This is the mail archive of the gcc-patches@gcc.gnu.org mailing list for the GCC project.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]
Other format: [Raw text]

Re: Handle data dependence relations with different bases


On Fri, Aug 4, 2017 at 11:28 AM, Richard Sandiford
<richard.sandiford@linaro.org> wrote:
> Richard Biener <richard.guenther@gmail.com> writes:
>> On Thu, Jul 27, 2017 at 2:19 PM, Richard Sandiford
>> <richard.sandiford@linaro.org> wrote:
>>> Richard Sandiford <richard.sandiford@linaro.org> writes:
>>>> Eric Botcazou <ebotcazou@adacore.com> writes:
>>>>> [Sorry for missing the previous messages]
>>>>>
>>>>>> Thanks.  Just been retesting, and I think I must have forgotten
>>>>>> to include Ada last time.  It turns out that the patch causes a dg-scan
>>>>>> regression in gnat.dg/vect17.adb, because we now think that if the
>>>>>> array RECORD_TYPEs *do* alias in:
>>>>>>
>>>>>>    procedure Add (X, Y : aliased Sarray; R : aliased out Sarray) is
>>>>>>    begin
>>>>>>       for I in Sarray'Range loop
>>>>>>          R(I) := X(I) + Y(I);
>>>>>>       end loop;
>>>>>>    end;
>>>>>>
>>>>>> then the dependence distance must be zero.  Eric, does that hold true
>>>>>> for Ada?  I.e. if X and R (or Y and R) alias, must it be the case that
>>>>>> X(I) can only alias R(I) and not for example R(I-1) or R(I+1)?
>>>>>
>>>>> Yes, I'd think so (even without the artificial RECORD_TYPE around
>> the arrays).
>>>>
>>>> Good!
>>>>
>>>>>> 2017-06-07  Richard Sandiford  <richard.sandiford@linaro.org>
>>>>>>
>>>>>> gcc/testsuite/
>>>>>>     * gnat.dg/vect17.ads (Sarray): Increase range to 1 .. 5.
>>>>>>     * gnat.dg/vect17.adb (Add): Create a dependence distance of 1
>>>>>>     when X = R or Y = R.
>>>>>
>>>>> I think that you need to modify vect15 and vect16 the same way.
>>>>
>>>> Ah, yeah.  And doing that shows that I'd not handled safelen for
>>>> DDR_COULD_BE_INDEPENDENT_P.  I've fixed that locally.
>>>>
>>>> How does this look?  Tested on x86_64-linux-gnu both without the
>>>> vectoriser changes and with the fixed vectoriser patch.
>>>
>>> Here's a version of the patch that handles safelen.  I split the
>>> handling out into a new function (vect_analyze_possibly_independent_ddr)
>>> since it was getting too big to do inline.
>>>
>>> Tested on aarch64-linux-gnu and x86_64-linux-gnu.  OK to install?
>>
>> Ok.
>
> Thanks!
>
>> Did you check whether BB vectorization is affected?  See
>> vect_slp_analyze_instance_dependence
>> and friends.  It's quite conservative but given the prefetching change
>> I wonder if we need
>> to rule out DDR_COULD_BE_INDEPENDENT_P?
>
> I think it should be OK.  When DDR_COULD_BE_INDEPENDENT_P is set,
> we've effectively changed from DDR_ARE_DEPENDENT == chrec_dont_know
> to a conservatively-correct distance vector.  It looks like
> vect_slp_analyze_data_ref_dependence handles both cases in the
> same way (by returning true).

Yes.  Could be improved of course.

Thanks for double-checking.
Richard.

> Thanks,
> Richard
>
>>
>> Thanks,
>> Richard.
>>
>>> Thanks,
>>> Richard
>>>
>>>
>>> 2017-07-27  Richard Sandiford  <richard.sandiford@linaro.org>
>>>
>>> gcc/
>>>         * tree-data-ref.h (subscript): Add access_fn field.
>>>         (data_dependence_relation): Add could_be_independent_p.
>>>         (SUB_ACCESS_FN, DDR_COULD_BE_INDEPENDENT_P): New macros.
>>>         (same_access_functions): Move to tree-data-ref.c.
>>>         * tree-data-ref.c (ref_contains_union_access_p): New function.
>>>         (access_fn_component_p): Likewise.
>>>         (access_fn_components_comparable_p): Likewise.
>>>         (dr_analyze_indices): Add a reference to access_fn_component_p.
>>>         (dump_data_dependence_relation): Use SUB_ACCESS_FN instead of
>>>         DR_ACCESS_FN.
>>>         (constant_access_functions): Likewise.
>>>         (add_other_self_distances): Likewise.
>>>         (same_access_functions): Likewise.  (Moved from tree-data-ref.h.)
>>>         (initialize_data_dependence_relation): Use XCNEW and remove
>>>         explicit zeroing of DDR_REVERSED_P.  Look for a subsequence
>>>         of access functions that have the same type.  Allow the
>>>         subsequence to end with different bases in some circumstances.
>>>         Record the chosen access functions in SUB_ACCESS_FN.
>>>         (build_classic_dist_vector_1): Replace ddr_a and ddr_b with
>>>         a_index and b_index.  Use SUB_ACCESS_FN instead of DR_ACCESS_FN.
>>>         (subscript_dependence_tester_1): Likewise dra and drb.
>>>         (build_classic_dist_vector): Update calls accordingly.
>>>         (subscript_dependence_tester): Likewise.
>>>         * tree-ssa-loop-prefetch.c (determine_loop_nest_reuse): Check
>>>         DDR_COULD_BE_INDEPENDENT_P.
>>>         * tree-vectorizer.h (LOOP_REQUIRES_VERSIONING_FOR_ALIAS): Test
>>>         comp_alias_ddrs instead of may_alias_ddrs.
>>>         * tree-vect-data-refs.c (vect_analyze_possibly_independent_ddr):
>>>         New function.
>>>         (vect_analyze_data_ref_dependence): Use it if
>>>         DDR_COULD_BE_INDEPENDENT_P, but fall back to using the recorded
>>>         distance vectors if that fails.
>>>         (dependence_distance_ge_vf): New function.
>>>         (vect_prune_runtime_alias_test_list): Use it.  Don't clear
>>>         LOOP_VINFO_MAY_ALIAS_DDRS.
>>>
>>> gcc/testsuite/
>>>         * gcc.dg/vect/vect-alias-check-3.c: New test.
>>>         * gcc.dg/vect/vect-alias-check-4.c: Likewise.
>>>         * gcc.dg/vect/vect-alias-check-5.c: Likewise.
>>>
>>> Index: gcc/tree-data-ref.h
>>> ===================================================================
>>> --- gcc/tree-data-ref.h 2017-07-27 13:10:29.620045506 +0100
>>> +++ gcc/tree-data-ref.h 2017-07-27 13:10:33.023912613 +0100
>>> @@ -260,6 +260,9 @@ struct conflict_function
>>>
>>>  struct subscript
>>>  {
>>> +  /* The access functions of the two references.  */
>>> +  tree access_fn[2];
>>> +
>>>    /* A description of the iterations for which the elements are
>>>       accessed twice.  */
>>>    conflict_function *conflicting_iterations_in_a;
>>> @@ -278,6 +281,7 @@ struct subscript
>>>
>>>  typedef struct subscript *subscript_p;
>>>
>>> +#define SUB_ACCESS_FN(SUB, I) (SUB)->access_fn[I]
>>>  #define SUB_CONFLICTS_IN_A(SUB) (SUB)->conflicting_iterations_in_a
>>>  #define SUB_CONFLICTS_IN_B(SUB) (SUB)->conflicting_iterations_in_b
>>>  #define SUB_LAST_CONFLICT(SUB) (SUB)->last_conflict
>>> @@ -333,6 +337,33 @@ struct data_dependence_relation
>>>    /* Set to true when the dependence relation is on the same data
>>>       access.  */
>>>    bool self_reference_p;
>>> +
>>> +  /* True if the dependence described is conservatively correct rather
>>> +     than exact, and if it is still possible for the accesses to be
>>> +     conditionally independent.  For example, the a and b references in:
>>> +
>>> +       struct s *a, *b;
>>> +       for (int i = 0; i < n; ++i)
>>> +         a->f[i] += b->f[i];
>>> +
>>> +     conservatively have a distance vector of (0), for the case in which
>>> +     a == b, but the accesses are independent if a != b.  Similarly,
>>> +     the a and b references in:
>>> +
>>> +       struct s *a, *b;
>>> +       for (int i = 0; i < n; ++i)
>>> +         a[0].f[i] += b[i].f[i];
>>> +
>>> +     conservatively have a distance vector of (0), but they are indepenent
>>> +     when a != b + i.  In contrast, the references in:
>>> +
>>> +       struct s *a;
>>> +       for (int i = 0; i < n; ++i)
>>> +         a->f[i] += a->f[i];
>>> +
>>> +     have the same distance vector of (0), but the accesses can never be
>>> +     independent.  */
>>> +  bool could_be_independent_p;
>>>  };
>>>
>>>  typedef struct data_dependence_relation *ddr_p;
>>> @@ -363,6 +394,7 @@ #define DDR_DIR_VECT(DDR, I) \
>>>  #define DDR_DIST_VECT(DDR, I) \
>>>    DDR_DIST_VECTS (DDR)[I]
>>>  #define DDR_REVERSED_P(DDR) (DDR)->reversed_p
>>> +#define DDR_COULD_BE_INDEPENDENT_P(DDR) (DDR)->could_be_independent_p
>>>
>>>
>>>  bool dr_analyze_innermost (innermost_loop_behavior *, tree, struct loop *);
>>> @@ -457,22 +489,6 @@ same_data_refs (data_reference_p a, data
>>>        return false;
>>>
>>>    return true;
>>> -}
>>> -
>>> -/* Return true when the DDR contains two data references that have the
>>> -   same access functions.  */
>>> -
>>> -static inline bool
>>> -same_access_functions (const struct data_dependence_relation *ddr)
>>> -{
>>> -  unsigned i;
>>> -
>>> -  for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
>>> -    if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
>>> -                         DR_ACCESS_FN (DDR_B (ddr), i)))
>>> -      return false;
>>> -
>>> -  return true;
>>>  }
>>>
>>>  /* Returns true when all the dependences are computable.  */
>>> Index: gcc/tree-data-ref.c
>>> ===================================================================
>>> --- gcc/tree-data-ref.c 2017-07-27 13:10:29.620045506 +0100
>>> +++ gcc/tree-data-ref.c 2017-07-27 13:10:33.023912613 +0100
>>> @@ -124,8 +124,7 @@ Software Foundation; either version 3, o
>>>  } dependence_stats;
>>>
>>>  static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
>>> -                                          struct data_reference *,
>>> -                                          struct data_reference *,
>>> +                                          unsigned int, unsigned int,
>>>                                            struct loop *);
>>>  /* Returns true iff A divides B.  */
>>>
>>> @@ -145,6 +144,21 @@ int_divides_p (int a, int b)
>>>    return ((b % a) == 0);
>>>  }
>>>
>>> +/* Return true if reference REF contains a union access.  */
>>> +
>>> +static bool
>>> +ref_contains_union_access_p (tree ref)
>>> +{
>>> +  while (handled_component_p (ref))
>>> +    {
>>> +      ref = TREE_OPERAND (ref, 0);
>>> +      if (TREE_CODE (TREE_TYPE (ref)) == UNION_TYPE
>>> +         || TREE_CODE (TREE_TYPE (ref)) == QUAL_UNION_TYPE)
>>> +       return true;
>>> +    }
>>> +  return false;
>>> +}
>>> +
>>>
>>>
>>>  /* Dump into FILE all the data references from DATAREFS.  */
>>> @@ -434,13 +448,14 @@ dump_data_dependence_relation (FILE *out
>>>        unsigned int i;
>>>        struct loop *loopi;
>>>
>>> -      for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
>>> +      subscript *sub;
>>> +      FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
>>>         {
>>>           fprintf (outf, "  access_fn_A: ");
>>> -         print_generic_stmt (outf, DR_ACCESS_FN (dra, i));
>>> +         print_generic_stmt (outf, SUB_ACCESS_FN (sub, 0));
>>>           fprintf (outf, "  access_fn_B: ");
>>> -         print_generic_stmt (outf, DR_ACCESS_FN (drb, i));
>>> -         dump_subscript (outf, DDR_SUBSCRIPT (ddr, i));
>>> +         print_generic_stmt (outf, SUB_ACCESS_FN (sub, 1));
>>> +         dump_subscript (outf, sub);
>>>         }
>>>
>>>        fprintf (outf, "  inner loop index: %d\n", DDR_INNER_LOOP (ddr));
>>> @@ -920,6 +935,27 @@ dr_analyze_innermost (innermost_loop_beh
>>>    return true;
>>>  }
>>>
>>> +/* Return true if OP is a valid component reference for a DR access
>>> +   function.  This accepts a subset of what handled_component_p accepts.  */
>>> +
>>> +static bool
>>> +access_fn_component_p (tree op)
>>> +{
>>> +  switch (TREE_CODE (op))
>>> +    {
>>> +    case REALPART_EXPR:
>>> +    case IMAGPART_EXPR:
>>> +    case ARRAY_REF:
>>> +      return true;
>>> +
>>> +    case COMPONENT_REF:
>>> +      return TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == RECORD_TYPE;
>>> +
>>> +    default:
>>> +      return false;
>>> +    }
>>> +}
>>> +
>>>  /* Determines the base object and the list of indices of memory reference
>>>     DR, analyzed in LOOP and instantiated in loop nest NEST.  */
>>>
>>> @@ -957,7 +993,9 @@ dr_analyze_indices (struct data_referenc
>>>        access_fns.safe_push (integer_one_node);
>>>      }
>>>
>>> -  /* Analyze access functions of dimensions we know to be independent.  */
>>> +  /* Analyze access functions of dimensions we know to be independent.
>>> +     The list of component references handled here should be kept in
>>> +     sync with access_fn_component_p.  */
>>>    while (handled_component_p (ref))
>>>      {
>>>        if (TREE_CODE (ref) == ARRAY_REF)
>>> @@ -2148,6 +2186,38 @@ dr_may_alias_p (const struct data_refere
>>>    return refs_may_alias_p (addr_a, addr_b);
>>>  }
>>>
>>> +/* REF_A and REF_B both satisfy access_fn_component_p.  Return true
>>> +   if it is meaningful to compare their associated access functions
>>> +   when checking for dependencies.  */
>>> +
>>> +static bool
>>> +access_fn_components_comparable_p (tree ref_a, tree ref_b)
>>> +{
>>> +  /* Allow pairs of component refs from the following sets:
>>> +
>>> +       { REALPART_EXPR, IMAGPART_EXPR }
>>> +       { COMPONENT_REF }
>>> +       { ARRAY_REF }.  */
>>> +  tree_code code_a = TREE_CODE (ref_a);
>>> +  tree_code code_b = TREE_CODE (ref_b);
>>> +  if (code_a == IMAGPART_EXPR)
>>> +    code_a = REALPART_EXPR;
>>> +  if (code_b == IMAGPART_EXPR)
>>> +    code_b = REALPART_EXPR;
>>> +  if (code_a != code_b)
>>> +    return false;
>>> +
>>> +  if (TREE_CODE (ref_a) == COMPONENT_REF)
>>> +    /* ??? We cannot simply use the type of operand #0 of the refs here as
>>> +       the Fortran compiler smuggles type punning into COMPONENT_REFs.
>>> +       Use the DECL_CONTEXT of the FIELD_DECLs instead.  */
>>> +    return (DECL_CONTEXT (TREE_OPERAND (ref_a, 1))
>>> +           == DECL_CONTEXT (TREE_OPERAND (ref_b, 1)));
>>> +
>>> +  return types_compatible_p (TREE_TYPE (TREE_OPERAND (ref_a, 0)),
>>> +                            TREE_TYPE (TREE_OPERAND (ref_b, 0)));
>>> +}
>>> +
>>>  /* Initialize a data dependence relation between data accesses A and
>>>     B.  NB_LOOPS is the number of loops surrounding the references: the
>>>     size of the classic distance/direction vectors.  */
>>> @@ -2160,11 +2230,10 @@ initialize_data_dependence_relation (str
>>>    struct data_dependence_relation *res;
>>>    unsigned int i;
>>>
>>> -  res = XNEW (struct data_dependence_relation);
>>> +  res = XCNEW (struct data_dependence_relation);
>>>    DDR_A (res) = a;
>>>    DDR_B (res) = b;
>>>    DDR_LOOP_NEST (res).create (0);
>>> -  DDR_REVERSED_P (res) = false;
>>>    DDR_SUBSCRIPTS (res).create (0);
>>>    DDR_DIR_VECTS (res).create (0);
>>>    DDR_DIST_VECTS (res).create (0);
>>> @@ -2182,82 +2251,277 @@ initialize_data_dependence_relation (str
>>>        return res;
>>>      }
>>>
>>> -  /* The case where the references are exactly the same.  */
>>> -  if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
>>> +  unsigned int num_dimensions_a = DR_NUM_DIMENSIONS (a);
>>> +  unsigned int num_dimensions_b = DR_NUM_DIMENSIONS (b);
>>> +  if (num_dimensions_a == 0 || num_dimensions_b == 0)
>>>      {
>>> -      if ((loop_nest.exists ()
>>> -          && !object_address_invariant_in_loop_p (loop_nest[0],
>>> -                                                  DR_BASE_OBJECT (a)))
>>> -         || DR_NUM_DIMENSIONS (a) == 0)
>>> +      DDR_ARE_DEPENDENT (res) = chrec_dont_know;
>>> +      return res;
>>> +    }
>>> +
>>> +  /* For unconstrained bases, the root (highest-indexed) subscript
>>> +     describes a variation in the base of the original DR_REF rather
>>> +     than a component access.  We have no type that accurately describes
>>> +     the new DR_BASE_OBJECT (whose TREE_TYPE describes the type *after*
>>> +     applying this subscript) so limit the search to the last real
>>> +     component access.
>>> +
>>> +     E.g. for:
>>> +
>>> +       void
>>> +       f (int a[][8], int b[][8])
>>> +       {
>>> +         for (int i = 0; i < 8; ++i)
>>> +           a[i * 2][0] = b[i][0];
>>> +       }
>>> +
>>> +     the a and b accesses have a single ARRAY_REF component reference [0]
>>> +     but have two subscripts.  */
>>> +  if (DR_UNCONSTRAINED_BASE (a))
>>> +    num_dimensions_a -= 1;
>>> +  if (DR_UNCONSTRAINED_BASE (b))
>>> +    num_dimensions_b -= 1;
>>> +
>>> +  /* These structures describe sequences of component references in
>>> +     DR_REF (A) and DR_REF (B).  Each component reference is tied to a
>>> +     specific access function.  */
>>> +  struct {
>>> +    /* The sequence starts at DR_ACCESS_FN (A, START_A) of A and
>>> +       DR_ACCESS_FN (B, START_B) of B (inclusive) and extends to higher
>>> +       indices.  In C notation, these are the indices of the rightmost
>>> +       component references; e.g. for a sequence .b.c.d, the start
>>> +       index is for .d.  */
>>> +    unsigned int start_a;
>>> +    unsigned int start_b;
>>> +
>>> +    /* The sequence contains LENGTH consecutive access functions from
>>> +       each DR.  */
>>> +    unsigned int length;
>>> +
>>> +    /* The enclosing objects for the A and B sequences respectively,
>>> +       i.e. the objects to which DR_ACCESS_FN (A, START_A + LENGTH - 1)
>>> +       and DR_ACCESS_FN (B, START_B + LENGTH - 1) are applied.  */
>>> +    tree object_a;
>>> +    tree object_b;
>>> +  } full_seq = {}, struct_seq = {};
>>> +
>>> +  /* Before each iteration of the loop:
>>> +
>>> +     - REF_A is what you get after applying DR_ACCESS_FN (A, INDEX_A) and
>>> +     - REF_B is what you get after applying DR_ACCESS_FN (B, INDEX_B).  */
>>> +  unsigned int index_a = 0;
>>> +  unsigned int index_b = 0;
>>> +  tree ref_a = DR_REF (a);
>>> +  tree ref_b = DR_REF (b);
>>> +
>>> +  /* Now walk the component references from the final DR_REFs back up to
>>> +     the enclosing base objects.  Each component reference corresponds
>>> +     to one access function in the DR, with access function 0 being for
>>> +     the final DR_REF and the highest-indexed access function being the
>>> +     one that is applied to the base of the DR.
>>> +
>>> +     Look for a sequence of component references whose access functions
>>> +     are comparable (see access_fn_components_comparable_p).  If more
>>> +     than one such sequence exists, pick the one nearest the base
>>> +     (which is the leftmost sequence in C notation).  Store this sequence
>>> +     in FULL_SEQ.
>>> +
>>> +     For example, if we have:
>>> +
>>> +       struct foo { struct bar s; ... } (*a)[10], (*b)[10];
>>> +
>>> +       A: a[0][i].s.c.d
>>> +       B: __real b[0][i].s.e[i].f
>>> +
>>> +     (where d is the same type as the real component of f) then the access
>>> +     functions would be:
>>> +
>>> +                        0   1   2   3
>>> +       A:              .d  .c  .s [i]
>>> +
>>> +                0   1   2   3   4   5
>>> +       B:  __real  .f [i]  .e  .s [i]
>>> +
>>> +     The A0/B2 column isn't comparable, since .d is a COMPONENT_REF
>>> +     and [i] is an ARRAY_REF.  However, the A1/B3 column contains two
>>> +     COMPONENT_REF accesses for struct bar, so is comparable.  Likewise
>>> +     the A2/B4 column contains two COMPONENT_REF accesses for struct foo,
>>> +     so is comparable.  The A3/B5 column contains two ARRAY_REFs that
>>> +     index foo[10] arrays, so is again comparable.  The sequence is
>>> +     therefore:
>>> +
>>> +        A: [1, 3]  (i.e. [i].s.c)
>>> +        B: [3, 5]  (i.e. [i].s.e)
>>> +
>>> +     Also look for sequences of component references whose access
>>> +     functions are comparable and whose enclosing objects have the same
>>> +     RECORD_TYPE.  Store this sequence in STRUCT_SEQ.  In the above
>>> +     example, STRUCT_SEQ would be:
>>> +
>>> +        A: [1, 2]  (i.e. s.c)
>>> +        B: [3, 4]  (i.e. s.e)  */
>>> +  while (index_a < num_dimensions_a && index_b < num_dimensions_b)
>>> +    {
>>> +      /* REF_A and REF_B must be one of the component access types
>>> +        allowed by dr_analyze_indices.  */
>>> +      gcc_checking_assert (access_fn_component_p (ref_a));
>>> +      gcc_checking_assert (access_fn_component_p (ref_b));
>>> +
>>> +      /* Get the immediately-enclosing objects for REF_A and REF_B,
>>> +        i.e. the references *before* applying DR_ACCESS_FN (A, INDEX_A)
>>> +        and DR_ACCESS_FN (B, INDEX_B).  */
>>> +      tree object_a = TREE_OPERAND (ref_a, 0);
>>> +      tree object_b = TREE_OPERAND (ref_b, 0);
>>> +
>>> +      tree type_a = TREE_TYPE (object_a);
>>> +      tree type_b = TREE_TYPE (object_b);
>>> +      if (access_fn_components_comparable_p (ref_a, ref_b))
>>> +       {
>>> +         /* This pair of component accesses is comparable for dependence
>>> +            analysis, so we can include DR_ACCESS_FN (A, INDEX_A) and
>>> +            DR_ACCESS_FN (B, INDEX_B) in the sequence.  */
>>> +         if (full_seq.start_a + full_seq.length != index_a
>>> +             || full_seq.start_b + full_seq.length != index_b)
>>> +           {
>>> +             /* The accesses don't extend the current sequence,
>>> +                so start a new one here.  */
>>> +             full_seq.start_a = index_a;
>>> +             full_seq.start_b = index_b;
>>> +             full_seq.length = 0;
>>> +           }
>>> +
>>> +         /* Add this pair of references to the sequence.  */
>>> +         full_seq.length += 1;
>>> +         full_seq.object_a = object_a;
>>> +         full_seq.object_b = object_b;
>>> +
>>> +         /* If the enclosing objects are structures (and thus have the
>>> +            same RECORD_TYPE), record the new sequence in STRUCT_SEQ.  */
>>> +         if (TREE_CODE (type_a) == RECORD_TYPE)
>>> +           struct_seq = full_seq;
>>> +
>>> +         /* Move to the next containing reference for both A and B.  */
>>> +         ref_a = object_a;
>>> +         ref_b = object_b;
>>> +         index_a += 1;
>>> +         index_b += 1;
>>> +         continue;
>>> +       }
>>> +
>>> +      /* Try to approach equal type sizes.  */
>>> +      if (!COMPLETE_TYPE_P (type_a)
>>> +         || !COMPLETE_TYPE_P (type_b)
>>> +         || !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_a))
>>> +         || !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_b)))
>>> +       break;
>>> +
>>> +      unsigned HOST_WIDE_INT size_a = tree_to_uhwi (TYPE_SIZE_UNIT (type_a));
>>> +      unsigned HOST_WIDE_INT size_b = tree_to_uhwi (TYPE_SIZE_UNIT (type_b));
>>> +      if (size_a <= size_b)
>>>         {
>>> -         DDR_ARE_DEPENDENT (res) = chrec_dont_know;
>>> -         return res;
>>> +         index_a += 1;
>>> +         ref_a = object_a;
>>> +       }
>>> +      if (size_b <= size_a)
>>> +       {
>>> +         index_b += 1;
>>> +         ref_b = object_b;
>>>         }
>>> -      DDR_AFFINE_P (res) = true;
>>> -      DDR_ARE_DEPENDENT (res) = NULL_TREE;
>>> -      DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
>>> -      DDR_LOOP_NEST (res) = loop_nest;
>>> -      DDR_INNER_LOOP (res) = 0;
>>> -      DDR_SELF_REFERENCE (res) = true;
>>> -      for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
>>> -       {
>>> -         struct subscript *subscript;
>>> -
>>> -         subscript = XNEW (struct subscript);
>>> -         SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
>>> -         SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
>>> -         SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
>>> -         SUB_DISTANCE (subscript) = chrec_dont_know;
>>> -         DDR_SUBSCRIPTS (res).safe_push (subscript);
>>> -       }
>>> -      return res;
>>>      }
>>>
>>> -  /* If the references do not access the same object, we do not know
>>> -     whether they alias or not.  We do not care about TBAA or alignment
>>> -     info so we can use OEP_ADDRESS_OF to avoid false negatives.
>>> -     But the accesses have to use compatible types as otherwise the
>>> -     built indices would not match.  */
>>> - if (!operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b),
>> OEP_ADDRESS_OF)
>>> -      || !types_compatible_p (TREE_TYPE (DR_BASE_OBJECT (a)),
>>> -                             TREE_TYPE (DR_BASE_OBJECT (b))))
>>> +  /* See whether FULL_SEQ ends at the base and whether the two bases
>>> +     are equal.  We do not care about TBAA or alignment info so we can
>>> +     use OEP_ADDRESS_OF to avoid false negatives.  */
>>> +  tree base_a = DR_BASE_OBJECT (a);
>>> +  tree base_b = DR_BASE_OBJECT (b);
>>> +  bool same_base_p = (full_seq.start_a + full_seq.length == num_dimensions_a
>>> + && full_seq.start_b + full_seq.length == num_dimensions_b
>>> + && DR_UNCONSTRAINED_BASE (a) == DR_UNCONSTRAINED_BASE (b)
>>> +                     && operand_equal_p (base_a, base_b, OEP_ADDRESS_OF)
>>> +                     && types_compatible_p (TREE_TYPE (base_a),
>>> +                                            TREE_TYPE (base_b))
>>> +                     && (!loop_nest.exists ()
>>> +                         || (object_address_invariant_in_loop_p
>>> +                             (loop_nest[0], base_a))));
>>> +
>>> +  /* If the bases are the same, we can include the base variation too.
>>> +     E.g. the b accesses in:
>>> +
>>> +       for (int i = 0; i < n; ++i)
>>> +         b[i + 4][0] = b[i][0];
>>> +
>>> +     have a definite dependence distance of 4, while for:
>>> +
>>> +       for (int i = 0; i < n; ++i)
>>> +         a[i + 4][0] = b[i][0];
>>> +
>>> +     the dependence distance depends on the gap between a and b.
>>> +
>>> +     If the bases are different then we can only rely on the sequence
>>> +     rooted at a structure access, since arrays are allowed to overlap
>>> +     arbitrarily and change shape arbitrarily.  E.g. we treat this as
>>> +     valid code:
>>> +
>>> +       int a[256];
>>> +       ...
>>> +       ((int (*)[4][3]) &a[1])[i][0] += ((int (*)[4][3]) &a[2])[i][0];
>>> +
>>> +     where two lvalues with the same int[4][3] type overlap, and where
>>> +     both lvalues are distinct from the object's declared type.  */
>>> +  if (same_base_p)
>>>      {
>>> -      DDR_ARE_DEPENDENT (res) = chrec_dont_know;
>>> -      return res;
>>> +      if (DR_UNCONSTRAINED_BASE (a))
>>> +       full_seq.length += 1;
>>>      }
>>> +  else
>>> +    full_seq = struct_seq;
>>>
>>> -  /* If the base of the object is not invariant in the loop nest, we cannot
>>> -     analyze it.  TODO -- in fact, it would suffice to record that there may
>>> -     be arbitrary dependences in the loops where the base object varies.  */
>>> -  if ((loop_nest.exists ()
>>> - && !object_address_invariant_in_loop_p (loop_nest[0], DR_BASE_OBJECT
>> (a)))
>>> -      || DR_NUM_DIMENSIONS (a) == 0)
>>> +  /* Punt if we didn't find a suitable sequence.  */
>>> +  if (full_seq.length == 0)
>>>      {
>>>        DDR_ARE_DEPENDENT (res) = chrec_dont_know;
>>>        return res;
>>>      }
>>>
>>> -  /* If the number of dimensions of the access to not agree we can have
>>> -     a pointer access to a component of the array element type and an
>>> -     array access while the base-objects are still the same.  Punt.  */
>>> -  if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
>>> +  if (!same_base_p)
>>>      {
>>> -      DDR_ARE_DEPENDENT (res) = chrec_dont_know;
>>> -      return res;
>>> +      /* Partial overlap is possible for different bases when strict aliasing
>>> +        is not in effect.  It's also possible if either base involves a union
>>> +        access; e.g. for:
>>> +
>>> +          struct s1 { int a[2]; };
>>> +          struct s2 { struct s1 b; int c; };
>>> +          struct s3 { int d; struct s1 e; };
>>> +          union u { struct s2 f; struct s3 g; } *p, *q;
>>> +
>>> +        the s1 at "p->f.b" (base "p->f") partially overlaps the s1 at
>>> +        "p->g.e" (base "p->g") and might partially overlap the s1 at
>>> +        "q->g.e" (base "q->g").  */
>>> +      if (!flag_strict_aliasing
>>> +         || ref_contains_union_access_p (full_seq.object_a)
>>> +         || ref_contains_union_access_p (full_seq.object_b))
>>> +       {
>>> +         DDR_ARE_DEPENDENT (res) = chrec_dont_know;
>>> +         return res;
>>> +       }
>>> +
>>> +      DDR_COULD_BE_INDEPENDENT_P (res) = true;
>>>      }
>>>
>>>    DDR_AFFINE_P (res) = true;
>>>    DDR_ARE_DEPENDENT (res) = NULL_TREE;
>>> -  DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
>>> +  DDR_SUBSCRIPTS (res).create (full_seq.length);
>>>    DDR_LOOP_NEST (res) = loop_nest;
>>>    DDR_INNER_LOOP (res) = 0;
>>>    DDR_SELF_REFERENCE (res) = false;
>>>
>>> -  for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
>>> +  for (i = 0; i < full_seq.length; ++i)
>>>      {
>>>        struct subscript *subscript;
>>>
>>>        subscript = XNEW (struct subscript);
>>> +      SUB_ACCESS_FN (subscript, 0) = DR_ACCESS_FN (a, full_seq.start_a + i);
>>> +      SUB_ACCESS_FN (subscript, 1) = DR_ACCESS_FN (b, full_seq.start_b + i);
>>>        SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
>>>        SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
>>>        SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
>>> @@ -3839,14 +4103,15 @@ add_outer_distances (struct data_depende
>>>  }
>>>
>>>  /* Return false when fail to represent the data dependence as a
>>> -   distance vector.  INIT_B is set to true when a component has been
>>> +   distance vector.  A_INDEX is the index of the first reference
>>> +   (0 for DDR_A, 1 for DDR_B) and B_INDEX is the index of the
>>> +   second reference.  INIT_B is set to true when a component has been
>>>     added to the distance vector DIST_V.  INDEX_CARRY is then set to
>>>     the index in DIST_V that carries the dependence.  */
>>>
>>>  static bool
>>>  build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
>>> -                            struct data_reference *ddr_a,
>>> -                            struct data_reference *ddr_b,
>>> +                            unsigned int a_index, unsigned int b_index,
>>>                              lambda_vector dist_v, bool *init_b,
>>>                              int *index_carry)
>>>  {
>>> @@ -3864,8 +4129,8 @@ build_classic_dist_vector_1 (struct data
>>>           return false;
>>>         }
>>>
>>> -      access_fn_a = DR_ACCESS_FN (ddr_a, i);
>>> -      access_fn_b = DR_ACCESS_FN (ddr_b, i);
>>> +      access_fn_a = SUB_ACCESS_FN (subscript, a_index);
>>> +      access_fn_b = SUB_ACCESS_FN (subscript, b_index);
>>>
>>>        if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
>>>           && TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
>>> @@ -3925,10 +4190,11 @@ build_classic_dist_vector_1 (struct data
>>>  constant_access_functions (const struct data_dependence_relation *ddr)
>>>  {
>>>    unsigned i;
>>> +  subscript *sub;
>>>
>>> -  for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
>>> -    if (!evolution_function_is_constant_p (DR_ACCESS_FN (DDR_A (ddr), i))
>>> -       || !evolution_function_is_constant_p (DR_ACCESS_FN (DDR_B (ddr), i)))
>>> +  FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
>>> +    if (!evolution_function_is_constant_p (SUB_ACCESS_FN (sub, 0))
>>> +       || !evolution_function_is_constant_p (SUB_ACCESS_FN (sub, 1)))
>>>        return false;
>>>
>>>    return true;
>>> @@ -3991,10 +4257,11 @@ add_other_self_distances (struct data_de
>>>    lambda_vector dist_v;
>>>    unsigned i;
>>>    int index_carry = DDR_NB_LOOPS (ddr);
>>> +  subscript *sub;
>>>
>>> -  for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
>>> +  FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
>>>      {
>>> -      tree access_fun = DR_ACCESS_FN (DDR_A (ddr), i);
>>> +      tree access_fun = SUB_ACCESS_FN (sub, 0);
>>>
>>>        if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
>>>         {
>>> @@ -4006,7 +4273,7 @@ add_other_self_distances (struct data_de
>>>                   return;
>>>                 }
>>>
>>> -             access_fun = DR_ACCESS_FN (DDR_A (ddr), 0);
>>> +             access_fun = SUB_ACCESS_FN (DDR_SUBSCRIPT (ddr, 0), 0);
>>>
>>>               if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC)
>>>                 add_multivariate_self_dist (ddr, access_fun);
>>> @@ -4077,6 +4344,23 @@ add_distance_for_zero_overlaps (struct d
>>>      }
>>>  }
>>>
>>> +/* Return true when the DDR contains two data references that have the
>>> +   same access functions.  */
>>> +
>>> +static inline bool
>>> +same_access_functions (const struct data_dependence_relation *ddr)
>>> +{
>>> +  unsigned i;
>>> +  subscript *sub;
>>> +
>>> +  FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
>>> +    if (!eq_evolutions_p (SUB_ACCESS_FN (sub, 0),
>>> +                         SUB_ACCESS_FN (sub, 1)))
>>> +      return false;
>>> +
>>> +  return true;
>>> +}
>>> +
>>>  /* Compute the classic per loop distance vector.  DDR is the data
>>>     dependence relation to build a vector from.  Return false when fail
>>>     to represent the data dependence as a distance vector.  */
>>> @@ -4108,8 +4392,7 @@ build_classic_dist_vector (struct data_d
>>>      }
>>>
>>>    dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
>>> -  if (!build_classic_dist_vector_1 (ddr, DDR_A (ddr), DDR_B (ddr),
>>> -                                   dist_v, &init_b, &index_carry))
>>> + if (!build_classic_dist_vector_1 (ddr, 0, 1, dist_v, &init_b,
>> &index_carry))
>>>      return false;
>>>
>>>    /* Save the distance vector if we initialized one.  */
>>> @@ -4142,12 +4425,11 @@ build_classic_dist_vector (struct data_d
>>>        if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
>>>         {
>>>           lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
>>> -         if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr),
>>> -                                             loop_nest))
>>> +         if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest))
>>>             return false;
>>>           compute_subscript_distance (ddr);
>>> -         if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
>>> -                                           save_v, &init_b, &index_carry))
>>> +         if (!build_classic_dist_vector_1 (ddr, 1, 0, save_v, &init_b,
>>> +                                           &index_carry))
>>>             return false;
>>>           save_dist_v (ddr, save_v);
>>>           DDR_REVERSED_P (ddr) = true;
>>> @@ -4183,12 +4465,10 @@ build_classic_dist_vector (struct data_d
>>>             {
>>> lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
>>>
>>> -             if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr),
>>> -                                                 DDR_A (ddr), loop_nest))
>>> +             if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest))
>>>                 return false;
>>>               compute_subscript_distance (ddr);
>>> -             if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
>>> -                                               opposite_v, &init_b,
>>> + if (!build_classic_dist_vector_1 (ddr, 1, 0, opposite_v, &init_b,
>>>                                                 &index_carry))
>>>                 return false;
>>>
>>> @@ -4267,13 +4547,13 @@ build_classic_dir_vector (struct data_de
>>>      }
>>>  }
>>>
>>> -/* Helper function.  Returns true when there is a dependence between
>>> -   data references DRA and DRB.  */
>>> +/* Helper function.  Returns true when there is a dependence between the
>>> +   data references.  A_INDEX is the index of the first reference (0 for
>>> +   DDR_A, 1 for DDR_B) and B_INDEX is the index of the second reference.  */
>>>
>>>  static bool
>>>  subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
>>> -                              struct data_reference *dra,
>>> -                              struct data_reference *drb,
>>> +                              unsigned int a_index, unsigned int b_index,
>>>                                struct loop *loop_nest)
>>>  {
>>>    unsigned int i;
>>> @@ -4285,8 +4565,8 @@ subscript_dependence_tester_1 (struct da
>>>      {
>>>        conflict_function *overlaps_a, *overlaps_b;
>>>
>>> -      analyze_overlapping_iterations (DR_ACCESS_FN (dra, i),
>>> -                                     DR_ACCESS_FN (drb, i),
>>> +      analyze_overlapping_iterations (SUB_ACCESS_FN (subscript, a_index),
>>> +                                     SUB_ACCESS_FN (subscript, b_index),
>>>                                       &overlaps_a, &overlaps_b,
>>>                                       &last_conflicts, loop_nest);
>>>
>>> @@ -4335,7 +4615,7 @@ subscript_dependence_tester_1 (struct da
>>>  subscript_dependence_tester (struct data_dependence_relation *ddr,
>>>                              struct loop *loop_nest)
>>>  {
>>> - if (subscript_dependence_tester_1 (ddr, DDR_A (ddr), DDR_B (ddr),
>> loop_nest))
>>> +  if (subscript_dependence_tester_1 (ddr, 0, 1, loop_nest))
>>>      dependence_stats.num_dependence_dependent++;
>>>
>>>    compute_subscript_distance (ddr);
>>> Index: gcc/tree-ssa-loop-prefetch.c
>>> ===================================================================
>>> --- gcc/tree-ssa-loop-prefetch.c        2017-07-27 13:10:29.620045506 +0100
>>> +++ gcc/tree-ssa-loop-prefetch.c        2017-07-27 13:10:33.023912613 +0100
>>> @@ -1668,6 +1668,7 @@ determine_loop_nest_reuse (struct loop *
>>>        refb = (struct mem_ref *) DDR_B (dep)->aux;
>>>
>>>        if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
>>> +         || DDR_COULD_BE_INDEPENDENT_P (dep)
>>>           || DDR_NUM_DIST_VECTS (dep) == 0)
>>>         {
>>>           /* If the dependence cannot be analyzed, assume that there might be
>>> Index: gcc/tree-vectorizer.h
>>> ===================================================================
>>> --- gcc/tree-vectorizer.h       2017-07-27 13:10:29.620045506 +0100
>>> +++ gcc/tree-vectorizer.h       2017-07-27 13:10:33.024912868 +0100
>>> @@ -358,7 +358,7 @@ #define LOOP_VINFO_ORIG_LOOP_INFO(L)
>>>  #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L)      \
>>>    ((L)->may_misalign_stmts.length () > 0)
>>>  #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L)          \
>>> -  ((L)->may_alias_ddrs.length () > 0)
>>> +  ((L)->comp_alias_ddrs.length () > 0)
>>>  #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L)         \
>>>    (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
>>>  #define LOOP_REQUIRES_VERSIONING(L)                    \
>>> Index: gcc/tree-vect-data-refs.c
>>> ===================================================================
>>> --- gcc/tree-vect-data-refs.c   2017-07-27 13:10:29.620045506 +0100
>>> +++ gcc/tree-vect-data-refs.c   2017-07-27 13:10:33.024912868 +0100
>>> @@ -160,6 +160,60 @@ vect_mark_for_runtime_alias_test (ddr_p
>>>  }
>>>
>>>
>>> +/* A subroutine of vect_analyze_data_ref_dependence.  Handle
>>> +   DDR_COULD_BE_INDEPENDENT_P ddr DDR that has a known set of dependence
>>> +   distances.  These distances are conservatively correct but they don't
>>> +   reflect a guaranteed dependence.
>>> +
>>> +   Return true if this function does all the work necessary to avoid
>>> +   an alias or false if the caller should use the dependence distances
>>> +   to limit the vectorization factor in the usual way.  LOOP_DEPTH is
>>> +   the depth of the loop described by LOOP_VINFO and the other arguments
>>> +   are as for vect_analyze_data_ref_dependence.  */
>>> +
>>> +static bool
>>> +vect_analyze_possibly_independent_ddr (data_dependence_relation *ddr,
>>> +                                      loop_vec_info loop_vinfo,
>>> +                                      int loop_depth, int *max_vf)
>>> +{
>>> +  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
>>> +  lambda_vector dist_v;
>>> +  unsigned int i;
>>> +  FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
>>> +    {
>>> +      int dist = dist_v[loop_depth];
>>> +      if (dist != 0 && !(dist > 0 && DDR_REVERSED_P (ddr)))
>>> +       {
>>> +         /* If the user asserted safelen >= DIST consecutive iterations
>>> +            can be executed concurrently, assume independence.
>>> +
>>> +            ??? An alternative would be to add the alias check even
>>> +            in this case, and vectorize the fallback loop with the
>>> +            maximum VF set to safelen.  However, if the user has
>>> +            explicitly given a length, it's less likely that that
>>> +            would be a win.  */
>>> +         if (loop->safelen >= 2 && abs_hwi (dist) <= loop->safelen)
>>> +           {
>>> +             if (loop->safelen < *max_vf)
>>> +               *max_vf = loop->safelen;
>>> +             LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
>>> +             continue;
>>> +           }
>>> +
>>> +         /* For dependence distances of 2 or more, we have the option
>>> +            of limiting VF or checking for an alias at runtime.
>>> +            Prefer to check at runtime if we can, to avoid limiting
>>> +            the VF unnecessarily when the bases are in fact independent.
>>> +
>>> +            Note that the alias checks will be removed if the VF ends up
>>> +            being small enough.  */
>>> +         return vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
>>> +       }
>>> +    }
>>> +  return true;
>>> +}
>>> +
>>> +
>>>  /* Function vect_analyze_data_ref_dependence.
>>>
>>>     Return TRUE if there (might) exist a dependence between a memory-reference
>>> @@ -305,6 +359,12 @@ vect_analyze_data_ref_dependence (struct
>>>      }
>>>
>>>    loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
>>> +
>>> +  if (DDR_COULD_BE_INDEPENDENT_P (ddr)
>>> +      && vect_analyze_possibly_independent_ddr (ddr, loop_vinfo,
>>> +                                               loop_depth, max_vf))
>>> +    return false;
>>> +
>>>    FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
>>>      {
>>>        int dist = dist_v[loop_depth];
>>> @@ -2878,6 +2938,44 @@ vect_no_alias_p (struct data_reference *
>>>    return false;
>>>  }
>>>
>>> +/* Return true if the minimum nonzero dependence distance for loop LOOP_DEPTH
>>> +   in DDR is >= VF.  */
>>> +
>>> +static bool
>>> +dependence_distance_ge_vf (data_dependence_relation *ddr,
>>> +                          unsigned int loop_depth, unsigned HOST_WIDE_INT vf)
>>> +{
>>> +  if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE
>>> +      || DDR_NUM_DIST_VECTS (ddr) == 0)
>>> +    return false;
>>> +
>>> +  /* If the dependence is exact, we should have limited the VF instead.  */
>>> +  gcc_checking_assert (DDR_COULD_BE_INDEPENDENT_P (ddr));
>>> +
>>> +  unsigned int i;
>>> +  lambda_vector dist_v;
>>> +  FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
>>> +    {
>>> +      HOST_WIDE_INT dist = dist_v[loop_depth];
>>> +      if (dist != 0
>>> +         && !(dist > 0 && DDR_REVERSED_P (ddr))
>>> +         && (unsigned HOST_WIDE_INT) abs_hwi (dist) < vf)
>>> +       return false;
>>> +    }
>>> +
>>> +  if (dump_enabled_p ())
>>> +    {
>>> +      dump_printf_loc (MSG_NOTE, vect_location,
>>> +                      "dependence distance between ");
>>> +      dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr)));
>>> +      dump_printf (MSG_NOTE,  " and ");
>>> +      dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr)));
>>> +      dump_printf (MSG_NOTE,  " is >= VF\n");
>>> +    }
>>> +
>>> +  return true;
>>> +}
>>> +
>>>  /* Function vect_prune_runtime_alias_test_list.
>>>
>>>     Prune a list of ddrs to be tested at run-time by versioning for alias.
>>> @@ -2908,6 +3006,10 @@ vect_prune_runtime_alias_test_list (loop
>>>
>>>    comp_alias_ddrs.create (may_alias_ddrs.length ());
>>>
>>> +  unsigned int loop_depth
>>> +    = index_in_loop_nest (LOOP_VINFO_LOOP (loop_vinfo)->num,
>>> +                         LOOP_VINFO_LOOP_NEST (loop_vinfo));
>>> +
>>>    /* First, we collect all data ref pairs for aliasing checks.  */
>>>    FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
>>>      {
>>> @@ -2917,6 +3019,11 @@ vect_prune_runtime_alias_test_list (loop
>>>        tree segment_length_a, segment_length_b;
>>>        gimple *stmt_a, *stmt_b;
>>>
>>> +      /* Ignore the alias if the VF we chose ended up being no greater
>>> +        than the dependence distance.  */
>>> +      if (dependence_distance_ge_vf (ddr, loop_depth, vect_factor))
>>> +       continue;
>>> +
>>>        dr_a = DDR_A (ddr);
>>>        stmt_a = DR_STMT (DDR_A (ddr));
>>>        dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
>>> @@ -2993,10 +3100,6 @@ vect_prune_runtime_alias_test_list (loop
>>>        return false;
>>>      }
>>>
>>> -  /* All alias checks have been resolved at compilation time.  */
>>> -  if (!comp_alias_ddrs.length ())
>>> -    LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).truncate (0);
>>> -
>>>    return true;
>>>  }
>>>
>>> Index: gcc/testsuite/gcc.dg/vect/vect-alias-check-3.c
>>> ===================================================================
>>> --- /dev/null   2017-07-27 10:25:31.671280760 +0100
>>> +++ gcc/testsuite/gcc.dg/vect/vect-alias-check-3.c 2017-07-27
>> 13:10:33.022912357 +0100
>>> @@ -0,0 +1,120 @@
>>> +/* { dg-do compile } */
>>> +/* { dg-require-effective-target vect_int } */
>>> +/* { dg-additional-options "--param
>> vect-max-version-for-alias-checks=0 -fopenmp-simd" } */
>>> +
>>> +/* Intended to be larger than any VF.  */
>>> +#define GAP 128
>>> +#define N (GAP * 3)
>>> +
>>> +struct s { int x[N + 1]; };
>>> +struct t { struct s x[N + 1]; };
>>> +struct u { int x[N + 1]; int y; };
>>> +struct v { struct s s; };
>>> +
>>> +void
>>> +f1 (struct s *a, struct s *b)
>>> +{
>>> +  for (int i = 0; i < N; ++i)
>>> +    a->x[i] += b->x[i];
>>> +}
>>> +
>>> +void
>>> +f2 (struct s *a, struct s *b)
>>> +{
>>> +  for (int i = 0; i < N; ++i)
>>> +    a[1].x[i] += b[2].x[i];
>>> +}
>>> +
>>> +void
>>> +f3 (struct s *a, struct s *b)
>>> +{
>>> +  for (int i = 0; i < N; ++i)
>>> +    a[1].x[i] += b[i].x[i];
>>> +}
>>> +
>>> +void
>>> +f4 (struct s *a, struct s *b)
>>> +{
>>> +  for (int i = 0; i < N; ++i)
>>> +    a[i].x[i] += b[i].x[i];
>>> +}
>>> +
>>> +void
>>> +f5 (struct s *a, struct s *b)
>>> +{
>>> +  for (int i = 0; i < N; ++i)
>>> +    a->x[i] += b->x[i + 1];
>>> +}
>>> +
>>> +void
>>> +f6 (struct s *a, struct s *b)
>>> +{
>>> +  for (int i = 0; i < N; ++i)
>>> +    a[1].x[i] += b[2].x[i + 1];
>>> +}
>>> +
>>> +void
>>> +f7 (struct s *a, struct s *b)
>>> +{
>>> +  for (int i = 0; i < N; ++i)
>>> +    a[1].x[i] += b[i].x[i + 1];
>>> +}
>>> +
>>> +void
>>> +f8 (struct s *a, struct s *b)
>>> +{
>>> +  for (int i = 0; i < N; ++i)
>>> +    a[i].x[i] += b[i].x[i + 1];
>>> +}
>>> +
>>> +void
>>> +f9 (struct s *a, struct t *b)
>>> +{
>>> +  for (int i = 0; i < N; ++i)
>>> +    a->x[i] += b->x[1].x[i];
>>> +}
>>> +
>>> +void
>>> +f10 (struct s *a, struct t *b)
>>> +{
>>> +  for (int i = 0; i < N; ++i)
>>> +    a->x[i] += b->x[i].x[i];
>>> +}
>>> +
>>> +void
>>> +f11 (struct u *a, struct u *b)
>>> +{
>>> +  for (int i = 0; i < N; ++i)
>>> +    a->x[i] += b->x[i] + b[i].y;
>>> +}
>>> +
>>> +void
>>> +f12 (struct s *a, struct s *b)
>>> +{
>>> +  for (int i = 0; i < GAP; ++i)
>>> +    a->x[i + GAP] += b->x[i];
>>> +}
>>> +
>>> +void
>>> +f13 (struct s *a, struct s *b)
>>> +{
>>> +  for (int i = 0; i < GAP * 2; ++i)
>>> +    a->x[i + GAP] += b->x[i];
>>> +}
>>> +
>>> +void
>>> +f14 (struct v *a, struct s *b)
>>> +{
>>> +  for (int i = 0; i < N; ++i)
>>> +    a->s.x[i] = b->x[i];
>>> +}
>>> +
>>> +void
>>> +f15 (struct s *a, struct s *b)
>>> +{
>>> +  #pragma omp simd safelen(N)
>>> +  for (int i = 0; i < N; ++i)
>>> +    a->x[i + 1] += b->x[i];
>>> +}
>>> +
>>> +/* { dg-final { scan-tree-dump-times "LOOP VECTORIZED" 15 "vect" } } */
>>> Index: gcc/testsuite/gcc.dg/vect/vect-alias-check-4.c
>>> ===================================================================
>>> --- /dev/null   2017-07-27 10:25:31.671280760 +0100
>>> +++ gcc/testsuite/gcc.dg/vect/vect-alias-check-4.c 2017-07-27
>> 13:10:33.022912357 +0100
>>> @@ -0,0 +1,35 @@
>>> +/* { dg-do compile } */
>>> +/* { dg-require-effective-target vect_int } */
>>> +/* { dg-additional-options "--param vect-max-version-for-alias-checks=0" } */
>>> +
>>> +#define N 16
>>> +
>>> +struct s1 { int a[N]; };
>>> +struct s2 { struct s1 b; int c; };
>>> +struct s3 { int d; struct s1 e; };
>>> +union u { struct s2 f; struct s3 g; };
>>> +
>>> +/* We allow a and b to overlap arbitrarily.  */
>>> +
>>> +void
>>> +f1 (int a[][N], int b[][N])
>>> +{
>>> +  for (int i = 0; i < N; ++i)
>>> +    a[0][i] += b[0][i];
>>> +}
>>> +
>>> +void
>>> +f2 (union u *a, union u *b)
>>> +{
>>> +  for (int i = 0; i < N; ++i)
>>> +    a->f.b.a[i] += b->g.e.a[i];
>>> +}
>>> +
>>> +void
>>> +f3 (struct s1 *a, struct s1 *b)
>>> +{
>>> +  for (int i = 0; i < N - 1; ++i)
>>> +    a->a[i + 1] += b->a[i];
>>> +}
>>> +
>>> +/* { dg-final { scan-tree-dump-not "LOOP VECTORIZED" "vect" } } */
>>> Index: gcc/testsuite/gcc.dg/vect/vect-alias-check-5.c
>>> ===================================================================
>>> --- /dev/null   2017-07-27 10:25:31.671280760 +0100
>>> +++ gcc/testsuite/gcc.dg/vect/vect-alias-check-5.c 2017-07-27
>> 13:10:33.022912357 +0100
>>> @@ -0,0 +1,19 @@
>>> +/* { dg-do compile } */
>>> +/* { dg-require-effective-target vect_int } */
>>> +
>>> +/* Intended to be larger than any VF.  */
>>> +#define GAP 128
>>> +#define N (GAP * 3)
>>> +
>>> +struct s { int x[N]; };
>>> +
>>> +void
>>> +f1 (struct s *a, struct s *b)
>>> +{
>>> +  for (int i = 0; i < GAP * 2; ++i)
>>> +    a->x[i + GAP] += b->x[i];
>>> +}
>>> +
>>> +/* { dg-final { scan-tree-dump-times "consider run-time aliasing" 1
>> "vect" } } */
>>> +/* { dg-final { scan-tree-dump-times "improved number of alias checks
>> from 1 to 0" 1 "vect" } } */
>>> +/* { dg-final { scan-tree-dump-times "LOOP VECTORIZED" 1 "vect" } } */


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]