This is the mail archive of the libstdc++@gcc.gnu.org mailing list for the libstdc++ project.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]
Other format: [Raw text]

[libstdc++] stl_vector.h cleanup



I have applied the patch from

    http://gcc.gnu.org/ml/libstdc++/2002-05/msg00180.html

to the trunk.  It has been bootstrapped and regression tested on
1686-pc-linux-gnu nightly since that date.

The patch itself is textually slightly different from then, so it's reposted
below for the record.



2002-05-21  Phil Edwards  <pme@gcc.gnu.org>

	* include/bits/stl_vector.h:  Reformat to follow C++STYLE.
	Doxygenate all public members.  Reorder to follow 14882.
	(vector::push_back(void)):  Remove previously-deprecated fn.
	(vector::insert(iterator), vector::_M_insert_aux(iterator)):
	Deprecate for removal in 3.3.


Index: include/bits/stl_vector.h
===================================================================
RCS file: /cvs/gcc/gcc/libstdc++-v3/include/bits/stl_vector.h,v
retrieving revision 1.21
diff -u -3 -p -r1.21 stl_vector.h
--- include/bits/stl_vector.h	16 Apr 2002 02:29:20 -0000	1.21
+++ include/bits/stl_vector.h	21 May 2002 20:38:15 -0000
@@ -65,22 +65,27 @@
 #include <bits/functexcept.h>
 #include <bits/concept_check.h>
 
+// Since this entire file is within namespace std, there's no reason to
+// waste two spaces along the left column.  Thus the leading indentation is
+// slightly violated from here on.
 namespace std
 {
 
-// The vector base class serves two purposes.  First, its constructor
-// and destructor allocate (but don't initialize) storage.  This makes
-// exception safety easier.  Second, the base class encapsulates all of
-// the differences between SGI-style allocators and standard-conforming
-// allocators.
-
-// Base class for ordinary allocators.
+/// @if maint Primary default version.  @endif
+/**
+ *  @if maint
+ *  See bits/stl_deque.h's _Deque_alloc_base for an explanation.
+ *  @endif
+*/
 template <class _Tp, class _Allocator, bool _IsStatic>
-class _Vector_alloc_base {
+class _Vector_alloc_base
+{
 public:
   typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
           allocator_type;
-  allocator_type get_allocator() const { return _M_data_allocator; }
+
+  allocator_type
+  get_allocator() const { return _M_data_allocator; }
 
   _Vector_alloc_base(const allocator_type& __a)
     : _M_data_allocator(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
@@ -92,20 +97,24 @@ protected:
   _Tp* _M_finish;
   _Tp* _M_end_of_storage;
 
-  _Tp* _M_allocate(size_t __n)
-    { return _M_data_allocator.allocate(__n); }
-  void _M_deallocate(_Tp* __p, size_t __n)
+  _Tp*
+  _M_allocate(size_t __n) { return _M_data_allocator.allocate(__n); }
+
+  void
+  _M_deallocate(_Tp* __p, size_t __n)
     { if (__p) _M_data_allocator.deallocate(__p, __n); }
 };
 
-// Specialization for allocators that have the property that we don't
-// actually have to store an allocator object.
+/// @if maint Specialization for instanceless allocators.  @endif
 template <class _Tp, class _Allocator>
-class _Vector_alloc_base<_Tp, _Allocator, true> {
+class _Vector_alloc_base<_Tp, _Allocator, true>
+{
 public:
   typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
           allocator_type;
-  allocator_type get_allocator() const { return allocator_type(); }
+
+  allocator_type
+  get_allocator() const { return allocator_type(); }
 
   _Vector_alloc_base(const allocator_type&)
     : _M_start(0), _M_finish(0), _M_end_of_storage(0)
@@ -117,12 +126,20 @@ protected:
   _Tp* _M_end_of_storage;
 
   typedef typename _Alloc_traits<_Tp, _Allocator>::_Alloc_type _Alloc_type;
-  _Tp* _M_allocate(size_t __n)
-    { return _Alloc_type::allocate(__n); }
-  void _M_deallocate(_Tp* __p, size_t __n)
-    { _Alloc_type::deallocate(__p, __n);}
+
+  _Tp*
+  _M_allocate(size_t __n) { return _Alloc_type::allocate(__n); }
+
+  void
+  _M_deallocate(_Tp* __p, size_t __n) { _Alloc_type::deallocate(__p, __n);}
 };
 
+
+/**
+ *  @if maint
+ *  See bits/stl_deque.h's _Deque_base for an explanation.
+ *  @endif
+*/
 template <class _Tp, class _Alloc>
 struct _Vector_base
   : public _Vector_alloc_base<_Tp, _Alloc,
@@ -133,8 +150,11 @@ struct _Vector_base
           _Base;
   typedef typename _Base::allocator_type allocator_type;
 
-  _Vector_base(const allocator_type& __a) : _Base(__a) {}
-  _Vector_base(size_t __n, const allocator_type& __a) : _Base(__a) {
+  _Vector_base(const allocator_type& __a)
+    : _Base(__a) {}
+  _Vector_base(size_t __n, const allocator_type& __a)
+    : _Base(__a)
+  {
     _M_start = _M_allocate(__n);
     _M_finish = _M_start;
     _M_end_of_storage = _M_start + __n;
@@ -157,10 +177,10 @@ struct _Vector_base
  *  <a href="tables.html#68">optional sequence requirements</a> with the
  *  %exception of @c push_front and @c pop_front.
  *
- *  In some terminology a vector can be described as a dynamic C-style array,
+ *  In some terminology a %vector can be described as a dynamic C-style array,
  *  it offers fast and efficient access to individual elements in any order
  *  and saves the user from worrying about memory and size allocation.
- *  Subscripting ( [] ) access is also provided as with C-style arrays.
+ *  Subscripting ( @c [] ) access is also provided as with C-style arrays.
 */
 template <class _Tp, class _Alloc = allocator<_Tp> >
 class vector : protected _Vector_base<_Tp, _Alloc>
@@ -168,9 +188,9 @@ class vector : protected _Vector_base<_T
   // concept requirements
   __glibcpp_class_requires(_Tp, _SGIAssignableConcept)
 
-private:
-  typedef _Vector_base<_Tp, _Alloc> _Base;
-  typedef vector<_Tp, _Alloc> vector_type;
+  typedef _Vector_base<_Tp, _Alloc>                     _Base;
+  typedef vector<_Tp, _Alloc>                           vector_type;
+
 public:
   typedef _Tp 						value_type;
   typedef value_type* 					pointer;
@@ -178,18 +198,22 @@ public:
   typedef __gnu_cxx::__normal_iterator<pointer, vector_type> 	iterator;
   typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
                                                         const_iterator;
+  typedef reverse_iterator<const_iterator>              const_reverse_iterator;
+  typedef reverse_iterator<iterator>                    reverse_iterator;
   typedef value_type& 					reference;
   typedef const value_type& 				const_reference;
   typedef size_t 					size_type;
   typedef ptrdiff_t 					difference_type;
-
-  typedef typename _Base::allocator_type allocator_type;
-  allocator_type get_allocator() const { return _Base::get_allocator(); }
-
-  typedef reverse_iterator<const_iterator> const_reverse_iterator;
-  typedef reverse_iterator<iterator> reverse_iterator;
+  typedef typename _Base::allocator_type                allocator_type;
 
 protected:
+  /** @if maint
+   *  These two functions and three data members are all from the top-most
+   *  base class, which varies depending on the type of %allocator.  They
+   *  should be pretty self-explanatory, as %vector uses a simple contiguous 
+   *  allocation scheme.
+   *  @endif
+  */
   using _Base::_M_allocate;
   using _Base::_M_deallocate;
   using _Base::_M_start;
@@ -198,199 +222,318 @@ protected:
 
 protected:
   void _M_insert_aux(iterator __position, const _Tp& __x);
+#ifdef _GLIBCPP_DEPRECATED
   void _M_insert_aux(iterator __position);
+#endif
 
 public:
+  // [23.2.4.1] construct/copy/destroy
+  // (assign() and get_allocator() are also listed in this section)
   /**
-   *  Returns a read/write iterator that points to the first element in the
-   *  vector.  Iteration is done in ordinary element order.
+   *  @brief  Default constructor creates no elements.
   */
-  iterator begin() { return iterator (_M_start); }
+  explicit
+  vector(const allocator_type& __a = allocator_type())
+    : _Base(__a) {}
 
   /**
-   *  Returns a read-only (constant) iterator that points to the first element
-   *  in the vector.  Iteration is done in ordinary element order.
+   *  @brief  Create a %vector with copies of an exemplar element.
+   *  @param  n  The number of elements to initially create.
+   *  @param  value  An element to copy.
+   * 
+   *  This constructor fills the %vector with @a n copies of @a value.
   */
-  const_iterator begin() const
-    { return const_iterator (_M_start); }
+  vector(size_type __n, const _Tp& __value,
+         const allocator_type& __a = allocator_type())
+    : _Base(__n, __a)
+    { _M_finish = uninitialized_fill_n(_M_start, __n, __value); }
 
   /**
-   *  Returns a read/write iterator that points one past the last element in
-   *  the vector.  Iteration is done in ordinary element order.
+   *  @brief  Create a %vector with default elements.
+   *  @param  n  The number of elements to initially create.
+   * 
+   *  This constructor fills the %vector with @a n copies of a
+   *  default-constructed element.
   */
-  iterator end() { return iterator (_M_finish); }
+  explicit
+  vector(size_type __n)
+    : _Base(__n, allocator_type())
+    { _M_finish = uninitialized_fill_n(_M_start, __n, _Tp()); }
 
   /**
-   *  Returns a read-only (constant) iterator that points one past the last
-   *  element in the vector.  Iteration is done in ordinary element order.
+   *  @brief  %Vector copy constructor.
+   *  @param  x  A %vector of identical element and allocator types.
+   * 
+   *  The newly-created %vector uses a copy of the allocation object used
+   *  by @a x.  All the elements of @a x are copied, but any extra memory in
+   *  @a x (for fast expansion) will not be copied.
   */
-  const_iterator end() const { return const_iterator (_M_finish); }
+  vector(const vector<_Tp, _Alloc>& __x)
+    : _Base(__x.size(), __x.get_allocator())
+    { _M_finish = uninitialized_copy(__x.begin(), __x.end(), _M_start); }
 
   /**
-   *  Returns a read/write reverse iterator that points to the last element in
-   *  the vector.  Iteration is done in reverse element order.
+   *  @brief  Builds a %vector from a range.
+   *  @param  first  An input iterator.
+   *  @param  last  An input iterator.
+   * 
+   *  Creats a %vector consisting of copies of the elements from [first,last).
+   *
+   *  If the iterators are forward, bidirectional, or random-access, then
+   *  this will call the elements' copy constructor N times (where N is
+   *  distance(first,last)) and do no memory reallocation.  But if only
+   *  input iterators are used, then this will do at most 2N calls to the
+   *  copy constructor, and logN memory reallocations.
   */
-  reverse_iterator rbegin()
-    { return reverse_iterator(end()); }
+  template <class _InputIterator>
+    vector(_InputIterator __first, _InputIterator __last,
+           const allocator_type& __a = allocator_type())
+	: _Base(__a)
+    {
+      // Check whether it's an integral type.  If so, it's not an iterator.
+      typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
+      _M_initialize_aux(__first, __last, _Integral());
+    }
 
+protected:
+  template<class _Integer>
+    void
+    _M_initialize_aux(_Integer __n, _Integer __value, __true_type)
+    {
+      _M_start = _M_allocate(__n);
+      _M_end_of_storage = _M_start + __n;
+      _M_finish = uninitialized_fill_n(_M_start, __n, __value);
+    }
+
+  template<class _InputIterator>
+    void
+    _M_initialize_aux(_InputIterator __first,_InputIterator __last,__false_type)
+    {
+      typedef typename iterator_traits<_InputIterator>::iterator_category
+                       _IterCategory;
+      _M_range_initialize(__first, __last, _IterCategory());
+    }
+
+public:
   /**
-   *  Returns a read-only (constant) reverse iterator that points to the last
-   *  element in the vector.  Iteration is done in reverse element order.
+   *  Creats a %vector consisting of copies of the elements from [first,last).
+   *
+   *  The dtor only erases the elements, and that if the elements
+   *  themselves are pointers, the pointed-to memory is not touched in any
+   *  way.  Managing the pointer is the user's responsibilty.
   */
-  const_reverse_iterator rbegin() const
-    { return const_reverse_iterator(end()); }
+  ~vector() { _Destroy(_M_start, _M_finish); }
 
   /**
-   *  Returns a read/write reverse iterator that points to one before the
-   *  first element in the vector.  Iteration is done in reverse element
-   *  order.
+   *  @brief  %Vector assignment operator.
+   *  @param  x  A %vector of identical element and allocator types.
+   * 
+   *  All the elements of @a x are copied, but any extra memory in @a x (for
+   *  fast expansion) will not be copied.  Unlike the copy constructor, the
+   *  allocator object is not copied.
   */
-  reverse_iterator rend()
-    { return reverse_iterator(begin()); }
+  vector<_Tp, _Alloc>&
+  operator=(const vector<_Tp, _Alloc>& __x);
 
   /**
-   *  Returns a read-only (constant) reverse iterator that points to one
-   *  before the first element in the vector.  Iteration is done in reverse
-   *  element order.
+   *  @brief  Assigns a given value to a %vector.
+   *  @param  n  Number of elements to be assigned.
+   *  @param  val  Value to be assigned.
+   *
+   *  This function fills a %vector with @a n copies of the given value.
+   *  Note that the assignment completely changes the %vector and that the
+   *  resulting %vector's size is the same as the number of elements assigned.
+   *  Old data may be lost.
   */
-  const_reverse_iterator rend() const
-    { return const_reverse_iterator(begin()); }
-
-  /**  Returns the number of elements in the vector.  */
-  size_type size() const
-    { return size_type(end() - begin()); }
+  void
+  assign(size_type __n, const _Tp& __val) { _M_fill_assign(__n, __val); }
 
-  /**  Returns the size of the largest possible vector.  */
-  size_type max_size() const
-    { return size_type(-1) / sizeof(_Tp); }
+protected:
+  void
+  _M_fill_assign(size_type __n, const _Tp& __val);
 
+public:
   /**
-   *  Returns the amount of memory that has been alocated for the current
-   *  elements (?).
+   *  @brief  Assigns a range to a %vector.
+   *  @param  first  An input iterator.
+   *  @param  last   An input iterator.
+   *
+   *  This function fills a %vector with copies of the elements in the
+   *  range [first,last).
+   *
+   *  Note that the assignment completely changes the %vector and that the
+   *  resulting %vector's size is the same as the number of elements assigned.
+   *  Old data may be lost.
   */
-  size_type capacity() const
-    { return size_type(const_iterator(_M_end_of_storage) - begin()); }
+  template<class _InputIterator>
+    void
+    assign(_InputIterator __first, _InputIterator __last)
+    {
+      typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
+      _M_assign_dispatch(__first, __last, _Integral());
+    }
+
+protected:
+  template<class _Integer>
+    void
+     _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
+     { _M_fill_assign((size_type) __n, (_Tp) __val); }
+
+  template<class _InputIter>
+    void
+    _M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type)
+    {
+      typedef typename iterator_traits<_InputIter>::iterator_category
+                       _IterCategory;
+      _M_assign_aux(__first, __last, _IterCategory());
+    }
+
+  template <class _InputIterator>
+    void 
+    _M_assign_aux(_InputIterator __first, _InputIterator __last,
+		  input_iterator_tag);
+
+  template <class _ForwardIterator>
+    void 
+    _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
+		  forward_iterator_tag);
+
+public:
+  /// Get a copy of the memory allocation object.
+  allocator_type
+  get_allocator() const { return _Base::get_allocator(); }
 
+  // iterators
   /**
-   *  Returns true if the vector is empty.  (Thus begin() would equal end().)
+   *  Returns a read/write iterator that points to the first element in the
+   *  %vector.  Iteration is done in ordinary element order.
   */
-  bool empty() const
-    { return begin() == end(); }
+  iterator
+  begin() { return iterator (_M_start); }
 
   /**
-   *  @brief  Subscript access to the data contained in the vector.
-   *  @param  n  The element for which data should be accessed.
-   *  @return  Read/write reference to data.
-   *
-   *  This operator allows for easy, array-style, data access.
-   *  Note that data access with this operator is unchecked and out_of_range
-   *  lookups are not defined. (For checked lookups see at().)
+   *  Returns a read-only (constant) iterator that points to the first element
+   *  in the %vector.  Iteration is done in ordinary element order.
   */
-  reference operator[](size_type __n) { return *(begin() + __n); }
+  const_iterator
+  begin() const { return const_iterator (_M_start); }
 
   /**
-   *  @brief  Subscript access to the data contained in the vector.
-   *  @param  n  The element for which data should be accessed.
-   *  @return  Read-only (constant) reference to data.
-   *
-   *  This operator allows for easy, array-style, data access.
-   *  Note that data access with this operator is unchecked and out_of_range
-   *  lookups are not defined. (For checked lookups see at().)
+   *  Returns a read/write iterator that points one past the last element in
+   *  the %vector.  Iteration is done in ordinary element order.
   */
-  const_reference operator[](size_type __n) const { return *(begin() + __n); }
-
-  void _M_range_check(size_type __n) const {
-    if (__n >= this->size())
-      __throw_out_of_range("vector");
-  }
+  iterator
+  end() { return iterator (_M_finish); }
 
   /**
-   *  @brief  Provides access to the data contained in the vector.
-   *  @param  n  The element for which data should be accessed.
-   *  @return  Read/write reference to data.
-   *
-   *  This function provides for safer data access.  The parameter is first
-   *  checked that it is in the range of the vector.  The function throws
-   *  out_of_range if the check fails.
+   *  Returns a read-only (constant) iterator that points one past the last
+   *  element in the %vector.  Iteration is done in ordinary element order.
   */
-  reference at(size_type __n)
-    { _M_range_check(__n); return (*this)[__n]; }
+  const_iterator
+  end() const { return const_iterator (_M_finish); }
 
   /**
-   *  @brief  Provides access to the data contained in the vector.
-   *  @param  n  The element for which data should be accessed.
-   *  @return  Read-only (constant) reference to data.
-   *
-   *  This function provides for safer data access.  The parameter is first
-   *  checked that it is in the range of the vector.  The function throws
-   *  out_of_range if the check fails.
+   *  Returns a read/write reverse iterator that points to the last element in
+   *  the %vector.  Iteration is done in reverse element order.
   */
-  const_reference at(size_type __n) const
-    { _M_range_check(__n); return (*this)[__n]; }
-
+  reverse_iterator
+  rbegin() { return reverse_iterator(end()); }
 
-  explicit vector(const allocator_type& __a = allocator_type())
-    : _Base(__a) {}
+  /**
+   *  Returns a read-only (constant) reverse iterator that points to the last
+   *  element in the %vector.  Iteration is done in reverse element order.
+  */
+  const_reverse_iterator
+  rbegin() const { return const_reverse_iterator(end()); }
 
-  vector(size_type __n, const _Tp& __value,
-         const allocator_type& __a = allocator_type())
-    : _Base(__n, __a)
-    { _M_finish = uninitialized_fill_n(_M_start, __n, __value); }
+  /**
+   *  Returns a read/write reverse iterator that points to one before the
+   *  first element in the %vector.  Iteration is done in reverse element
+   *  order.
+  */
+  reverse_iterator
+  rend() { return reverse_iterator(begin()); }
 
-  explicit vector(size_type __n)
-    : _Base(__n, allocator_type())
-    { _M_finish = uninitialized_fill_n(_M_start, __n, _Tp()); }
+  /**
+   *  Returns a read-only (constant) reverse iterator that points to one
+   *  before the first element in the %vector.  Iteration is done in reverse
+   *  element order.
+  */
+  const_reverse_iterator
+  rend() const { return const_reverse_iterator(begin()); }
 
-  vector(const vector<_Tp, _Alloc>& __x)
-    : _Base(__x.size(), __x.get_allocator())
-    { _M_finish = uninitialized_copy(__x.begin(), __x.end(), _M_start); }
+  // [23.2.4.2] capacity
+  /**  Returns the number of elements in the %vector.  */
+  size_type
+  size() const { return size_type(end() - begin()); }
 
-  // Check whether it's an integral type.  If so, it's not an iterator.
-  template <class _InputIterator>
-    vector(_InputIterator __first, _InputIterator __last,
-           const allocator_type& __a = allocator_type())
-	: _Base(__a)
-	{
-      typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
-      _M_initialize_aux(__first, __last, _Integral());
-    }
+  /**  Returns the size() of the largest possible %vector.  */
+  size_type
+  max_size() const { return size_type(-1) / sizeof(_Tp); }
 
-  template <class _Integer>
-    void _M_initialize_aux(_Integer __n, _Integer __value, __true_type)
-	{
-      _M_start = _M_allocate(__n);
-      _M_end_of_storage = _M_start + __n;
-      _M_finish = uninitialized_fill_n(_M_start, __n, __value);
-    }
+  /**
+   *  @brief  Resizes the %vector to the specified number of elements.
+   *  @param  new_size  Number of elements the %vector should contain.
+   *  @param  x  Data with which new elements should be populated.
+   *
+   *  This function will %resize the %vector to the specified number of
+   *  elements.  If the number is smaller than the %vector's current size the
+   *  %vector is truncated, otherwise the %vector is extended and new elements
+   *  are populated with given data.
+  */
+  void
+  resize(size_type __new_size, const _Tp& __x)
+  {
+    if (__new_size < size())
+      erase(begin() + __new_size, end());
+    else
+      insert(end(), __new_size - size(), __x);
+  }
 
-  template<class _InputIterator>
-    void
-	_M_initialize_aux(_InputIterator __first, _InputIterator __last, __false_type)
-	{
-	  typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory;
-	  _M_range_initialize(__first, __last, _IterCategory());
-	}
+  /**
+   *  @brief  Resizes the %vector to the specified number of elements.
+   *  @param  new_size  Number of elements the %vector should contain.
+   *
+   *  This function will resize the %vector to the specified number of
+   *  elements.  If the number is smaller than the %vector's current size the
+   *  %vector is truncated, otherwise the %vector is extended and new elements
+   *  are default-constructed.
+  */
+  void
+  resize(size_type __new_size) { resize(__new_size, _Tp()); }
 
-  ~vector()
-  { _Destroy(_M_start, _M_finish); }
+  /**
+   *  Returns the total number of elements that the %vector can hold before
+   *  needing to allocate more memory.
+  */
+  size_type
+  capacity() const
+    { return size_type(const_iterator(_M_end_of_storage) - begin()); }
 
-  vector<_Tp, _Alloc>& operator=(const vector<_Tp, _Alloc>& __x);
+  /**
+   *  Returns true if the %vector is empty.  (Thus begin() would equal end().)
+  */
+  bool
+  empty() const { return begin() == end(); }
 
   /**
    *  @brief  Attempt to preallocate enough memory for specified number of
    *          elements.
-   *  @param  n  Number of elements required
+   *  @param  n  Number of elements required.
+   *  @throw  std::length_error  If @a n exceeds @c max_size().
    *
-   *  This function attempts to reserve enough memory for the vector to hold
+   *  This function attempts to reserve enough memory for the %vector to hold
    *  the specified number of elements.  If the number requested is more than
-   *  max_size() length_error is thrown.
+   *  max_size(), length_error is thrown.
    *
    *  The advantage of this function is that if optimal code is a necessity
-   *  and the user can determine the number of elements that will be required
-   *  the user can reserve the memory and thus prevent a possible
-   *  reallocation of memory and copy of vector data.
+   *  and the user can determine the number of elements that will be required,
+   *  the user can reserve the memory in %advance, and thus prevent a possible
+   *  reallocation of memory and copying of %vector data.
   */
-  void reserve(size_type __n) {
+  void
+  reserve(size_type __n)   // FIXME should be out of class
+  {
     if (capacity() < __n) {
       const size_type __old_size = size();
       pointer __tmp = _M_allocate_and_copy(__n, _M_start, _M_finish);
@@ -402,88 +545,104 @@ public:
     }
   }
 
-  // assign(), a generalized assignment member function.  Two
-  // versions: one that takes a count, and one that takes a range.
-  // The range version is a member template, so we dispatch on whether
-  // or not the type is an integer.
-
+  // element access
   /**
-   *  @brief  Assigns a given value or range to a vector.
-   *  @param  n  Number of elements to be assigned.
-   *  @param  val  Value to be assigned.
+   *  @brief  Subscript access to the data contained in the %vector.
+   *  @param  n  The index of the element for which data should be accessed.
+   *  @return  Read/write reference to data.
    *
-   *  This function can be used to assign a range to a vector or fill it
-   *  with a specified number of copies of the given value.
-   *  Note that the assignment completely changes the vector and that the
-   *  resulting vector's size is the same as the number of elements assigned.
-   *  Old data may be lost.
+   *  This operator allows for easy, array-style, data access.
+   *  Note that data access with this operator is unchecked and out_of_range
+   *  lookups are not defined. (For checked lookups see at().)
   */
-  void assign(size_type __n, const _Tp& __val) { _M_fill_assign(__n, __val); }
-  void _M_fill_assign(size_type __n, const _Tp& __val);
+  reference
+  operator[](size_type __n) { return *(begin() + __n); }
 
-  template<class _InputIterator>
-    void
-    assign(_InputIterator __first, _InputIterator __last)
-    {
-      typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
-      _M_assign_dispatch(__first, __last, _Integral());
-    }
-
-  template<class _Integer>
-    void
-     _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
-     { _M_fill_assign((size_type) __n, (_Tp) __val); }
+  /**
+   *  @brief  Subscript access to the data contained in the %vector.
+   *  @param  n  The index of the element for which data should be accessed.
+   *  @return  Read-only (constant) reference to data.
+   *
+   *  This operator allows for easy, array-style, data access.
+   *  Note that data access with this operator is unchecked and out_of_range
+   *  lookups are not defined. (For checked lookups see at().)
+  */
+  const_reference
+  operator[](size_type __n) const { return *(begin() + __n); }
 
-  template<class _InputIter>
-    void
-    _M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type)
-    {
-      typedef typename iterator_traits<_InputIter>::iterator_category _IterCategory;
-      _M_assign_aux(__first, __last, _IterCategory());
-    }
+protected:
+  /// @if maint Safety check used only from at().  @endif
+  void
+  _M_range_check(size_type __n) const
+  {
+    if (__n >= this->size())
+      __throw_out_of_range("vector [] access out of range");
+  }
 
-  template <class _InputIterator>
-    void 
-    _M_assign_aux(_InputIterator __first, _InputIterator __last,
-		  input_iterator_tag);
+public:
+  /**
+   *  @brief  Provides access to the data contained in the %vector.
+   *  @param  n  The index of the element for which data should be accessed.
+   *  @return  Read/write reference to data.
+   *  @throw  std::out_of_range  If @a n is an invalid index.
+   *
+   *  This function provides for safer data access.  The parameter is first
+   *  checked that it is in the range of the vector.  The function throws
+   *  out_of_range if the check fails.
+  */
+  reference
+  at(size_type __n) { _M_range_check(__n); return (*this)[__n]; }
 
-  template <class _ForwardIterator>
-    void 
-    _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
-		  forward_iterator_tag);
+  /**
+   *  @brief  Provides access to the data contained in the %vector.
+   *  @param  n  The index of the element for which data should be accessed.
+   *  @return  Read-only (constant) reference to data.
+   *  @throw  std::out_of_range  If @a n is an invalid index.
+   *
+   *  This function provides for safer data access.  The parameter is first
+   *  checked that it is in the range of the vector.  The function throws
+   *  out_of_range if the check fails.
+  */
+  const_reference
+  at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; }
 
   /**
    *  Returns a read/write reference to the data at the first element of the
-   *  vector.
+   *  %vector.
   */
-  reference front() { return *begin(); }
+  reference
+  front() { return *begin(); }
 
   /**
    *  Returns a read-only (constant) reference to the data at the first
-   *  element of the vector.
+   *  element of the %vector.
   */
-  const_reference front() const { return *begin(); }
+  const_reference
+  front() const { return *begin(); }
 
   /**
    *  Returns a read/write reference to the data at the last element of the
-   *  vector.
+   *  %vector.
   */
-  reference back() { return *(end() - 1); }
+  reference
+  back() { return *(end() - 1); }
 
   /**
-   *  Returns a read-only (constant) reference to the data at the first
-   *  element of the vector.
+   *  Returns a read-only (constant) reference to the data at the last
+   *  element of the %vector.
   */
-  const_reference back() const { return *(end() - 1); }
+  const_reference
+  back() const { return *(end() - 1); }
 
+  // [23.2.4.3] modifiers
   /**
-   *  @brief  Add data to the end of the vector.
+   *  @brief  Add data to the end of the %vector.
    *  @param  x  Data to be added.
    *
    *  This is a typical stack operation.  The function creates an element at
-   *  the end of the vector and assigns the given data to it.
-   *  Due to the nature of a vector this operation can be done in constant
-   *  time if the vector has preallocated space available.
+   *  the end of the %vector and assigns the given data to it.
+   *  Due to the nature of a %vector this operation can be done in constant
+   *  time if the %vector has preallocated space available.
   */
   void
   push_back(const _Tp& __x)
@@ -496,43 +655,30 @@ public:
       _M_insert_aux(end(), __x);
   }
 
-#ifdef _GLIBCPP_DEPRECATED
   /**
-   *  Add an element to the end of the vector.  The element is
-   *  default-constructed.
+   *  @brief  Removes last element.
    *
-   *  @note You must define _GLIBCPP_DEPRECATED to make this visible; see
-   *        c++config.h.
+   *  This is a typical stack operation. It shrinks the %vector by one.
+   *
+   *  Note that no data is returned, and if the last element's data is
+   *  needed, it should be retrieved before pop_back() is called.
   */
   void
-  push_back()
-  {
-    if (_M_finish != _M_end_of_storage) {
-      _Construct(_M_finish);
-      ++_M_finish;
-    }
-    else
-      _M_insert_aux(end());
-  }
-#endif
-
-  void
-  swap(vector<_Tp, _Alloc>& __x)
+  pop_back()
   {
-    std::swap(_M_start, __x._M_start);
-    std::swap(_M_finish, __x._M_finish);
-    std::swap(_M_end_of_storage, __x._M_end_of_storage);
+    --_M_finish;
+    _Destroy(_M_finish);
   }
 
   /**
-   *  @brief  Inserts given value into vector at specified element.
-   *  @param  position  An iterator that points to the element where data
-   *                    should be inserted.
+   *  @brief  Inserts given value into %vector before specified iterator.
+   *  @param  position  An iterator into the %vector.
    *  @param  x  Data to be inserted.
    *  @return  An iterator that points to the inserted data.
    *
-   *  This function will insert the given value into the specified location.
-   *  Note that this kind of operation could be expensive for a vector and if
+   *  This function will insert a copy of the given value before the specified
+   *  location.
+   *  Note that this kind of operation could be expensive for a %vector and if
    *  it is frequently used the user should consider using std::list.
   */
   iterator
@@ -548,16 +694,21 @@ public:
     return begin() + __n;
   }
 
+#ifdef _GLIBCPP_DEPRECATED
   /**
-   *  @brief  Inserts an empty element into the vector.
-   *  @param  position  An iterator that points to the element where empty
-   *                    element should be inserted.
-   *  @param  x  Data to be inserted.
+   *  @brief  Inserts an element into the %vector.
+   *  @param  position  An iterator into the %vector.
    *  @return  An iterator that points to the inserted element.
    *
-   *  This function will insert an empty element into the specified location.
+   *  This function will insert a default-constructed element before the
+   *  specified location.  You should consider using insert(position,Tp())
+   *  instead.
    *  Note that this kind of operation could be expensive for a vector and if
    *  it is frequently used the user should consider using std::list.
+   *
+   *  @note This was deprecated in 3.2 and will be removed in 3.3.  You must
+   *        define @c _GLIBCPP_DEPRECATED to make this visible in 3.2; see
+   *        c++config.h.
   */
   iterator
   insert(iterator __position)
@@ -571,70 +722,78 @@ public:
       _M_insert_aux(iterator(__position));
     return begin() + __n;
   }
-
-  // Check whether it's an integral type.  If so, it's not an iterator.
-  template<class _InputIterator>
-    void
-	insert(iterator __pos, _InputIterator __first, _InputIterator __last)
-	{
-      typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
-      _M_insert_dispatch(__pos, __first, __last, _Integral());
-    }
-
-  template <class _Integer>
-    void
-	_M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val, __true_type)
-    { _M_fill_insert(__pos, static_cast<size_type>(__n), static_cast<_Tp>(__val)); }
-
-  template<class _InputIterator>
-    void
-	_M_insert_dispatch(iterator __pos,
-                       _InputIterator __first, _InputIterator __last,
-                       __false_type)
-	{
-	  typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory;
-      _M_range_insert(__pos, __first, __last, _IterCategory());
-    }
+#endif
 
   /**
-   *  @brief  Inserts a number of copies of given data into the vector.
-   *  @param  position  An iterator that points to the element where data
-   *                    should be inserted.
-   *  @param  n  Amount of elements to be inserted.
+   *  @brief  Inserts a number of copies of given data into the %vector.
+   *  @param  position  An iterator into the %vector.
+   *  @param  n  Number of elements to be inserted.
    *  @param  x  Data to be inserted.
    *
    *  This function will insert a specified number of copies of the given data
-   *  into the specified location.
+   *  before the location specified by @a position.
    *
-   *  Note that this kind of operation could be expensive for a vector and if
+   *  Note that this kind of operation could be expensive for a %vector and if
    *  it is frequently used the user should consider using std::list.
   */
-  void insert (iterator __pos, size_type __n, const _Tp& __x)
+  void
+  insert (iterator __pos, size_type __n, const _Tp& __x)
     { _M_fill_insert(__pos, __n, __x); }
 
-  void _M_fill_insert (iterator __pos, size_type __n, const _Tp& __x);
+protected:
+  void
+  _M_fill_insert (iterator __pos, size_type __n, const _Tp& __x);
 
+public:
   /**
-   *  @brief  Removes last element from vector.
+   *  @brief  Inserts a range into the %vector.
+   *  @param  pos  An iterator into the %vector.
+   *  @param  first  An input iterator.
+   *  @param  last   An input iterator.
    *
-   *  This is a typical stack operation. It allows us to shrink the vector by
-   *  one.
+   *  This function will insert copies of the data in the range [first,last)
+   *  into the %vector before the location specified by @a pos.
    *
-   *  Note that no data is returned and if last element's data is needed it
-   *  should be retrieved before pop_back() is called.
+   *  Note that this kind of operation could be expensive for a %vector and if
+   *  it is frequently used the user should consider using std::list.
   */
-  void pop_back() {
-    --_M_finish;
-    _Destroy(_M_finish);
-  }
+  template<class _InputIterator>
+    void
+    insert(iterator __pos, _InputIterator __first, _InputIterator __last)
+      {
+        // Check whether it's an integral type.  If so, it's not an iterator.
+        typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
+        _M_insert_dispatch(__pos, __first, __last, _Integral());
+      }
 
+protected:
+  template<class _Integer>
+    void
+    _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
+                       __true_type)
+    {
+      _M_fill_insert(__pos, static_cast<size_type>(__n),
+                            static_cast<_Tp>(__val));
+    }
+
+  template<class _InputIterator>
+    void
+    _M_insert_dispatch(iterator __pos, _InputIterator __first,
+                       _InputIterator __last, __false_type)
+    {
+      typedef typename iterator_traits<_InputIterator>::iterator_category
+                       _IterCategory;
+      _M_range_insert(__pos, __first, __last, _IterCategory());
+    }
+
+public:
   /**
-   *  @brief  Remove element at given position
+   *  @brief  Remove element at given position.
    *  @param  position  Iterator pointing to element to be erased.
-   *  @return  Doc Me! (Iterator pointing to new element at old location?)
+   *  @return  An iterator pointing to the next element (or end()).
    *
    *  This function will erase the element at the given position and thus
-   *  shorten the vector by one.
+   *  shorten the %vector by one.
    *
    *  Note This operation could be expensive and if it is frequently used the
    *  user should consider using std::list.  The user is also cautioned that
@@ -642,7 +801,9 @@ public:
    *  a pointer, the pointed-to memory is not touched in any way.  Managing
    *  the pointer is the user's responsibilty.
   */
-  iterator erase(iterator __position) {
+  iterator
+  erase(iterator __position)
+  {
     if (__position + 1 != end())
       copy(__position + 1, end(), __position);
     --_M_finish;
@@ -651,13 +812,14 @@ public:
   }
 
   /**
-   *  @brief  Remove a range of elements from a vector.
+   *  @brief  Remove a range of elements.
    *  @param  first  Iterator pointing to the first element to be erased.
-   *  @param  last  Iterator pointing to the last element to be erased.
-   *  @return  Doc Me! (Iterator pointing to new element at old location?)
+   *  @param  last  Iterator pointing to one past the last element to be erased.
+   *  @return  An iterator pointing to the element pointed to by @a last
+   *           prior to erasing (or end()).
    *
-   *  This function will erase the elements in the given range and shorten the
-   *  vector accordingly.
+   *  This function will erase the elements in the range [first,last) and
+   *  shorten the %vector accordingly.
    *
    *  Note This operation could be expensive and if it is frequently used the
    *  user should consider using std::list.  The user is also cautioned that
@@ -665,7 +827,9 @@ public:
    *  themselves are pointers, the pointed-to memory is not touched in any
    *  way.  Managing the pointer is the user's responsibilty.
   */
-  iterator erase(iterator __first, iterator __last) {
+  iterator
+  erase(iterator __first, iterator __last)
+  {
     iterator __i(copy(__last, end(), __first));
     _Destroy(__i, end());
     _M_finish = _M_finish - (__last - __first);
@@ -673,52 +837,43 @@ public:
   }
 
   /**
-   *  @brief  Resizes the vector to the specified number of elements.
-   *  @param  new_size  Number of elements the vector should contain.
-   *  @param  x  Data with which new elements should be populated.
+   *  @brief  Swaps data with another %vector.
+   *  @param  x  A %vector of the same element and allocator types.
    *
-   *  This function will resize the vector to the specified number of
-   *  elements.  If the number is smaller than the vector's current size the
-   *  vector is truncated, otherwise the vector is extended and new elements
-   *  are populated with given data.
+   *  This exchanges the elements between two vectors in constant time.
+   *  (Three pointers, so it should be quite fast.)
+   *  Note that the global std::swap() function is specialized such that
+   *  std::swap(v1,v2) will feed to this function.
   */
-  void resize(size_type __new_size, const _Tp& __x) {
-    if (__new_size < size())
-      erase(begin() + __new_size, end());
-    else
-      insert(end(), __new_size - size(), __x);
+  void
+  swap(vector<_Tp, _Alloc>& __x)
+  {
+    std::swap(_M_start, __x._M_start);
+    std::swap(_M_finish, __x._M_finish);
+    std::swap(_M_end_of_storage, __x._M_end_of_storage);
   }
 
   /**
-   *  @brief  Resizes the vector to the specified number of elements.
-   *  @param  new_size  Number of elements the vector should contain.
-   *
-   *  This function will resize the vector to the specified number of
-   *  elements.  If the number is smaller than the vector's current size the
-   *  vector is truncated, otherwise the vector is extended and new elements
-   *  are left uninitialized.
-  */
-  void resize(size_type __new_size) { resize(__new_size, _Tp()); }
-
-  /**
-   *  Erases all elements in vector.  Note that this function only erases the
+   *  Erases all the elements.  Note that this function only erases the
    *  elements, and that if the elements themselves are pointers, the
    *  pointed-to memory is not touched in any way.  Managing the pointer is
    *  the user's responsibilty.
   */
-  void clear() { erase(begin(), end()); }
+  void
+  clear() { erase(begin(), end()); }
 
 protected:
-
   template <class _ForwardIterator>
-  pointer _M_allocate_and_copy(size_type __n, _ForwardIterator __first,
-                                               _ForwardIterator __last)
+  pointer
+    _M_allocate_and_copy(size_type __n, _ForwardIterator __first,
+                         _ForwardIterator __last)
   {
     pointer __result = _M_allocate(__n);
-    try {
-      uninitialized_copy(__first, __last, __result);
-      return __result;
-    }
+    try
+      {
+        uninitialized_copy(__first, __last, __result);
+        return __result;
+      }
     catch(...)
       {
 	_M_deallocate(__result, __n);
@@ -727,8 +882,9 @@ protected:
   }
 
   template <class _InputIterator>
-  void _M_range_initialize(_InputIterator __first,
-                           _InputIterator __last, input_iterator_tag)
+  void
+    _M_range_initialize(_InputIterator __first,
+                        _InputIterator __last, input_iterator_tag)
   {
     for ( ; __first != __last; ++__first)
       push_back(*__first);
@@ -756,6 +912,17 @@ protected:
                        forward_iterator_tag);
 };
 
+
+/**
+ *  @brief  Vector equality comparison.
+ *  @param  x  A %vector.
+ *  @param  y  A %vector of the same type as @a x.
+ *  @return  True iff the size and elements of the vectors are equal.
+ *
+ *  This is an equivalence relation.  It is linear in the size of the
+ *  vectors.  Vectors are considered equivalent if their sizes are equal,
+ *  and if corresponding elements compare equal.
+*/
 template <class _Tp, class _Alloc>
 inline bool
 operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
@@ -764,6 +931,17 @@ operator==(const vector<_Tp, _Alloc>& __
          equal(__x.begin(), __x.end(), __y.begin());
 }
 
+/**
+ *  @brief  Vector ordering relation.
+ *  @param  x  A %vector.
+ *  @param  y  A %vector of the same type as @a x.
+ *  @return  True iff @a x is lexographically less than @a y.
+ *
+ *  This is a total ordering relation.  It is linear in the size of the
+ *  vectors.  The elements must be comparable with @c <.
+ *
+ *  See std::lexographical_compare() for how the determination is made.
+*/
 template <class _Tp, class _Alloc>
 inline bool
 operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
@@ -772,36 +950,42 @@ operator<(const vector<_Tp, _Alloc>& __x
                                  __y.begin(), __y.end());
 }
 
+/// See std::vector::swap().
 template <class _Tp, class _Alloc>
 inline void swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
 {
   __x.swap(__y);
 }
 
+/// Based on operator==
 template <class _Tp, class _Alloc>
 inline bool
 operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
   return !(__x == __y);
 }
 
+/// Based on operator<
 template <class _Tp, class _Alloc>
 inline bool
 operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
   return __y < __x;
 }
 
+/// Based on operator<
 template <class _Tp, class _Alloc>
 inline bool
 operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
   return !(__y < __x);
 }
 
+/// Based on operator<
 template <class _Tp, class _Alloc>
 inline bool
 operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
   return !(__x < __y);
 }
 
+// XXX begin tcc me
 template <class _Tp, class _Alloc>
 vector<_Tp,_Alloc>&
 vector<_Tp,_Alloc>::operator=(const vector<_Tp, _Alloc>& __x)
@@ -919,6 +1103,7 @@ vector<_Tp, _Alloc>::_M_insert_aux(itera
   }
 }
 
+#ifdef _GLIBCPP_DEPRECATED
 template <class _Tp, class _Alloc>
 void
 vector<_Tp, _Alloc>::_M_insert_aux(iterator __position)
@@ -956,6 +1141,7 @@ vector<_Tp, _Alloc>::_M_insert_aux(itera
     _M_end_of_storage = __new_start + __len;
   }
 }
+#endif
 
 template <class _Tp, class _Alloc>
 void vector<_Tp, _Alloc>::_M_fill_insert(iterator __position, size_type __n,
@@ -1078,6 +1264,3 @@ vector<_Tp, _Alloc>::_M_range_insert(ite
 
 #endif /* __GLIBCPP_INTERNAL_VECTOR_H */
 
-// Local Variables:
-// mode:C++
-// End:



Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]