This is the mail archive of the gcc-patches@gcc.gnu.org mailing list for the GCC project.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]
Other format: [Raw text]

Re: Gimple loop splitting v2


On Wed, Jul 27, 2016 at 8:17 AM, Andrew Pinski <pinskia@gmail.com> wrote:
> On Tue, Jul 26, 2016 at 4:32 AM, Richard Biener
> <richard.guenther@gmail.com> wrote:
>> On Mon, Jul 25, 2016 at 10:57 PM, Andrew Pinski <pinskia@gmail.com> wrote:
>>> On Wed, Dec 2, 2015 at 5:23 AM, Michael Matz <matz@suse.de> wrote:
>>>> Hi,
>>>>
>>>> On Tue, 1 Dec 2015, Jeff Law wrote:
>>>>
>>>>> > So, okay for trunk?
>>>>> -ENOPATCH
>>>>
>>>> Sigh :)
>>>> Here it is.
>>>
>>>
>>> I found one problem with it.
>>> Take:
>>> void f(int *a, int M, int *b)
>>> {
>>>   for(int i = 0; i <= M; i++)
>>>     {
>>>        if (i < M)
>>>         a[i] = i;
>>>     }
>>> }
>>> ---- CUT ---
>>> There are two issues with the code as below.  The outer most loop's
>>> aux is still set which causes the vectorizer not to vector the loop.
>>> The other issue is I need to run pass_scev_cprop after pass_loop_split
>>> to get the induction variable usage after the loop gone so the
>>> vectorizer will work.
>>
>> I think scev_cprop needs to be re-written to an utility so that the vectorizer
>> itself can (within its own cost-model) eliminate an induction using it.
>>
>> Richard.
>>
>>> Something like (note this is copy and paste from a terminal):
>>> diff --git a/gcc/passes.def b/gcc/passes.def
>>> index c327900..e8d6ea6 100644
>>> --- a/gcc/passes.def
>>> +++ b/gcc/passes.def
>>> @@ -262,8 +262,8 @@ along with GCC; see the file COPYING3.  If not see
>>>           NEXT_PASS (pass_copy_prop);
>>>           NEXT_PASS (pass_dce);
>>>           NEXT_PASS (pass_tree_unswitch);
>>> -         NEXT_PASS (pass_scev_cprop);
>>>           NEXT_PASS (pass_loop_split);
>>> +         NEXT_PASS (pass_scev_cprop);
>>>           NEXT_PASS (pass_record_bounds);
>>>           NEXT_PASS (pass_loop_distribution);
>>>           NEXT_PASS (pass_copy_prop);
>>> diff --git a/gcc/tree-ssa-loop-split.c b/gcc/tree-ssa-loop-split.c
>>> index 5411530..e72ef19 100644
>>> --- a/gcc/tree-ssa-loop-split.c
>>> +++ b/gcc/tree-ssa-loop-split.c
>>> @@ -592,7 +592,11 @@ tree_ssa_split_loops (void)
>>>
>>>    gcc_assert (scev_initialized_p ());
>>>    FOR_EACH_LOOP (loop, 0)
>>> -    loop->aux = NULL;
>>> +    {
>>> +      loop->aux = NULL;
>>> +      if (loop_outer (loop))
>>> +       loop_outer (loop)->aux = NULL;
>>> +    }
>>
>> How does the iterator not visit loop_outer (loop)?!
>
> The iterator with flags of 0 does not visit the the root.  So the way
> to fix this is change 0 (which is the flags) with LI_INCLUDE_ROOT so
> we zero out the root too.

Or not set ->aux on the root in the first place.

Richard.

> Thanks,
> Andrew
>
>>
>>>
>>>    /* Go through all loops starting from innermost.  */
>>>    FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
>>> @@ -631,7 +635,11 @@ tree_ssa_split_loops (void)
>>>      }
>>>
>>>    FOR_EACH_LOOP (loop, 0)
>>> -    loop->aux = NULL;
>>> +    {
>>> +      loop->aux = NULL;
>>> +      if (loop_outer (loop))
>>> +       loop_outer (loop)->aux = NULL;
>>> +    }
>>>
>>>    if (changed)
>>>      return TODO_cleanup_cfg;
>>> -----  CUT -----
>>>
>>> Thanks,
>>> Andrew
>>>
>>>
>>>>
>>>>
>>>> Ciao,
>>>> Michael.
>>>>         * common.opt (-fsplit-loops): New flag.
>>>>         * passes.def (pass_loop_split): Add.
>>>>         * opts.c (default_options_table): Add OPT_fsplit_loops entry at -O3.
>>>>         (enable_fdo_optimizations): Add loop splitting.
>>>>         * timevar.def (TV_LOOP_SPLIT): Add.
>>>>         * tree-pass.h (make_pass_loop_split): Declare.
>>>>         * tree-ssa-loop-manip.h (rewrite_into_loop_closed_ssa_1): Declare.
>>>>         * tree-ssa-loop-unswitch.c: Include tree-ssa-loop-manip.h,
>>>>         * tree-ssa-loop-split.c: New file.
>>>>         * Makefile.in (OBJS): Add tree-ssa-loop-split.o.
>>>>         * doc/invoke.texi (fsplit-loops): Document.
>>>>         * doc/passes.texi (Loop optimization): Add paragraph about loop
>>>>         splitting.
>>>>
>>>> testsuite/
>>>>         * gcc.dg/loop-split.c: New test.
>>>>
>>>> Index: common.opt
>>>> ===================================================================
>>>> --- common.opt  (revision 231115)
>>>> +++ common.opt  (working copy)
>>>> @@ -2453,6 +2457,10 @@ funswitch-loops
>>>>  Common Report Var(flag_unswitch_loops) Optimization
>>>>  Perform loop unswitching.
>>>>
>>>> +fsplit-loops
>>>> +Common Report Var(flag_split_loops) Optimization
>>>> +Perform loop splitting.
>>>> +
>>>>  funwind-tables
>>>>  Common Report Var(flag_unwind_tables) Optimization
>>>>  Just generate unwind tables for exception handling.
>>>> Index: passes.def
>>>> ===================================================================
>>>> --- passes.def  (revision 231115)
>>>> +++ passes.def  (working copy)
>>>> @@ -252,6 +252,7 @@ along with GCC; see the file COPYING3.
>>>>           NEXT_PASS (pass_dce);
>>>>           NEXT_PASS (pass_tree_unswitch);
>>>>           NEXT_PASS (pass_scev_cprop);
>>>> +         NEXT_PASS (pass_loop_split);
>>>>           NEXT_PASS (pass_record_bounds);
>>>>           NEXT_PASS (pass_loop_distribution);
>>>>           NEXT_PASS (pass_copy_prop);
>>>> Index: opts.c
>>>> ===================================================================
>>>> --- opts.c      (revision 231115)
>>>> +++ opts.c      (working copy)
>>>> @@ -532,6 +532,7 @@ static const struct default_options defa
>>>>         regardless of them being declared inline.  */
>>>>      { OPT_LEVELS_3_PLUS_AND_SIZE, OPT_finline_functions, NULL, 1 },
>>>>      { OPT_LEVELS_1_PLUS_NOT_DEBUG, OPT_finline_functions_called_once, NULL, 1 },
>>>> +    { OPT_LEVELS_3_PLUS, OPT_fsplit_loops, NULL, 1 },
>>>>      { OPT_LEVELS_3_PLUS, OPT_funswitch_loops, NULL, 1 },
>>>>      { OPT_LEVELS_3_PLUS, OPT_fgcse_after_reload, NULL, 1 },
>>>>      { OPT_LEVELS_3_PLUS, OPT_ftree_loop_vectorize, NULL, 1 },
>>>> @@ -1411,6 +1412,8 @@ enable_fdo_optimizations (struct gcc_opt
>>>>      opts->x_flag_ipa_cp_alignment = value;
>>>>    if (!opts_set->x_flag_predictive_commoning)
>>>>      opts->x_flag_predictive_commoning = value;
>>>> +  if (!opts_set->x_flag_split_loops)
>>>> +    opts->x_flag_split_loops = value;
>>>>    if (!opts_set->x_flag_unswitch_loops)
>>>>      opts->x_flag_unswitch_loops = value;
>>>>    if (!opts_set->x_flag_gcse_after_reload)
>>>> Index: timevar.def
>>>> ===================================================================
>>>> --- timevar.def (revision 231115)
>>>> +++ timevar.def (working copy)
>>>> @@ -182,6 +182,7 @@ DEFTIMEVAR (TV_LIM                   , "
>>>>  DEFTIMEVAR (TV_TREE_LOOP_IVCANON     , "tree canonical iv")
>>>>  DEFTIMEVAR (TV_SCEV_CONST            , "scev constant prop")
>>>>  DEFTIMEVAR (TV_TREE_LOOP_UNSWITCH    , "tree loop unswitching")
>>>> +DEFTIMEVAR (TV_LOOP_SPLIT            , "loop splitting")
>>>>  DEFTIMEVAR (TV_COMPLETE_UNROLL       , "complete unrolling")
>>>>  DEFTIMEVAR (TV_TREE_PARALLELIZE_LOOPS, "tree parallelize loops")
>>>>  DEFTIMEVAR (TV_TREE_VECTORIZATION    , "tree vectorization")
>>>> Index: tree-pass.h
>>>> ===================================================================
>>>> --- tree-pass.h (revision 231115)
>>>> +++ tree-pass.h (working copy)
>>>> @@ -370,6 +370,7 @@ extern gimple_opt_pass *make_pass_tree_n
>>>>  extern gimple_opt_pass *make_pass_tree_loop_init (gcc::context *ctxt);
>>>>  extern gimple_opt_pass *make_pass_lim (gcc::context *ctxt);
>>>>  extern gimple_opt_pass *make_pass_tree_unswitch (gcc::context *ctxt);
>>>> +extern gimple_opt_pass *make_pass_loop_split (gcc::context *ctxt);
>>>>  extern gimple_opt_pass *make_pass_predcom (gcc::context *ctxt);
>>>>  extern gimple_opt_pass *make_pass_iv_canon (gcc::context *ctxt);
>>>>  extern gimple_opt_pass *make_pass_scev_cprop (gcc::context *ctxt);
>>>> Index: tree-ssa-loop-manip.h
>>>> ===================================================================
>>>> --- tree-ssa-loop-manip.h       (revision 231115)
>>>> +++ tree-ssa-loop-manip.h       (working copy)
>>>> @@ -24,6 +24,8 @@ typedef void (*transform_callback)(struc
>>>>
>>>>  extern void create_iv (tree, tree, tree, struct loop *, gimple_stmt_iterator *,
>>>>                        bool, tree *, tree *);
>>>> +extern void rewrite_into_loop_closed_ssa_1 (bitmap, unsigned, int,
>>>> +                                           struct loop *);
>>>>  extern void rewrite_into_loop_closed_ssa (bitmap, unsigned);
>>>>  extern void rewrite_virtuals_into_loop_closed_ssa (struct loop *);
>>>>  extern void verify_loop_closed_ssa (bool);
>>>> Index: Makefile.in
>>>> ===================================================================
>>>> --- Makefile.in (revision 231115)
>>>> +++ Makefile.in (working copy)
>>>> @@ -1474,6 +1474,7 @@ OBJS = \
>>>>         tree-ssa-loop-manip.o \
>>>>         tree-ssa-loop-niter.o \
>>>>         tree-ssa-loop-prefetch.o \
>>>> +       tree-ssa-loop-split.o \
>>>>         tree-ssa-loop-unswitch.o \
>>>>         tree-ssa-loop.o \
>>>>         tree-ssa-math-opts.o \
>>>> Index: tree-ssa-loop-split.c
>>>> ===================================================================
>>>> --- tree-ssa-loop-split.c       (revision 0)
>>>> +++ tree-ssa-loop-split.c       (working copy)
>>>> @@ -0,0 +1,686 @@
>>>> +/* Loop splitting.
>>>> +   Copyright (C) 2015 Free Software Foundation, Inc.
>>>> +
>>>> +This file is part of GCC.
>>>> +
>>>> +GCC is free software; you can redistribute it and/or modify it
>>>> +under the terms of the GNU General Public License as published by the
>>>> +Free Software Foundation; either version 3, or (at your option) any
>>>> +later version.
>>>> +
>>>> +GCC is distributed in the hope that it will be useful, but WITHOUT
>>>> +ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
>>>> +FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
>>>> +for more details.
>>>> +
>>>> +You should have received a copy of the GNU General Public License
>>>> +along with GCC; see the file COPYING3.  If not see
>>>> +<http://www.gnu.org/licenses/>.  */
>>>> +
>>>> +#include "config.h"
>>>> +#include "system.h"
>>>> +#include "coretypes.h"
>>>> +#include "backend.h"
>>>> +#include "tree.h"
>>>> +#include "gimple.h"
>>>> +#include "tree-pass.h"
>>>> +#include "ssa.h"
>>>> +#include "fold-const.h"
>>>> +#include "tree-cfg.h"
>>>> +#include "tree-ssa.h"
>>>> +#include "tree-ssa-loop-niter.h"
>>>> +#include "tree-ssa-loop.h"
>>>> +#include "tree-ssa-loop-manip.h"
>>>> +#include "tree-into-ssa.h"
>>>> +#include "cfgloop.h"
>>>> +#include "tree-scalar-evolution.h"
>>>> +#include "gimple-iterator.h"
>>>> +#include "gimple-pretty-print.h"
>>>> +#include "cfghooks.h"
>>>> +#include "gimple-fold.h"
>>>> +#include "gimplify-me.h"
>>>> +
>>>> +/* This file implements loop splitting, i.e. transformation of loops like
>>>> +
>>>> +   for (i = 0; i < 100; i++)
>>>> +     {
>>>> +       if (i < 50)
>>>> +         A;
>>>> +       else
>>>> +         B;
>>>> +     }
>>>> +
>>>> +   into:
>>>> +
>>>> +   for (i = 0; i < 50; i++)
>>>> +     {
>>>> +       A;
>>>> +     }
>>>> +   for (; i < 100; i++)
>>>> +     {
>>>> +       B;
>>>> +     }
>>>> +
>>>> +   */
>>>> +
>>>> +/* Return true when BB inside LOOP is a potential iteration space
>>>> +   split point, i.e. ends with a condition like "IV < comp", which
>>>> +   is true on one side of the iteration space and false on the other,
>>>> +   and the split point can be computed.  If so, also return the border
>>>> +   point in *BORDER and the comparison induction variable in IV.  */
>>>> +
>>>> +static tree
>>>> +split_at_bb_p (struct loop *loop, basic_block bb, tree *border, affine_iv *iv)
>>>> +{
>>>> +  gimple *last;
>>>> +  gcond *stmt;
>>>> +  affine_iv iv2;
>>>> +
>>>> +  /* BB must end in a simple conditional jump.  */
>>>> +  last = last_stmt (bb);
>>>> +  if (!last || gimple_code (last) != GIMPLE_COND)
>>>> +    return NULL_TREE;
>>>> +  stmt = as_a <gcond *> (last);
>>>> +
>>>> +  enum tree_code code = gimple_cond_code (stmt);
>>>> +
>>>> +  /* Only handle relational comparisons, for equality and non-equality
>>>> +     we'd have to split the loop into two loops and a middle statement.  */
>>>> +  switch (code)
>>>> +    {
>>>> +      case LT_EXPR:
>>>> +      case LE_EXPR:
>>>> +      case GT_EXPR:
>>>> +      case GE_EXPR:
>>>> +       break;
>>>> +      default:
>>>> +       return NULL_TREE;
>>>> +    }
>>>> +
>>>> +  if (loop_exits_from_bb_p (loop, bb))
>>>> +    return NULL_TREE;
>>>> +
>>>> +  tree op0 = gimple_cond_lhs (stmt);
>>>> +  tree op1 = gimple_cond_rhs (stmt);
>>>> +
>>>> +  if (!simple_iv (loop, loop, op0, iv, false))
>>>> +    return NULL_TREE;
>>>> +  if (!simple_iv (loop, loop, op1, &iv2, false))
>>>> +    return NULL_TREE;
>>>> +
>>>> +  /* Make it so, that the first argument of the condition is
>>>> +     the looping one (only swap.  */
>>>> +  if (!integer_zerop (iv2.step))
>>>> +    {
>>>> +      std::swap (op0, op1);
>>>> +      std::swap (*iv, iv2);
>>>> +      code = swap_tree_comparison (code);
>>>> +      gimple_cond_set_condition (stmt, code, op0, op1);
>>>> +      update_stmt (stmt);
>>>> +    }
>>>> +  else if (integer_zerop (iv->step))
>>>> +    return NULL_TREE;
>>>> +  if (!integer_zerop (iv2.step))
>>>> +    return NULL_TREE;
>>>> +
>>>> +  if (dump_file && (dump_flags & TDF_DETAILS))
>>>> +    {
>>>> +      fprintf (dump_file, "Found potential split point: ");
>>>> +      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
>>>> +      fprintf (dump_file, " { ");
>>>> +      print_generic_expr (dump_file, iv->base, TDF_SLIM);
>>>> +      fprintf (dump_file, " + I*");
>>>> +      print_generic_expr (dump_file, iv->step, TDF_SLIM);
>>>> +      fprintf (dump_file, " } %s ", get_tree_code_name (code));
>>>> +      print_generic_expr (dump_file, iv2.base, TDF_SLIM);
>>>> +      fprintf (dump_file, "\n");
>>>> +    }
>>>> +
>>>> +  *border = iv2.base;
>>>> +  return op0;
>>>> +}
>>>> +
>>>> +/* Given a GUARD conditional stmt inside LOOP, which we want to make always
>>>> +   true or false depending on INITIAL_TRUE, and adjusted values NEXTVAL
>>>> +   (a post-increment IV) and NEWBOUND (the comparator) adjust the loop
>>>> +   exit test statement to loop back only if the GUARD statement will
>>>> +   also be true/false in the next iteration.  */
>>>> +
>>>> +static void
>>>> +patch_loop_exit (struct loop *loop, gcond *guard, tree nextval, tree newbound,
>>>> +                bool initial_true)
>>>> +{
>>>> +  edge exit = single_exit (loop);
>>>> +  gcond *stmt = as_a <gcond *> (last_stmt (exit->src));
>>>> +  gimple_cond_set_condition (stmt, gimple_cond_code (guard),
>>>> +                            nextval, newbound);
>>>> +  update_stmt (stmt);
>>>> +
>>>> +  edge stay = single_pred_edge (loop->latch);
>>>> +
>>>> +  exit->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
>>>> +  stay->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
>>>> +
>>>> +  if (initial_true)
>>>> +    {
>>>> +      exit->flags |= EDGE_FALSE_VALUE;
>>>> +      stay->flags |= EDGE_TRUE_VALUE;
>>>> +    }
>>>> +  else
>>>> +    {
>>>> +      exit->flags |= EDGE_TRUE_VALUE;
>>>> +      stay->flags |= EDGE_FALSE_VALUE;
>>>> +    }
>>>> +}
>>>> +
>>>> +/* Give an induction variable GUARD_IV, and its affine descriptor IV,
>>>> +   find the loop phi node in LOOP defining it directly, or create
>>>> +   such phi node.  Return that phi node.  */
>>>> +
>>>> +static gphi *
>>>> +find_or_create_guard_phi (struct loop *loop, tree guard_iv, affine_iv * /*iv*/)
>>>> +{
>>>> +  gimple *def = SSA_NAME_DEF_STMT (guard_iv);
>>>> +  gphi *phi;
>>>> +  if ((phi = dyn_cast <gphi *> (def))
>>>> +      && gimple_bb (phi) == loop->header)
>>>> +    return phi;
>>>> +
>>>> +  /* XXX Create the PHI instead.  */
>>>> +  return NULL;
>>>> +}
>>>> +
>>>> +/* This function updates the SSA form after connect_loops made a new
>>>> +   edge NEW_E leading from LOOP1 exit to LOOP2 (via in intermediate
>>>> +   conditional).  I.e. the second loop can now be entered either
>>>> +   via the original entry or via NEW_E, so the entry values of LOOP2
>>>> +   phi nodes are either the original ones or those at the exit
>>>> +   of LOOP1.  Insert new phi nodes in LOOP2 pre-header reflecting
>>>> +   this.  */
>>>> +
>>>> +static void
>>>> +connect_loop_phis (struct loop *loop1, struct loop *loop2, edge new_e)
>>>> +{
>>>> +  basic_block rest = loop_preheader_edge (loop2)->src;
>>>> +  gcc_assert (new_e->dest == rest);
>>>> +  edge skip_first = EDGE_PRED (rest, EDGE_PRED (rest, 0) == new_e);
>>>> +
>>>> +  edge firste = loop_preheader_edge (loop1);
>>>> +  edge seconde = loop_preheader_edge (loop2);
>>>> +  edge firstn = loop_latch_edge (loop1);
>>>> +  gphi_iterator psi_first, psi_second;
>>>> +  for (psi_first = gsi_start_phis (loop1->header),
>>>> +       psi_second = gsi_start_phis (loop2->header);
>>>> +       !gsi_end_p (psi_first);
>>>> +       gsi_next (&psi_first), gsi_next (&psi_second))
>>>> +    {
>>>> +      tree init, next, new_init;
>>>> +      use_operand_p op;
>>>> +      gphi *phi_first = psi_first.phi ();
>>>> +      gphi *phi_second = psi_second.phi ();
>>>> +
>>>> +      init = PHI_ARG_DEF_FROM_EDGE (phi_first, firste);
>>>> +      next = PHI_ARG_DEF_FROM_EDGE (phi_first, firstn);
>>>> +      op = PHI_ARG_DEF_PTR_FROM_EDGE (phi_second, seconde);
>>>> +      gcc_assert (operand_equal_for_phi_arg_p (init, USE_FROM_PTR (op)));
>>>> +
>>>> +      /* Prefer using original variable as a base for the new ssa name.
>>>> +        This is necessary for virtual ops, and useful in order to avoid
>>>> +        losing debug info for real ops.  */
>>>> +      if (TREE_CODE (next) == SSA_NAME
>>>> +         && useless_type_conversion_p (TREE_TYPE (next),
>>>> +                                       TREE_TYPE (init)))
>>>> +       new_init = copy_ssa_name (next);
>>>> +      else if (TREE_CODE (init) == SSA_NAME
>>>> +              && useless_type_conversion_p (TREE_TYPE (init),
>>>> +                                            TREE_TYPE (next)))
>>>> +       new_init = copy_ssa_name (init);
>>>> +      else if (useless_type_conversion_p (TREE_TYPE (next),
>>>> +                                         TREE_TYPE (init)))
>>>> +       new_init = make_temp_ssa_name (TREE_TYPE (next), NULL,
>>>> +                                      "unrinittmp");
>>>> +      else
>>>> +       new_init = make_temp_ssa_name (TREE_TYPE (init), NULL,
>>>> +                                      "unrinittmp");
>>>> +
>>>> +      gphi * newphi = create_phi_node (new_init, rest);
>>>> +      add_phi_arg (newphi, init, skip_first, UNKNOWN_LOCATION);
>>>> +      add_phi_arg (newphi, next, new_e, UNKNOWN_LOCATION);
>>>> +      SET_USE (op, new_init);
>>>> +    }
>>>> +}
>>>> +
>>>> +/* The two loops LOOP1 and LOOP2 were just created by loop versioning,
>>>> +   they are still equivalent and placed in two arms of a diamond, like so:
>>>> +
>>>> +               .------if (cond)------.
>>>> +               v                     v
>>>> +             pre1                   pre2
>>>> +              |                      |
>>>> +        .--->h1                     h2<----.
>>>> +        |     |                      |     |
>>>> +        |    ex1---.            .---ex2    |
>>>> +        |    /     |            |     \    |
>>>> +        '---l1     X            |     l2---'
>>>> +                   |            |
>>>> +                   |            |
>>>> +                   '--->join<---'
>>>> +
>>>> +   This function transforms the program such that LOOP1 is conditionally
>>>> +   falling through to LOOP2, or skipping it.  This is done by splitting
>>>> +   the ex1->join edge at X in the diagram above, and inserting a condition
>>>> +   whose one arm goes to pre2, resulting in this situation:
>>>> +
>>>> +               .------if (cond)------.
>>>> +               v                     v
>>>> +             pre1       .---------->pre2
>>>> +              |         |            |
>>>> +        .--->h1         |           h2<----.
>>>> +        |     |         |            |     |
>>>> +        |    ex1---.    |       .---ex2    |
>>>> +        |    /     v    |       |     \    |
>>>> +        '---l1   skip---'       |     l2---'
>>>> +                   |            |
>>>> +                   |            |
>>>> +                   '--->join<---'
>>>> +
>>>> +
>>>> +   The condition used is the exit condition of LOOP1, which effectively means
>>>> +   that when the first loop exits (for whatever reason) but the real original
>>>> +   exit expression is still false the second loop will be entered.
>>>> +   The function returns the new edge cond->pre2.
>>>> +
>>>> +   This doesn't update the SSA form, see connect_loop_phis for that.  */
>>>> +
>>>> +static edge
>>>> +connect_loops (struct loop *loop1, struct loop *loop2)
>>>> +{
>>>> +  edge exit = single_exit (loop1);
>>>> +  basic_block skip_bb = split_edge (exit);
>>>> +  gcond *skip_stmt;
>>>> +  gimple_stmt_iterator gsi;
>>>> +  edge new_e, skip_e;
>>>> +
>>>> +  gimple *stmt = last_stmt (exit->src);
>>>> +  skip_stmt = gimple_build_cond (gimple_cond_code (stmt),
>>>> +                                gimple_cond_lhs (stmt),
>>>> +                                gimple_cond_rhs (stmt),
>>>> +                                NULL_TREE, NULL_TREE);
>>>> +  gsi = gsi_last_bb (skip_bb);
>>>> +  gsi_insert_after (&gsi, skip_stmt, GSI_NEW_STMT);
>>>> +
>>>> +  skip_e = EDGE_SUCC (skip_bb, 0);
>>>> +  skip_e->flags &= ~EDGE_FALLTHRU;
>>>> +  new_e = make_edge (skip_bb, loop_preheader_edge (loop2)->src, 0);
>>>> +  if (exit->flags & EDGE_TRUE_VALUE)
>>>> +    {
>>>> +      skip_e->flags |= EDGE_TRUE_VALUE;
>>>> +      new_e->flags |= EDGE_FALSE_VALUE;
>>>> +    }
>>>> +  else
>>>> +    {
>>>> +      skip_e->flags |= EDGE_FALSE_VALUE;
>>>> +      new_e->flags |= EDGE_TRUE_VALUE;
>>>> +    }
>>>> +
>>>> +  new_e->count = skip_bb->count;
>>>> +  new_e->probability = PROB_LIKELY;
>>>> +  new_e->count = apply_probability (skip_e->count, PROB_LIKELY);
>>>> +  skip_e->count -= new_e->count;
>>>> +  skip_e->probability = inverse_probability (PROB_LIKELY);
>>>> +
>>>> +  return new_e;
>>>> +}
>>>> +
>>>> +/* This returns the new bound for iterations given the original iteration
>>>> +   space in NITER, an arbitrary new bound BORDER, assumed to be some
>>>> +   comparison value with a different IV, the initial value GUARD_INIT of
>>>> +   that other IV, and the comparison code GUARD_CODE that compares
>>>> +   that other IV with BORDER.  We return an SSA name, and place any
>>>> +   necessary statements for that computation into *STMTS.
>>>> +
>>>> +   For example for such a loop:
>>>> +
>>>> +     for (i = beg, j = guard_init; i < end; i++, j++)
>>>> +       if (j < border)  // this is supposed to be true/false
>>>> +         ...
>>>> +
>>>> +   we want to return a new bound (on j) that makes the loop iterate
>>>> +   as long as the condition j < border stays true.  We also don't want
>>>> +   to iterate more often than the original loop, so we have to introduce
>>>> +   some cut-off as well (via min/max), effectively resulting in:
>>>> +
>>>> +     newend = min (end+guard_init-beg, border)
>>>> +     for (i = beg; j = guard_init; j < newend; i++, j++)
>>>> +       if (j < c)
>>>> +         ...
>>>> +
>>>> +   Depending on the direction of the IVs and if the exit tests
>>>> +   are strict or non-strict we need to use MIN or MAX,
>>>> +   and add or subtract 1.  This routine computes newend above.  */
>>>> +
>>>> +static tree
>>>> +compute_new_first_bound (gimple_seq *stmts, struct tree_niter_desc *niter,
>>>> +                        tree border,
>>>> +                        enum tree_code guard_code, tree guard_init)
>>>> +{
>>>> +  /* The niter structure contains the after-increment IV, we need
>>>> +     the loop-enter base, so subtract STEP once.  */
>>>> +  tree controlbase = force_gimple_operand (niter->control.base,
>>>> +                                          stmts, true, NULL_TREE);
>>>> +  tree controlstep = niter->control.step;
>>>> +  tree enddiff;
>>>> +  if (POINTER_TYPE_P (TREE_TYPE (controlbase)))
>>>> +    {
>>>> +      controlstep = gimple_build (stmts, NEGATE_EXPR,
>>>> +                                 TREE_TYPE (controlstep), controlstep);
>>>> +      enddiff = gimple_build (stmts, POINTER_PLUS_EXPR,
>>>> +                             TREE_TYPE (controlbase),
>>>> +                             controlbase, controlstep);
>>>> +    }
>>>> +  else
>>>> +    enddiff = gimple_build (stmts, MINUS_EXPR,
>>>> +                           TREE_TYPE (controlbase),
>>>> +                           controlbase, controlstep);
>>>> +
>>>> +  /* Compute beg-guard_init.  */
>>>> +  if (POINTER_TYPE_P (TREE_TYPE (enddiff)))
>>>> +    {
>>>> +      tree tem = gimple_convert (stmts, sizetype, guard_init);
>>>> +      tem = gimple_build (stmts, NEGATE_EXPR, sizetype, tem);
>>>> +      enddiff = gimple_build (stmts, POINTER_PLUS_EXPR,
>>>> +                             TREE_TYPE (enddiff),
>>>> +                             enddiff, tem);
>>>> +    }
>>>> +  else
>>>> +    enddiff = gimple_build (stmts, MINUS_EXPR, TREE_TYPE (enddiff),
>>>> +                           enddiff, guard_init);
>>>> +
>>>> +  /* Compute end-(beg-guard_init).  */
>>>> +  gimple_seq stmts2;
>>>> +  tree newbound = force_gimple_operand (niter->bound, &stmts2,
>>>> +                                       true, NULL_TREE);
>>>> +  gimple_seq_add_seq_without_update (stmts, stmts2);
>>>> +
>>>> +  if (POINTER_TYPE_P (TREE_TYPE (enddiff))
>>>> +      || POINTER_TYPE_P (TREE_TYPE (newbound)))
>>>> +    {
>>>> +      enddiff = gimple_convert (stmts, sizetype, enddiff);
>>>> +      enddiff = gimple_build (stmts, NEGATE_EXPR, sizetype, enddiff);
>>>> +      newbound = gimple_build (stmts, POINTER_PLUS_EXPR,
>>>> +                              TREE_TYPE (newbound),
>>>> +                              newbound, enddiff);
>>>> +    }
>>>> +  else
>>>> +    newbound = gimple_build (stmts, MINUS_EXPR, TREE_TYPE (enddiff),
>>>> +                            newbound, enddiff);
>>>> +
>>>> +  /* Depending on the direction of the IVs the new bound for the first
>>>> +     loop is the minimum or maximum of old bound and border.
>>>> +     Also, if the guard condition isn't strictly less or greater,
>>>> +     we need to adjust the bound.  */
>>>> +  int addbound = 0;
>>>> +  enum tree_code minmax;
>>>> +  if (niter->cmp == LT_EXPR)
>>>> +    {
>>>> +      /* GT and LE are the same, inverted.  */
>>>> +      if (guard_code == GT_EXPR || guard_code == LE_EXPR)
>>>> +       addbound = -1;
>>>> +      minmax = MIN_EXPR;
>>>> +    }
>>>> +  else
>>>> +    {
>>>> +      gcc_assert (niter->cmp == GT_EXPR);
>>>> +      if (guard_code == GE_EXPR || guard_code == LT_EXPR)
>>>> +       addbound = 1;
>>>> +      minmax = MAX_EXPR;
>>>> +    }
>>>> +
>>>> +  if (addbound)
>>>> +    {
>>>> +      tree type2 = TREE_TYPE (newbound);
>>>> +      if (POINTER_TYPE_P (type2))
>>>> +       type2 = sizetype;
>>>> +      newbound = gimple_build (stmts,
>>>> +                              POINTER_TYPE_P (TREE_TYPE (newbound))
>>>> +                              ? POINTER_PLUS_EXPR : PLUS_EXPR,
>>>> +                              TREE_TYPE (newbound),
>>>> +                              newbound,
>>>> +                              build_int_cst (type2, addbound));
>>>> +    }
>>>> +
>>>> +  tree newend = gimple_build (stmts, minmax, TREE_TYPE (border),
>>>> +                             border, newbound);
>>>> +  return newend;
>>>> +}
>>>> +
>>>> +/* Checks if LOOP contains an conditional block whose condition
>>>> +   depends on which side in the iteration space it is, and if so
>>>> +   splits the iteration space into two loops.  Returns true if the
>>>> +   loop was split.  NITER must contain the iteration descriptor for the
>>>> +   single exit of LOOP.  */
>>>> +
>>>> +static bool
>>>> +split_loop (struct loop *loop1, struct tree_niter_desc *niter)
>>>> +{
>>>> +  basic_block *bbs;
>>>> +  unsigned i;
>>>> +  bool changed = false;
>>>> +  tree guard_iv;
>>>> +  tree border;
>>>> +  affine_iv iv;
>>>> +
>>>> +  bbs = get_loop_body (loop1);
>>>> +
>>>> +  /* Find a splitting opportunity.  */
>>>> +  for (i = 0; i < loop1->num_nodes; i++)
>>>> +    if ((guard_iv = split_at_bb_p (loop1, bbs[i], &border, &iv)))
>>>> +      {
>>>> +       /* Handling opposite steps is not implemented yet.  Neither
>>>> +          is handling different step sizes.  */
>>>> +       if ((tree_int_cst_sign_bit (iv.step)
>>>> +            != tree_int_cst_sign_bit (niter->control.step))
>>>> +           || !tree_int_cst_equal (iv.step, niter->control.step))
>>>> +         continue;
>>>> +
>>>> +       /* Find a loop PHI node that defines guard_iv directly,
>>>> +          or create one doing that.  */
>>>> +       gphi *phi = find_or_create_guard_phi (loop1, guard_iv, &iv);
>>>> +       if (!phi)
>>>> +         continue;
>>>> +       gcond *guard_stmt = as_a<gcond *> (last_stmt (bbs[i]));
>>>> +       tree guard_init = PHI_ARG_DEF_FROM_EDGE (phi,
>>>> +                                                loop_preheader_edge (loop1));
>>>> +       enum tree_code guard_code = gimple_cond_code (guard_stmt);
>>>> +
>>>> +       /* Loop splitting is implemented by versioning the loop, placing
>>>> +          the new loop after the old loop, make the first loop iterate
>>>> +          as long as the conditional stays true (or false) and let the
>>>> +          second (new) loop handle the rest of the iterations.
>>>> +
>>>> +          First we need to determine if the condition will start being true
>>>> +          or false in the first loop.  */
>>>> +       bool initial_true;
>>>> +       switch (guard_code)
>>>> +         {
>>>> +           case LT_EXPR:
>>>> +           case LE_EXPR:
>>>> +             initial_true = !tree_int_cst_sign_bit (iv.step);
>>>> +             break;
>>>> +           case GT_EXPR:
>>>> +           case GE_EXPR:
>>>> +             initial_true = tree_int_cst_sign_bit (iv.step);
>>>> +             break;
>>>> +           default:
>>>> +             gcc_unreachable ();
>>>> +         }
>>>> +
>>>> +       /* Build a condition that will skip the first loop when the
>>>> +          guard condition won't ever be true (or false).  */
>>>> +       gimple_seq stmts2;
>>>> +       border = force_gimple_operand (border, &stmts2, true, NULL_TREE);
>>>> +       if (stmts2)
>>>> +         gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1),
>>>> +                                           stmts2);
>>>> +       tree cond = build2 (guard_code, boolean_type_node, guard_init, border);
>>>> +       if (!initial_true)
>>>> +         cond = fold_build1 (TRUTH_NOT_EXPR, boolean_type_node, cond);
>>>> +
>>>> +       /* Now version the loop, placing loop2 after loop1 connecting
>>>> +          them, and fix up SSA form for that.  */
>>>> +       initialize_original_copy_tables ();
>>>> +       basic_block cond_bb;
>>>> +       struct loop *loop2 = loop_version (loop1, cond, &cond_bb,
>>>> +                                          REG_BR_PROB_BASE, REG_BR_PROB_BASE,
>>>> +                                          REG_BR_PROB_BASE, true);
>>>> +       gcc_assert (loop2);
>>>> +       update_ssa (TODO_update_ssa);
>>>> +
>>>> +       edge new_e = connect_loops (loop1, loop2);
>>>> +       connect_loop_phis (loop1, loop2, new_e);
>>>> +
>>>> +       /* The iterations of the second loop is now already
>>>> +          exactly those that the first loop didn't do, but the
>>>> +          iteration space of the first loop is still the original one.
>>>> +          Compute the new bound for the guarding IV and patch the
>>>> +          loop exit to use it instead of original IV and bound.  */
>>>> +       gimple_seq stmts = NULL;
>>>> +       tree newend = compute_new_first_bound (&stmts, niter, border,
>>>> +                                              guard_code, guard_init);
>>>> +       if (stmts)
>>>> +         gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1),
>>>> +                                           stmts);
>>>> +       tree guard_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop1));
>>>> +       patch_loop_exit (loop1, guard_stmt, guard_next, newend, initial_true);
>>>> +
>>>> +       /* Finally patch out the two copies of the condition to be always
>>>> +          true/false (or opposite).  */
>>>> +       gcond *force_true = as_a<gcond *> (last_stmt (bbs[i]));
>>>> +       gcond *force_false = as_a<gcond *> (last_stmt (get_bb_copy (bbs[i])));
>>>> +       if (!initial_true)
>>>> +         std::swap (force_true, force_false);
>>>> +       gimple_cond_make_true (force_true);
>>>> +       gimple_cond_make_false (force_false);
>>>> +       update_stmt (force_true);
>>>> +       update_stmt (force_false);
>>>> +
>>>> +       free_original_copy_tables ();
>>>> +
>>>> +       /* We destroyed LCSSA form above.  Eventually we might be able
>>>> +          to fix it on the fly, for now simply punt and use the helper.  */
>>>> +       rewrite_into_loop_closed_ssa_1 (NULL, 0, SSA_OP_USE, loop1);
>>>> +
>>>> +       changed = true;
>>>> +       if (dump_file && (dump_flags & TDF_DETAILS))
>>>> +         fprintf (dump_file, ";; Loop split.\n");
>>>> +
>>>> +       /* Only deal with the first opportunity.  */
>>>> +       break;
>>>> +      }
>>>> +
>>>> +  free (bbs);
>>>> +  return changed;
>>>> +}
>>>> +
>>>> +/* Main entry point.  Perform loop splitting on all suitable loops.  */
>>>> +
>>>> +static unsigned int
>>>> +tree_ssa_split_loops (void)
>>>> +{
>>>> +  struct loop *loop;
>>>> +  bool changed = false;
>>>> +
>>>> +  gcc_assert (scev_initialized_p ());
>>>> +  FOR_EACH_LOOP (loop, 0)
>>>> +    loop->aux = NULL;
>>>> +
>>>> +  /* Go through all loops starting from innermost.  */
>>>> +  FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
>>>> +    {
>>>> +      struct tree_niter_desc niter;
>>>> +      if (loop->aux)
>>>> +       {
>>>> +         /* If any of our inner loops was split, don't split us,
>>>> +            and mark our containing loop as having had splits as well.  */
>>>> +         loop_outer (loop)->aux = loop;
>>>> +         continue;
>>>> +       }
>>>> +
>>>> +      if (single_exit (loop)
>>>> +         /* ??? We could handle non-empty latches when we split
>>>> +            the latch edge (not the exit edge), and put the new
>>>> +            exit condition in the new block.  OTOH this executes some
>>>> +            code unconditionally that might have been skipped by the
>>>> +            original exit before.  */
>>>> +         && empty_block_p (loop->latch)
>>>> +         && !optimize_loop_for_size_p (loop)
>>>> +         && number_of_iterations_exit (loop, single_exit (loop), &niter,
>>>> +                                       false, true)
>>>> +         && niter.cmp != ERROR_MARK
>>>> +         /* We can't yet handle loops controlled by a != predicate.  */
>>>> +         && niter.cmp != NE_EXPR)
>>>> +       {
>>>> +         if (split_loop (loop, &niter))
>>>> +           {
>>>> +             /* Mark our containing loop as having had some split inner
>>>> +                loops.  */
>>>> +             loop_outer (loop)->aux = loop;
>>>> +             changed = true;
>>>> +           }
>>>> +       }
>>>> +    }
>>>> +
>>>> +  FOR_EACH_LOOP (loop, 0)
>>>> +    loop->aux = NULL;
>>>> +
>>>> +  if (changed)
>>>> +    return TODO_cleanup_cfg;
>>>> +  return 0;
>>>> +}
>>>> +
>>>> +/* Loop splitting pass.  */
>>>> +
>>>> +namespace {
>>>> +
>>>> +const pass_data pass_data_loop_split =
>>>> +{
>>>> +  GIMPLE_PASS, /* type */
>>>> +  "lsplit", /* name */
>>>> +  OPTGROUP_LOOP, /* optinfo_flags */
>>>> +  TV_LOOP_SPLIT, /* tv_id */
>>>> +  PROP_cfg, /* properties_required */
>>>> +  0, /* properties_provided */
>>>> +  0, /* properties_destroyed */
>>>> +  0, /* todo_flags_start */
>>>> +  0, /* todo_flags_finish */
>>>> +};
>>>> +
>>>> +class pass_loop_split : public gimple_opt_pass
>>>> +{
>>>> +public:
>>>> +  pass_loop_split (gcc::context *ctxt)
>>>> +    : gimple_opt_pass (pass_data_loop_split, ctxt)
>>>> +  {}
>>>> +
>>>> +  /* opt_pass methods: */
>>>> +  virtual bool gate (function *) { return flag_split_loops != 0; }
>>>> +  virtual unsigned int execute (function *);
>>>> +
>>>> +}; // class pass_loop_split
>>>> +
>>>> +unsigned int
>>>> +pass_loop_split::execute (function *fun)
>>>> +{
>>>> +  if (number_of_loops (fun) <= 1)
>>>> +    return 0;
>>>> +
>>>> +  return tree_ssa_split_loops ();
>>>> +}
>>>> +
>>>> +} // anon namespace
>>>> +
>>>> +gimple_opt_pass *
>>>> +make_pass_loop_split (gcc::context *ctxt)
>>>> +{
>>>> +  return new pass_loop_split (ctxt);
>>>> +}
>>>> Index: doc/invoke.texi
>>>> ===================================================================
>>>> --- doc/invoke.texi     (revision 231115)
>>>> +++ doc/invoke.texi     (working copy)
>>>> @@ -446,7 +446,7 @@ Objective-C and Objective-C++ Dialects}.
>>>>  -fselective-scheduling -fselective-scheduling2 @gol
>>>>  -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
>>>>  -fsemantic-interposition -fshrink-wrap -fsignaling-nans @gol
>>>> --fsingle-precision-constant -fsplit-ivs-in-unroller @gol
>>>> +-fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops@gol
>>>>  -fsplit-paths @gol
>>>>  -fsplit-wide-types -fssa-backprop -fssa-phiopt @gol
>>>>  -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
>>>> @@ -10197,6 +10197,11 @@ Enabled with @option{-fprofile-use}.
>>>>  Enables the loop invariant motion pass in the RTL loop optimizer.  Enabled
>>>>  at level @option{-O1}
>>>>
>>>> +@item -fsplit-loops
>>>> +@opindex fsplit-loops
>>>> +Split a loop into two if it contains a condition that's always true
>>>> +for one side of the iteration space and false for the other.
>>>> +
>>>>  @item -funswitch-loops
>>>>  @opindex funswitch-loops
>>>>  Move branches with loop invariant conditions out of the loop, with duplicates
>>>> Index: doc/passes.texi
>>>> ===================================================================
>>>> --- doc/passes.texi     (revision 231115)
>>>> +++ doc/passes.texi     (working copy)
>>>> @@ -484,6 +484,12 @@ out of the loops.  To achieve this, a du
>>>>  each possible outcome of conditional jump(s).  The pass is implemented in
>>>>  @file{tree-ssa-loop-unswitch.c}.
>>>>
>>>> +Loop splitting.  If a loop contains a conditional statement that is
>>>> +always true for one part of the iteration space and false for the other
>>>> +this pass splits the loop into two, one dealing with one side the other
>>>> +only with the other, thereby removing one inner-loop conditional.  The
>>>> +pass is implemented in @file{tree-ssa-loop-split.c}.
>>>> +
>>>>  The optimizations also use various utility functions contained in
>>>>  @file{tree-ssa-loop-manip.c}, @file{cfgloop.c}, @file{cfgloopanal.c} and
>>>>  @file{cfgloopmanip.c}.
>>>> Index: testsuite/gcc.dg/loop-split.c
>>>> ===================================================================
>>>> --- testsuite/gcc.dg/loop-split.c       (revision 0)
>>>> +++ testsuite/gcc.dg/loop-split.c       (working copy)
>>>> @@ -0,0 +1,147 @@
>>>> +/* { dg-do run } */
>>>> +/* { dg-options "-O2 -fsplit-loops -fdump-tree-lsplit-details" } */
>>>> +
>>>> +#ifdef __cplusplus
>>>> +extern "C" int printf (const char *, ...);
>>>> +extern "C" void abort (void);
>>>> +#else
>>>> +extern int printf (const char *, ...);
>>>> +extern void abort (void);
>>>> +#endif
>>>> +
>>>> +/* Define TRACE to 1 or 2 to get detailed tracing.
>>>> +   Define SINGLE_TEST to 1 or 2 to get a simple routine with
>>>> +   just one loop, called only one time or with multiple parameters,
>>>> +   to make debugging easier.  */
>>>> +#ifndef TRACE
>>>> +#define TRACE 0
>>>> +#endif
>>>> +
>>>> +#define loop(beg,step,beg2,cond1,cond2) \
>>>> +    do \
>>>> +      { \
>>>> +       sum = 0; \
>>>> +        for (i = (beg), j = (beg2); (cond1); i+=(step),j+=(step)) \
>>>> +          { \
>>>> +            if (cond2) { \
>>>> +             if (TRACE > 1) printf ("a: %d %d\n", i, j); \
>>>> +              sum += a[i]; \
>>>> +           } else { \
>>>> +             if (TRACE > 1) printf ("b: %d %d\n", i, j); \
>>>> +              sum += b[i]; \
>>>> +           } \
>>>> +          } \
>>>> +       if (TRACE > 0) printf ("sum: %d\n", sum); \
>>>> +       check = check * 47 + sum; \
>>>> +      } while (0)
>>>> +
>>>> +#ifndef SINGLE_TEST
>>>> +unsigned __attribute__((noinline, noclone)) dotest (int beg, int end, int step,
>>>> +                                              int c, int *a, int *b, int beg2)
>>>> +{
>>>> +  unsigned check = 0;
>>>> +  int sum;
>>>> +  int i, j;
>>>> +  loop (beg, 1, beg2, i < end, j < c);
>>>> +  loop (beg, 1, beg2, i <= end, j < c);
>>>> +  loop (beg, 1, beg2, i < end, j <= c);
>>>> +  loop (beg, 1, beg2, i <= end, j <= c);
>>>> +  loop (beg, 1, beg2, i < end, j > c);
>>>> +  loop (beg, 1, beg2, i <= end, j > c);
>>>> +  loop (beg, 1, beg2, i < end, j >= c);
>>>> +  loop (beg, 1, beg2, i <= end, j >= c);
>>>> +  beg2 += end-beg;
>>>> +  loop (end, -1, beg2, i >= beg, j >= c);
>>>> +  loop (end, -1, beg2, i >= beg, j > c);
>>>> +  loop (end, -1, beg2, i > beg, j >= c);
>>>> +  loop (end, -1, beg2, i > beg, j > c);
>>>> +  loop (end, -1, beg2, i >= beg, j <= c);
>>>> +  loop (end, -1, beg2, i >= beg, j < c);
>>>> +  loop (end, -1, beg2, i > beg, j <= c);
>>>> +  loop (end, -1, beg2, i > beg, j < c);
>>>> +  return check;
>>>> +}
>>>> +
>>>> +#else
>>>> +
>>>> +int __attribute__((noinline, noclone)) f (int beg, int end, int step,
>>>> +                                         int c, int *a, int *b, int beg2)
>>>> +{
>>>> +  int sum = 0;
>>>> +  int i, j;
>>>> +  //for (i = beg, j = beg2; i < end; i += 1, j++ /*step*/)
>>>> +  for (i = end, j = beg2 + (end-beg); i > beg; i += -1, j-- /*step*/)
>>>> +    {
>>>> +      // i - j == X --> i = X + j
>>>> +      // --> i < end == X+j < end == j < end - X
>>>> +      // --> newend = end - (i_init - j_init)
>>>> +      // j < end-X && j < c --> j < min(end-X,c)
>>>> +      // j < end-X && j <= c --> j <= min(end-X-1,c) or j < min(end-X,c+1{OF!})
>>>> +      //if (j < c)
>>>> +      if (j >= c)
>>>> +       printf ("a: %d %d\n", i, j);
>>>> +      /*else
>>>> +       printf ("b: %d %d\n", i, j);*/
>>>> +       /*sum += a[i];
>>>> +      else
>>>> +       sum += b[i];*/
>>>> +    }
>>>> +  return sum;
>>>> +}
>>>> +
>>>> +int __attribute__((noinline, noclone)) f2 (int *beg, int *end, int step,
>>>> +                                         int *c, int *a, int *b, int *beg2)
>>>> +{
>>>> +  int sum = 0;
>>>> +  int *i, *j;
>>>> +  for (i = beg, j = beg2; i < end; i += 1, j++ /*step*/)
>>>> +    {
>>>> +      if (j <= c)
>>>> +       printf ("%d %d\n", i - beg, j - beg);
>>>> +       /*sum += a[i];
>>>> +      else
>>>> +       sum += b[i];*/
>>>> +    }
>>>> +  return sum;
>>>> +}
>>>> +#endif
>>>> +
>>>> +extern int printf (const char *, ...);
>>>> +
>>>> +int main ()
>>>> +{
>>>> +  int a[] = {0,0,0,0,0, 1,2,3,4,5,6,7,8,9,          0,0,0,0,0};
>>>> +  int b[] = {0,0,0,0,0, -1,-2,-3,-4,-5,-6,-7,-8,-9, 0,0,0,0,0,};
>>>> +  int c;
>>>> +  int diff = 0;
>>>> +  unsigned check = 0;
>>>> +#if defined(SINGLE_TEST) && (SINGLE_TEST == 1)
>>>> +  //dotest (0, 9, 1, -1, a+5, b+5, -1);
>>>> +  //return 0;
>>>> +  f (0, 9, 1, 5, a+5, b+5, -1);
>>>> +  return 0;
>>>> +#endif
>>>> +  for (diff = -5; diff <= 5; diff++)
>>>> +    {
>>>> +      for (c = -1; c <= 10; c++)
>>>> +       {
>>>> +#ifdef SINGLE_TEST
>>>> +         int s = f (0, 9, 1, c, a+5, b+5, diff);
>>>> +         //int s = f2 (a+0, a+9, 1, a+c, a+5, b+5, a+diff);
>>>> +         printf ("%d ", s);
>>>> +#else
>>>> +         if (TRACE > 0)
>>>> +           printf ("check %d %d\n", c, diff);
>>>> +         check = check * 51 + dotest (0, 9, 1, c, a+5, b+5, diff);
>>>> +#endif
>>>> +       }
>>>> +      //printf ("\n");
>>>> +    }
>>>> +  //printf ("%u\n", check);
>>>> +  if (check != 3213344948)
>>>> +    abort ();
>>>> +  return 0;
>>>> +}
>>>> +
>>>> +/* All 16 loops in dotest should be split.  */
>>>> +/* { dg-final { scan-tree-dump-times "Loop split" 16 "lsplit" } } */


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]