libstdc++
hashtable_policy.h
Go to the documentation of this file.
1 // Internal policy header for unordered_set and unordered_map -*- C++ -*-
2 
3 // Copyright (C) 2010-2020 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable_policy.h
26  * This is an internal header file, included by other library headers.
27  * Do not attempt to use it directly.
28  * @headername{unordered_map,unordered_set}
29  */
30 
31 #ifndef _HASHTABLE_POLICY_H
32 #define _HASHTABLE_POLICY_H 1
33 
34 #include <tuple> // for std::tuple, std::forward_as_tuple
35 #include <limits> // for std::numeric_limits
36 #include <bits/stl_algobase.h> // for std::min, std::is_permutation.
37 
38 namespace std _GLIBCXX_VISIBILITY(default)
39 {
40 _GLIBCXX_BEGIN_NAMESPACE_VERSION
41 
42  template<typename _Key, typename _Value, typename _Alloc,
43  typename _ExtractKey, typename _Equal,
44  typename _H1, typename _H2, typename _Hash,
45  typename _RehashPolicy, typename _Traits>
46  class _Hashtable;
47 
48 namespace __detail
49 {
50  /**
51  * @defgroup hashtable-detail Base and Implementation Classes
52  * @ingroup unordered_associative_containers
53  * @{
54  */
55  template<typename _Key, typename _Value,
56  typename _ExtractKey, typename _Equal,
57  typename _H1, typename _H2, typename _Hash, typename _Traits>
59 
60  // Helper function: return distance(first, last) for forward
61  // iterators, or 0/1 for input iterators.
62  template<class _Iterator>
64  __distance_fw(_Iterator __first, _Iterator __last,
66  { return __first != __last ? 1 : 0; }
67 
68  template<class _Iterator>
70  __distance_fw(_Iterator __first, _Iterator __last,
72  { return std::distance(__first, __last); }
73 
74  template<class _Iterator>
76  __distance_fw(_Iterator __first, _Iterator __last)
77  { return __distance_fw(__first, __last,
78  std::__iterator_category(__first)); }
79 
80  struct _Identity
81  {
82  template<typename _Tp>
83  _Tp&&
84  operator()(_Tp&& __x) const
85  { return std::forward<_Tp>(__x); }
86  };
87 
88  struct _Select1st
89  {
90  template<typename _Tp>
91  auto
92  operator()(_Tp&& __x) const
93  -> decltype(std::get<0>(std::forward<_Tp>(__x)))
94  { return std::get<0>(std::forward<_Tp>(__x)); }
95  };
96 
97  template<typename _NodeAlloc>
99 
100  // Functor recycling a pool of nodes and using allocation once the pool is
101  // empty.
102  template<typename _NodeAlloc>
103  struct _ReuseOrAllocNode
104  {
105  private:
106  using __node_alloc_type = _NodeAlloc;
107  using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>;
108  using __node_alloc_traits =
109  typename __hashtable_alloc::__node_alloc_traits;
110  using __node_type = typename __hashtable_alloc::__node_type;
111 
112  public:
113  _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h)
114  : _M_nodes(__nodes), _M_h(__h) { }
115  _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete;
116 
117  ~_ReuseOrAllocNode()
118  { _M_h._M_deallocate_nodes(_M_nodes); }
119 
120  template<typename _Arg>
121  __node_type*
122  operator()(_Arg&& __arg) const
123  {
124  if (_M_nodes)
125  {
126  __node_type* __node = _M_nodes;
127  _M_nodes = _M_nodes->_M_next();
128  __node->_M_nxt = nullptr;
129  auto& __a = _M_h._M_node_allocator();
130  __node_alloc_traits::destroy(__a, __node->_M_valptr());
131  __try
132  {
133  __node_alloc_traits::construct(__a, __node->_M_valptr(),
134  std::forward<_Arg>(__arg));
135  }
136  __catch(...)
137  {
138  _M_h._M_deallocate_node_ptr(__node);
139  __throw_exception_again;
140  }
141  return __node;
142  }
143  return _M_h._M_allocate_node(std::forward<_Arg>(__arg));
144  }
145 
146  private:
147  mutable __node_type* _M_nodes;
148  __hashtable_alloc& _M_h;
149  };
150 
151  // Functor similar to the previous one but without any pool of nodes to
152  // recycle.
153  template<typename _NodeAlloc>
154  struct _AllocNode
155  {
156  private:
157  using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>;
158  using __node_type = typename __hashtable_alloc::__node_type;
159 
160  public:
161  _AllocNode(__hashtable_alloc& __h)
162  : _M_h(__h) { }
163 
164  template<typename _Arg>
165  __node_type*
166  operator()(_Arg&& __arg) const
167  { return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); }
168 
169  private:
170  __hashtable_alloc& _M_h;
171  };
172 
173  // Auxiliary types used for all instantiations of _Hashtable nodes
174  // and iterators.
175 
176  /**
177  * struct _Hashtable_traits
178  *
179  * Important traits for hash tables.
180  *
181  * @tparam _Cache_hash_code Boolean value. True if the value of
182  * the hash function is stored along with the value. This is a
183  * time-space tradeoff. Storing it may improve lookup speed by
184  * reducing the number of times we need to call the _Hash or _Equal
185  * functors.
186  *
187  * @tparam _Constant_iterators Boolean value. True if iterator and
188  * const_iterator are both constant iterator types. This is true
189  * for unordered_set and unordered_multiset, false for
190  * unordered_map and unordered_multimap.
191  *
192  * @tparam _Unique_keys Boolean value. True if the return value
193  * of _Hashtable::count(k) is always at most one, false if it may
194  * be an arbitrary number. This is true for unordered_set and
195  * unordered_map, false for unordered_multiset and
196  * unordered_multimap.
197  */
198  template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys>
200  {
204  };
205 
206  /**
207  * struct _Hash_node_base
208  *
209  * Nodes, used to wrap elements stored in the hash table. A policy
210  * template parameter of class template _Hashtable controls whether
211  * nodes also store a hash code. In some cases (e.g. strings) this
212  * may be a performance win.
213  */
215  {
216  _Hash_node_base* _M_nxt;
217 
218  _Hash_node_base() noexcept : _M_nxt() { }
219 
220  _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { }
221  };
222 
223  /**
224  * struct _Hash_node_value_base
225  *
226  * Node type with the value to store.
227  */
228  template<typename _Value>
230  {
231  typedef _Value value_type;
232 
233  __gnu_cxx::__aligned_buffer<_Value> _M_storage;
234 
235  _Value*
236  _M_valptr() noexcept
237  { return _M_storage._M_ptr(); }
238 
239  const _Value*
240  _M_valptr() const noexcept
241  { return _M_storage._M_ptr(); }
242 
243  _Value&
244  _M_v() noexcept
245  { return *_M_valptr(); }
246 
247  const _Value&
248  _M_v() const noexcept
249  { return *_M_valptr(); }
250  };
251 
252  /**
253  * Primary template struct _Hash_node.
254  */
255  template<typename _Value, bool _Cache_hash_code>
256  struct _Hash_node;
257 
258  /**
259  * Specialization for nodes with caches, struct _Hash_node.
260  *
261  * Base class is __detail::_Hash_node_value_base.
262  */
263  template<typename _Value>
264  struct _Hash_node<_Value, true> : _Hash_node_value_base<_Value>
265  {
266  std::size_t _M_hash_code;
267 
268  _Hash_node*
269  _M_next() const noexcept
270  { return static_cast<_Hash_node*>(this->_M_nxt); }
271  };
272 
273  /**
274  * Specialization for nodes without caches, struct _Hash_node.
275  *
276  * Base class is __detail::_Hash_node_value_base.
277  */
278  template<typename _Value>
279  struct _Hash_node<_Value, false> : _Hash_node_value_base<_Value>
280  {
281  _Hash_node*
282  _M_next() const noexcept
283  { return static_cast<_Hash_node*>(this->_M_nxt); }
284  };
285 
286  /// Base class for node iterators.
287  template<typename _Value, bool _Cache_hash_code>
289  {
291 
292  __node_type* _M_cur;
293 
294  _Node_iterator_base(__node_type* __p) noexcept
295  : _M_cur(__p) { }
296 
297  void
298  _M_incr() noexcept
299  { _M_cur = _M_cur->_M_next(); }
300  };
301 
302  template<typename _Value, bool _Cache_hash_code>
303  inline bool
304  operator==(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
306  noexcept
307  { return __x._M_cur == __y._M_cur; }
308 
309  template<typename _Value, bool _Cache_hash_code>
310  inline bool
311  operator!=(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
312  const _Node_iterator_base<_Value, _Cache_hash_code>& __y)
313  noexcept
314  { return __x._M_cur != __y._M_cur; }
315 
316  /// Node iterators, used to iterate through all the hashtable.
317  template<typename _Value, bool __constant_iterators, bool __cache>
319  : public _Node_iterator_base<_Value, __cache>
320  {
321  private:
323  using __node_type = typename __base_type::__node_type;
324 
325  public:
326  typedef _Value value_type;
327  typedef std::ptrdiff_t difference_type;
329 
330  using pointer = typename std::conditional<__constant_iterators,
331  const _Value*, _Value*>::type;
332 
333  using reference = typename std::conditional<__constant_iterators,
334  const _Value&, _Value&>::type;
335 
336  _Node_iterator() noexcept
337  : __base_type(0) { }
338 
339  explicit
340  _Node_iterator(__node_type* __p) noexcept
341  : __base_type(__p) { }
342 
343  reference
344  operator*() const noexcept
345  { return this->_M_cur->_M_v(); }
346 
347  pointer
348  operator->() const noexcept
349  { return this->_M_cur->_M_valptr(); }
350 
352  operator++() noexcept
353  {
354  this->_M_incr();
355  return *this;
356  }
357 
359  operator++(int) noexcept
360  {
361  _Node_iterator __tmp(*this);
362  this->_M_incr();
363  return __tmp;
364  }
365  };
366 
367  /// Node const_iterators, used to iterate through all the hashtable.
368  template<typename _Value, bool __constant_iterators, bool __cache>
370  : public _Node_iterator_base<_Value, __cache>
371  {
372  private:
374  using __node_type = typename __base_type::__node_type;
375 
376  public:
377  typedef _Value value_type;
378  typedef std::ptrdiff_t difference_type;
380 
381  typedef const _Value* pointer;
382  typedef const _Value& reference;
383 
384  _Node_const_iterator() noexcept
385  : __base_type(0) { }
386 
387  explicit
388  _Node_const_iterator(__node_type* __p) noexcept
389  : __base_type(__p) { }
390 
391  _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
392  __cache>& __x) noexcept
393  : __base_type(__x._M_cur) { }
394 
395  reference
396  operator*() const noexcept
397  { return this->_M_cur->_M_v(); }
398 
399  pointer
400  operator->() const noexcept
401  { return this->_M_cur->_M_valptr(); }
402 
404  operator++() noexcept
405  {
406  this->_M_incr();
407  return *this;
408  }
409 
411  operator++(int) noexcept
412  {
413  _Node_const_iterator __tmp(*this);
414  this->_M_incr();
415  return __tmp;
416  }
417  };
418 
419  // Many of class template _Hashtable's template parameters are policy
420  // classes. These are defaults for the policies.
421 
422  /// Default range hashing function: use division to fold a large number
423  /// into the range [0, N).
425  {
426  typedef std::size_t first_argument_type;
427  typedef std::size_t second_argument_type;
428  typedef std::size_t result_type;
429 
430  result_type
431  operator()(first_argument_type __num,
432  second_argument_type __den) const noexcept
433  { return __num % __den; }
434  };
435 
436  /// Default ranged hash function H. In principle it should be a
437  /// function object composed from objects of type H1 and H2 such that
438  /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
439  /// h1 and h2. So instead we'll just use a tag to tell class template
440  /// hashtable to do that composition.
442 
443  /// Default value for rehash policy. Bucket size is (usually) the
444  /// smallest prime that keeps the load factor small enough.
446  {
448 
449  _Prime_rehash_policy(float __z = 1.0) noexcept
450  : _M_max_load_factor(__z), _M_next_resize(0) { }
451 
452  float
453  max_load_factor() const noexcept
454  { return _M_max_load_factor; }
455 
456  // Return a bucket size no smaller than n.
457  std::size_t
458  _M_next_bkt(std::size_t __n) const;
459 
460  // Return a bucket count appropriate for n elements
461  std::size_t
462  _M_bkt_for_elements(std::size_t __n) const
463  { return __builtin_ceill(__n / (long double)_M_max_load_factor); }
464 
465  // __n_bkt is current bucket count, __n_elt is current element count,
466  // and __n_ins is number of elements to be inserted. Do we need to
467  // increase bucket count? If so, return make_pair(true, n), where n
468  // is the new bucket count. If not, return make_pair(false, 0).
470  _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
471  std::size_t __n_ins) const;
472 
473  typedef std::size_t _State;
474 
475  _State
476  _M_state() const
477  { return _M_next_resize; }
478 
479  void
480  _M_reset() noexcept
481  { _M_next_resize = 0; }
482 
483  void
484  _M_reset(_State __state)
485  { _M_next_resize = __state; }
486 
487  static const std::size_t _S_growth_factor = 2;
488 
489  float _M_max_load_factor;
490  mutable std::size_t _M_next_resize;
491  };
492 
493  /// Range hashing function assuming that second arg is a power of 2.
495  {
496  typedef std::size_t first_argument_type;
497  typedef std::size_t second_argument_type;
498  typedef std::size_t result_type;
499 
500  result_type
501  operator()(first_argument_type __num,
502  second_argument_type __den) const noexcept
503  { return __num & (__den - 1); }
504  };
505 
506  /// Compute closest power of 2 not less than __n
507  inline std::size_t
508  __clp2(std::size_t __n) noexcept
509  {
510  // Equivalent to return __n ? std::bit_ceil(__n) : 0;
511  if (__n < 2)
512  return __n;
513  const unsigned __lz = sizeof(size_t) > sizeof(long)
514  ? __builtin_clzll(__n - 1ull)
515  : __builtin_clzl(__n - 1ul);
516  // Doing two shifts avoids undefined behaviour when __lz == 0.
517  return (size_t(1) << (numeric_limits<size_t>::digits - __lz - 1)) << 1;
518  }
519 
520  /// Rehash policy providing power of 2 bucket numbers. Avoids modulo
521  /// operations.
523  {
525 
526  _Power2_rehash_policy(float __z = 1.0) noexcept
527  : _M_max_load_factor(__z), _M_next_resize(0) { }
528 
529  float
530  max_load_factor() const noexcept
531  { return _M_max_load_factor; }
532 
533  // Return a bucket size no smaller than n (as long as n is not above the
534  // highest power of 2).
535  std::size_t
536  _M_next_bkt(std::size_t __n) noexcept
537  {
538  if (__n == 0)
539  // Special case on container 1st initialization with 0 bucket count
540  // hint. We keep _M_next_resize to 0 to make sure that next time we
541  // want to add an element allocation will take place.
542  return 1;
543 
544  const auto __max_width = std::min<size_t>(sizeof(size_t), 8);
545  const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1);
546  std::size_t __res = __clp2(__n);
547 
548  if (__res == 0)
549  __res = __max_bkt;
550  else if (__res == 1)
551  // If __res is 1 we force it to 2 to make sure there will be an
552  // allocation so that nothing need to be stored in the initial
553  // single bucket
554  __res = 2;
555 
556  if (__res == __max_bkt)
557  // Set next resize to the max value so that we never try to rehash again
558  // as we already reach the biggest possible bucket number.
559  // Note that it might result in max_load_factor not being respected.
560  _M_next_resize = numeric_limits<size_t>::max();
561  else
562  _M_next_resize
563  = __builtin_floorl(__res * (long double)_M_max_load_factor);
564 
565  return __res;
566  }
567 
568  // Return a bucket count appropriate for n elements
569  std::size_t
570  _M_bkt_for_elements(std::size_t __n) const noexcept
571  { return __builtin_ceill(__n / (long double)_M_max_load_factor); }
572 
573  // __n_bkt is current bucket count, __n_elt is current element count,
574  // and __n_ins is number of elements to be inserted. Do we need to
575  // increase bucket count? If so, return make_pair(true, n), where n
576  // is the new bucket count. If not, return make_pair(false, 0).
578  _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
579  std::size_t __n_ins) noexcept
580  {
581  if (__n_elt + __n_ins > _M_next_resize)
582  {
583  // If _M_next_resize is 0 it means that we have nothing allocated so
584  // far and that we start inserting elements. In this case we start
585  // with an initial bucket size of 11.
586  long double __min_bkts
587  = std::max<std::size_t>(__n_elt + __n_ins, _M_next_resize ? 0 : 11)
588  / (long double)_M_max_load_factor;
589  if (__min_bkts >= __n_bkt)
590  return { true,
591  _M_next_bkt(std::max<std::size_t>(__builtin_floorl(__min_bkts) + 1,
592  __n_bkt * _S_growth_factor)) };
593 
594  _M_next_resize
595  = __builtin_floorl(__n_bkt * (long double)_M_max_load_factor);
596  return { false, 0 };
597  }
598  else
599  return { false, 0 };
600  }
601 
602  typedef std::size_t _State;
603 
604  _State
605  _M_state() const noexcept
606  { return _M_next_resize; }
607 
608  void
609  _M_reset() noexcept
610  { _M_next_resize = 0; }
611 
612  void
613  _M_reset(_State __state) noexcept
614  { _M_next_resize = __state; }
615 
616  static const std::size_t _S_growth_factor = 2;
617 
618  float _M_max_load_factor;
619  std::size_t _M_next_resize;
620  };
621 
622  // Base classes for std::_Hashtable. We define these base classes
623  // because in some cases we want to do different things depending on
624  // the value of a policy class. In some cases the policy class
625  // affects which member functions and nested typedefs are defined;
626  // we handle that by specializing base class templates. Several of
627  // the base class templates need to access other members of class
628  // template _Hashtable, so we use a variant of the "Curiously
629  // Recurring Template Pattern" (CRTP) technique.
630 
631  /**
632  * Primary class template _Map_base.
633  *
634  * If the hashtable has a value type of the form pair<T1, T2> and a
635  * key extraction policy (_ExtractKey) that returns the first part
636  * of the pair, the hashtable gets a mapped_type typedef. If it
637  * satisfies those criteria and also has unique keys, then it also
638  * gets an operator[].
639  */
640  template<typename _Key, typename _Value, typename _Alloc,
641  typename _ExtractKey, typename _Equal,
642  typename _H1, typename _H2, typename _Hash,
643  typename _RehashPolicy, typename _Traits,
644  bool _Unique_keys = _Traits::__unique_keys::value>
645  struct _Map_base { };
646 
647  /// Partial specialization, __unique_keys set to false.
648  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
649  typename _H1, typename _H2, typename _Hash,
650  typename _RehashPolicy, typename _Traits>
651  struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
652  _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
653  {
654  using mapped_type = typename std::tuple_element<1, _Pair>::type;
655  };
656 
657  /// Partial specialization, __unique_keys set to true.
658  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
659  typename _H1, typename _H2, typename _Hash,
660  typename _RehashPolicy, typename _Traits>
661  struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
662  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
663  {
664  private:
665  using __hashtable_base = __detail::_Hashtable_base<_Key, _Pair,
666  _Select1st,
667  _Equal, _H1, _H2, _Hash,
668  _Traits>;
669 
670  using __hashtable = _Hashtable<_Key, _Pair, _Alloc,
671  _Select1st, _Equal,
672  _H1, _H2, _Hash, _RehashPolicy, _Traits>;
673 
674  using __hash_code = typename __hashtable_base::__hash_code;
675  using __node_type = typename __hashtable_base::__node_type;
676 
677  public:
678  using key_type = typename __hashtable_base::key_type;
679  using iterator = typename __hashtable_base::iterator;
680  using mapped_type = typename std::tuple_element<1, _Pair>::type;
681 
682  mapped_type&
683  operator[](const key_type& __k);
684 
685  mapped_type&
686  operator[](key_type&& __k);
687 
688  // _GLIBCXX_RESOLVE_LIB_DEFECTS
689  // DR 761. unordered_map needs an at() member function.
690  mapped_type&
691  at(const key_type& __k);
692 
693  const mapped_type&
694  at(const key_type& __k) const;
695  };
696 
697  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
698  typename _H1, typename _H2, typename _Hash,
699  typename _RehashPolicy, typename _Traits>
700  auto
701  _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
702  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
703  operator[](const key_type& __k)
704  -> mapped_type&
705  {
706  __hashtable* __h = static_cast<__hashtable*>(this);
707  __hash_code __code = __h->_M_hash_code(__k);
708  std::size_t __bkt = __h->_M_bucket_index(__k, __code);
709  if (__node_type* __node = __h->_M_find_node(__bkt, __k, __code))
710  return __node->_M_v().second;
711 
712  typename __hashtable::_Scoped_node __node {
713  __h,
716  std::tuple<>()
717  };
718  auto __pos
719  = __h->_M_insert_unique_node(__k, __bkt, __code, __node._M_node);
720  __node._M_node = nullptr;
721  return __pos->second;
722  }
723 
724  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
725  typename _H1, typename _H2, typename _Hash,
726  typename _RehashPolicy, typename _Traits>
727  auto
728  _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
729  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
730  operator[](key_type&& __k)
731  -> mapped_type&
732  {
733  __hashtable* __h = static_cast<__hashtable*>(this);
734  __hash_code __code = __h->_M_hash_code(__k);
735  std::size_t __bkt = __h->_M_bucket_index(__k, __code);
736  if (__node_type* __node = __h->_M_find_node(__bkt, __k, __code))
737  return __node->_M_v().second;
738 
739  typename __hashtable::_Scoped_node __node {
740  __h,
743  std::tuple<>()
744  };
745  auto __pos
746  = __h->_M_insert_unique_node(__k, __bkt, __code, __node._M_node);
747  __node._M_node = nullptr;
748  return __pos->second;
749  }
750 
751  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
752  typename _H1, typename _H2, typename _Hash,
753  typename _RehashPolicy, typename _Traits>
754  auto
755  _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
756  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
757  at(const key_type& __k)
758  -> mapped_type&
759  {
760  __hashtable* __h = static_cast<__hashtable*>(this);
761  __hash_code __code = __h->_M_hash_code(__k);
762  std::size_t __bkt = __h->_M_bucket_index(__k, __code);
763  __node_type* __p = __h->_M_find_node(__bkt, __k, __code);
764 
765  if (!__p)
766  __throw_out_of_range(__N("_Map_base::at"));
767  return __p->_M_v().second;
768  }
769 
770  template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
771  typename _H1, typename _H2, typename _Hash,
772  typename _RehashPolicy, typename _Traits>
773  auto
774  _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
775  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
776  at(const key_type& __k) const
777  -> const mapped_type&
778  {
779  const __hashtable* __h = static_cast<const __hashtable*>(this);
780  __hash_code __code = __h->_M_hash_code(__k);
781  std::size_t __bkt = __h->_M_bucket_index(__k, __code);
782  __node_type* __p = __h->_M_find_node(__bkt, __k, __code);
783 
784  if (!__p)
785  __throw_out_of_range(__N("_Map_base::at"));
786  return __p->_M_v().second;
787  }
788 
789  /**
790  * Primary class template _Insert_base.
791  *
792  * Defines @c insert member functions appropriate to all _Hashtables.
793  */
794  template<typename _Key, typename _Value, typename _Alloc,
795  typename _ExtractKey, typename _Equal,
796  typename _H1, typename _H2, typename _Hash,
797  typename _RehashPolicy, typename _Traits>
799  {
800  protected:
801  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
802  _Equal, _H1, _H2, _Hash,
803  _RehashPolicy, _Traits>;
804 
805  using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
806  _Equal, _H1, _H2, _Hash,
807  _Traits>;
808 
809  using value_type = typename __hashtable_base::value_type;
810  using iterator = typename __hashtable_base::iterator;
811  using const_iterator = typename __hashtable_base::const_iterator;
812  using size_type = typename __hashtable_base::size_type;
813 
814  using __unique_keys = typename __hashtable_base::__unique_keys;
815  using __ireturn_type = typename __hashtable_base::__ireturn_type;
817  using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
818  using __node_gen_type = _AllocNode<__node_alloc_type>;
819 
820  __hashtable&
821  _M_conjure_hashtable()
822  { return *(static_cast<__hashtable*>(this)); }
823 
824  template<typename _InputIterator, typename _NodeGetter>
825  void
826  _M_insert_range(_InputIterator __first, _InputIterator __last,
827  const _NodeGetter&, true_type);
828 
829  template<typename _InputIterator, typename _NodeGetter>
830  void
831  _M_insert_range(_InputIterator __first, _InputIterator __last,
832  const _NodeGetter&, false_type);
833 
834  public:
835  __ireturn_type
836  insert(const value_type& __v)
837  {
838  __hashtable& __h = _M_conjure_hashtable();
839  __node_gen_type __node_gen(__h);
840  return __h._M_insert(__v, __node_gen, __unique_keys());
841  }
842 
843  iterator
844  insert(const_iterator __hint, const value_type& __v)
845  {
846  __hashtable& __h = _M_conjure_hashtable();
847  __node_gen_type __node_gen(__h);
848  return __h._M_insert(__hint, __v, __node_gen, __unique_keys());
849  }
850 
851  void
852  insert(initializer_list<value_type> __l)
853  { this->insert(__l.begin(), __l.end()); }
854 
855  template<typename _InputIterator>
856  void
857  insert(_InputIterator __first, _InputIterator __last)
858  {
859  __hashtable& __h = _M_conjure_hashtable();
860  __node_gen_type __node_gen(__h);
861  return _M_insert_range(__first, __last, __node_gen, __unique_keys());
862  }
863  };
864 
865  template<typename _Key, typename _Value, typename _Alloc,
866  typename _ExtractKey, typename _Equal,
867  typename _H1, typename _H2, typename _Hash,
868  typename _RehashPolicy, typename _Traits>
869  template<typename _InputIterator, typename _NodeGetter>
870  void
871  _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
872  _RehashPolicy, _Traits>::
873  _M_insert_range(_InputIterator __first, _InputIterator __last,
874  const _NodeGetter& __node_gen, true_type)
875  {
876  size_type __n_elt = __detail::__distance_fw(__first, __last);
877  if (__n_elt == 0)
878  return;
879 
880  __hashtable& __h = _M_conjure_hashtable();
881  for (; __first != __last; ++__first)
882  {
883  if (__h._M_insert(*__first, __node_gen, __unique_keys(),
884  __n_elt).second)
885  __n_elt = 1;
886  else if (__n_elt != 1)
887  --__n_elt;
888  }
889  }
890 
891  template<typename _Key, typename _Value, typename _Alloc,
892  typename _ExtractKey, typename _Equal,
893  typename _H1, typename _H2, typename _Hash,
894  typename _RehashPolicy, typename _Traits>
895  template<typename _InputIterator, typename _NodeGetter>
896  void
897  _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
898  _RehashPolicy, _Traits>::
899  _M_insert_range(_InputIterator __first, _InputIterator __last,
900  const _NodeGetter& __node_gen, false_type)
901  {
902  using __rehash_type = typename __hashtable::__rehash_type;
903  using __rehash_state = typename __hashtable::__rehash_state;
904  using pair_type = std::pair<bool, std::size_t>;
905 
906  size_type __n_elt = __detail::__distance_fw(__first, __last);
907  if (__n_elt == 0)
908  return;
909 
910  __hashtable& __h = _M_conjure_hashtable();
911  __rehash_type& __rehash = __h._M_rehash_policy;
912  const __rehash_state& __saved_state = __rehash._M_state();
913  pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count,
914  __h._M_element_count,
915  __n_elt);
916 
917  if (__do_rehash.first)
918  __h._M_rehash(__do_rehash.second, __saved_state);
919 
920  for (; __first != __last; ++__first)
921  __h._M_insert(*__first, __node_gen, __unique_keys());
922  }
923 
924  /**
925  * Primary class template _Insert.
926  *
927  * Defines @c insert member functions that depend on _Hashtable policies,
928  * via partial specializations.
929  */
930  template<typename _Key, typename _Value, typename _Alloc,
931  typename _ExtractKey, typename _Equal,
932  typename _H1, typename _H2, typename _Hash,
933  typename _RehashPolicy, typename _Traits,
934  bool _Constant_iterators = _Traits::__constant_iterators::value>
935  struct _Insert;
936 
937  /// Specialization.
938  template<typename _Key, typename _Value, typename _Alloc,
939  typename _ExtractKey, typename _Equal,
940  typename _H1, typename _H2, typename _Hash,
941  typename _RehashPolicy, typename _Traits>
942  struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
943  _RehashPolicy, _Traits, true>
944  : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
945  _H1, _H2, _Hash, _RehashPolicy, _Traits>
946  {
947  using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
948  _Equal, _H1, _H2, _Hash,
949  _RehashPolicy, _Traits>;
950 
951  using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
952  _Equal, _H1, _H2, _Hash,
953  _Traits>;
954 
955  using value_type = typename __base_type::value_type;
956  using iterator = typename __base_type::iterator;
957  using const_iterator = typename __base_type::const_iterator;
958 
959  using __unique_keys = typename __base_type::__unique_keys;
960  using __ireturn_type = typename __hashtable_base::__ireturn_type;
961  using __hashtable = typename __base_type::__hashtable;
962  using __node_gen_type = typename __base_type::__node_gen_type;
963 
964  using __base_type::insert;
965 
966  __ireturn_type
967  insert(value_type&& __v)
968  {
969  __hashtable& __h = this->_M_conjure_hashtable();
970  __node_gen_type __node_gen(__h);
971  return __h._M_insert(std::move(__v), __node_gen, __unique_keys());
972  }
973 
974  iterator
975  insert(const_iterator __hint, value_type&& __v)
976  {
977  __hashtable& __h = this->_M_conjure_hashtable();
978  __node_gen_type __node_gen(__h);
979  return __h._M_insert(__hint, std::move(__v), __node_gen,
980  __unique_keys());
981  }
982  };
983 
984  /// Specialization.
985  template<typename _Key, typename _Value, typename _Alloc,
986  typename _ExtractKey, typename _Equal,
987  typename _H1, typename _H2, typename _Hash,
988  typename _RehashPolicy, typename _Traits>
989  struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
990  _RehashPolicy, _Traits, false>
991  : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
992  _H1, _H2, _Hash, _RehashPolicy, _Traits>
993  {
994  using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
995  _Equal, _H1, _H2, _Hash,
996  _RehashPolicy, _Traits>;
997  using value_type = typename __base_type::value_type;
998  using iterator = typename __base_type::iterator;
999  using const_iterator = typename __base_type::const_iterator;
1000 
1001  using __unique_keys = typename __base_type::__unique_keys;
1002  using __hashtable = typename __base_type::__hashtable;
1003  using __ireturn_type = typename __base_type::__ireturn_type;
1004 
1005  using __base_type::insert;
1006 
1007  template<typename _Pair>
1009 
1010  template<typename _Pair>
1012 
1013  template<typename _Pair>
1014  using _IFconsp = typename _IFcons<_Pair>::type;
1015 
1016  template<typename _Pair, typename = _IFconsp<_Pair>>
1017  __ireturn_type
1018  insert(_Pair&& __v)
1019  {
1020  __hashtable& __h = this->_M_conjure_hashtable();
1021  return __h._M_emplace(__unique_keys(), std::forward<_Pair>(__v));
1022  }
1023 
1024  template<typename _Pair, typename = _IFconsp<_Pair>>
1025  iterator
1026  insert(const_iterator __hint, _Pair&& __v)
1027  {
1028  __hashtable& __h = this->_M_conjure_hashtable();
1029  return __h._M_emplace(__hint, __unique_keys(),
1030  std::forward<_Pair>(__v));
1031  }
1032  };
1033 
1034  template<typename _Policy>
1035  using __has_load_factor = typename _Policy::__has_load_factor;
1036 
1037  /**
1038  * Primary class template _Rehash_base.
1039  *
1040  * Give hashtable the max_load_factor functions and reserve iff the
1041  * rehash policy supports it.
1042  */
1043  template<typename _Key, typename _Value, typename _Alloc,
1044  typename _ExtractKey, typename _Equal,
1045  typename _H1, typename _H2, typename _Hash,
1046  typename _RehashPolicy, typename _Traits,
1047  typename =
1048  __detected_or_t<false_type, __has_load_factor, _RehashPolicy>>
1050 
1051  /// Specialization when rehash policy doesn't provide load factor management.
1052  template<typename _Key, typename _Value, typename _Alloc,
1053  typename _ExtractKey, typename _Equal,
1054  typename _H1, typename _H2, typename _Hash,
1055  typename _RehashPolicy, typename _Traits>
1056  struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1057  _H1, _H2, _Hash, _RehashPolicy, _Traits,
1058  false_type>
1059  {
1060  };
1061 
1062  /// Specialization when rehash policy provide load factor management.
1063  template<typename _Key, typename _Value, typename _Alloc,
1064  typename _ExtractKey, typename _Equal,
1065  typename _H1, typename _H2, typename _Hash,
1066  typename _RehashPolicy, typename _Traits>
1067  struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1068  _H1, _H2, _Hash, _RehashPolicy, _Traits,
1069  true_type>
1070  {
1071  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1072  _Equal, _H1, _H2, _Hash,
1073  _RehashPolicy, _Traits>;
1074 
1075  float
1076  max_load_factor() const noexcept
1077  {
1078  const __hashtable* __this = static_cast<const __hashtable*>(this);
1079  return __this->__rehash_policy().max_load_factor();
1080  }
1081 
1082  void
1083  max_load_factor(float __z)
1084  {
1085  __hashtable* __this = static_cast<__hashtable*>(this);
1086  __this->__rehash_policy(_RehashPolicy(__z));
1087  }
1088 
1089  void
1090  reserve(std::size_t __n)
1091  {
1092  __hashtable* __this = static_cast<__hashtable*>(this);
1093  __this->rehash(__this->__rehash_policy()._M_bkt_for_elements(__n));
1094  }
1095  };
1096 
1097  /**
1098  * Primary class template _Hashtable_ebo_helper.
1099  *
1100  * Helper class using EBO when it is not forbidden (the type is not
1101  * final) and when it is worth it (the type is empty.)
1102  */
1103  template<int _Nm, typename _Tp,
1104  bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
1106 
1107  /// Specialization using EBO.
1108  template<int _Nm, typename _Tp>
1109  struct _Hashtable_ebo_helper<_Nm, _Tp, true>
1110  : private _Tp
1111  {
1112  _Hashtable_ebo_helper() = default;
1113 
1114  template<typename _OtherTp>
1115  _Hashtable_ebo_helper(_OtherTp&& __tp)
1116  : _Tp(std::forward<_OtherTp>(__tp))
1117  { }
1118 
1119  const _Tp& _M_cget() const { return static_cast<const _Tp&>(*this); }
1120  _Tp& _M_get() { return static_cast<_Tp&>(*this); }
1121  };
1122 
1123  /// Specialization not using EBO.
1124  template<int _Nm, typename _Tp>
1125  struct _Hashtable_ebo_helper<_Nm, _Tp, false>
1126  {
1127  _Hashtable_ebo_helper() = default;
1128 
1129  template<typename _OtherTp>
1130  _Hashtable_ebo_helper(_OtherTp&& __tp)
1131  : _M_tp(std::forward<_OtherTp>(__tp))
1132  { }
1133 
1134  const _Tp& _M_cget() const { return _M_tp; }
1135  _Tp& _M_get() { return _M_tp; }
1136 
1137  private:
1138  _Tp _M_tp;
1139  };
1140 
1141  /**
1142  * Primary class template _Local_iterator_base.
1143  *
1144  * Base class for local iterators, used to iterate within a bucket
1145  * but not between buckets.
1146  */
1147  template<typename _Key, typename _Value, typename _ExtractKey,
1148  typename _H1, typename _H2, typename _Hash,
1149  bool __cache_hash_code>
1151 
1152  /**
1153  * Primary class template _Hash_code_base.
1154  *
1155  * Encapsulates two policy issues that aren't quite orthogonal.
1156  * (1) the difference between using a ranged hash function and using
1157  * the combination of a hash function and a range-hashing function.
1158  * In the former case we don't have such things as hash codes, so
1159  * we have a dummy type as placeholder.
1160  * (2) Whether or not we cache hash codes. Caching hash codes is
1161  * meaningless if we have a ranged hash function.
1162  *
1163  * We also put the key extraction objects here, for convenience.
1164  * Each specialization derives from one or more of the template
1165  * parameters to benefit from Ebo. This is important as this type
1166  * is inherited in some cases by the _Local_iterator_base type used
1167  * to implement local_iterator and const_local_iterator. As with
1168  * any iterator type we prefer to make it as small as possible.
1169  *
1170  * Primary template is unused except as a hook for specializations.
1171  */
1172  template<typename _Key, typename _Value, typename _ExtractKey,
1173  typename _H1, typename _H2, typename _Hash,
1174  bool __cache_hash_code>
1176 
1177  /// Specialization: ranged hash function, no caching hash codes. H1
1178  /// and H2 are provided but ignored. We define a dummy hash code type.
1179  template<typename _Key, typename _Value, typename _ExtractKey,
1180  typename _H1, typename _H2, typename _Hash>
1181  struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false>
1182  : private _Hashtable_ebo_helper<0, _ExtractKey>,
1183  private _Hashtable_ebo_helper<1, _Hash>
1184  {
1185  private:
1188 
1189  protected:
1190  typedef void* __hash_code;
1192 
1193  // We need the default constructor for the local iterators and _Hashtable
1194  // default constructor.
1195  _Hash_code_base() = default;
1196 
1197  _Hash_code_base(const _ExtractKey& __ex, const _H1&, const _H2&,
1198  const _Hash& __h)
1199  : __ebo_extract_key(__ex), __ebo_hash(__h) { }
1200 
1201  __hash_code
1202  _M_hash_code(const _Key& __key) const
1203  { return 0; }
1204 
1205  std::size_t
1206  _M_bucket_index(const _Key& __k, __hash_code,
1207  std::size_t __bkt_count) const
1208  { return _M_ranged_hash()(__k, __bkt_count); }
1209 
1210  std::size_t
1211  _M_bucket_index(const __node_type* __p, std::size_t __bkt_count) const
1212  noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>(),
1213  (std::size_t)0)) )
1214  { return _M_ranged_hash()(_M_extract()(__p->_M_v()), __bkt_count); }
1215 
1216  void
1217  _M_store_code(__node_type*, __hash_code) const
1218  { }
1219 
1220  void
1221  _M_copy_code(__node_type*, const __node_type*) const
1222  { }
1223 
1224  void
1225  _M_swap(_Hash_code_base& __x)
1226  {
1227  std::swap(__ebo_extract_key::_M_get(),
1228  __x.__ebo_extract_key::_M_get());
1229  std::swap(__ebo_hash::_M_get(), __x.__ebo_hash::_M_get());
1230  }
1231 
1232  const _ExtractKey&
1233  _M_extract() const { return __ebo_extract_key::_M_cget(); }
1234 
1235  const _Hash&
1236  _M_ranged_hash() const { return __ebo_hash::_M_cget(); }
1237  };
1238 
1239  // No specialization for ranged hash function while caching hash codes.
1240  // That combination is meaningless, and trying to do it is an error.
1241 
1242  /// Specialization: ranged hash function, cache hash codes. This
1243  /// combination is meaningless, so we provide only a declaration
1244  /// and no definition.
1245  template<typename _Key, typename _Value, typename _ExtractKey,
1246  typename _H1, typename _H2, typename _Hash>
1247  struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>;
1248 
1249  /// Specialization: hash function and range-hashing function, no
1250  /// caching of hash codes.
1251  /// Provides typedef and accessor required by C++ 11.
1252  template<typename _Key, typename _Value, typename _ExtractKey,
1253  typename _H1, typename _H2>
1254  struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1255  _Default_ranged_hash, false>
1256  : private _Hashtable_ebo_helper<0, _ExtractKey>,
1257  private _Hashtable_ebo_helper<1, _H1>,
1258  private _Hashtable_ebo_helper<2, _H2>
1259  {
1260  private:
1264 
1265  // Gives the local iterator implementation access to _M_bucket_index().
1266  friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
1267  _Default_ranged_hash, false>;
1268 
1269  public:
1270  typedef _H1 hasher;
1271 
1272  hasher
1273  hash_function() const
1274  { return _M_h1(); }
1275 
1276  protected:
1277  typedef std::size_t __hash_code;
1279 
1280  // We need the default constructor for the local iterators and _Hashtable
1281  // default constructor.
1282  _Hash_code_base() = default;
1283 
1284  _Hash_code_base(const _ExtractKey& __ex,
1285  const _H1& __h1, const _H2& __h2,
1286  const _Default_ranged_hash&)
1287  : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1288 
1289  __hash_code
1290  _M_hash_code(const _Key& __k) const
1291  {
1292  static_assert(__is_invocable<const _H1&, const _Key&>{},
1293  "hash function must be invocable with an argument of key type");
1294  return _M_h1()(__k);
1295  }
1296 
1297  std::size_t
1298  _M_bucket_index(const _Key&, __hash_code __c,
1299  std::size_t __bkt_count) const
1300  { return _M_h2()(__c, __bkt_count); }
1301 
1302  std::size_t
1303  _M_bucket_index(const __node_type* __p, std::size_t __bkt_count) const
1304  noexcept( noexcept(declval<const _H1&>()(declval<const _Key&>()))
1305  && noexcept(declval<const _H2&>()((__hash_code)0,
1306  (std::size_t)0)) )
1307  { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v())), __bkt_count); }
1308 
1309  void
1310  _M_store_code(__node_type*, __hash_code) const
1311  { }
1312 
1313  void
1314  _M_copy_code(__node_type*, const __node_type*) const
1315  { }
1316 
1317  void
1318  _M_swap(_Hash_code_base& __x)
1319  {
1320  std::swap(__ebo_extract_key::_M_get(),
1321  __x.__ebo_extract_key::_M_get());
1322  std::swap(__ebo_h1::_M_get(), __x.__ebo_h1::_M_get());
1323  std::swap(__ebo_h2::_M_get(), __x.__ebo_h2::_M_get());
1324  }
1325 
1326  const _ExtractKey&
1327  _M_extract() const { return __ebo_extract_key::_M_cget(); }
1328 
1329  const _H1&
1330  _M_h1() const { return __ebo_h1::_M_cget(); }
1331 
1332  const _H2&
1333  _M_h2() const { return __ebo_h2::_M_cget(); }
1334  };
1335 
1336  /// Specialization: hash function and range-hashing function,
1337  /// caching hash codes. H is provided but ignored. Provides
1338  /// typedef and accessor required by C++ 11.
1339  template<typename _Key, typename _Value, typename _ExtractKey,
1340  typename _H1, typename _H2>
1341  struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1342  _Default_ranged_hash, true>
1343  : private _Hashtable_ebo_helper<0, _ExtractKey>,
1344  private _Hashtable_ebo_helper<1, _H1>,
1345  private _Hashtable_ebo_helper<2, _H2>
1346  {
1347  private:
1348  // Gives the local iterator implementation access to _M_h2().
1349  friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
1350  _Default_ranged_hash, true>;
1351 
1355 
1356  public:
1357  typedef _H1 hasher;
1358 
1359  hasher
1360  hash_function() const
1361  { return _M_h1(); }
1362 
1363  protected:
1364  typedef std::size_t __hash_code;
1366 
1367  // We need the default constructor for _Hashtable default constructor.
1368  _Hash_code_base() = default;
1369  _Hash_code_base(const _ExtractKey& __ex,
1370  const _H1& __h1, const _H2& __h2,
1371  const _Default_ranged_hash&)
1372  : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1373 
1374  __hash_code
1375  _M_hash_code(const _Key& __k) const
1376  {
1377  static_assert(__is_invocable<const _H1&, const _Key&>{},
1378  "hash function must be invocable with an argument of key type");
1379  return _M_h1()(__k);
1380  }
1381 
1382  std::size_t
1383  _M_bucket_index(const _Key&, __hash_code __c,
1384  std::size_t __bkt_count) const
1385  { return _M_h2()(__c, __bkt_count); }
1386 
1387  std::size_t
1388  _M_bucket_index(const __node_type* __p, std::size_t __bkt_count) const
1389  noexcept( noexcept(declval<const _H2&>()((__hash_code)0,
1390  (std::size_t)0)) )
1391  { return _M_h2()(__p->_M_hash_code, __bkt_count); }
1392 
1393  void
1394  _M_store_code(__node_type* __n, __hash_code __c) const
1395  { __n->_M_hash_code = __c; }
1396 
1397  void
1398  _M_copy_code(__node_type* __to, const __node_type* __from) const
1399  { __to->_M_hash_code = __from->_M_hash_code; }
1400 
1401  void
1402  _M_swap(_Hash_code_base& __x)
1403  {
1404  std::swap(__ebo_extract_key::_M_get(),
1405  __x.__ebo_extract_key::_M_get());
1406  std::swap(__ebo_h1::_M_get(), __x.__ebo_h1::_M_get());
1407  std::swap(__ebo_h2::_M_get(), __x.__ebo_h2::_M_get());
1408  }
1409 
1410  const _ExtractKey&
1411  _M_extract() const { return __ebo_extract_key::_M_cget(); }
1412 
1413  const _H1&
1414  _M_h1() const { return __ebo_h1::_M_cget(); }
1415 
1416  const _H2&
1417  _M_h2() const { return __ebo_h2::_M_cget(); }
1418  };
1419 
1420  /// Partial specialization used when nodes contain a cached hash code.
1421  template<typename _Key, typename _Value, typename _ExtractKey,
1422  typename _H1, typename _H2, typename _Hash>
1423  struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1424  _H1, _H2, _Hash, true>
1425  : private _Hashtable_ebo_helper<0, _H2>
1426  {
1427  protected:
1429  using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1430  _H1, _H2, _Hash, true>;
1431 
1432  _Local_iterator_base() = default;
1435  std::size_t __bkt, std::size_t __bkt_count)
1436  : __base_type(__base._M_h2()),
1437  _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }
1438 
1439  void
1440  _M_incr()
1441  {
1442  _M_cur = _M_cur->_M_next();
1443  if (_M_cur)
1444  {
1445  std::size_t __bkt
1446  = __base_type::_M_get()(_M_cur->_M_hash_code,
1447  _M_bucket_count);
1448  if (__bkt != _M_bucket)
1449  _M_cur = nullptr;
1450  }
1451  }
1452 
1453  _Hash_node<_Value, true>* _M_cur;
1454  std::size_t _M_bucket;
1455  std::size_t _M_bucket_count;
1456 
1457  public:
1458  const void*
1459  _M_curr() const { return _M_cur; } // for equality ops
1460 
1461  std::size_t
1462  _M_get_bucket() const { return _M_bucket; } // for debug mode
1463  };
1464 
1465  // Uninitialized storage for a _Hash_code_base.
1466  // This type is DefaultConstructible and Assignable even if the
1467  // _Hash_code_base type isn't, so that _Local_iterator_base<..., false>
1468  // can be DefaultConstructible and Assignable.
1469  template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value>
1470  struct _Hash_code_storage
1471  {
1472  __gnu_cxx::__aligned_buffer<_Tp> _M_storage;
1473 
1474  _Tp*
1475  _M_h() { return _M_storage._M_ptr(); }
1476 
1477  const _Tp*
1478  _M_h() const { return _M_storage._M_ptr(); }
1479  };
1480 
1481  // Empty partial specialization for empty _Hash_code_base types.
1482  template<typename _Tp>
1483  struct _Hash_code_storage<_Tp, true>
1484  {
1485  static_assert( std::is_empty<_Tp>::value, "Type must be empty" );
1486 
1487  // As _Tp is an empty type there will be no bytes written/read through
1488  // the cast pointer, so no strict-aliasing violation.
1489  _Tp*
1490  _M_h() { return reinterpret_cast<_Tp*>(this); }
1491 
1492  const _Tp*
1493  _M_h() const { return reinterpret_cast<const _Tp*>(this); }
1494  };
1495 
1496  template<typename _Key, typename _Value, typename _ExtractKey,
1497  typename _H1, typename _H2, typename _Hash>
1498  using __hash_code_for_local_iter
1499  = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey,
1500  _H1, _H2, _Hash, false>>;
1501 
1502  // Partial specialization used when hash codes are not cached
1503  template<typename _Key, typename _Value, typename _ExtractKey,
1504  typename _H1, typename _H2, typename _Hash>
1505  struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1506  _H1, _H2, _Hash, false>
1507  : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _H1, _H2, _Hash>
1508  {
1509  protected:
1510  using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1511  _H1, _H2, _Hash, false>;
1512 
1513  _Local_iterator_base() : _M_bucket_count(-1) { }
1514 
1515  _Local_iterator_base(const __hash_code_base& __base,
1516  _Hash_node<_Value, false>* __p,
1517  std::size_t __bkt, std::size_t __bkt_count)
1518  : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count)
1519  { _M_init(__base); }
1520 
1521  ~_Local_iterator_base()
1522  {
1523  if (_M_bucket_count != -1)
1524  _M_destroy();
1525  }
1526 
1527  _Local_iterator_base(const _Local_iterator_base& __iter)
1528  : _M_cur(__iter._M_cur), _M_bucket(__iter._M_bucket),
1529  _M_bucket_count(__iter._M_bucket_count)
1530  {
1531  if (_M_bucket_count != -1)
1532  _M_init(*__iter._M_h());
1533  }
1534 
1535  _Local_iterator_base&
1536  operator=(const _Local_iterator_base& __iter)
1537  {
1538  if (_M_bucket_count != -1)
1539  _M_destroy();
1540  _M_cur = __iter._M_cur;
1541  _M_bucket = __iter._M_bucket;
1542  _M_bucket_count = __iter._M_bucket_count;
1543  if (_M_bucket_count != -1)
1544  _M_init(*__iter._M_h());
1545  return *this;
1546  }
1547 
1548  void
1549  _M_incr()
1550  {
1551  _M_cur = _M_cur->_M_next();
1552  if (_M_cur)
1553  {
1554  std::size_t __bkt = this->_M_h()->_M_bucket_index(_M_cur,
1555  _M_bucket_count);
1556  if (__bkt != _M_bucket)
1557  _M_cur = nullptr;
1558  }
1559  }
1560 
1561  _Hash_node<_Value, false>* _M_cur;
1562  std::size_t _M_bucket;
1563  std::size_t _M_bucket_count;
1564 
1565  void
1566  _M_init(const __hash_code_base& __base)
1567  { ::new(this->_M_h()) __hash_code_base(__base); }
1568 
1569  void
1570  _M_destroy() { this->_M_h()->~__hash_code_base(); }
1571 
1572  public:
1573  const void*
1574  _M_curr() const { return _M_cur; } // for equality ops and debug mode
1575 
1576  std::size_t
1577  _M_get_bucket() const { return _M_bucket; } // for debug mode
1578  };
1579 
1580  template<typename _Key, typename _Value, typename _ExtractKey,
1581  typename _H1, typename _H2, typename _Hash, bool __cache>
1582  inline bool
1583  operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1584  _H1, _H2, _Hash, __cache>& __x,
1585  const _Local_iterator_base<_Key, _Value, _ExtractKey,
1586  _H1, _H2, _Hash, __cache>& __y)
1587  { return __x._M_curr() == __y._M_curr(); }
1588 
1589  template<typename _Key, typename _Value, typename _ExtractKey,
1590  typename _H1, typename _H2, typename _Hash, bool __cache>
1591  inline bool
1592  operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1593  _H1, _H2, _Hash, __cache>& __x,
1594  const _Local_iterator_base<_Key, _Value, _ExtractKey,
1595  _H1, _H2, _Hash, __cache>& __y)
1596  { return __x._M_curr() != __y._M_curr(); }
1597 
1598  /// local iterators
1599  template<typename _Key, typename _Value, typename _ExtractKey,
1600  typename _H1, typename _H2, typename _Hash,
1601  bool __constant_iterators, bool __cache>
1603  : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1604  _H1, _H2, _Hash, __cache>
1605  {
1606  private:
1607  using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1608  _H1, _H2, _Hash, __cache>;
1609  using __hash_code_base = typename __base_type::__hash_code_base;
1610  public:
1611  typedef _Value value_type;
1612  typedef typename std::conditional<__constant_iterators,
1613  const _Value*, _Value*>::type
1614  pointer;
1615  typedef typename std::conditional<__constant_iterators,
1616  const _Value&, _Value&>::type
1617  reference;
1618  typedef std::ptrdiff_t difference_type;
1620 
1621  _Local_iterator() = default;
1622 
1623  _Local_iterator(const __hash_code_base& __base,
1625  std::size_t __bkt, std::size_t __bkt_count)
1626  : __base_type(__base, __n, __bkt, __bkt_count)
1627  { }
1628 
1629  reference
1630  operator*() const
1631  { return this->_M_cur->_M_v(); }
1632 
1633  pointer
1634  operator->() const
1635  { return this->_M_cur->_M_valptr(); }
1636 
1638  operator++()
1639  {
1640  this->_M_incr();
1641  return *this;
1642  }
1643 
1645  operator++(int)
1646  {
1647  _Local_iterator __tmp(*this);
1648  this->_M_incr();
1649  return __tmp;
1650  }
1651  };
1652 
1653  /// local const_iterators
1654  template<typename _Key, typename _Value, typename _ExtractKey,
1655  typename _H1, typename _H2, typename _Hash,
1656  bool __constant_iterators, bool __cache>
1658  : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1659  _H1, _H2, _Hash, __cache>
1660  {
1661  private:
1662  using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1663  _H1, _H2, _Hash, __cache>;
1664  using __hash_code_base = typename __base_type::__hash_code_base;
1665 
1666  public:
1667  typedef _Value value_type;
1668  typedef const _Value* pointer;
1669  typedef const _Value& reference;
1670  typedef std::ptrdiff_t difference_type;
1672 
1673  _Local_const_iterator() = default;
1674 
1675  _Local_const_iterator(const __hash_code_base& __base,
1677  std::size_t __bkt, std::size_t __bkt_count)
1678  : __base_type(__base, __n, __bkt, __bkt_count)
1679  { }
1680 
1681  _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey,
1682  _H1, _H2, _Hash,
1683  __constant_iterators,
1684  __cache>& __x)
1685  : __base_type(__x)
1686  { }
1687 
1688  reference
1689  operator*() const
1690  { return this->_M_cur->_M_v(); }
1691 
1692  pointer
1693  operator->() const
1694  { return this->_M_cur->_M_valptr(); }
1695 
1697  operator++()
1698  {
1699  this->_M_incr();
1700  return *this;
1701  }
1702 
1704  operator++(int)
1705  {
1706  _Local_const_iterator __tmp(*this);
1707  this->_M_incr();
1708  return __tmp;
1709  }
1710  };
1711 
1712  /**
1713  * Primary class template _Hashtable_base.
1714  *
1715  * Helper class adding management of _Equal functor to
1716  * _Hash_code_base type.
1717  *
1718  * Base class templates are:
1719  * - __detail::_Hash_code_base
1720  * - __detail::_Hashtable_ebo_helper
1721  */
1722  template<typename _Key, typename _Value,
1723  typename _ExtractKey, typename _Equal,
1724  typename _H1, typename _H2, typename _Hash, typename _Traits>
1725  struct _Hashtable_base
1726  : public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
1727  _Traits::__hash_cached::value>,
1728  private _Hashtable_ebo_helper<0, _Equal>
1729  {
1730  public:
1731  typedef _Key key_type;
1732  typedef _Value value_type;
1733  typedef _Equal key_equal;
1734  typedef std::size_t size_type;
1735  typedef std::ptrdiff_t difference_type;
1736 
1737  using __traits_type = _Traits;
1738  using __hash_cached = typename __traits_type::__hash_cached;
1739  using __constant_iterators = typename __traits_type::__constant_iterators;
1740  using __unique_keys = typename __traits_type::__unique_keys;
1741 
1742  using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1743  _H1, _H2, _Hash,
1744  __hash_cached::value>;
1745 
1746  using __hash_code = typename __hash_code_base::__hash_code;
1747  using __node_type = typename __hash_code_base::__node_type;
1748 
1749  using iterator = __detail::_Node_iterator<value_type,
1750  __constant_iterators::value,
1751  __hash_cached::value>;
1752 
1753  using const_iterator = __detail::_Node_const_iterator<value_type,
1754  __constant_iterators::value,
1755  __hash_cached::value>;
1756 
1757  using local_iterator = __detail::_Local_iterator<key_type, value_type,
1758  _ExtractKey, _H1, _H2, _Hash,
1759  __constant_iterators::value,
1760  __hash_cached::value>;
1761 
1762  using const_local_iterator = __detail::_Local_const_iterator<key_type,
1763  value_type,
1764  _ExtractKey, _H1, _H2, _Hash,
1765  __constant_iterators::value,
1766  __hash_cached::value>;
1767 
1768  using __ireturn_type = typename std::conditional<__unique_keys::value,
1770  iterator>::type;
1771  private:
1772  using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>;
1773 
1774  template<typename _NodeT>
1775  struct _Equal_hash_code
1776  {
1777  static bool
1778  _S_equals(__hash_code, const _NodeT&)
1779  { return true; }
1780  };
1781 
1782  template<typename _Ptr2>
1783  struct _Equal_hash_code<_Hash_node<_Ptr2, true>>
1784  {
1785  static bool
1786  _S_equals(__hash_code __c, const _Hash_node<_Ptr2, true>& __n)
1787  { return __c == __n._M_hash_code; }
1788  };
1789 
1790  protected:
1791  _Hashtable_base() = default;
1792  _Hashtable_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2,
1793  const _Hash& __hash, const _Equal& __eq)
1794  : __hash_code_base(__ex, __h1, __h2, __hash), _EqualEBO(__eq)
1795  { }
1796 
1797  bool
1798  _M_equals(const _Key& __k, __hash_code __c, __node_type* __n) const
1799  {
1800  static_assert(__is_invocable<const _Equal&, const _Key&, const _Key&>{},
1801  "key equality predicate must be invocable with two arguments of "
1802  "key type");
1803  return _Equal_hash_code<__node_type>::_S_equals(__c, *__n)
1804  && _M_eq()(__k, this->_M_extract()(__n->_M_v()));
1805  }
1806 
1807  void
1808  _M_swap(_Hashtable_base& __x)
1809  {
1810  __hash_code_base::_M_swap(__x);
1811  std::swap(_EqualEBO::_M_get(), __x._EqualEBO::_M_get());
1812  }
1813 
1814  const _Equal&
1815  _M_eq() const { return _EqualEBO::_M_cget(); }
1816  };
1817 
1818  /**
1819  * Primary class template _Equality.
1820  *
1821  * This is for implementing equality comparison for unordered
1822  * containers, per N3068, by John Lakos and Pablo Halpern.
1823  * Algorithmically, we follow closely the reference implementations
1824  * therein.
1825  */
1826  template<typename _Key, typename _Value, typename _Alloc,
1827  typename _ExtractKey, typename _Equal,
1828  typename _H1, typename _H2, typename _Hash,
1829  typename _RehashPolicy, typename _Traits,
1830  bool _Unique_keys = _Traits::__unique_keys::value>
1831  struct _Equality;
1832 
1833  /// unordered_map and unordered_set specializations.
1834  template<typename _Key, typename _Value, typename _Alloc,
1835  typename _ExtractKey, typename _Equal,
1836  typename _H1, typename _H2, typename _Hash,
1837  typename _RehashPolicy, typename _Traits>
1838  struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1839  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
1840  {
1841  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1842  _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1843 
1844  bool
1845  _M_equal(const __hashtable&) const;
1846  };
1847 
1848  template<typename _Key, typename _Value, typename _Alloc,
1849  typename _ExtractKey, typename _Equal,
1850  typename _H1, typename _H2, typename _Hash,
1851  typename _RehashPolicy, typename _Traits>
1852  bool
1853  _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1854  _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
1855  _M_equal(const __hashtable& __other) const
1856  {
1857  using __node_base = typename __hashtable::__node_base;
1858  using __node_type = typename __hashtable::__node_type;
1859  const __hashtable* __this = static_cast<const __hashtable*>(this);
1860  if (__this->size() != __other.size())
1861  return false;
1862 
1863  for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
1864  {
1865  std::size_t __ybkt = __other._M_bucket_index(__itx._M_cur);
1866  __node_base* __prev_n = __other._M_buckets[__ybkt];
1867  if (!__prev_n)
1868  return false;
1869 
1870  for (__node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);;
1871  __n = __n->_M_next())
1872  {
1873  if (__n->_M_v() == *__itx)
1874  break;
1875 
1876  if (!__n->_M_nxt
1877  || __other._M_bucket_index(__n->_M_next()) != __ybkt)
1878  return false;
1879  }
1880  }
1881 
1882  return true;
1883  }
1884 
1885  /// unordered_multiset and unordered_multimap specializations.
1886  template<typename _Key, typename _Value, typename _Alloc,
1887  typename _ExtractKey, typename _Equal,
1888  typename _H1, typename _H2, typename _Hash,
1889  typename _RehashPolicy, typename _Traits>
1890  struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1891  _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
1892  {
1893  using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1894  _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1895 
1896  bool
1897  _M_equal(const __hashtable&) const;
1898  };
1899 
1900  template<typename _Key, typename _Value, typename _Alloc,
1901  typename _ExtractKey, typename _Equal,
1902  typename _H1, typename _H2, typename _Hash,
1903  typename _RehashPolicy, typename _Traits>
1904  bool
1905  _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1906  _H1, _H2, _Hash, _RehashPolicy, _Traits, false>::
1907  _M_equal(const __hashtable& __other) const
1908  {
1909  using __node_base = typename __hashtable::__node_base;
1910  using __node_type = typename __hashtable::__node_type;
1911  const __hashtable* __this = static_cast<const __hashtable*>(this);
1912  if (__this->size() != __other.size())
1913  return false;
1914 
1915  for (auto __itx = __this->begin(); __itx != __this->end();)
1916  {
1917  std::size_t __x_count = 1;
1918  auto __itx_end = __itx;
1919  for (++__itx_end; __itx_end != __this->end()
1920  && __this->key_eq()(_ExtractKey()(*__itx),
1921  _ExtractKey()(*__itx_end));
1922  ++__itx_end)
1923  ++__x_count;
1924 
1925  std::size_t __ybkt = __other._M_bucket_index(__itx._M_cur);
1926  __node_base* __y_prev_n = __other._M_buckets[__ybkt];
1927  if (!__y_prev_n)
1928  return false;
1929 
1930  __node_type* __y_n = static_cast<__node_type*>(__y_prev_n->_M_nxt);
1931  for (;; __y_n = __y_n->_M_next())
1932  {
1933  if (__this->key_eq()(_ExtractKey()(__y_n->_M_v()),
1934  _ExtractKey()(*__itx)))
1935  break;
1936 
1937  if (!__y_n->_M_nxt
1938  || __other._M_bucket_index(__y_n->_M_next()) != __ybkt)
1939  return false;
1940  }
1941 
1942  typename __hashtable::const_iterator __ity(__y_n);
1943  for (auto __ity_end = __ity; __ity_end != __other.end(); ++__ity_end)
1944  if (--__x_count == 0)
1945  break;
1946 
1947  if (__x_count != 0)
1948  return false;
1949 
1950  if (!std::is_permutation(__itx, __itx_end, __ity))
1951  return false;
1952 
1953  __itx = __itx_end;
1954  }
1955  return true;
1956  }
1957 
1958  /**
1959  * This type deals with all allocation and keeps an allocator instance
1960  * through inheritance to benefit from EBO when possible.
1961  */
1962  template<typename _NodeAlloc>
1963  struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc>
1964  {
1965  private:
1966  using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>;
1967  public:
1968  using __node_type = typename _NodeAlloc::value_type;
1969  using __node_alloc_type = _NodeAlloc;
1970  // Use __gnu_cxx to benefit from _S_always_equal and al.
1971  using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>;
1972 
1973  using __value_alloc_traits = typename __node_alloc_traits::template
1974  rebind_traits<typename __node_type::value_type>;
1975 
1976  using __node_base = __detail::_Hash_node_base;
1977  using __bucket_type = __node_base*;
1978  using __bucket_alloc_type =
1979  __alloc_rebind<__node_alloc_type, __bucket_type>;
1980  using __bucket_alloc_traits = std::allocator_traits<__bucket_alloc_type>;
1981 
1982  _Hashtable_alloc() = default;
1983  _Hashtable_alloc(const _Hashtable_alloc&) = default;
1984  _Hashtable_alloc(_Hashtable_alloc&&) = default;
1985 
1986  template<typename _Alloc>
1987  _Hashtable_alloc(_Alloc&& __a)
1988  : __ebo_node_alloc(std::forward<_Alloc>(__a))
1989  { }
1990 
1991  __node_alloc_type&
1992  _M_node_allocator()
1993  { return __ebo_node_alloc::_M_get(); }
1994 
1995  const __node_alloc_type&
1996  _M_node_allocator() const
1997  { return __ebo_node_alloc::_M_cget(); }
1998 
1999  // Allocate a node and construct an element within it.
2000  template<typename... _Args>
2001  __node_type*
2002  _M_allocate_node(_Args&&... __args);
2003 
2004  // Destroy the element within a node and deallocate the node.
2005  void
2006  _M_deallocate_node(__node_type* __n);
2007 
2008  // Deallocate a node.
2009  void
2010  _M_deallocate_node_ptr(__node_type* __n);
2011 
2012  // Deallocate the linked list of nodes pointed to by __n.
2013  // The elements within the nodes are destroyed.
2014  void
2015  _M_deallocate_nodes(__node_type* __n);
2016 
2017  __bucket_type*
2018  _M_allocate_buckets(std::size_t __bkt_count);
2019 
2020  void
2021  _M_deallocate_buckets(__bucket_type*, std::size_t __bkt_count);
2022  };
2023 
2024  // Definitions of class template _Hashtable_alloc's out-of-line member
2025  // functions.
2026  template<typename _NodeAlloc>
2027  template<typename... _Args>
2028  auto
2029  _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args)
2030  -> __node_type*
2031  {
2032  auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1);
2033  __node_type* __n = std::__to_address(__nptr);
2034  __try
2035  {
2036  ::new ((void*)__n) __node_type;
2037  __node_alloc_traits::construct(_M_node_allocator(),
2038  __n->_M_valptr(),
2039  std::forward<_Args>(__args)...);
2040  return __n;
2041  }
2042  __catch(...)
2043  {
2044  __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1);
2045  __throw_exception_again;
2046  }
2047  }
2048 
2049  template<typename _NodeAlloc>
2050  void
2051  _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_type* __n)
2052  {
2053  __node_alloc_traits::destroy(_M_node_allocator(), __n->_M_valptr());
2054  _M_deallocate_node_ptr(__n);
2055  }
2056 
2057  template<typename _NodeAlloc>
2058  void
2059  _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node_ptr(__node_type* __n)
2060  {
2061  typedef typename __node_alloc_traits::pointer _Ptr;
2062  auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n);
2063  __n->~__node_type();
2064  __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1);
2065  }
2066 
2067  template<typename _NodeAlloc>
2068  void
2069  _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_type* __n)
2070  {
2071  while (__n)
2072  {
2073  __node_type* __tmp = __n;
2074  __n = __n->_M_next();
2075  _M_deallocate_node(__tmp);
2076  }
2077  }
2078 
2079  template<typename _NodeAlloc>
2080  typename _Hashtable_alloc<_NodeAlloc>::__bucket_type*
2081  _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __bkt_count)
2082  {
2083  __bucket_alloc_type __alloc(_M_node_allocator());
2084 
2085  auto __ptr = __bucket_alloc_traits::allocate(__alloc, __bkt_count);
2086  __bucket_type* __p = std::__to_address(__ptr);
2087  __builtin_memset(__p, 0, __bkt_count * sizeof(__bucket_type));
2088  return __p;
2089  }
2090 
2091  template<typename _NodeAlloc>
2092  void
2093  _Hashtable_alloc<_NodeAlloc>::_M_deallocate_buckets(__bucket_type* __bkts,
2094  std::size_t __bkt_count)
2095  {
2096  typedef typename __bucket_alloc_traits::pointer _Ptr;
2097  auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts);
2098  __bucket_alloc_type __alloc(_M_node_allocator());
2099  __bucket_alloc_traits::deallocate(__alloc, __ptr, __bkt_count);
2100  }
2101 
2102  //@} hashtable-detail
2103 } // namespace __detail
2104 _GLIBCXX_END_NAMESPACE_VERSION
2105 } // namespace std
2106 
2107 #endif // _HASHTABLE_POLICY_H
std::__detail::_Power2_rehash_policy
Rehash policy providing power of 2 bucket numbers. Avoids modulo operations.
Definition: hashtable_policy.h:523
std::__iterator_category
constexpr iterator_traits< _Iter >::iterator_category __iterator_category(const _Iter &)
Definition: stl_iterator_base_types.h:238
std::distance
constexpr iterator_traits< _InputIterator >::difference_type distance(_InputIterator __first, _InputIterator __last)
A generalization of pointer arithmetic.
Definition: stl_iterator_base_funcs.h:138
std::__detail::_Local_iterator
local iterators
Definition: hashtable_policy.h:1605
std::__detail::_Prime_rehash_policy
Default value for rehash policy. Bucket size is (usually) the smallest prime that keeps the load fact...
Definition: hashtable_policy.h:446
std::__detail::__clp2
std::size_t __clp2(std::size_t __n) noexcept
Compute closest power of 2 not less than __n.
Definition: hashtable_policy.h:508
std::tuple
Primary class template, tuple.
Definition: tuple:57
std::iterator
Common iterator class.
Definition: stl_iterator_base_types.h:128
std
ISO C++ entities toplevel namespace is std.
std::forward_iterator_tag
Forward iterators support a superset of input iterator operations.
Definition: stl_iterator_base_types.h:99
std::__detail::_Equality
Definition: hashtable_policy.h:1831
std::__detail::_Hashtable_alloc
Definition: hashtable_policy.h:98
std::true_type
integral_constant< bool, true > true_type
The type used as a compile-time boolean with true value.
Definition: type_traits:75
std::__detail::_Hashtable_base
Definition: hashtable_policy.h:58
std::input_iterator_tag
Marking input iterators.
Definition: stl_iterator_base_types.h:93
limits
tuple
std::__detail::_Node_const_iterator
Node const_iterators, used to iterate through all the hashtable.
Definition: hashtable_policy.h:371
__gnu_cxx::__alloc_traits
Uniform interface to C++98 and C++11 allocators.
Definition: ext/alloc_traits.h:52
std::__detail::_Insert_base
Definition: hashtable_policy.h:799
std::pointer_traits
Uniform interface to all pointer-like types.
Definition: ptr_traits.h:84
stl_algobase.h
std::__detail::_Map_base
Definition: hashtable_policy.h:645
std::__detail::_Node_iterator_base
Base class for node iterators.
Definition: hashtable_policy.h:289
std::__detail::_Hash_code_base
Definition: hashtable_policy.h:1175
std::__detail::_Hash_node
Definition: hashtable_policy.h:256
std::__detail::_Local_const_iterator
local const_iterators
Definition: hashtable_policy.h:1660
std::__detail::_Mask_range_hashing
Range hashing function assuming that second arg is a power of 2.
Definition: hashtable_policy.h:495
std::forward
constexpr _Tp && forward(typename std::remove_reference< _Tp >::type &__t) noexcept
Forward an lvalue.
Definition: move.h:76
std::__detail::_Hash_node_base
Definition: hashtable_policy.h:215
std::integral_constant
integral_constant
Definition: type_traits:58
std::__detail::_Default_ranged_hash
Default ranged hash function H. In principle it should be a function object composed from objects of ...
Definition: hashtable_policy.h:441
std::numeric_limits::max
static constexpr _Tp max() noexcept
Definition: limits:321
std::allocator_traits
Uniform interface to all allocator types.
Definition: bits/alloc_traits.h:87
__gnu_debug::__base
constexpr _Iterator __base(_Iterator __it)
Definition: helper_functions.h:299
std::tuple_element
tuple_element
Definition: array:424
std::enable_if
Define a member typedef type only if a boolean constant is true.
Definition: type_traits:2183
std::is_empty
is_empty
Definition: type_traits:717
std::__detail::_Hash_node< _Value, false >
Definition: hashtable_policy.h:280
std::numeric_limits
Properties of fundamental types.
Definition: limits:313
std::__detail::_Mod_range_hashing
Default range hashing function: use division to fold a large number into the range [0,...
Definition: hashtable_policy.h:425
std::forward_as_tuple
constexpr tuple< _Elements &&... > forward_as_tuple(_Elements &&... __args) noexcept
std::forward_as_tuple
Definition: tuple:1486
std::__detail::_Hashtable_traits
Definition: hashtable_policy.h:200
std::initializer_list
initializer_list
Definition: initializer_list:48
std::__detail::_Node_iterator
Node iterators, used to iterate through all the hashtable.
Definition: hashtable_policy.h:320
std::operator*
constexpr complex< _Tp > operator*(const complex< _Tp > &__x, const complex< _Tp > &__y)
Return new complex value x times y.
Definition: complex:391
std::__detail::_Rehash_base
Definition: hashtable_policy.h:1049
std::__detail::_Hash_node< _Value, true >
Definition: hashtable_policy.h:265
std::iterator_traits
Traits class for iterators.
Definition: cpp_type_traits.h:423
std::__detail::_Insert
Definition: hashtable_policy.h:935
std::is_constructible
is_constructible
Definition: type_traits:908
std::conditional
Define a member typedef type to one of two argument types.
Definition: type_traits:92
std::pair
Struct holding two objects of arbitrary type.
Definition: stl_pair.h:213
std::piecewise_construct
constexpr piecewise_construct_t piecewise_construct
Tag for piecewise construction of std::pair objects.
Definition: stl_pair.h:83
std::move
constexpr std::remove_reference< _Tp >::type && move(_Tp &&__t) noexcept
Convert a value to an rvalue.
Definition: move.h:101
std::__detail::_Local_iterator_base
Definition: hashtable_policy.h:1150
std::__detail::_Hash_node_value_base
Definition: hashtable_policy.h:230
std::false_type
integral_constant< bool, false > false_type
The type used as a compile-time boolean with false value.
Definition: type_traits:78
std::_Hashtable
Definition: bits/hashtable.h:188
std::__detail::_Hashtable_ebo_helper
Definition: hashtable_policy.h:1105