This is the mail archive of the gcc-patches@gcc.gnu.org mailing list for the GCC project.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]
Other format: [Raw text]

[PATCH] c++/67913, 67917 - fix new expression with wrong number of elements


This is a patch for two C++ bugs:

  67913 - new expression with negative size not diagnosed
  67927 - array new expression with excessive number of elements
          not diagnosed

The C++ front end rejects a subset of array declarators with negative
bounds or with bounds in excess of some implementation defined maximum
(roughly SIZE_MAX / 2), but it does so inconsistently.  For example,
it silently accepts expressions such as

    new int [-1][2];

but invokes operator new to allocate SIZE_MAX bytes.  When operator
new succeeds (as is the case on Linux with memory overcommitment
enabled), the new expression returns a valid pointer to some
unknown amount of storage less than SIZE_MAX.  Accessing the memory
at some non-zero offset then causes a SIGSEGV.

Similarly, GCC accepts the following expression with the same result:

    new int [SIZE_MAX][2];

C++ 14 makes it clear that such expressions are ill-formed and must
be rejected.  This patch adds checks that consistently reject all
new expressions with both negative array bounds and bounds in excess
of the maximum.

While I raised these bugs as separate issues I decided to group the
two sets of changes together since they both touch the same function
in similar ways, and hopefully doing so will make them also easier
to review.

I've tested the patch by bootstrapping C/C++ and running the test
suites (including libstdc++) on x86_64 with no regressions.

During the development of the changes I found a few basic mistakes
in my code only after running libstdc++ tests.  To make it possible
to uncover them sooner in the future, I added another test that
isn't directly related to the problem: new45.C.

I also found a minor problem in the GCC regression test suite where
the g++.dg/other/new-size-type.C test for PR 36741 tried to check
that the 'new char[~static_cast<size_t>(0)]' expression was accepted
without a warning.  The complaint in the PR was about the wording of
the warning, not about the validity of the expression (the submitter
agreed that a correctly worded diagnostic would be appropriate).
 I chaged the test to expect a meaningful error message.

Once this patch is approved and committed a follow-up patch should
document the implementation-defined maximum to the manual.

Martin
gcc/cp/ChangeLog

2015-10-19  Martin Sebor  <msebor@redhat.com>

	PR c++/67913
	PR c++/67927
	* call.c (build_operator_new_call): Do not assume size_check
	is non-null, analogously to the top half of the function.
	* init.c (build_new_1): Detect and diagnose array sizes in
	excess of the maximum of roughly SIZE_MAX / 2.
	Insert a runtime check only for arrays with a non-constant size.
	(build_new): Detect and diagnose negative array sizes.

gcc/testsuite/ChangeLog

2015-10-19  Martin Sebor  <msebor@redhat.com>

	* init/new45.C: New test to verify that operator new is invoked
	with or without overhead for a cookie.

	PR c++/67927
	* init/new44.C: New test for placement new expressions for arrays
	with excessive number of elements.

	PR c++/67913
	* init/new43.C: New test for placement new expressions for arrays
	with negative number of elements.

	* other/new-size-type.C: Expect array new expression with
	an excessive number of elements to be rejected.

diff --git a/gcc/cp/call.c b/gcc/cp/call.c
index 367d42b..3f76198 100644
--- a/gcc/cp/call.c
+++ b/gcc/cp/call.c
@@ -4228,10 +4228,12 @@ build_operator_new_call (tree fnname, vec<tree, va_gc> **args,
 	 {
 	   /* Update the total size.  */
 	   *size = size_binop (PLUS_EXPR, original_size, *cookie_size);
+	   if (size_check)
+	     {
 	       /* Set to (size_t)-1 if the size check fails.  */
-	   gcc_assert (size_check != NULL_TREE);
 	       *size = fold_build3 (COND_EXPR, sizetype, size_check,
 				    *size, TYPE_MAX_VALUE (sizetype));
+	     }
 	   /* Update the argument list to reflect the adjusted size.  */
 	   (**args)[0] = *size;
 	 }
diff --git a/gcc/cp/init.c b/gcc/cp/init.c
index 1ed8f6c..3db512d 100644
--- a/gcc/cp/init.c
+++ b/gcc/cp/init.c
@@ -2272,7 +2272,11 @@ throw_bad_array_new_length (void)
 /* Generate code for a new-expression, including calling the "operator
    new" function, initializing the object, and, if an exception occurs
    during construction, cleaning up.  The arguments are as for
-   build_raw_new_expr.  This may change PLACEMENT and INIT.  */
+   build_raw_new_expr.  This may change PLACEMENT and INIT.
+   TYPE is the type of the object being constructed, possibly an array
+   of NELTS elements when NELTS is non-null (in "new T[NELTS]", T may
+   be an array of the form U[inner], with the whole expression being
+   "new U[NELTS][inner]").  */

 static tree
 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
@@ -2292,13 +2296,16 @@ build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
      type.)  */
   tree pointer_type;
   tree non_const_pointer_type;
+  /* The most significant array bound in int[OUTER_NELTS][inner].  */
   tree outer_nelts = NULL_TREE;
-  /* For arrays, a bounds checks on the NELTS parameter. */
+  /* For arrays with a non-constant number of elements, a bounds checks
+     on the NELTS parameter to avoid integer overflow at runtime. */
   tree outer_nelts_check = NULL_TREE;
   bool outer_nelts_from_type = false;
+  /* Number of the "inner" elements in "new T[OUTER_NELTS][inner]".  */
   offset_int inner_nelts_count = 1;
   tree alloc_call, alloc_expr;
-  /* Size of the inner array elements. */
+  /* Size of the inner array elements (those with constant dimensions). */
   offset_int inner_size;
   /* The address returned by the call to "operator new".  This node is
      a VAR_DECL and is therefore reusable.  */
@@ -2492,21 +2499,41 @@ build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
 	}

       max_outer_nelts = wi::udiv_trunc (max_size, inner_size);
-      /* Only keep the top-most seven bits, to simplify encoding the
-	 constant in the instruction stream.  */
+      max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts);
+
+      size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
+
+      if (TREE_CONSTANT (maybe_constant_value (outer_nelts)))
+	{
+	  if (tree_int_cst_lt (max_outer_nelts_tree, outer_nelts))
+	    {
+	      /* When the array size is constant, check it at compile time
+		 to make sure it doesn't exceed the implementation-defined
+		 maximum, as required by C++ 14 (in C++ 11 this requirement
+		 isn't explicitly stated but it's enforced anyway -- see
+		 grokdeclarator in cp/decl.c).  */
+	      if (complain & tf_error)
+		error ("size of array is too large");
+	      return error_mark_node;
+	    }
+	}
+      else
 	{
+	  /* When a runtime check is necessary because the array size
+	     isn't constant, keep only the top-most seven bits (starting
+	     with the most significant non-zero bit) of the maximum size
+	     to compare the array size against, to simplify encoding the
+	     constant maximum size in the instruction stream.  */
 	  unsigned shift = (max_outer_nelts.get_precision ()) - 7
 	    - wi::clz (max_outer_nelts);
 	  max_outer_nelts = wi::lshift (wi::lrshift (max_outer_nelts, shift),
 					shift);
-      }
-      max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts);

-      size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
 	  outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
 					   outer_nelts,
 					   max_outer_nelts_tree);
 	}
+    }

   alloc_fn = NULL_TREE;

@@ -3066,6 +3093,24 @@ build_new (vec<tree, va_gc> **placement, tree type, tree nelts,
           else
             return error_mark_node;
         }
+
+      tree nelts_save = nelts;
+      nelts = maybe_constant_value (nelts);
+
+      if (!TREE_CONSTANT (nelts))
+	nelts = nelts_save;
+
+      /* The expression in a noptr-new-declarator is erroneous if it's of
+	 non-class type and its value before converting to std::size_t is
+	 less than zero. ... If the expression is a constant expression,
+	 the program is ill-fomed.  */
+      if (TREE_CONSTANT (nelts) && tree_int_cst_sgn (nelts) == -1)
+	{
+	  if (complain & tf_error)
+	    error ("size of array is negative");
+	  return error_mark_node;
+	}
+
       nelts = mark_rvalue_use (nelts);
       nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
     }
diff --git a/gcc/testsuite/g++.dg/init/new43.C b/gcc/testsuite/g++.dg/init/new43.C
new file mode 100644
index 0000000..9b08667
--- /dev/null
+++ b/gcc/testsuite/g++.dg/init/new43.C
@@ -0,0 +1,164 @@
+/* { dg-do compile } */
+
+// Test for PR c++/67913 - new expression with negative size not diagnosed.
+typedef __typeof__ (sizeof 0) size_t;
+
+void* operator new (size_t, void*);
+void* operator new[] (size_t, void*);
+
+struct A {
+    int a [4];
+};
+
+struct B {
+    int a [4];
+
+    void* operator new (size_t, void*);
+    void* operator new[] (size_t, void*);
+};
+
+void* operator new (size_t, B*);
+void* operator new[] (size_t, B*);
+
+void *p;
+
+void test_literal ()
+{
+    char c;
+    (void)c;
+
+    B b;
+
+    // Verify integer literal.
+    p = new char [-1];           // { dg-error "size of array is negative" }
+    p = new char [2][-3];        // { dg-error "size of array is negative" }
+    p = new char [-4][5];        // { dg-error "size of array is negative" }
+    p = new char [-6][-7];       // { dg-error "size of array is negative" }
+
+    p = new (p) char [-1];       // { dg-error "size of array is negative" }
+    p = new (p) char [2][-3];    // { dg-error "size of array is negative" }
+    p = new (p) char [-4][5];    // { dg-error "size of array is negative" }
+    p = new (p) char [-6][-7];   // { dg-error "size of array is negative" }
+
+    p = new (p) A [-1];          // { dg-error "size of array is negative" }
+    p = new (p) A [2][-3];       // { dg-error "size of array is negative" }
+    p = new (p) A [-4][5];       // { dg-error "size of array is negative" }
+    p = new (p) A [-6][-7];      // { dg-error "size of array is negative" }
+
+    p = new (p) B [-1];          // { dg-error "size of array is negative" }
+    p = new (p) B [2][-3];       // { dg-error "size of array is negative" }
+    p = new (p) B [-4][5];       // { dg-error "size of array is negative" }
+    p = new (p) B [-6][-7];      // { dg-error "size of array is negative" }
+
+    p = new (&b) B [-1];          // { dg-error "size of array is negative" }
+    p = new (&b) B [2][-3];       // { dg-error "size of array is negative" }
+    p = new (&b) B [-4][5];       // { dg-error "size of array is negative" }
+    p = new (&b) B [-6][-7];      // { dg-error "size of array is negative" }
+
+    p = new char [1 - 2];         // { dg-error "size of array is negative" }
+    p = new (p) char [2 - 3];     // { dg-error "size of array is negative" }
+    p = new A [2 < 1 ? -1 : -2];  // { dg-error "size of array is negative" }
+    p = new (p) B [2 - 3 * 2];    // { dg-error "size of array is negative" }
+    p = new (&b) B [1][2 - 3 * 2];// { dg-error "size of array is negative" }
+}
+
+void test_constant_expression ()
+{
+    char c;
+    (void)c;
+
+    B b;
+
+    static const signed char i1 = -1;
+    static const signed short i2 = -2;
+    static const signed int i3 = -3;
+    static const signed long i4 = -4;
+    static const signed long long i5 = -5;
+    static const int i6 = -6;
+    static const int i7 = -7;
+
+    // Verify constant expression.
+    p = new char [i1];           // { dg-error "size of array is negative" }
+    p = new char [2][i3];        // { dg-error "size of array is negative" }
+    p = new char [i4][5];        // { dg-error "size of array is negative" }
+    p = new char [i6][i7];       // { dg-error "size of array is negative" }
+
+    p = new (p) char [i1];       // { dg-error "size of array is negative" }
+    p = new (p) char [2][i3];    // { dg-error "size of array is negative" }
+    p = new (p) char [i4][5];    // { dg-error "size of array is negative" }
+    p = new (p) char [i6][i7];   // { dg-error "size of array is negative" }
+
+    p = new (p) A [i1];          // { dg-error "size of array is negative" }
+    p = new (p) A [2][i3];       // { dg-error "size of array is negative" }
+    p = new (p) A [i4][5];       // { dg-error "size of array is negative" }
+    p = new (p) A [i6][i7];      // { dg-error "size of array is negative" }
+
+    p = new (p) B [i1];          // { dg-error "size of array is negative" }
+    p = new (p) B [2][i3];       // { dg-error "size of array is negative" }
+    p = new (p) B [i4][5];       // { dg-error "size of array is negative" }
+    p = new (p) B [i6][i7];      // { dg-error "size of array is negative" }
+
+    p = new (&b) B [i1];          // { dg-error "size of array is negative" }
+    p = new (&b) B [2][i3];       // { dg-error "size of array is negative" }
+    p = new (&b) B [i4][5];       // { dg-error "size of array is negative" }
+    p = new (&b) B [i6][i7];      // { dg-error "size of array is negative" }
+
+    p = new short [i1 - 2];       // { dg-error "size of array is negative" }
+    p = new (p) bool [i2 - 3];    // { dg-error "size of array is negative" }
+    p = new A [2 < 1 ? i1 : i2];  // { dg-error "size of array is negative" }
+    p = new (p) B [2 + i3 * 2];   // { dg-error "size of array is negative" }
+    p = new (&b) B [1][i1 - 3 * 2];// { dg-error "size of array is negative" }
+}
+
+void test_constexpr ()
+{
+    B b;
+
+#if __cplusplus >= 201103L
+
+    // Verify that a constant expression that is "a prvalue core constant
+    // expression whose value is an object where, for that object and its
+    // subobjects each non-static data member of reference type refers to
+    // an object with static storage duration."
+    static constexpr struct S {
+        int i_;
+        constexpr S (int i): i_ (i) { }
+        constexpr operator int () const { return i_; }
+    } s1 (-1), s2 (-2), s3 (-3), s4 (-4), s5 (-5), s6 (-6), s7 (-7);
+#else
+    // C++ 11 constexpr is not available, fall back on plain ole enum.
+    enum { s1 = -1, s2 = -2, s3 = -3, s4 = -4, s5 = -5, s6 = -6, s7 = -7 };
+#endif
+
+    // Verify constant expression.
+    p = new char [s1];           // { dg-error "size of array is negative" }
+    p = new char [2][s3];        // { dg-error "size of array is negative" }
+    p = new char [s4][5];        // { dg-error "size of array is negative" }
+    p = new char [s6][s7];       // { dg-error "size of array is negative" }
+
+    p = new (p) char [s1];       // { dg-error "size of array is negative" }
+    p = new (p) char [2][s3];    // { dg-error "size of array is negative" }
+    p = new (p) char [s4][5];    // { dg-error "size of array is negative" }
+    p = new (p) char [s6][s7];   // { dg-error "size of array is negative" }
+
+    p = new (p) A [s1];          // { dg-error "size of array is negative" }
+    p = new (p) A [2][s3];       // { dg-error "size of array is negative" }
+    p = new (p) A [s4][5];       // { dg-error "size of array is negative" }
+    p = new (p) A [s6][s7];      // { dg-error "size of array is negative" }
+
+    p = new (p) B [s1];          // { dg-error "size of array is negative" }
+    p = new (p) B [2][s3];       // { dg-error "size of array is negative" }
+    p = new (p) B [s4][5];       // { dg-error "size of array is negative" }
+    p = new (p) B [s6][s7];      // { dg-error "size of array is negative" }
+
+    p = new (&b) B [s1];          // { dg-error "size of array is negative" }
+    p = new (&b) B [2][s3];       // { dg-error "size of array is negative" }
+    p = new (&b) B [s4][5];       // { dg-error "size of array is negative" }
+    p = new (&b) B [s6][s7];      // { dg-error "size of array is negative" }
+
+    p = new int [s1 + s2];           // { dg-error "size of array is negative" }
+    p = new (p) long [2 * s3];       // { dg-error "size of array is negative" }
+    p = new A [s2 < s1 ? s1 : s2];   // { dg-error "size of array is negative" }
+    p = new (p) B [s7 - s2 * 2];     // { dg-error "size of array is negative" }
+    p = new (&b) B [9][s4 - s1 * 2]; // { dg-error "size of array is negative" }
+}
diff --git a/gcc/testsuite/g++.dg/init/new44.C b/gcc/testsuite/g++.dg/init/new44.C
new file mode 100644
index 0000000..d6ff86a
--- /dev/null
+++ b/gcc/testsuite/g++.dg/init/new44.C
@@ -0,0 +1,532 @@
+// { dg-do compile }
+
+// Test for PR c++/67927 - array new expression with excessive number
+// of elements not diagnosed.
+
+// GCC uses a different maximum value at compile time and at runtime:
+// 1) The compile-time maximum, MAX, is SIZE_MAX / 2 minus the size
+//    of a cookie (sizeof (size_t)).  Exceeding the compile-time
+//    maximum is ill-formed and diagnosed.  This test verifies this
+//    diagnostic.
+// 2) The runtime runtime maximum is the most significant 7 bits,
+//    starting with the first most significant non-zero bit, of
+//    the dividend of the compile-time constant MAX and the product
+//    of the constant array dimensions and the element size, minus
+//    the size of the "cookie."  This is also roughly (though not
+//    exactly) SIZE_MAX / 2.  Exceeding the runtime maximum is
+//    diagnosed at runtime by throwing a bad_array_new_length
+//    exception.
+//    The cookie is the number of elements in the array, and is only
+//    added for non-POD types or user-defined overloads of placement
+//    new, but the its size factors into the maximum size formula
+//    regardless.
+
+// See also PR c++/19351 - integer overflow in operator new[].
+
+// For convenience.
+#define MAX __SIZE_MAX__
+
+typedef __typeof__ (sizeof 0) size_t;
+
+void* operator new (size_t, void*);
+void* operator new[] (size_t, void*);
+
+void *p;
+
+// Exercise new expression with one-dimensional arrays of char.
+static void __attribute__ ((used))
+test_one_dim_char_array ()
+{
+    p = new char [MAX];                 // { dg-error "size of array" }
+    p = new char [MAX - 1];             // { dg-error "size of array" }
+    p = new char [MAX - 2];             // { dg-error "size of array" }
+    p = new char [MAX - 99];            // { dg-error "size of array" }
+    p = new char [MAX / 2];             // { dg-error "size of array" }
+    p = new char [MAX / 2 - 1];         // { dg-error "size of array" }
+    p = new char [MAX / 2 - 2];         // { dg-error "size of array" }
+
+    // Avoid testing the expressions below since whether or not they
+    // are accepted depends on the precision of size_t (which also
+    // determines the size of the cookie).
+    // p = new char [MAX / 2 - 3];
+    // p = new char [MAX / 2 - 4];
+    // p = new char [MAX / 2 - 5];
+    // p = new char [MAX / 2 - 6];
+
+    // The following expressions are accepted on ILP32 as well LP64
+    // (they will be diagnosed on LP128 if there ever is such a data
+    // model).
+    p = new char [MAX / 2 - 7];         // okay
+    p = new char [MAX / 2 - 8];         // okay
+}
+
+static void __attribute__ ((used))
+test_one_dim_short_array ()
+{
+    p = new short [MAX];                // { dg-error "size of array" }
+    p = new short [MAX - 1];            // { dg-error "size of array" }
+    p = new short [MAX - 2];            // { dg-error "size of array" }
+    p = new short [MAX - 99];           // { dg-error "size of array" }
+    p = new short [MAX / 2];            // { dg-error "size of array" }
+    p = new short [MAX / 2 - 1];        // { dg-error "size of array" }
+    p = new short [MAX / 2 - 2];        // { dg-error "size of array" }
+    p = new short [MAX / 2 - 3];        // { dg-error "size of array" }
+    p = new short [MAX / 2 - 4];        // { dg-error "size of array" }
+    p = new short [MAX / 2 - 5];        // { dg-error "size of array" }
+    p = new short [MAX / 2 - 6];        // { dg-error "size of array" }
+    p = new short [MAX / 2 - 7];        // { dg-error "size of array" }
+    p = new short [MAX / 2 - 8];        // { dg-error "size of array" }
+    p = new short [MAX / 4];            // { dg-error "size of array" }
+
+    // Avoid exercising data model-dependent expressions.
+    // p = new short [MAX / 4 - 1];
+
+    p = new short [MAX / 4 - 4];        // okay
+}
+
+// Exercise new expression with two-dimensional arrays or char.
+static void __attribute__ ((used))
+test_two_dim_char_array ()
+{
+    p = new char [1][MAX];              // { dg-error "size of array" }
+    p = new char [1][MAX - 1];          // { dg-error "size of array" }
+    p = new char [1][MAX - 2];          // { dg-error "size of array" }
+    p = new char [1][MAX - 99];         // { dg-error "size of array" }
+    p = new char [1][MAX / 2];          // { dg-error "size of array" }
+    p = new char [1][MAX / 2 - 1];      // { dg-error "size of array" }
+    p = new char [1][MAX / 2 - 2];      // { dg-error "size of array" }
+
+    // Avoid exercising data model-dependent expressions.
+    // p = new char [1][MAX / 2 - 3];
+    // p = new char [1][MAX / 2 - 4];
+    // p = new char [1][MAX / 2 - 5];
+    // p = new char [1][MAX / 2 - 6];
+
+    p = new char [1][MAX / 2 - 7];      // okay
+    p = new char [1][MAX / 2 - 8];      // okay
+
+    p = new char [2][MAX];              // { dg-error "size of array" }
+    p = new char [2][MAX - 1];          // { dg-error "size of array" }
+    p = new char [2][MAX - 2];          // { dg-error "size of array" }
+    p = new char [2][MAX / 2];          // { dg-error "size of array" }
+    p = new char [2][MAX / 2 - 1];      // { dg-error "size of array" }
+    p = new char [2][MAX / 2 - 2];      // { dg-error "size of array" }
+    p = new char [2][MAX / 2 - 7];      // { dg-error "size of array" }
+    p = new char [2][MAX / 2 - 8];      // { dg-error "size of array" }
+
+    p = new char [MAX][MAX];            // { dg-error "size of array" }
+    p = new char [MAX][MAX - 1];        // { dg-error "size of array" }
+    p = new char [MAX][MAX - 2];        // { dg-error "size of array" }
+    p = new char [MAX][MAX / 2];        // { dg-error "size of array" }
+    p = new char [MAX][MAX / 2 - 1];    // { dg-error "size of array" }
+    p = new char [MAX][MAX / 2 - 2];    // { dg-error "size of array" }
+    p = new char [MAX][MAX / 2 - 7];    // { dg-error "size of array" }
+    p = new char [MAX][MAX / 2 - 8];    // { dg-error "size of array" }
+    p = new char [MAX][2];              // { dg-error "size of array" }
+    p = new char [MAX][1];              // { dg-error "size of array" }
+    p = new char [MAX / 2][1];          // { dg-error "size of array" }
+    p = new char [MAX / 2 - 1][1];      // { dg-error "size of array" }
+    p = new char [MAX / 2 - 2][1];      // { dg-error "size of array" }
+
+    // Avoid exercising data model-dependent expressions.
+    // p = new char [MAX / 2 - 3][1];
+    // p = new char [MAX / 2 - 4][1];
+    // p = new char [MAX / 2 - 5][1];
+    // p = new char [MAX / 2 - 6][1];
+
+    p = new char [MAX / 2 - 7][1];      // okay
+    p = new char [MAX / 2 - 8][1];      // okay
+}
+
+
+// Exercise new expression with three-dimensional arrays.
+static __attribute__ ((used)) void
+test_three_dim_char_array ()
+{
+    p = new char [1][1][MAX];           // { dg-error "size of array" }
+    p = new char [1][1][MAX - 1];       // { dg-error "size of array" }
+    p = new char [1][1][MAX - 2];       // { dg-error "size of array" }
+    p = new char [1][1][MAX - 99];      // { dg-error "size of array" }
+    p = new char [1][1][MAX / 2];       // { dg-error "size of array" }
+    p = new char [1][1][MAX / 2 - 1];   // { dg-error "size of array" }
+    p = new char [1][1][MAX / 2 - 2];   // { dg-error "size of array" }
+
+    // Avoid exercising data model-dependent expressions.
+    // p = new char [1][1][MAX / 2 - 3];
+    // p = new char [1][1][MAX / 2 - 4];
+    // p = new char [1][1][MAX / 2 - 5];
+    // p = new char [1][1][MAX / 2 - 6];
+
+    p = new char [1][1][MAX / 2 - 7];   // okay
+    p = new char [1][1][MAX / 2 - 8];   // okay
+
+    p = new char [1][2][MAX];           // { dg-error "size of array" }
+    p = new char [1][2][MAX - 1];       // { dg-error "size of array" }
+    p = new char [1][2][MAX - 2];       // { dg-error "size of array" }
+    p = new char [1][2][MAX - 99];      // { dg-error "size of array" }
+    p = new char [1][2][MAX / 2];       // { dg-error "size of array" }
+    p = new char [1][2][MAX / 2 - 1];   // { dg-error "size of array" }
+    p = new char [1][2][MAX / 2 - 2];   // { dg-error "size of array" }
+    p = new char [1][2][MAX / 2 - 3];   // { dg-error "size of array" }
+    p = new char [1][2][MAX / 2 - 4];   // { dg-error "size of array" }
+    p = new char [1][2][MAX / 2 - 5];   // { dg-error "size of array" }
+    p = new char [1][2][MAX / 2 - 6];   // { dg-error "size of array" }
+    p = new char [1][2][MAX / 2 - 7];   // { dg-error "size of array" }
+    p = new char [1][2][MAX / 2 - 8];   // { dg-error "size of array" }
+    p = new char [1][2][MAX / 4];       // { dg-error "size of array" }
+
+    // Avoid exercising data model-dependent expressions.
+    // p = new char [1][2][MAX / 4 - 1];
+    // p = new char [1][2][MAX / 4 - 2];
+
+    p = new char [1][2][MAX / 4 - 3];   // okay
+    p = new char [1][2][MAX / 4 - 4];   // okay
+
+    p = new char [2][1][MAX];           // { dg-error "size of array" }
+    p = new char [2][1][MAX - 1];       // { dg-error "size of array" }
+    p = new char [2][1][MAX - 2];       // { dg-error "size of array" }
+    p = new char [2][1][MAX - 99];      // { dg-error "size of array" }
+    p = new char [2][1][MAX / 2];       // { dg-error "size of array" }
+    p = new char [2][1][MAX / 2 - 1];   // { dg-error "size of array" }
+    p = new char [2][1][MAX / 2 - 2];   // { dg-error "size of array" }
+    p = new char [2][1][MAX / 2 - 3];   // { dg-error "size of array" }
+    p = new char [2][1][MAX / 2 - 4];   // { dg-error "size of array" }
+    p = new char [2][1][MAX / 2 - 5];   // { dg-error "size of array" }
+    p = new char [2][1][MAX / 2 - 6];   // { dg-error "size of array" }
+    p = new char [2][1][MAX / 2 - 7];   // { dg-error "size of array" }
+    p = new char [2][1][MAX / 2 - 8];   // { dg-error "size of array" }
+    p = new char [2][1][MAX / 4];       // { dg-error "size of array" }
+
+    // Avoid exercising data model-dependent expressions.
+    // p = new char [2][1][MAX / 4 - 1];
+    // p = new char [2][1][MAX / 4 - 2];
+
+    p = new char [2][1][MAX / 4 - 3];   // okay
+    p = new char [2][1][MAX / 4 - 4];   // okay
+
+    p = new char [2][2][MAX];           // { dg-error "size of array" }
+    p = new char [2][2][MAX - 1];       // { dg-error "size of array" }
+    p = new char [2][2][MAX - 2];       // { dg-error "size of array" }
+    p = new char [2][2][MAX - 99];      // { dg-error "size of array" }
+    p = new char [2][2][MAX / 2];       // { dg-error "size of array" }
+    p = new char [2][2][MAX / 2 - 1];   // { dg-error "size of array" }
+    p = new char [2][2][MAX / 2 - 2];   // { dg-error "size of array" }
+    p = new char [2][2][MAX / 2 - 3];   // { dg-error "size of array" }
+    p = new char [2][2][MAX / 2 - 4];   // { dg-error "size of array" }
+    p = new char [2][2][MAX / 2 - 5];   // { dg-error "size of array" }
+    p = new char [2][2][MAX / 2 - 6];   // { dg-error "size of array" }
+    p = new char [2][2][MAX / 2 - 7];   // { dg-error "size of array" }
+    p = new char [2][2][MAX / 2 - 8];   // { dg-error "size of array" }
+    p = new char [2][2][MAX / 4];       // { dg-error "size of array" }
+    p = new char [2][2][MAX / 4 - 1];   // { dg-error "size of array" }
+    p = new char [2][2][MAX / 4 - 2];   // { dg-error "size of array" }
+
+    // Avoid exercising data model-dependent expressions.
+    // p = new char [2][2][MAX / 8];
+    // p = new char [2][2][MAX / 8 - 1];
+
+    p = new char [2][2][MAX / 8 - 2];
+    p = new char [2][2][MAX / 8 - 3];
+
+    p = new char [2][MAX][2];           // { dg-error "size of array" }
+    p = new char [2][MAX - 1][2];       // { dg-error "size of array" }
+    p = new char [2][MAX - 2][2];       // { dg-error "size of array" }
+    p = new char [2][MAX - 99][2];      // { dg-error "size of array" }
+    p = new char [2][MAX / 2][2];       // { dg-error "size of array" }
+    p = new char [2][MAX / 2 - 1][2];   // { dg-error "size of array" }
+    p = new char [2][MAX / 2 - 2][2];   // { dg-error "size of array" }
+    p = new char [2][MAX / 2 - 3][2];   // { dg-error "size of array" }
+    p = new char [2][MAX / 2 - 4][2];   // { dg-error "size of array" }
+    p = new char [2][MAX / 2 - 5][2];   // { dg-error "size of array" }
+    p = new char [2][MAX / 2 - 6][2];   // { dg-error "size of array" }
+    p = new char [2][MAX / 2 - 7][2];   // { dg-error "size of array" }
+    p = new char [2][MAX / 2 - 8][2];   // { dg-error "size of array" }
+    p = new char [2][MAX / 4][2];       // { dg-error "size of array" }
+    p = new char [2][MAX / 4 - 1][2];   // { dg-error "size of array" }
+    p = new char [2][MAX / 4 - 2][2];   // { dg-error "size of array" }
+
+    // Avoid exercising data model-dependent expressions.
+    // p = new char [2][MAX / 8][2];
+    // p = new char [2][MAX / 8 - 1][2];
+
+    p = new char [2][MAX / 8 - 2][2];
+    p = new char [2][MAX / 8 - 3][2];
+
+    p = new char [MAX][2][2];           // { dg-error "size of array" }
+    p = new char [MAX - 1][2][2];       // { dg-error "size of array" }
+    p = new char [MAX - 2][2][2];       // { dg-error "size of array" }
+    p = new char [MAX - 99][2][2];      // { dg-error "size of array" }
+    p = new char [MAX / 2][2][2];       // { dg-error "size of array" }
+    p = new char [MAX / 2 - 1][2][2];   // { dg-error "size of array" }
+    p = new char [MAX / 2 - 2][2][2];   // { dg-error "size of array" }
+    p = new char [MAX / 2 - 3][2][2];   // { dg-error "size of array" }
+    p = new char [MAX / 2 - 4][2][2];   // { dg-error "size of array" }
+    p = new char [MAX / 2 - 5][2][2];   // { dg-error "size of array" }
+    p = new char [MAX / 2 - 6][2][2];   // { dg-error "size of array" }
+    p = new char [MAX / 2 - 7][2][2];   // { dg-error "size of array" }
+    p = new char [MAX / 2 - 8][2][2];   // { dg-error "size of array" }
+    p = new char [MAX / 4][2][2];       // { dg-error "size of array" }
+    p = new char [MAX / 4 - 1][2][2];   // { dg-error "size of array" }
+    p = new char [MAX / 4 - 2][2][2];   // { dg-error "size of array" }
+
+    // Avoid exercising data model-dependent expressions.
+    // p = new char [MAX / 8][2][2];
+    // p = new char [MAX / 8 - 1][2][2];
+
+    p = new char [MAX / 8 - 2][2][2];
+    p = new char [MAX / 8 - 3][2][2];
+
+    p = new char [MAX][MAX][MAX];         // { dg-error "size of array" }
+    p = new char [MAX][MAX][MAX / 2];     // { dg-error "size of array" }
+    p = new char [MAX][MAX / 2][MAX];     // { dg-error "size of array" }
+    p = new char [MAX][MAX / 2][MAX / 2]; // { dg-error "size of array" }
+    p = new char [MAX / 2][MAX / 2][MAX / 2]; // { dg-error "size of array" }
+}
+
+// Exercise new expression with N-dimensional arrays where N is
+// sizeof(size_t).
+static __attribute__ ((used)) void
+test_N_dim_char_array ()
+{
+#if __SIZEOF_SIZE_T__ == 8
+    enum { N = 256 };
+#else
+    enum { N = 16 };
+#endif
+
+    p = new char        [N][N][N][N][N][N][N];
+    p = new char [N / 2][2][N][N][N][N][N][N];
+    p = new char [N - 1][N / 2][N][N][N][N][N][N];
+    p = new char [N / 2][N][N][N][N][N][N][N];  // { dg-error "size of array" }
+    p = new char [N - 1][N][N][N][N][N][N][N];  // { dg-error "size of array" }
+    p = new char [N]    [N][N][N][N][N][N][N];  // { dg-error "size of array" }
+}
+
+typedef struct Byte {
+    char c;
+
+    void* operator new (size_t, void*);
+    void* operator new[] (size_t, void*);
+} B;
+
+void* operator new (size_t, B*);
+void* operator new[] (size_t, B*);
+
+// Exercise placement new expression with one-dimensional arrays of a struct.
+static void __attribute__ ((used))
+test_one_dim_byte_array (void *p)
+{
+    p = new (p) B [MAX];                // { dg-error "size of array" }
+    p = new (p) B [MAX - 1];            // { dg-error "size of array" }
+    p = new (p) B [MAX - 2];            // { dg-error "size of array" }
+    p = new (p) B [MAX - 99];           // { dg-error "size of array" }
+    p = new (p) B [MAX / 2];            // { dg-error "size of array" }
+    p = new (p) B [MAX / 2 - 1];        // { dg-error "size of array" }
+    p = new (p) B [MAX / 2 - 2];        // { dg-error "size of array" }
+
+    // Avoid testing the expressions below since whether or not they
+    // are accepted depends on the precision of size_t (which determines
+    // the size of the cookie).
+    // p = new (p) B [MAX / 2 - 3];
+    // p = new (p) B [MAX / 2 - 4];
+    // p = new (p) B [MAX / 2 - 5];
+    // p = new (p) B [MAX / 2 - 6];
+
+    // The following expressions are accepted on ILP32 as well LP64
+    // (they will be diagnosed on LP128 if there ever is such a data
+    // model).
+    p = new (p) B [MAX / 2 - 7];         // okay
+    p = new (p) B [MAX / 2 - 8];         // okay
+}
+
+// Exercise placement new expression with two-dimensional arrays.
+static void __attribute__ ((used))
+test_placement_two_dim_byte_struct_array (void *p)
+{
+    p = new (p) B [1][MAX];             // { dg-error "size of array" }
+    p = new (p) B [1][MAX - 1];         // { dg-error "size of array" }
+    p = new (p) B [1][MAX - 2];         // { dg-error "size of array" }
+    p = new (p) B [1][MAX - 99];        // { dg-error "size of array" }
+    p = new (p) B [1][MAX / 2];         // { dg-error "size of array" }
+    p = new (p) B [1][MAX / 2 - 1];     // { dg-error "size of array" }
+    p = new (p) B [1][MAX / 2 - 2];     // { dg-error "size of array" }
+
+    // Avoid exercising data model-dependent expressions.
+    // p = new (p) B [1][MAX / 2 - 3];
+    // p = new (p) B [1][MAX / 2 - 4];
+    // p = new (p) B [1][MAX / 2 - 5];
+    // p = new (p) B [1][MAX / 2 - 6];
+
+    p = new (p) B [1][MAX / 2 - 7];      // okay
+    p = new (p) B [1][MAX / 2 - 8];      // okay
+
+    p = new (p) B [2][MAX];             // { dg-error "size of array" }
+    p = new (p) B [2][MAX - 1];         // { dg-error "size of array" }
+    p = new (p) B [2][MAX - 2];         // { dg-error "size of array" }
+    p = new (p) B [2][MAX / 2];         // { dg-error "size of array" }
+    p = new (p) B [2][MAX / 2 - 1];     // { dg-error "size of array" }
+    p = new (p) B [2][MAX / 2 - 2];     // { dg-error "size of array" }
+    p = new (p) B [2][MAX / 2 - 7];     // { dg-error "size of array" }
+    p = new (p) B [2][MAX / 2 - 8];     // { dg-error "size of array" }
+
+    p = new (p) B [MAX][MAX];           // { dg-error "size of array" }
+    p = new (p) B [MAX][MAX - 1];       // { dg-error "size of array" }
+    p = new (p) B [MAX][MAX - 2];       // { dg-error "size of array" }
+    p = new (p) B [MAX][MAX / 2];       // { dg-error "size of array" }
+    p = new (p) B [MAX][MAX / 2 - 1];   // { dg-error "size of array" }
+    p = new (p) B [MAX][MAX / 2 - 2];   // { dg-error "size of array" }
+    p = new (p) B [MAX][MAX / 2 - 7];   // { dg-error "size of array" }
+    p = new (p) B [MAX][MAX / 2 - 8];   // { dg-error "size of array" }
+    p = new (p) B [MAX][2];             // { dg-error "size of array" }
+    p = new (p) B [MAX][1];             // { dg-error "size of array" }
+    p = new (p) B [MAX / 2][1];         // { dg-error "size of array" }
+    p = new (p) B [MAX / 2 - 1][1];     // { dg-error "size of array" }
+    p = new (p) B [MAX / 2 - 2][1];     // { dg-error "size of array" }
+
+    // Avoid exercising data model-dependent expressions.
+    // p = new (p) B [MAX / 2 - 3][1];
+    // p = new (p) B [MAX / 2 - 4][1];
+    // p = new (p) B [MAX / 2 - 5][1];
+    // p = new (p) B [MAX / 2 - 6][1];
+
+    p = new (p) B [MAX / 2 - 7][1];      // okay
+    p = new (p) B [MAX / 2 - 8][1];      // okay
+}
+
+
+// Exercise placement new expression with three-dimensional arrays.
+static __attribute__ ((used)) void
+test_placement_three_dim_byte_struct_array (void *p)
+{
+    p = new (p) B [1][1][MAX];          // { dg-error "size of array" }
+    p = new (p) B [1][1][MAX - 1];      // { dg-error "size of array" }
+    p = new (p) B [1][1][MAX - 2];      // { dg-error "size of array" }
+    p = new (p) B [1][1][MAX - 99];     // { dg-error "size of array" }
+    p = new (p) B [1][1][MAX / 2];      // { dg-error "size of array" }
+    p = new (p) B [1][1][MAX / 2 - 1];  // { dg-error "size of array" }
+    p = new (p) B [1][1][MAX / 2 - 2];  // { dg-error "size of array" }
+
+    // Avoid exercising data model-dependent expressions.
+    // p = new (p) B [1][1][MAX / 2 - 3];
+    // p = new (p) B [1][1][MAX / 2 - 4];
+    // p = new (p) B [1][1][MAX / 2 - 5];
+    // p = new (p) B [1][1][MAX / 2 - 6];
+
+    p = new (p) B [1][1][MAX / 2 - 7];   // okay
+    p = new (p) B [1][1][MAX / 2 - 8];   // okay
+
+    p = new (p) B [1][2][MAX];          // { dg-error "size of array" }
+    p = new (p) B [1][2][MAX - 1];      // { dg-error "size of array" }
+    p = new (p) B [1][2][MAX - 2];      // { dg-error "size of array" }
+    p = new (p) B [1][2][MAX - 99];     // { dg-error "size of array" }
+    p = new (p) B [1][2][MAX / 2];      // { dg-error "size of array" }
+    p = new (p) B [1][2][MAX / 2 - 1];  // { dg-error "size of array" }
+    p = new (p) B [1][2][MAX / 2 - 2];  // { dg-error "size of array" }
+    p = new (p) B [1][2][MAX / 2 - 3];  // { dg-error "size of array" }
+    p = new (p) B [1][2][MAX / 2 - 4];  // { dg-error "size of array" }
+    p = new (p) B [1][2][MAX / 2 - 5];  // { dg-error "size of array" }
+    p = new (p) B [1][2][MAX / 2 - 6];  // { dg-error "size of array" }
+    p = new (p) B [1][2][MAX / 2 - 7];  // { dg-error "size of array" }
+    p = new (p) B [1][2][MAX / 2 - 8];  // { dg-error "size of array" }
+    p = new (p) B [1][2][MAX / 4];      // { dg-error "size of array" }
+
+    // Avoid exercising data model-dependent expressions.
+    // p = new (p) B [1][2][MAX / 4 - 1];
+    // p = new (p) B [1][2][MAX / 4 - 2];
+
+    p = new (p) B [1][2][MAX / 4 - 3];   // okay
+    p = new (p) B [1][2][MAX / 4 - 4];   // okay
+
+    p = new (p) B [2][1][MAX];          // { dg-error "size of array" }
+    p = new (p) B [2][1][MAX - 1];      // { dg-error "size of array" }
+    p = new (p) B [2][1][MAX - 2];      // { dg-error "size of array" }
+    p = new (p) B [2][1][MAX - 99];     // { dg-error "size of array" }
+    p = new (p) B [2][1][MAX / 2];      // { dg-error "size of array" }
+    p = new (p) B [2][1][MAX / 2 - 1];  // { dg-error "size of array" }
+    p = new (p) B [2][1][MAX / 2 - 2];  // { dg-error "size of array" }
+    p = new (p) B [2][1][MAX / 2 - 3];  // { dg-error "size of array" }
+    p = new (p) B [2][1][MAX / 2 - 4];  // { dg-error "size of array" }
+    p = new (p) B [2][1][MAX / 2 - 5];  // { dg-error "size of array" }
+    p = new (p) B [2][1][MAX / 2 - 6];  // { dg-error "size of array" }
+    p = new (p) B [2][1][MAX / 2 - 7];  // { dg-error "size of array" }
+    p = new (p) B [2][1][MAX / 2 - 8];  // { dg-error "size of array" }
+    p = new (p) B [2][1][MAX / 4];      // { dg-error "size of array" }
+
+    // Avoid exercising data model-dependent expressions.
+    // p = new (p) B [2][1][MAX / 4 - 1];
+    // p = new (p) B [2][1][MAX / 4 - 2];
+
+    p = new (p) B [2][1][MAX / 4 - 3];   // okay
+    p = new (p) B [2][1][MAX / 4 - 4];   // okay
+
+    p = new (p) B [2][2][MAX];          // { dg-error "size of array" }
+    p = new (p) B [2][2][MAX - 1];      // { dg-error "size of array" }
+    p = new (p) B [2][2][MAX - 2];      // { dg-error "size of array" }
+    p = new (p) B [2][2][MAX - 99];     // { dg-error "size of array" }
+    p = new (p) B [2][2][MAX / 2];      // { dg-error "size of array" }
+    p = new (p) B [2][2][MAX / 2 - 1];  // { dg-error "size of array" }
+    p = new (p) B [2][2][MAX / 2 - 2];  // { dg-error "size of array" }
+    p = new (p) B [2][2][MAX / 2 - 3];  // { dg-error "size of array" }
+    p = new (p) B [2][2][MAX / 2 - 4];  // { dg-error "size of array" }
+    p = new (p) B [2][2][MAX / 2 - 5];  // { dg-error "size of array" }
+    p = new (p) B [2][2][MAX / 2 - 6];  // { dg-error "size of array" }
+    p = new (p) B [2][2][MAX / 2 - 7];  // { dg-error "size of array" }
+    p = new (p) B [2][2][MAX / 2 - 8];  // { dg-error "size of array" }
+    p = new (p) B [2][2][MAX / 4];      // { dg-error "size of array" }
+    p = new (p) B [2][2][MAX / 4 - 1];  // { dg-error "size of array" }
+    p = new (p) B [2][2][MAX / 4 - 2];  // { dg-error "size of array" }
+
+    // Avoid exercising data model-dependent expressions.
+    // p = new (p) B [2][2][MAX / 8];
+    // p = new (p) B [2][2][MAX / 8 - 1];
+
+    p = new (p) B [2][2][MAX / 8 - 2];
+    p = new (p) B [2][2][MAX / 8 - 3];
+
+    p = new (p) B [2][MAX][2];          // { dg-error "size of array" }
+    p = new (p) B [2][MAX - 1][2];      // { dg-error "size of array" }
+    p = new (p) B [2][MAX - 2][2];      // { dg-error "size of array" }
+    p = new (p) B [2][MAX - 99][2];     // { dg-error "size of array" }
+    p = new (p) B [2][MAX / 2][2];      // { dg-error "size of array" }
+    p = new (p) B [2][MAX / 2 - 1][2];  // { dg-error "size of array" }
+    p = new (p) B [2][MAX / 2 - 2][2];  // { dg-error "size of array" }
+    p = new (p) B [2][MAX / 2 - 3][2];  // { dg-error "size of array" }
+    p = new (p) B [2][MAX / 2 - 4][2];  // { dg-error "size of array" }
+    p = new (p) B [2][MAX / 2 - 5][2];  // { dg-error "size of array" }
+    p = new (p) B [2][MAX / 2 - 6][2];  // { dg-error "size of array" }
+    p = new (p) B [2][MAX / 2 - 7][2];  // { dg-error "size of array" }
+    p = new (p) B [2][MAX / 2 - 8][2];  // { dg-error "size of array" }
+    p = new (p) B [2][MAX / 4][2];      // { dg-error "size of array" }
+    p = new (p) B [2][MAX / 4 - 1][2];  // { dg-error "size of array" }
+    p = new (p) B [2][MAX / 4 - 2][2];  // { dg-error "size of array" }
+
+    // Avoid exercising data model-dependent expressions.
+    // p = new (p) B [2][MAX / 8][2];
+    // p = new (p) B [2][MAX / 8 - 1][2];
+
+    p = new (p) B [2][MAX / 8 - 2][2];
+    p = new (p) B [2][MAX / 8 - 3][2];
+
+    p = new (p) B [MAX][2][2];          // { dg-error "size of array" }
+    p = new (p) B [MAX - 1][2][2];      // { dg-error "size of array" }
+    p = new (p) B [MAX - 2][2][2];      // { dg-error "size of array" }
+    p = new (p) B [MAX - 99][2][2];     // { dg-error "size of array" }
+    p = new (p) B [MAX / 2][2][2];      // { dg-error "size of array" }
+    p = new (p) B [MAX / 2 - 1][2][2];  // { dg-error "size of array" }
+    p = new (p) B [MAX / 2 - 2][2][2];  // { dg-error "size of array" }
+    p = new (p) B [MAX / 2 - 3][2][2];  // { dg-error "size of array" }
+    p = new (p) B [MAX / 2 - 4][2][2];  // { dg-error "size of array" }
+    p = new (p) B [MAX / 2 - 5][2][2];  // { dg-error "size of array" }
+    p = new (p) B [MAX / 2 - 6][2][2];  // { dg-error "size of array" }
+    p = new (p) B [MAX / 2 - 7][2][2];  // { dg-error "size of array" }
+    p = new (p) B [MAX / 2 - 8][2][2];  // { dg-error "size of array" }
+    p = new (p) B [MAX / 4][2][2];      // { dg-error "size of array" }
+    p = new (p) B [MAX / 4 - 1][2][2];  // { dg-error "size of array" }
+    p = new (p) B [MAX / 4 - 2][2][2];  // { dg-error "size of array" }
+
+    // Avoid exercising data model-dependent expressions.
+    // p = new (p) B [MAX / 8][2][2];
+    // p = new (p) B [MAX / 8 - 1][2][2];
+
+    p = new (p) B [MAX / 8 - 2][2][2];
+    p = new (p) B [MAX / 8 - 3][2][2];
+}
diff --git a/gcc/testsuite/g++.dg/init/new45.C b/gcc/testsuite/g++.dg/init/new45.C
new file mode 100644
index 0000000..92dac18
--- /dev/null
+++ b/gcc/testsuite/g++.dg/init/new45.C
@@ -0,0 +1,106 @@
+// { dg-do compile }
+// { dg-options "-O1" }
+// { dg-final { scan-assembler-not "abort" } }
+
+typedef __SIZE_TYPE__ size_t;
+
+extern "C" {
+    void abort ();
+    void* malloc (size_t);
+}
+
+struct UDClass {
+    static int n;
+    UDClass () { ++n; }
+    virtual ~UDClass () { --n; }
+};
+
+int UDClass::n;
+
+struct POD {
+    char buf [sizeof (UDClass)];
+};
+
+enum { N = 123 };
+
+inline __attribute__ ((always_inline))
+void* operator new[] (size_t n)
+{
+    // Verify that array new is invoked with an argument large enough
+    // for the array and a size_t cookie to store the number of elements.
+    // (This holds for classes with user-defined types but not POD types).
+    if (n != N * sizeof (UDClass) + sizeof n) abort ();
+    return malloc (n);
+}
+
+inline __attribute__ ((always_inline))
+void* operator new[] (size_t n, void *p)
+{
+    // Verify that the default placement array new is invoked with
+    // an argument just large enough for the array (and no cookie),
+    // regardless of whether the type is a POD or class with a user
+    // defined ctor.
+    if (n != N * sizeof (UDClass)) abort ();
+    return p;
+}
+
+inline __attribute__ ((always_inline))
+void* operator new[] (size_t n, POD *p)
+{
+    // Verify that placement array new overload for a POD type is
+    // invoked with an argument large enough for the array and
+    // a cookie.
+    if (n != N * sizeof (POD)) abort ();
+    return p;
+}
+
+inline __attribute__ ((always_inline))
+void* operator new[] (size_t n, UDClass *p)
+{
+    // Verify that placement array new overload for a class type with
+    // a user-defined ctor and dtor is invoked with an argument large
+    // enough for the array and a cookie.
+    if (n != N * sizeof (UDClass) + sizeof n) abort ();
+    return p;
+}
+
+// UDClassllocate a sufficiently large buffer to construct arrays into.
+static unsigned char buf [N * N];
+
+POD* test_new_POD ()
+{
+    // Avoid testing PODs since for those, the global new is invoked
+    // without the overhead of a cookie.
+    // return new POD [N];
+    return 0;
+}
+
+POD* test_default_placement_new_POD ()
+{
+    // Vefify that no overhead is allocated.
+    return new (buf) POD [N];
+}
+
+POD* test_overloaded_placement_new_POD ()
+{
+    // Vefify that no overhead is allocated.
+    return new ((POD*)buf) POD [N];
+}
+
+UDClass* test_new_UDClass ()
+{
+    // Vefify that space for a cookie is allocated.
+    return new UDClass [N];
+}
+
+UDClass* test_default_placement_new_UDClass ()
+{
+    // Vefify that no overhead is allocated.
+    return new (buf) UDClass [N];
+}
+
+UDClass* test_overloaded_placement_new_UDClass ()
+{
+    // Vefify that space for a cookie is allocated.
+    return new ((UDClass*)buf) UDClass [N];
+}
diff --git a/gcc/testsuite/g++.dg/other/new-size-type.C b/gcc/testsuite/g++.dg/other/new-size-type.C
index 04933fd..ad4dc10 100644
--- a/gcc/testsuite/g++.dg/other/new-size-type.C
+++ b/gcc/testsuite/g++.dg/other/new-size-type.C
@@ -5,6 +5,5 @@
 const char*
 foo()
 {
-    return new char[~static_cast<size_t>(0)];// { dg-bogus "large" }
+    return new char[~static_cast<size_t>(0)];// { dg-error "size of array" }
 }
-

Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]