write your own <</>> operators to do binary I/O on whatever data types you’re
using.”
This is a Bad Thing, because while the compiler would probably be just fine with it, other humans are going to be confused.
The overloaded bitshift operators have a well-defined meaning (formatting), and this breaks it.

* “Build the file structure in memory, then mmap () the file and copy the structure.

Well, this is easy to make work, and easy to break, and is pretty equivalent to using : : read () and : :write () directly, and
makes no use of the iostream library at all...

» “Use streambufs, that’s what they’re there for.”

While not trivial for the beginner, this is the best of all solutions. The streambuf/filebuf layer is the layer that is responsible for
actual I/O. If you want to use the C++ library for binary I/O, this is where you start.

How to go about using streambufs is a bit beyond the scope of this document (at least for now), but while streambufs go a long
way, they still leave a couple of things up to you, the programmer. As an example, byte ordering is completely between you and
the operating system, and you have to handle it yourself.

Deriving a streambuf or filebuf class from the standard ones, one that is specific to your data types (or an abstraction thereof)
is probably a good idea, and lots of examples exist in journals and on Usenet. Using the standard filebufs directly (either by
declaring your own or by using the pointer returned from an fstream’s rdbuf ()) is certainly feasible as well.

One area that causes problems is trying to do bit-by-bit operations with filebufs. C++ is no different from C in this respect: I/O
must be done at the byte level. If you're trying to read or write a few bits at a time, you’re going about it the wrong way. You
must read/write an integral number of bytes and then process the bytes. (For example, the streambuf functions take and return
variables of type int_type.)

Another area of problems is opening text files in binary mode. Generally, binary mode is intended for binary files, and opening
text files in binary mode means that you now have to deal with all of those end-of-line and end-of-file problems that we mentioned
before.

An instructive thread from comp.lang.c++.moderated delved off into this topic starting more or less at this post and continuing
to the end of the thread. (The subject heading is "binary iostreams" on both comp.std.c++ and comp.lang.c++.moderated.) Take
special note of the replies by James Kanze and Dietmar Kiihl.

Briefly, the problems of byte ordering and type sizes mean that the unformatted functions like ost ream: :put () and istream:

cannot safely be used to communicate between arbitrary programs, or across a network, or from one invocation of a program to
another invocation of the same program on a different platform, etc.

13.5 Interacting with C

13.5.1 Using FILE* and file descriptors

See the extensions for using FILE and file descriptors with ofstream and i fstream.

tget

https://groups.google.com/forum/#!topic/comp.std.c++/D4e0q9eVSoc

The GNU C++ Library Manual 112/385

13.5.2 Performance

Pathetic Performance? Ditch C.
It sounds like a flame on C, but it isn’t. Really. Calm down. I’m just saying it to get your attention.
Because the C++ library includes the C library, both C-style and C++-style I/O have to work at the same time. For example:

#include <iostream>
#include <cstdio>

std::cout << "Hel";
std::printf ("lo, worl");
std::cout << "d!\n";

This must do what you think it does.

Alert members of the audience will immediately notice that buffering is going to make a hash of the output unless special steps
are taken.

The special steps taken by libstdc++, at least for version 3.0, involve doing very little buffering for the standard streams, leaving
most of the buffering to the underlying C library. (This kind of thing is tricky to get right.) The upside is that correctness is
ensured. The downside is that writing through cout can quite easily lead to awful performance when the C++ I/O library is
layered on top of the C I/O library (as it is for 3.0 by default). Some patches have been applied which improve the situation for
3.1.

However, the C and C++ standard streams only need to be kept in sync when both libraries’ facilities are in use. If your program
only uses C++ 1/O, then there’s no need to sync with the C streams. The right thing to do in this case is to call

#include any of the I/O headers such as ios, i1ostream, etc

std::ios::sync_with_stdio(false);

You must do this before performing any I/O via the C++ stream objects. Once you call this, the C++ streams will operate
independently of the (unused) C streams. For GCC 3.x, this means that cout and company will become fully buffered on their
own.

Note, by the way, that the synchronization requirement only applies to the standard streams (cin, cout, cerr, clog, and their
wide-character counterparts). File stream objects that you declare yourself have no such requirement and are fully buffered.

The GNU C++ Library Manual 113/385

Chapter 14

Atomics

Facilities for atomic operations.

14.1 API Reference

All items are declared in the standard header file at omic.

Set of typedefs that map int to atomic_int, and so on for all builtin integral types. Global enumeration memory_order to
control memory ordering. Also includes atomic, a class template with member functions such as 1oad and store that is
instantiable such that atomic_int is the base class of atomic<int>.

Full API details.

The GNU C++ Library Manual 114 /385

Chapter 15

Concurrency

Facilities for concurrent operation, and control thereof.

15.1 API Reference

All items are declared in one of four standard header files.

In header mutex, class template mutex and variants, class once_flag, and class template unique_lock.

In header condition_variable, classes condition_variable and condition_variable_any.

In header thread, class thread and namespace this_thread.

Inheader future, class template fut ure and class template shared_future, class template promise, and packaged_task.

Full API details.

The GNU C++ Library Manual 115/385

Part 111

Extensions

The GNU C++ Library Manual 116 /385

Here we will make an attempt at describing the non-Standard extensions to the library. Some of these are from older versions of
standard library components, namely SGI’s STL, and some of these are GNU’s.

Before you leap in and use any of these extensions, be aware of two things:

1. Non-Standard means exactly that.

The behavior, and the very existence, of these extensions may change with little or no warning. (Ideally, the really good
ones will appear in the next revision of C++.) Also, other platforms, other compilers, other versions of g++ or libstdc++
may not recognize these names, or treat them differently, or...

2. You should know how to access these headers properly.

The GNU C++ Library Manual 117 /385

Chapter 16

Compile Time Checks

Also known as concept checking.

In 1999, SGI added concept checkers to their implementation of the STL: code which checked the template parameters of
instantiated pieces of the STL, in order to insure that the parameters being used met the requirements of the standard. For
example, the Standard requires that types passed as template parameters to vector be “Assignable” (which means what you
think it means). The checking was done during compilation, and none of the code was executed at runtime.

Unfortunately, the size of the compiler files grew significantly as a result. The checking code itself was cumbersome. And bugs
were found in it on more than one occasion.

The primary author of the checking code, Jeremy Siek, had already started work on a replacement implementation. The new
code has been formally reviewed and accepted into the Boost libraries, and we are pleased to incorporate it into the GNU C++
library.

The new version imposes a much smaller space overhead on the generated object file. The checks are also cleaner and easier to
read and understand.

They are off by default for all versions of GCC from 3.0 to 3.4 (the latest release at the time of writing). They can be
enabled at configure time with --enable-concept-checks. You can enable them on a per-translation-unit basis with #define
_GLIBCXX_CONCEPT_CHECKS for GCC 3.4 and higher (or with #define _GLIBCPP_CONCEPT_CHECKS for versions
3.1,3.2 and 3.3).

Please note that the concept checks only validate the requirements of the old C++03 standard. C++11 was expected to have
first-class support for template parameter constraints based on concepts in the core language. This would have obviated the need
for the library-simulated concept checking described above, but was not part of C++11.

http://www.boost.org/libs/concept_check/concept_check.htm

The GNU C++ Library Manual 118/385

Chapter 17

Debug Mode

17.1 Intro

By default, libstdc++ is built with efficiency in mind, and therefore performs little or no error checking that is not required by the
C++ standard. This means that programs that incorrectly use the C++ standard library will exhibit behavior that is not portable
and may not even be predictable, because they tread into implementation-specific or undefined behavior. To detect some of these
errors before they can become problematic, libstdc++ offers a debug mode that provides additional checking of library facilities,
and will report errors in the use of libstdc++ as soon as they can be detected by emitting a description of the problem to standard
error and aborting the program. This debug mode is available with GCC 3.4.0 and later versions.

The libstdc++ debug mode performs checking for many areas of the C++ standard, but the focus is on checking interactions
among standard iterators, containers, and algorithms, including:

* Safe iterators: Iterators keep track of the container whose elements they reference, so errors such as incrementing a past-the-end
iterator or dereferencing an iterator that points to a container that has been destructed are diagnosed immediately.

* Algorithm preconditions: Algorithms attempt to validate their input parameters to detect errors as early as possible. For in-
stance, the set_intersection algorithm requires that its iterator parameters firstl and lastl form a valid iterator
range, and that the sequence [first1, last1)is sorted according to the same predicate that was passed to set_intersection;
the libstdc++ debug mode will detect an error if the sequence is not sorted or was sorted by a different predicate.

17.2 Semantics

A program that uses the C++ standard library correctly will maintain the same semantics under debug mode as it had with the
normal (release) library. All functional and exception-handling guarantees made by the normal library also hold for the debug
mode library, with one exception: performance guarantees made by the normal library may not hold in the debug mode library.
For instance, erasing an element in a std: : 1ist is a constant-time operation in normal library, but in debug mode it is linear
in the number of iterators that reference that particular list. So while your (correct) program won’t change its results, it is likely
to execute more slowly.

libstdc++ includes many extensions to the C++ standard library. In some cases the extensions are obvious, such as the hashed
associative containers, whereas other extensions give predictable results to behavior that would otherwise be undefined, such
as throwing an exception when a std: :basic_string is constructed from a NULL character pointer. This latter category
also includes implementation-defined and unspecified semantics, such as the growth rate of a vector. Use of these extensions
is not considered incorrect, so code that relies on them will not be rejected by debug mode. However, use of these extensions
may affect the portability of code to other implementations of the C++ standard library, and is therefore somewhat hazardous.
For this reason, the libstdc++ debug mode offers a "pedantic" mode (similar to GCC’s —pedant ic compiler flag) that attempts
to emulate the semantics guaranteed by the C++ standard. For instance, constructing a std: :basic_string with a NULL
character pointer would result in an exception under normal mode or non-pedantic debug mode (this is a libstdc++ extension),

The GNU C++ Library Manual 119/385

whereas under pedantic debug mode libstdc++ would signal an error. To enable the pedantic debug mode, compile your pro-
gram with both -D_GLIBCXX_DEBUG and -D_GLIBCXX_DEBUG_PEDANTIC . (N.B. In GCC 3.4.x and 4.0.0, due to a bug,
-D_GLIBXX_DEBUG_PEDANTIC was also needed. The problem has been fixed in GCC 4.0.1 and later versions.)

The following library components provide extra debugging capabilities in debug mode:

* std: :array (no safe iterators)
e std::basic_string (no safe iterators and see note below)
* std::bitset

* std::deque

* std::1list

* std::map

¢ std::multimap

* std::multiset

e std::set

* std::vector

* std::unordered_map

* std::unordered_multimap
e std::unordered_set

e std::unordered_multiset

N.B. although there are precondition checks for some string operations, e.g. operator [], they will not always be run when
using the char and wchar_t specializations (std: :string and std: :wstring). This is because libstdc++ uses GCC’s
extern template extension to provide explicit instantiations of std: :string and std: :wstring, and those explicit
instantiations don’t include the debug-mode checks. If the containing functions are inlined then the checks will run, so compiling
with —O1 might be enough to enable them. Alternatively ~D_GLIBCXX_EXTERN_TEMPLATE=0 will suppress the declara-
tions of the explicit instantiations and cause the functions to be instantiated with the debug-mode checks included, but this is
unsupported and not guaranteed to work. For full debug-mode support you can use the ___gnu_debug: :basic_string
debugging container directly, which always works correctly.

17.3 Using

17.3.1 Using the Debug Mode

To use the libstdc++ debug mode, compile your application with the compiler flag -D_GLIBCXX_DEBUG. Note that this flag
changes the sizes and behavior of standard class templates such as std: :vector, and therefore you can only link code
compiled with debug mode and code compiled without debug mode if no instantiation of a container is passed between the two
translation units.

By default, error messages are formatted to fit on lines of about 78 characters. The environment variable GLIBCXX_DEBUG_MESSAGE _
can be used to request a different length.

The GNU C++ Library Manual 120/385
Container Header Debug container Debug header
std::bitset bitset __gnu_debug: :bitset | <debug/bitset>
std: :deque deque __gnu_debug: :deque <debug/deque>
std::1list list __gnu_debug::1list <debug/list>
std: ::map map __gnu_debug: :map <debug/map>
std::multimap map __gnu_debug: :multimgp<debug/map>
std::multiset set __gnu_debug: :multisgt<debug/set>
std: :set set __gnu_debug: :set <debug/set>
std::string string __gnu_debug::string | <debug/string>
std: :wstring string __gnu_debug: :wstring <debug/string>
std::basic_string string __gnu_debug: :basic_dtzdabgug/string>
std::vector vector __gnu_debug: :vector | <debug/vector>

Table 17.1: Debugging Containers
Container Header Debug container Debug header
<deb f d_
std::forward_list forward_1list __gnu_debug: :forward i’f:t:g/ erwar
<deb d d
std: :unordered_map unordered_map __gnu_debug: :unordere%gﬁgug/unor ered_
<
std::unordered_multimapordered_map __gnu_debug: :unorder mad;b%g/unordered
<deb d d_
std: :unordered_set unordered_set __gnu_debug: :unordered e ug/unor ere
. <d b d d_
std: :unordered_multijsehordered_set __gnu_debug: :unordered I%ufg/unor ere

Table 17.2: Debugging Containers C++11

The GNU C++ Library Manual 121/385

17.3.2 Using a Specific Debug Container

When it is not feasible to recompile your entire application, or only specific containers need checking, debugging containers are
available as GNU extensions. These debugging containers are functionally equivalent to the standard drop-in containers used in
debug mode, but they are available in a separate namespace as GNU extensions and may be used in programs compiled with
either release mode or with debug mode. The following table provides the names and headers of the debugging containers:

When compiling in C++11 mode (or newer), these containers have additional debug capability.

Prior to GCC 11 adebug version of std: :array was availableas__gnu_debug: : array in the header <debug/array>.
Because array::iterator is just a pointer, the debug array can’t check iterator operations, it can only check direct
accesses to the container. Starting with GCC 11 all the debug capabilities are available in std: :array, without needing a
separate type, so ___gnu_debug: :array is just an alias for std: : array. That alias is deprecated and may be removed in
a future release.

17.4 Design

17.4.1 Goals

The libstdc++ debug mode replaces unsafe (but efficient) standard containers and iterators with semantically equivalent safe
standard containers and iterators to aid in debugging user programs. The following goals directed the design of the libstdc++
debug mode:

* Correctness: the libstdc++ debug mode must not change the semantics of the standard library for all cases specified in the
ANSI/ISO C++ standard. The essence of this constraint is that any valid C++ program should behave in the same manner
regardless of whether it is compiled with debug mode or release mode. In particular, entities that are defined in namespace std
in release mode should remain defined in namespace std in debug mode, so that legal specializations of namespace std entities
will remain valid. A program that is not valid C++ (e.g., invokes undefined behavior) is not required to behave similarly,
although the debug mode will abort with a diagnostic when it detects undefined behavior.

* Performance: the additional of the libstdc++ debug mode must not affect the performance of the library when it is compiled in
release mode. Performance of the libstdc++ debug mode is secondary (and, in fact, will be worse than the release mode).

* Usability: the libstdc++ debug mode should be easy to use. It should be easily incorporated into the user’s development
environment (e.g., by requiring only a single new compiler switch) and should produce reasonable diagnostics when it detects
a problem with the user program. Usability also involves detection of errors when using the debug mode incorrectly, e.g., by
linking a release-compiled object against a debug-compiled object if in fact the resulting program will not run correctly.

* Minimize recompilation: While it is expected that users recompile at least part of their program to use debug mode, the amount
of recompilation affects the detect-compile-debug turnaround time. This indirectly affects the usefulness of the debug mode,
because debugging some applications may require rebuilding a large amount of code, which may not be feasible when the
suspect code may be very localized. There are several levels of conformance to this requirement, each with its own usability
and implementation characteristics. In general, the higher-numbered conformance levels are more usable (i.e., require less
recompilation) but are more complicated to implement than the lower-numbered conformance levels.

1. Full recompilation: The user must recompile his or her entire application and all C++ libraries it depends on, including
the C++ standard library that ships with the compiler. This must be done even if only a small part of the program can use
debugging features.

2. Full user recompilation: The user must recompile his or her entire application and all C++ libraries it depends on, but
not the C++ standard library itself. This must be done even if only a small part of the program can use debugging
features. This can be achieved given a full recompilation system by compiling two versions of the standard library when
the compiler is installed and linking against the appropriate one, e.g., a multilibs approach.

3. Partial recompilation: The user must recompile the parts of his or her application and the C++ libraries it depends on
that will use the debugging facilities directly. This means that any code that uses the debuggable standard containers
would need to be recompiled, but code that does not use them (but may, for instance, use IOStreams) would not have to
be recompiled.

The GNU C++ Library Manual 122 /385

4. Per-use recompilation: The user must recompile the parts of his or her application and the C++ libraries it depends on
where debugging should occur, and any other code that interacts with those containers. This means that a set of translation
units that accesses a particular standard container instance may either be compiled in release mode (no checking) or
debug mode (full checking), but must all be compiled in the same way; a translation unit that does not see that standard
container instance need not be recompiled. This also means that a translation unit A that contains a particular instantiation
(say, std: :vector<int>) compiled in release mode can be linked against a translation unit B that contains the same
instantiation compiled in debug mode (a feature not present with partial recompilation). While this behavior is technically
a violation of the One Definition Rule, this ability tends to be very important in practice. The libstdc++ debug mode
supports this level of recompilation.

5. Per-unit recompilation: The user must only recompile the translation units where checking should occur, regardless of
where debuggable standard containers are used. This has also been dubbed "—g mode", because the —g compiler switch
works in this way, emitting debugging information at a per--translation-unit granularity. We believe that this level of
recompilation is in fact not possible if we intend to supply safe iterators, leave the program semantics unchanged, and
not regress in performance under release mode because we cannot associate extra information with an iterator (to form
a safe iterator) without either reserving that space in release mode (performance regression) or allocating extra memory
associated with each iterator with new (changes the program semantics).

17.4.2 Methods

This section provides an overall view of the design of the libstdc++ debug mode and details the relationship between design
decisions and the stated design goals.

17.4.2.1 The Wrapper Model

The libstdc++ debug mode uses a wrapper model where the debugging versions of library components (e.g., iterators and con-
tainers) form a layer on top of the release versions of the library components. The debugging components first verify that the
operation is correct (aborting with a diagnostic if an error is found) and will then forward to the underlying release-mode con-
tainer that will perform the actual work. This design decision ensures that we cannot regress release-mode performance (because
the release-mode containers are left untouched) and partially enables mixing debug and release code at link time, although that
will not be discussed at this time.

Two types of wrappers are used in the implementation of the debug mode: container wrappers and iterator wrappers. The two
types of wrappers interact to maintain relationships between iterators and their associated containers, which are necessary to
detect certain types of standard library usage errors such as dereferencing past-the-end iterators or inserting into a container
using an iterator from a different container.

17.4.2.1.1 Safe lterators

Iterator wrappers provide a debugging layer over any iterator that is attached to a particular container, and will manage the
information detailing the iterator’s state (singular, dereferenceable, etc.) and tracking the container to which the iterator is
attached. Because iterators have a well-defined, common interface the iterator wrapper is implemented with the iterator adaptor
class template __gnu_debug: :_Safe_iterator, which takes two template parameters:

* Iterator: The underlying iterator type, which must be either the iterator or const_iterator typedef from the
sequence type this iterator can reference.

* Sequence: The type of sequence that this iterator references. This sequence must be a safe sequence (discussed below)
whose iterator or const_iterator typedef is the type of the safe iterator.

17.4.2.1.2 Safe Sequences (Containers)

Container wrappers provide a debugging layer over a particular container type. Because containers vary greatly in the mem-
ber functions they support and the semantics of those member functions (especially in the area of iterator invalidation), con-
tainer wrappers are tailored to the container they reference, e.g., the debugging version of std::1ist duplicates the en-
tire interface of std::1ist, adding additional semantic checks and then forwarding operations to the real std::1ist

The GNU C++ Library Manual 123 /385

(a public base class of the debugging version) as appropriate. However, all safe containers inherit from the class template
__gnu_debug: :_Safe_sequence, instantiated with the type of the safe container itself (an instance of the curiously re-
curring template pattern).

The iterators of a container wrapper will be safe iterators that reference sequences of this type and wrap the iterators provided by
the release-mode base class. The debugging container will use only the safe iterators within its own interface (therefore requiring
the user to use safe iterators, although this does not change correct user code) and will communicate with the release-mode base
class with only the underlying, unsafe, release-mode iterators that the base class exports.

The debugging version of std: : 1ist will have the following basic structure:

template<typename _Tp, typename _Allocator = allocator<_Tp>
class debug-list
public release-1list<_Tp, _Allocator>,
public __ _gnu_debug::_Safe_sequence<debug-list<_Tp, _Allocator> >

typedef release-1list<_Tp, _Allocator> _Base;

typedef debug-list<_Tp, _Allocator> _Self;
public:
typedef __ _gnu_debug::_Safe_iterator<typename _Base::iterator, _Self> iterator;

typedef __ _gnu_debug::_Safe_iterator<typename _Base::const_iterator, _Self> <+
const_iterator;

// duplicate std::1list interface with debugging semantics

}i

17.4.2.2 Precondition Checking

The debug mode operates primarily by checking the preconditions of all standard library operations that it supports. Preconditions
that are always checked (regardless of whether or not we are in debug mode) are checked via the ___check_xxx macros defined
and documented in the source file include/debug/debug.h. Preconditions that may or may not be checked, depending
on the debug-mode macro _GLIBCXX_DEBUG, are checked via the ___requires_xxx macros defined and documented in
the same source file. Preconditions are validated using any additional information available at run-time, e.g., the containers that
are associated with a particular iterator, the position of the iterator within those containers, the distance between two iterators
that may form a valid range, etc. In the absence of suitable information, e.g., an input iterator that is not a safe iterator, these
precondition checks will silently succeed.

The majority of precondition checks use the aforementioned macros, which have the secondary benefit of having prewritten
debug messages that use information about the current status of the objects involved (e.g., whether an iterator is singular or
what sequence it is attached to) along with some static information (e.g., the names of the function parameters correspond-
ing to the objects involved). When not using these macros, the debug mode uses either the debug-mode assertion macro
_GLIBCXX_DEBUG_ASSERT, its pedantic cousin _GLIBCXX_DEBUG_PEDASSERT, or the assertion check macro that sup-
ports more advance formulation of error messages, _GLIBCXX_DEBUG_VERIFY. These macros are documented more thor-
oughly in the debug mode source code.

17.4.2.3 Release- and debug-mode coexistence

The libstdc++ debug mode is the first debug mode we know of that is able to provide the "Per-use recompilation"” (4) guarantee,
that allows release-compiled and debug-compiled code to be linked and executed together without causing unpredictable behav-
ior. This guarantee minimizes the recompilation that users are required to perform, shortening the detect-compile-debug bug
hunting cycle and making the debug mode easier to incorporate into development environments by minimizing dependencies.

Achieving link- and run-time coexistence is not a trivial implementation task. To achieve this goal we use inline namespaces and
a complex organization of debug- and release-modes. The end result is that we have achieved per-use recompilation but have had
to give up some checking of the std: :basic_string class template (namely, safe iterators).

The GNU C++ Library Manual 124 /385

17.4.2.3.1 Compile-time coexistence of release- and debug-mode components

Both the release-mode components and the debug-mode components need to exist within a single translation unit so that the
debug versions can wrap the release versions. However, only one of these components should be user-visible at any particular
time with the standard name, e.g., std::1ist.

In release mode, we define only the release-mode version of the component with its standard name and do not include the
debugging component at all. The release mode version is defined within the namespace st d. Minus the namespace associations,
this method leaves the behavior of release mode completely unchanged from its behavior prior to the introduction of the libstdc++
debug mode. Here’s an example of what this ends up looking like, in C++.

namespace std
{
template<typename _Tp, typename _Alloc = allocator<_Tp> >
class list
{
//
}i
} // namespace std

In debug mode we include the release-mode container (which is now defined in the namespace ___cxx1998) and also the debug-
mode container. The debug-mode container is defined within the namespace ___debug, which is associated with namespace
std via the C++11 namespace association language feature. This method allows the debug and release versions of the same
component to coexist at compile-time and link-time without causing an unreasonable maintenance burden, while minimizing
confusion. Again, this boils down to C++ code as follows:

namespace std

{

namespace __cxx1998
{
template<typename _Tp, typename _Alloc = allocator<_Tp> >

class list
{

77 ooo

}i

} // namespace __gnu_norm

namespace __debug
{
template<typename _Tp, typename _Alloc = allocator<_Tp> >
class list
public _ cxx1998::1ist<_Tp, _Alloc>,
public __gnu_debug::_Safe_sequence<list<_Tp, _Alloc> >
{
VA
}i
} // namespace __cxx1998

inline namespace __debug { }

17.4.2.3.2 Link- and run-time coexistence of release- and debug-mode components

Because each component has a distinct and separate release and debug implementation, there is no issue with link-time coexis-
tence: the separate namespaces result in different mangled names, and thus unique linkage.

However, components that are defined and used within the C++ standard library itself face additional constraints. For instance,
some of the member functions of std::moneypunct return std: :basic_string. Normally, this is not a problem, but
with a mixed mode standard library that could be using either debug-mode or release-mode basic_string objects, things
get more complicated. As the return value of a function is not encoded into the mangled name, there is no way to specify a

The GNU C++ Library Manual 125/385

release-mode or a debug-mode string. In practice, this results in runtime errors. A simplified example of this problem is as
follows.

Take this translation unit, compiled in debug-mode:

// —-D_GLIBCXX_DEBUG
#include <string>

std::string test02();

std::string test01 ()

{
return test02();

int main ()

{
test01();
return 0;

... and linked to this translation unit, compiled in release mode:

#include <string>

std::string
test02 ()
{

return std::string("toast");

For this reason we cannot easily provide safe iterators for the std: :basic_string class template, as it is present throughout
the C++ standard library. For instance, locale facets define typedefs that include basic_string: in a mixed debug/release
program, should that typedef be based on the debug-mode basic_string or the release-mode basic_string? While the
answer could be "both", and the difference hidden via renaming a la the debug/release containers, we must note two things about
locale facets:

1. They exist as shared state: one can create a facet in one translation unit and access the facet via the same type name in a
different translation unit. This means that we cannot have two different versions of locale facets, because the types would
not be the same across debug/release-mode translation unit barriers.

2. They have virtual functions returning strings: these functions mangle in the same way regardless of the mangling of their
return types (see above), and their precise signatures can be relied upon by users because they may be overridden in derived
classes.

With the design of libstdc++ debug mode, we cannot effectively hide the differences between debug and release-mode strings
from the user. Failure to hide the differences may result in unpredictable behavior, and for this reason we have opted to only
perform basic_string changes that do not require ABI changes. The effect on users is expected to be minimal, as there are
simple alternatives (e.g., ___gnu_debug: :basic_string), and the usability benefit we gain from the ability to mix debug-
and release-compiled translation units is enormous.

17.4.2.3.3 Alternatives for Coexistence

The coexistence scheme above was chosen over many alternatives, including language-only solutions and solutions that also
required extensions to the C++ front end. The following is a partial list of solutions, with justifications for our rejection of each.

* Completely separate debug/release libraries: This is by far the simplest implementation option, where we do not allow any
coexistence of debug- and release-compiled translation units in a program. This solution has an extreme negative affect on
usability, because it is quite likely that some libraries an application depends on cannot be recompiled easily. This would not
meet our usability or minimize recompilation criteria well.

The GNU C++ Library Manual 126 /385

Add a Debug boolean template parameter: Partial specialization could be used to select the debug implementation when
Debug == true, and the state of _GLIBCXX_DEBUG could decide whether the default Debug argument is true or
false. This option would break conformance with the C++ standard in both debug and release modes. This would not meet
our correctness criteria.

* Packaging a debug flag in the allocators: We could reuse the Allocator template parameter of containers by adding a
sentinel wrapper debug<> that signals the user’s intention to use debugging, and pick up the debug<> allocator wrapper in a
partial specialization. However, this has two drawbacks: first, there is a conformance issue because the default allocator would
not be the standard-specified std: :allocator<T>. Secondly (and more importantly), users that specify allocators instead
of implicitly using the default allocator would not get debugging containers. Thus this solution fails the correctness criteria.

* Define debug containers in another namespace, and employ a using declaration (or directive): This is an enticing option,
because it would eliminate the need for the 1 i nk_name extension by aliasing the templates. However, there is no true template
aliasing mechanism in C++, because both using directives and using declarations disallow specialization. This method fails
the correctness criteria.

* Use implementation-specific properties of anonymous namespaces. See this post. This method fails the correctness criteria.

» Extension: allow reopening on namespaces: This would allow the debug mode to effectively alias the namespace std to an
internal namespace, such as ___gnu_std_debug, so that it is completely separate from the release-mode std namespace.
While this will solve some renaming problems and ensure that debug- and release-compiled code cannot be mixed unsafely, it
ensures that debug- and release-compiled code cannot be mixed at all. For instance, the program would have two std: : cout
objects! This solution would fails the minimize recompilation requirement, because we would only be able to support option
(1) or (2).

» Extension: use link name: This option involves complicated re-naming between debug-mode and release-mode components at
compile time, and then a g++ extension called link name to recover the original names at link time. There are two drawbacks to
this approach. One, it’s very verbose, relying on macro renaming at compile time and several levels of include ordering. Two,
ODR issues remained with container member functions taking no arguments in mixed-mode settings resulting in equivalent
link names, vector::push_back () being one example. See proof-of-concept using link name.

Other options may exist for implementing the debug mode, many of which have probably been considered and others that may
still be lurking. This list may be expanded over time to include other options that we could have implemented, but in all cases the
full ramifications of the approach (as measured against the design goals for a libstdc++ debug mode) should be considered first.
The DejaGNU testsuite includes some testcases that check for known problems with some solutions (e.g., the using declaration
solution that breaks user specialization), and additional testcases will be added as we are able to identify other typical problem
cases. These test cases will serve as a benchmark by which we can compare debug mode implementations.

17.4.3 Other Implementations

There are several existing implementations of debug modes for C++ standard library implementations, although none of them
directly supports debugging for programs using libstdc++. The existing implementations include:

o SafeSTL: SafeSTL was the original debugging version of the Standard Template Library (STL), implemented by Cay S.
Horstmann on top of the Hewlett-Packard STL. Though it inspired much work in this area, it has not been kept up-to-date for
use with modern compilers or C++ standard library implementations.

e STLport: STLport is a free implementation of the C++ standard library derived from the SGI implementation, and ported to
many other platforms. It includes a debug mode that uses a wrapper model (that in some ways inspired the libstdc++ debug
mode design), although at the time of this writing the debug mode is somewhat incomplete and meets only the "Full user
recompilation” (2) recompilation guarantee by requiring the user to link against a different library in debug mode vs. release
mode.

* Metrowerks CodeWarrior: The C++ standard library that ships with Metrowerks CodeWarrior includes a debug mode. It is a
full debug-mode implementation (including debugging for CodeWarrior extensions) and is easy to use, although it meets only
the "Full recompilation” (1) recompilation guarantee.

http://gcc.gnu.org/ml/libstdc++/2003-08/msg00004.html
http://gcc.gnu.org/ml/libstdc++/2003-08/msg00177.html
http://www.cs.sjsu.edu/faculty/horstman/safestl.html
http://www.stlport.org/
https://web.archive.org/web/20171225062613/http://www.sgi.com/tech/stl/

The GNU C++ Library Manual 127 /385

Chapter 18

Parallel Mode

The libstdc++ parallel mode is an experimental parallel implementation of many algorithms of the C++ Standard Library.

Several of the standard algorithms, for instance std: : sort, are made parallel using OpenMP annotations. These parallel mode
constructs can be invoked by explicit source declaration or by compiling existing sources with a specific compiler flag.

Note

The parallel mode has not been kept up to date with recent C++ standards and so it only conforms to the C++03 requirements.
That means that move-only predicates may not work with parallel mode algorithms, and for C++20 most of the algorithms
cannot be used in constexpr functions.

For C++17 and above there are new overloads of the standard algorithms which take an execution policy argument. You should
consider using those instead of the non-standard parallel mode extensions.

18.1

Intro

The following library components in the include numeric are included in the parallel mode:

std:

std:

std:

std:

raccumulate
:adjacent_difference
:inner_product

:partial_sum

The following library components in the include algorithm are included in the parallel mode:

std:

std:

std:

std:

std:

std:

std:

std:

:adjacent_find
:count
ccount_if
requal

:find

:find_if
:find_first_of

:for_each

The GNU C++ Library Manual 128 /385

* std::generate

* std::generate_n

* std::lexicographical_compare
* std::mismatch

* std::search

* std::search_n

* std::transform

* std::replace

* std::replace_if

* std::max_element

* std::merge

* std::min_element

* std::nth_element

* std::partial_sort

* std::partition

e std::random_shuffle

* std::set_union

* std::set_intersection
* std::set_symmetric_difference
* std::set_difference

e std::sort

e std::stable_sort

* std::unique_copy

18.2 Semantics

The parallel mode STL algorithms are currently not exception-safe, i.e. user-defined functors must not throw exceptions. Also,
the order of execution is not guaranteed for some functions, of course. Therefore, user-defined functors should not have any
concurrent side effects.

Since the current GCC OpenMP implementation does not support OpenMP parallel regions in concurrent threads, it is not
possible to call parallel STL algorithm in concurrent threads, either. It might work with other compilers, though.

The GNU C++ Library Manual 129 /385

18.3 Using

18.3.1 Prerequisite Compiler Flags

Any use of parallel functionality requires additional compiler and runtime support, in particular support for OpenMP. Adding
this support is not difficult: just compile your application with the compiler flag —fopenmp. This will link in 1ibgomp, the
GNU Offloading and Multi Processing Runtime Library, whose presence is mandatory.

In addition, hardware that supports atomic operations and a compiler capable of producing atomic operations is mandatory: GCC
defaults to no support for atomic operations on some common hardware architectures. Activating atomic operations may require
explicit compiler flags on some targets (like sparc and x86), such as ~-march=1686, -march=native or -mcpu=v9. See
the GCC manual for more information.

18.3.2 Using Parallel Mode

To use the libstdc++ parallel mode, compile your application with the prerequisite flags as detailed above, and in addition
add -D_GLIBCXX_PARALLEL. This will convert all use of the standard (sequential) algorithms to the appropriate parallel
equivalents. Please note that this doesn’t necessarily mean that everything will end up being executed in a parallel manner, but
rather that the heuristics and settings coded into the parallel versions will be used to determine if all, some, or no algorithms will
be executed using parallel variants.

Note that the _ GLIBCXX_PARALLEL define may change the sizes and behavior of standard class templates such as std: : search,
and therefore one can only link code compiled with parallel mode and code compiled without parallel mode if no instantiation of

a container is passed between the two translation units. Parallel mode functionality has distinct linkage, and cannot be confused
with normal mode symbols.

18.3.3 Using Specific Parallel Components

When it is not feasible to recompile your entire application, or only specific algorithms need to be parallel-aware, individual
parallel algorithms can be made available explicitly. These parallel algorithms are functionally equivalent to the standard drop-in
algorithms used in parallel mode, but they are available in a separate namespace as GNU extensions and may be used in programs
compiled with either release mode or with parallel mode.

An example of using a parallel version of std: : sort, but no other parallel algorithms, is:

#include <vector>
#include <parallel/algorithm>

int main ()

{

std::vector<int> v (100);
//

// Explicitly force a call to parallel sort.
__gnu_parallel::sort (v.begin(), v.end());
return 0;

Then compile this code with the prerequisite compiler flags (- fopenmp and any necessary architecture-specific flags for atomic
operations.)

The following table provides the names and headers of all the parallel algorithms that can be used in a similar manner:

http://gcc.gnu.org/onlinedocs/libgomp/

The GNU C++ Library Manual

130/385

Algorithm Header Parallel algorithm Parallel header
std::accumulate numeric __gnu_parallel::accumpdaadélel /numeric
std::adjacent_differenumeric __gnu_parallel::adjdcpatali¢iédmemneric
std::inner_product numeric __gnu_parallel::inndgrppradbet/numeric
std::partial_sum numeric __gnu_parallel: :partipdralihel /numeric
std::adjacent_find algorithm __gnu_parallel::adjdcepatafiadl/algorithm
std: :count algorithm _ _gnu_parallel::countparallel/algorithm
std::count_if algorithm __gnu_parallel::countpafallel/algorithm
std::equal algorithm __gnu_parallel::equglparallel/algorithm
std::find algorithm __gnu_parallel::find parallel/algorithm
std::find_1if algorithm __gnu_parallel::find_pdrallel/algorithm
std::find_first_of algorithm _ _gnu_parallel::find_jparatlef/algorithm
std::for_each algorithm __gnu_parallel::for_|epehallel/algorithm
std: :generate algorithm __gnu_parallel::genqrpaeallel/algorithm
std::generate_n algorithm __gnu_parallel::gendgrpédeahlel/algorithm
std::lexicographicall ebgpairthm __gnu_parallel::lexilcpgraphetAdlgompbhm
std::mismatch algorithm _ _gnu_parallel: :misnapehallel/algorithm
std: :search algorithm _ _gnu_parallel::searcharallel/algorithm
std::search_n algorithm __gnu_parallel::searchanallel/algorithm
std::transform algorithm __gnu_parallel::transperamllel/algorithm
std::replace algorithm __gnu_parallel::repllaperallel/algorithm
std::replace_if algorithm __gnu_parallel::repllaperaflel/algorithm
std::max_element algorithm _ _gnu_parallel: :max_|lepemehtel /algorithm
std: :merge algorithm __gnu_parallel::merdeparallel/algorithm
std::min_element algorithm __gnu_parallel::min_|lepemehtel/algorithm
std::nth_element algorithm __gnu_parallel::nth_|lepemehtel /algorithm
std::partial_sort algorithm __gnu_parallel::partipdradrel/algorithm
std::partition algorithm _ _gnu_parallel: :partipavallel/algorithm
std::random_shuffle | algorithm __gnu_parallel: :randopashlifélgalgorithm
std::set_union algorithm __gnu_parallel::set_|upavallel/algorithm
std::set_intersectignalgorithm __gnu_parallel::set_|ipseabtéetiahgorithm
std::set_symmetric_didfgeoentkm __gnu_parallel::set_|spamettét/digderthae
std::set_difference | algorithm _ _gnu_parallel::set_|dpdferéatéalgorithm
std::sort algorithm __gnu_parallel::sort parallel/algorithm
std::stable_sort algorithm __gnu_parallel::stallpasetrtel/algorithm
std: :unique_copy algorithm __gnu_parallel::uniqueacabyel/algorithm

Table 18.1: Parallel Algorithms

The GNU C++ Library Manual 131/385

18.4 Design

18.4.1 Interface Basics
All parallel algorithms are intended to have signatures that are equivalent to the ISO C++ algorithms replaced. For instance, the
std: :adjacent_find function is declared as:

namespace std
{
template<typename _FIter>
_FIter
adjacent_find(_FIter, _FlIter);

Which means that there should be something equivalent for the parallel version. Indeed, this is the case:

namespace std

{

namespace __parallel
{
template<typename _FIter>
_FIter
adjacent_find(_FIter, _FIter);

But.... why the ellipses?

The ellipses in the example above represent additional overloads required for the parallel version of the function. These additional
overloads are used to dispatch calls from the ISO C++ function signature to the appropriate parallel function (or sequential
function, if no parallel functions are deemed worthy), based on either compile-time or run-time conditions.

The available signature options are specific for the different algorithms/algorithm classes.

The general view of overloads for the parallel algorithms look like this:

* ISO C++ signature

* ISO C++ signature + sequential_tag argument

* ISO C++ signature + algorithm-specific tag type (several signatures)

Please note that the implementation may use additional functions (designated with the _switch suffix) to dispatch from the

ISO C++ signature to the correct parallel version. Also, some of the algorithms do not have support for run-time conditions, so
the last overload is therefore missing.

18.4.2 Configuration and Tuning

18.4.2.1 Setting up the OpenMP Environment

Several aspects of the overall runtime environment can be manipulated by standard OpenMP function calls.

To specify the number of threads to be used for the algorithms globally, use the function omp_set_num_threads. An
example:

The GNU C++ Library Manual 132/385

#include <stdlib.h>
#include <omp.h>

int main ()

{
// Explicitly set number of threads.
const int threads_wanted = 20;
omp_set_dynamic (false);
omp_set_num_threads (threads_wanted) ;

// Call parallel mode algorithms.

return 0;

Some algorithms allow the number of threads being set for a particular call, by augmenting the algorithm variant. See the next
section for further information.

Other parts of the runtime environment able to be manipulated include nested parallelism (omp_set_nested), schedule kind
(omp_set_schedule), and others. See the OpenMP documentation for more information.

18.4.2.2 Compile Time Switches

To force an algorithm to execute sequentially, even though parallelism is switched on in general via the macro_GLIBCXX_PARALLEL,
add __gnu_parallel::sequential_tag() to the end of the algorithm’s argument list.

Like so:

std::sort (v.begin(), v.end(), __gnu_parallel::sequential_tag());

Some parallel algorithm variants can be excluded from compilation by preprocessor defines. See the doxygen documentation on
compiletime_settings.hand features.h for details.

For some algorithms, the desired variant can be chosen at compile-time by appending a tag object. The available options are
specific to the particular algorithm (class).

For the "embarrassingly parallel” algorithms, there is only one "tag object type", the enum _Parallelism. It takes one of the follow-

ing values, __gnu_parallel::parallel_tag,__gnu_parallel::balanced_tag,___gnu_parallel::unbalance
__gnu_parallel::omp_loop_tag,__gnu_parallel::omp_loop_static_tag. This means that the actual par-
allelization strategy is chosen at run-time. (Choosing the variants at compile-time will come soon.)

For the following algorithms in general, we have __gnu_parallel: :parallel_tagand__gnu_parallel::default_par
in addition to __gnu_parallel::sequential_tag. _ gnu_parallel::default_parallel_tag chooses the
default algorithm at compiletime, as does omitting the tag. ___gnu_parallel: :parallel_tag postpones the decision to
runtime (see next section). For all tags, the number of threads desired for this call can optionally be passed to the respective tag’s
constructor.

The multiway_merge algorithm comes with the additional choices, __gnu_parallel: :exact_tagand__gnu_parallel:
Exact and sampling are the two available splitting strategies.

Forthe sort and stable_sort algorithms, there are several additional choices, namely __gnu_parallel: :multiway_merge
__gnu_parallel::multiway_mergesort_exact_tag,___gnu_parallel::multiway_mergesort_sampling_t:
__gnu_parallel::quicksort_tag,and ___gnu_parallel::balanced_quicksort_tag. Multiway mergesort

comes with the two splitting strategies for multi-way merging. The quicksort options cannot be used for stable_sort.

18.4.2.3 Run Time Settings and Defaults

The default parallelization strategy, the choice of specific algorithm strategy, the minimum threshold limits for individual parallel
algorithms, and aspects of the underlying hardware can be specified as desired via manipulationof __gnu_parallel::_Settings
member data.

The GNU C++ Library Manual 133/385

First off, the choice of parallelization strategy: serial, parallel, or heuristically deduced. This correspondsto ___gnu_parallel::_Se
and is a value of enum __gnu_parallel::_AlgorithmStrategy type. Choices include: heuristic, force_sequential, and force_parallel.
The default is heuristic.

Next, the sub-choices for algorithm variant, if not fixed at compile-time. Specific algorithms like f£ind or sort can be imple-
mented in multiple ways: when thisis the case,a___gnu_parallel::_Settings member exists to pick the default strategy.
Forexample, __gnu_parallel::_Settings::sort_algorithmcanhave any values of enum __gnu_parallel::_SortAlgorithr
MWMS, QS, or QS_BALANCED.

Likewise for setting the minimal threshold for algorithm parallelization. Parallelism always incurs some overhead. Thus, it

is not helpful to parallelize operations on very small sets of data. Because of this, measures are taken to avoid parallelizing

below a certain, pre-determined threshold. For each algorithm, a minimum problem size is encoded as a variable in the active
__gnu_parallel::_Settings object. This threshold variable follows the following naming scheme: ___gnu_parallel: :_Se
So, for £111, the threshold variable is __gnu_parallel::_Settings::fill_minimal_n,

Finally, hardware details like L1/L2 cache size can be hardwired via __gnu_parallel::_Settings::L1_cache_size
and friends.

All these configuration variables can be changed by the user, if desired. There exists one global instance of the class _Settings,

i. e. itis a singleton. It can be read and written by calling___gnu_parallel::_Settings::getand__gnu_parallel::_Set
respectively. Please note that the first call return a const object, so direct manipulation is forbidden. See <parallel/
settings.h> for complete details.

A small example of tuning the default:

#include <parallel/algorithm>
#include <parallel/settings.h>

int main ()

{
__gnu_parallel::_Settings s;
s.algorithm_strategy = __gnu_parallel::force_parallel;
__gnu_parallel::_Settings::set (s);

// Do work... all algorithms will be parallelized, always.

return 0;

18.4.3 Implementation Namespaces

One namespace contain versions of code that are always explicitly sequential: __gnu_serial.
Two namespaces contain the parallel mode: std::__parallel and __gnu_parallel.

Parallel implementations of standard components, including template helpers to select parallelism, are defined in namespace
std::__parallel. Forinstance, std: : transformfrom algorithmhas a parallel counterpartin std: : ___parallel::tra
fromparallel/algorithm. Inaddition, these parallel implementations are injected into namespace __gnu_parallel

with using declarations.

Support and general infrastructure is in namespace __gnu_parallel.

More information, and an organized index of types and functions related to the parallel mode on a per-namespace basis, can be
found in the generated source documentation.

18.5 Testing

Both the normal conformance and regression tests and the supplemental performance tests work.

To run the conformance and regression tests with the parallel mode active,

http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/index.html
http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/index.html

The GNU C++ Library Manual 134 /385

make check-parallel

The log and summary files for conformance testing are in the testsuite/parallel directory.
To run the performance tests with the parallel mode active,

make check-performance-parallel

The result file for performance testing are in the testsuite directory, in the file 1ibstdc++_performance.sum. In
addition, the policy-based containers have their own visualizations, which have additional software dependencies than the usual
bare-boned text file, and can be generated by using the make doc-performance rule in the testsuite’s Makefile.

18.6 Bibliography
[52] Johannes SinglerLeonor Frias, Copyright © 2007 , Workshop on Highly Parallel Processing on a Chip (HPPC)
2007. (LNCS) .

[53] Johannes SinglerPeter SandersFelix Putze, Copyright © 2007 , Euro-Par 2007: Parallel Processing. (LNCS
4641) .

The GNU C++ Library Manual 135/385

Chapter 19

The mt_allocator

19.1 Intro

The mt allocator [hereinafter referred to simply as "the allocator"] is a fixed size (power of two) allocator that was initially
developed specifically to suit the needs of multi threaded applications [hereinafter referred to as an MT application]. Over
time the allocator has evolved and been improved in many ways, in particular it now also does a good job in single threaded
applications [hereinafter referred to as a ST application]. (Note: In this document, when referring to single threaded applications
this also includes applications that are compiled with gcc without thread support enabled. This is accomplished using ifdef’s on
__GTHREADS). This allocator is tunable, very flexible, and capable of high-performance.

The aim of this document is to describe - from an application point of view - the "inner workings" of the allocator.

19.2 Design Issues

19.2.1 Overview

There are three general components to the allocator: a datum describing the characteristics of the memory pool, a policy class
containing this pool that links instantiation types to common or individual pools, and a class inheriting from the policy class that
is the actual allocator.

The datum describing pools characteristics is

template<bool _Thread>
class __pool

This class is parametrized on thread support, and is explicitly specialized for both multiple threads (with bool==true) and
single threads (via bool==false.) It is possible to use a custom pool datum instead of the default class that is provided.

There are two distinct policy classes, each of which can be used with either type of underlying pool datum.

template<bool _Thread>
struct __common_pool_policy

template<typename _Tp, bool _Thread>
struct __per_type_pool_policy

The first policy, ___common_pool_policy, implements a common pool. This means that allocators that are instantiated with
different types, say char and 1ong will both use the same pool. This is the default policy.

The second policy, __per_type_pool_policy, implements a separate pool for each instantiating type. Thus, char and
long will use separate pools. This allows per-type tuning, for instance.

Putting this all together, the actual allocator class is

The GNU C++ Library Manual 136 /385

template<typename _Tp, typename _Poolp = __ default_policy>
class __mt_alloc : public _ _mt_alloc_base<_Tp>, _Poolp

This class has the interface required for standard library allocator classes, namely member functions allocate and deallocate,
plus others.

19.3 Implementation

19.3.1 Tunable Parameters

Certain allocation parameters can be modified, or tuned. There exists a nested st ruct __pool_base: :_Tune that contains
all these parameters, which include settings for

* Alignment

* Maximum bytes before calling : : operator new directly
* Minimum bytes

* Size of underlying global allocations

¢ Maximum number of supported threads

* Migration of deallocations to the global free list

 Shunt for global new and delete

Adjusting parameters for a given instance of an allocator can only happen before any allocations take place, when the allocator
itself is initialized. For instance:

#include <ext/mt_allocator.h>

struct pod
{
int i;
int J;

bi

int main ()

{
typedef pod value_type;
typedef __gnu_cxx::__mt_alloc<value_type> allocator_type;
typedef _ _gnu_cxx::_ _pool_base::_Tune tune_type;

tune_type t_default;
tune_type t_opt(l6, 5120, 32, 5120, 20, 10, false);
tune_type t_single(l6, 5120, 32, 5120, 1, 10, false);

tune_type t;

t = allocator_type::_M get_options();
allocator_type::_M set_options (t_opt);
t = allocator_type::_M get_options();

allocator_type a;
allocator_type::pointer pl = a.allocate(128);
allocator_type::pointer p2 = a.allocate(5128);

a.deallocate (pl, 128);
a.deallocate (p2, 5128);

The GNU C++ Library Manual 137 /385

return 0;

}

19.3.2 Initialization

The static variables (pointers to freelists, tuning parameters etc) are initialized as above, or are set to the global defaults.

The very first allocate() call will always call the _S_initialize_once() function. In order to make sure that this function is called
exactly once we make use of a __gthread_once call in MT applications and check a static bool (_S_init) in ST applications.

The _S_initialize() function: - If the GLIBCXX_FORCE_NEW environment variable is set, it sets the bool _S_force_new to
true and then returns. This will cause subsequent calls to allocate() to return memory directly from a new() call, and deallocate
will only do a delete() call.

- If the GLIBCXX_FORCE_NEW environment variable is not set, both ST and MT applications will: - Calculate the number of
bins needed. A bin is a specific power of two size of bytes. L.e., by default the allocator will deal with requests of up to 128 bytes
(or whatever the value of _S_max_bytes is when _S_init() is called). This means that there will be bins of the following sizes (in
bytes): 1,2, 4, 8, 16, 32, 64, 128. - Create the _S_binmap array. All requests are rounded up to the next "large enough" bin. ILe.,
a request for 29 bytes will cause a block from the "32 byte bin" to be returned to the application. The purpose of _S_binmap is
to speed up the process of finding out which bin to use. ILe., the value of _S_binmap[29] is initialized to 5 (bin 5 = 32 bytes).

- Create the _S_bin array. This array consists of bin_records. There will be as many bin_records in this array as the number
of bins that we calculated earlier. lLe., if _S_max_bytes = 128 there will be 8 entries. Each bin_record is then initialized: -
bin_record->first = An array of pointers to block_records. There will be as many block_records pointers as there are maximum
number of threads (in a ST application there is only 1 thread, in a MT application there are _S_max_threads). This holds the
pointer to the first free block for each thread in this bin. Le., if we would like to know where the first free block of size 32 for
thread number 3 is we would look this up by: _S_bin[5].first[3] The above created block_record pointers members are now
initialized to their initial values. I.e. _S_bin[n].first[n] = NULL;

- Additionally a MT application will: - Create a list of free thread id’s. The pointer to the first entry is stored in _S_thread_freelist_first.
The reason for this approach is that the __gthread_self() call will not return a value that corresponds to the maximum number
of threads allowed but rather a process id number or something else. So what we do is that we create a list of thread_records.
This list is _S_max_threads long and each entry holds a size_t thread_id which is initialized to 1, 2, 3, 4, 5 and so on up to
_S_max_threads. Each time a thread calls allocate() or deallocate() we call _S_get_thread_id() which looks at the value of
_S_thread_key which is a thread local storage pointer. If this is NULL we know that this is a newly created thread and we
pop the first entry from this list and saves the pointer to this record in the _S_thread_key variable. The next time we will get
the pointer to the thread_record back and we use the thread_record->thread_id as identification. L.e., the first thread that calls
allocate will get the first record in this list and thus be thread number 1 and will then find the pointer to its first free 32 byte block
in _S_bin[5].first[1] When we create the _S_thread_key we also define a destructor (_S_thread_key_destr) which means that
when the thread dies, this thread_record is returned to the front of this list and the thread id can then be reused if a new thread is
created. This list is protected by a mutex (_S_thread_freelist_mutex) which is only locked when records are removed or added
to the list.

- Initialize the free and used counters of each bin_record: - bin_record->free = An array of size_t. This keeps track of the number
of blocks on a specific thread’s freelist in each bin. Le., if a thread has 12 32-byte blocks on it’s freelists and allocates one of
these, this counter would be decreased to 11. - bin_record->used = An array of size_t. This keeps track of the number of blocks
currently in use of this size by this thread. L.e., if a thread has made 678 requests (and no deallocations...) of 32-byte blocks this
counter will read 678. The above created arrays are now initialized with their initial values. I.e. _S_bin[n].free[n] = 0;

- Initialize the mutex of each bin_record: The bin_record->mutex is used to protect the global freelist. This concept of a global
freelist is explained in more detail in the section "A multi threaded example", but basically this mutex is locked whenever a block
of memory is retrieved or returned to the global freelist for this specific bin. This only occurs when a number of blocks are
grabbed from the global list to a thread specific list or when a thread decides to return some blocks to the global freelist.

19.3.3 Deallocation Notes

Notes about deallocation. This allocator does not explicitly release memory back to the OS, but keeps its own freelists instead.
Because of this, memory debugging programs like valgrind or purify may notice leaks: sorry about this inconvenience. Operating

The GNU C++ Library Manual 138 /385

systems will reclaim allocated memory at program termination anyway. If sidestepping this kind of noise is desired, there are
three options: use an allocator, like new_allocator that releases memory while debugging, use GLIBCXX_FORCE_NEW
to bypass the allocator’s internal pools, or use a custom pool datum that releases resources on destruction.

On systems with the function ___cxa_atexit, the allocator can be forced to free all memory allocated before program ter-
mination with the member function __pool_type::_M_ destroy. However, because this member function relies on the
precise and exactly-conforming ordering of static destructors, including those of a static local __pool object, it should not be
used, ever, on systems that don’t have the necessary underlying support. In addition, in practice, forcing deallocation can be
tricky, as it requires the __pool object to be fully-constructed before the object that uses it is fully constructed. For most (but
not all) STL containers, this works, as an instance of the allocator is constructed as part of a container’s constructor. However,
this assumption is implementation-specific, and subject to change. For an example of a pool that frees memory, see the following
example.

19.4 Single Thread Example

Let’s start by describing how the data on a freelist is laid out in memory. This is the first two blocks in freelist for thread id 3 in
bin 3 (8 bytes):

——+ (_S_bin[3].first[3] points here)

o —— +

| DATA | (A pointer to here is what is returned to the
| | the application when needed)

\ \

\ \

\ \

\ \

\ \

\ \

o —— +

o +

| nextx | <= (If next == NULL it’s the last one on the list)
\ \

\ \

\ \

o +

http://gcc.gnu.org/viewcvs/gcc/trunk/libstdc++-v3/testsuite/ext/mt_allocator/deallocate_local-6.cc?view=markup

The GNU C++ Library Manual 139/385

With this in mind we simplify things a bit for a while and say that there is only one thread (a ST application). In this case all
operations are made to what is referred to as the global pool - thread id O (No thread may be assigned this id since they span from
1 to _S_max_threads in a MT application).

When the application requests memory (calling allocate()) we first look at the requested size and if this is > _S_max_bytes we
call new() directly and return.

If the requested size is within limits we start by finding out from which bin we should serve this request by looking in _S_binmap.

A quick look at _S_bin[bin].first[O] tells us if there are any blocks of this size on the freelist (0). If this is not NULL - fine,
just remove the block that _S_bin[bin].first[O] points to from the list, update _S_bin[bin].first[0] and return a pointer to that
blocks data.

If the freelist is empty (the pointer is NULL) we must get memory from the system and build us a freelist within this memory.
All requests for new memory is made in chunks of _S_chunk_size. Knowing the size of a block_record and the bytes that this
bin stores we then calculate how many blocks we can create within this chunk, build the list, remove the first block, update the
pointer (_S_bin[bin].first[O]) and return a pointer to that blocks data.

Deallocation is equally simple; the pointer is casted back to a block_record pointer, lookup which bin to use based on the size,
add the block to the front of the global freelist and update the pointer as needed (_S_bin[bin].first[O]).

The decision to add deallocated blocks to the front of the freelist was made after a set of performance measurements that showed
that this is roughly 10% faster than maintaining a set of "last pointers" as well.

19.5 Multiple Thread Example

In the ST example we never used the thread_id variable present in each block. Let’s start by explaining the purpose of this in a
MT application.

The concept of "ownership" was introduced since many MT applications allocate and deallocate memory to shared containers
from different threads (such as a cache shared amongst all threads). This introduces a problem if the allocator only returns
memory to the current threads freelist (I.e., there might be one thread doing all the allocation and thus obtaining ever more
memory from the system and another thread that is getting a longer and longer freelist - this will in the end consume all available
memory).

Each time a block is moved from the global list (where ownership is irrelevant), to a threads freelist (or when a new freelist is
built from a chunk directly onto a threads freelist or when a deallocation occurs on a block which was not allocated by the same
thread id as the one doing the deallocation) the thread id is set to the current one.

What’s the use? Well, when a deallocation occurs we can now look at the thread id and find out if it was allocated by another
thread id and decrease the used counter of that thread instead, thus keeping the free and used counters correct. And keeping the
free and used counters corrects is very important since the relationship between these two variables decides if memory should be
returned to the global pool or not when a deallocation occurs.

When the application requests memory (calling allocate()) we first look at the requested size and if this is >_S_max_bytes we
call new() directly and return.

If the requested size is within limits we start by finding out from which bin we should serve this request by looking in _S_binmap.

A call to _S_get_thread_id() returns the thread id for the calling thread (and if no value has been set in _S_thread_key, a new id
is assigned and returned).

A quick look at _S_bin[bin].first[thread_id] tells us if there are any blocks of this size on the current threads freelist. If this
is not NULL - fine, just remove the block that _S_bin[bin].first[thread_id] points to from the list, update _S_bin[bin].first[
thread_id], update the free and used counters and return a pointer to that blocks data.

If the freelist is empty (the pointer is NULL) we start by looking at the global freelist (0). If there are blocks available on the
global freelist we lock this bins mutex and move up to block_count (the number of blocks of this bins size that will fit into a
_S_chunk_size) or until end of list - whatever comes first - to the current threads freelist and at the same time change the thread_id
ownership and update the counters and pointers. When the bins mutex has been unlocked, we remove the block that _S_bin[bin
].first[thread_id] points to from the list, update _S_bin[bin].first[thread_id], update the free and used counters, and return a
pointer to that blocks data.

The GNU C++ Library Manual 140/ 385

The reason that the number of blocks moved to the current threads freelist is limited to block_count is to minimize the chance that
a subsequent deallocate() call will return the excess blocks to the global freelist (based on the _S_freelist_headroom calculation,
see below).

However if there isn’t any memory on the global pool we need to get memory from the system - this is done in exactly the same
way as in a single threaded application with one major difference; the list built in the newly allocated memory (of _S_chunk_size
size) is added to the current threads freelist instead of to the global.

The basic process of a deallocation call is simple: always add the block to the front of the current threads freelist and update the
counters and pointers (as described earlier with the specific check of ownership that causes the used counter of the thread that
originally allocated the block to be decreased instead of the current threads counter).

And here comes the free and used counters to service. Each time a deallocation() call is made, the length of the current threads
freelist is compared to the amount memory in use by this thread.

Let’s go back to the example of an application that has one thread that does all the allocations and one that deallocates. Both
these threads use say 516 32-byte blocks that was allocated during thread creation for example. Their used counters will both say
516 at this point. The allocation thread now grabs 1000 32-byte blocks and puts them in a shared container. The used counter for
this thread is now 1516.

The deallocation thread now deallocates 500 of these blocks. For each deallocation made the used counter of the allocating thread
is decreased and the freelist of the deallocation thread gets longer and longer. But the calculation made in deallocate() will limit
the length of the freelist in the deallocation thread to _S_freelist_headroom % of it’s used counter. In this case, when the freelist
(given that the _S_freelist_headroom is at it’s default value of 10%) exceeds 52 (516/10) blocks will be returned to the global
pool where the allocating thread may pick them up and reuse them.

In order to reduce lock contention (since this requires this bins mutex to be locked) this operation is also made in chunks of
blocks (just like when chunks of blocks are moved from the global freelist to a threads freelist mentioned above). The "formula"
used can probably be improved to further reduce the risk of blocks being "bounced back and forth" between freelists.

The GNU C++ Library Manual 141/385

Chapter 20

The bitmap_allocator

20.1 Design

As this name suggests, this allocator uses a bit-map to keep track of the used and unused memory locations for its book-keeping
purposes.

This allocator will make use of 1 single bit to keep track of whether it has been allocated or not. A bit 1 indicates free, while O
indicates allocated. This has been done so that you can easily check a collection of bits for a free block. This kind of Bitmapped
strategy works best for single object allocations, and with the STL type parameterized allocators, we do not need to choose any
size for the block which will be represented by a single bit. This will be the size of the parameter around which the allocator has
been parameterized. Thus, close to optimal performance will result. Hence, this should be used for node based containers which
call the allocate function with an argument of 1.

The bitmapped allocator’s internal pool is exponentially growing. Meaning that internally, the blocks acquired from the Free List
Store will double every time the bitmapped allocator runs out of memory.

The macro __ GTHREADS decides whether to use Mutex Protection around every allocation/deallocation. The state of the macro
is picked up automatically from the gthr abstraction layer.

20.2 Implementation

20.2.1 Free List Store

The Free List Store (referred to as FLS for the remaining part of this document) is the Global memory pool that is shared by all
instances of the bitmapped allocator instantiated for any type. This maintains a sorted order of all free memory blocks given back
to it by the bitmapped allocator, and is also responsible for giving memory to the bitmapped allocator when it asks for more.

Internally, there is a Free List threshold which indicates the Maximum number of free lists that the FLS can hold internally
(cache). Currently, this value is set at 64. So, if there are more than 64 free lists coming in, then some of them will be given back
to the OS using operator delete so that at any given time the Free List’s size does not exceed 64 entries. This is done because a
Binary Search is used to locate an entry in a free list when a request for memory comes along. Thus, the run-time complexity of
the search would go up given an increasing size, for 64 entries however, 1g(64) == 6 comparisons are enough to locate the correct
free list if it exists.

Suppose the free list size has reached its threshold, then the largest block from among those in the list and the new block will be
selected and given back to the OS. This is done because it reduces external fragmentation, and allows the OS to use the larger
blocks later in an orderly fashion, possibly merging them later. Also, on some systems, large blocks are obtained via calls to
mmap, so giving them back to free system resources becomes most important.

The function _S_should_i_give decides the policy that determines whether the current block of memory should be given to the
allocator for the request that it has made. That’s because we may not always have exact fits for the memory size that the allocator
requests. We do this mainly to prevent external fragmentation at the cost of a little internal fragmentation. Now, the value of this

The GNU C++ Library Manual 142 /385

internal fragmentation has to be decided by this function. I can see 3 possibilities right now. Please add more as and when you
find better strategies.

1. Equal size check. Return true only when the 2 blocks are of equal size.

2. Difference Threshold: Return true only when the _block_size is greater than or equal to the _required_size, and if the _BS
is > _RS by a difference of less than some THRESHOLD value, then return true, else return false.

3. Percentage Threshold. Return true only when the _block_size is greater than or equal to the _required_size, and if the _BS
is > _RS by a percentage of less than some THRESHOLD value, then return true, else return false.

Currently, (3) is being used with a value of 36% Maximum wastage per Super Block.

20.2.2 Super Block

A super block is the block of memory acquired from the FLS from which the bitmap allocator carves out memory for sin-
gle objects and satisfies the user’s requests. These super blocks come in sizes that are powers of 2 and multiples of 32
(_Bits_Per_Block). Yes both at the same time! That’s because the next super block acquired will be 2 times the previous
one, and also all super blocks have to be multiples of the _Bits_Per_Block value.

How does it interact with the free list store?

The super block is contained in the FLS, and the FLS is responsible for getting / returning Super Bocks to and from the OS using
operator new as defined by the C++ standard.

20.2.3 Super Block Data Layout

Each Super Block will be of some size that is a multiple of the number of Bits Per Block. Typically, this value is chosen as
Bits_Per_Byte x sizeof(size_t). On an x86 system, this gives the figure 8 x 4 = 32. Thus, each Super Block will be of size 32
x Some_Value. This Some_Value is sizeof(value_type). For now, let it be called ’K’. Thus, finally, Super Block size is 32 x K
bytes.

This value of 32 has been chosen because each size_t has 32-bits and Maximum use of these can be made with such a figure.

Consider a block of size 64 ints. In memory, it would look like this: (assume a 32-bit system where, size_t is a 32-bit entity).

Data -> Space for 64

268 0 4294967295 4294967295 ints

Table 20.1: Bitmap Allocator Memory Map

The first Column(268) represents the size of the Block in bytes as seen by the Bitmap Allocator. Internally, a global free list is
used to keep track of the free blocks used and given back by the bitmap allocator. It is this Free List Store that is responsible for
writing and managing this information. Actually the number of bytes allocated in this case would be: 4 + 4 + (4x2) + (64x4) =
272 bytes, but the first 4 bytes are an addition by the Free List Store, so the Bitmap Allocator sees only 268 bytes. These first 4
bytes about which the bitmapped allocator is not aware hold the value 268.

What do the remaining values represent?

The 2nd 4 in the expression is the sizeof(size_t) because the Bitmapped Allocator maintains a used count for each Super Block,
which is initially set to O (as indicated in the diagram). This is incremented every time a block is removed from this super block
(allocated), and decremented whenever it is given back. So, when the used count falls to 0, the whole super block will be given
back to the Free List Store.

The value 4294967295 represents the integer corresponding to the bit representation of all bits set: 1111 1111111111111 1111111111111

The 3rd 4x2 is size of the bitmap itself, which is the size of 32-bits x 2, which is 8-bytes, or 2 x sizeof(size_t).

The GNU C++ Library Manual 143 /385

20.2.4 Maximum Wasted Percentage

This has nothing to do with the algorithm per-se, only with some vales that must be chosen correctly to ensure that the allocator
performs well in a real word scenario, and maintains a good balance between the memory consumption and the allocation/deal-
location speed.

The formula for calculating the maximum wastage as a percentage:
32xk+1)/2x@B2xk+1+32xc))x 100.

where k is the constant overhead per node (e.g., for list, it is 8 bytes, and for map it is 12 bytes) and c is the size of the base
type on which the map/list is instantiated. Thus, suppose the typel is int and type2 is double, they are related by the relation
sizeof(double) == 2*sizeof(int). Thus, all types must have this double size relation for this formula to work properly.

Plugging-in: For List: k = 8 and ¢ = 4 (int and double), we get: 33.376%
For map/multimap: k = 12, and ¢ = 4 (int and double), we get: 37.524%

Thus, knowing these values, and based on the sizeof(value_type), we may create a function that returns the Max_Wastage_Percentage
for us to use.

20.2.5 allocate

The allocate function is specialized for single object allocation ONLY. Thus, ONLY if n == 1, will the bitmap_allocator’s
specialized algorithm be used. Otherwise, the request is satisfied directly by calling operator new.

Suppose n == 1, then the allocator does the following:

1. Checks to see whether a free block exists somewhere in a region of memory close to the last satisfied request. If so, then
that block is marked as allocated in the bit map and given to the user. If not, then (2) is executed.

2. Is there a free block anywhere after the current block right up to the end of the memory that we have? If so, that block is
found, and the same procedure is applied as above, and returned to the user. If not, then (3) is executed.

3. Is there any block in whatever region of memory that we own free? This is done by checking

* The use count for each super block, and if that fails then

* The individual bit-maps for each super block.

Note: Here we are never touching any of the memory that the user will be given, and we are confining all memory accesses
to a small region of memory! This helps reduce cache misses. If this succeeds then we apply the same procedure on that
bit-map as (1), and return that block of memory to the user. However, if this process fails, then we resort to (4).

4. This process involves Refilling the internal exponentially growing memory pool. The said effect is achieved by calling
_S_refill_pool which does the following:

* Gets more memory from the Global Free List of the Required size.
* Adjusts the size for the next call to itself.

* Writes the appropriate headers in the bit-maps.

* Sets the use count for that super-block just allocated to 0 (zero).

* All of the above accounts to maintaining the basic invariant for the allocator. If the invariant is maintained, we are sure
that all is well. Now, the same process is applied on the newly acquired free blocks, which are dispatched accordingly.

Thus, you can clearly see that the allocate function is nothing but a combination of the next-fit and first-fit algorithm optimized
ONLY for single object allocations.

The GNU C++ Library Manual 144 /385

20.2.6 deallocate

The deallocate function again is specialized for single objects ONLY. For all n belonging to > 1, the operator delete is called
without further ado, and the deallocate function returns.

However for n == 1, a series of steps are performed:

1. We first need to locate that super-block which holds the memory location given to us by the user. For that purpose, we
maintain a static variable _S_last_dealloc_index, which holds the index into the vector of block pairs which indicates the
index of the last super-block from which memory was freed. We use this strategy in the hope that the user will deallocate
memory in a region close to what he/she deallocated the last time around. If the check for belongs_to succeeds, then we
determine the bit-map for the given pointer, and locate the index into that bit-map, and mark that bit as free by setting it.

2. If the _S_last_dealloc_index does not point to the memory block that we’re looking for, then we do a linear search on
the block stored in the vector of Block Pairs. This vector in code is called _S_mem_blocks. When the corresponding
super-block is found, we apply the same procedure as we did for (1) to mark the block as free in the bit-map.

Now, whenever a block is freed, the use count of that particular super block goes down by 1. When this use count hits 0, we
remove that super block from the list of all valid super blocks stored in the vector. While doing this, we also make sure that the
basic invariant is maintained by making sure that _S_last_request and _S_last_dealloc_index point to valid locations within the
vector.

20.2.7 Questions

20.2.7.1 1

Q1) The "Data Layout" section is cryptic. I have no idea of what you are trying to say. Layout of what? The free-list? Each
bitmap? The Super Block?

The layout of a Super Block of a given size. In the example, a super block of size 32 x 1 is taken. The general formula for
calculating the size of a super block is 32 x sizeof(value_type) x 2"n, where n ranges from 0 to 32 for 32-bit systems.

20.2.7.2 2

And since I just mentioned the term “each bitmap’, what in the world is meant by it? What does each bitmap manage? How does
it relate to the super block? Is the Super Block a bitmap as well?

Each bitmap is part of a Super Block which is made up of 3 parts as [have mentioned earlier. Re-iterating, 1. The use count, 2.
The bit-map for that Super Block. 3. The actual memory that will be eventually given to the user. Each bitmap is a multiple of 32
in size. If there are 32 x (2°3) blocks of single objects to be given, there will be *32 x (2°3)’ bits present. Each 32 bits managing
the allocated / free status for 32 blocks. Since each size_t contains 32-bits, one size_t can manage up to 32 blocks’ status. Each
bit-map is made up of a number of size_t, whose exact number for a super-block of a given size I have just mentioned.

20.2.7.3 3

How do the allocate and deallocate functions work in regard to bitmaps?

The allocate and deallocate functions manipulate the bitmaps and have nothing to do with the memory that is given to the user.
As I have earlier mentioned, a 1 in the bitmap’s bit field indicates free, while a 0 indicates allocated. This lets us check 32 bits
at a time to check whether there is at lease one free block in those 32 blocks by testing for equality with (0). Now, the allocate
function will given a memory block find the corresponding bit in the bitmap, and will reset it (i.e., make it re-set (0)). And when
the deallocate function is called, it will again set that bit after locating it to indicate that that particular block corresponding to
this bit in the bit-map is not being used by anyone, and may be used to satisfy future requests.

e.g.: Consider a bit-map of 64-bits as represented below: 1111111111111 1111111111001 0101010201111 11 1111111111111

Now, when the first request for allocation of a single object comes along, the first block in address order is returned. And since
the bit-maps in the reverse order to that of the address order, the last bit (LSB if the bit-map is considered as a binary word of
64-bits) is re-set to 0.

The bit-map now looks like this: 1111111111111 111111 1111111111111 1111111 1111111111111111110

The GNU C++ Library Manual 145 /385

20.2.8 Locality

Another issue would be whether to keep the all bitmaps in a separate area in memory, or to keep them near the actual blocks that
will be given out or allocated for the client. After some testing, I’ve decided to keep these bitmaps close to the actual blocks.
This will help in 2 ways.

1. Constant time access for the bitmap themselves, since no kind of look up will be needed to find the correct bitmap list or
its equivalent.

2. And also this would preserve the cache as far as possible.

So in effect, this kind of an allocator might prove beneficial from a purely cache point of view. But this allocator has been made
to try and roll out the defects of the node_allocator, wherein the nodes get skewed about in memory, if they are not returned in
the exact reverse order or in the same order in which they were allocated. Also, the new_allocator’s book keeping overhead is too
much for small objects and single object allocations, though it preserves the locality of blocks very well when they are returned
back to the allocator.

20.2.9 Overhead and Grow Policy

Expected overhead per block would be 1 bit in memory. Also, once the address of the free list has been found, the cost for
allocation/deallocation would be negligible, and is supposed to be constant time. For these very reasons, it is very important to
minimize the linear time costs, which include finding a free list with a free block while allocating, and finding the corresponding
free list for a block while deallocating. Therefore, I have decided that the growth of the internal pool for this allocator will
be exponential as compared to linear for node_allocator. There, linear time works well, because we are mainly concerned
with speed of allocation/deallocation and memory consumption, whereas here, the allocation/deallocation part does have some
linear/logarithmic complexity components in it. Thus, to try and minimize them would be a good thing to do at the cost of a little
bit of memory.

Another thing to be noted is the pool size will double every time the internal pool gets exhausted, and all the free blocks have
been given away. The initial size of the pool would be sizeof(size_t) x 8 which is the number of bits in an integer, which can fit
exactly in a CPU register. Hence, the term given is exponential growth of the internal pool.

The GNU C++ Library Manual 146 /385

Chapter 21

Policy-Based Data Structures

21.1 Intro

This is a library of policy-based elementary data structures: associative containers and priority queues. It is designed for high-
performance, flexibility, semantic safety, and conformance to the corresponding containers in std and std: :trl (except for
some points where it differs by design).

21.1.1 Performance Issues

An attempt is made to categorize the wide variety of possible container designs in terms of performance-impacting factors. These
performance factors are translated into design policies and incorporated into container design.

There is tension between unravelling factors into a coherent set of policies. Every attempt is made to make a minimal set of
factors. However, in many cases multiple factors make for long template names. Every attempt is made to alias and use typedefs
in the source files, but the generated names for external symbols can be large for binary files or debuggers.

In many cases, the longer names allow capabilities and behaviours controlled by macros to also be unamibiguously emitted as
distinct generated names.

Specific issues found while unraveling performance factors in the design of associative containers and priority queues follow.

21.1.1.1 Associative

Associative containers depend on their composite policies to a very large extent. Implicitly hard-wiring policies can hamper
their performance and limit their functionality. An efficient hash-based container, for example, requires policies for testing key
equivalence, hashing keys, translating hash values into positions within the hash table, and determining when and how to resize
the table internally. A tree-based container can efficiently support order statistics, i.e. the ability to query what is the order of
each key within the sequence of keys in the container, but only if the container is supplied with a policy to internally update
meta-data. There are many other such examples.

Ideally, all associative containers would share the same interface. Unfortunately, underlying data structures and mapping seman-
tics differentiate between different containers. For example, suppose one writes a generic function manipulating an associative
container.

template<typename Cntnr>
void
some_op_sequence (Cntnr& r_cnt)

{

The GNU C++ Library Manual 147 /385

Given this, then what can one assume about the instantiating container? The answer varies according to its underlying data
structure. If the underlying data structure of Cntnr is based on a tree or trie, then the order of elements is well defined;
otherwise, it is not, in general. If the underlying data structure of Cntnr is based on a collision-chaining hash table, then
modifying r_Cntnr will not invalidate its iterators’ order; if the underlying data structure is a probing hash table, then this is
not the case. If the underlying data structure is based on a tree or trie, then a reference to the container can efficiently be split;
otherwise, it cannot, in general. If the underlying data structure is a red-black tree, then splitting a reference to the container is
exception-free; if it is an ordered-vector tree, exceptions can be thrown.

21.1.1.2 Priority Que

Priority queues are useful when one needs to efficiently access a minimum (or maximum) value as the set of values changes.

Most useful data structures for priority queues have a relatively simple structure, as they are geared toward relatively simple
requirements. Unfortunately, these structures do not support access to an arbitrary value, which turns out to be necessary in many
algorithms. Say, decreasing an arbitrary value in a graph algorithm. Therefore, some extra mechanism is necessary and must
be invented for accessing arbitrary values. There are at least two alternatives: embedding an associative container in a priority
queue, or allowing cross-referencing through iterators. The first solution adds significant overhead; the second solution requires
a precise definition of iterator invalidation. Which is the next point...

Priority queues, like hash-based containers, store values in an order that is meaningless and undefined externally. For example,
a push operation can internally reorganize the values. Because of this characteristic, describing a priority queues’ iterator is
difficult: on one hand, the values to which iterators point can remain valid, but on the other, the logical order of iterators can
change unpredictably.

Roughly speaking, any element that is both inserted to a priority queue (e.g. through push) and removed from it (e.g., through
pop), incurs a logarithmic overhead (in the amortized sense). Different underlying data structures place the actual cost differ-
ently: some are optimized for amortized complexity, whereas others guarantee that specific operations only have a constant cost.
One underlying data structure might be chosen if modifying a value is frequent (Dijkstra’s shortest-path algorithm), whereas a
different one might be chosen otherwise. Unfortunately, an array-based binary heap - an underlying data structure that optimizes
(in the amortized sense) push and pop operations, differs from the others in terms of its invalidation guarantees. Other design
decisions also impact the cost and placement of the overhead, at the expense of more difference in the kinds of operations that the
underlying data structure can support. These differences pose a challenge when creating a uniform interface for priority queues.

21.1.2 Goals

Many fine associative-container libraries were already written, most notably, the C++ standard’s associative containers. Why
then write another library? This section shows some possible advantages of this library, when considering the challenges in the
introduction. Many of these points stem from the fact that the ISO C++ process introduced associative-containers in a two-step
process (first standardizing tree-based containers, only then adding hash-based containers, which are fundamentally different),
did not standardize priority queues as containers, and (in our opinion) overloads the iterator concept.

21.1.2.1 Associative

21.1.2.1.1 Policy Choices

Associative containers require a relatively large number of policies to function efficiently in various settings. In some cases
this is needed for making their common operations more efficient, and in other cases this allows them to support a larger set of
operations

1. Hash-based containers, for example, support look-up and insertion methods (find and insert). In order to locate
elements quickly, they are supplied a hash functor, which instruct how to transform a key object into some size type; a
hash functor might transform "hello" into 1123002298. A hash table, though, requires transforming each key object
into some size-type type in some specific domain; a hash table with a 128-long table might transform "hello" into
position 63. The policy by which the hash value is transformed into a position within the table can dramatically affect
performance. Hash-based containers also do not resize naturally (as opposed to tree-based containers, for example). The
appropriate resize policy is unfortunately intertwined with the policy that transforms hash value into a position within the
table.

The GNU C++ Library Manual 148 /385

2. Tree-based containers, for example, also support look-up and insertion methods, and are primarily useful when maintaining
order between elements is important. In some cases, though, one can utilize their balancing algorithms for completely
different purposes.

Figure A shows a tree whose each node contains two entries: a floating-point key, and some size-type metadata (in bold
beneath it) that is the number of nodes in the sub-tree. (The root has key 0.99, and has 5 nodes (including itself) in its
sub-tree.) A container based on this data structure can obviously answer efficiently whether 0.3 is in the container object,
but it can also answer what is the order of 0.3 among all those in the container object: see [65].

As another example, Figure B shows a tree whose each node contains two entries: a half-open geometric line interval,
and a number metadata (in bold beneath it) that is the largest endpoint of all intervals in its sub-tree. (The root describes
the interval [20, 36), and the largest endpoint in its sub-tree is 99.) A container based on this data structure can
obviously answer efficiently whether [3, 41) is in the container object, but it can also answer efficiently whether the
container object has intervals that intersect [3, 41). These types of queries are very useful in geometric algorithms and
lease-management algorithms.

It is important to note, however, that as the trees are modified, their internal structure changes. To maintain these invariants,
one must supply some policy that is aware of these changes. Without this, it would be better to use a linked list (in itself
very efficient for these purposes).

Figure 21.1: Node Invariants

21.1.2.1.2 Underlying Data Structures

The standard C++ library contains associative containers based on red-black trees and collision-chaining hash tables. These are
very useful, but they are not ideal for all types of settings.

The figure below shows the different underlying data structures currently supported in this library.

The GNU C++ Library Manual 149 /385

S,

AT T
(O—=)—=()=)

Figure 21.2: Underlying Associative Data Structures

The GNU C++ Library Manual 150 /385

A shows a collision-chaining hash-table, B shows a probing hash-table, C shows a red-black tree, D shows a splay tree, E shows
a tree based on an ordered vector(implicit in the order of the elements), F shows a PATRICIA trie, and G shows a list-based
container with update policies.

Each of these data structures has some performance benefits, in terms of speed, size or both. For now, note that vector-based
trees and probing hash tables manipulate memory more efficiently than red-black trees and collision-chaining hash tables, and
that list-based associative containers are very useful for constructing "multimaps”.

Now consider a function manipulating a generic associative container,

template<class Cntnr>
int
some_op_sequence (Cntnr &r_cnt)

{

Ideally, the underlying data structure of Cntnr would not affect what can be done with r_cnt. Unfortunately, this is not the
case.

For example, if Cntnr is std: : map, then the function can use

std::for_each(r_cnt.find(foo), r_cnt.find(bar), foobar)

in order to apply foobar to all elements between foo and bar. If Cntnr is a hash-based container, then this call’s results are
undefined.

Also, if Cntnr is tree-based, the type and object of the comparison functor can be accessed. If Cntnr is hash based, these
queries are nonsensical.

There are various other differences based on the container’s underlying data structure. For one, they can be constructed by, and
queried for, different policies. Furthermore:

1. Containers based on C, D, E and F store elements in a meaningful order; the others store elements in a meaningless (and
probably time-varying) order. By implication, only containers based on C, D, E and F can support erase operations
taking an iterator and returning an iterator to the following element without performance loss.

2. Containers based on C, D, E, and F can be split and joined efficiently, while the others cannot. Containers based on C and
D, furthermore, can guarantee that this is exception-free; containers based on E cannot guarantee this.

3. Containers based on all but E can guarantee that erasing an element is exception free; containers based on E cannot
guarantee this. Containers based on all but B and E can guarantee that modifying an object of their type does not invalidate
iterators or references to their elements, while containers based on B and E cannot. Containers based on C, D, and E can
furthermore make a stronger guarantee, namely that modifying an object of their type does not affect the order of iterators.

A unified tag and traits system (as used for the C++ standard library iterators, for example) can ease generic manipulation of
associative containers based on different underlying data structures.

21.1.2.1.3 lterators

Iterators are centric to the design of the standard library containers, because of the container/algorithm/iterator decomposition
that allows an algorithm to operate on a range through iterators of some sequence. Iterators, then, are useful because they allow
going over a specific sequence. The standard library also uses iterators for accessing a specific element: when an associative
container returns one through £find. The standard library consistently uses the same types of iterators for both purposes: going
over a range, and accessing a specific found element. Before the introduction of hash-based containers to the standard library,
this made sense (with the exception of priority queues, which are discussed later).

Using the standard associative containers together with non-order-preserving associative containers (and also because of priority-
queues container), there is a possible need for different types of iterators for self-organizing containers: the iterator concept seems
overloaded to mean two different things (in some cases).

The GNU C++ Library Manual 151 /385

21.1.2.1.3.1 Using Point lterators for Range Operations

Suppose cntnr is some associative container, and say c is an object of type cntnr. Then what will be the outcome of

std::for_each(c.find (1), c.find(5), foo);

If cntnr is a tree-based container object, then an in-order walk will apply foo to the relevant elements, as in the graphic below,
label A. If c is a hash-based container, then the order of elements between any two elements is undefined (and probably time-
varying); there is no guarantee that the elements traversed will coincide with the logical elements between 1 and 5, as in label
B.

O
(&)

Figure 21.3: Range Iteration in Different Data Structures

In our opinion, this problem is not caused just because red-black trees are order preserving while collision-chaining hash tables
are (generally) not - it is more fundamental. Most of the standard’s containers order sequences in a well-defined manner that
is determined by their interface: calling insert on a tree-based container modifies its sequence in a predictable way, as does
calling push_back on a list or a vector. Conversely, collision-chaining hash tables, probing hash tables, priority queues, and
list-based containers (which are very useful for "multimaps") are self-organizing data structures; the effect of each operation
modifies their sequences in a manner that is (practically) determined by their implementation.

Consequently, applying an algorithm to a sequence obtained from most containers may or may not make sense, but applying it
to a sub-sequence of a self-organizing container does not.

21.1.2.1.3.2 Cost to Point Iterators to Enable Range Operations

Suppose c is some collision-chaining hash-based container object, and one calls

c.find(3)

Then what composes the returned iterator?

In the graphic below, label A shows the simplest (and most efficient) implementation of a collision-chaining hash table. The
little box marked point_iterator shows an object that contains a pointer to the element’s node. Note that this "iterator" has
no way to move to the next element (it cannot support operator++). Conversely, the little box marked iterator stores
both a pointer to the element, as well as some other information (the bucket number of the element). the second iterator, then, is
"heavier" than the first one- it requires more time and space. If we were to use a different container to cross-reference into this
hash-table using these iterators - it would take much more space. As noted above, nothing much can be done by incrementing
these iterators, so why is this extra information needed?

The GNU C++ Library Manual

152 /385

Alternatively, one might create a collision-chaining hash-table where the lists might be linked, forming a monolithic total-element
list, as in the graphic below, label B. Here the iterators are as light as can be, but the hash-table’s operations are more complicated.

ikerator ""r /r

point_iterator

Figure 21.4: Point Iteration in Hash Data Structures

It should be noted that containers based on collision-chaining hash-tables are not the only ones with this type of behavior; many

other self-organizing data structures display it as well.

21.1.2.1.3.3 Invalidation Guarantees

Consider the following snippet:

it = c.find(3);
c.erase (5);

Following the call to erase, what is the validity of it: can it be de-referenced? can it be incremented?

The answer depends on the underlying data structure of the container. The graphic below shows three cases: Al and A2 show a

red-black tree; B1 and B2 show a probing hash-table; C1 and C2 show a collision-chaining hash table.

The GNU C++ Library Manual 153 /385

B1 B2

C1 Cc2

Figure 21.5: Effect of erase in different underlying data structures

1. Erasing 5 from Al yields A2. Clearly, an iterator to 3 can be de-referenced and incremented. The sequence of iterators
changed, but in a way that is well-defined by the interface.

The GNU C++ Library Manual 154 /385

2. Erasing 5 from B1 yields B2. Clearly, an iterator to 3 is not valid at all - it cannot be de-referenced or incremented; the
order of iterators changed in a way that is (practically) determined by the implementation and not by the interface.

3. Erasing 5 from C1 yields C2. Here the situation is more complicated. On the one hand, there is no problem in de-
referencing it. On the other hand, the order of iterators changed in a way that is (practically) determined by the imple-
mentation and not by the interface.

So in the standard library containers, it is not always possible to express whether it is valid or not. This is true also for insert.
Again, the iterator concept seems overloaded.

21.1.2.1.4 Functional

The design of the functional overlay to the underlying data structures differs slightly from some of the conventions used in the
C++ standard. A strict public interface of methods that comprise only operations which depend on the class’s internal structure;
other operations are best designed as external functions. (See [83]).With this rubric, the standard associative containers lack
some useful methods, and provide other methods which would be better removed.

21.1.2.1.41 erase

1. Order-preserving standard associative containers provide the method

iterator
erase (iterator it)

which takes an iterator, erases the corresponding element, and returns an iterator to the following element. Also standardd
hash-based associative containers provide this method. This seemingly increasesgenericity between associative containers,
since it is possible to use

typename C::iterator it = c.begin();
typename C::iterator e_it = c.end();
while (it != e_it)

it = pred(*it)? c.erase(it) : ++it;

in order to erase from a container object c all element which match a predicate pred. However, in a different sense
this actually decreases genericity: an integral implication of this method is that tree-based associative containers’ memory
use is linear in the total number of elements they store, while hash-based containers’ memory use is unbounded in the
total number of elements they store. Assume a hash-based container is allowed to decrease its size when an element
is erased. Then the elements might be rehashed, which means that there is no "next" element - it is simply undefined.
Consequently, it is possible to infer from the fact that the standard library’s hash-based containers provide this method
that they cannot downsize when elements are erased. As a consequence, different code is needed to manipulate different
containers, assuming that memory should be conserved. Therefor, this library’s non-order preserving associative containers
omit this method.

2. All associative containers include a conditional-erase method

template<
class Pred>
size_type
erase_1if
(Pred pred)

which erases all elements matching a predicate. This is probably the only way to ensure linear-time multiple-item erase
which can actually downsize a container.

3. The standard associative containers provide methods for multiple-item erase of the form

size_type
erase (It b, It e)

The GNU C++ Library Manual 155 /385

erasing a range of elements given by a pair of iterators. For tree-based or trie-based containers, this can implemented more
efficiently as a (small) sequence of split and join operations. For other, unordered, containers, this method isn’t much better
than an external loop. Moreover, if c is a hash-based container, then

c.erase(c.find(2), c.find(5))

is almost certain to do something different than erasing all elements whose keys are between 2 and 5, and is likely to
produce other undefined behavior.

21.1.2.1.4.2 split and join

It is well-known that tree-based and trie-based container objects can be efficiently split or joined (See [65]). Externally splitting
or joining trees is super-linear, and, furthermore, can throw exceptions. Split and join methods, consequently, seem good choices
for tree-based container methods, especially, since as noted just before, they are efficient replacements for erasing sub-sequences.

21.1.21.4.3 insert

The standard associative containers provide methods of the form

template<class It>
size_type
insert (It b, It e);

for inserting a range of elements given by a pair of iterators. At best, this can be implemented as an external loop, or, even more
efficiently, as a join operation (for the case of tree-based or trie-based containers). Moreover, these methods seem similar to
constructors taking a range given by a pair of iterators; the constructors, however, are transactional, whereas the insert methods
are not; this is possibly confusing.

21.1.2.1.44 operator==and operator<=

Associative containers are parametrized by policies allowing to test key equivalence: a hash-based container can do this through
its equivalence functor, and a tree-based container can do this through its comparison functor. In addition, some standard associa-
tive containers have global function operators, like operator== and operator<=, that allow comparing entire associative
containers.

In our opinion, these functions are better left out. To begin with, they do not significantly improve over an external loop.
More importantly, however, they are possibly misleading - operator==, for example, usually checks for equivalence, or
interchangeability, but the associative container cannot check for values’ equivalence, only keys’ equivalence; also, are two
containers considered equivalent if they store the same values in different order? this is an arbitrary decision.

21.1.2.2 Priority Queues

21.1.2.2.1 Policy Choices

Priority queues are containers that allow efficiently inserting values and accessing the maximal value (in the sense of the con-
tainer’s comparison functor). Their interface supports push and pop. The standard container std: : priorityqueue indeed
support these methods, but little else. For algorithmic and software-engineering purposes, other methods are needed:

1. Many graph algorithms (see [65]) require increasing a value in a priority queue (again, in the sense of the container’s
comparison functor), or joining two priority-queue objects.

2. Thereturn type of priority_queue’s push method is a point-type iterator, which can be used for modifying or erasing
arbitrary values. For example:

priority_queue<int> p;
priority_queue<int>::point_iterator it = p.push(3);
p.modify (it, 4);

The GNU C++ Library Manual 156 / 385

These types of cross-referencing operations are necessary for making priority queues useful for different applications,
especially graph applications.

3. It is sometimes necessary to erase an arbitrary value in a priority queue. For example, consider the select function for
monitoring file descriptors:
int
select (int nfds, fd_set xreadfds, fd_set *writefds, fd_set *errorfds,
struct timeval xtimeout);

then, as the select documentation states:

“ The nfds argument specifies the range of file descriptors to be tested. The select() function tests file descriptors in the
range of 0 to nfds-1.”

It stands to reason, therefore, that we might wish to maintain a minimal value for nfds, and priority queues immediately
come to mind. Note, though, that when a socket is closed, the minimal file description might change; in the absence of an
efficient means to erase an arbitrary value from a priority queue, we might as well avoid its use altogether.

The standard containers typically support iterators. It is somewhat unusual for std: :priority_gueue to omit them
(See [82]). One might ask why do priority queues need to support iterators, since they are self-organizing containers with
a different purpose than abstracting sequences. There are several reasons:

(a) Iterators (even in self-organizing containers) are useful for many purposes: cross-referencing containers, serialization,
and debugging code that uses these containers.

(b) The standard library’s hash-based containers support iterators, even though they too are self-organizing containers
with a different purpose than abstracting sequences.

(c) In standard-library-like containers, it is natural to specify the interface of operations for modifying a value or erasing
a value (discussed previously) in terms of a iterators. It should be noted that the standard containers also use iterators
for accessing and manipulating a specific value. In hash-based containers, one checks the existence of a key by
comparing the iterator returned by £ind to the iterator returned by end, and not by comparing a pointer returned by
findto NULL.

21.1.2.2.2 Underlying Data Structures

There are three main implementations of priority queues: the first employs a binary heap, typically one which uses a sequence;
the second uses a tree (or forest of trees), which is typically less structured than an associative container’s tree; the third simply
uses an associative container. These are shown in the figure below with labels A1l and A2, B, and C.

The GNU C++ Library Manual 157 /385

A1 A2

Figure 21.6: Underlying Priority Queue Data Structures

No single implementation can completely replace any of the others. Some have better push and pop amortized performance,
some have better bounded (worst case) response time than others, some optimize a single method at the expense of others, etc.
In general the "best" implementation is dictated by the specific problem.

As with associative containers, the more implementations co-exist, the more necessary a traits mechanism is for handling generic
containers safely and efficiently. This is especially important for priority queues, since the invalidation guarantees of one of the
most useful data structures - binary heaps - is markedly different than those of most of the others.

21.1.2.2.3 Binary Heaps

Binary heaps are one of the most useful underlying data structures for priority queues. They are very efficient in terms of memory
(since they don’t require per-value structure metadata), and have the best amortized push and pop performance for primitive
types like int.

The standard library’s priority_queue implements this data structure as an adapter over a sequence, typically std: : vector
or std: :deque, which correspond to labels Al and A2 respectively in the graphic above.

This is indeed an elegant example of the adapter concept and the algorithm/container/iterator decomposition. (See [88]). There
are several reasons why a binary-heap priority queue may be better implemented as a container instead of a sequence adapter:

1. std::priority_qgueue cannot erase values from its adapted sequence (irrespective of the sequence type). This means
that the memory use of an std: :priority_queue object is always proportional to the maximal number of values it
ever contained, and not to the number of values that it currently contains. (See performance/priority_queue_
text_pop_mem_usage.cc.) This implementation of binary heaps acts very differently than other underlying data
structures (See also pairing heaps).

The GNU C++ Library Manual 158 /385

2. Some combinations of adapted sequences and value types are very inefficient or just don’t make sense. If one uses
std::priority_queue<std::vector<std::string> > >, for example, then not only will each operation
perform a logarithmic number of std: : st ring assignments, but, furthermore, any operation (including pop) can render
the container useless due to exceptions. Conversely, if one uses std: :priority_queue<std: :deque<int> > >,
then each operation uses incurs a logarithmic number of indirect accesses (through pointers) unnecessarily. It might be
better to let the container make a conservative deduction whether to use the structure in the graphic above, labels Al or
A2.

3. There does not seem to be a systematic way to determine what exactly can be done with the priority queue.

(a) If p is a priority queue adapting an std: : vector, then it is possible to iterate over all values by using &p . top ()
and &p.top () + p.size (), but this will not work if p is adapting an std: : deque; in any case, one cannot
use p.begin () and p.end (). If a different sequence is adapted, it is even more difficult to determine what can
be done.

(b) If p is a priority queue adapting an std: : deque, then the reference return by

p.top ()

will remain valid until it is popped, but if p adapts an std: : vector, the next push will invalidate it. If a different
sequence is adapted, it is even more difficult to determine what can be done.

4. Sequence-based binary heaps can still implement linear-time erase and modify operations. This means that if one
needs to erase a small (say logarithmic) number of values, then one might still choose this underlying data structure. Using
std::priority_queue, however, this will generally change the order of growth of the entire sequence of operations.

21.2 Using

21.2.1 Prerequisites

The library contains only header files, and does not require any other libraries except the standard C++ library . All classes
are defined in namespace ___gnu_pbds. The library internally uses macros beginning with PB_DS, but #undefs anything it
#defines (except for header guards). Compiling the library in an environment where macros beginning in PB_DS are defined,
may yield unpredictable results in compilation, execution, or both.

Further dependencies are necessary to create the visual output for the performance tests. To create these graphs, an additional
package is needed: pychart.

21.2.2 Organization

The various data structures are organized as follows.

e Branch-Based

— basic_branch is an abstract base class for branched-based associative-containers
— tree is a concrete base class for tree-based associative-containers

— trie isa concrete base class trie-based associative-containers
e Hash-Based

— basic_hash_table is an abstract base class for hash-based associative-containers
— cc_hash_table is a concrete collision-chaining hash-based associative-containers

— gp_hash_table is a concrete (general) probing hash-based associative-containers

e List-Based

The GNU C++ Library Manual 159 /385

- list_update list-based update-policy associative container
* Heap-Based

— priority_queue A priority queue.
The hierarchy is composed naturally so that commonality is captured by base classes. Thus operator [] is defined at the base

of any hierarchy, since all derived containers support it. Conversely split is defined in basic_branch, since only tree-like
containers support it.

In addition, there are the following diagnostics classes, used to report errors specific to this library’s data structures.

std::exception

std::logic_error

|

| __gnu_pbds::container_error |

/ i \

__gnu_pbds::insert_error | | __gnu_pbds::join_error | | __gnu_pbds::resize_error

Figure 21.7: Exception Hierarchy

21.2.3 Tutorial
21.2.3.1 Basic Use

For the most part, the policy-based containers containers in namespace ___gnu_pbds have the same interface as the equivalent
containers in the standard C++ library, except for the names used for the container classes themselves. For example, this shows
basic operations on a collision-chaining hash-based container:

#include <ext/pb_ds/assoc_container.h>

int main ()

{

__gnu_pbds::cc_hash_table<int, char> c;
cl[2] = "b’;

assert (c.find(l) == c.end());

}i

The container is called ___gnu_pbds: :cc_hash_table instead of std: :unordered_map, since “unordered map” does
not necessarily mean a hash-based map as implied by the C++ library (C++11 or TR1). For example, list-based associative
containers, which are very useful for the construction of "multimaps," are also unordered.

This snippet shows a red-black tree based container:

#include <ext/pb_ds/assoc_container.h>

int main ()

{

__gnu_pbds: :tree<int, char> c;
cl[2] = "b’;

assert (c.find(2) != c.end());
}i

The GNU C++ Library Manual 160/ 385

The container is called t ree instead of map since the underlying data structures are being named with specificity.

The member function naming convention is to strive to be the same as the equivalent member functions in other C++ standard
library containers. The familiar methods are unchanged: begin, end, size, empty, and clear.

This isn’t to say that things are exactly as one would expect, given the container requirments and interfaces in the C++ standard.

The names of containers’ policies and policy accessors are different then the usual. For example, if hash_type is some type of
hash-based container, then

hash_type::hash_fn

gives the type of its hash functor, and if ob j is some hash-based container object, then

obj.get_hash_fn ()

will return a reference to its hash-functor object.
Similarly, if tree_type is some type of tree-based container, then

tree_type::cmp_fn

gives the type of its comparison functor, and if obj is some tree-based container object, then

obj.get_cmp_fn ()

will return a reference to its comparison-functor object.

It would be nice to give names consistent with those in the existing C++ standard (inclusive of TR1). Unfortunately, these
standard containers don’t consistently name types and methods. For example, std: :trl::unordered_map uses hasher
for the hash functor, but std: :map uses key_compare for the comparison functor. Also, we could not find an accessor for
std::trl::unordered_map’s hash functor, but std: : map uses compare for accessing the comparison functor.

Instead, ___gnu_pbds attempts to be internally consistent, and uses standard-derived terminology if possible.

Another source of difference is in scope: ___gnu_pbds contains more types of associative containers than the standard C++
library, and more opportunities to configure these new containers, since different types of associative containers are useful in
different settings.

Namespace ___gnu_pbds contains different classes for hash-based containers, tree-based containers, trie-based containers, and
list-based containers.

Since associative containers share parts of their interface, they are organized as a class hierarchy.

Each type or method is defined in the most-common ancestor in which it makes sense.

For example, all associative containers support iteration expressed in the following form:
const_iterator

begin () const;

iterator
begin () ;

const_iterator
end () const;

iterator
end () ;

But not all containers contain or use hash functors. Yet, both collision-chaining and (general) probing hash-based associative
containers have a hash functor, so basic_hash_table contains the interface:

const hash_fné&
get_hash_fn () const;

hash_fn&
get_hash_fn () ;

so all hash-based associative containers inherit the same hash-functor accessor methods.

The GNU C++ Library Manual 161/385

21.2.3.2 Configuring via Template Parameters

In general, each of this library’s containers is parametrized by more policies than those of the standard library. For example, the
standard hash-based container is parametrized as follows:

template<typename Key, typename Mapped, typename Hash,
typename Pred, typename Allocator, bool Cache_Hashe_Code>
class unordered_map;

and so can be configured by key type, mapped type, a functor that translates keys to unsigned integral types, an equivalence
predicate, an allocator, and an indicator whether to store hash values with each entry. this library’s collision-chaining hash-based
container is parametrized as

template<typename Key, typename Mapped, typename Hash_Fn,
typename Eg _Fn, typename Comb_Hash_Fn,

typename Resize_Policy, bool Store_Hash

typename Allocator>

class cc_hash_table;

and so can be configured by the first four types of std: :trl::unordered_map, then a policy for translating the key-hash
result into a position within the table, then a policy by which the table resizes, an indicator whether to store hash values with
each entry, and an allocator (which is typically the last template parameter in standard containers).

Nearly all policy parameters have default values, so this need not be considered for casual use. It is important to note, however,
that hash-based containers’ policies can dramatically alter their performance in different settings, and that tree-based containers’
policies can make them useful for other purposes than just look-up.

As opposed to associative containers, priority queues have relatively few configuration options. The priority queue is parametrized
as follows:

template<typename Value_Type, typename Cmp_Fn, typename Tag,
typename Allocator>
class priority_qgueue;

The Value_Type, Cmp_Fn, and A11locator parameters are the container’s value type, comparison-functor type, and alloca-
tor type, respectively; these are very similar to the standard’s priority queue. The Tag parameter is different: there are a number
of pre-defined tag types corresponding to binary heaps, binomial heaps, etc., and Tag should be instantiated by one of them.

Note that as opposed to the std: :priority_queue, ___gnu_pbds: :priority_qgueue is not a sequence-adapter; it is

a regular container.

21.2.3.3 Querying Container Attributes

A containers underlying data structure affect their performance; Unfortunately, they can also affect their interface. When manip-
ulating generically associative containers, it is often useful to be able to statically determine what they can support and what the
cannot.

Happily, the standard provides a good solution to a similar problem - that of the different behavior of iterators. If It is an iterator,
then

typename std::iterator_traits<It>::iterator_category

is one of a small number of pre-defined tag classes, and

typename std::iterator_traits<It>::value_type

is the value type to which the iterator "points".

Similarly, in this library, if C is a container, then container_traits is a trait class that stores information about the kind of
container that is implemented.

typename container_traits<C>::container_category

The GNU C++ Library Manual 162 /385

is one of a small number of predefined tag structures that uniquely identifies the type of underlying data structure.

In most cases, however, the exact underlying data structure is not really important, but what is important is one of its other
attributes: whether it guarantees storing elements by key order, for example. For this one can use

typename container_traits<C>::order_preserving

Also,

typename container_traits<C>::invalidation_guarantee

is the container’s invalidation guarantee. Invalidation guarantees are especially important regarding priority queues, since in this
library’s design, iterators are practically the only way to manipulate them.

21.2.3.4 Point and Range Iteration

This library differentiates between two types of methods and iterators: point-type, and range-type. For example, find and
insert are point-type methods, since they each deal with a specific element; their returned iterators are point-type iterators.
begin and end are range-type methods, since they are not used to find a specific element, but rather to go over all elements in
a container object; their returned iterators are range-type iterators.

Most containers store elements in an order that is determined by their interface. Correspondingly, it is fine that their point-type
iterators are synonymous with their range-type iterators. For example, in the following snippet

std::for_each(c.find(l), c.find(5), foo);

two point-type iterators (returned by £ind) are used for a range-type purpose - going over all elements whose key is between 1
and 5.

Conversely, the above snippet makes no sense for self-organizing containers - ones that order (and reorder) their elements by
implementation. It would be nice to have a uniform iterator system that would allow the above snippet to compile only if it made
sense.

This could trivially be done by specializing std: : for_each for the case of iterators returned by std: : trl: :unordered_map,
but this would only solve the problem for one algorithm and one container. Fundamentally, the problem is that one can loop using
a self-organizing container’s point-type iterators.

This library’s containers define two families of iterators: point_const_iterator and point_iterator are the iterator types returned by
point-type methods; const_iterator and iterator are the iterator types returned by range-type methods.

class <- some container ->

{

public:

typedef <- something -> const_iterator;
typedef <- something —-> iterator;

typedef <- something -> point_const_iterator;

typedef <- something -> point_iterator;

public:

const_iterator begin () const;

iterator begin();

The GNU C++ Library Manual 163 /385

point_const_iterator find(...) const;

point_iterator find(...);
bi

For containers whose interface defines sequence order , it is very simple: point-type and range-type iterators are exactly the same,
which means that the above snippet will compile if it is used for an order-preserving associative container.

For self-organizing containers, however, (hash-based containers as a special example), the preceding snippet will not compile,
because their point-type iterators do not support operator++.

In any case, both for order-preserving and self-organizing containers, the following snippet will compile:

typename Cntnr::point_iterator it = c.find(2);

because a range-type iterator can always be converted to a point-type iterator.

Distingushing between iterator types also raises the point that a container’s iterators might have different invalidation rules
concerning their de-referencing abilities and movement abilities. This now corresponds exactly to the question of whether point-
type and range-type iterators are valid. As explained above, container_traits allows querying a container for its data
structure attributes. The iterator-invalidation guarantees are certainly a property of the underlying data structure, and so

container_traits<C>::invalidation_guarantee

gives one of three pre-determined types that answer this query.

21.2.4 Examples

Additional code examples are provided in the source distribution, as part of the regression and performance testsuite.

21.2.4.1 Intermediate Use

* Basic use of maps: basic_map.cc

* Basic use of sets: basic_set.cc

* Conditionally erasing values from an associative container object: erase_if.cc
* Basic use of multimaps: basic_multimap.cc

* Basic use of multisets: basic_multiset.cc

* Basic use of priority queues: basic_priority_queue.cc

 Splitting and joining priority queues: priority_queue_split_join.cc

* Conditionally erasing values from a priority queue: priority_queue_erase_1if.cc

21.2.4.2 Querying with container_traits

e Using container_traits to query about underlying data structure behavior: assoc_container_traits.cc
* A non-compiling example showing wrong use of finding keys in hash-based containers: hash_find_neg.cc

e Using container_traits toquery about underlying data structure behavior: priority_queue_container_traits.
cc

The GNU C++ Library Manual 164 /385

21.2.4.3 By Container Method

21.2.4.3.1 Hash-Based
21.2.4.3.1.1 size Related

* Setting the initial size of a hash-based container object: hash_initial_size.cc

* A non-compiling example showing how not to resize a hash-based container object: hash_resize_neg.cc
* Resizing the size of a hash-based container object: hash_resize.cc

* Showing an illegal resize of a hash-based container object: hash_illegal_resize.cc

» Changing the load factors of a hash-based container object: hash_load_set_change.cc

21.2.4.3.1.2 Hashing Function Related

* Using a modulo range-hashing function for the case of an unknown skewed key distribution: hash_mod. cc
» Writing a range-hashing functor for the case of a known skewed key distribution: shift_mask.cc
* Storing the hash value along with each key: store_hash.cc

» Writing a ranged-hash functor: ranged_hash.cc

21.2.4.3.2 Branch-Based
21.2.4.3.2.1 split or join Related

* Joining two tree-based container objects: tree_join.cc
* Splitting a PATRICIA trie container object: trie_split.cc

* Order statistics while joining two tree-based container objects: tree_order_statistics_join.cc

21.2.4.3.2.2 Node Invariants

» Using trees for order statistics: tree_order_statistics.cc

* Augmenting trees to support operations on line intervals: tree_intervals.cc

21.2.4.3.2.3 trie

* Using a PATRICIA trie for DNA strings: trie_dna.cc

» Using a PATRICIA trie for finding all entries whose key matches a given prefix: trie_prefix search.cc

21.2.4.3.3 Priority Queues

* Cross referencing an associative container and a priority queue: priority_queue_xref.cc

* Cross referencing a vector and a priority queue using a very simple version of Dijkstra’s shortest path algorithm: priority_
queue_dijkstra.cc

The GNU C++ Library Manual 165/385

21.3 Design

21.3.1 Concepts

21.3.1.1 Null Policy Classes

Associative containers are typically parametrized by various policies. For example, a hash-based associative container is parametrized
by a hash-functor, transforming each key into an non-negative numerical type. Each such value is then further mapped into a
position within the table. The mapping of a key into a position within the table is therefore a two-step process.

In some cases, instantiations are redundant. For example, when the keys are integers, it is possible to use a redundant hash policy,
which transforms each key into its value.

In some other cases, these policies are irrelevant. For example, a hash-based associative container might transform keys into
positions within a table by a different method than the two-step method described above. In such a case, the hash functor is
simply irrelevant.

When a policy is either redundant or irrelevant, it can be replaced by null_type.

For example, a set is an associative container with one of its template parameters (the one for the mapped type) replaced with
null_type. Other places simplifications are made possible with this technique include node updates in tree and trie data
structures, and hash and probe functions for hash data structures.

21.3.1.2 Map and Set Semantics

21.3.1.2.1 Distinguishing Between Maps and Sets

Anyone familiar with the standard knows that there are four kinds of associative containers: maps, sets, multimaps, and multisets.
The map datatype associates each key to some data.

Sets are associative containers that simply store keys - they do not map them to anything. In the standard, each map class has a
corresponding set class. E.g., std: :map<int, char> mapseach int to a char, but std: :set<int, char> simply
stores ints. In this library, however, there are no distinct classes for maps and sets. Instead, an associative container’s Mapped
template parameter is a policy: if it is instantiated by null_type, thenitis a "set"; otherwise, it is a "map". E.g.,

cc_hash_table<int, char>

is a "map" mapping each int value to a char, but

cc_hash_table<int, null_type>

is a type that uniquely stores int values.

Once the Mapped template parameter is instantiated by null_type, then the "set" acts very similarly to the standard’s sets -
it does not map each key to a distinct null_type object. Also, , the container’s value_type is essentially its key_type - just as
with the standard’s sets .

The standard’s multimaps and multisets allow, respectively, non-uniquely mapping keys and non-uniquely storing keys. As
discussed, the reasons why this might be necessary are 1) that a key might be decomposed into a primary key and a secondary
key, 2) that a key might appear more than once, or 3) any arbitrary combination of 1)s and 2)s. Correspondingly, one should use
1) "maps" mapping primary keys to secondary keys, 2) "maps" mapping keys to size types, or 3) any arbitrary combination of
1)s and 2)s. Thus, for example, an std: :multiset<int> might be used to store multiple instances of integers, but using
this library’s containers, one might use

tree<int, size_t>

i.e., a map of ints to size_ts.

These "multimaps" and "multisets" might be confusing to anyone familiar with the standard’s std: :multimapand std: :multiset
because there is no clear correspondence between the two. For example, in some cases where one uses std: :multiset inthe
standard, one might use in this library a "multimap" of "multisets" - i.e., a container that maps primary keys each to an associative
container that maps each secondary key to the number of times it occurs.

When one uses a "multimap," one should choose with care the type of container used for secondary keys.

The GNU C++ Library Manual 166 / 385

21.3.1.2.2 Alternatives to std: :multiset and std: :multimap

Brace onself: this library does not contain containers like std: :multimap or std: :multiset. Instead, these data struc-
tures can be synthesized via manipulation of the Mapped template parameter.

One maps the unique part of a key - the primary key, into an associative-container of the (originally) non-unique parts of the key -
the secondary key. A primary associative-container is an associative container of primary keys; a secondary associative-container
is an associative container of secondary keys.

Stepping back a bit, and starting in from the beginning.

Maps (or sets) allow mapping (or storing) unique-key values. The standard library also supplies associative containers which map
(or store) multiple values with equivalent keys: std: :multimap, std: :multiset,std::trl::unordered_multimap,
and unordered_multiset. We first discuss how these might be used, then why we think it is best to avoid them.

Suppose one builds a simple bank-account application that records for each client (identified by an std: : st ring) and account-
id (marked by an unsigned long) - the balance in the account (described by a float). Suppose further that ordering this information
is not useful, so a hash-based container is preferable to a tree based container. Then one can use

std::trl::unordered_map<std::pair<std::string, unsigned long>, float, ...>

which hashes every combination of client and account-id. This might work well, except for the fact that it is now impossible to
efficiently list all of the accounts of a specific client (this would practically require iterating over all entries). Instead, one can use

std::trl::unordered_multimap<std::pair<std::string, unsigned long>, float, ...>

which hashes every client, and decides equivalence based on client only. This will ensure that all accounts belonging to a specific
user are stored consecutively.

Also, suppose one wants an integers’ priority queue (a container that supports push, pop, and t op operations, the last of which
returns the largest int) that also supports operations such as £ind and lower_bound. A reasonable solution is to build an
adapter over std: :set<int>. In this adapter, push will just call the tree-based associative container’s insert method;
pop will call its end method, and use it to return the preceding element (which must be the largest). Then this might work well,
except that the container object cannot hold multiple instances of the same integer (push (4), will be a no-op if 4 is already in
the container object). If multiple keys are necessary, then one might build the adapter over an std: :multiset<int>.

The standard library’s non-unique-mapping containers are useful when (1) a key can be decomposed in to a primary key and a
secondary key, (2) a key is needed multiple times, or (3) any combination of (1) and (2).

The graphic below shows how the standard library’s container design works internally; in this figure nodes shaded equally
represent equivalent-key values. Equivalent keys are stored consecutively using the properties of the underlying data structure:
binary search trees (label A) store equivalent-key values consecutively (in the sense of an in-order walk) naturally; collision-
chaining hash tables (label B) store equivalent-key values in the same bucket, the bucket can be arranged so that equivalent-key
values are consecutive.

The GNU C++ Library Manual 167 /385

Figure 21.8: Non-unique Mapping Standard Containers

Put differently, the standards’ non-unique mapping associative-containers are associative containers that map primary keys to
linked lists that are embedded into the container. The graphic below shows again the two containers from the first graphic above,
this time with the embedded linked lists of the grayed nodes marked explicitly.

Figure 21.9: Effect of embedded lists in std: :multimap

These embedded linked lists have several disadvantages.

The GNU C++ Library Manual 168 /385

1. The underlying data structure embeds the linked lists according to its own consideration, which means that the search path
for a value might include several different equivalent-key values. For example, the search path for the the black node in
either of the first graphic, labels A or B, includes more than a single gray node.

2. The links of the linked lists are the underlying data structures’ nodes, which typically are quite structured. In the case of
tree-based containers (the grapic above, label B), each "link" is actually a node with three pointers (one to a parent and two
to children), and a relatively-complicated iteration algorithm. The linked lists, therefore, can take up quite a lot of memory,
and iterating over all values equal to a given key (through the return value of the standard library’s equal_range) can
be expensive.

3. The primary key is stored multiply; this uses more memory.

4. Finally, the interface of this design excludes several useful underlying data structures. Of all the unordered self-organizing
data structures, practically only collision-chaining hash tables can (efficiently) guarantee that equivalent-key values are
stored consecutively.

The above reasons hold even when the ratio of secondary keys to primary keys (or average number of identical keys) is small,
but when it is large, there are more severe problems:

1. The underlying data structures order the links inside each embedded linked-lists according to their internal considerations,
which effectively means that each of the links is unordered. Irrespective of the underlying data structure, searching for a
specific value can degrade to linear complexity.

2. Similarly to the above point, it is impossible to apply to the secondary keys considerations that apply to primary keys. For
example, it is not possible to maintain secondary keys by sorted order.

3. While the interface "understands" that all equivalent-key values constitute a distinct list (through equal_range), the
underlying data structure typically does not. This means that operations such as erasing from a tree-based container all
values whose keys are equivalent to a a given key can be super-linear in the size of the tree; this is also true also for several
other operations that target a specific list.

In this library, all associative containers map (or store) unique-key values. One can (1) map primary keys to secondary associative-
containers (containers of secondary keys) or non-associative containers (2) map identical keys to a size-type representing the
number of times they occur, or (3) any combination of (1) and (2). Instead of allowing multiple equivalent-key values, this
library supplies associative containers based on underlying data structures that are suitable as secondary associative-containers.

In the figure below, labels A and B show the equivalent underlying data structures in this library, as mapped to the first graphic
above. Labels A and B, respectively. Each shaded box represents some size-type or secondary associative-container.

Figure 21.10: Non-unique Mapping Containers

The GNU C++ Library Manual 169 /385

In the first example above, then, one would use an associative container mapping each user to an associative container which
maps each application id to a start time (see example/basic_multimap.cc); in the second example, one would use an
associative container mapping each int to some size-type indicating the number of times it logically occurs (see example/
basic_multiset.cc.

See the discussion in list-based container types for containers especially suited as secondary associative-containers.

21.3.1.3 lterator Semantics

21.3.1.3.1 Point and Range Iterators

Iterator concepts are bifurcated in this design, and are comprised of point-type and range-type iteration.
A point-type iterator is an iterator that refers to a specific element as returned through an associative-container’s find method.
A range-type iterator is an iterator that is used to go over a sequence of elements, as returned by a container’s £ ind method.

A point-type method is a method that returns a point-type iterator; a range-type method is a method that returns a range-type
iterator.

For most containers, these types are synonymous; for self-organizing containers, such as hash-based containers or priority queues,
these are inherently different (in any implementation, including that of C++ standard library components), but in this design, it
is made explicit. They are distinct types.

21.3.1.3.2 Distinguishing Point and Range Iterators

When using this library, is necessary to differentiate between two types of methods and iterators: point-type methods and iterators,
and range-type methods and iterators. Each associative container’s interface includes the methods:

point_const_iterator
find(const_key_reference r_key) const;

point_iterator
find (const_key_reference r_key);

std::pair<point_iterator,bool>
insert (const_reference r_val);

The relationship between these iterator types varies between container types. The figure below shows the most general invariant
between point-type and range-type iterators: In A iterator, can always be converted to point_iterator. In B shows
invariants for order-preserving containers: point-type iterators are synonymous with range-type iterators. Orthogonally, Cshows
invariants for "set" containers: iterators are synonymous with const iterators.

The GNU C++ Library Manual 170/385

A

const point_iterator - comnvertible to - - const terato
A A
conmvertible to convertible tc
point_iterator k- convertible fo - iterator

B C

consl_point_iterator g - 2ynomymous - - 2 const_iterator const point_iter.
) 2 N |
convertible to convertible to SYNONYMous

: i
point_iterator - - SYNOMYMOLUS - - 2 iterator point_iterator

Figure 21.11: Point Iterator Hierarchy

Note that point-type iterators in self-organizing containers (hash-based associative containers) lack movement operators, such as
operator++ - in fact, this is the reason why this library differentiates from the standard C++ librarys design on this point.

Typically, one can determine an iterator’s movement capabilities using std: : iterator_traits<It>iterator_category,
which is a st ruct indicating the iterator’s movement capabilities. Unfortunately, none of the standard predefined categories re-
flect a pointer’s not having any movement capabilities whatsoever. Consequently, pb_ds addsatypetrivial_iterator_tag
(whose name is taken from a concept in C++ standardese, which is the category of iterators with no movement capabilities.) All
other standard C++ library tags, such as forward_iterator_tag retain their common use.

21.3.1.3.3 Invalidation Guarantees

If one manipulates a container object, then iterators previously obtained from it can be invalidated. In some cases a previously-
obtained iterator cannot be de-referenced; in other cases, the iterator’s next or previous element might have changed unpre-
dictably. This corresponds exactly to the question whether a point-type or range-type iterator (see previous concept) is valid or
not. In this design, one can query a container (in compile time) about its invalidation guarantees.

The GNU C++ Library Manual 171/385

Given three different types of associative containers, a modifying operation (in that example, erase) invalidated iterators in
three different ways: the iterator of one container remained completely valid - it could be de-referenced and incremented; the
iterator of a different container could not even be de-referenced; the iterator of the third container could be de-referenced, but its
"next" iterator changed unpredictably.

Distinguishing between find and range types allows fine-grained invalidation guarantees, because these questions correspond
exactly to the question of whether point-type iterators and range-type iterators are valid. The graphic below shows tags corre-
sponding to different types of invalidation guarantees.

| __gnu_pbds::basic_invalidation_guarantee

A

| __gnu_pbds::point_invalidation_guarantee

A

| __gnu_pbds::range_invalidation_guarantee

Figure 21.12: Invalidation Guarantee Tags Hierarchy

* basic_invalidation_guarantee corresponds to a basic guarantee that a point-type iterator, a found pointer, or a
found reference, remains valid as long as the container object is not modified.

e point_invalidation_guarantee corresponds to a guarantee that a point-type iterator, a found pointer, or a found
reference, remains valid even if the container object is modified.

* range_invalidation_guarantee corresponds to a guarantee that a range-type iterator remains valid even if the con-
tainer object is modified.

To find the invalidation guarantee of a container, one can use

typename container_traits<Cntnr>::invalidation_guarantee

Note that this hierarchy corresponds to the logic it represents: if a container has range-invalidation guarantees, then it must also
have find invalidation guarantees; correspondingly, its invalidation guarantee (in this case range_invalidation_guarantee)
can be cast to its base class (in this case point_invalidation_guarantee). This means that this this hierarchy can be
used easily using standard metaprogramming techniques, by specializing on the type of invalidation_guarantee.

These types of problems were addressed, in a more general setting, in [80] - Item 2. In our opinion, an invalidation-guarantee
hierarchy would solve these problems in all container types - not just associative containers.

21.3.1.4 Genericity

The design attempts to address the following problem of data-structure genericity. When writing a function manipulating a
generic container object, what is the behavior of the object? Suppose one writes

template<typename Cntnr>
void
some_op_sequence (Cntnr &r_container)

{

then one needs to address the following questions in the body of some_op_sequence:

The GNU C++ Library Manual 172 /385

* Which types and methods does Cntnr support? Containers based on hash tables can be queries for the hash-functor type and
object; this is meaningless for tree-based containers. Containers based on trees can be split, joined, or can erase iterators and
return the following iterator; this cannot be done by hash-based containers.

* What are the exception and invalidation guarantees of Cntnr? A container based on a probing hash-table invalidates all
iterators when it is modified; this is not the case for containers based on node-based trees. Containers based on a node-based
tree can be split or joined without exceptions; this is not the case for containers based on vector-based trees.

* How does the container maintain its elements? Tree-based and Trie-based containers store elements by key order; others,
typically, do not. A container based on a splay trees or lists with update policies "cache" "frequently accessed" elements;
containers based on most other underlying data structures do not.

* How does one query a container about characteristics and capabilities? What is the relationship between two different data

structures, if anything?

The remainder of this section explains these issues in detail.

21.3.1.41 Tag

Tags are very useful for manipulating generic types. For example, if It is an iterator class, then typename It::iterator_categc
ortypename std::iterator_traits<It>::iterator_category willyielditscategory, and typename std::iter:
will yield its value type.

This library contains a container tag hierarchy corresponding to the diagram below.

>
| __gnu_pbds::tree_tag

| __gnu_pbds::basic_branch_tag |<—| __gnu_pbds::trie_tag

_gnu_pbds::basic_hash_ta‘ganu_pbds::cc_hash_te

__gnu_pbds::list_update_tag | | __gnu_pbds::gp_hash_t:

__gnu_pbds::associative_tag

il

| __gnu_pbds::binary_heap_tag |

__gnu_pbds::binomial_heap_tag |

__gnu_pbds::container_tag |<—| __gnu_pbds::priority_queue_tag __gnu_pbds::pairing_heap_tag |
\ vNupbds::rcbnomaheap'tag |
__gnu_pbds::sequence_tag | __gnu_pbds::thin_heap_tag |

| __gnu_pbds::string_tag |

Figure 21.13: Container Tag Hierarchy

Given any container Cntnr, the tag of the underlying data structure can be found via t ypename Cntnr::container_category.

The GNU C++ Library Manual 173 /385

21.3.1.4.2 Traits

Additionally, a traits mechanism can be used to query a container type for its attributes. Given any container Cntnr, then
<Cntnr> is a traits class identifying the properties of the container.

To find if a container can throw when a key is erased (which is true for vector-based trees, for example), one can use

container_traits<Cntnr>::erase_can_throw

Some of the definitions in container_traits are dependent on other definitions. If container_traits<Cntnr>::order_p
is true (which is the case for containers based on trees and tries), then the container can be split or joined; in this case,
container_traits<Cntnr>::split_join_can_throw indicates whether splits or joins can throw exceptions (which

is true for vector-based trees); otherwise container_traits<Cntnr>::split_join_can_throw will yield a compi-

lation error. (This is somewhat similar to a compile-time version of the COM model).

21.3.2 By Container
21.3.2.1 hash

21.3.2.1.1 Interface

The collision-chaining hash-based container has the following declaration.

template<

typename Key,

typename Mapped,

typename Hash_Fn = std::hash<Key>,

typename Eq_Fn = std::equal_to<Key>,

typename Comb_Hash_Fn = direct_mask_range_hashing<>
typename Resize_Policy = default explained below.
bool Store_Hash = false,

typename Allocator = std::allocator<char> >

class cc_hash_table;

The parameters have the following meaning:

1. Key is the key type.

2. Mapped is the mapped-policy.

3. Hash_Fn is a key hashing functor.

4. Eg_Fnis a key equivalence functor.

5. Comb_Hash_Fn is a range-hashing_functor; it describes how to translate hash values into positions within the table.
Resize_Policy describes how a container object should change its internal size.

Store_Hash indicates whether the hash value should be stored with each entry.

® =2

Allocator is an allocator type.

The probing hash-based container has the following declaration.

template<

typename Key,

typename Mapped,

typename Hash_Fn = std::hash<Key>,

typename Eq_Fn = std::equal_to<Key>,

typename Comb_Probe_Fn = direct_mask_range_hashing<>
typename Probe_Fn = default explained below.

The GNU C++ Library Manual 174 /385

typename Resize_Policy = default explained below.
bool Store_Hash = false,
typename Allocator = std::allocator<char> >

class gp_hash_table;
The parameters are identical to those of the collision-chaining container, except for the following.

1. Comb_Probe_Fn describes how to transform a probe sequence into a sequence of positions within the table.

2. Probe_Fn describes a probe sequence policy.

Some of the default template values depend on the values of other parameters, and are explained below.

21.3.2.1.2 Details
21.3.2.1.2.1 Hash Policies
21.3.2.1.2.2 General

Following is an explanation of some functions which hashing involves. The graphic below illustrates the discussion.

The GNU C++ Library Manual 175/385

hash
function
i

ranged hash
function

range hashing
function

Figure 21.14: Hash functions, ranged-hash functions, and range-hashing functions

Let U be a domain (e.g., the integers, or the strings of 3 characters). A hash-table algorithm needs to map elements of U
"uniformly" into the range [0,..., m - 1] (where m is a non-negative integral value, and is, in general, time varying). lLe., the
algorithm needs a ranged-hash function

f:UxZ,—>7Z,

such that for any uin U,

0<f(uum)<m-1

and which has "good uniformity" properties (say [76].) One common solution is to use the composition of the hash function
h:U—>7Z,,

which maps elements of U into the non-negative integrals, and

The GNU C++ Library Manual 176 /385

g2y XLy =7y,

which maps a non-negative hash value, and a non-negative range upper-bound into a non-negative integral in the range between
0 (inclusive) and the range upper bound (exclusive), i.e., for any r in Z,

0<glrrm)<m-1

The resulting ranged-hash function, is
f(u, m) = g(h(u), m)

EQUATION 21.1: Ranged Hash Function

From the above, it is obvious that given g and h, f can always be composed (however the converse is not true). The standard’s
hash-based containers allow specifying a hash function, and use a hard-wired range-hashing function; the ranged-hash function
is implicitly composed.

The above describes the case where a key is to be mapped into a single position within a hash table, e.g., in a collision-chaining
table. In other cases, a key is to be mapped into a sequence of positions within a table, e.g., in a probing table. Similar terms
apply in this case: the table requires a ranged probe function, mapping a key into a sequence of positions withing the table.
This is typically achieved by composing a hash function mapping the key into a non-negative integral type, a probe function
transforming the hash value into a sequence of hash values, and a range-hashing function transforming the sequence of hash
values into a sequence of positions.

21.3.2.1.2.3 Range Hashing

Some common choices for range-hashing functions are the division, multiplication, and middle-square methods ([76]), defined
as

g(r, m) =r mod m

EQUATION 21.2: Range-Hashing, Division Method

g(,m)=[u/v(armodv) |
and
gr,m)=[uwv (r’modv)]

respectively, for some positive integrals u and v (typically powers of 2), and some a. Each of these range-hashing functions works
best for some different setting.

The division method (see above) is a very common choice. However, even this single method can be implemented in two very
different ways. It is possible to implement using the low level % (modulo) operation (for any m), or the low level & (bit-mask)
operation (for the case where m is a power of 2), i.e.,

g(r,m) =1 % m

EQUATION 21.3: Division via Prime Modulo

and
gr,m)=r&m- 1, (withm= 2K for some k)

EQUATION 21.4: Division via Bit Mask

respectively.

The % (modulo) implementation has the advantage that for m a prime far from a power of 2, g(r, m) is affected by all the bits of
r (minimizing the chance of collision). It has the disadvantage of using the costly modulo operation. This method is hard-wired
into SGI’s implementation .

The & (bit-mask) implementation has the advantage of relying on the fast bit-wise and operation. It has the disadvantage that for
g(r, m) is affected only by the low order bits of r. This method is hard-wired into Dinkumware’s implementation.

The GNU C++ Library Manual 177 /385

21.3.2.1.2.4 Ranged Hash

In cases it is beneficial to allow the client to directly specify a ranged-hash hash function. It is true, that the writer of the ranged-
hash function cannot rely on the values of m having specific numerical properties suitable for hashing (in the sense used in [76]),
since the values of m are determined by a resize policy with possibly orthogonal considerations.

There are two cases where a ranged-hash function can be superior. The firs is when using perfect hashing: the second is when
the values of m can be used to estimate the "general" number of distinct values required. This is described in the following.

Let
S=[50,.., St-1]

be a string of t characters, each of which is from domain S. Consider the following ranged-hash function:

fi(s,m)=Y ;o' !s;a modm

EQUATION 21.5: A Standard String Hash Function

where a is some non-negative integral value. This is the standard string-hashing function used in SGI’s implementation (with a =
5). Its advantage is that it takes into account all of the characters of the string.

Now assume that s is the string representation of a of a long DNA sequence (and so S = {"A’, °’C’, °G’, "T’}). In this case,
scanning the entire string might be prohibitively expensive. A possible alternative might be to use only the first k characters of
the string, where

ISK >m,

i.e., using the hash function

f2(s,m)=Y i—o* ! s; al mod m

EQUATION 21.6: Only k String DNA Hash

requiring scanning over only
k =logs(m)
characters.

Other more elaborate hash-functions might scan k characters starting at a random position (determined at each resize), or scanning
k random positions (determined at each resize), i.e., using

f35,m)=Y ;=00 +*-1 g al mod m,

or

f4(s,m) =Y ;=X ! s a% mod m,

respectively, for ry,..., rx.; each in the (inclusive) range [0,...,t-1].

It should be noted that the above functions cannot be decomposed as per a ranged hash composed of hash and range hashing.

21.3.2.1.2.5 Implementation

This sub-subsection describes the implementation of the above in this library. It first explains range-hashing functions in collision-
chaining tables, then ranged-hash functions in collision-chaining tables, then probing-based tables, and finally lists the relevant
classes in this library.

The GNU C++ Library Manual

178 /385

21.3.2.1.2.6 Range-Hashing and Ranged-Hashes in Collision-Chaining Tables

cc_hash_table is parametrized by Hash_Fn and Comb_Hash_Fn, a hash functor and a combining hash functor, respec-

tively.

In general, Comb_Hash_Fn is considered a range-hashing functor. cc_hash_table synthesizes a ranged-hash function
from Hash_Fn and Comb_Hash_Fn. The figure below shows an insert sequence diagram for this case. The user inserts
an element (point A), the container transforms the key into a non-negative integral using the hash functor (points B and C), and
transforms the result into a position using the combining functor (points D and E).

Container

find(... r_key)

Container::Hash_Fn

operator()(r_key))

h: size_type

C -

operator(jih, m)

Container::Comb_H

g : size_bype

Figure 21.15: Insert hash sequence diagram

If cc_hash_table’s hash-functor, Hash_Fn is instantiated by null_type, then Comb_Hash_Fn is taken to be a ranged-
hash function. The graphic below shows an insert sequence diagram. The user inserts an element (point A), the container
transforms the key into a position using the combining functor (points B and C).

The GNU C++ Library Manual 179/385

Container Container::Comb_H

find(... r_key)

—
-

operator()(r_key, m)

f: size_type

Figure 21.16: Insert hash sequence diagram with a null policy

21.3.2.1.2.7 Probing tables

gp_hash_table is parametrized by Hash_Fn, Probe_Fn, and Comb_Probe_Fn. As before, if Hash_Fn and Probe_Fn
are both null_type, then Comb_Probe_Fn is a ranged-probe functor. Otherwise, Hash_Fn is a hash functor, Probe_Fn
is a functor for offsets from a hash value, and Comb_Probe_Fn transforms a probe sequence into a sequence of positions within
the table.

21.3.2.1.2.8 Pre-Defined Policies

This library contains some pre-defined classes implementing range-hashing and probing functions:

l. direct_mask_range_hashingand direct_mod_range_hashing are range-hashing functions based on a bit-
mask and a modulo operation, respectively.

2. linear_probe_fn, and quadratic_probe_fn are a linear probe and a quadratic probe function, respectively.

The graphic below shows the relationships.

The GNU C++ Library Manual

180 /385

Joomb Hash Fn, ...

cC hash_assoc contnr

- ., Pra

Comb P

gp_haszh _assoc cntnr

Comb Hash _Fn

instariﬁatas

|

basic _hash_assoc ontnr

..Hash_Fn, ..

Hash_Fn
in staritiatas Probe Fn Comb Pro
: * —
std:-tr1:hash :
null_hash_ fn instantiates
direct mask range hashing f---ocooooiaand linear probe fn

direct mod range hashing

guadratic_probe f

Figure 21.17: Hash policy class diagram

The GNU C++ Library Manual 181/385

21.3.2.1.2.9 Resize Policies
21.3.2.1.2.10 General

Hash-tables, as opposed to trees, do not naturally grow or shrink. It is necessary to specify policies to determine how and when
a hash table should change its size. Usually, resize policies can be decomposed into orthogonal policies:

1. A size policy indicating how a hash table should grow (e.g., it should multiply by powers of 2).

2. A trigger policy indicating when a hash table should grow (e.g., a load factor is exceeded).

21.3.2.1.2.11 Size Policies

Size policies determine how a hash table changes size. These policies are simple, and there are relatively few sensible options. An
exponential-size policy (with the initial size and growth factors both powers of 2) works well with a mask-based range-hashing
function, and is the hard-wired policy used by Dinkumware. A prime-list based policy works well with a modulo-prime range
hashing function and is the hard-wired policy used by SGI’s implementation.

21.3.2.1.2.12 Trigger Policies

Trigger policies determine when a hash table changes size. Following is a description of two policies: load-check policies, and
collision-check policies.

Load-check policies are straightforward. The user specifies two factors, Api, and Ap,x, and the hash table maintains the invariant
that

Amin < (number of stored elements) / (hash-table size) < Apax

Collision-check policies work in the opposite direction of load-check policies. They focus on keeping the number of collisions
moderate and hoping that the size of the table will not grow very large, instead of keeping a moderate load-factor and hoping
that the number of collisions will be small. A maximal collision-check policy resizes when the longest probe-sequence grows
too large.

Consider the graphic below. Let the size of the hash table be denoted by m, the length of a probe sequence be denoted by k, and
some load factor be denoted by A. We would like to calculate the minimal length of k, such that if there were A m elements in
the hash table, a probe sequence of length k would be found with probability at most 1/m.

B
=]
2

L0

XXX

)

.-'
b
e
.-
P
"
b
-
b

e
o

X))

-
| A
3

Figure 21.18: Balls and bins

Denote the probability that a probe sequence of length k appears in bin i by p;, the length of the probe sequence of bin i by 1;, and
assume uniform distribution. Then

p1=
EQUATION 21.7: Probability of Probe Sequence of Length k

The GNU C++ Library Manual 182 /385

Pl > k)=
Pl >a(l+k/a-1)<(a)
e (-(o(k/a-1)2)/2)

where (a) follows from the Chernoff bound ([84]). To calculate the probability that some bin contains a probe sequence greater
than k, we note that the 1; are negatively-dependent ([66]) . Let I(.) denote the indicator function. Then

P(exists; l; > k) =

EQUATION 21.8: Probability Probe Sequence in Some Bin

P(Yi-i™Ii >k >1)=
P(Yi-1™I(>k)>mp; (1+1/(mpy)-1))<(a)
e”((-mpy (1/(mpy)-1)2)/2),

where (a) follows from the fact that the Chernoff bound can be applied to negatively-dependent variables ([66]). Inserting the
first probability equation into the second one, and equating with 1/m, we obtain

k~+/(20n2mln(m))).

21.3.2.1.2.13 Implementation

This sub-subsection describes the implementation of the above in this library. It first describes resize policies and their decom-
position into trigger and size policies, then describes pre-defined classes, and finally discusses controlled access the policies’
internals.

21.3.2.1.2.14 Decomposition

Each hash-based container is parametrized by a Resize_Policy parameter; the container derives publicly fromResize_Policy
For example:

cc_hash_table<typename Key,
typename Mapped,

typename Resize_Policy
..> : public Resize_Policy

As a container object is modified, it continuously notifies its Resize_Policy base of internal changes (e.g., collisions en-
countered and elements being inserted). It queries its Resize_Policy base whether it needs to be resized, and if so, to what
size.

The graphic below shows a (possible) sequence diagram of an insert operation. The user inserts an element; the hash table notifies
its resize policy that a search has started (point A); in this case, a single collision is encountered - the table notifies its resize
policy of this (point B); the container finally notifies its resize policy that the search has ended (point C); it then queries its resize
policy whether a resize is needed, and if so, what is the new size (points D to G); following the resize, it notifies the policy that a
resize has completed (point H); finally, the element is inserted, and the policy notified (point I).

The GNU C++ Library Manual

183 /385

Container:Resize_Policy

nofify_insart_search_start()

nodify _insert_search_collision()

motify _inser_search_end()

is_resize needed()

true : bool

get_new_sizel)

new size : size_lype

natify _resized()

nodify_insared()

— N YN YN N N]

Figure 21.19: Insert resize sequence diagram

The GNU C++ Library Manual 184 /385

In practice, a resize policy can be usually orthogonally decomposed to a size policy and a trigger policy. Consequently, the
library contains a single class for instantiating a resize policy: hash_standard_resize_policy is parametrized by
Size_Policy and Trigger_Policy, derives publicly from both, and acts as a standard delegate ([70]) to these poli-
cies.

The two graphics immediately below show sequence diagrams illustrating the interaction between the standard resize policy and
its trigger and size policies, respectively.

The GNU C++ Library Manual 185/385

nofify_insart_search_start()

nodify insert s
A
is_resize needed()
is_rasize |
B
true ; |

% Container hash_standard_resize policy
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

N N]
M

Figure 21.20: Standard resize policy trigger sequence diagram

The GNU C++ Library Manual 186 /385

gel_new _size()

|
| gel_nearest_larg
|
|

nEw_Size Sz

new_size : size_lype

e e
W

% Container hash_standard_resize policy
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 21.21: Standard resize policy size sequence diagram

The GNU C++ Library Manual 187 /385

21.3.2.1.2.15 Predefined Policies

The library includes the following instantiations of size and trigger policies:

l. hash_load_check_resize_trigger implements a load check trigger policy.
2. cc_hash_max_collision_check_resize_trigger implements a collision check trigger policy.

3. hash_exponential_size_policy implements an exponential-size policy (which should be used with mask range
hashing).

4. hash_prime_size_policy implementing a size policy based on a sequence of primes (which should be used with
mod range hashing

The graphic below gives an overall picture of the resize-related classes. basic_hash_table is parametrized by Resize_Policy,
which it subclasses publicly. This class is currently instantiated only by hash_standard_resize_policy. hash_standard_r
itself is parametrized by Trigger_Policyand Size_Policy. Currently, Trigger_Policy isinstantiated by hash_load_ch
orcc_hash_max_collision_check_resize_trigger; Size_Policyisinstantiated by hash_exponential_size_p
or hash_prime_size_policy.

21.3.2.1.2.16 Controling Access to Internals

There are cases where (controlled) access to resize policies’ internals is beneficial. E.g., it is sometimes useful to query a hash-
table for the table’s actual size (as opposed to its size () - the number of values it currently holds); it is sometimes useful to set
a table’s initial size, externally resize it, or change load factors.

Clearly, supporting such methods both decreases the encapsulation of hash-based containers, and increases the diversity between
different associative-containers’ interfaces. Conversely, omitting such methods can decrease containers’ flexibility.

In order to avoid, to the extent possible, the above conflict, the hash-based containers themselves do not address any of these ques-
tions; this is deferred to the resize policies, which are easier to change or replace. Thus, for example, neither cc_hash_table
nor gp_hash_table contain methods for querying the actual size of the table; this is deferred to hash_standard_resize_poli

Furthermore, the policies themselves are parametrized by template arguments that determine the methods they support ([55]

shows techniques for doing so). hash_standard_resize_policy is parametrized by External_Size_Access that
determines whether it supports methods for querying the actual size of the table or resizing it. hash_load_check_resize_trigge
is parametrized by External_Load_Access that determines whether it supports methods for querying or modifying the

loads. cc_hash_max_collision_check_resize_trigger is parametrized by External_Load_Access that de-
termines whether it supports methods for querying the load.

Some operations, for example, resizing a container at run time, or changing the load factors of a load-check trigger policy,
require the container itself to resize. As mentioned above, the hash-based containers themselves do not contain these types of
methods, only their resize policies. Consequently, there must be some mechanism for a resize policy to manipulate the hash-based
container. As the hash-based container is a subclass of the resize policy, this is done through virtual methods. Each hash-based
container has a private virtual method:

virtual void
do_resize
(size_type new_size);

which resizes the container. Implementations of Resize_Policy can export public methods for resizing the container exter-
nally; these methods internally call do_resize to resize the table.

21.3.2.1.2.17 Policy Interactions

Hash-tables are unfortunately especially susceptible to choice of policies. One of the more complicated aspects of this is that
poor combinations of good policies can form a poor container. Following are some considerations.

The GNU C++ Library Manual 188 /385

21.3.2.1.2.18 probe/size/trigger

Some combinations do not work well for probing containers. For example, combining a quadratic probe policy with an expo-
nential size policy can yield a poor container: when an element is inserted, a trigger policy might decide that there is no need to
resize, as the table still contains unused entries; the probe sequence, however, might never reach any of the unused entries.

Unfortunately, this library cannot detect such problems at compilation (they are halting reducible). It therefore defines an excep-
tion class insert_error to throw an exception in this case.

21.3.2.1.2.19 hash/trigger

Some trigger policies are especially susceptible to poor hash functions. Suppose, as an extreme case, that the hash function
transforms each key to the same hash value. After some inserts, a collision detecting policy will always indicate that the container
needs to grow.

The library, therefore, by design, limits each operation to one resize. For each insert, for example, it queries only once whether
aresize is needed.

21.3.2.1.2.20 equivalence functors/storing hash values/hash

cc_hash_table and gp_hash_table are parametrized by an equivalence functor and by a Store_Hash parameter. If
the latter parameter is t rue, then the container stores with each entry a hash value, and uses this value in case of collisions to
determine whether to apply a hash value. This can lower the cost of collision for some types, but increase the cost of collisions
for other types.

If a ranged-hash function or ranged probe function is directly supplied, however, then it makes no sense to store the hash value
with each entry. This library’s container will fail at compilation, by design, if this is attempted.

21.3.2.1.2.21 size/load-check trigger

Assume a size policy issues an increasing sequence of sizes a, a q, a q', a g2, ... For example, an exponential size policy might
issue the sequence of sizes 8, 16, 32, 64, ...

If a load-check trigger policy is used, with loads otmin and omax, respectively, then it is a good idea to have:

1. amax ~1/q
2. Omin<1/(2q)

This will ensure that the amortized hash cost of each modifying operation is at most approximately 3.

Olmin ~ Omax 1S, in any case, a bad choice, and Qi > @ max 1S horrendous.

21.3.2.2 tree

21.3.2.2.1 Interface

The tree-based container has the following declaration:

template<

typename Key,

typename Mapped,

typename Cmp_Fn = std::less<Key>,
typename Tag = rb_tree_tag,

template<

typename Const_Node_TIterator,
typename Node_Iterator,

typename Cmp_Fn_,

typename Allocator_>

class Node_Update = null_node_update,
typename Allocator = std::allocator<char> >
class tree;

The GNU C++ Library Manual 189 /385

The parameters have the following meaning:

1. Key is the key type.

2. Mapped is the mapped-policy.

3. Cmp_Fn is a key comparison functor

4. Tag specifies which underlying data structure to use.

5. Node_Update is a policy for updating node invariants.

6. Allocator is an allocator type.

The Tag parameter specifies which underlying data structure to use. Instantiating it by rb_tree_tag, splay_tree_tag,
or ov_tree_tag, specifies an underlying red-black tree, splay tree, or ordered-vector tree, respectively; any other tag is illegal.
Note that containers based on the former two contain more types and methods than the latter (e.g., reverse_iterator and
rbegin), and different exception and invalidation guarantees.

21.3.2.2.2 Details
21.3.2.2.2.1 Node Invariants

Consider the two trees in the graphic below, labels A and B. The first is a tree of floats; the second is a tree of pairs, each
signifying a geometric line interval. Each element in a tree is referred to as a node of the tree. Of course, each of these trees can
support the usual queries: the first can easily search for 0. 4; the second can easily search for std: :make_pair (10, 41).

Each of these trees can efficiently support other queries. The first can efficiently determine that the 2rd key in the tree is 0. 3;
the second can efficiently determine whether any of its intervals overlaps

std: :make_pair(29,42)

(useful in geometric applications or distributed file systems with leases, for example). It should be noted that an std: : set can
only solve these types of problems with linear complexity.

In order to do so, each tree stores some metadata in each node, and maintains node invariants (see [65].) The first stores in
each node the size of the sub-tree rooted at the node; the second stores at each node the maximal endpoint of the intervals at the
sub-tree rooted at the node.

The GNU C++ Library Manual 190/385

Figure 21.22: Tree node invariants

Supporting such trees is difficult for a number of reasons:

1. There must be a way to specify what a node’s metadata should be (if any).

2. Various operations can invalidate node invariants. The graphic below shows how a right rotation, performed on A, results
in B, with nodes x and y having corrupted invariants (the grayed nodes in C). The graphic shows how an insert, performed
on D, results in E, with nodes x and y having corrupted invariants (the grayed nodes in F). It is not feasible to know outside
the tree the effect of an operation on the nodes of the tree.

3. The search paths of standard associative containers are defined by comparisons between keys, and not through metadata.

4. It is not feasible to know in advance which methods trees can support. Besides the usual £ind method, the first tree can
support a find_by_order method, while the second can support an overlaps method.

The GNU C++ Library Manual 191 /385

rotate right

insert

Figure 21.23: Tree node invalidation

These problems are solved by a combination of two means: node iterators, and template-template node updater parameters.

The GNU C++ Library Manual 192 /385

21.3.2.2.2.2 Node lterators

Each tree-based container defines two additional iterator types, const_node_iterator and node_iterator. These
iterators allow descending from a node to one of its children. Node iterator allow search paths different than those determined
by the comparison functor. The t ree supports the methods:

const_node_iterator

node_begin () const;

node_iterator
node_begin () ;

const_node_iterator
node_end () const;

node_iterator
node_end () ;

The first pairs return node iterators corresponding to the root node of the tree; the latter pair returns node iterators corresponding
to a just-after-leaf node.

21.3.2.2.2.3 Node Updator

The tree-based containers are parametrized by a Node_Update template-template parameter. A tree-based container instan-
tiates Node_Update to some node_update class, and publicly subclasses node_update. The graphic below shows this
scheme, as well as some predefined policies (which are explained below).

..Mode Updator,...

basic_tree_assoc cninr

NDU&_UpdEEH R :

instantiatas instantiates

tree_null_node updator ree_order_statistics _node_ug

Figure 21.24: A tree and its update policy

node_update (an instantiation of Node_Update) must define metadata_type as the type of metadata it requires. For
order statistics, e.g., mnetadata_type might be size_t. The tree defines within each node a metadata_type object.

node_update must also define the following method for restoring node invariants:

The GNU C++ Library Manual 193/385

void
operator () (node_iterator nd_it, const_node_iterator end_nd_it)

In this method, nd_it is a node_iterator corresponding to a node whose A) all descendants have valid invariants, and B)
its own invariants might be violated; end_nd_it isa const_node_iterator corresponding to a just-after-leaf node. This
method should correct the node invariants of the node pointed to by nd_it. For example, say node x in the graphic below label
A has an invalid invariant, but its’ children, y and z have valid invariants. After the invocation, all three nodes should have valid

invariants, as in label B.
updata > 1

Figure 21.25: Restoring node invariants

When a tree operation might invalidate some node invariant, it invokes this method in its node_update base to restore the
invariant. For example, the graphic below shows an insert operation (point A); the tree performs some operations, and calls
the update functor three times (points B, C, and D). (It is well known that any insert, erase, split or join, can restore
all node invariants by a small number of node invariant updates ([65]) .

The GNU C++ Library Manual 194 /385

Container Container:Mode_Updator

insert...)

A > |

cperaton y...) :

: B =

cperaton y...)

5 c >

cperatoni...)

: D ==
=

Figure 21.26: Insert update sequence

To complete the description of the scheme, three questions need to be answered:

1. How can a tree which supports order statistics define a method such as find_by_order?
2. How can the node updater base access methods of the tree?

3. How can the following cyclic dependency be resolved? node_update is a base class of the tree, yet it uses node iterators
defined in the tree (its child).

The first two questions are answered by the fact that node_update (an instantiation of Node_Update) is a public base class
of the tree. Consequently:

1. Any public methods of node_update are automatically methods of the tree ([55]). Thus an order-statistics node up-
dater, tree_order_statistics_node_update defines the find_by_order method; any tree instantiated by
this policy consequently supports this method as well.

2. In C++, if a base class declares a method as virtual,itis virtual inits subclasses. If node_update needs to access
one of the tree’s methods, say the member function end, it simply declares that method as virtual abstract.

The cyclic dependency is solved through template-template parameters. Node_Update is parametrized by the tree’s node
iterators, its comparison functor, and its allocator type. Thus, instantiations of Node_Update have all information required.

This library assumes that constructing a metadata object and modifying it are exception free. Suppose that during some method,
say insert, a metadata-related operation (e.g., changing the value of a metadata) throws an exception. Ack! Rolling back the
method is unusually complex.

The GNU C++ Library Manual 195/385

Previously, a distinction was made between redundant policies and null policies. Node invariants show a case where null policies
are required.

Assume a regular tree is required, one which need not support order statistics or interval overlap queries. Seemingly, in this case

a redundant policy - a policy which doesn’t affect nodes’ contents would suffice. This, would lead to the following drawbacks:

1. Each node would carry a useless metadata object, wasting space.

2. The tree cannot know if its Node_Update policy actually modifies a node’s metadata (this is halting reducible). In the
graphic below, assume the shaded node is inserted. The tree would have to traverse the useless path shown to the root,
applying redundant updates all the way.

The GNU C++ Library Manual 196 / 385

s

"‘

-

Figure 21.27: Useless update path

A null policy class, null_node_update solves both these problems. The tree detects that node invariants are irrelevant, and
defines all accordingly.

The GNU C++ Library Manual 197 /385

21.3.2.2.2.4 Split and Join

Tree-based containers support split and join methods. It is possible to split a tree so that it passes all nodes with keys larger than
a given key to a different tree. These methods have the following advantages over the alternative of externally inserting to the
destination tree and erasing from the source tree:

. These methods are efficient - red-black trees are split and joined in poly-logarithmic complexity; ordered-vector trees are

split and joined at linear complexity. The alternatives have super-linear complexity.

Aside from orders of growth, these operations perform few allocations and de-allocations. For red-black trees, allocations
are not performed, and the methods are exception-free.

21.3.2.3 Trie

21.3.2.3.1 Interface

The trie-based container has the following declaration:

template<typename Key,

typename Mapped,

typename Cmp_Fn = std::less<Key>,
typename Tag = pat_trie_tag,
template<typename Const_Node_Iterator,
typename Node_Iterator,

typename E_Access_Traits_,

typename Allocator_>

class Node_Update = null_node_update,
typename Allocator = std::allocator<char> >
class trie;

The parameters have the following meaning:

1.
2.

AN AR

Key is the key type.

Mapped is the mapped-policy.

E_Access_Traits is described in below.

Tag specifies which underlying data structure to use, and is described shortly.
Node_Update is a policy for updating node invariants. This is described below.

Allocator is an allocator type.

The Tag parameter specifies which underlying data structure to use. Instantiating itby pat_trie_tag, specifies an underlying
PATRICIA trie (explained shortly); any other tag is currently illegal.

Following is a description of a (PATRICIA) trie (this implementation follows [89] and [68]).

A (PATRICIA) trie is similar to a tree, but with the following differences:

. It explicitly views keys as a sequence of elements. E.g., a trie can view a string as a sequence of characters; a trie can view

a number as a sequence of bits.
It is not (necessarily) binary. Each node has fan-out n + 1, where n is the number of distinct elements.
It stores values only at leaf nodes.

Internal nodes have the properties that A) each has at least two children, and B) each shares the same prefix with any of its
descendant.

The GNU C++ Library Manual 198 /385

A (PATRICIA) trie has some useful properties:

1. It can be configured to use large node fan-out, giving it very efficient find performance (albeit at insertion complexity and
size).

2. It works well for common-prefix keys.

3. It can support efficiently queries such as which keys match a certain prefix. This is sometimes useful in file systems and
routers, and for "type-ahead" aka predictive text matching on mobile devices.

21.3.2.3.2 Details
21.3.2.3.2.1 Element Access Traits

A trie inherently views its keys as sequences of elements. For example, a trie can view a string as a sequence of characters. A
trie needs to map each of n elements to a number in {0, n - 1}. For example, a trie can map a character c to

static_cast<size_t>(c)

Seemingly, then, a trie can assume that its keys support (const) iterators, and that the value_type of this iterator can be cast
to a size_t. There are several reasons, though, to decouple the mechanism by which the trie accesses its keys’ elements from
the trie:

1. In some cases, the numerical value of an element is inappropriate. Consider a trie storing DNA strings. It is logical to use
a trie with a fan-outof 5=1+[{’A’, ’C’, ’G’, "T’ }I. This requires mapping T’ to 3, though.

2. In some cases the keys’ iterators are different than what is needed. For example, a trie can be used to search for common
suffixes, by using strings’ reverse_iterator. As another example, a trie mapping UNICODE strings would have a
huge fan-out if each node would branch on a UNICODE character; instead, one can define an iterator iterating over 8-bit
(or less) groups.

trie is, consequently, parametrized by E_Access_Traits - traits which instruct how to access sequences’ elements. string_trie_
is a traits class for strings. Each such traits define some types, like:

typename E_Access_Traits::const_iterator

is a const iterator iterating over a key’s elements. The traits class must also define methods for obtaining an iterator to the first
and last element of a key.

The graphic below shows a (PATRICIA) trie resulting from inserting the words: "I wish that I could ever see a poem lovely as a
trie" (which, unfortunately, does not thyme).

The leaf nodes contain values; each internal node contains two typename E_Access_Traits::const_iterator ob-
jects, indicating the maximal common prefix of all keys in the sub-tree. For example, the shaded internal node roots a sub-tree
with leafs "a" and "as". The maximal common prefix is "a". The internal node contains, consequently, to const iterators, one
pointing to ’ a’, and the otherto ' s’.

The GNU C++ Library Manual 199 /385

A
; S
\ k!

| !
\ !

\ w
b
’ | 0

Figure 21.28: A PATRICIA trie

21.3.2.3.2.2 Node Invariants

Trie-based containers support node invariants, as do tree-based containers. There are two minor differences, though, which,
unfortunately, thwart sharing them sharing the same node-updating policies:

1. Atrie’s Node_Update template-template parameter is parametrized by E_Access_Traits, whileatree’s Node_Update
template-template parameter is parametrized by Cmp_Fn.

2. Tree-based containers store values in all nodes, while trie-based containers (at least in this implementation) store values in
leafs.

The graphic below shows the scheme, as well as some predefined policies (which are explained below).

The GNU C++ Library Manual 200/ 385

-.Mode Updator,...
basic_trie_assoc_cntnr
Mode_Updator LETTNEE \
instar;itiates
s trie_null_node_updator

trie_prefix_search_node_updator

o frie_order_siatistics_node_updator

Figure 21.29: A trie and its update policy

This library offers the following pre-defined trie node updating policies:

1. trie_order_statistics_node_update supports order statistics.
2. trie_prefix_search_node_update supports searching for ranges that match a given prefix.

3. null_node_update is the null node updater.

21.3.2.3.2.3 Split and Join

Trie-based containers support split and join methods; the rationale is equal to that of tree-based containers supporting these
methods.

21.3.2.4 List

21.3.2.4.1 Interface

The list-based container has the following declaration:

The GNU C++ Library Manual 201 /385

template<typename Key,

typename Mapped,

typename Eg Fn = std::equal_to<Key>,

typename Update_Policy = move_to_front_lu_policy<>,
typename Allocator = std::allocator<char> >

class list_update;

The parameters have the following meaning:

1. Key is the key type.
2. Mapped is the mapped-policy.
3. Eg_Fn is a key equivalence functor.

4. Update_Policy is a policy updating positions in the list based on access patterns. It is described in the following
subsection.

5. Allocator is an allocator type.

A list-based associative container is a container that stores elements in a linked-list. It does not order the elements by any
particular order related to the keys. List-based containers are primarily useful for creating "multimaps". In fact, list-based
containers are designed in this library expressly for this purpose.

List-based containers might also be useful for some rare cases, where a key is encapsulated to the extent that only key-equivalence
can be tested. Hash-based containers need to know how to transform a key into a size type, and tree-based containers need to know
if some key is larger than another. List-based associative containers, conversely, only need to know if two keys are equivalent.

Since a list-based associative container does not order elements by keys, is it possible to order the list in some useful manner?
Remarkably, many on-line competitive algorithms exist for reordering lists to reflect access prediction. (See [84] and [56]).
21.3.2.4.2 Details

21.3.2.4.2.1 Underlying Data Structure

The graphic below shows a simple list of integer keys. If we search for the integer 6, we are paying an overhead: the link with
key 6 is only the fifth link; if it were the first link, it could be accessed faster.

Figure 21.30: A simple list

List-update algorithms reorder lists as elements are accessed. They try to determine, by the access history, which keys to move
to the front of the list. Some of these algorithms require adding some metadata alongside each entry.

For example, in the graphic below label A shows the counter algorithm. Each node contains both a key and a count metadata
(shown in bold). When an element is accessed (e.g. 6) its count is incremented, as shown in label B. If the count reaches some
predetermined value, say 10, as shown in label C, the count is set to 0 and the node is moved to the front of the list, as in label D.

The GNU C++ Library Manual 202 / 385

OO0
> (O—(—(—®
o (O—~(O—(—
> @O—(C—C—©

Figure 21.31: The counter algorithm

21.3.2.4.2.2 Policies

this library allows instantiating lists with policies implementing any algorithm moving nodes to the front of the list (policies
implementing algorithms interchanging nodes are unsupported).

Associative containers based on lists are parametrized by a Update_Policy parameter. This parameter defines the type of
metadata each node contains, how to create the metadata, and how to decide, using this metadata, whether to move a node to the
front of the list. A list-based associative container object derives (publicly) from its update policy.

An instantiation of Update_Policy must define internally update_metadata as the metadata it requires. Internally, each
node of the list contains, besides the usual key and data, an instance of t ypename Update_Policy: :update_metadata.

An instantiation of Update_Policy must define internally two operators:
update_metadata

operator () ();

bool
operator () (update_metadata &);

The first is called by the container object, when creating a new node, to create the node’s metadata. The second is called by
the container object, when a node is accessed (when a find operation’s key is equivalent to the key of the node), to determine
whether to move the node to the front of the list.

The GNU C++ Library Manual 203 /385

The library contains two predefined implementations of list-update policies. The firstis lu_counter_policy, which imple-
ments the counter algorithm described above. The second is 1u_move_to_front_policy, which unconditionally move an
accessed element to the front of the list. The latter type is very useful in this library, since there is no need to associate metadata
with each element. (See [56]

21.3.2.4.2.3 Use in Multimaps

In this library, there are no equivalents for the standard’s multimaps and multisets; instead one uses an associative container
mapping primary keys to secondary keys.

List-based containers are especially useful as associative containers for secondary keys. In fact, they are implemented here
expressly for this purpose.

To begin with, these containers use very little per-entry structure memory overhead, since they can be implemented as singly-
linked lists. (Arrays use even lower per-entry memory overhead, but they are less flexible in moving around entries, and have
weaker invalidation guarantees).

More importantly, though, list-based containers use very little per-container memory overhead. The memory overhead of an
empty list-based container is practically that of a pointer. This is important for when they are used as secondary associative-
containers in situations where the average ratio of secondary keys to primary keys is low (or even 1).

In order to reduce the per-container memory overhead as much as possible, they are implemented as closely as possible to
singly-linked lists.

1. List-based containers do not store internally the number of values that they hold. This means that their size method has
linear complexity (just like std: : 1ist). Note that finding the number of equivalent-key values in a standard multimap
also has linear complexity (because it must be done, via std: : distance of the multimap’s equal_range method),
but usually with higher constants.

2. Most associative-container objects each hold a policy object (a hash-based container object holds a hash functor). List-
based containers, conversely, only have class-wide policy objects.

21.3.2.5 Priority Queue

21.3.2.5.1 Interface

The priority queue container has the following declaration:

template<typename Value_Type,

typename Cmp_Fn = std::less<Value_Type>,
typename Tag = pairing_heap_tag,

typename Allocator = std::allocator<char > >
class priority_qgueue;

The parameters have the following meaning:

1. Value_Type is the value type.
2. Cmp_Fn is a value comparison functor
3. Tag specifies which underlying data structure to use.

4. Allocator is an allocator type.

The Tag parameter specifies which underlying data structure to use. Instantiating itbypairing heap_tag,binary_heap_tag,
binomial_heap_tag, rc_binomial_heap_tag, or thin_heap_tag, specifies, respectively, an underlying pairing
heap ([69]), binary heap ([65]), binomial heap ([65]), a binomial heap with a redundant binary counter ([79]), or a thin heap
([74D).

As mentioned in the tutorial, __gnu_pbds: :priority_queue shares most of the same interface with std: :priority_queue.
E.g. if g is a priority queue of type Q, then g.top () will return the "largest" value in the container (according to t ypename

The GNU C++ Library Manual 204 / 385

Q::cmp_fn). _ gnu_pbds: :priority_queue hasalarger (and very slightly different) interface than std: :priority_queu
however, since typically push and pop are deemed insufficient for manipulating priority-queues.

Different settings require different priority-queue implementations which are described in later; see traits discusses ways to
differentiate between the different traits of different implementations.

21.3.2.5.2 Details
21.3.2.5.2.1 lterators

There are many different underlying-data structures for implementing priority queues. Unfortunately, most such structures are
oriented towards making push and top efficient, and consequently don’t allow efficient access of other elements: for instance,
they cannot support an efficient £ind method. In the use case where it is important to both access and "do something with" an
arbitrary value, one would be out of luck. For example, many graph algorithms require modifying a value (typically increasing it
in the sense of the priority queue’s comparison functor).

In order to access and manipulate an arbitrary value in a priority queue, one needs to reference the internals of the priority queue
from some form of an associative container - this is unavoidable. Of course, in order to maintain the encapsulation of the priority
queue, this needs to be done in a way that minimizes exposure to implementation internals.

In this library the priority queue’s insert method returns an iterator, which if valid can be used for subsequent modify
and erase operations. This both preserves the priority queue’s encapsulation, and allows accessing arbitrary values (since the
returned iterators from the push operation can be stored in some form of associative container).

Priority queues’ iterators present a problem regarding their invalidation guarantees. One assumes that calling operator++ on
an iterator will associate it with the "next" value. Priority-queues are self-organizing: each operation changes what the "next"
value means. Consequently, it does not make sense that push will return an iterator that can be incremented - this can have no
possible use. Also, as in the case of hash-based containers, it is awkward to define if a subsequent push operation invalidates
a prior returned iterator: it invalidates it in the sense that its "next" value is not related to what it previously considered to be
its "next" value. However, it might not invalidate it, in the sense that it can be de-referenced and used for modify and erase
operations.

Similarly to the case of the other unordered associative containers, this library uses a distinction between point-type and range
type iterators. A priority queue’s iterator can always be converted to a point_iterator,andaconst_iterator can
always be converted to a point_const_iterator.

The following snippet demonstrates manipulating an arbitrary value:

// A priority queue of integers.
priority_queue<int > p;

// Insert some values into the priority queue.
priority_queue<int >::point_iterator it = p.push(0);

p.push (1) ;
p.push (2) ;

// Now modify a value.
p.modify (it, 3);

assert (p.top () == 3);

It should be noted that an alternative design could embed an associative container in a priority queue. Could, but most probably
should not. To begin with, it should be noted that one could always encapsulate a priority queue and an associative container
mapping values to priority queue iterators with no performance loss. One cannot, however, "un-encapsulate” a priority queue
embedding an associative container, which might lead to performance loss. Assume, that one needs to associate each value
with some data unrelated to priority queues. Then using this library’s design, one could use an associative container mapping
each value to a pair consisting of this data and a priority queue’s iterator. Using the embedded method would need to use two
associative containers. Similar problems might arise in cases where a value can reside simultaneously in many priority queues.

The GNU C++ Library Manual 205 /385

21.3.2.5.2.2 Underlying Data Structure

There are three main implementations of priority queues: the first employs a binary heap, typically one which uses a sequence;
the second uses a tree (or forest of trees), which is typically less structured than an associative container’s tree; the third simply
uses an associative container. These are shown in the graphic below, in labels A1 and A2, label B, and label C.

A1 A2

Figure 21.32: Underlying Priority-Queue Data-Structures.

Roughly speaking, any value that is both pushed and popped from a priority queue must incur a logarithmic expense (in the
amortized sense). Any priority queue implementation that would avoid this, would violate known bounds on comparison-based
sorting (see [65] and [63]).

Most implementations do not differ in the asymptotic amortized complexity of push and pop operations, but they differ in the
constants involved, in the complexity of other operations (e.g., modify), and in the worst-case complexity of single operations.
In general, the more "structured" an implementation (i.e., the more internal invariants it possesses) - the higher its amortized
complexity of push and pop operations.

This library implements different algorithms using a single class: priority_queue. Instantiating the Tag template parameter,
"selects" the implementation:

1. Instantiating Tag = binary_heap_tag creates a binary heap of the form in represented in the graphic with labels A1l
or A2. The former is internally selected by priority_queue if Value_Type is instantiated by a primitive type (e.g., an int);
the latter is internally selected for all other types (e.g., std: : string). This implementations is relatively unstructured,
and so has good push and pop performance; it is the "best-in-kind" for primitive types, e.g., ints. Conversely, it has high
worst-case performance, and can support only linear-time modi fy and erase operations.

2. Instantiating Tag = pairing_heap_tag creates a pairing heap of the form in represented by label B in the graphic
above. This implementations too is relatively unstructured, and so has good push and pop performance; it is the "best-
in-kind" for non-primitive types, e.g., std:strings. It also has very good worst-case push and join performance
(O(1)), but has high worst-case pop complexity.

The GNU C++ Library Manual 206 / 385

3. Instantiating Tag = binomial_heap_tag creates a binomial heap of the form repsented by label B in the graphic
above. This implementations is more structured than a pairing heap, and so has worse push and pop performance.
Conversely, it has sub-linear worst-case bounds for pop, e.g., and so it might be preferred in cases where responsiveness
is important.

4. Instantiating Tag = rc_binomial_heap_tag creates a binomial heap of the form represented in label B above,
accompanied by a redundant counter which governs the trees. This implementations is therefore more structured than a
binomial heap, and so has worse push and pop performance. Conversely, it guarantees O(1) push complexity, and so it
might be preferred in cases where the responsiveness of a binomial heap is insufficient.

5. Instantiating Tag = thin_heap_tag creates a thin heap of the form represented by the label B in the graphic above.
This implementations too is more structured than a pairing heap, and so has worse push and pop performance. Con-
versely, it has better worst-case and identical amortized complexities than a Fibonacci heap, and so might be more appro-
priate for some graph algorithms.

Of course, one can use any order-preserving associative container as a priority queue, as in the graphic above label C, possibly
by creating an adapter class over the associative container (much as std: :priority_queue can adapt std: :vector).
This has the advantage that no cross-referencing is necessary at all; the priority queue itself is an associative container. Most
associative containers are too structured to compete with priority queues in terms of push and pop performance.

21.3.2.5.2.3 Traits

It would be nice if all priority queues could share exactly the same behavior regardless of implementation. Sadly, this is not
possible. Just one for instance is in join operations: joining two binary heaps might throw an exception (not corrupt any of the
heaps on which it operates), but joining two pairing heaps is exception free.

Tags and traits are very useful for manipulating generic types. __gnu_pbds: :priority_queue publicly defines container_ca
as one of the tags. Given any container Cntnr, the tag of the underlying data structure can be found via t ypename Cntnr::contai
this is one of the possible tags shown in the graphic below.

__gnu_pbds::binary_heap_tac

_gnu_pbds:binomial_heap_ts

_anu_pbds::container_tag —— _ gnu_pbds::priority_gueue_tag _gnu_pbds::pairing_heap_ta

_ghu_pbds::re_binomial_heap

__gnu_pbds::thin_heap_tag

Figure 21.33: Priority-Queue Data-Structure Tags.

Additionally, a traits mechanism can be used to query a container type for its attributes. Given any container Cntnr, then

__gnu_pbds::container_traits<Cntnr>

is a traits class identifying the properties of the container.
To find if a container might throw if two of its objects are joined, one can use

container_traits<Cntnr>::split_join_can_throw

The GNU C++ Library Manual 207/ 385

Different priority-queue implementations have different invalidation guarantees. This is especially important, since there is no
way to access an arbitrary value of priority queues except for iterators. Similarly to associative containers, one can use

container_traits<Cntnr>::invalidation_guarantee

to get the invalidation guarantee type of a priority queue.

It is easy to understand from the graphic above, what container_traits<Cntnr>::invalidation_guarantee will

be for different implementations. All implementations of type represented by label B have point_invalidation_guarantee:
the container can freely internally reorganize the nodes - range-type iterators are invalidated, but point-type iterators are always
valid. Implementations of type represented by labels Al and A2 have basic_invalidation_guarantee: the container
can freely internally reallocate the array - both point-type and range-type iterators might be invalidated.

This has major implications, and constitutes a good reason to avoid using binary heaps. A binary heap can perform modify or
erase efficiently given a valid point-type iterator. However, in order to supply it with a valid point-type iterator, one needs to
iterate (linearly) over all values, then supply the relevant iterator (recall that a range-type iterator can always be converted to a
point-type iterator). This means that if the number of modi fy or erase operations is non-negligible (say super-logarithmic in
the total sequence of operations) - binary heaps will perform badly.

21.4 Testing

21.4.1 Regression

The library contains a single comprehensive regression test. For a given container type in this library, the test creates an object of
the container type and an object of the corresponding standard type (e.g., std: : set). It then performs a random sequence of
methods with random arguments (e.g., inserts, erases, and so forth) on both objects. At each operation, the test checks the return
value of the method, and optionally both compares this library’s object with the standard’s object as well as performing other
consistency checks on this library’s object (e.g., order preservation, when applicable, or node invariants, when applicable).

Additionally, the test integrally checks exception safety and resource leaks. This is done as follows. A special allocator type,
written for the purpose of the test, both randomly throws an exceptions when allocations are performed, and tracks allocations
and de-allocations. The exceptions thrown at allocations simulate memory-allocation failures; the tracking mechanism checks
for memory-related bugs (e.g., resource leaks and multiple de-allocations). Both this library’s containers and the containers’
value-types are configured to use this allocator.

For granularity, the test is split into the several sources, each checking only some containers.

For more details, consult the files in testsuite/ext/pb_ds/regression.

21.4.2 Performance

21.4.2.1 Hash-Based

21.4.21.1 Text £find
21.4.2.1.1.1 Description

This test inserts a number of values with keys from an arbitrary text ([97]) into a container, then performs a series of finds using
find . It measures the average time for £ind as a function of the number of values inserted.

It uses the test file: performance/ext/pb_ds/text_find_timing_t