This is the mail archive of the gcc-patches@gcc.gnu.org mailing list for the GCC project.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]
Other format: [Raw text]

[PATCH 21/32] Remove the lambda framework and make -ftree-loop-linear an alias of -floop-interchange.


From: spop <spop@138bc75d-0d04-0410-961f-82ee72b054a4>

Hi Richi,

Could you please review this patch?  This is the only part of the
merge from graphite branch to trunk that touches the middle-end bits.

Thanks,
Sebastian

2011-01-17  Sebastian Pop  <sebastian.pop@amd.com>

toplev/
	* MAINTAINERS (linear loop transforms): Removed.

toplev/gcc/
	* Makefile.in (LAMBDA_H): Removed.
	(TREE_DATA_REF_H): Remove dependence on LAMBDA_H.
	(OBJS-common): Remove dependence on lambda-code.o, lambda-mat.o,
	lambda-trans.o, and tree-loop-linear.o.
	(lto-symtab.o): Remove dependence on LAMBDA_H.
	(tree-loop-linear.o): Remove rule.
	(lambda-mat.o): Same.
	(lambda-trans.o): Same.
	(lambda-code.o): Same.
	(tree-vect-loop.o): Add missing dependence on TREE_DATA_REF_H.
	(tree-vect-slp.o): Same.
	* hwint.h (gcd): Moved here.
	(least_common_multiple): Same.
	* lambda-code.c: Removed.
	* lambda-mat.c: Removed.
	* lambda-trans.c: Removed.
	* lambda.h: Removed.
	* tree-loop-linear.c: Removed.
	* lto-symtab.c: Do not include lambda.h.
	* omega.c (gcd): Removed.
	* passes.c (init_optimization_passes): Remove pass_linear_transform.
	* tree-data-ref.c (print_lambda_vector): Moved here.
	(lambda_vector_copy): Same.
	(lambda_matrix_copy): Same.
	(lambda_matrix_id): Same.
	(lambda_vector_first_nz): Same.
	(lambda_matrix_row_add): Same.
	(lambda_matrix_row_exchange): Same.
	(lambda_vector_mult_const): Same.
	(lambda_vector_negate): Same.
	(lambda_matrix_row_negate): Same.
	(lambda_vector_equal): Same.
	(lambda_matrix_right_hermite): Same.
	* tree-data-ref.h: Do not include lambda.h.
	(lambda_vector): Moved here.
	(lambda_matrix): Same.
	(dependence_level): Same.
	(lambda_transform_legal_p): Removed declaration.
	(lambda_collect_parameters): Same.
	(lambda_compute_access_matrices): Same.
	(lambda_vector_gcd): Same.
	(lambda_vector_new): Same.
	(lambda_vector_clear): Same.
	(lambda_vector_lexico_pos): Same.
	(lambda_vector_zerop): Same.
	(lambda_matrix_new): Same.
	* tree-flow.h (least_common_multiple): Removed declaration.
	* tree-parloops.c (lambda_trans_matrix): Moved here.
	(LTM_MATRIX): Same.
	(LTM_ROWSIZE): Same.
	(LTM_COLSIZE): Same.
	(LTM_DENOMINATOR): Same.
	(lambda_trans_matrix_new): Same.
	(lambda_matrix_vector_mult): Same.
	(lambda_transform_legal_p): Same.
	* tree-pass.h (pass_linear_transform): Removed declaration.
	* tree-ssa-loop.c (tree_linear_transform): Removed.
	(gate_tree_linear_transform): Removed.
	(pass_linear_transform): Removed.
	(gate_graphite_transforms): Make flag_tree_loop_linear an alias of
	flag_loop_interchange.

toplev/gcc/testsuite/
	* gfortran.dg/graphite/interchange-4.f: New.
	* gfortran.dg/graphite/interchange-5.f: New.

	* gcc.dg/tree-ssa/ltrans-1.c: Removed.
	* gcc.dg/tree-ssa/ltrans-2.c: Removed.
	* gcc.dg/tree-ssa/ltrans-3.c: Removed.
	* gcc.dg/tree-ssa/ltrans-4.c: Removed.
	* gcc.dg/tree-ssa/ltrans-5.c: Removed.
	* gcc.dg/tree-ssa/ltrans-6.c: Removed.
	* gcc.dg/tree-ssa/ltrans-8.c: Removed.
	* gfortran.dg/ltrans-7.f90: Removed.
	* gcc.dg/tree-ssa/data-dep-1.c: Removed.

	* gcc.dg/pr18792.c: -> gcc.dg/graphite/pr18792.c
	* gcc.dg/pr19910.c: -> gcc.dg/graphite/pr19910.c
	* gcc.dg/tree-ssa/20041110-1.c: -> gcc.dg/graphite/pr20041110-1.c
	* gcc.dg/tree-ssa/pr20256.c: -> gcc.dg/graphite/pr20256.c
	* gcc.dg/pr23625.c: -> gcc.dg/graphite/pr23625.c
	* gcc.dg/tree-ssa/pr23820.c: -> gcc.dg/graphite/pr23820.c
	* gcc.dg/tree-ssa/pr24309.c: -> gcc.dg/graphite/pr24309.c
	* gcc.dg/tree-ssa/pr26435.c: -> gcc.dg/graphite/pr26435.c
	* gcc.dg/pr29330.c: -> gcc.dg/graphite/pr29330.c
	* gcc.dg/pr29581-1.c: -> gcc.dg/graphite/pr29581-1.c
	* gcc.dg/pr29581-2.c: -> gcc.dg/graphite/pr29581-2.c
	* gcc.dg/pr29581-3.c: -> gcc.dg/graphite/pr29581-3.c
	* gcc.dg/pr29581-4.c: -> gcc.dg/graphite/pr29581-4.c
	* gcc.dg/tree-ssa/loop-27.c: -> gcc.dg/graphite/pr30565.c
	* gcc.dg/tree-ssa/pr31183.c: -> gcc.dg/graphite/pr31183.c
	* gcc.dg/tree-ssa/pr33576.c: -> gcc.dg/graphite/pr33576.c
	* gcc.dg/tree-ssa/pr33766.c: -> gcc.dg/graphite/pr33766.c
	* gcc.dg/pr34016.c: -> gcc.dg/graphite/pr34016.c
	* gcc.dg/tree-ssa/pr34017.c: -> gcc.dg/graphite/pr34017.c
	* gcc.dg/tree-ssa/pr34123.c: -> gcc.dg/graphite/pr34123.c
	* gcc.dg/tree-ssa/pr36287.c: -> gcc.dg/graphite/pr36287.c
	* gcc.dg/tree-ssa/pr37686.c: -> gcc.dg/graphite/pr37686.c
	* gcc.dg/pr42917.c: -> gcc.dg/graphite/pr42917.c
	* gfortran.dg/loop_nest_1.f90: -> gfortran.dg/graphite/pr29290.f90
	* gfortran.dg/pr29581.f90: -> gfortran.dg/graphite/pr29581.f90
	* gfortran.dg/pr36286.f90: -> gfortran.dg/graphite/pr36286.f90
	* gfortran.dg/pr36922.f: -> gfortran.dg/graphite/pr36922.f
	* gfortran.dg/pr39516.f: -> gfortran.dg/graphite/pr39516.f

git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/branches/graphite@168957 138bc75d-0d04-0410-961f-82ee72b054a4
---
 ChangeLog.graphite                                 |    4 +
 MAINTAINERS                                        |    1 -
 gcc/ChangeLog.graphite                             |  107 +
 gcc/Makefile.in                                    |   21 +-
 gcc/hwint.h                                        |   29 +
 gcc/lambda-code.c                                  | 2855 --------------------
 gcc/lambda-mat.c                                   |  607 -----
 gcc/lambda-trans.c                                 |   80 -
 gcc/lambda.h                                       |  524 ----
 gcc/lto-symtab.c                                   |    1 -
 gcc/omega.c                                        |   18 -
 gcc/passes.c                                       |    1 -
 gcc/testsuite/gcc.dg/graphite/pr18792.c            |   16 +
 gcc/testsuite/gcc.dg/graphite/pr19910.c            |   16 +
 gcc/testsuite/gcc.dg/graphite/pr20041110-1.c       |   26 +
 gcc/testsuite/gcc.dg/graphite/pr20256.c            |   23 +
 gcc/testsuite/gcc.dg/graphite/pr23625.c            |   27 +
 gcc/testsuite/gcc.dg/graphite/pr23820.c            |   26 +
 gcc/testsuite/gcc.dg/graphite/pr24309.c            |   18 +
 gcc/testsuite/gcc.dg/graphite/pr26435.c            |   17 +
 gcc/testsuite/gcc.dg/graphite/pr29330.c            |   15 +
 gcc/testsuite/gcc.dg/graphite/pr29581-1.c          |   44 +
 gcc/testsuite/gcc.dg/graphite/pr29581-2.c          |   46 +
 gcc/testsuite/gcc.dg/graphite/pr29581-3.c          |   48 +
 gcc/testsuite/gcc.dg/graphite/pr29581-4.c          |   48 +
 gcc/testsuite/gcc.dg/graphite/pr30565.c            |   14 +
 gcc/testsuite/gcc.dg/graphite/pr31183.c            |   14 +
 gcc/testsuite/gcc.dg/graphite/pr33576.c            |   20 +
 gcc/testsuite/gcc.dg/graphite/pr33766.c            |   19 +
 gcc/testsuite/gcc.dg/graphite/pr34016.c            |   19 +
 gcc/testsuite/gcc.dg/graphite/pr34017.c            |   26 +
 gcc/testsuite/gcc.dg/graphite/pr34123.c            |   18 +
 gcc/testsuite/gcc.dg/graphite/pr36287.c            |   22 +
 gcc/testsuite/gcc.dg/graphite/pr37686.c            |   48 +
 gcc/testsuite/gcc.dg/graphite/pr42917.c            |   13 +
 gcc/testsuite/gcc.dg/pr18792.c                     |   16 -
 gcc/testsuite/gcc.dg/pr19910.c                     |   16 -
 gcc/testsuite/gcc.dg/pr23625.c                     |   27 -
 gcc/testsuite/gcc.dg/pr29330.c                     |   15 -
 gcc/testsuite/gcc.dg/pr29581-1.c                   |   44 -
 gcc/testsuite/gcc.dg/pr29581-2.c                   |   46 -
 gcc/testsuite/gcc.dg/pr29581-3.c                   |   48 -
 gcc/testsuite/gcc.dg/pr29581-4.c                   |   48 -
 gcc/testsuite/gcc.dg/pr34016.c                     |   19 -
 gcc/testsuite/gcc.dg/pr42917.c                     |   16 -
 gcc/testsuite/gcc.dg/tree-ssa/20041110-1.c         |   26 -
 gcc/testsuite/gcc.dg/tree-ssa/data-dep-1.c         |   28 -
 gcc/testsuite/gcc.dg/tree-ssa/loop-27.c            |   14 -
 gcc/testsuite/gcc.dg/tree-ssa/ltrans-1.c           |   24 -
 gcc/testsuite/gcc.dg/tree-ssa/ltrans-2.c           |   26 -
 gcc/testsuite/gcc.dg/tree-ssa/ltrans-3.c           |   22 -
 gcc/testsuite/gcc.dg/tree-ssa/ltrans-4.c           |   21 -
 gcc/testsuite/gcc.dg/tree-ssa/ltrans-5.c           |   18 -
 gcc/testsuite/gcc.dg/tree-ssa/ltrans-6.c           |   22 -
 gcc/testsuite/gcc.dg/tree-ssa/ltrans-8.c           |   15 -
 gcc/testsuite/gcc.dg/tree-ssa/pr20256.c            |   25 -
 gcc/testsuite/gcc.dg/tree-ssa/pr23820.c            |   26 -
 gcc/testsuite/gcc.dg/tree-ssa/pr24309.c            |   18 -
 gcc/testsuite/gcc.dg/tree-ssa/pr26435.c            |   20 -
 gcc/testsuite/gcc.dg/tree-ssa/pr31183.c            |   14 -
 gcc/testsuite/gcc.dg/tree-ssa/pr33576.c            |   20 -
 gcc/testsuite/gcc.dg/tree-ssa/pr33766.c            |   19 -
 gcc/testsuite/gcc.dg/tree-ssa/pr34017.c            |   26 -
 gcc/testsuite/gcc.dg/tree-ssa/pr34123.c            |   18 -
 gcc/testsuite/gcc.dg/tree-ssa/pr36287.c            |   22 -
 gcc/testsuite/gcc.dg/tree-ssa/pr37686.c            |   48 -
 gcc/testsuite/gfortran.dg/graphite/interchange-4.f |   29 +
 gcc/testsuite/gfortran.dg/graphite/interchange-5.f |   30 +
 gcc/testsuite/gfortran.dg/graphite/pr29290.f90     |    9 +
 gcc/testsuite/gfortran.dg/graphite/pr29581.f90     |   27 +
 gcc/testsuite/gfortran.dg/graphite/pr36286.f90     |   14 +
 gcc/testsuite/gfortran.dg/graphite/pr36922.f       |   16 +
 gcc/testsuite/gfortran.dg/graphite/pr39516.f       |   20 +
 gcc/testsuite/gfortran.dg/loop_nest_1.f90          |    9 -
 gcc/testsuite/gfortran.dg/ltrans-7.f90             |   31 -
 gcc/testsuite/gfortran.dg/pr29581.f90              |   27 -
 gcc/testsuite/gfortran.dg/pr36286.f90              |   14 -
 gcc/testsuite/gfortran.dg/pr36922.f                |   16 -
 gcc/testsuite/gfortran.dg/pr39516.f                |   20 -
 gcc/tree-data-ref.c                                |  174 ++
 gcc/tree-data-ref.h                                |  122 +-
 gcc/tree-flow.h                                    |    2 -
 gcc/tree-loop-linear.c                             |  423 ---
 gcc/tree-parloops.c                                |  119 +
 gcc/tree-pass.h                                    |    3 +-
 gcc/tree-ssa-loop.c                                |   44 +-
 86 files changed, 1282 insertions(+), 5465 deletions(-)
 delete mode 100644 gcc/lambda-code.c
 delete mode 100644 gcc/lambda-mat.c
 delete mode 100644 gcc/lambda-trans.c
 delete mode 100644 gcc/lambda.h
 create mode 100644 gcc/testsuite/gcc.dg/graphite/pr18792.c
 create mode 100644 gcc/testsuite/gcc.dg/graphite/pr19910.c
 create mode 100644 gcc/testsuite/gcc.dg/graphite/pr20041110-1.c
 create mode 100644 gcc/testsuite/gcc.dg/graphite/pr20256.c
 create mode 100644 gcc/testsuite/gcc.dg/graphite/pr23625.c
 create mode 100644 gcc/testsuite/gcc.dg/graphite/pr23820.c
 create mode 100644 gcc/testsuite/gcc.dg/graphite/pr24309.c
 create mode 100644 gcc/testsuite/gcc.dg/graphite/pr26435.c
 create mode 100644 gcc/testsuite/gcc.dg/graphite/pr29330.c
 create mode 100644 gcc/testsuite/gcc.dg/graphite/pr29581-1.c
 create mode 100644 gcc/testsuite/gcc.dg/graphite/pr29581-2.c
 create mode 100644 gcc/testsuite/gcc.dg/graphite/pr29581-3.c
 create mode 100644 gcc/testsuite/gcc.dg/graphite/pr29581-4.c
 create mode 100644 gcc/testsuite/gcc.dg/graphite/pr30565.c
 create mode 100644 gcc/testsuite/gcc.dg/graphite/pr31183.c
 create mode 100644 gcc/testsuite/gcc.dg/graphite/pr33576.c
 create mode 100644 gcc/testsuite/gcc.dg/graphite/pr33766.c
 create mode 100644 gcc/testsuite/gcc.dg/graphite/pr34016.c
 create mode 100644 gcc/testsuite/gcc.dg/graphite/pr34017.c
 create mode 100644 gcc/testsuite/gcc.dg/graphite/pr34123.c
 create mode 100644 gcc/testsuite/gcc.dg/graphite/pr36287.c
 create mode 100644 gcc/testsuite/gcc.dg/graphite/pr37686.c
 create mode 100644 gcc/testsuite/gcc.dg/graphite/pr42917.c
 delete mode 100644 gcc/testsuite/gcc.dg/pr18792.c
 delete mode 100644 gcc/testsuite/gcc.dg/pr19910.c
 delete mode 100644 gcc/testsuite/gcc.dg/pr23625.c
 delete mode 100644 gcc/testsuite/gcc.dg/pr29330.c
 delete mode 100644 gcc/testsuite/gcc.dg/pr29581-1.c
 delete mode 100644 gcc/testsuite/gcc.dg/pr29581-2.c
 delete mode 100644 gcc/testsuite/gcc.dg/pr29581-3.c
 delete mode 100644 gcc/testsuite/gcc.dg/pr29581-4.c
 delete mode 100644 gcc/testsuite/gcc.dg/pr34016.c
 delete mode 100644 gcc/testsuite/gcc.dg/pr42917.c
 delete mode 100644 gcc/testsuite/gcc.dg/tree-ssa/20041110-1.c
 delete mode 100644 gcc/testsuite/gcc.dg/tree-ssa/data-dep-1.c
 delete mode 100644 gcc/testsuite/gcc.dg/tree-ssa/loop-27.c
 delete mode 100644 gcc/testsuite/gcc.dg/tree-ssa/ltrans-1.c
 delete mode 100644 gcc/testsuite/gcc.dg/tree-ssa/ltrans-2.c
 delete mode 100644 gcc/testsuite/gcc.dg/tree-ssa/ltrans-3.c
 delete mode 100644 gcc/testsuite/gcc.dg/tree-ssa/ltrans-4.c
 delete mode 100644 gcc/testsuite/gcc.dg/tree-ssa/ltrans-5.c
 delete mode 100644 gcc/testsuite/gcc.dg/tree-ssa/ltrans-6.c
 delete mode 100644 gcc/testsuite/gcc.dg/tree-ssa/ltrans-8.c
 delete mode 100644 gcc/testsuite/gcc.dg/tree-ssa/pr20256.c
 delete mode 100644 gcc/testsuite/gcc.dg/tree-ssa/pr23820.c
 delete mode 100644 gcc/testsuite/gcc.dg/tree-ssa/pr24309.c
 delete mode 100644 gcc/testsuite/gcc.dg/tree-ssa/pr26435.c
 delete mode 100644 gcc/testsuite/gcc.dg/tree-ssa/pr31183.c
 delete mode 100644 gcc/testsuite/gcc.dg/tree-ssa/pr33576.c
 delete mode 100644 gcc/testsuite/gcc.dg/tree-ssa/pr33766.c
 delete mode 100644 gcc/testsuite/gcc.dg/tree-ssa/pr34017.c
 delete mode 100644 gcc/testsuite/gcc.dg/tree-ssa/pr34123.c
 delete mode 100644 gcc/testsuite/gcc.dg/tree-ssa/pr36287.c
 delete mode 100644 gcc/testsuite/gcc.dg/tree-ssa/pr37686.c
 create mode 100644 gcc/testsuite/gfortran.dg/graphite/interchange-4.f
 create mode 100644 gcc/testsuite/gfortran.dg/graphite/interchange-5.f
 create mode 100644 gcc/testsuite/gfortran.dg/graphite/pr29290.f90
 create mode 100644 gcc/testsuite/gfortran.dg/graphite/pr29581.f90
 create mode 100644 gcc/testsuite/gfortran.dg/graphite/pr36286.f90
 create mode 100644 gcc/testsuite/gfortran.dg/graphite/pr36922.f
 create mode 100644 gcc/testsuite/gfortran.dg/graphite/pr39516.f
 delete mode 100644 gcc/testsuite/gfortran.dg/loop_nest_1.f90
 delete mode 100644 gcc/testsuite/gfortran.dg/ltrans-7.f90
 delete mode 100644 gcc/testsuite/gfortran.dg/pr29581.f90
 delete mode 100644 gcc/testsuite/gfortran.dg/pr36286.f90
 delete mode 100644 gcc/testsuite/gfortran.dg/pr36922.f
 delete mode 100644 gcc/testsuite/gfortran.dg/pr39516.f
 delete mode 100644 gcc/tree-loop-linear.c

diff --git a/ChangeLog.graphite b/ChangeLog.graphite
index 987aefa..7b319b3 100644
--- a/ChangeLog.graphite
+++ b/ChangeLog.graphite
@@ -1,3 +1,7 @@
+2011-01-17  Sebastian Pop  <sebastian.pop@amd.com>
+
+	* MAINTAINERS (linear loop transforms): Removed.
+
 2011-01-15  Sebastian Pop  <sebastian.pop@amd.com>
 
 	* configure: Regenerated.
diff --git a/MAINTAINERS b/MAINTAINERS
index 5295978..0e1013c 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -221,7 +221,6 @@ mudflap			Frank Ch. Eigler	fche@redhat.com
 tree browser/unparser	Sebastian Pop		sebastian.pop@amd.com
 scev, data dependence	Daniel Berlin		dberlin@dberlin.org
 scev, data dependence	Sebastian Pop		sebastian.pop@amd.com
-linear loop transforms	Daniel Berlin		dberlin@dberlin.org
 profile feedback	Jan Hubicka		jh@suse.cz
 type-safe vectors	Nathan Sidwell		nathan@codesourcery.com
 alias analysis		Daniel Berlin		dberlin@dberlin.org
diff --git a/gcc/ChangeLog.graphite b/gcc/ChangeLog.graphite
index 6b25988..e20e034 100644
--- a/gcc/ChangeLog.graphite
+++ b/gcc/ChangeLog.graphite
@@ -1,5 +1,112 @@
 2011-01-17  Sebastian Pop  <sebastian.pop@amd.com>
 
+	* Makefile.in (LAMBDA_H): Removed.
+	(TREE_DATA_REF_H): Remove dependence on LAMBDA_H.
+	(OBJS-common): Remove dependence on lambda-code.o, lambda-mat.o,
+	lambda-trans.o, and tree-loop-linear.o.
+	(lto-symtab.o): Remove dependence on LAMBDA_H.
+	(tree-loop-linear.o): Remove rule.
+	(lambda-mat.o): Same.
+	(lambda-trans.o): Same.
+	(lambda-code.o): Same.
+	(tree-vect-loop.o): Add missing dependence on TREE_DATA_REF_H.
+	(tree-vect-slp.o): Same.
+	* hwint.h (gcd): Moved here.
+	(least_common_multiple): Same.
+	* lambda-code.c: Removed.
+	* lambda-mat.c: Removed.
+	* lambda-trans.c: Removed.
+	* lambda.h: Removed.
+	* tree-loop-linear.c: Removed.
+	* lto-symtab.c: Do not include lambda.h.
+	* omega.c (gcd): Removed.
+	* passes.c (init_optimization_passes): Remove pass_linear_transform.
+	* tree-data-ref.c (print_lambda_vector): Moved here.
+	(lambda_vector_copy): Same.
+	(lambda_matrix_copy): Same.
+	(lambda_matrix_id): Same.
+	(lambda_vector_first_nz): Same.
+	(lambda_matrix_row_add): Same.
+	(lambda_matrix_row_exchange): Same.
+	(lambda_vector_mult_const): Same.
+	(lambda_vector_negate): Same.
+	(lambda_matrix_row_negate): Same.
+	(lambda_vector_equal): Same.
+	(lambda_matrix_right_hermite): Same.
+	* tree-data-ref.h: Do not include lambda.h.
+	(lambda_vector): Moved here.
+	(lambda_matrix): Same.
+	(dependence_level): Same.
+	(lambda_transform_legal_p): Removed declaration.
+	(lambda_collect_parameters): Same.
+	(lambda_compute_access_matrices): Same.
+	(lambda_vector_gcd): Same.
+	(lambda_vector_new): Same.
+	(lambda_vector_clear): Same.
+	(lambda_vector_lexico_pos): Same.
+	(lambda_vector_zerop): Same.
+	(lambda_matrix_new): Same.
+	* tree-flow.h (least_common_multiple): Removed declaration.
+	* tree-parloops.c (lambda_trans_matrix): Moved here.
+	(LTM_MATRIX): Same.
+	(LTM_ROWSIZE): Same.
+	(LTM_COLSIZE): Same.
+	(LTM_DENOMINATOR): Same.
+	(lambda_trans_matrix_new): Same.
+	(lambda_matrix_vector_mult): Same.
+	(lambda_transform_legal_p): Same.
+	* tree-pass.h (pass_linear_transform): Removed declaration.
+	* tree-ssa-loop.c (tree_linear_transform): Removed.
+	(gate_tree_linear_transform): Removed.
+	(pass_linear_transform): Removed.
+	(gate_graphite_transforms): Make flag_tree_loop_linear an alias of
+	flag_loop_interchange.
+
+	* gfortran.dg/graphite/interchange-4.f: New.
+	* gfortran.dg/graphite/interchange-5.f: New.
+
+	* gcc.dg/tree-ssa/ltrans-1.c: Removed.
+	* gcc.dg/tree-ssa/ltrans-2.c: Removed.
+	* gcc.dg/tree-ssa/ltrans-3.c: Removed.
+	* gcc.dg/tree-ssa/ltrans-4.c: Removed.
+	* gcc.dg/tree-ssa/ltrans-5.c: Removed.
+	* gcc.dg/tree-ssa/ltrans-6.c: Removed.
+	* gcc.dg/tree-ssa/ltrans-8.c: Removed.
+	* gfortran.dg/ltrans-7.f90: Removed.
+	* gcc.dg/tree-ssa/data-dep-1.c: Removed.
+
+	* gcc.dg/pr18792.c: -> gcc.dg/graphite/pr18792.c
+	* gcc.dg/pr19910.c: -> gcc.dg/graphite/pr19910.c
+	* gcc.dg/tree-ssa/20041110-1.c: -> gcc.dg/graphite/pr20041110-1.c
+	* gcc.dg/tree-ssa/pr20256.c: -> gcc.dg/graphite/pr20256.c
+	* gcc.dg/pr23625.c: -> gcc.dg/graphite/pr23625.c
+	* gcc.dg/tree-ssa/pr23820.c: -> gcc.dg/graphite/pr23820.c
+	* gcc.dg/tree-ssa/pr24309.c: -> gcc.dg/graphite/pr24309.c
+	* gcc.dg/tree-ssa/pr26435.c: -> gcc.dg/graphite/pr26435.c
+	* gcc.dg/pr29330.c: -> gcc.dg/graphite/pr29330.c
+	* gcc.dg/pr29581-1.c: -> gcc.dg/graphite/pr29581-1.c
+	* gcc.dg/pr29581-2.c: -> gcc.dg/graphite/pr29581-2.c
+	* gcc.dg/pr29581-3.c: -> gcc.dg/graphite/pr29581-3.c
+	* gcc.dg/pr29581-4.c: -> gcc.dg/graphite/pr29581-4.c
+	* gcc.dg/tree-ssa/loop-27.c: -> gcc.dg/graphite/pr30565.c
+	* gcc.dg/tree-ssa/pr31183.c: -> gcc.dg/graphite/pr31183.c
+	* gcc.dg/tree-ssa/pr33576.c: -> gcc.dg/graphite/pr33576.c
+	* gcc.dg/tree-ssa/pr33766.c: -> gcc.dg/graphite/pr33766.c
+	* gcc.dg/pr34016.c: -> gcc.dg/graphite/pr34016.c
+	* gcc.dg/tree-ssa/pr34017.c: -> gcc.dg/graphite/pr34017.c
+	* gcc.dg/tree-ssa/pr34123.c: -> gcc.dg/graphite/pr34123.c
+	* gcc.dg/tree-ssa/pr36287.c: -> gcc.dg/graphite/pr36287.c
+	* gcc.dg/tree-ssa/pr37686.c: -> gcc.dg/graphite/pr37686.c
+	* gcc.dg/pr42917.c: -> gcc.dg/graphite/pr42917.c
+	* gcc.dg/tree-ssa/data-dep-1.c
+	* gfortran.dg/loop_nest_1.f90: -> gfortran.dg/graphite/pr29290.f90
+	* gfortran.dg/pr29581.f90: -> gfortran.dg/graphite/pr29581.f90
+	* gfortran.dg/pr36286.f90: -> gfortran.dg/graphite/pr36286.f90
+	* gfortran.dg/pr36922.f: -> gfortran.dg/graphite/pr36922.f
+	* gfortran.dg/pr39516.f: -> gfortran.dg/graphite/pr39516.f
+
+2011-01-17  Sebastian Pop  <sebastian.pop@amd.com>
+
 	* graphite-sese-to-poly.c (close_phi_written_to_memory): Also allow
 	VAR_DECL, PARM_DECL, and RESULT_DECL.
 
diff --git a/gcc/Makefile.in b/gcc/Makefile.in
index cde1ef2..1d4b6a4 100644
--- a/gcc/Makefile.in
+++ b/gcc/Makefile.in
@@ -966,8 +966,7 @@ DIAGNOSTIC_H = diagnostic.h $(DIAGNOSTIC_CORE_H) $(PRETTY_PRINT_H)
 C_PRETTY_PRINT_H = c-family/c-pretty-print.h $(PRETTY_PRINT_H) \
 	$(C_COMMON_H) $(TREE_H)
 SCEV_H = tree-scalar-evolution.h $(GGC_H) tree-chrec.h $(PARAMS_H)
-LAMBDA_H = lambda.h $(TREE_H) $(VEC_H) $(GGC_H)
-TREE_DATA_REF_H = tree-data-ref.h $(LAMBDA_H) omega.h graphds.h $(SCEV_H)
+TREE_DATA_REF_H = tree-data-ref.h omega.h graphds.h $(SCEV_H)
 TREE_INLINE_H = tree-inline.h vecir.h
 REAL_H = real.h $(MACHMODE_H)
 IRA_INT_H = ira.h ira-int.h $(CFGLOOP_H) alloc-pool.h
@@ -1281,9 +1280,6 @@ OBJS-common = \
 	ira-emit.o \
 	ira-lives.o \
 	jump.o \
-	lambda-code.o \
-	lambda-mat.o \
-	lambda-trans.o \
 	langhooks.o \
 	lcm.o \
 	lists.o \
@@ -1382,7 +1378,6 @@ OBJS-common = \
 	tree-into-ssa.o \
 	tree-iterator.o \
 	tree-loop-distribution.o \
-	tree-loop-linear.o \
 	tree-nested.o \
 	tree-nrv.o \
 	tree-object-size.o \
@@ -2334,7 +2329,7 @@ lto-section-out.o : lto-section-out.c $(CONFIG_H) $(SYSTEM_H) coretypes.h \
    $(CGRAPH_H) $(FUNCTION_H) $(GGC_H) $(EXCEPT_H) pointer-set.h \
    $(BITMAP_H) langhooks.h $(LTO_STREAMER_H) lto-compress.h
 lto-symtab.o: lto-symtab.c $(CONFIG_H) $(SYSTEM_H) coretypes.h \
-   $(TREE_H) $(GIMPLE_H) $(GGC_H) $(LAMBDA_H) $(HASHTAB_H) \
+   $(TREE_H) $(GIMPLE_H) $(GGC_H) $(HASHTAB_H) \
    $(LTO_STREAMER_H) $(LINKER_PLUGIN_API_H) gt-lto-symtab.h
 lto-opts.o: lto-opts.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TREE_H) \
    $(HASHTAB_H) $(GGC_H) $(BITMAP_H) $(FLAGS_H) $(OPTS_H) $(OPTIONS_H) \
@@ -2726,7 +2721,7 @@ tree-vect-loop.o: tree-vect-loop.c $(CONFIG_H) $(SYSTEM_H) coretypes.h \
    $(TM_H) $(GGC_H) $(TREE_H) $(BASIC_BLOCK_H) $(DIAGNOSTIC_H) $(TREE_FLOW_H) \
    $(TREE_DUMP_H) $(CFGLOOP_H) $(CFGLAYOUT_H) $(EXPR_H) $(RECOG_H) $(OPTABS_H) \
    $(DIAGNOSTIC_CORE_H) $(SCEV_H) $(TREE_VECTORIZER_H) tree-pretty-print.h \
-   gimple-pretty-print.h $(TARGET_H)
+   gimple-pretty-print.h $(TARGET_H) $(TREE_DATA_REF_H)
 tree-vect-loop-manip.o: tree-vect-loop-manip.c $(CONFIG_H) $(SYSTEM_H) \
    coretypes.h $(TM_H) $(GGC_H) $(TREE_H) $(BASIC_BLOCK_H) $(DIAGNOSTIC_H) \
    $(TREE_FLOW_H) $(TREE_DUMP_H) $(CFGLOOP_H) $(CFGLAYOUT_H) $(EXPR_H) $(DIAGNOSTIC_CORE_H) \
@@ -2741,7 +2736,7 @@ tree-vect-slp.o: tree-vect-slp.c $(CONFIG_H) $(SYSTEM_H) \
    coretypes.h $(TM_H) $(GGC_H) $(TREE_H) $(TARGET_H) $(BASIC_BLOCK_H) \
    $(DIAGNOSTIC_H) $(TREE_FLOW_H) $(TREE_DUMP_H) $(CFGLOOP_H) $(CFGLAYOUT_H) \
    $(EXPR_H) $(RECOG_H) $(OPTABS_H) $(TREE_VECTORIZER_H) tree-pretty-print.h \
-   gimple-pretty-print.h
+   gimple-pretty-print.h $(TREE_DATA_REF_H)
 tree-vect-stmts.o: tree-vect-stmts.c $(CONFIG_H) $(SYSTEM_H) \
    coretypes.h $(TM_H) $(GGC_H) $(TREE_H) $(TARGET_H) $(BASIC_BLOCK_H) \
    $(DIAGNOSTIC_H) $(TREE_FLOW_H) $(TREE_DUMP_H) $(CFGLOOP_H) $(CFGLAYOUT_H) \
@@ -2757,8 +2752,6 @@ tree-vectorizer.o: tree-vectorizer.c $(CONFIG_H) $(SYSTEM_H) coretypes.h \
    $(TM_H) $(GGC_H) $(TREE_H) $(DIAGNOSTIC_H) $(TREE_FLOW_H) $(TREE_DUMP_H) \
    $(CFGLOOP_H) $(TREE_PASS_H) $(TREE_VECTORIZER_H) $(TIMEVAR_H) \
    tree-pretty-print.h
-tree-loop-linear.o: tree-loop-linear.c $(CONFIG_H) $(SYSTEM_H) coretypes.h \
-   $(TREE_FLOW_H) $(CFGLOOP_H) $(TREE_DATA_REF_H) $(TREE_PASS_H) $(LAMBDA_H)
 tree-loop-distribution.o: tree-loop-distribution.c $(CONFIG_H) $(SYSTEM_H) \
    coretypes.h $(TREE_FLOW_H) $(CFGLOOP_H) $(TREE_DATA_REF_H) $(TREE_PASS_H)
 tree-parloops.o: tree-parloops.c $(CONFIG_H) $(SYSTEM_H) coretypes.h \
@@ -3473,12 +3466,6 @@ ifcvt.o : ifcvt.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(RTL_H) \
    $(TARGET_H) $(BASIC_BLOCK_H) $(EXPR_H) output.h $(EXCEPT_H) $(TM_P_H) \
    $(OPTABS_H) $(CFGLOOP_H) hard-reg-set.h $(TIMEVAR_H) \
    $(TREE_PASS_H) $(DF_H) $(DBGCNT_H)
-lambda-mat.o : lambda-mat.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TREE_FLOW_H) \
-   $(LAMBDA_H)
-lambda-trans.o : lambda-trans.c $(CONFIG_H) $(SYSTEM_H) coretypes.h \
-   $(TREE_FLOW_H) $(LAMBDA_H)
-lambda-code.o : lambda-code.c $(CONFIG_H) $(SYSTEM_H) coretypes.h \
-   $(TREE_FLOW_H) $(CFGLOOP_H) $(TREE_DATA_REF_H) $(LAMBDA_H) $(TREE_PASS_H)
 params.o : params.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(PARAMS_H) \
    $(DIAGNOSTIC_CORE_H)
 pointer-set.o: pointer-set.c pointer-set.h $(CONFIG_H) $(SYSTEM_H)
diff --git a/gcc/hwint.h b/gcc/hwint.h
index 8bd7c5e..1eadd45 100644
--- a/gcc/hwint.h
+++ b/gcc/hwint.h
@@ -228,4 +228,33 @@ exact_log2 (unsigned HOST_WIDE_INT x)
 
 #endif /* GCC_VERSION >= 3004 */
 
+/* Compute the greatest common divisor of two numbers using
+   Euclid's algorithm.  */
+
+static inline int
+gcd (int a, int b)
+{
+  int x, y, z;
+
+  x = abs (a);
+  y = abs (b);
+
+  while (x > 0)
+    {
+      z = y % x;
+      y = x;
+      x = z;
+    }
+
+  return y;
+}
+
+/* Compute the least common multiple of two numbers A and B .  */
+
+static inline int
+least_common_multiple (int a, int b)
+{
+  return (abs (a) * abs (b) / gcd (a, b));
+}
+
 #endif /* ! GCC_HWINT_H */
diff --git a/gcc/lambda-code.c b/gcc/lambda-code.c
deleted file mode 100644
index f462071..0000000
--- a/gcc/lambda-code.c
+++ /dev/null
@@ -1,2855 +0,0 @@
-/*  Loop transformation code generation
-    Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
-    Free Software Foundation, Inc.
-    Contributed by Daniel Berlin <dberlin@dberlin.org>
-
-    This file is part of GCC.
-
-    GCC is free software; you can redistribute it and/or modify it under
-    the terms of the GNU General Public License as published by the Free
-    Software Foundation; either version 3, or (at your option) any later
-    version.
-
-    GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-    WARRANTY; without even the implied warranty of MERCHANTABILITY or
-    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
-    for more details.
-
-    You should have received a copy of the GNU General Public License
-    along with GCC; see the file COPYING3.  If not see
-    <http://www.gnu.org/licenses/>.  */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tree-flow.h"
-#include "cfgloop.h"
-#include "tree-chrec.h"
-#include "tree-data-ref.h"
-#include "tree-scalar-evolution.h"
-#include "lambda.h"
-#include "tree-pass.h"
-
-/* This loop nest code generation is based on non-singular matrix
-   math.
-
- A little terminology and a general sketch of the algorithm.  See "A singular
- loop transformation framework based on non-singular matrices" by Wei Li and
- Keshav Pingali for formal proofs that the various statements below are
- correct.
-
- A loop iteration space represents the points traversed by the loop.  A point in the
- iteration space can be represented by a vector of size <loop depth>.  You can
- therefore represent the iteration space as an integral combinations of a set
- of basis vectors.
-
- A loop iteration space is dense if every integer point between the loop
- bounds is a point in the iteration space.  Every loop with a step of 1
- therefore has a dense iteration space.
-
- for i = 1 to 3, step 1 is a dense iteration space.
-
- A loop iteration space is sparse if it is not dense.  That is, the iteration
- space skips integer points that are within the loop bounds.
-
- for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
- 2 is skipped.
-
- Dense source spaces are easy to transform, because they don't skip any
- points to begin with.  Thus we can compute the exact bounds of the target
- space using min/max and floor/ceil.
-
- For a dense source space, we take the transformation matrix, decompose it
- into a lower triangular part (H) and a unimodular part (U).
- We then compute the auxiliary space from the unimodular part (source loop
- nest . U = auxiliary space) , which has two important properties:
-  1. It traverses the iterations in the same lexicographic order as the source
-  space.
-  2. It is a dense space when the source is a dense space (even if the target
-  space is going to be sparse).
-
- Given the auxiliary space, we use the lower triangular part to compute the
- bounds in the target space by simple matrix multiplication.
- The gaps in the target space (IE the new loop step sizes) will be the
- diagonals of the H matrix.
-
- Sparse source spaces require another step, because you can't directly compute
- the exact bounds of the auxiliary and target space from the sparse space.
- Rather than try to come up with a separate algorithm to handle sparse source
- spaces directly, we just find a legal transformation matrix that gives you
- the sparse source space, from a dense space, and then transform the dense
- space.
-
- For a regular sparse space, you can represent the source space as an integer
- lattice, and the base space of that lattice will always be dense.  Thus, we
- effectively use the lattice to figure out the transformation from the lattice
- base space, to the sparse iteration space (IE what transform was applied to
- the dense space to make it sparse).  We then compose this transform with the
- transformation matrix specified by the user (since our matrix transformations
- are closed under composition, this is okay).  We can then use the base space
- (which is dense) plus the composed transformation matrix, to compute the rest
- of the transform using the dense space algorithm above.
-
- In other words, our sparse source space (B) is decomposed into a dense base
- space (A), and a matrix (L) that transforms A into B, such that A.L = B.
- We then compute the composition of L and the user transformation matrix (T),
- so that T is now a transform from A to the result, instead of from B to the
- result.
- IE A.(LT) = result instead of B.T = result
- Since A is now a dense source space, we can use the dense source space
- algorithm above to compute the result of applying transform (LT) to A.
-
- Fourier-Motzkin elimination is used to compute the bounds of the base space
- of the lattice.  */
-
-static bool perfect_nestify (struct loop *, VEC(tree,heap) *,
-			     VEC(tree,heap) *, VEC(int,heap) *,
-			     VEC(tree,heap) *);
-/* Lattice stuff that is internal to the code generation algorithm.  */
-
-typedef struct lambda_lattice_s
-{
-  /* Lattice base matrix.  */
-  lambda_matrix base;
-  /* Lattice dimension.  */
-  int dimension;
-  /* Origin vector for the coefficients.  */
-  lambda_vector origin;
-  /* Origin matrix for the invariants.  */
-  lambda_matrix origin_invariants;
-  /* Number of invariants.  */
-  int invariants;
-} *lambda_lattice;
-
-#define LATTICE_BASE(T) ((T)->base)
-#define LATTICE_DIMENSION(T) ((T)->dimension)
-#define LATTICE_ORIGIN(T) ((T)->origin)
-#define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
-#define LATTICE_INVARIANTS(T) ((T)->invariants)
-
-static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
-		       int, int);
-static lambda_lattice lambda_lattice_new (int, int, struct obstack *);
-static lambda_lattice lambda_lattice_compute_base (lambda_loopnest,
-                                                   struct obstack *);
-
-static bool can_convert_to_perfect_nest (struct loop *);
-
-/* Create a new lambda loop in LAMBDA_OBSTACK.  */
-
-static lambda_loop
-lambda_loop_new (struct obstack * lambda_obstack)
-{
-  lambda_loop result = (lambda_loop)
-    obstack_alloc (lambda_obstack, sizeof (struct lambda_loop_s));
-  memset (result, 0, sizeof (struct lambda_loop_s));
-  return result;
-}
-
-/* Create a new lambda body vector.  */
-
-lambda_body_vector
-lambda_body_vector_new (int size, struct obstack * lambda_obstack)
-{
-  lambda_body_vector ret;
-
-  ret = (lambda_body_vector) obstack_alloc (lambda_obstack,
-					    sizeof (*ret));
-  LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
-  LBV_SIZE (ret) = size;
-  LBV_DENOMINATOR (ret) = 1;
-  return ret;
-}
-
-/* Compute the new coefficients for the vector based on the
-  *inverse* of the transformation matrix.  */
-
-lambda_body_vector
-lambda_body_vector_compute_new (lambda_trans_matrix transform,
-                                lambda_body_vector vect,
-                                struct obstack * lambda_obstack)
-{
-  lambda_body_vector temp;
-  int depth;
-
-  /* Make sure the matrix is square.  */
-  gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform));
-
-  depth = LTM_ROWSIZE (transform);
-
-  temp = lambda_body_vector_new (depth, lambda_obstack);
-  LBV_DENOMINATOR (temp) =
-    LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
-  lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
-			     LTM_MATRIX (transform), depth,
-			     LBV_COEFFICIENTS (temp));
-  LBV_SIZE (temp) = LBV_SIZE (vect);
-  return temp;
-}
-
-/* Print out a lambda body vector.  */
-
-void
-print_lambda_body_vector (FILE * outfile, lambda_body_vector body)
-{
-  print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body));
-}
-
-/* Return TRUE if two linear expressions are equal.  */
-
-static bool
-lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
-	   int depth, int invariants)
-{
-  int i;
-
-  if (lle1 == NULL || lle2 == NULL)
-    return false;
-  if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2))
-    return false;
-  if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2))
-    return false;
-  for (i = 0; i < depth; i++)
-    if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i])
-      return false;
-  for (i = 0; i < invariants; i++)
-    if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] !=
-	LLE_INVARIANT_COEFFICIENTS (lle2)[i])
-      return false;
-  return true;
-}
-
-/* Create a new linear expression with dimension DIM, and total number
-   of invariants INVARIANTS.  */
-
-lambda_linear_expression
-lambda_linear_expression_new (int dim, int invariants,
-                              struct obstack * lambda_obstack)
-{
-  lambda_linear_expression ret;
-
-  ret = (lambda_linear_expression)obstack_alloc (lambda_obstack,
-                                                 sizeof (*ret));
-  LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
-  LLE_CONSTANT (ret) = 0;
-  LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
-  LLE_DENOMINATOR (ret) = 1;
-  LLE_NEXT (ret) = NULL;
-
-  return ret;
-}
-
-/* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
-   The starting letter used for variable names is START.  */
-
-static void
-print_linear_expression (FILE * outfile, lambda_vector expr, int size,
-			 char start)
-{
-  int i;
-  bool first = true;
-  for (i = 0; i < size; i++)
-    {
-      if (expr[i] != 0)
-	{
-	  if (first)
-	    {
-	      if (expr[i] < 0)
-		fprintf (outfile, "-");
-	      first = false;
-	    }
-	  else if (expr[i] > 0)
-	    fprintf (outfile, " + ");
-	  else
-	    fprintf (outfile, " - ");
-	  if (abs (expr[i]) == 1)
-	    fprintf (outfile, "%c", start + i);
-	  else
-	    fprintf (outfile, "%d%c", abs (expr[i]), start + i);
-	}
-    }
-}
-
-/* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
-   depth/number of coefficients is given by DEPTH, the number of invariants is
-   given by INVARIANTS, and the character to start variable names with is given
-   by START.  */
-
-void
-print_lambda_linear_expression (FILE * outfile,
-				lambda_linear_expression expr,
-				int depth, int invariants, char start)
-{
-  fprintf (outfile, "\tLinear expression: ");
-  print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start);
-  fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr));
-  fprintf (outfile, "  invariants: ");
-  print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr),
-			   invariants, 'A');
-  fprintf (outfile, "  denominator: %d\n", LLE_DENOMINATOR (expr));
-}
-
-/* Print a lambda loop structure LOOP to OUTFILE.  The depth/number of
-   coefficients is given by DEPTH, the number of invariants is
-   given by INVARIANTS, and the character to start variable names with is given
-   by START.  */
-
-void
-print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
-		   int invariants, char start)
-{
-  int step;
-  lambda_linear_expression expr;
-
-  gcc_assert (loop);
-
-  expr = LL_LINEAR_OFFSET (loop);
-  step = LL_STEP (loop);
-  fprintf (outfile, "  step size = %d \n", step);
-
-  if (expr)
-    {
-      fprintf (outfile, "  linear offset: \n");
-      print_lambda_linear_expression (outfile, expr, depth, invariants,
-				      start);
-    }
-
-  fprintf (outfile, "  lower bound: \n");
-  for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
-    print_lambda_linear_expression (outfile, expr, depth, invariants, start);
-  fprintf (outfile, "  upper bound: \n");
-  for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
-    print_lambda_linear_expression (outfile, expr, depth, invariants, start);
-}
-
-/* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
-   number of invariants.  */
-
-lambda_loopnest
-lambda_loopnest_new (int depth, int invariants,
-                     struct obstack * lambda_obstack)
-{
-  lambda_loopnest ret;
-  ret = (lambda_loopnest)obstack_alloc (lambda_obstack, sizeof (*ret));
-
-  LN_LOOPS (ret) = (lambda_loop *)
-      obstack_alloc (lambda_obstack, depth * sizeof(LN_LOOPS(ret)));
-  LN_DEPTH (ret) = depth;
-  LN_INVARIANTS (ret) = invariants;
-
-  return ret;
-}
-
-/* Print a lambda loopnest structure, NEST, to OUTFILE.  The starting
-   character to use for loop names is given by START.  */
-
-void
-print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
-{
-  int i;
-  for (i = 0; i < LN_DEPTH (nest); i++)
-    {
-      fprintf (outfile, "Loop %c\n", start + i);
-      print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest),
-			 LN_INVARIANTS (nest), 'i');
-      fprintf (outfile, "\n");
-    }
-}
-
-/* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
-   of invariants.  */
-
-static lambda_lattice
-lambda_lattice_new (int depth, int invariants, struct obstack * lambda_obstack)
-{
-  lambda_lattice ret
-      = (lambda_lattice)obstack_alloc (lambda_obstack, sizeof (*ret));
-  LATTICE_BASE (ret) = lambda_matrix_new (depth, depth, lambda_obstack);
-  LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
-  LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants,
-						       lambda_obstack);
-  LATTICE_DIMENSION (ret) = depth;
-  LATTICE_INVARIANTS (ret) = invariants;
-  return ret;
-}
-
-/* Compute the lattice base for NEST.  The lattice base is essentially a
-   non-singular transform from a dense base space to a sparse iteration space.
-   We use it so that we don't have to specially handle the case of a sparse
-   iteration space in other parts of the algorithm.  As a result, this routine
-   only does something interesting (IE produce a matrix that isn't the
-   identity matrix) if NEST is a sparse space.  */
-
-static lambda_lattice
-lambda_lattice_compute_base (lambda_loopnest nest,
-                             struct obstack * lambda_obstack)
-{
-  lambda_lattice ret;
-  int depth, invariants;
-  lambda_matrix base;
-
-  int i, j, step;
-  lambda_loop loop;
-  lambda_linear_expression expression;
-
-  depth = LN_DEPTH (nest);
-  invariants = LN_INVARIANTS (nest);
-
-  ret = lambda_lattice_new (depth, invariants, lambda_obstack);
-  base = LATTICE_BASE (ret);
-  for (i = 0; i < depth; i++)
-    {
-      loop = LN_LOOPS (nest)[i];
-      gcc_assert (loop);
-      step = LL_STEP (loop);
-      /* If we have a step of 1, then the base is one, and the
-         origin and invariant coefficients are 0.  */
-      if (step == 1)
-	{
-	  for (j = 0; j < depth; j++)
-	    base[i][j] = 0;
-	  base[i][i] = 1;
-	  LATTICE_ORIGIN (ret)[i] = 0;
-	  for (j = 0; j < invariants; j++)
-	    LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0;
-	}
-      else
-	{
-	  /* Otherwise, we need the lower bound expression (which must
-	     be an affine function)  to determine the base.  */
-	  expression = LL_LOWER_BOUND (loop);
-	  gcc_assert (expression && !LLE_NEXT (expression)
-		      && LLE_DENOMINATOR (expression) == 1);
-
-	  /* The lower triangular portion of the base is going to be the
-	     coefficient times the step */
-	  for (j = 0; j < i; j++)
-	    base[i][j] = LLE_COEFFICIENTS (expression)[j]
-	      * LL_STEP (LN_LOOPS (nest)[j]);
-	  base[i][i] = step;
-	  for (j = i + 1; j < depth; j++)
-	    base[i][j] = 0;
-
-	  /* Origin for this loop is the constant of the lower bound
-	     expression.  */
-	  LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression);
-
-	  /* Coefficient for the invariants are equal to the invariant
-	     coefficients in the expression.  */
-	  for (j = 0; j < invariants; j++)
-	    LATTICE_ORIGIN_INVARIANTS (ret)[i][j] =
-	      LLE_INVARIANT_COEFFICIENTS (expression)[j];
-	}
-    }
-  return ret;
-}
-
-/* Compute the least common multiple of two numbers A and B .  */
-
-int
-least_common_multiple (int a, int b)
-{
-  return (abs (a) * abs (b) / gcd (a, b));
-}
-
-/* Perform Fourier-Motzkin elimination to calculate the bounds of the
-   auxiliary nest.
-   Fourier-Motzkin is a way of reducing systems of linear inequalities so that
-   it is easy to calculate the answer and bounds.
-   A sketch of how it works:
-   Given a system of linear inequalities, ai * xj >= bk, you can always
-   rewrite the constraints so they are all of the form
-   a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
-   in b1 ... bk, and some a in a1...ai)
-   You can then eliminate this x from the non-constant inequalities by
-   rewriting these as a <= b, x >= constant, and delete the x variable.
-   You can then repeat this for any remaining x variables, and then we have
-   an easy to use variable <= constant (or no variables at all) form that we
-   can construct our bounds from.
-
-   In our case, each time we eliminate, we construct part of the bound from
-   the ith variable, then delete the ith variable.
-
-   Remember the constant are in our vector a, our coefficient matrix is A,
-   and our invariant coefficient matrix is B.
-
-   SIZE is the size of the matrices being passed.
-   DEPTH is the loop nest depth.
-   INVARIANTS is the number of loop invariants.
-   A, B, and a are the coefficient matrix, invariant coefficient, and a
-   vector of constants, respectively.  */
-
-static lambda_loopnest
-compute_nest_using_fourier_motzkin (int size,
-				    int depth,
-				    int invariants,
-				    lambda_matrix A,
-				    lambda_matrix B,
-                                    lambda_vector a,
-                                    struct obstack * lambda_obstack)
-{
-
-  int multiple, f1, f2;
-  int i, j, k;
-  lambda_linear_expression expression;
-  lambda_loop loop;
-  lambda_loopnest auxillary_nest;
-  lambda_matrix swapmatrix, A1, B1;
-  lambda_vector swapvector, a1;
-  int newsize;
-
-  A1 = lambda_matrix_new (128, depth, lambda_obstack);
-  B1 = lambda_matrix_new (128, invariants, lambda_obstack);
-  a1 = lambda_vector_new (128);
-
-  auxillary_nest = lambda_loopnest_new (depth, invariants, lambda_obstack);
-
-  for (i = depth - 1; i >= 0; i--)
-    {
-      loop = lambda_loop_new (lambda_obstack);
-      LN_LOOPS (auxillary_nest)[i] = loop;
-      LL_STEP (loop) = 1;
-
-      for (j = 0; j < size; j++)
-	{
-	  if (A[j][i] < 0)
-	    {
-	      /* Any linear expression in the matrix with a coefficient less
-		 than 0 becomes part of the new lower bound.  */
-              expression = lambda_linear_expression_new (depth, invariants,
-                                                         lambda_obstack);
-
-	      for (k = 0; k < i; k++)
-		LLE_COEFFICIENTS (expression)[k] = A[j][k];
-
-	      for (k = 0; k < invariants; k++)
-		LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k];
-
-	      LLE_DENOMINATOR (expression) = -1 * A[j][i];
-	      LLE_CONSTANT (expression) = -1 * a[j];
-
-	      /* Ignore if identical to the existing lower bound.  */
-	      if (!lle_equal (LL_LOWER_BOUND (loop),
-			      expression, depth, invariants))
-		{
-		  LLE_NEXT (expression) = LL_LOWER_BOUND (loop);
-		  LL_LOWER_BOUND (loop) = expression;
-		}
-
-	    }
-	  else if (A[j][i] > 0)
-	    {
-	      /* Any linear expression with a coefficient greater than 0
-		 becomes part of the new upper bound.  */
-              expression = lambda_linear_expression_new (depth, invariants,
-                                                         lambda_obstack);
-	      for (k = 0; k < i; k++)
-		LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];
-
-	      for (k = 0; k < invariants; k++)
-		LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k];
-
-	      LLE_DENOMINATOR (expression) = A[j][i];
-	      LLE_CONSTANT (expression) = a[j];
-
-	      /* Ignore if identical to the existing upper bound.  */
-	      if (!lle_equal (LL_UPPER_BOUND (loop),
-			      expression, depth, invariants))
-		{
-		  LLE_NEXT (expression) = LL_UPPER_BOUND (loop);
-		  LL_UPPER_BOUND (loop) = expression;
-		}
-
-	    }
-	}
-
-      /* This portion creates a new system of linear inequalities by deleting
-	 the i'th variable, reducing the system by one variable.  */
-      newsize = 0;
-      for (j = 0; j < size; j++)
-	{
-	  /* If the coefficient for the i'th variable is 0, then we can just
-	     eliminate the variable straightaway.  Otherwise, we have to
-	     multiply through by the coefficients we are eliminating.  */
-	  if (A[j][i] == 0)
-	    {
-	      lambda_vector_copy (A[j], A1[newsize], depth);
-	      lambda_vector_copy (B[j], B1[newsize], invariants);
-	      a1[newsize] = a[j];
-	      newsize++;
-	    }
-	  else if (A[j][i] > 0)
-	    {
-	      for (k = 0; k < size; k++)
-		{
-		  if (A[k][i] < 0)
-		    {
-		      multiple = least_common_multiple (A[j][i], A[k][i]);
-		      f1 = multiple / A[j][i];
-		      f2 = -1 * multiple / A[k][i];
-
-		      lambda_vector_add_mc (A[j], f1, A[k], f2,
-					    A1[newsize], depth);
-		      lambda_vector_add_mc (B[j], f1, B[k], f2,
-					    B1[newsize], invariants);
-		      a1[newsize] = f1 * a[j] + f2 * a[k];
-		      newsize++;
-		    }
-		}
-	    }
-	}
-
-      swapmatrix = A;
-      A = A1;
-      A1 = swapmatrix;
-
-      swapmatrix = B;
-      B = B1;
-      B1 = swapmatrix;
-
-      swapvector = a;
-      a = a1;
-      a1 = swapvector;
-
-      size = newsize;
-    }
-
-  return auxillary_nest;
-}
-
-/* Compute the loop bounds for the auxiliary space NEST.
-   Input system used is Ax <= b.  TRANS is the unimodular transformation.
-   Given the original nest, this function will
-   1. Convert the nest into matrix form, which consists of a matrix for the
-   coefficients, a matrix for the
-   invariant coefficients, and a vector for the constants.
-   2. Use the matrix form to calculate the lattice base for the nest (which is
-   a dense space)
-   3. Compose the dense space transform with the user specified transform, to
-   get a transform we can easily calculate transformed bounds for.
-   4. Multiply the composed transformation matrix times the matrix form of the
-   loop.
-   5. Transform the newly created matrix (from step 4) back into a loop nest
-   using Fourier-Motzkin elimination to figure out the bounds.  */
-
-static lambda_loopnest
-lambda_compute_auxillary_space (lambda_loopnest nest,
-                                lambda_trans_matrix trans,
-                                struct obstack * lambda_obstack)
-{
-  lambda_matrix A, B, A1, B1;
-  lambda_vector a, a1;
-  lambda_matrix invertedtrans;
-  int depth, invariants, size;
-  int i, j;
-  lambda_loop loop;
-  lambda_linear_expression expression;
-  lambda_lattice lattice;
-
-  depth = LN_DEPTH (nest);
-  invariants = LN_INVARIANTS (nest);
-
-  /* Unfortunately, we can't know the number of constraints we'll have
-     ahead of time, but this should be enough even in ridiculous loop nest
-     cases. We must not go over this limit.  */
-  A = lambda_matrix_new (128, depth, lambda_obstack);
-  B = lambda_matrix_new (128, invariants, lambda_obstack);
-  a = lambda_vector_new (128);
-
-  A1 = lambda_matrix_new (128, depth, lambda_obstack);
-  B1 = lambda_matrix_new (128, invariants, lambda_obstack);
-  a1 = lambda_vector_new (128);
-
-  /* Store the bounds in the equation matrix A, constant vector a, and
-     invariant matrix B, so that we have Ax <= a + B.
-     This requires a little equation rearranging so that everything is on the
-     correct side of the inequality.  */
-  size = 0;
-  for (i = 0; i < depth; i++)
-    {
-      loop = LN_LOOPS (nest)[i];
-
-      /* First we do the lower bound.  */
-      if (LL_STEP (loop) > 0)
-	expression = LL_LOWER_BOUND (loop);
-      else
-	expression = LL_UPPER_BOUND (loop);
-
-      for (; expression != NULL; expression = LLE_NEXT (expression))
-	{
-	  /* Fill in the coefficient.  */
-	  for (j = 0; j < i; j++)
-	    A[size][j] = LLE_COEFFICIENTS (expression)[j];
-
-	  /* And the invariant coefficient.  */
-	  for (j = 0; j < invariants; j++)
-	    B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
-
-	  /* And the constant.  */
-	  a[size] = LLE_CONSTANT (expression);
-
-	  /* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b.  IE put all
-	     constants and single variables on   */
-	  A[size][i] = -1 * LLE_DENOMINATOR (expression);
-	  a[size] *= -1;
-	  for (j = 0; j < invariants; j++)
-	    B[size][j] *= -1;
-
-	  size++;
-	  /* Need to increase matrix sizes above.  */
-	  gcc_assert (size <= 127);
-
-	}
-
-      /* Then do the exact same thing for the upper bounds.  */
-      if (LL_STEP (loop) > 0)
-	expression = LL_UPPER_BOUND (loop);
-      else
-	expression = LL_LOWER_BOUND (loop);
-
-      for (; expression != NULL; expression = LLE_NEXT (expression))
-	{
-	  /* Fill in the coefficient.  */
-	  for (j = 0; j < i; j++)
-	    A[size][j] = LLE_COEFFICIENTS (expression)[j];
-
-	  /* And the invariant coefficient.  */
-	  for (j = 0; j < invariants; j++)
-	    B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
-
-	  /* And the constant.  */
-	  a[size] = LLE_CONSTANT (expression);
-
-	  /* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b.  */
-	  for (j = 0; j < i; j++)
-	    A[size][j] *= -1;
-	  A[size][i] = LLE_DENOMINATOR (expression);
-	  size++;
-	  /* Need to increase matrix sizes above.  */
-	  gcc_assert (size <= 127);
-
-	}
-    }
-
-  /* Compute the lattice base x = base * y + origin, where y is the
-     base space.  */
-  lattice = lambda_lattice_compute_base (nest, lambda_obstack);
-
-  /* Ax <= a + B then becomes ALy <= a+B - A*origin.  L is the lattice base  */
-
-  /* A1 = A * L */
-  lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth);
-
-  /* a1 = a - A * origin constant.  */
-  lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1);
-  lambda_vector_add_mc (a, 1, a1, -1, a1, size);
-
-  /* B1 = B - A * origin invariant.  */
-  lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth,
-		      invariants);
-  lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);
-
-  /* Now compute the auxiliary space bounds by first inverting U, multiplying
-     it by A1, then performing Fourier-Motzkin.  */
-
-  invertedtrans = lambda_matrix_new (depth, depth, lambda_obstack);
-
-  /* Compute the inverse of U.  */
-  lambda_matrix_inverse (LTM_MATRIX (trans),
-			 invertedtrans, depth, lambda_obstack);
-
-  /* A = A1 inv(U).  */
-  lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);
-
-  return compute_nest_using_fourier_motzkin (size, depth, invariants,
-                                             A, B1, a1, lambda_obstack);
-}
-
-/* Compute the loop bounds for the target space, using the bounds of
-   the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.
-   The target space loop bounds are computed by multiplying the triangular
-   matrix H by the auxiliary nest, to get the new loop bounds.  The sign of
-   the loop steps (positive or negative) is then used to swap the bounds if
-   the loop counts downwards.
-   Return the target loopnest.  */
-
-static lambda_loopnest
-lambda_compute_target_space (lambda_loopnest auxillary_nest,
-                             lambda_trans_matrix H, lambda_vector stepsigns,
-                             struct obstack * lambda_obstack)
-{
-  lambda_matrix inverse, H1;
-  int determinant, i, j;
-  int gcd1, gcd2;
-  int factor;
-
-  lambda_loopnest target_nest;
-  int depth, invariants;
-  lambda_matrix target;
-
-  lambda_loop auxillary_loop, target_loop;
-  lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr;
-
-  depth = LN_DEPTH (auxillary_nest);
-  invariants = LN_INVARIANTS (auxillary_nest);
-
-  inverse = lambda_matrix_new (depth, depth, lambda_obstack);
-  determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth,
-				       lambda_obstack);
-
-  /* H1 is H excluding its diagonal.  */
-  H1 = lambda_matrix_new (depth, depth, lambda_obstack);
-  lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth);
-
-  for (i = 0; i < depth; i++)
-    H1[i][i] = 0;
-
-  /* Computes the linear offsets of the loop bounds.  */
-  target = lambda_matrix_new (depth, depth, lambda_obstack);
-  lambda_matrix_mult (H1, inverse, target, depth, depth, depth);
-
-  target_nest = lambda_loopnest_new (depth, invariants, lambda_obstack);
-
-  for (i = 0; i < depth; i++)
-    {
-
-      /* Get a new loop structure.  */
-      target_loop = lambda_loop_new (lambda_obstack);
-      LN_LOOPS (target_nest)[i] = target_loop;
-
-      /* Computes the gcd of the coefficients of the linear part.  */
-      gcd1 = lambda_vector_gcd (target[i], i);
-
-      /* Include the denominator in the GCD.  */
-      gcd1 = gcd (gcd1, determinant);
-
-      /* Now divide through by the gcd.  */
-      for (j = 0; j < i; j++)
-	target[i][j] = target[i][j] / gcd1;
-
-      expression = lambda_linear_expression_new (depth, invariants,
-                                                 lambda_obstack);
-      lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
-      LLE_DENOMINATOR (expression) = determinant / gcd1;
-      LLE_CONSTANT (expression) = 0;
-      lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression),
-			   invariants);
-      LL_LINEAR_OFFSET (target_loop) = expression;
-    }
-
-  /* For each loop, compute the new bounds from H.  */
-  for (i = 0; i < depth; i++)
-    {
-      auxillary_loop = LN_LOOPS (auxillary_nest)[i];
-      target_loop = LN_LOOPS (target_nest)[i];
-      LL_STEP (target_loop) = LTM_MATRIX (H)[i][i];
-      factor = LTM_MATRIX (H)[i][i];
-
-      /* First we do the lower bound.  */
-      auxillary_expr = LL_LOWER_BOUND (auxillary_loop);
-
-      for (; auxillary_expr != NULL;
-	   auxillary_expr = LLE_NEXT (auxillary_expr))
-	{
-          target_expr = lambda_linear_expression_new (depth, invariants,
-                                                      lambda_obstack);
-	  lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
-				     depth, inverse, depth,
-				     LLE_COEFFICIENTS (target_expr));
-	  lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
-				    LLE_COEFFICIENTS (target_expr), depth,
-				    factor);
-
-	  LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
-	  lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
-			      LLE_INVARIANT_COEFFICIENTS (target_expr),
-			      invariants);
-	  lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
-				    LLE_INVARIANT_COEFFICIENTS (target_expr),
-				    invariants, factor);
-	  LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
-
-	  if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
-	    {
-	      LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
-		* determinant;
-	      lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
-					(target_expr),
-					LLE_INVARIANT_COEFFICIENTS
-					(target_expr), invariants,
-					determinant);
-	      LLE_DENOMINATOR (target_expr) =
-		LLE_DENOMINATOR (target_expr) * determinant;
-	    }
-	  /* Find the gcd and divide by it here, rather than doing it
-	     at the tree level.  */
-	  gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
-	  gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
-				    invariants);
-	  gcd1 = gcd (gcd1, gcd2);
-	  gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
-	  gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
-	  for (j = 0; j < depth; j++)
-	    LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
-	  for (j = 0; j < invariants; j++)
-	    LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
-	  LLE_CONSTANT (target_expr) /= gcd1;
-	  LLE_DENOMINATOR (target_expr) /= gcd1;
-	  /* Ignore if identical to existing bound.  */
-	  if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth,
-			  invariants))
-	    {
-	      LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop);
-	      LL_LOWER_BOUND (target_loop) = target_expr;
-	    }
-	}
-      /* Now do the upper bound.  */
-      auxillary_expr = LL_UPPER_BOUND (auxillary_loop);
-
-      for (; auxillary_expr != NULL;
-	   auxillary_expr = LLE_NEXT (auxillary_expr))
-	{
-          target_expr = lambda_linear_expression_new (depth, invariants,
-                                                      lambda_obstack);
-	  lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
-				     depth, inverse, depth,
-				     LLE_COEFFICIENTS (target_expr));
-	  lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
-				    LLE_COEFFICIENTS (target_expr), depth,
-				    factor);
-	  LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
-	  lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
-			      LLE_INVARIANT_COEFFICIENTS (target_expr),
-			      invariants);
-	  lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
-				    LLE_INVARIANT_COEFFICIENTS (target_expr),
-				    invariants, factor);
-	  LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
-
-	  if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
-	    {
-	      LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
-		* determinant;
-	      lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
-					(target_expr),
-					LLE_INVARIANT_COEFFICIENTS
-					(target_expr), invariants,
-					determinant);
-	      LLE_DENOMINATOR (target_expr) =
-		LLE_DENOMINATOR (target_expr) * determinant;
-	    }
-	  /* Find the gcd and divide by it here, instead of at the
-	     tree level.  */
-	  gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
-	  gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
-				    invariants);
-	  gcd1 = gcd (gcd1, gcd2);
-	  gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
-	  gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
-	  for (j = 0; j < depth; j++)
-	    LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
-	  for (j = 0; j < invariants; j++)
-	    LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
-	  LLE_CONSTANT (target_expr) /= gcd1;
-	  LLE_DENOMINATOR (target_expr) /= gcd1;
-	  /* Ignore if equal to existing bound.  */
-	  if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth,
-			  invariants))
-	    {
-	      LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop);
-	      LL_UPPER_BOUND (target_loop) = target_expr;
-	    }
-	}
-    }
-  for (i = 0; i < depth; i++)
-    {
-      target_loop = LN_LOOPS (target_nest)[i];
-      /* If necessary, exchange the upper and lower bounds and negate
-         the step size.  */
-      if (stepsigns[i] < 0)
-	{
-	  LL_STEP (target_loop) *= -1;
-	  tmp_expr = LL_LOWER_BOUND (target_loop);
-	  LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop);
-	  LL_UPPER_BOUND (target_loop) = tmp_expr;
-	}
-    }
-  return target_nest;
-}
-
-/* Compute the step signs of TRANS, using TRANS and stepsigns.  Return the new
-   result.  */
-
-static lambda_vector
-lambda_compute_step_signs (lambda_trans_matrix trans,
-                           lambda_vector stepsigns,
-                           struct obstack * lambda_obstack)
-{
-  lambda_matrix matrix, H;
-  int size;
-  lambda_vector newsteps;
-  int i, j, factor, minimum_column;
-  int temp;
-
-  matrix = LTM_MATRIX (trans);
-  size = LTM_ROWSIZE (trans);
-  H = lambda_matrix_new (size, size, lambda_obstack);
-
-  newsteps = lambda_vector_new (size);
-  lambda_vector_copy (stepsigns, newsteps, size);
-
-  lambda_matrix_copy (matrix, H, size, size);
-
-  for (j = 0; j < size; j++)
-    {
-      lambda_vector row;
-      row = H[j];
-      for (i = j; i < size; i++)
-	if (row[i] < 0)
-	  lambda_matrix_col_negate (H, size, i);
-      while (lambda_vector_first_nz (row, size, j + 1) < size)
-	{
-	  minimum_column = lambda_vector_min_nz (row, size, j);
-	  lambda_matrix_col_exchange (H, size, j, minimum_column);
-
-	  temp = newsteps[j];
-	  newsteps[j] = newsteps[minimum_column];
-	  newsteps[minimum_column] = temp;
-
-	  for (i = j + 1; i < size; i++)
-	    {
-	      factor = row[i] / row[j];
-	      lambda_matrix_col_add (H, size, j, i, -1 * factor);
-	    }
-	}
-    }
-  return newsteps;
-}
-
-/* Transform NEST according to TRANS, and return the new loopnest.
-   This involves
-   1. Computing a lattice base for the transformation
-   2. Composing the dense base with the specified transformation (TRANS)
-   3. Decomposing the combined transformation into a lower triangular portion,
-   and a unimodular portion.
-   4. Computing the auxiliary nest using the unimodular portion.
-   5. Computing the target nest using the auxiliary nest and the lower
-   triangular portion.  */
-
-lambda_loopnest
-lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans,
-                           struct obstack * lambda_obstack)
-{
-  lambda_loopnest auxillary_nest, target_nest;
-
-  int depth, invariants;
-  int i, j;
-  lambda_lattice lattice;
-  lambda_trans_matrix trans1, H, U;
-  lambda_loop loop;
-  lambda_linear_expression expression;
-  lambda_vector origin;
-  lambda_matrix origin_invariants;
-  lambda_vector stepsigns;
-  int f;
-
-  depth = LN_DEPTH (nest);
-  invariants = LN_INVARIANTS (nest);
-
-  /* Keep track of the signs of the loop steps.  */
-  stepsigns = lambda_vector_new (depth);
-  for (i = 0; i < depth; i++)
-    {
-      if (LL_STEP (LN_LOOPS (nest)[i]) > 0)
-	stepsigns[i] = 1;
-      else
-	stepsigns[i] = -1;
-    }
-
-  /* Compute the lattice base.  */
-  lattice = lambda_lattice_compute_base (nest, lambda_obstack);
-  trans1 = lambda_trans_matrix_new (depth, depth, lambda_obstack);
-
-  /* Multiply the transformation matrix by the lattice base.  */
-
-  lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice),
-		      LTM_MATRIX (trans1), depth, depth, depth);
-
-  /* Compute the Hermite normal form for the new transformation matrix.  */
-  H = lambda_trans_matrix_new (depth, depth, lambda_obstack);
-  U = lambda_trans_matrix_new (depth, depth, lambda_obstack);
-  lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H),
-			 LTM_MATRIX (U));
-
-  /* Compute the auxiliary loop nest's space from the unimodular
-     portion.  */
-  auxillary_nest = lambda_compute_auxillary_space (nest, U,
-						   lambda_obstack);
-
-  /* Compute the loop step signs from the old step signs and the
-     transformation matrix.  */
-  stepsigns = lambda_compute_step_signs (trans1, stepsigns,
-					 lambda_obstack);
-
-  /* Compute the target loop nest space from the auxiliary nest and
-     the lower triangular matrix H.  */
-  target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns,
-                                             lambda_obstack);
-  origin = lambda_vector_new (depth);
-  origin_invariants = lambda_matrix_new (depth, invariants, lambda_obstack);
-  lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
-			     LATTICE_ORIGIN (lattice), origin);
-  lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice),
-		      origin_invariants, depth, depth, invariants);
-
-  for (i = 0; i < depth; i++)
-    {
-      loop = LN_LOOPS (target_nest)[i];
-      expression = LL_LINEAR_OFFSET (loop);
-      if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth))
-	f = 1;
-      else
-	f = LLE_DENOMINATOR (expression);
-
-      LLE_CONSTANT (expression) += f * origin[i];
-
-      for (j = 0; j < invariants; j++)
-	LLE_INVARIANT_COEFFICIENTS (expression)[j] +=
-	  f * origin_invariants[i][j];
-    }
-
-  return target_nest;
-
-}
-
-/* Convert a gcc tree expression EXPR to a lambda linear expression, and
-   return the new expression.  DEPTH is the depth of the loopnest.
-   OUTERINDUCTIONVARS is an array of the induction variables for outer loops
-   in this nest.  INVARIANTS is the array of invariants for the loop.  EXTRA
-   is the amount we have to add/subtract from the expression because of the
-   type of comparison it is used in.  */
-
-static lambda_linear_expression
-gcc_tree_to_linear_expression (int depth, tree expr,
-			       VEC(tree,heap) *outerinductionvars,
-                               VEC(tree,heap) *invariants, int extra,
-                               struct obstack * lambda_obstack)
-{
-  lambda_linear_expression lle = NULL;
-  switch (TREE_CODE (expr))
-    {
-    case INTEGER_CST:
-      {
-        lle = lambda_linear_expression_new (depth, 2 * depth, lambda_obstack);
-	LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
-	if (extra != 0)
-	  LLE_CONSTANT (lle) += extra;
-
-	LLE_DENOMINATOR (lle) = 1;
-      }
-      break;
-    case SSA_NAME:
-      {
-	tree iv, invar;
-	size_t i;
-	FOR_EACH_VEC_ELT (tree, outerinductionvars, i, iv)
-	  if (iv != NULL)
-	    {
-	      if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
-		{
-                  lle = lambda_linear_expression_new (depth, 2 * depth,
-                                                      lambda_obstack);
-		  LLE_COEFFICIENTS (lle)[i] = 1;
-		  if (extra != 0)
-		    LLE_CONSTANT (lle) = extra;
-
-		  LLE_DENOMINATOR (lle) = 1;
-		}
-	    }
-	FOR_EACH_VEC_ELT (tree, invariants, i, invar)
-	  if (invar != NULL)
-	    {
-	      if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
-		{
-                  lle = lambda_linear_expression_new (depth, 2 * depth,
-                                                      lambda_obstack);
-		  LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
-		  if (extra != 0)
-		    LLE_CONSTANT (lle) = extra;
-		  LLE_DENOMINATOR (lle) = 1;
-		}
-	    }
-      }
-      break;
-    default:
-      return NULL;
-    }
-
-  return lle;
-}
-
-/* Return the depth of the loopnest NEST */
-
-static int
-depth_of_nest (struct loop *nest)
-{
-  size_t depth = 0;
-  while (nest)
-    {
-      depth++;
-      nest = nest->inner;
-    }
-  return depth;
-}
-
-
-/* Return true if OP is invariant in LOOP and all outer loops.  */
-
-static bool
-invariant_in_loop_and_outer_loops (struct loop *loop, tree op)
-{
-  if (is_gimple_min_invariant (op))
-    return true;
-  if (loop_depth (loop) == 0)
-    return true;
-  if (!expr_invariant_in_loop_p (loop, op))
-    return false;
-  if (!invariant_in_loop_and_outer_loops (loop_outer (loop), op))
-    return false;
-  return true;
-}
-
-/* Generate a lambda loop from a gcc loop LOOP.  Return the new lambda loop,
-   or NULL if it could not be converted.
-   DEPTH is the depth of the loop.
-   INVARIANTS is a pointer to the array of loop invariants.
-   The induction variable for this loop should be stored in the parameter
-   OURINDUCTIONVAR.
-   OUTERINDUCTIONVARS is an array of induction variables for outer loops.  */
-
-static lambda_loop
-gcc_loop_to_lambda_loop (struct loop *loop, int depth,
-			 VEC(tree,heap) ** invariants,
-			 tree * ourinductionvar,
-			 VEC(tree,heap) * outerinductionvars,
-			 VEC(tree,heap) ** lboundvars,
-			 VEC(tree,heap) ** uboundvars,
-			 VEC(int,heap) ** steps,
-                         struct obstack * lambda_obstack)
-{
-  gimple phi;
-  gimple exit_cond;
-  tree access_fn, inductionvar;
-  tree step;
-  lambda_loop lloop = NULL;
-  lambda_linear_expression lbound, ubound;
-  tree test_lhs, test_rhs;
-  int stepint;
-  int extra = 0;
-  tree lboundvar, uboundvar, uboundresult;
-
-  /* Find out induction var and exit condition.  */
-  inductionvar = find_induction_var_from_exit_cond (loop);
-  exit_cond = get_loop_exit_condition (loop);
-
-  if (inductionvar == NULL || exit_cond == NULL)
-    {
-      if (dump_file && (dump_flags & TDF_DETAILS))
-	fprintf (dump_file,
-		 "Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
-      return NULL;
-    }
-
-  if (SSA_NAME_DEF_STMT (inductionvar) == NULL)
-    {
-
-      if (dump_file && (dump_flags & TDF_DETAILS))
-	fprintf (dump_file,
-		 "Unable to convert loop: Cannot find PHI node for induction variable\n");
-
-      return NULL;
-    }
-
-  phi = SSA_NAME_DEF_STMT (inductionvar);
-  if (gimple_code (phi) != GIMPLE_PHI)
-    {
-      tree op = SINGLE_SSA_TREE_OPERAND (phi, SSA_OP_USE);
-      if (!op)
-	{
-
-	  if (dump_file && (dump_flags & TDF_DETAILS))
-	    fprintf (dump_file,
-		     "Unable to convert loop: Cannot find PHI node for induction variable\n");
-
-	  return NULL;
-	}
-
-      phi = SSA_NAME_DEF_STMT (op);
-      if (gimple_code (phi) != GIMPLE_PHI)
-	{
-	  if (dump_file && (dump_flags & TDF_DETAILS))
-	    fprintf (dump_file,
-		     "Unable to convert loop: Cannot find PHI node for induction variable\n");
-	  return NULL;
-	}
-    }
-
-  /* The induction variable name/version we want to put in the array is the
-     result of the induction variable phi node.  */
-  *ourinductionvar = PHI_RESULT (phi);
-  access_fn = instantiate_parameters
-    (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
-  if (access_fn == chrec_dont_know)
-    {
-      if (dump_file && (dump_flags & TDF_DETAILS))
-	fprintf (dump_file,
-		 "Unable to convert loop: Access function for induction variable phi is unknown\n");
-
-      return NULL;
-    }
-
-  step = evolution_part_in_loop_num (access_fn, loop->num);
-  if (!step || step == chrec_dont_know)
-    {
-      if (dump_file && (dump_flags & TDF_DETAILS))
-	fprintf (dump_file,
-		 "Unable to convert loop: Cannot determine step of loop.\n");
-
-      return NULL;
-    }
-  if (TREE_CODE (step) != INTEGER_CST)
-    {
-
-      if (dump_file && (dump_flags & TDF_DETAILS))
-	fprintf (dump_file,
-		 "Unable to convert loop: Step of loop is not integer.\n");
-      return NULL;
-    }
-
-  stepint = TREE_INT_CST_LOW (step);
-
-  /* Only want phis for induction vars, which will have two
-     arguments.  */
-  if (gimple_phi_num_args (phi) != 2)
-    {
-      if (dump_file && (dump_flags & TDF_DETAILS))
-	fprintf (dump_file,
-		 "Unable to convert loop: PHI node for induction variable has >2 arguments\n");
-      return NULL;
-    }
-
-  /* Another induction variable check. One argument's source should be
-     in the loop, one outside the loop.  */
-  if (flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, 0)->src)
-      && flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, 1)->src))
-    {
-
-      if (dump_file && (dump_flags & TDF_DETAILS))
-	fprintf (dump_file,
-		 "Unable to convert loop: PHI edges both inside loop, or both outside loop.\n");
-
-      return NULL;
-    }
-
-  if (flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, 0)->src))
-    {
-      lboundvar = PHI_ARG_DEF (phi, 1);
-      lbound = gcc_tree_to_linear_expression (depth, lboundvar,
-					      outerinductionvars, *invariants,
-                                              0, lambda_obstack);
-    }
-  else
-    {
-      lboundvar = PHI_ARG_DEF (phi, 0);
-      lbound = gcc_tree_to_linear_expression (depth, lboundvar,
-					      outerinductionvars, *invariants,
-                                              0, lambda_obstack);
-    }
-
-  if (!lbound)
-    {
-
-      if (dump_file && (dump_flags & TDF_DETAILS))
-	fprintf (dump_file,
-		 "Unable to convert loop: Cannot convert lower bound to linear expression\n");
-
-      return NULL;
-    }
-  /* One part of the test may be a loop invariant tree.  */
-  VEC_reserve (tree, heap, *invariants, 1);
-  test_lhs = gimple_cond_lhs (exit_cond);
-  test_rhs = gimple_cond_rhs (exit_cond);
-
-  if (TREE_CODE (test_rhs) == SSA_NAME
-      && invariant_in_loop_and_outer_loops (loop, test_rhs))
-    VEC_quick_push (tree, *invariants, test_rhs);
-  else if (TREE_CODE (test_lhs) == SSA_NAME
-	   && invariant_in_loop_and_outer_loops (loop, test_lhs))
-    VEC_quick_push (tree, *invariants, test_lhs);
-
-  /* The non-induction variable part of the test is the upper bound variable.
-   */
-  if (test_lhs == inductionvar)
-    uboundvar = test_rhs;
-  else
-    uboundvar = test_lhs;
-
-  /* We only size the vectors assuming we have, at max, 2 times as many
-     invariants as we do loops (one for each bound).
-     This is just an arbitrary number, but it has to be matched against the
-     code below.  */
-  gcc_assert (VEC_length (tree, *invariants) <= (unsigned int) (2 * depth));
-
-
-  /* We might have some leftover.  */
-  if (gimple_cond_code (exit_cond) == LT_EXPR)
-    extra = -1 * stepint;
-  else if (gimple_cond_code (exit_cond) == NE_EXPR)
-    extra = -1 * stepint;
-  else if (gimple_cond_code (exit_cond) == GT_EXPR)
-    extra = -1 * stepint;
-  else if (gimple_cond_code (exit_cond) == EQ_EXPR)
-    extra = 1 * stepint;
-
-  ubound = gcc_tree_to_linear_expression (depth, uboundvar,
-					  outerinductionvars,
-                                          *invariants, extra, lambda_obstack);
-  uboundresult = build2 (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar,
-			 build_int_cst (TREE_TYPE (uboundvar), extra));
-  VEC_safe_push (tree, heap, *uboundvars, uboundresult);
-  VEC_safe_push (tree, heap, *lboundvars, lboundvar);
-  VEC_safe_push (int, heap, *steps, stepint);
-  if (!ubound)
-    {
-      if (dump_file && (dump_flags & TDF_DETAILS))
-	fprintf (dump_file,
-		 "Unable to convert loop: Cannot convert upper bound to linear expression\n");
-      return NULL;
-    }
-
-  lloop = lambda_loop_new (lambda_obstack);
-  LL_STEP (lloop) = stepint;
-  LL_LOWER_BOUND (lloop) = lbound;
-  LL_UPPER_BOUND (lloop) = ubound;
-  return lloop;
-}
-
-/* Given a LOOP, find the induction variable it is testing against in the exit
-   condition.  Return the induction variable if found, NULL otherwise.  */
-
-tree
-find_induction_var_from_exit_cond (struct loop *loop)
-{
-  gimple expr = get_loop_exit_condition (loop);
-  tree ivarop;
-  tree test_lhs, test_rhs;
-  if (expr == NULL)
-    return NULL_TREE;
-  if (gimple_code (expr) != GIMPLE_COND)
-    return NULL_TREE;
-  test_lhs = gimple_cond_lhs (expr);
-  test_rhs = gimple_cond_rhs (expr);
-
-  /* Find the side that is invariant in this loop. The ivar must be the other
-     side.  */
-
-  if (expr_invariant_in_loop_p (loop, test_lhs))
-      ivarop = test_rhs;
-  else if (expr_invariant_in_loop_p (loop, test_rhs))
-      ivarop = test_lhs;
-  else
-    return NULL_TREE;
-
-  if (TREE_CODE (ivarop) != SSA_NAME)
-    return NULL_TREE;
-  return ivarop;
-}
-
-DEF_VEC_P(lambda_loop);
-DEF_VEC_ALLOC_P(lambda_loop,heap);
-
-/* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
-   Return the new loop nest.
-   INDUCTIONVARS is a pointer to an array of induction variables for the
-   loopnest that will be filled in during this process.
-   INVARIANTS is a pointer to an array of invariants that will be filled in
-   during this process.  */
-
-lambda_loopnest
-gcc_loopnest_to_lambda_loopnest (struct loop *loop_nest,
-				 VEC(tree,heap) **inductionvars,
-                                 VEC(tree,heap) **invariants,
-                                 struct obstack * lambda_obstack)
-{
-  lambda_loopnest ret = NULL;
-  struct loop *temp = loop_nest;
-  int depth = depth_of_nest (loop_nest);
-  size_t i;
-  VEC(lambda_loop,heap) *loops = NULL;
-  VEC(tree,heap) *uboundvars = NULL;
-  VEC(tree,heap) *lboundvars  = NULL;
-  VEC(int,heap) *steps = NULL;
-  lambda_loop newloop;
-  tree inductionvar = NULL;
-  bool perfect_nest = perfect_nest_p (loop_nest);
-
-  if (!perfect_nest && !can_convert_to_perfect_nest (loop_nest))
-    goto fail;
-
-  while (temp)
-    {
-      newloop = gcc_loop_to_lambda_loop (temp, depth, invariants,
-					 &inductionvar, *inductionvars,
-					 &lboundvars, &uboundvars,
-                                         &steps, lambda_obstack);
-      if (!newloop)
-	goto fail;
-
-      VEC_safe_push (tree, heap, *inductionvars, inductionvar);
-      VEC_safe_push (lambda_loop, heap, loops, newloop);
-      temp = temp->inner;
-    }
-
-  if (!perfect_nest)
-    {
-      if (!perfect_nestify (loop_nest, lboundvars, uboundvars, steps,
-			    *inductionvars))
-	{
-	  if (dump_file)
-	    fprintf (dump_file,
-		     "Not a perfect loop nest and couldn't convert to one.\n");
-	  goto fail;
-	}
-      else if (dump_file)
-	fprintf (dump_file,
-		 "Successfully converted loop nest to perfect loop nest.\n");
-    }
-
-  ret = lambda_loopnest_new (depth, 2 * depth, lambda_obstack);
-
-  FOR_EACH_VEC_ELT (lambda_loop, loops, i, newloop)
-    LN_LOOPS (ret)[i] = newloop;
-
- fail:
-  VEC_free (lambda_loop, heap, loops);
-  VEC_free (tree, heap, uboundvars);
-  VEC_free (tree, heap, lboundvars);
-  VEC_free (int, heap, steps);
-
-  return ret;
-}
-
-/* Convert a lambda body vector LBV to a gcc tree, and return the new tree.
-   STMTS_TO_INSERT is a pointer to a tree where the statements we need to be
-   inserted for us are stored.  INDUCTION_VARS is the array of induction
-   variables for the loop this LBV is from.  TYPE is the tree type to use for
-   the variables and trees involved.  */
-
-static tree
-lbv_to_gcc_expression (lambda_body_vector lbv,
-		       tree type, VEC(tree,heap) *induction_vars,
-		       gimple_seq *stmts_to_insert)
-{
-  int k;
-  tree resvar;
-  tree expr = build_linear_expr (type, LBV_COEFFICIENTS (lbv), induction_vars);
-
-  k = LBV_DENOMINATOR (lbv);
-  gcc_assert (k != 0);
-  if (k != 1)
-    expr = fold_build2 (CEIL_DIV_EXPR, type, expr, build_int_cst (type, k));
-
-  resvar = create_tmp_var (type, "lbvtmp");
-  add_referenced_var (resvar);
-  return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar);
-}
-
-/* Convert a linear expression from coefficient and constant form to a
-   gcc tree.
-   Return the tree that represents the final value of the expression.
-   LLE is the linear expression to convert.
-   OFFSET is the linear offset to apply to the expression.
-   TYPE is the tree type to use for the variables and math.
-   INDUCTION_VARS is a vector of induction variables for the loops.
-   INVARIANTS is a vector of the loop nest invariants.
-   WRAP specifies what tree code to wrap the results in, if there is more than
-   one (it is either MAX_EXPR, or MIN_EXPR).
-   STMTS_TO_INSERT Is a pointer to the statement list we fill in with
-   statements that need to be inserted for the linear expression.  */
-
-static tree
-lle_to_gcc_expression (lambda_linear_expression lle,
-		       lambda_linear_expression offset,
-		       tree type,
-		       VEC(tree,heap) *induction_vars,
-		       VEC(tree,heap) *invariants,
-		       enum tree_code wrap, gimple_seq *stmts_to_insert)
-{
-  int k;
-  tree resvar;
-  tree expr = NULL_TREE;
-  VEC(tree,heap) *results = NULL;
-
-  gcc_assert (wrap == MAX_EXPR || wrap == MIN_EXPR);
-
-  /* Build up the linear expressions.  */
-  for (; lle != NULL; lle = LLE_NEXT (lle))
-    {
-      expr = build_linear_expr (type, LLE_COEFFICIENTS (lle), induction_vars);
-      expr = fold_build2 (PLUS_EXPR, type, expr,
-			  build_linear_expr (type,
-					     LLE_INVARIANT_COEFFICIENTS (lle),
-					     invariants));
-
-      k = LLE_CONSTANT (lle);
-      if (k)
-	expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k));
-
-      k = LLE_CONSTANT (offset);
-      if (k)
-	expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k));
-
-      k = LLE_DENOMINATOR (lle);
-      if (k != 1)
-	expr = fold_build2 (wrap == MAX_EXPR ? CEIL_DIV_EXPR : FLOOR_DIV_EXPR,
-			    type, expr, build_int_cst (type, k));
-
-      expr = fold (expr);
-      VEC_safe_push (tree, heap, results, expr);
-    }
-
-  gcc_assert (expr);
-
-  /* We may need to wrap the results in a MAX_EXPR or MIN_EXPR.  */
-  if (VEC_length (tree, results) > 1)
-    {
-      size_t i;
-      tree op;
-
-      expr = VEC_index (tree, results, 0);
-      for (i = 1; VEC_iterate (tree, results, i, op); i++)
-	expr = fold_build2 (wrap, type, expr, op);
-    }
-
-  VEC_free (tree, heap, results);
-
-  resvar = create_tmp_var (type, "lletmp");
-  add_referenced_var (resvar);
-  return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar);
-}
-
-/* Remove the induction variable defined at IV_STMT.  */
-
-void
-remove_iv (gimple iv_stmt)
-{
-  gimple_stmt_iterator si = gsi_for_stmt (iv_stmt);
-
-  if (gimple_code (iv_stmt) == GIMPLE_PHI)
-    {
-      unsigned i;
-
-      for (i = 0; i < gimple_phi_num_args (iv_stmt); i++)
-	{
-	  gimple stmt;
-	  imm_use_iterator imm_iter;
-	  tree arg = gimple_phi_arg_def (iv_stmt, i);
-	  bool used = false;
-
-	  if (TREE_CODE (arg) != SSA_NAME)
-	    continue;
-
-	  FOR_EACH_IMM_USE_STMT (stmt, imm_iter, arg)
-	    if (stmt != iv_stmt && !is_gimple_debug (stmt))
-	      used = true;
-
-	  if (!used)
-	    remove_iv (SSA_NAME_DEF_STMT (arg));
-	}
-
-      remove_phi_node (&si, true);
-    }
-  else
-    {
-      gsi_remove (&si, true);
-      release_defs (iv_stmt);
-    }
-}
-
-/* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to
-   it, back into gcc code.  This changes the
-   loops, their induction variables, and their bodies, so that they
-   match the transformed loopnest.
-   OLD_LOOPNEST is the loopnest before we've replaced it with the new
-   loopnest.
-   OLD_IVS is a vector of induction variables from the old loopnest.
-   INVARIANTS is a vector of loop invariants from the old loopnest.
-   NEW_LOOPNEST is the new lambda loopnest to replace OLD_LOOPNEST with.
-   TRANSFORM is the matrix transform that was applied to OLD_LOOPNEST to get
-   NEW_LOOPNEST.  */
-
-void 
-lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
-				 VEC(tree,heap) *old_ivs,
-				 VEC(tree,heap) *invariants,
-				 VEC(gimple,heap) **remove_ivs,
-				 lambda_loopnest new_loopnest,
-                                 lambda_trans_matrix transform,
-                                 struct obstack * lambda_obstack)
-{
-  struct loop *temp;
-  size_t i = 0;
-  unsigned j;
-  size_t depth = 0;
-  VEC(tree,heap) *new_ivs = NULL;
-  tree oldiv;
-  gimple_stmt_iterator bsi;
-
-  transform = lambda_trans_matrix_inverse (transform, lambda_obstack);
-
-  if (dump_file)
-    {
-      fprintf (dump_file, "Inverse of transformation matrix:\n");
-      print_lambda_trans_matrix (dump_file, transform);
-    }
-  depth = depth_of_nest (old_loopnest);
-  temp = old_loopnest;
-
-  while (temp)
-    {
-      lambda_loop newloop;
-      basic_block bb;
-      edge exit;
-      tree ivvar, ivvarinced;
-      gimple exitcond;
-      gimple_seq stmts;
-      enum tree_code testtype;
-      tree newupperbound, newlowerbound;
-      lambda_linear_expression offset;
-      tree type;
-      bool insert_after;
-      gimple inc_stmt;
-
-      oldiv = VEC_index (tree, old_ivs, i);
-      type = TREE_TYPE (oldiv);
-
-      /* First, build the new induction variable temporary  */
-
-      ivvar = create_tmp_var (type, "lnivtmp");
-      add_referenced_var (ivvar);
-
-      VEC_safe_push (tree, heap, new_ivs, ivvar);
-
-      newloop = LN_LOOPS (new_loopnest)[i];
-
-      /* Linear offset is a bit tricky to handle.  Punt on the unhandled
-         cases for now.  */
-      offset = LL_LINEAR_OFFSET (newloop);
-
-      gcc_assert (LLE_DENOMINATOR (offset) == 1 &&
-		  lambda_vector_zerop (LLE_COEFFICIENTS (offset), depth));
-
-      /* Now build the  new lower bounds, and insert the statements
-         necessary to generate it on the loop preheader.  */
-      stmts = NULL;
-      newlowerbound = lle_to_gcc_expression (LL_LOWER_BOUND (newloop),
-					     LL_LINEAR_OFFSET (newloop),
-					     type,
-					     new_ivs,
-					     invariants, MAX_EXPR, &stmts);
-
-      if (stmts)
-	{
-	  gsi_insert_seq_on_edge (loop_preheader_edge (temp), stmts);
-	  gsi_commit_edge_inserts ();
-	}
-      /* Build the new upper bound and insert its statements in the
-         basic block of the exit condition */
-      stmts = NULL;
-      newupperbound = lle_to_gcc_expression (LL_UPPER_BOUND (newloop),
-					     LL_LINEAR_OFFSET (newloop),
-					     type,
-					     new_ivs,
-					     invariants, MIN_EXPR, &stmts);
-      exit = single_exit (temp);
-      exitcond = get_loop_exit_condition (temp);
-      bb = gimple_bb (exitcond);
-      bsi = gsi_after_labels (bb);
-      if (stmts)
-	gsi_insert_seq_before (&bsi, stmts, GSI_NEW_STMT);
-
-      /* Create the new iv.  */
-
-      standard_iv_increment_position (temp, &bsi, &insert_after);
-      create_iv (newlowerbound,
-		 build_int_cst (type, LL_STEP (newloop)),
-		 ivvar, temp, &bsi, insert_after, &ivvar,
-		 NULL);
-
-      /* Unfortunately, the incremented ivvar that create_iv inserted may not
-	 dominate the block containing the exit condition.
-	 So we simply create our own incremented iv to use in the new exit
-	 test,  and let redundancy elimination sort it out.  */
-      inc_stmt = gimple_build_assign_with_ops (PLUS_EXPR, SSA_NAME_VAR (ivvar),
-					       ivvar,
-					       build_int_cst (type, LL_STEP (newloop)));
-
-      ivvarinced = make_ssa_name (SSA_NAME_VAR (ivvar), inc_stmt);
-      gimple_assign_set_lhs (inc_stmt, ivvarinced);
-      bsi = gsi_for_stmt (exitcond);
-      gsi_insert_before (&bsi, inc_stmt, GSI_SAME_STMT);
-
-      /* Replace the exit condition with the new upper bound
-         comparison.  */
-
-      testtype = LL_STEP (newloop) >= 0 ? LE_EXPR : GE_EXPR;
-
-      /* We want to build a conditional where true means exit the loop, and
-	 false means continue the loop.
-	 So swap the testtype if this isn't the way things are.*/
-
-      if (exit->flags & EDGE_FALSE_VALUE)
-	testtype = swap_tree_comparison (testtype);
-
-      gimple_cond_set_condition (exitcond, testtype, newupperbound, ivvarinced);
-      update_stmt (exitcond);
-      VEC_replace (tree, new_ivs, i, ivvar);
-
-      i++;
-      temp = temp->inner;
-    }
-
-  /* Rewrite uses of the old ivs so that they are now specified in terms of
-     the new ivs.  */
-
-  FOR_EACH_VEC_ELT (tree, old_ivs, i, oldiv)
-    {
-      imm_use_iterator imm_iter;
-      use_operand_p use_p;
-      tree oldiv_def;
-      gimple oldiv_stmt = SSA_NAME_DEF_STMT (oldiv);
-      gimple stmt;
-
-      if (gimple_code (oldiv_stmt) == GIMPLE_PHI)
-        oldiv_def = PHI_RESULT (oldiv_stmt);
-      else
-	oldiv_def = SINGLE_SSA_TREE_OPERAND (oldiv_stmt, SSA_OP_DEF);
-      gcc_assert (oldiv_def != NULL_TREE);
-
-      FOR_EACH_IMM_USE_STMT (stmt, imm_iter, oldiv_def)
-        {
-	  tree newiv;
-	  gimple_seq stmts;
-	  lambda_body_vector lbv, newlbv;
-
-	  if (is_gimple_debug (stmt))
-	    continue;
-
-	  /* Compute the new expression for the induction
-	     variable.  */
-	  depth = VEC_length (tree, new_ivs);
-          lbv = lambda_body_vector_new (depth, lambda_obstack);
-	  LBV_COEFFICIENTS (lbv)[i] = 1;
-
-          newlbv = lambda_body_vector_compute_new (transform, lbv,
-                                                   lambda_obstack);
-
-	  stmts = NULL;
-	  newiv = lbv_to_gcc_expression (newlbv, TREE_TYPE (oldiv),
-					 new_ivs, &stmts);
-
-	  if (stmts && gimple_code (stmt) != GIMPLE_PHI)
-	    {
-	      bsi = gsi_for_stmt (stmt);
-	      gsi_insert_seq_before (&bsi, stmts, GSI_SAME_STMT);
-	    }
-
-	  FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
-	    propagate_value (use_p, newiv);
-
-	  if (stmts && gimple_code (stmt) == GIMPLE_PHI)
-	    for (j = 0; j < gimple_phi_num_args (stmt); j++)
-	      if (gimple_phi_arg_def (stmt, j) == newiv)
-		gsi_insert_seq_on_edge (gimple_phi_arg_edge (stmt, j), stmts);
-
-	  update_stmt (stmt);
-	}
-
-      /* Remove the now unused induction variable.  */
-      VEC_safe_push (gimple, heap, *remove_ivs, oldiv_stmt);
-    }
-  VEC_free (tree, heap, new_ivs);
-}
-
-/* Return TRUE if this is not interesting statement from the perspective of
-   determining if we have a perfect loop nest.  */
-
-static bool
-not_interesting_stmt (gimple stmt)
-{
-  /* Note that COND_EXPR's aren't interesting because if they were exiting the
-     loop, we would have already failed the number of exits tests.  */
-  if (gimple_code (stmt) == GIMPLE_LABEL
-      || gimple_code (stmt) == GIMPLE_GOTO
-      || gimple_code (stmt) == GIMPLE_COND
-      || is_gimple_debug (stmt))
-    return true;
-  return false;
-}
-
-/* Return TRUE if PHI uses DEF for it's in-the-loop edge for LOOP.  */
-
-static bool
-phi_loop_edge_uses_def (struct loop *loop, gimple phi, tree def)
-{
-  unsigned i;
-  for (i = 0; i < gimple_phi_num_args (phi); i++)
-    if (flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, i)->src))
-      if (PHI_ARG_DEF (phi, i) == def)
-	return true;
-  return false;
-}
-
-/* Return TRUE if STMT is a use of PHI_RESULT.  */
-
-static bool
-stmt_uses_phi_result (gimple stmt, tree phi_result)
-{
-  tree use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
-
-  /* This is conservatively true, because we only want SIMPLE bumpers
-     of the form x +- constant for our pass.  */
-  return (use == phi_result);
-}
-
-/* STMT is a bumper stmt for LOOP if the version it defines is used in the
-   in-loop-edge in a phi node, and the operand it uses is the result of that
-   phi node.
-   I.E. i_29 = i_3 + 1
-        i_3 = PHI (0, i_29);  */
-
-static bool
-stmt_is_bumper_for_loop (struct loop *loop, gimple stmt)
-{
-  gimple use;
-  tree def;
-  imm_use_iterator iter;
-  use_operand_p use_p;
-
-  def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
-  if (!def)
-    return false;
-
-  FOR_EACH_IMM_USE_FAST (use_p, iter, def)
-    {
-      use = USE_STMT (use_p);
-      if (gimple_code (use) == GIMPLE_PHI)
-	{
-	  if (phi_loop_edge_uses_def (loop, use, def))
-	    if (stmt_uses_phi_result (stmt, PHI_RESULT (use)))
-	      return true;
-	}
-    }
-  return false;
-}
-
-
-/* Return true if LOOP is a perfect loop nest.
-   Perfect loop nests are those loop nests where all code occurs in the
-   innermost loop body.
-   If S is a program statement, then
-
-   i.e.
-   DO I = 1, 20
-       S1
-       DO J = 1, 20
-       ...
-       END DO
-   END DO
-   is not a perfect loop nest because of S1.
-
-   DO I = 1, 20
-      DO J = 1, 20
-        S1
-	...
-      END DO
-   END DO
-   is a perfect loop nest.
-
-   Since we don't have high level loops anymore, we basically have to walk our
-   statements and ignore those that are there because the loop needs them (IE
-   the induction variable increment, and jump back to the top of the loop).  */
-
-bool
-perfect_nest_p (struct loop *loop)
-{
-  basic_block *bbs;
-  size_t i;
-  gimple exit_cond;
-
-  /* Loops at depth 0 are perfect nests.  */
-  if (!loop->inner)
-    return true;
-
-  bbs = get_loop_body (loop);
-  exit_cond = get_loop_exit_condition (loop);
-
-  for (i = 0; i < loop->num_nodes; i++)
-    {
-      if (bbs[i]->loop_father == loop)
-	{
-	  gimple_stmt_iterator bsi;
-
-	  for (bsi = gsi_start_bb (bbs[i]); !gsi_end_p (bsi); gsi_next (&bsi))
-	    {
-	      gimple stmt = gsi_stmt (bsi);
-
-	      if (gimple_code (stmt) == GIMPLE_COND
-		  && exit_cond != stmt)
-		goto non_perfectly_nested;
-
-	      if (stmt == exit_cond
-		  || not_interesting_stmt (stmt)
-		  || stmt_is_bumper_for_loop (loop, stmt))
-		continue;
-
-	    non_perfectly_nested:
-	      free (bbs);
-	      return false;
-	    }
-	}
-    }
-
-  free (bbs);
-
-  return perfect_nest_p (loop->inner);
-}
-
-/* Replace the USES of X in STMT, or uses with the same step as X with Y.
-   YINIT is the initial value of Y, REPLACEMENTS is a hash table to
-   avoid creating duplicate temporaries and FIRSTBSI is statement
-   iterator where new temporaries should be inserted at the beginning
-   of body basic block.  */
-
-static void
-replace_uses_equiv_to_x_with_y (struct loop *loop, gimple stmt, tree x,
-				int xstep, tree y, tree yinit,
-				htab_t replacements,
-				gimple_stmt_iterator *firstbsi)
-{
-  ssa_op_iter iter;
-  use_operand_p use_p;
-
-  FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
-    {
-      tree use = USE_FROM_PTR (use_p);
-      tree step = NULL_TREE;
-      tree scev, init, val, var;
-      gimple setstmt;
-      struct tree_map *h, in;
-      void **loc;
-
-      /* Replace uses of X with Y right away.  */
-      if (use == x)
-	{
-	  SET_USE (use_p, y);
-	  continue;
-	}
-
-      scev = instantiate_parameters (loop,
-				     analyze_scalar_evolution (loop, use));
-
-      if (scev == NULL || scev == chrec_dont_know)
-	continue;
-
-      step = evolution_part_in_loop_num (scev, loop->num);
-      if (step == NULL
-	  || step == chrec_dont_know
-	  || TREE_CODE (step) != INTEGER_CST
-	  || int_cst_value (step) != xstep)
-	continue;
-
-      /* Use REPLACEMENTS hash table to cache already created
-	 temporaries.  */
-      in.hash = htab_hash_pointer (use);
-      in.base.from = use;
-      h = (struct tree_map *) htab_find_with_hash (replacements, &in, in.hash);
-      if (h != NULL)
-	{
-	  SET_USE (use_p, h->to);
-	  continue;
-	}
-
-      /* USE which has the same step as X should be replaced
-	 with a temporary set to Y + YINIT - INIT.  */
-      init = initial_condition_in_loop_num (scev, loop->num);
-      gcc_assert (init != NULL && init != chrec_dont_know);
-      if (TREE_TYPE (use) == TREE_TYPE (y))
-	{
-	  val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), init, yinit);
-	  val = fold_build2 (PLUS_EXPR, TREE_TYPE (y), y, val);
-	  if (val == y)
- 	    {
-	      /* If X has the same type as USE, the same step
-		 and same initial value, it can be replaced by Y.  */
-	      SET_USE (use_p, y);
-	      continue;
-	    }
-	}
-      else
-	{
-	  val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), y, yinit);
-	  val = fold_convert (TREE_TYPE (use), val);
-	  val = fold_build2 (PLUS_EXPR, TREE_TYPE (use), val, init);
-	}
-
-      /* Create a temporary variable and insert it at the beginning
-	 of the loop body basic block, right after the PHI node
-	 which sets Y.  */
-      var = create_tmp_var (TREE_TYPE (use), "perfecttmp");
-      add_referenced_var (var);
-      val = force_gimple_operand_gsi (firstbsi, val, false, NULL,
-				      true, GSI_SAME_STMT);
-      setstmt = gimple_build_assign (var, val);
-      var = make_ssa_name (var, setstmt);
-      gimple_assign_set_lhs (setstmt, var);
-      gsi_insert_before (firstbsi, setstmt, GSI_SAME_STMT);
-      update_stmt (setstmt);
-      SET_USE (use_p, var);
-      h = ggc_alloc_tree_map ();
-      h->hash = in.hash;
-      h->base.from = use;
-      h->to = var;
-      loc = htab_find_slot_with_hash (replacements, h, in.hash, INSERT);
-      gcc_assert ((*(struct tree_map **)loc) == NULL);
-      *(struct tree_map **) loc = h;
-    }
-}
-
-/* Return true if STMT is an exit PHI for LOOP */
-
-static bool
-exit_phi_for_loop_p (struct loop *loop, gimple stmt)
-{
-  if (gimple_code (stmt) != GIMPLE_PHI
-      || gimple_phi_num_args (stmt) != 1
-      || gimple_bb (stmt) != single_exit (loop)->dest)
-    return false;
-
-  return true;
-}
-
-/* Return true if STMT can be put back into the loop INNER, by
-   copying it to the beginning of that loop and changing the uses.  */
-
-static bool
-can_put_in_inner_loop (struct loop *inner, gimple stmt)
-{
-  imm_use_iterator imm_iter;
-  use_operand_p use_p;
-
-  gcc_assert (is_gimple_assign (stmt));
-  if (gimple_vuse (stmt)
-      || !stmt_invariant_in_loop_p (inner, stmt))
-    return false;
-
-  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_assign_lhs (stmt))
-    {
-      if (!exit_phi_for_loop_p (inner, USE_STMT (use_p)))
-	{
-	  basic_block immbb = gimple_bb (USE_STMT (use_p));
-
-	  if (!flow_bb_inside_loop_p (inner, immbb))
-	    return false;
-	}
-    }
-  return true;
-}
-
-/* Return true if STMT can be put *after* the inner loop of LOOP.  */
-
-static bool
-can_put_after_inner_loop (struct loop *loop, gimple stmt)
-{
-  imm_use_iterator imm_iter;
-  use_operand_p use_p;
-
-  if (gimple_vuse (stmt))
-    return false;
-
-  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_assign_lhs (stmt))
-    {
-      if (!exit_phi_for_loop_p (loop, USE_STMT (use_p)))
-	{
-	  basic_block immbb = gimple_bb (USE_STMT (use_p));
-
-	  if (!dominated_by_p (CDI_DOMINATORS,
-			       immbb,
-			       loop->inner->header)
-	      && !can_put_in_inner_loop (loop->inner, stmt))
-	    return false;
-	}
-    }
-  return true;
-}
-
-/* Return true when the induction variable IV is simple enough to be
-   re-synthesized.  */
-
-static bool
-can_duplicate_iv (tree iv, struct loop *loop)
-{
-  tree scev = instantiate_parameters
-    (loop, analyze_scalar_evolution (loop, iv));
-
-  if (!automatically_generated_chrec_p (scev))
-    {
-      tree step = evolution_part_in_loop_num (scev, loop->num);
-
-      if (step && step != chrec_dont_know && TREE_CODE (step) == INTEGER_CST)
-	return true;
-    }
-
-  return false;
-}
-
-/* If this is a scalar operation that can be put back into the inner
-   loop, or after the inner loop, through copying, then do so. This
-   works on the theory that any amount of scalar code we have to
-   reduplicate into or after the loops is less expensive that the win
-   we get from rearranging the memory walk the loop is doing so that
-   it has better cache behavior.  */
-
-static bool
-cannot_convert_modify_to_perfect_nest (gimple stmt, struct loop *loop)
-{
-  use_operand_p use_a, use_b;
-  imm_use_iterator imm_iter;
-  ssa_op_iter op_iter, op_iter1;
-  tree op0 = gimple_assign_lhs (stmt);
-
-  /* The statement should not define a variable used in the inner
-     loop.  */
-  if (TREE_CODE (op0) == SSA_NAME
-      && !can_duplicate_iv (op0, loop))
-    FOR_EACH_IMM_USE_FAST (use_a, imm_iter, op0)
-      if (gimple_bb (USE_STMT (use_a))->loop_father == loop->inner)
-	return true;
-
-  FOR_EACH_SSA_USE_OPERAND (use_a, stmt, op_iter, SSA_OP_USE)
-    {
-      gimple node;
-      tree op = USE_FROM_PTR (use_a);
-
-      /* The variables should not be used in both loops.  */
-      if (!can_duplicate_iv (op, loop))
-	FOR_EACH_IMM_USE_FAST (use_b, imm_iter, op)
-	  if (gimple_bb (USE_STMT (use_b))->loop_father == loop->inner)
-	    return true;
-
-      /* The statement should not use the value of a scalar that was
-	 modified in the loop.  */
-      node = SSA_NAME_DEF_STMT (op);
-      if (gimple_code (node) == GIMPLE_PHI)
-	FOR_EACH_PHI_ARG (use_b, node, op_iter1, SSA_OP_USE)
-	  {
-	    tree arg = USE_FROM_PTR (use_b);
-
-	    if (TREE_CODE (arg) == SSA_NAME)
-	      {
-		gimple arg_stmt = SSA_NAME_DEF_STMT (arg);
-
-		if (gimple_bb (arg_stmt)
-		    && (gimple_bb (arg_stmt)->loop_father == loop->inner))
-		  return true;
-	      }
-	  }
-    }
-
-  return false;
-}
-/* Return true when BB contains statements that can harm the transform
-   to a perfect loop nest.  */
-
-static bool
-cannot_convert_bb_to_perfect_nest (basic_block bb, struct loop *loop)
-{
-  gimple_stmt_iterator bsi;
-  gimple exit_condition = get_loop_exit_condition (loop);
-
-  for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
-    {
-      gimple stmt = gsi_stmt (bsi);
-
-      if (stmt == exit_condition
-	  || not_interesting_stmt (stmt)
-	  || stmt_is_bumper_for_loop (loop, stmt))
-	continue;
-
-      if (is_gimple_assign (stmt))
-	{
-	  if (cannot_convert_modify_to_perfect_nest (stmt, loop))
-	    return true;
-
-	  if (can_duplicate_iv (gimple_assign_lhs (stmt), loop))
-	    continue;
-
-	  if (can_put_in_inner_loop (loop->inner, stmt)
-	      || can_put_after_inner_loop (loop, stmt))
-	    continue;
-	}
-
-      /* If the bb of a statement we care about isn't dominated by the
-	 header of the inner loop, then we can't handle this case
-	 right now.  This test ensures that the statement comes
-	 completely *after* the inner loop.  */
-      if (!dominated_by_p (CDI_DOMINATORS,
-			   gimple_bb (stmt),
-			   loop->inner->header))
-	return true;
-    }
-
-  return false;
-}
-
-
-/* Return TRUE if LOOP is an imperfect nest that we can convert to a
-   perfect one.  At the moment, we only handle imperfect nests of
-   depth 2, where all of the statements occur after the inner loop.  */
-
-static bool
-can_convert_to_perfect_nest (struct loop *loop)
-{
-  basic_block *bbs;
-  size_t i;
-  gimple_stmt_iterator si;
-
-  /* Can't handle triply nested+ loops yet.  */
-  if (!loop->inner || loop->inner->inner)
-    return false;
-
-  bbs = get_loop_body (loop);
-  for (i = 0; i < loop->num_nodes; i++)
-    if (bbs[i]->loop_father == loop
-	&& cannot_convert_bb_to_perfect_nest (bbs[i], loop))
-      goto fail;
-
-  /* We also need to make sure the loop exit only has simple copy phis in it,
-     otherwise we don't know how to transform it into a perfect nest.  */
-  for (si = gsi_start_phis (single_exit (loop)->dest);
-       !gsi_end_p (si);
-       gsi_next (&si))
-    if (gimple_phi_num_args (gsi_stmt (si)) != 1)
-      goto fail;
-
-  free (bbs);
-  return true;
-
- fail:
-  free (bbs);
-  return false;
-}
-
-
-DEF_VEC_I(source_location);
-DEF_VEC_ALLOC_I(source_location,heap);
-
-/* Transform the loop nest into a perfect nest, if possible.
-   LOOP is the loop nest to transform into a perfect nest
-   LBOUNDS are the lower bounds for the loops to transform
-   UBOUNDS are the upper bounds for the loops to transform
-   STEPS is the STEPS for the loops to transform.
-   LOOPIVS is the induction variables for the loops to transform.
-
-   Basically, for the case of
-
-   FOR (i = 0; i < 50; i++)
-    {
-     FOR (j =0; j < 50; j++)
-     {
-        <whatever>
-     }
-     <some code>
-    }
-
-   This function will transform it into a perfect loop nest by splitting the
-   outer loop into two loops, like so:
-
-   FOR (i = 0; i < 50; i++)
-   {
-     FOR (j = 0; j < 50; j++)
-     {
-         <whatever>
-     }
-   }
-
-   FOR (i = 0; i < 50; i ++)
-   {
-    <some code>
-   }
-
-   Return FALSE if we can't make this loop into a perfect nest.  */
-
-static bool
-perfect_nestify (struct loop *loop,
-		 VEC(tree,heap) *lbounds,
-		 VEC(tree,heap) *ubounds,
-		 VEC(int,heap) *steps,
-		 VEC(tree,heap) *loopivs)
-{
-  basic_block *bbs;
-  gimple exit_condition;
-  gimple cond_stmt;
-  basic_block preheaderbb, headerbb, bodybb, latchbb, olddest;
-  int i;
-  gimple_stmt_iterator bsi, firstbsi;
-  bool insert_after;
-  edge e;
-  struct loop *newloop;
-  gimple phi;
-  tree uboundvar;
-  gimple stmt;
-  tree oldivvar, ivvar, ivvarinced;
-  VEC(tree,heap) *phis = NULL;
-  VEC(source_location,heap) *locations = NULL;
-  htab_t replacements = NULL;
-
-  /* Create the new loop.  */
-  olddest = single_exit (loop)->dest;
-  preheaderbb = split_edge (single_exit (loop));
-  headerbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
-
-  /* Push the exit phi nodes that we are moving.  */
-  for (bsi = gsi_start_phis (olddest); !gsi_end_p (bsi); gsi_next (&bsi))
-    {
-      phi = gsi_stmt (bsi);
-      VEC_reserve (tree, heap, phis, 2);
-      VEC_reserve (source_location, heap, locations, 1);
-      VEC_quick_push (tree, phis, PHI_RESULT (phi));
-      VEC_quick_push (tree, phis, PHI_ARG_DEF (phi, 0));
-      VEC_quick_push (source_location, locations,
-		      gimple_phi_arg_location (phi, 0));
-    }
-  e = redirect_edge_and_branch (single_succ_edge (preheaderbb), headerbb);
-
-  /* Remove the exit phis from the old basic block.  */
-  for (bsi = gsi_start_phis (olddest); !gsi_end_p (bsi); )
-    remove_phi_node (&bsi, false);
-
-  /* and add them back to the new basic block.  */
-  while (VEC_length (tree, phis) != 0)
-    {
-      tree def;
-      tree phiname;
-      source_location locus;
-      def = VEC_pop (tree, phis);
-      phiname = VEC_pop (tree, phis);
-      locus = VEC_pop (source_location, locations);
-      phi = create_phi_node (phiname, preheaderbb);
-      add_phi_arg (phi, def, single_pred_edge (preheaderbb), locus);
-    }
-  flush_pending_stmts (e);
-  VEC_free (tree, heap, phis);
-
-  bodybb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
-  latchbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
-  make_edge (headerbb, bodybb, EDGE_FALLTHRU);
-  cond_stmt = gimple_build_cond (NE_EXPR, integer_one_node, integer_zero_node,
-				 NULL_TREE, NULL_TREE);
-  bsi = gsi_start_bb (bodybb);
-  gsi_insert_after (&bsi, cond_stmt, GSI_NEW_STMT);
-  e = make_edge (bodybb, olddest, EDGE_FALSE_VALUE);
-  make_edge (bodybb, latchbb, EDGE_TRUE_VALUE);
-  make_edge (latchbb, headerbb, EDGE_FALLTHRU);
-
-  /* Update the loop structures.  */
-  newloop = duplicate_loop (loop, olddest->loop_father);
-  newloop->header = headerbb;
-  newloop->latch = latchbb;
-  add_bb_to_loop (latchbb, newloop);
-  add_bb_to_loop (bodybb, newloop);
-  add_bb_to_loop (headerbb, newloop);
-  set_immediate_dominator (CDI_DOMINATORS, bodybb, headerbb);
-  set_immediate_dominator (CDI_DOMINATORS, headerbb, preheaderbb);
-  set_immediate_dominator (CDI_DOMINATORS, preheaderbb,
-			   single_exit (loop)->src);
-  set_immediate_dominator (CDI_DOMINATORS, latchbb, bodybb);
-  set_immediate_dominator (CDI_DOMINATORS, olddest,
-			   recompute_dominator (CDI_DOMINATORS, olddest));
-  /* Create the new iv.  */
-  oldivvar = VEC_index (tree, loopivs, 0);
-  ivvar = create_tmp_var (TREE_TYPE (oldivvar), "perfectiv");
-  add_referenced_var (ivvar);
-  standard_iv_increment_position (newloop, &bsi, &insert_after);
-  create_iv (VEC_index (tree, lbounds, 0),
-	     build_int_cst (TREE_TYPE (oldivvar), VEC_index (int, steps, 0)),
-	     ivvar, newloop, &bsi, insert_after, &ivvar, &ivvarinced);
-
-  /* Create the new upper bound.  This may be not just a variable, so we copy
-     it to one just in case.  */
-
-  exit_condition = get_loop_exit_condition (newloop);
-  uboundvar = create_tmp_var (TREE_TYPE (VEC_index (tree, ubounds, 0)),
-			      "uboundvar");
-  add_referenced_var (uboundvar);
-  stmt = gimple_build_assign (uboundvar, VEC_index (tree, ubounds, 0));
-  uboundvar = make_ssa_name (uboundvar, stmt);
-  gimple_assign_set_lhs (stmt, uboundvar);
-
-  if (insert_after)
-    gsi_insert_after (&bsi, stmt, GSI_SAME_STMT);
-  else
-    gsi_insert_before (&bsi, stmt, GSI_SAME_STMT);
-  update_stmt (stmt);
-  gimple_cond_set_condition (exit_condition, GE_EXPR, uboundvar, ivvarinced);
-  update_stmt (exit_condition);
-  replacements = htab_create_ggc (20, tree_map_hash,
-				  tree_map_eq, NULL);
-  bbs = get_loop_body_in_dom_order (loop);
-  /* Now move the statements, and replace the induction variable in the moved
-     statements with the correct loop induction variable.  */
-  oldivvar = VEC_index (tree, loopivs, 0);
-  firstbsi = gsi_start_bb (bodybb);
-  for (i = loop->num_nodes - 1; i >= 0 ; i--)
-    {
-      gimple_stmt_iterator tobsi = gsi_last_bb (bodybb);
-      if (bbs[i]->loop_father == loop)
-	{
-	  /* If this is true, we are *before* the inner loop.
-	     If this isn't true, we are *after* it.
-
-	     The only time can_convert_to_perfect_nest returns true when we
-	     have statements before the inner loop is if they can be moved
-	     into the inner loop.
-
-	     The only time can_convert_to_perfect_nest returns true when we
-	     have statements after the inner loop is if they can be moved into
-	     the new split loop.  */
-
-	  if (dominated_by_p (CDI_DOMINATORS, loop->inner->header, bbs[i]))
-	    {
-	      gimple_stmt_iterator header_bsi
-		= gsi_after_labels (loop->inner->header);
-
-	      for (bsi = gsi_start_bb (bbs[i]); !gsi_end_p (bsi);)
-		{
-		  gimple stmt = gsi_stmt (bsi);
-
-		  if (stmt == exit_condition
-		      || not_interesting_stmt (stmt)
-		      || stmt_is_bumper_for_loop (loop, stmt))
-		    {
-		      gsi_next (&bsi);
-		      continue;
-		    }
-
-		  gsi_move_before (&bsi, &header_bsi);
-		}
-	    }
-	  else
-	    {
-	      /* Note that the bsi only needs to be explicitly incremented
-		 when we don't move something, since it is automatically
-		 incremented when we do.  */
-	      for (bsi = gsi_start_bb (bbs[i]); !gsi_end_p (bsi);)
-		{
-		  gimple stmt = gsi_stmt (bsi);
-
-		  if (stmt == exit_condition
-		      || not_interesting_stmt (stmt)
-		      || stmt_is_bumper_for_loop (loop, stmt))
-		    {
-		      gsi_next (&bsi);
-		      continue;
-		    }
-
-		  replace_uses_equiv_to_x_with_y
-		    (loop, stmt, oldivvar, VEC_index (int, steps, 0), ivvar,
-		     VEC_index (tree, lbounds, 0), replacements, &firstbsi);
-
-		  gsi_move_before (&bsi, &tobsi);
-
-		  /* If the statement has any virtual operands, they may
-		     need to be rewired because the original loop may
-		     still reference them.  */
-		  if (gimple_vuse (stmt))
-		    mark_sym_for_renaming (gimple_vop (cfun));
-		}
-	    }
-
-	}
-    }
-
-  free (bbs);
-  htab_delete (replacements);
-  return perfect_nest_p (loop);
-}
-
-/* Return true if TRANS is a legal transformation matrix that respects
-   the dependence vectors in DISTS and DIRS.  The conservative answer
-   is false.
-
-   "Wolfe proves that a unimodular transformation represented by the
-   matrix T is legal when applied to a loop nest with a set of
-   lexicographically non-negative distance vectors RDG if and only if
-   for each vector d in RDG, (T.d >= 0) is lexicographically positive.
-   i.e.: if and only if it transforms the lexicographically positive
-   distance vectors to lexicographically positive vectors.  Note that
-   a unimodular matrix must transform the zero vector (and only it) to
-   the zero vector." S.Muchnick.  */
-
-bool
-lambda_transform_legal_p (lambda_trans_matrix trans,
-			  int nb_loops,
-			  VEC (ddr_p, heap) *dependence_relations)
-{
-  unsigned int i, j;
-  lambda_vector distres;
-  struct data_dependence_relation *ddr;
-
-  gcc_assert (LTM_COLSIZE (trans) == nb_loops
-	      && LTM_ROWSIZE (trans) == nb_loops);
-
-  /* When there are no dependences, the transformation is correct.  */
-  if (VEC_length (ddr_p, dependence_relations) == 0)
-    return true;
-
-  ddr = VEC_index (ddr_p, dependence_relations, 0);
-  if (ddr == NULL)
-    return true;
-
-  /* When there is an unknown relation in the dependence_relations, we
-     know that it is no worth looking at this loop nest: give up.  */
-  if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
-    return false;
-
-  distres = lambda_vector_new (nb_loops);
-
-  /* For each distance vector in the dependence graph.  */
-  FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr)
-    {
-      /* Don't care about relations for which we know that there is no
-	 dependence, nor about read-read (aka. output-dependences):
-	 these data accesses can happen in any order.  */
-      if (DDR_ARE_DEPENDENT (ddr) == chrec_known
-	  || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
-	continue;
-
-      /* Conservatively answer: "this transformation is not valid".  */
-      if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
-	return false;
-
-      /* If the dependence could not be captured by a distance vector,
-	 conservatively answer that the transform is not valid.  */
-      if (DDR_NUM_DIST_VECTS (ddr) == 0)
-	return false;
-
-      /* Compute trans.dist_vect */
-      for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
-	{
-	  lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
-				     DDR_DIST_VECT (ddr, j), distres);
-
-	  if (!lambda_vector_lexico_pos (distres, nb_loops))
-	    return false;
-	}
-    }
-  return true;
-}
-
-
-/* Collects parameters from affine function ACCESS_FUNCTION, and push
-   them in PARAMETERS.  */
-
-static void
-lambda_collect_parameters_from_af (tree access_function,
-				   struct pointer_set_t *param_set,
-				   VEC (tree, heap) **parameters)
-{
-  if (access_function == NULL)
-    return;
-
-  if (TREE_CODE (access_function) == SSA_NAME
-      && pointer_set_contains (param_set, access_function) == 0)
-    {
-      pointer_set_insert (param_set, access_function);
-      VEC_safe_push (tree, heap, *parameters, access_function);
-    }
-  else
-    {
-      int i, num_operands = tree_operand_length (access_function);
-
-      for (i = 0; i < num_operands; i++)
-	lambda_collect_parameters_from_af (TREE_OPERAND (access_function, i),
-					   param_set, parameters);
-    }
-}
-
-/* Collects parameters from DATAREFS, and push them in PARAMETERS.  */
-
-void
-lambda_collect_parameters (VEC (data_reference_p, heap) *datarefs,
-			   VEC (tree, heap) **parameters)
-{
-  unsigned i, j;
-  struct pointer_set_t *parameter_set = pointer_set_create ();
-  data_reference_p data_reference;
-
-  FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, data_reference)
-    for (j = 0; j < DR_NUM_DIMENSIONS (data_reference); j++)
-      lambda_collect_parameters_from_af (DR_ACCESS_FN (data_reference, j),
-					 parameter_set, parameters);
-  pointer_set_destroy (parameter_set);
-}
-
-/* Translates BASE_EXPR to vector CY.  AM is needed for inferring
-   indexing positions in the data access vector.  CST is the analyzed
-   integer constant.  */
-
-static bool
-av_for_af_base (tree base_expr, lambda_vector cy, struct access_matrix *am,
-		int cst)
-{
-  bool result = true;
-
-  switch (TREE_CODE (base_expr))
-    {
-    case INTEGER_CST:
-      /* Constant part.  */
-      cy[AM_CONST_COLUMN_INDEX (am)] += int_cst_value (base_expr) * cst;
-      return true;
-
-    case SSA_NAME:
-      {
-	int param_index =
-	  access_matrix_get_index_for_parameter (base_expr, am);
-
-	if (param_index >= 0)
-	  {
-	    cy[param_index] = cst + cy[param_index];
-	    return true;
-	  }
-
-	return false;
-      }
-
-    case PLUS_EXPR:
-      return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, cst)
-	&& av_for_af_base (TREE_OPERAND (base_expr, 1), cy, am, cst);
-
-    case MINUS_EXPR:
-      return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, cst)
-	&& av_for_af_base (TREE_OPERAND (base_expr, 1), cy, am, -1 * cst);
-
-    case MULT_EXPR:
-      if (TREE_CODE (TREE_OPERAND (base_expr, 0)) == INTEGER_CST)
-	result = av_for_af_base (TREE_OPERAND (base_expr, 1),
-				 cy, am, cst *
-				 int_cst_value (TREE_OPERAND (base_expr, 0)));
-      else if (TREE_CODE (TREE_OPERAND (base_expr, 1)) == INTEGER_CST)
-	result = av_for_af_base (TREE_OPERAND (base_expr, 0),
-				 cy, am, cst *
-				 int_cst_value (TREE_OPERAND (base_expr, 1)));
-      else
-	result = false;
-
-      return result;
-
-    case NEGATE_EXPR:
-      return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, -1 * cst);
-
-    default:
-      return false;
-    }
-
-  return result;
-}
-
-/* Translates ACCESS_FUN to vector CY.  AM is needed for inferring
-   indexing positions in the data access vector.  */
-
-static bool
-av_for_af (tree access_fun, lambda_vector cy, struct access_matrix *am)
-{
-  switch (TREE_CODE (access_fun))
-    {
-    case POLYNOMIAL_CHREC:
-      {
-	tree left = CHREC_LEFT (access_fun);
-	tree right = CHREC_RIGHT (access_fun);
-	unsigned var;
-
-	if (TREE_CODE (right) != INTEGER_CST)
-	  return false;
-
-	var = am_vector_index_for_loop (am, CHREC_VARIABLE (access_fun));
-	cy[var] = int_cst_value (right);
-
-	if (TREE_CODE (left) == POLYNOMIAL_CHREC)
-	  return av_for_af (left, cy, am);
-	else
-	  return av_for_af_base (left, cy, am, 1);
-      }
-
-    case INTEGER_CST:
-      /* Constant part.  */
-      return av_for_af_base (access_fun, cy, am, 1);
-
-    default:
-      return false;
-    }
-}
-
-/* Initializes the access matrix for DATA_REFERENCE.  */
-
-static bool
-build_access_matrix (data_reference_p data_reference,
-		     VEC (tree, heap) *parameters,
-		     VEC (loop_p, heap) *nest,
-		     struct obstack * lambda_obstack)
-{
-  struct access_matrix *am = (struct access_matrix *)
-    obstack_alloc(lambda_obstack, sizeof (struct access_matrix));
-  unsigned i, ndim = DR_NUM_DIMENSIONS (data_reference);
-  unsigned nivs = VEC_length (loop_p, nest);
-  unsigned lambda_nb_columns;
-
-  AM_LOOP_NEST (am) = nest;
-  AM_NB_INDUCTION_VARS (am) = nivs;
-  AM_PARAMETERS (am) = parameters;
-
-  lambda_nb_columns = AM_NB_COLUMNS (am);
-  AM_MATRIX (am) = VEC_alloc (lambda_vector, gc, ndim);
-
-  for (i = 0; i < ndim; i++)
-    {
-      lambda_vector access_vector = lambda_vector_new (lambda_nb_columns);
-      tree access_function = DR_ACCESS_FN (data_reference, i);
-
-      if (!av_for_af (access_function, access_vector, am))
-	return false;
-
-      VEC_quick_push (lambda_vector, AM_MATRIX (am), access_vector);
-    }
-
-  DR_ACCESS_MATRIX (data_reference) = am;
-  return true;
-}
-
-/* Returns false when one of the access matrices cannot be built.  */
-
-bool
-lambda_compute_access_matrices (VEC (data_reference_p, heap) *datarefs,
-				VEC (tree, heap) *parameters,
-				VEC (loop_p, heap) *nest,
-				struct obstack * lambda_obstack)
-{
-  data_reference_p dataref;
-  unsigned ix;
-
-  FOR_EACH_VEC_ELT (data_reference_p, datarefs, ix, dataref)
-    if (!build_access_matrix (dataref, parameters, nest, lambda_obstack))
-      return false;
-
-  return true;
-}
diff --git a/gcc/lambda-mat.c b/gcc/lambda-mat.c
deleted file mode 100644
index 33b33ef..0000000
--- a/gcc/lambda-mat.c
+++ /dev/null
@@ -1,607 +0,0 @@
-/* Integer matrix math routines
-   Copyright (C) 2003, 2004, 2005, 2007, 2008 Free Software Foundation, Inc.
-   Contributed by Daniel Berlin <dberlin@dberlin.org>.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3.  If not see
-<http://www.gnu.org/licenses/>.  */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tree-flow.h"
-#include "lambda.h"
-
-/* Allocate a matrix of M rows x  N cols.  */
-
-lambda_matrix
-lambda_matrix_new (int m, int n, struct obstack * lambda_obstack)
-{
-  lambda_matrix mat;
-  int i;
-
-  mat = (lambda_matrix) obstack_alloc (lambda_obstack,
-				       sizeof (lambda_vector *) * m);
-
-  for (i = 0; i < m; i++)
-    mat[i] = lambda_vector_new (n);
-
-  return mat;
-}
-
-/* Copy the elements of M x N matrix MAT1 to MAT2.  */
-
-void
-lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2,
-		    int m, int n)
-{
-  int i;
-
-  for (i = 0; i < m; i++)
-    lambda_vector_copy (mat1[i], mat2[i], n);
-}
-
-/* Store the N x N identity matrix in MAT.  */
-
-void
-lambda_matrix_id (lambda_matrix mat, int size)
-{
-  int i, j;
-
-  for (i = 0; i < size; i++)
-    for (j = 0; j < size; j++)
-      mat[i][j] = (i == j) ? 1 : 0;
-}
-
-/* Return true if MAT is the identity matrix of SIZE */
-
-bool
-lambda_matrix_id_p (lambda_matrix mat, int size)
-{
-  int i, j;
-  for (i = 0; i < size; i++)
-    for (j = 0; j < size; j++)
-      {
-	if (i == j)
-	  {
-	    if (mat[i][j] != 1)
-	      return false;
-	  }
-	else
-	  {
-	    if (mat[i][j] != 0)
-	      return false;
-	  }
-      }
-  return true;
-}
-
-/* Negate the elements of the M x N matrix MAT1 and store it in MAT2.  */
-
-void
-lambda_matrix_negate (lambda_matrix mat1, lambda_matrix mat2, int m, int n)
-{
-  int i;
-
-  for (i = 0; i < m; i++)
-    lambda_vector_negate (mat1[i], mat2[i], n);
-}
-
-/* Take the transpose of matrix MAT1 and store it in MAT2.
-   MAT1 is an M x N matrix, so MAT2 must be N x M.  */
-
-void
-lambda_matrix_transpose (lambda_matrix mat1, lambda_matrix mat2, int m, int n)
-{
-  int i, j;
-
-  for (i = 0; i < n; i++)
-    for (j = 0; j < m; j++)
-      mat2[i][j] = mat1[j][i];
-}
-
-
-/* Add two M x N matrices together: MAT3 = MAT1+MAT2.  */
-
-void
-lambda_matrix_add (lambda_matrix mat1, lambda_matrix mat2,
-		   lambda_matrix mat3, int m, int n)
-{
-  int i;
-
-  for (i = 0; i < m; i++)
-    lambda_vector_add (mat1[i], mat2[i], mat3[i], n);
-}
-
-/* MAT3 = CONST1 * MAT1 + CONST2 * MAT2.  All matrices are M x N.  */
-
-void
-lambda_matrix_add_mc (lambda_matrix mat1, int const1,
-		      lambda_matrix mat2, int const2,
-		      lambda_matrix mat3, int m, int n)
-{
-  int i;
-
-  for (i = 0; i < m; i++)
-    lambda_vector_add_mc (mat1[i], const1, mat2[i], const2, mat3[i], n);
-}
-
-/* Multiply two matrices: MAT3 = MAT1 * MAT2.
-   MAT1 is an M x R matrix, and MAT2 is R x N.  The resulting MAT2
-   must therefore be M x N.  */
-
-void
-lambda_matrix_mult (lambda_matrix mat1, lambda_matrix mat2,
-		    lambda_matrix mat3, int m, int r, int n)
-{
-
-  int i, j, k;
-
-  for (i = 0; i < m; i++)
-    {
-      for (j = 0; j < n; j++)
-	{
-	  mat3[i][j] = 0;
-	  for (k = 0; k < r; k++)
-	    mat3[i][j] += mat1[i][k] * mat2[k][j];
-	}
-    }
-}
-
-/* Delete rows r1 to r2 (not including r2).  */
-
-void
-lambda_matrix_delete_rows (lambda_matrix mat, int rows, int from, int to)
-{
-  int i;
-  int dist;
-  dist = to - from;
-
-  for (i = to; i < rows; i++)
-    mat[i - dist] = mat[i];
-
-  for (i = rows - dist; i < rows; i++)
-    mat[i] = NULL;
-}
-
-/* Swap rows R1 and R2 in matrix MAT.  */
-
-void
-lambda_matrix_row_exchange (lambda_matrix mat, int r1, int r2)
-{
-  lambda_vector row;
-
-  row = mat[r1];
-  mat[r1] = mat[r2];
-  mat[r2] = row;
-}
-
-/* Add a multiple of row R1 of matrix MAT with N columns to row R2:
-   R2 = R2 + CONST1 * R1.  */
-
-void
-lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2, int const1)
-{
-  int i;
-
-  if (const1 == 0)
-    return;
-
-  for (i = 0; i < n; i++)
-    mat[r2][i] += const1 * mat[r1][i];
-}
-
-/* Negate row R1 of matrix MAT which has N columns.  */
-
-void
-lambda_matrix_row_negate (lambda_matrix mat, int n, int r1)
-{
-  lambda_vector_negate (mat[r1], mat[r1], n);
-}
-
-/* Multiply row R1 of matrix MAT with N columns by CONST1.  */
-
-void
-lambda_matrix_row_mc (lambda_matrix mat, int n, int r1, int const1)
-{
-  int i;
-
-  for (i = 0; i < n; i++)
-    mat[r1][i] *= const1;
-}
-
-/* Exchange COL1 and COL2 in matrix MAT. M is the number of rows.  */
-
-void
-lambda_matrix_col_exchange (lambda_matrix mat, int m, int col1, int col2)
-{
-  int i;
-  int tmp;
-  for (i = 0; i < m; i++)
-    {
-      tmp = mat[i][col1];
-      mat[i][col1] = mat[i][col2];
-      mat[i][col2] = tmp;
-    }
-}
-
-/* Add a multiple of column C1 of matrix MAT with M rows to column C2:
-   C2 = C2 + CONST1 * C1.  */
-
-void
-lambda_matrix_col_add (lambda_matrix mat, int m, int c1, int c2, int const1)
-{
-  int i;
-
-  if (const1 == 0)
-    return;
-
-  for (i = 0; i < m; i++)
-    mat[i][c2] += const1 * mat[i][c1];
-}
-
-/* Negate column C1 of matrix MAT which has M rows.  */
-
-void
-lambda_matrix_col_negate (lambda_matrix mat, int m, int c1)
-{
-  int i;
-
-  for (i = 0; i < m; i++)
-    mat[i][c1] *= -1;
-}
-
-/* Multiply column C1 of matrix MAT with M rows by CONST1.  */
-
-void
-lambda_matrix_col_mc (lambda_matrix mat, int m, int c1, int const1)
-{
-  int i;
-
-  for (i = 0; i < m; i++)
-    mat[i][c1] *= const1;
-}
-
-/* Compute the inverse of the N x N matrix MAT and store it in INV.
-
-   We don't _really_ compute the inverse of MAT.  Instead we compute
-   det(MAT)*inv(MAT), and we return det(MAT) to the caller as the function
-   result.  This is necessary to preserve accuracy, because we are dealing
-   with integer matrices here.
-
-   The algorithm used here is a column based Gauss-Jordan elimination on MAT
-   and the identity matrix in parallel.  The inverse is the result of applying
-   the same operations on the identity matrix that reduce MAT to the identity
-   matrix.
-
-   When MAT is a 2 x 2 matrix, we don't go through the whole process, because
-   it is easily inverted by inspection and it is a very common case.  */
-
-static int lambda_matrix_inverse_hard (lambda_matrix, lambda_matrix, int,
-				       struct obstack *);
-
-int
-lambda_matrix_inverse (lambda_matrix mat, lambda_matrix inv, int n,
-		       struct obstack * lambda_obstack)
-{
-  if (n == 2)
-    {
-      int a, b, c, d, det;
-      a = mat[0][0];
-      b = mat[1][0];
-      c = mat[0][1];
-      d = mat[1][1];
-      inv[0][0] =  d;
-      inv[0][1] = -c;
-      inv[1][0] = -b;
-      inv[1][1] =  a;
-      det = (a * d - b * c);
-      if (det < 0)
-	{
-	  det *= -1;
-	  inv[0][0] *= -1;
-	  inv[1][0] *= -1;
-	  inv[0][1] *= -1;
-	  inv[1][1] *= -1;
-	}
-      return det;
-    }
-  else
-    return lambda_matrix_inverse_hard (mat, inv, n, lambda_obstack);
-}
-
-/* If MAT is not a special case, invert it the hard way.  */
-
-static int
-lambda_matrix_inverse_hard (lambda_matrix mat, lambda_matrix inv, int n,
-			    struct obstack * lambda_obstack)
-{
-  lambda_vector row;
-  lambda_matrix temp;
-  int i, j;
-  int determinant;
-
-  temp = lambda_matrix_new (n, n, lambda_obstack);
-  lambda_matrix_copy (mat, temp, n, n);
-  lambda_matrix_id (inv, n);
-
-  /* Reduce TEMP to a lower triangular form, applying the same operations on
-     INV which starts as the identity matrix.  N is the number of rows and
-     columns.  */
-  for (j = 0; j < n; j++)
-    {
-      row = temp[j];
-
-      /* Make every element in the current row positive.  */
-      for (i = j; i < n; i++)
-	if (row[i] < 0)
-	  {
-	    lambda_matrix_col_negate (temp, n, i);
-	    lambda_matrix_col_negate (inv, n, i);
-	  }
-
-      /* Sweep the upper triangle.  Stop when only the diagonal element in the
-	 current row is nonzero.  */
-      while (lambda_vector_first_nz (row, n, j + 1) < n)
-	{
-	  int min_col = lambda_vector_min_nz (row, n, j);
-	  lambda_matrix_col_exchange (temp, n, j, min_col);
-	  lambda_matrix_col_exchange (inv, n, j, min_col);
-
-	  for (i = j + 1; i < n; i++)
-	    {
-	      int factor;
-
-	      factor = -1 * row[i];
-	      if (row[j] != 1)
-		factor /= row[j];
-
-	      lambda_matrix_col_add (temp, n, j, i, factor);
-	      lambda_matrix_col_add (inv, n, j, i, factor);
-	    }
-	}
-    }
-
-  /* Reduce TEMP from a lower triangular to the identity matrix.  Also compute
-     the determinant, which now is simply the product of the elements on the
-     diagonal of TEMP.  If one of these elements is 0, the matrix has 0 as an
-     eigenvalue so it is singular and hence not invertible.  */
-  determinant = 1;
-  for (j = n - 1; j >= 0; j--)
-    {
-      int diagonal;
-
-      row = temp[j];
-      diagonal = row[j];
-
-      /* The matrix must not be singular.  */
-      gcc_assert (diagonal);
-
-      determinant = determinant * diagonal;
-
-      /* If the diagonal is not 1, then multiply the each row by the
-         diagonal so that the middle number is now 1, rather than a
-         rational.  */
-      if (diagonal != 1)
-	{
-	  for (i = 0; i < j; i++)
-	    lambda_matrix_col_mc (inv, n, i, diagonal);
-	  for (i = j + 1; i < n; i++)
-	    lambda_matrix_col_mc (inv, n, i, diagonal);
-
-	  row[j] = diagonal = 1;
-	}
-
-      /* Sweep the lower triangle column wise.  */
-      for (i = j - 1; i >= 0; i--)
-	{
-	  if (row[i])
-	    {
-	      int factor = -row[i];
-	      lambda_matrix_col_add (temp, n, j, i, factor);
-	      lambda_matrix_col_add (inv, n, j, i, factor);
-	    }
-
-	}
-    }
-
-  return determinant;
-}
-
-/* Decompose a N x N matrix MAT to a product of a lower triangular H
-   and a unimodular U matrix such that MAT = H.U.  N is the size of
-   the rows of MAT.  */
-
-void
-lambda_matrix_hermite (lambda_matrix mat, int n,
-		       lambda_matrix H, lambda_matrix U)
-{
-  lambda_vector row;
-  int i, j, factor, minimum_col;
-
-  lambda_matrix_copy (mat, H, n, n);
-  lambda_matrix_id (U, n);
-
-  for (j = 0; j < n; j++)
-    {
-      row = H[j];
-
-      /* Make every element of H[j][j..n] positive.  */
-      for (i = j; i < n; i++)
-	{
-	  if (row[i] < 0)
-	    {
-	      lambda_matrix_col_negate (H, n, i);
-	      lambda_vector_negate (U[i], U[i], n);
-	    }
-	}
-
-      /* Stop when only the diagonal element is nonzero.  */
-      while (lambda_vector_first_nz (row, n, j + 1) < n)
-	{
-	  minimum_col = lambda_vector_min_nz (row, n, j);
-	  lambda_matrix_col_exchange (H, n, j, minimum_col);
-	  lambda_matrix_row_exchange (U, j, minimum_col);
-
-	  for (i = j + 1; i < n; i++)
-	    {
-	      factor = row[i] / row[j];
-	      lambda_matrix_col_add (H, n, j, i, -1 * factor);
-	      lambda_matrix_row_add (U, n, i, j, factor);
-	    }
-	}
-    }
-}
-
-/* Given an M x N integer matrix A, this function determines an M x
-   M unimodular matrix U, and an M x N echelon matrix S such that
-   "U.A = S".  This decomposition is also known as "right Hermite".
-
-   Ref: Algorithm 2.1 page 33 in "Loop Transformations for
-   Restructuring Compilers" Utpal Banerjee.  */
-
-void
-lambda_matrix_right_hermite (lambda_matrix A, int m, int n,
-			     lambda_matrix S, lambda_matrix U)
-{
-  int i, j, i0 = 0;
-
-  lambda_matrix_copy (A, S, m, n);
-  lambda_matrix_id (U, m);
-
-  for (j = 0; j < n; j++)
-    {
-      if (lambda_vector_first_nz (S[j], m, i0) < m)
-	{
-	  ++i0;
-	  for (i = m - 1; i >= i0; i--)
-	    {
-	      while (S[i][j] != 0)
-		{
-		  int sigma, factor, a, b;
-
-		  a = S[i-1][j];
-		  b = S[i][j];
-		  sigma = (a * b < 0) ? -1: 1;
-		  a = abs (a);
-		  b = abs (b);
-		  factor = sigma * (a / b);
-
-		  lambda_matrix_row_add (S, n, i, i-1, -factor);
-		  lambda_matrix_row_exchange (S, i, i-1);
-
-		  lambda_matrix_row_add (U, m, i, i-1, -factor);
-		  lambda_matrix_row_exchange (U, i, i-1);
-		}
-	    }
-	}
-    }
-}
-
-/* Given an M x N integer matrix A, this function determines an M x M
-   unimodular matrix V, and an M x N echelon matrix S such that "A =
-   V.S".  This decomposition is also known as "left Hermite".
-
-   Ref: Algorithm 2.2 page 36 in "Loop Transformations for
-   Restructuring Compilers" Utpal Banerjee.  */
-
-void
-lambda_matrix_left_hermite (lambda_matrix A, int m, int n,
-			     lambda_matrix S, lambda_matrix V)
-{
-  int i, j, i0 = 0;
-
-  lambda_matrix_copy (A, S, m, n);
-  lambda_matrix_id (V, m);
-
-  for (j = 0; j < n; j++)
-    {
-      if (lambda_vector_first_nz (S[j], m, i0) < m)
-	{
-	  ++i0;
-	  for (i = m - 1; i >= i0; i--)
-	    {
-	      while (S[i][j] != 0)
-		{
-		  int sigma, factor, a, b;
-
-		  a = S[i-1][j];
-		  b = S[i][j];
-		  sigma = (a * b < 0) ? -1: 1;
-		  a = abs (a);
-      b = abs (b);
-		  factor = sigma * (a / b);
-
-		  lambda_matrix_row_add (S, n, i, i-1, -factor);
-		  lambda_matrix_row_exchange (S, i, i-1);
-
-		  lambda_matrix_col_add (V, m, i-1, i, factor);
-		  lambda_matrix_col_exchange (V, m, i, i-1);
-		}
-	    }
-	}
-    }
-}
-
-/* When it exists, return the first nonzero row in MAT after row
-   STARTROW.  Otherwise return rowsize.  */
-
-int
-lambda_matrix_first_nz_vec (lambda_matrix mat, int rowsize, int colsize,
-			    int startrow)
-{
-  int j;
-  bool found = false;
-
-  for (j = startrow; (j < rowsize) && !found; j++)
-    {
-      if ((mat[j] != NULL)
-	  && (lambda_vector_first_nz (mat[j], colsize, startrow) < colsize))
-	found = true;
-    }
-
-  if (found)
-    return j - 1;
-  return rowsize;
-}
-
-/* Multiply a vector VEC by a matrix MAT.
-   MAT is an M*N matrix, and VEC is a vector with length N.  The result
-   is stored in DEST which must be a vector of length M.  */
-
-void
-lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
-			   lambda_vector vec, lambda_vector dest)
-{
-  int i, j;
-
-  lambda_vector_clear (dest, m);
-  for (i = 0; i < m; i++)
-    for (j = 0; j < n; j++)
-      dest[i] += matrix[i][j] * vec[j];
-}
-
-/* Print out an M x N matrix MAT to OUTFILE.  */
-
-void
-print_lambda_matrix (FILE * outfile, lambda_matrix matrix, int m, int n)
-{
-  int i;
-
-  for (i = 0; i < m; i++)
-    print_lambda_vector (outfile, matrix[i], n);
-  fprintf (outfile, "\n");
-}
-
diff --git a/gcc/lambda-trans.c b/gcc/lambda-trans.c
deleted file mode 100644
index 22f30b0..0000000
--- a/gcc/lambda-trans.c
+++ /dev/null
@@ -1,80 +0,0 @@
-/* Lambda matrix transformations.
-   Copyright (C) 2003, 2004, 2007, 2008 Free Software Foundation, Inc.
-   Contributed by Daniel Berlin <dberlin@dberlin.org>.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3.  If not see
-<http://www.gnu.org/licenses/>.  */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tree-flow.h"
-#include "lambda.h"
-
-/* Allocate a new transformation matrix.  */
-
-lambda_trans_matrix
-lambda_trans_matrix_new (int colsize, int rowsize,
-			 struct obstack * lambda_obstack)
-{
-  lambda_trans_matrix ret;
-
-  ret = (lambda_trans_matrix)
-    obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
-  LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
-  LTM_ROWSIZE (ret) = rowsize;
-  LTM_COLSIZE (ret) = colsize;
-  LTM_DENOMINATOR (ret) = 1;
-  return ret;
-}
-
-/* Return true if MAT is an identity matrix.  */
-
-bool
-lambda_trans_matrix_id_p (lambda_trans_matrix mat)
-{
-  if (LTM_ROWSIZE (mat) != LTM_COLSIZE (mat))
-    return false;
-  return lambda_matrix_id_p (LTM_MATRIX (mat), LTM_ROWSIZE (mat));
-}
-
-
-/* Compute the inverse of the transformation matrix MAT.  */
-
-lambda_trans_matrix
-lambda_trans_matrix_inverse (lambda_trans_matrix mat,
-			     struct obstack * lambda_obstack)
-{
-  lambda_trans_matrix inverse;
-  int determinant;
-
-  inverse = lambda_trans_matrix_new (LTM_ROWSIZE (mat), LTM_COLSIZE (mat),
-				     lambda_obstack);
-  determinant = lambda_matrix_inverse (LTM_MATRIX (mat), LTM_MATRIX (inverse),
-				       LTM_ROWSIZE (mat), lambda_obstack);
-  LTM_DENOMINATOR (inverse) = determinant;
-  return inverse;
-}
-
-
-/* Print out a transformation matrix.  */
-
-void
-print_lambda_trans_matrix (FILE *outfile, lambda_trans_matrix mat)
-{
-  print_lambda_matrix (outfile, LTM_MATRIX (mat), LTM_ROWSIZE (mat),
-		       LTM_COLSIZE (mat));
-}
diff --git a/gcc/lambda.h b/gcc/lambda.h
deleted file mode 100644
index d54ed27..0000000
--- a/gcc/lambda.h
+++ /dev/null
@@ -1,524 +0,0 @@
-/* Lambda matrix and vector interface.
-   Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
-   Free Software Foundation, Inc.
-   Contributed by Daniel Berlin <dberlin@dberlin.org>
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3.  If not see
-<http://www.gnu.org/licenses/>.  */
-
-#ifndef LAMBDA_H
-#define LAMBDA_H
-
-#include "vec.h"
-
-/* An integer vector.  A vector formally consists of an element of a vector
-   space. A vector space is a set that is closed under vector addition
-   and scalar multiplication.  In this vector space, an element is a list of
-   integers.  */
-typedef int *lambda_vector;
-DEF_VEC_P(lambda_vector);
-DEF_VEC_ALLOC_P(lambda_vector,heap);
-DEF_VEC_ALLOC_P(lambda_vector,gc);
-
-typedef VEC(lambda_vector, heap) *lambda_vector_vec_p;
-DEF_VEC_P (lambda_vector_vec_p);
-DEF_VEC_ALLOC_P (lambda_vector_vec_p, heap);
-
-/* An integer matrix.  A matrix consists of m vectors of length n (IE
-   all vectors are the same length).  */
-typedef lambda_vector *lambda_matrix;
-
-DEF_VEC_P (lambda_matrix);
-DEF_VEC_ALLOC_P (lambda_matrix, heap);
-
-/* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
-   matrix.  Rather than use floats, we simply keep a single DENOMINATOR that
-   represents the denominator for every element in the matrix.  */
-typedef struct lambda_trans_matrix_s
-{
-  lambda_matrix matrix;
-  int rowsize;
-  int colsize;
-  int denominator;
-} *lambda_trans_matrix;
-#define LTM_MATRIX(T) ((T)->matrix)
-#define LTM_ROWSIZE(T) ((T)->rowsize)
-#define LTM_COLSIZE(T) ((T)->colsize)
-#define LTM_DENOMINATOR(T) ((T)->denominator)
-
-/* A vector representing a statement in the body of a loop.
-   The COEFFICIENTS vector contains a coefficient for each induction variable
-   in the loop nest containing the statement.
-   The DENOMINATOR represents the denominator for each coefficient in the
-   COEFFICIENT vector.
-
-   This structure is used during code generation in order to rewrite the old
-   induction variable uses in a statement in terms of the newly created
-   induction variables.  */
-typedef struct lambda_body_vector_s
-{
-  lambda_vector coefficients;
-  int size;
-  int denominator;
-} *lambda_body_vector;
-#define LBV_COEFFICIENTS(T) ((T)->coefficients)
-#define LBV_SIZE(T) ((T)->size)
-#define LBV_DENOMINATOR(T) ((T)->denominator)
-
-/* Piecewise linear expression.
-   This structure represents a linear expression with terms for the invariants
-   and induction variables of a loop.
-   COEFFICIENTS is a vector of coefficients for the induction variables, one
-   per loop in the loop nest.
-   CONSTANT is the constant portion of the linear expression
-   INVARIANT_COEFFICIENTS is a vector of coefficients for the loop invariants,
-   one per invariant.
-   DENOMINATOR is the denominator for all of the coefficients and constants in
-   the expression.
-   The linear expressions can be linked together using the NEXT field, in
-   order to represent MAX or MIN of a group of linear expressions.  */
-typedef struct lambda_linear_expression_s
-{
-  lambda_vector coefficients;
-  int constant;
-  lambda_vector invariant_coefficients;
-  int denominator;
-  struct lambda_linear_expression_s *next;
-} *lambda_linear_expression;
-
-#define LLE_COEFFICIENTS(T) ((T)->coefficients)
-#define LLE_CONSTANT(T) ((T)->constant)
-#define LLE_INVARIANT_COEFFICIENTS(T) ((T)->invariant_coefficients)
-#define LLE_DENOMINATOR(T) ((T)->denominator)
-#define LLE_NEXT(T) ((T)->next)
-
-struct obstack;
-
-lambda_linear_expression lambda_linear_expression_new (int, int,
-                                                       struct obstack *);
-void print_lambda_linear_expression (FILE *, lambda_linear_expression, int,
-				     int, char);
-
-/* Loop structure.  Our loop structure consists of a constant representing the
-   STEP of the loop, a set of linear expressions representing the LOWER_BOUND
-   of the loop, a set of linear expressions representing the UPPER_BOUND of
-   the loop, and a set of linear expressions representing the LINEAR_OFFSET of
-   the loop.  The linear offset is a set of linear expressions that are
-   applied to *both* the lower bound, and the upper bound.  */
-typedef struct lambda_loop_s
-{
-  lambda_linear_expression lower_bound;
-  lambda_linear_expression upper_bound;
-  lambda_linear_expression linear_offset;
-  int step;
-} *lambda_loop;
-
-#define LL_LOWER_BOUND(T) ((T)->lower_bound)
-#define LL_UPPER_BOUND(T) ((T)->upper_bound)
-#define LL_LINEAR_OFFSET(T) ((T)->linear_offset)
-#define LL_STEP(T)   ((T)->step)
-
-/* Loop nest structure.
-   The loop nest structure consists of a set of loop structures (defined
-   above) in LOOPS, along with an integer representing the DEPTH of the loop,
-   and an integer representing the number of INVARIANTS in the loop.  Both of
-   these integers are used to size the associated coefficient vectors in the
-   linear expression structures.  */
-typedef struct lambda_loopnest_s
-{
-  lambda_loop *loops;
-  int depth;
-  int invariants;
-} *lambda_loopnest;
-
-#define LN_LOOPS(T) ((T)->loops)
-#define LN_DEPTH(T) ((T)->depth)
-#define LN_INVARIANTS(T) ((T)->invariants)
-
-lambda_loopnest lambda_loopnest_new (int, int, struct obstack *);
-lambda_loopnest lambda_loopnest_transform (lambda_loopnest,
-                                           lambda_trans_matrix,
-                                           struct obstack *);
-struct loop;
-bool perfect_nest_p (struct loop *);
-void print_lambda_loopnest (FILE *, lambda_loopnest, char);
-
-void print_lambda_loop (FILE *, lambda_loop, int, int, char);
-
-lambda_matrix lambda_matrix_new (int, int, struct obstack *);
-
-void lambda_matrix_id (lambda_matrix, int);
-bool lambda_matrix_id_p (lambda_matrix, int);
-void lambda_matrix_copy (lambda_matrix, lambda_matrix, int, int);
-void lambda_matrix_negate (lambda_matrix, lambda_matrix, int, int);
-void lambda_matrix_transpose (lambda_matrix, lambda_matrix, int, int);
-void lambda_matrix_add (lambda_matrix, lambda_matrix, lambda_matrix, int,
-			int);
-void lambda_matrix_add_mc (lambda_matrix, int, lambda_matrix, int,
-			   lambda_matrix, int, int);
-void lambda_matrix_mult (lambda_matrix, lambda_matrix, lambda_matrix,
-			 int, int, int);
-void lambda_matrix_delete_rows (lambda_matrix, int, int, int);
-void lambda_matrix_row_exchange (lambda_matrix, int, int);
-void lambda_matrix_row_add (lambda_matrix, int, int, int, int);
-void lambda_matrix_row_negate (lambda_matrix mat, int, int);
-void lambda_matrix_row_mc (lambda_matrix, int, int, int);
-void lambda_matrix_col_exchange (lambda_matrix, int, int, int);
-void lambda_matrix_col_add (lambda_matrix, int, int, int, int);
-void lambda_matrix_col_negate (lambda_matrix, int, int);
-void lambda_matrix_col_mc (lambda_matrix, int, int, int);
-int lambda_matrix_inverse (lambda_matrix, lambda_matrix, int, struct obstack *);
-void lambda_matrix_hermite (lambda_matrix, int, lambda_matrix, lambda_matrix);
-void lambda_matrix_left_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
-void lambda_matrix_right_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
-int lambda_matrix_first_nz_vec (lambda_matrix, int, int, int);
-void lambda_matrix_project_to_null (lambda_matrix, int, int, int,
-				    lambda_vector);
-void print_lambda_matrix (FILE *, lambda_matrix, int, int);
-
-lambda_trans_matrix lambda_trans_matrix_new (int, int, struct obstack *);
-bool lambda_trans_matrix_nonsingular_p (lambda_trans_matrix);
-bool lambda_trans_matrix_fullrank_p (lambda_trans_matrix);
-int lambda_trans_matrix_rank (lambda_trans_matrix);
-lambda_trans_matrix lambda_trans_matrix_basis (lambda_trans_matrix);
-lambda_trans_matrix lambda_trans_matrix_padding (lambda_trans_matrix);
-lambda_trans_matrix lambda_trans_matrix_inverse (lambda_trans_matrix,
-						 struct obstack *);
-void print_lambda_trans_matrix (FILE *, lambda_trans_matrix);
-void lambda_matrix_vector_mult (lambda_matrix, int, int, lambda_vector,
-				lambda_vector);
-bool lambda_trans_matrix_id_p (lambda_trans_matrix);
-
-lambda_body_vector lambda_body_vector_new (int, struct obstack *);
-lambda_body_vector lambda_body_vector_compute_new (lambda_trans_matrix,
-                                                   lambda_body_vector,
-                                                   struct obstack *);
-void print_lambda_body_vector (FILE *, lambda_body_vector);
-lambda_loopnest gcc_loopnest_to_lambda_loopnest (struct loop *,
-						 VEC(tree,heap) **,
-                                                 VEC(tree,heap) **,
-                                                 struct obstack *);
-void lambda_loopnest_to_gcc_loopnest (struct loop *,
-				      VEC(tree,heap) *, VEC(tree,heap) *,
-				      VEC(gimple,heap) **,
-                                      lambda_loopnest, lambda_trans_matrix,
-                                      struct obstack *);
-void remove_iv (gimple);
-tree find_induction_var_from_exit_cond (struct loop *);
-
-static inline void lambda_vector_negate (lambda_vector, lambda_vector, int);
-static inline void lambda_vector_mult_const (lambda_vector, lambda_vector, int, int);
-static inline void lambda_vector_add (lambda_vector, lambda_vector,
-				      lambda_vector, int);
-static inline void lambda_vector_add_mc (lambda_vector, int, lambda_vector, int,
-					 lambda_vector, int);
-static inline void lambda_vector_copy (lambda_vector, lambda_vector, int);
-static inline bool lambda_vector_zerop (lambda_vector, int);
-static inline void lambda_vector_clear (lambda_vector, int);
-static inline bool lambda_vector_equal (lambda_vector, lambda_vector, int);
-static inline int lambda_vector_min_nz (lambda_vector, int, int);
-static inline int lambda_vector_first_nz (lambda_vector, int, int);
-static inline void print_lambda_vector (FILE *, lambda_vector, int);
-
-/* Allocate a new vector of given SIZE.  */
-
-static inline lambda_vector
-lambda_vector_new (int size)
-{
-  return (lambda_vector) ggc_alloc_cleared_atomic (sizeof (int) * size);
-}
-
-
-
-/* Multiply vector VEC1 of length SIZE by a constant CONST1,
-   and store the result in VEC2.  */
-
-static inline void
-lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
-			  int size, int const1)
-{
-  int i;
-
-  if (const1 == 0)
-    lambda_vector_clear (vec2, size);
-  else
-    for (i = 0; i < size; i++)
-      vec2[i] = const1 * vec1[i];
-}
-
-/* Negate vector VEC1 with length SIZE and store it in VEC2.  */
-
-static inline void
-lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
-		      int size)
-{
-  lambda_vector_mult_const (vec1, vec2, size, -1);
-}
-
-/* VEC3 = VEC1+VEC2, where all three the vectors are of length SIZE.  */
-
-static inline void
-lambda_vector_add (lambda_vector vec1, lambda_vector vec2,
-		   lambda_vector vec3, int size)
-{
-  int i;
-  for (i = 0; i < size; i++)
-    vec3[i] = vec1[i] + vec2[i];
-}
-
-/* VEC3 = CONSTANT1*VEC1 + CONSTANT2*VEC2.  All vectors have length SIZE.  */
-
-static inline void
-lambda_vector_add_mc (lambda_vector vec1, int const1,
-		      lambda_vector vec2, int const2,
-		      lambda_vector vec3, int size)
-{
-  int i;
-  for (i = 0; i < size; i++)
-    vec3[i] = const1 * vec1[i] + const2 * vec2[i];
-}
-
-/* Copy the elements of vector VEC1 with length SIZE to VEC2.  */
-
-static inline void
-lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
-		    int size)
-{
-  memcpy (vec2, vec1, size * sizeof (*vec1));
-}
-
-/* Return true if vector VEC1 of length SIZE is the zero vector.  */
-
-static inline bool
-lambda_vector_zerop (lambda_vector vec1, int size)
-{
-  int i;
-  for (i = 0; i < size; i++)
-    if (vec1[i] != 0)
-      return false;
-  return true;
-}
-
-/* Clear out vector VEC1 of length SIZE.  */
-
-static inline void
-lambda_vector_clear (lambda_vector vec1, int size)
-{
-  memset (vec1, 0, size * sizeof (*vec1));
-}
-
-/* Return true if two vectors are equal.  */
-
-static inline bool
-lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
-{
-  int i;
-  for (i = 0; i < size; i++)
-    if (vec1[i] != vec2[i])
-      return false;
-  return true;
-}
-
-/* Return the minimum nonzero element in vector VEC1 between START and N.
-   We must have START <= N.  */
-
-static inline int
-lambda_vector_min_nz (lambda_vector vec1, int n, int start)
-{
-  int j;
-  int min = -1;
-
-  gcc_assert (start <= n);
-  for (j = start; j < n; j++)
-    {
-      if (vec1[j])
-	if (min < 0 || vec1[j] < vec1[min])
-	  min = j;
-    }
-  gcc_assert (min >= 0);
-
-  return min;
-}
-
-/* Return the first nonzero element of vector VEC1 between START and N.
-   We must have START <= N.   Returns N if VEC1 is the zero vector.  */
-
-static inline int
-lambda_vector_first_nz (lambda_vector vec1, int n, int start)
-{
-  int j = start;
-  while (j < n && vec1[j] == 0)
-    j++;
-  return j;
-}
-
-
-/* Multiply a vector by a matrix.  */
-
-static inline void
-lambda_vector_matrix_mult (lambda_vector vect, int m, lambda_matrix mat,
-			   int n, lambda_vector dest)
-{
-  int i, j;
-  lambda_vector_clear (dest, n);
-  for (i = 0; i < n; i++)
-    for (j = 0; j < m; j++)
-      dest[i] += mat[j][i] * vect[j];
-}
-
-/* Compare two vectors returning an integer less than, equal to, or
-   greater than zero if the first argument is considered to be respectively
-   less than, equal to, or greater than the second.
-   We use the lexicographic order.  */
-
-static inline int
-lambda_vector_compare (lambda_vector vec1, int length1, lambda_vector vec2,
-                       int length2)
-{
-  int min_length;
-  int i;
-
-  if (length1 < length2)
-    min_length = length1;
-  else
-    min_length = length2;
-
-  for (i = 0; i < min_length; i++)
-    if (vec1[i] < vec2[i])
-      return -1;
-    else if (vec1[i] > vec2[i])
-      return 1;
-    else
-      continue;
-
-  return length1 - length2;
-}
-
-/* Print out a vector VEC of length N to OUTFILE.  */
-
-static inline void
-print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
-{
-  int i;
-
-  for (i = 0; i < n; i++)
-    fprintf (outfile, "%3d ", vector[i]);
-  fprintf (outfile, "\n");
-}
-
-/* Compute the greatest common divisor of two numbers using
-   Euclid's algorithm.  */
-
-static inline int
-gcd (int a, int b)
-{
-  int x, y, z;
-
-  x = abs (a);
-  y = abs (b);
-
-  while (x > 0)
-    {
-      z = y % x;
-      y = x;
-      x = z;
-    }
-
-  return y;
-}
-
-/* Compute the greatest common divisor of a VECTOR of SIZE numbers.  */
-
-static inline int
-lambda_vector_gcd (lambda_vector vector, int size)
-{
-  int i;
-  int gcd1 = 0;
-
-  if (size > 0)
-    {
-      gcd1 = vector[0];
-      for (i = 1; i < size; i++)
-	gcd1 = gcd (gcd1, vector[i]);
-    }
-  return gcd1;
-}
-
-/* Returns true when the vector V is lexicographically positive, in
-   other words, when the first nonzero element is positive.  */
-
-static inline bool
-lambda_vector_lexico_pos (lambda_vector v,
-			  unsigned n)
-{
-  unsigned i;
-  for (i = 0; i < n; i++)
-    {
-      if (v[i] == 0)
-	continue;
-      if (v[i] < 0)
-	return false;
-      if (v[i] > 0)
-	return true;
-    }
-  return true;
-}
-
-/* Given a vector of induction variables IVS, and a vector of
-   coefficients COEFS, build a tree that is a linear combination of
-   the induction variables.  */
-
-static inline tree
-build_linear_expr (tree type, lambda_vector coefs, VEC (tree, heap) *ivs)
-{
-  unsigned i;
-  tree iv;
-  tree expr = build_zero_cst (type);
-
-  for (i = 0; VEC_iterate (tree, ivs, i, iv); i++)
-    {
-      int k = coefs[i];
-
-      if (k == 1)
-	expr = fold_build2 (PLUS_EXPR, type, expr, iv);
-
-      else if (k != 0)
-	expr = fold_build2 (PLUS_EXPR, type, expr,
-			    fold_build2 (MULT_EXPR, type, iv,
-					 build_int_cst (type, k)));
-    }
-
-  return expr;
-}
-
-/* Returns the dependence level for a vector DIST of size LENGTH.
-   LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
-   to the sequence of statements, not carried by any loop.  */
-
-
-static inline unsigned
-dependence_level (lambda_vector dist_vect, int length)
-{
-  int i;
-
-  for (i = 0; i < length; i++)
-    if (dist_vect[i] != 0)
-      return i + 1;
-
-  return 0;
-}
-
-#endif /* LAMBDA_H  */
diff --git a/gcc/lto-symtab.c b/gcc/lto-symtab.c
index b331d5c..7573276 100644
--- a/gcc/lto-symtab.c
+++ b/gcc/lto-symtab.c
@@ -25,7 +25,6 @@ along with GCC; see the file COPYING3.  If not see
 #include "tree.h"
 #include "gimple.h"
 #include "ggc.h"
-#include "lambda.h"	/* gcd */
 #include "hashtab.h"
 #include "plugin-api.h"
 #include "lto-streamer.h"
diff --git a/gcc/omega.c b/gcc/omega.c
index aee99e7..1717f8e 100644
--- a/gcc/omega.c
+++ b/gcc/omega.c
@@ -181,24 +181,6 @@ omega_no_procedure (omega_pb pb ATTRIBUTE_UNUSED)
 
 void (*omega_when_reduced) (omega_pb) = omega_no_procedure;
 
-/* Compute the greatest common divisor of A and B.  */
-
-static inline int
-gcd (int b, int a)
-{
-  if (b == 1)
-    return 1;
-
-  while (b != 0)
-    {
-      int t = b;
-      b = a % b;
-      a = t;
-    }
-
-  return a;
-}
-
 /* Print to FILE from PB equation E with all its coefficients
    multiplied by C.  */
 
diff --git a/gcc/passes.c b/gcc/passes.c
index 4be61a9..eaf65c4 100644
--- a/gcc/passes.c
+++ b/gcc/passes.c
@@ -882,7 +882,6 @@ init_optimization_passes (void)
 	  NEXT_PASS (pass_record_bounds);
 	  NEXT_PASS (pass_check_data_deps);
 	  NEXT_PASS (pass_loop_distribution);
-	  NEXT_PASS (pass_linear_transform);
 	  NEXT_PASS (pass_copy_prop);
 	  NEXT_PASS (pass_graphite);
 	    {
diff --git a/gcc/testsuite/gcc.dg/graphite/pr18792.c b/gcc/testsuite/gcc.dg/graphite/pr18792.c
new file mode 100644
index 0000000..4e93fe1
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/graphite/pr18792.c
@@ -0,0 +1,16 @@
+/* PR tree-optimization/18792 */
+/* { dg-do compile } */
+/* { dg-options "-O1 -ftree-loop-linear" } */
+void put_atoms_in_triclinic_unitcell(float x[][3])
+{
+	int i=0,d;
+
+	while (x[i][3] < 0)
+		for (d=0; d<=3; d++)
+			x[i][d] = 0;
+
+	while (x[i][3] >= 0)
+		for (d=0; d<=3; d++)
+			x[i][d] = 0;
+
+}
diff --git a/gcc/testsuite/gcc.dg/graphite/pr19910.c b/gcc/testsuite/gcc.dg/graphite/pr19910.c
new file mode 100644
index 0000000..1ee0d21
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/graphite/pr19910.c
@@ -0,0 +1,16 @@
+/* Contributed by Volker Reichelt <reichelt@gcc.gnu.org>.  */
+
+/* { dg-do compile } */
+/* { dg-options "-O2 -ftree-loop-linear" } */
+
+int a[3];
+
+void foo()
+{
+  int i, j;
+
+  for (i = 1; i >= 0; --i)
+    for (j = i; j >= 0; --j)
+      a[i+j] = 0;
+}
+
diff --git a/gcc/testsuite/gcc.dg/graphite/pr20041110-1.c b/gcc/testsuite/gcc.dg/graphite/pr20041110-1.c
new file mode 100644
index 0000000..825b2b4
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/graphite/pr20041110-1.c
@@ -0,0 +1,26 @@
+/* { dg-do compile } */
+/* { dg-options "-O2 -ftree-loop-linear" } */
+
+/* This testcase was causing an ICE in building distance vectors because
+   we weren't ignoring the fact that one of the induction variables
+   involved in the dependence was outside of the loop.  */
+extern int foo (int, int);
+int
+main (void)
+{
+  int a[50];
+  int b[50];
+  int i, j, k;
+  for (i = 4; i < 30; i++)
+    {
+      for (j = 3; j < 40; j++)
+	{
+	  for (k = 9; k < 50; k++)
+	    {
+	      b[j] = a[i];
+	      a[k] = b[i];
+	    }
+	}
+    }
+  foo (a[i], b[i]);
+}
diff --git a/gcc/testsuite/gcc.dg/graphite/pr20256.c b/gcc/testsuite/gcc.dg/graphite/pr20256.c
new file mode 100644
index 0000000..c181fcb
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/graphite/pr20256.c
@@ -0,0 +1,23 @@
+/* { dg-do compile } */
+/* { dg-options "-O2 -ftree-loop-linear" } */
+/* { dg-require-effective-target size32plus } */
+
+int foo()
+{
+  int x[2][2], y[2];
+  int i, n, s;
+
+  /* This is a reduction: there is a scalar dependence that cannot be
+     removed by rewriting IVs.  This code cannot and should not be
+     transformed into a perfect loop.  */
+  for (n = 0; n < 2; n++)
+    {
+      s = 0;
+      for (i = 0; i < 2; i++)
+        s += x[n][i]*y[i];
+      s += 1;
+    }
+
+  return s;
+}
+
diff --git a/gcc/testsuite/gcc.dg/graphite/pr23625.c b/gcc/testsuite/gcc.dg/graphite/pr23625.c
new file mode 100644
index 0000000..aaeddb2
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/graphite/pr23625.c
@@ -0,0 +1,27 @@
+/* Test case for PR23625 */
+/* { dg-do compile } */
+/* { dg-options "-O2 -ftree-vectorize -ftree-loop-linear" } */
+
+typedef long INT32;
+void find_best_colors ()
+{
+int ic0, ic1, ic2;
+INT32 * bptr;
+INT32 dist1;
+INT32 dist2;
+INT32 xx1;
+for (ic0 = (1<<(5 -3))-1;ic0 >= 0;ic0--)
+{
+  for (ic1 = (1<<(6 -3))-1;ic1 >= 0;ic1--)
+  {
+    dist2 = dist1;
+     for (ic2 = (1<<(5 -3))-1;ic2 >= 0;ic2--)
+     {
+        *bptr = dist2;
+        bptr++;
+     }
+     dist1 += xx1;
+  }
+}
+}
+
diff --git a/gcc/testsuite/gcc.dg/graphite/pr23820.c b/gcc/testsuite/gcc.dg/graphite/pr23820.c
new file mode 100644
index 0000000..ee855e1
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/graphite/pr23820.c
@@ -0,0 +1,26 @@
+/* { dg-do compile } */
+/* { dg-options "-O2 -ftree-loop-linear" } */
+
+int t [2][4];
+
+void foo (void)
+{
+  int i, j, k, v;
+  float e;
+  for (;;)
+    {
+      v = 0;
+      for (j = 0; j < 2; j ++)
+        {
+          for (k = 2; k < 4; k ++)
+            {
+              e = 0.0;
+              for (i = 0; i < 4; i ++)
+                e += t [j][i];
+              if (e)
+                v = j;
+            }
+        }
+      t [v][0] = 0;
+    }
+}
diff --git a/gcc/testsuite/gcc.dg/graphite/pr24309.c b/gcc/testsuite/gcc.dg/graphite/pr24309.c
new file mode 100644
index 0000000..b50e7a8
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/graphite/pr24309.c
@@ -0,0 +1,18 @@
+/* { dg-do compile } */
+/* { dg-options "-O2 -ftree-loop-linear" } */
+
+float weight[10];
+void lsp_weight_quant(float *x, char *cdbk)
+{
+   int i,j;
+   float dist;
+   int best_id=0;
+   for (i=0;i<16;i++)
+   {
+      for (j=0;j<10;j++)
+         dist=dist+weight[j];
+      if (dist<0)
+         best_id=i;
+   }
+   x[j] = cdbk[best_id*10+j];
+}
diff --git a/gcc/testsuite/gcc.dg/graphite/pr26435.c b/gcc/testsuite/gcc.dg/graphite/pr26435.c
new file mode 100644
index 0000000..4e5e5f7
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/graphite/pr26435.c
@@ -0,0 +1,17 @@
+/* { dg-do compile } */
+/* { dg-options "-O2 -ftree-loop-linear" } */
+/* { dg-require-effective-target size32plus } */
+
+int foo(int *p, int n)
+{
+  int i, j, k = 0;
+
+  /* This is a reduction: there is a scalar dependence that cannot be
+     removed by rewriting IVs.  This code cannot and should not be
+     transformed into a perfect loop.  */
+  for (i = 0; i < 2; ++i, p += n)
+    for (j = 0; j < 2; ++j)
+      k += p[j];
+
+  return k;
+}
diff --git a/gcc/testsuite/gcc.dg/graphite/pr29330.c b/gcc/testsuite/gcc.dg/graphite/pr29330.c
new file mode 100644
index 0000000..dff4207
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/graphite/pr29330.c
@@ -0,0 +1,15 @@
+/* PR tree-optimization/29330 */
+/* { dg-do compile } */
+/* { dg-options "-O -ftree-loop-linear -std=gnu99" } */
+
+int buf[2][2][2][2];
+
+void
+f (void)
+{
+  for (int a = 0; a < 2; ++a)
+    for (int b = 0; b < 2; ++b)
+      for (int c = 0; c < 2; ++c)
+	for (int d = 0; d < 2; ++d)
+	  buf[a][b][c][d] = 0;
+}
diff --git a/gcc/testsuite/gcc.dg/graphite/pr29581-1.c b/gcc/testsuite/gcc.dg/graphite/pr29581-1.c
new file mode 100644
index 0000000..e540073
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/graphite/pr29581-1.c
@@ -0,0 +1,44 @@
+/* PR tree-optimization/29581 */
+/* Origin: gcc.dg/vect/vect-85.c */
+/* { dg-do run } */
+/* { dg-options "-O2 -ftree-loop-linear" } */
+
+extern void abort (void);
+
+#define N 16
+
+int main1 (int *a)
+{
+  int i, j, k;
+  int b[N];
+
+  for (i = 0; i < N; i++)
+    {
+      for (j = 0; j < N; j++)
+	{
+	  k = i + N;
+	  a[j] = k;
+	}
+      b[i] = k;
+    }
+
+
+  for (j = 0; j < N; j++)
+    if (a[j] != i + N - 1)
+      abort();	
+
+  for (j = 0; j < N; j++)
+    if (b[j] != j + N)
+      abort();	
+
+  return 0;
+}
+
+int main (void)
+{
+  int a[N] __attribute__ ((__aligned__(16)));
+
+  main1 (a);
+
+  return 0;
+}
diff --git a/gcc/testsuite/gcc.dg/graphite/pr29581-2.c b/gcc/testsuite/gcc.dg/graphite/pr29581-2.c
new file mode 100644
index 0000000..c99d78c
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/graphite/pr29581-2.c
@@ -0,0 +1,46 @@
+/* PR tree-optimization/29581 */
+/* Origin: gcc.dg/vect/vect-86.c */
+/* { dg-do run } */
+/* { dg-options "-O2 -ftree-loop-linear" } */
+
+extern void abort (void);
+
+#define N 16
+
+int main1 (int n)
+{
+  int i, j, k;
+  int a[N], b[N];
+
+  for (i = 0; i < n; i++)
+    {
+      for (j = 0; j < n; j++)
+	{
+	  k = i + n;
+	  a[j] = k;
+	}
+      b[i] = k;
+    }
+
+
+  for (j = 0; j < n; j++)
+    if (a[j] != i + n - 1)
+      abort();	
+
+  for (i = 0; i < n; i++)
+    if (b[i] != i + n)
+      abort();	
+
+  return 0;
+}
+
+int main (void)
+{
+  main1 (N);
+  main1 (0);
+  main1 (1);
+  main1 (2);
+  main1 (N-1);
+
+  return 0;
+}
diff --git a/gcc/testsuite/gcc.dg/graphite/pr29581-3.c b/gcc/testsuite/gcc.dg/graphite/pr29581-3.c
new file mode 100644
index 0000000..c9d72ce
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/graphite/pr29581-3.c
@@ -0,0 +1,48 @@
+/* PR tree-optimization/29581 */
+/* Origin: gcc.dg/vect/vect-87.c */
+/* { dg-do run } */
+/* { dg-options "-O2 -ftree-loop-linear" } */
+
+extern void abort (void);
+
+#define N 16
+
+int main1 (int n, int *a)
+{
+  int i, j, k;
+  int b[N];
+
+  for (i = 0; i < n; i++)
+    {
+      for (j = 0; j < n; j++)
+	{
+	  k = i + n;
+	  a[j] = k;
+	}
+      b[i] = k;
+    }
+
+
+  for (j = 0; j < n; j++)
+    if (a[j] != i + n - 1)
+      abort();	
+
+  for (j = 0; j < n; j++)
+    if (b[j] != j + n)
+      abort();	
+
+  return 0;
+}
+
+int main (void)
+{
+  int a[N] __attribute__ ((__aligned__(16)));
+
+  main1 (N, a);
+  main1 (0, a);
+  main1 (1, a);
+  main1 (2, a);
+  main1 (N-1, a);
+
+  return 0;
+}
diff --git a/gcc/testsuite/gcc.dg/graphite/pr29581-4.c b/gcc/testsuite/gcc.dg/graphite/pr29581-4.c
new file mode 100644
index 0000000..c2d894c
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/graphite/pr29581-4.c
@@ -0,0 +1,48 @@
+/* PR tree-optimization/29581 */
+/* Origin: gcc.dg/vect/vect-88.c */
+/* { dg-do run } */
+/* { dg-options "-O2 -ftree-loop-linear" } */
+
+extern void abort (void);
+
+#define N 16
+
+int main1 (int n, int *a)
+{
+  int i, j, k;
+  int b[N];
+
+  for (i = 0; i < n; i++)
+    {
+      for (j = 0; j < n; j++)
+	{
+	  k = i + n;
+	  a[j] = k;
+	}
+      b[i] = k;
+    }
+
+
+  for (j = 0; j < n; j++)
+    if (a[j] != i + n - 1)
+      abort();	
+
+  for (j = 0; j < n; j++)
+    if (b[j] != j + n)
+      abort();	
+
+  return 0;
+}
+
+int main (void)
+{
+  int a[N+1] __attribute__ ((__aligned__(16)));
+
+  main1 (N, a+1);
+  main1 (0, a+1);
+  main1 (1, a+1);
+  main1 (2, a+1);
+  main1 (N-1, a+1);
+
+  return 0;
+}
diff --git a/gcc/testsuite/gcc.dg/graphite/pr30565.c b/gcc/testsuite/gcc.dg/graphite/pr30565.c
new file mode 100644
index 0000000..802b7c2
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/graphite/pr30565.c
@@ -0,0 +1,14 @@
+/* PR tree-optimization/30565  */
+
+/* { dg-do compile } */
+/* { dg-options "-O1 -ftree-pre -ftree-loop-linear" } */
+
+static double snrdef[32];
+void psycho_n1(double ltmin[2][32], int stereo)
+{
+  int i, k;
+
+  for (k = 0; k < stereo; k++)
+    for (i = 0; i < 32; i++)
+      ltmin[k][i] = snrdef[i];
+}
diff --git a/gcc/testsuite/gcc.dg/graphite/pr31183.c b/gcc/testsuite/gcc.dg/graphite/pr31183.c
new file mode 100644
index 0000000..000d7b5
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/graphite/pr31183.c
@@ -0,0 +1,14 @@
+/* { dg-do compile } */ 
+/* { dg-options "-O2 -ftree-loop-linear" } */
+
+int buf[256 * 9];
+int f() 
+{
+  int i, j;
+
+  for (i = 0; i < 256; ++i)
+    for (j = 0; j < 8; ++j)
+      buf[j + 1] = buf[j] + 1;
+
+  return buf[10];
+}
diff --git a/gcc/testsuite/gcc.dg/graphite/pr33576.c b/gcc/testsuite/gcc.dg/graphite/pr33576.c
new file mode 100644
index 0000000..2470762
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/graphite/pr33576.c
@@ -0,0 +1,20 @@
+/* { dg-do compile } */ 
+/* { dg-options "-O2 -ftree-loop-linear" } */
+
+int a1[6][4][4];
+short b1[16];
+
+int c1;
+void CalculateQuantParam(void)
+{
+  int i, j, k, temp;
+
+   for(k=0; k<6; k++)
+      for(j=0; j<4; j++)
+        for(i=0; i<4; i++)
+        {
+          temp = (i<<2)+j;
+          a1[k][j][i]  = c1/b1[temp];
+        }
+}
+
diff --git a/gcc/testsuite/gcc.dg/graphite/pr33766.c b/gcc/testsuite/gcc.dg/graphite/pr33766.c
new file mode 100644
index 0000000..f6bb506
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/graphite/pr33766.c
@@ -0,0 +1,19 @@
+/* { dg-do compile } */
+/* { dg-options "-O2 -ftree-loop-linear" } */
+
+float
+fxt1_quantize_ALPHA1()
+{
+        int j1;
+        int i;
+        float *tv;
+        for (j1 = 1; j1; j1++) {
+                float e;
+                for (i = 1; i; i++)
+                        e = tv[i];
+                if (e)
+                        i = j1;
+        }
+        return tv[i];
+}
+
diff --git a/gcc/testsuite/gcc.dg/graphite/pr34016.c b/gcc/testsuite/gcc.dg/graphite/pr34016.c
new file mode 100644
index 0000000..5ca84bb
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/graphite/pr34016.c
@@ -0,0 +1,19 @@
+/* PR tree-optimization/34016 */
+/* { dg-do compile } */
+/* { dg-options "-O2 -ftree-loop-linear" } */
+
+extern void bar (double *);
+
+void foo (void)
+{
+  double gr[36];
+  int i, j;
+  for (i = 0; i <= 5; i++)
+    {
+      for (j = 0; j <= 5; j++)
+        gr[i + j * 6] = 0.0;
+      if (i <= 2)
+        gr[i + i * 6] = 1.0;
+    }
+  bar (gr);
+}
diff --git a/gcc/testsuite/gcc.dg/graphite/pr34017.c b/gcc/testsuite/gcc.dg/graphite/pr34017.c
new file mode 100644
index 0000000..ee279b7
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/graphite/pr34017.c
@@ -0,0 +1,26 @@
+/* { dg-do compile } */
+/* { dg-options "-O2 -ftree-loop-linear" } */
+
+extern int s;
+
+void
+foo (int *x, int y, int z)
+{
+ int m, n;
+ int o;
+ int p = x[0];
+ o = s;
+ for (m = 0; m < s; m++)
+   for (n = 0; n < s; n++)
+     {
+       if (x[n] != p)
+         continue;
+       if (m > z)
+         z = m;
+       if (n < o)
+         o = n;
+     }
+ for (m = y; m <= z; m++)
+   {
+   }
+}
diff --git a/gcc/testsuite/gcc.dg/graphite/pr34123.c b/gcc/testsuite/gcc.dg/graphite/pr34123.c
new file mode 100644
index 0000000..81dbf3a
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/graphite/pr34123.c
@@ -0,0 +1,18 @@
+/* { dg-do compile } */
+/* { dg-options "-O2 -ftree-loop-linear" } */
+
+/* Testcase by Martin Michlmayr <tbm@cyrius.com> */
+
+static unsigned char sbox[256] = {
+};
+void MD2Transform (unsigned char state[16])
+{
+  unsigned char t = 0;
+  int i, j;
+  for (i = 0; i < 16; i++)
+    {
+      for (j = 0; j < 2; j++)
+        t = (state[j] ^= sbox[t]);
+      t += i;
+    }
+}
diff --git a/gcc/testsuite/gcc.dg/graphite/pr36287.c b/gcc/testsuite/gcc.dg/graphite/pr36287.c
new file mode 100644
index 0000000..51b77c7
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/graphite/pr36287.c
@@ -0,0 +1,22 @@
+/* { dg-do compile } */
+/* { dg-options "-O -ftree-loop-linear" } */
+
+int tab[2][2];
+
+int foo ()
+{
+  int i, j, k;
+
+  for (i = 0; i < 2; ++i)
+    for (j = 0; j < 2; ++j)
+      for (k = 0; k < 2; ++k) 
+	{}
+
+  for (i = 0; i < 2; ++i)
+    for (j = 0; j < 2; ++j)
+      if (i == 0)
+	tab[i][j] = 0;
+
+  return tab[0][1];
+}
+
diff --git a/gcc/testsuite/gcc.dg/graphite/pr37686.c b/gcc/testsuite/gcc.dg/graphite/pr37686.c
new file mode 100644
index 0000000..a5094bf
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/graphite/pr37686.c
@@ -0,0 +1,48 @@
+/* { dg-do compile { target powerpc*-*-* } } */
+/* { dg-options "-O3 -ftree-loop-linear" } */
+
+unsigned char inUse[256];
+unsigned char len[6][258];
+int code[6][258];
+unsigned int crc32Table[256] = { };
+  unsigned int getGlobalCRC (void) { }
+  int bsLive;
+void bsW (int n, unsigned int v) {
+ while (bsLive >= 8) {}
+ }
+ void hbAssignCodes (int * code,         unsigned char * length, int minLen,
+int maxLen, int alphaSize) {
+   int n, vec, i;
+   for (n = minLen;n <= maxLen;n++)
+       for (i = 0; i < alphaSize;i++)
+      code[i] = vec;
+   }
+  void sendMTFValues (void) {
+   int v, t, i, j, gs, ge, totc, bt, bc, iter;
+   int nSelectors, alphaSize, minLen, maxLen, selCtr;
+   int nGroups, nBytes;
+ {
+    while (1)
+  {
+  break;
+  }
+       hbAssignCodes (&code[t][0], &len[t][0], minLen, maxLen, alphaSize);
+     unsigned char inUse16[16];
+     for (i = 0;i < 16;i++)
+ if (inUse16[i])
+  {
+      for (j = 0;j < 16;j++)
+   if (inUse[i * 16 + j])    { }
+    }
+   }
+   for (i = 0; i < nSelectors;i++)     { }
+   for (t = 0; t < nGroups;t++)
+ {
+       int curr = len[t][0];
+       for (i = 0; i < alphaSize;i++)
+          while (curr < len[t][i])     { }
+     }
+   while (1)
+       for (i = gs; i <= ge;i++)  { }
+ }
+
diff --git a/gcc/testsuite/gcc.dg/graphite/pr42917.c b/gcc/testsuite/gcc.dg/graphite/pr42917.c
new file mode 100644
index 0000000..eddff3b
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/graphite/pr42917.c
@@ -0,0 +1,13 @@
+/* { dg-do compile } */
+/* { dg-options "-O1 -ftree-loop-linear -fcompare-debug" } */
+
+extern int A[];
+
+void
+foo ()
+{
+  int i, j;
+  for (i = 0; i < 4; i++)
+    for (j = 255; j >= 0; j--)
+      A[j] = 0;
+}
diff --git a/gcc/testsuite/gcc.dg/pr18792.c b/gcc/testsuite/gcc.dg/pr18792.c
deleted file mode 100644
index 4e93fe1..0000000
--- a/gcc/testsuite/gcc.dg/pr18792.c
+++ /dev/null
@@ -1,16 +0,0 @@
-/* PR tree-optimization/18792 */
-/* { dg-do compile } */
-/* { dg-options "-O1 -ftree-loop-linear" } */
-void put_atoms_in_triclinic_unitcell(float x[][3])
-{
-	int i=0,d;
-
-	while (x[i][3] < 0)
-		for (d=0; d<=3; d++)
-			x[i][d] = 0;
-
-	while (x[i][3] >= 0)
-		for (d=0; d<=3; d++)
-			x[i][d] = 0;
-
-}
diff --git a/gcc/testsuite/gcc.dg/pr19910.c b/gcc/testsuite/gcc.dg/pr19910.c
deleted file mode 100644
index 1ee0d21..0000000
--- a/gcc/testsuite/gcc.dg/pr19910.c
+++ /dev/null
@@ -1,16 +0,0 @@
-/* Contributed by Volker Reichelt <reichelt@gcc.gnu.org>.  */
-
-/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-loop-linear" } */
-
-int a[3];
-
-void foo()
-{
-  int i, j;
-
-  for (i = 1; i >= 0; --i)
-    for (j = i; j >= 0; --j)
-      a[i+j] = 0;
-}
-
diff --git a/gcc/testsuite/gcc.dg/pr23625.c b/gcc/testsuite/gcc.dg/pr23625.c
deleted file mode 100644
index aaeddb2..0000000
--- a/gcc/testsuite/gcc.dg/pr23625.c
+++ /dev/null
@@ -1,27 +0,0 @@
-/* Test case for PR23625 */
-/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-vectorize -ftree-loop-linear" } */
-
-typedef long INT32;
-void find_best_colors ()
-{
-int ic0, ic1, ic2;
-INT32 * bptr;
-INT32 dist1;
-INT32 dist2;
-INT32 xx1;
-for (ic0 = (1<<(5 -3))-1;ic0 >= 0;ic0--)
-{
-  for (ic1 = (1<<(6 -3))-1;ic1 >= 0;ic1--)
-  {
-    dist2 = dist1;
-     for (ic2 = (1<<(5 -3))-1;ic2 >= 0;ic2--)
-     {
-        *bptr = dist2;
-        bptr++;
-     }
-     dist1 += xx1;
-  }
-}
-}
-
diff --git a/gcc/testsuite/gcc.dg/pr29330.c b/gcc/testsuite/gcc.dg/pr29330.c
deleted file mode 100644
index dff4207..0000000
--- a/gcc/testsuite/gcc.dg/pr29330.c
+++ /dev/null
@@ -1,15 +0,0 @@
-/* PR tree-optimization/29330 */
-/* { dg-do compile } */
-/* { dg-options "-O -ftree-loop-linear -std=gnu99" } */
-
-int buf[2][2][2][2];
-
-void
-f (void)
-{
-  for (int a = 0; a < 2; ++a)
-    for (int b = 0; b < 2; ++b)
-      for (int c = 0; c < 2; ++c)
-	for (int d = 0; d < 2; ++d)
-	  buf[a][b][c][d] = 0;
-}
diff --git a/gcc/testsuite/gcc.dg/pr29581-1.c b/gcc/testsuite/gcc.dg/pr29581-1.c
deleted file mode 100644
index e540073..0000000
--- a/gcc/testsuite/gcc.dg/pr29581-1.c
+++ /dev/null
@@ -1,44 +0,0 @@
-/* PR tree-optimization/29581 */
-/* Origin: gcc.dg/vect/vect-85.c */
-/* { dg-do run } */
-/* { dg-options "-O2 -ftree-loop-linear" } */
-
-extern void abort (void);
-
-#define N 16
-
-int main1 (int *a)
-{
-  int i, j, k;
-  int b[N];
-
-  for (i = 0; i < N; i++)
-    {
-      for (j = 0; j < N; j++)
-	{
-	  k = i + N;
-	  a[j] = k;
-	}
-      b[i] = k;
-    }
-
-
-  for (j = 0; j < N; j++)
-    if (a[j] != i + N - 1)
-      abort();	
-
-  for (j = 0; j < N; j++)
-    if (b[j] != j + N)
-      abort();	
-
-  return 0;
-}
-
-int main (void)
-{
-  int a[N] __attribute__ ((__aligned__(16)));
-
-  main1 (a);
-
-  return 0;
-}
diff --git a/gcc/testsuite/gcc.dg/pr29581-2.c b/gcc/testsuite/gcc.dg/pr29581-2.c
deleted file mode 100644
index c99d78c..0000000
--- a/gcc/testsuite/gcc.dg/pr29581-2.c
+++ /dev/null
@@ -1,46 +0,0 @@
-/* PR tree-optimization/29581 */
-/* Origin: gcc.dg/vect/vect-86.c */
-/* { dg-do run } */
-/* { dg-options "-O2 -ftree-loop-linear" } */
-
-extern void abort (void);
-
-#define N 16
-
-int main1 (int n)
-{
-  int i, j, k;
-  int a[N], b[N];
-
-  for (i = 0; i < n; i++)
-    {
-      for (j = 0; j < n; j++)
-	{
-	  k = i + n;
-	  a[j] = k;
-	}
-      b[i] = k;
-    }
-
-
-  for (j = 0; j < n; j++)
-    if (a[j] != i + n - 1)
-      abort();	
-
-  for (i = 0; i < n; i++)
-    if (b[i] != i + n)
-      abort();	
-
-  return 0;
-}
-
-int main (void)
-{
-  main1 (N);
-  main1 (0);
-  main1 (1);
-  main1 (2);
-  main1 (N-1);
-
-  return 0;
-}
diff --git a/gcc/testsuite/gcc.dg/pr29581-3.c b/gcc/testsuite/gcc.dg/pr29581-3.c
deleted file mode 100644
index c9d72ce..0000000
--- a/gcc/testsuite/gcc.dg/pr29581-3.c
+++ /dev/null
@@ -1,48 +0,0 @@
-/* PR tree-optimization/29581 */
-/* Origin: gcc.dg/vect/vect-87.c */
-/* { dg-do run } */
-/* { dg-options "-O2 -ftree-loop-linear" } */
-
-extern void abort (void);
-
-#define N 16
-
-int main1 (int n, int *a)
-{
-  int i, j, k;
-  int b[N];
-
-  for (i = 0; i < n; i++)
-    {
-      for (j = 0; j < n; j++)
-	{
-	  k = i + n;
-	  a[j] = k;
-	}
-      b[i] = k;
-    }
-
-
-  for (j = 0; j < n; j++)
-    if (a[j] != i + n - 1)
-      abort();	
-
-  for (j = 0; j < n; j++)
-    if (b[j] != j + n)
-      abort();	
-
-  return 0;
-}
-
-int main (void)
-{
-  int a[N] __attribute__ ((__aligned__(16)));
-
-  main1 (N, a);
-  main1 (0, a);
-  main1 (1, a);
-  main1 (2, a);
-  main1 (N-1, a);
-
-  return 0;
-}
diff --git a/gcc/testsuite/gcc.dg/pr29581-4.c b/gcc/testsuite/gcc.dg/pr29581-4.c
deleted file mode 100644
index c2d894c..0000000
--- a/gcc/testsuite/gcc.dg/pr29581-4.c
+++ /dev/null
@@ -1,48 +0,0 @@
-/* PR tree-optimization/29581 */
-/* Origin: gcc.dg/vect/vect-88.c */
-/* { dg-do run } */
-/* { dg-options "-O2 -ftree-loop-linear" } */
-
-extern void abort (void);
-
-#define N 16
-
-int main1 (int n, int *a)
-{
-  int i, j, k;
-  int b[N];
-
-  for (i = 0; i < n; i++)
-    {
-      for (j = 0; j < n; j++)
-	{
-	  k = i + n;
-	  a[j] = k;
-	}
-      b[i] = k;
-    }
-
-
-  for (j = 0; j < n; j++)
-    if (a[j] != i + n - 1)
-      abort();	
-
-  for (j = 0; j < n; j++)
-    if (b[j] != j + n)
-      abort();	
-
-  return 0;
-}
-
-int main (void)
-{
-  int a[N+1] __attribute__ ((__aligned__(16)));
-
-  main1 (N, a+1);
-  main1 (0, a+1);
-  main1 (1, a+1);
-  main1 (2, a+1);
-  main1 (N-1, a+1);
-
-  return 0;
-}
diff --git a/gcc/testsuite/gcc.dg/pr34016.c b/gcc/testsuite/gcc.dg/pr34016.c
deleted file mode 100644
index 5ca84bb..0000000
--- a/gcc/testsuite/gcc.dg/pr34016.c
+++ /dev/null
@@ -1,19 +0,0 @@
-/* PR tree-optimization/34016 */
-/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-loop-linear" } */
-
-extern void bar (double *);
-
-void foo (void)
-{
-  double gr[36];
-  int i, j;
-  for (i = 0; i <= 5; i++)
-    {
-      for (j = 0; j <= 5; j++)
-        gr[i + j * 6] = 0.0;
-      if (i <= 2)
-        gr[i + i * 6] = 1.0;
-    }
-  bar (gr);
-}
diff --git a/gcc/testsuite/gcc.dg/pr42917.c b/gcc/testsuite/gcc.dg/pr42917.c
deleted file mode 100644
index d8db32e..0000000
--- a/gcc/testsuite/gcc.dg/pr42917.c
+++ /dev/null
@@ -1,16 +0,0 @@
-/* { dg-do compile } */
-/* { dg-options "-O1 -ftree-loop-linear -fcompare-debug -fdump-tree-ltrans" } */
-
-extern int A[];
-
-void
-foo ()
-{
-  int i, j;
-  for (i = 0; i < 4; i++)
-    for (j = 255; j >= 0; j--)
-      A[j] = 0;
-}
-
-/* { dg-final { scan-tree-dump "Successfully transformed loop" "ltrans" } } */
-/* { dg-final { cleanup-tree-dump "ltrans" } } */
diff --git a/gcc/testsuite/gcc.dg/tree-ssa/20041110-1.c b/gcc/testsuite/gcc.dg/tree-ssa/20041110-1.c
deleted file mode 100644
index 825b2b4..0000000
--- a/gcc/testsuite/gcc.dg/tree-ssa/20041110-1.c
+++ /dev/null
@@ -1,26 +0,0 @@
-/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-loop-linear" } */
-
-/* This testcase was causing an ICE in building distance vectors because
-   we weren't ignoring the fact that one of the induction variables
-   involved in the dependence was outside of the loop.  */
-extern int foo (int, int);
-int
-main (void)
-{
-  int a[50];
-  int b[50];
-  int i, j, k;
-  for (i = 4; i < 30; i++)
-    {
-      for (j = 3; j < 40; j++)
-	{
-	  for (k = 9; k < 50; k++)
-	    {
-	      b[j] = a[i];
-	      a[k] = b[i];
-	    }
-	}
-    }
-  foo (a[i], b[i]);
-}
diff --git a/gcc/testsuite/gcc.dg/tree-ssa/data-dep-1.c b/gcc/testsuite/gcc.dg/tree-ssa/data-dep-1.c
deleted file mode 100644
index 12e42b7..0000000
--- a/gcc/testsuite/gcc.dg/tree-ssa/data-dep-1.c
+++ /dev/null
@@ -1,28 +0,0 @@
-/* { dg-do compile { target int32plus } } */ 
-/* { dg-options "-O2 -ftree-loop-linear -fdump-tree-ltrans-all" } */
-
-int foo (int n, int m)
-{
-  int a[10000][10000];
-  int i, j, k;
-
-  for(k = 0; k < 1234; k++)
-    for(j = 0; j < 5; j++)
-      for(i = 0; i < 67; i++)
-	{
-	  a[j+i-(-m+n+3)][i-k+4] = a[k+j][i];
-	}
-
-  return a[0][0];
-}
-
-
-/* For the data dependence analysis of the outermost loop, the
-   evolution of "k+j" should be instantiated in the outermost loop "k"
-   and the evolution should be taken in the innermost loop "i".  The
-   pattern below ensures that the evolution is not computed in the
-   outermost "k" loop: the 4 comes from the instantiation of the
-   number of iterations of loop "j".  */
-
-/* { dg-final { scan-tree-dump-times "4, \\+, 1" 0 "ltrans" } } */ 
-/* { dg-final { cleanup-tree-dump "ltrans" } } */
diff --git a/gcc/testsuite/gcc.dg/tree-ssa/loop-27.c b/gcc/testsuite/gcc.dg/tree-ssa/loop-27.c
deleted file mode 100644
index 802b7c2..0000000
--- a/gcc/testsuite/gcc.dg/tree-ssa/loop-27.c
+++ /dev/null
@@ -1,14 +0,0 @@
-/* PR tree-optimization/30565  */
-
-/* { dg-do compile } */
-/* { dg-options "-O1 -ftree-pre -ftree-loop-linear" } */
-
-static double snrdef[32];
-void psycho_n1(double ltmin[2][32], int stereo)
-{
-  int i, k;
-
-  for (k = 0; k < stereo; k++)
-    for (i = 0; i < 32; i++)
-      ltmin[k][i] = snrdef[i];
-}
diff --git a/gcc/testsuite/gcc.dg/tree-ssa/ltrans-1.c b/gcc/testsuite/gcc.dg/tree-ssa/ltrans-1.c
deleted file mode 100644
index bff58f6..0000000
--- a/gcc/testsuite/gcc.dg/tree-ssa/ltrans-1.c
+++ /dev/null
@@ -1,24 +0,0 @@
-/* { dg-do compile } */ 
-/* { dg-options "-O2 -ftree-loop-linear -fdump-tree-ltrans-all" } */
-/* { dg-options "-O2 -ftree-loop-linear -fdump-tree-ltrans-all -march=i486" { target { i?86-*-* && ilp32} } } */
-/* { dg-require-effective-target size32plus } */
-
-double u[1782225];
-int foo(int N, int *res)
-{
-  int i, j;
-  double sum = 0.0;
-  /* This loop should be converted to a perfect nest and
-     interchanged. */
-  for (i = 0; i < N; i++)
-    {
-      for (j = 0; j < N; j++)
-	sum = sum + u[i + 1335 * j];
-      
-      u[1336 * i] *= 2;
-    }
-  *res = sum + N;
-}
-/* { dg-final { scan-tree-dump-times "converted loop nest to perfect loop nest" 1 "ltrans"} } */ 
-/* { dg-final { scan-tree-dump-times "transformed loop" 1 "ltrans"} } */ 
-/* { dg-final { cleanup-tree-dump "ltrans" } } */
diff --git a/gcc/testsuite/gcc.dg/tree-ssa/ltrans-2.c b/gcc/testsuite/gcc.dg/tree-ssa/ltrans-2.c
deleted file mode 100644
index 9548bf2..0000000
--- a/gcc/testsuite/gcc.dg/tree-ssa/ltrans-2.c
+++ /dev/null
@@ -1,26 +0,0 @@
-/* { dg-do compile } */ 
-/* { dg-options "-O2 -ftree-loop-linear -fdump-tree-ltrans-all" } */
-/* { dg-require-effective-target size32plus } */
-
-double u[1782225];
-int foo(int N, int *res)
-{
-  unsigned int i, j;
-  double sum = 0;
-  
-  /* This loop should be converted to a perfect nest and
-     interchanged.  */
-  for (i = 0; i < N; i++)
-    {
-      for (j = 0; j < N; j++)
-	{
-	  sum = sum + u[i + 1335 * j];
-	  if (j == N - 1)
-	    u[1336 * i] *= 2;
-	}
-    }
-  *res = sum + N;
-}
-/* { dg-final { scan-tree-dump-times "transformed loop" 1 "ltrans"} {
-   xfail *-*-*} } */ 
-/* { dg-final { cleanup-tree-dump "ltrans" } } */
diff --git a/gcc/testsuite/gcc.dg/tree-ssa/ltrans-3.c b/gcc/testsuite/gcc.dg/tree-ssa/ltrans-3.c
deleted file mode 100644
index d7dd211..0000000
--- a/gcc/testsuite/gcc.dg/tree-ssa/ltrans-3.c
+++ /dev/null
@@ -1,22 +0,0 @@
-/* { dg-do compile } */ 
-/* { dg-options "-O2 -ftree-loop-linear -fdump-tree-ltrans-all" } */
-/* { dg-options "-O2 -ftree-loop-linear -fdump-tree-ltrans-all -march=i486" { target { i?86-*-* && ilp32} } } */
-/* { dg-require-effective-target size32plus } */
-
-double u[1782225];
-int foo(int N, int *res)
-{
-  unsigned int i, j;
-  double sum = 0;
-      for (i = 0; i < N; i++)
-	{
-	  for (j = 0; j < N; j++)
-	    {
-	      sum = sum + u[i + 1335 * j];
-	    }
-	}
-      *res = sum + N;
-}
-
-/* { dg-final { scan-tree-dump-times "transformed loop" 1 "ltrans" } } */ 
-/* { dg-final { cleanup-tree-dump "ltrans" } } */
diff --git a/gcc/testsuite/gcc.dg/tree-ssa/ltrans-4.c b/gcc/testsuite/gcc.dg/tree-ssa/ltrans-4.c
deleted file mode 100644
index 6682538..0000000
--- a/gcc/testsuite/gcc.dg/tree-ssa/ltrans-4.c
+++ /dev/null
@@ -1,21 +0,0 @@
-/* { dg-do compile } */ 
-/* { dg-options "-O2 -ftree-loop-linear -fdump-tree-ltrans-all" } */
-/* { dg-options "-O2 -ftree-loop-linear -fdump-tree-ltrans-all -march=i486" { target { i?86-*-* && ilp32} } } */
-/* { dg-require-effective-target size32plus } */
-
-double u[1782225];
-int foo(int N, int *res)
-{
-  int i, j;
-  double sum = 0;
-  for (i = 0; i < N; i++)	
-    for (j = 0; j < N; j++)
-      sum = sum + u[i + 1335 * j];
-  
-  for (i = 0; i < N; i++)
-    u[1336 * i] *= 2;
-  *res = sum + N;
-}
-
-/* { dg-final { scan-tree-dump-times "transformed loop" 1 "ltrans"} } */ 
-/* { dg-final { cleanup-tree-dump "ltrans" } } */
diff --git a/gcc/testsuite/gcc.dg/tree-ssa/ltrans-5.c b/gcc/testsuite/gcc.dg/tree-ssa/ltrans-5.c
deleted file mode 100644
index 3540723..0000000
--- a/gcc/testsuite/gcc.dg/tree-ssa/ltrans-5.c
+++ /dev/null
@@ -1,18 +0,0 @@
-/* { dg-do compile { target { size32plus } } } */ 
-/* { dg-options "-O2 -ftree-loop-linear -fdump-tree-ltrans-all" } */
-/* { dg-options "-O2 -ftree-loop-linear -fdump-tree-ltrans-all -march=i486" { target { i?86-*-* && ilp32} } } */
-
-int foo ()
-{
-  int A[100][1111];
-  int i, j;
-
-  for( i = 0; i < 1111; i++)
-    for( j = 0; j < 100; j++)
-      A[j][i] = 5 * A[j][i];
-
-  return A[10][10];
-}
-
-/* { dg-final { scan-tree-dump-times "transformed loop" 1 "ltrans"} } */ 
-/* { dg-final { cleanup-tree-dump "ltrans" } } */
diff --git a/gcc/testsuite/gcc.dg/tree-ssa/ltrans-6.c b/gcc/testsuite/gcc.dg/tree-ssa/ltrans-6.c
deleted file mode 100644
index e6a290a..0000000
--- a/gcc/testsuite/gcc.dg/tree-ssa/ltrans-6.c
+++ /dev/null
@@ -1,22 +0,0 @@
-/* { dg-do compile } */ 
-/* { dg-options "-O2 -ftree-loop-linear -fdump-tree-ltrans-all" } */
-/* { dg-options "-O2 -ftree-loop-linear -fdump-tree-ltrans-all -march=i486" { target { i?86-*-* && ilp32} } } */
-/* { dg-require-effective-target size32plus } */
-
-
-
-int medium_loop_interchange(int A[100][200])
-{
-  int i,j;
-
-  /* This loop should be interchanged. */
-
-  for(j = 0; j < 200; j++)
-    for(i = 0; i < 100; i++)
-      A[i][j] = A[i][j] + A[i][j];
-
-  return A[1][1];
-}
-
-/* { dg-final { scan-tree-dump-times "transformed loop" 1 "ltrans"} } */ 
-/* { dg-final { cleanup-tree-dump "ltrans" } } */
diff --git a/gcc/testsuite/gcc.dg/tree-ssa/ltrans-8.c b/gcc/testsuite/gcc.dg/tree-ssa/ltrans-8.c
deleted file mode 100644
index 67569d8..0000000
--- a/gcc/testsuite/gcc.dg/tree-ssa/ltrans-8.c
+++ /dev/null
@@ -1,15 +0,0 @@
-/* { dg-do compile } */ 
-/* { dg-options "-O2 -ftree-loop-linear -fdump-tree-ltrans-all" } */
-/* { dg-options "-O2 -ftree-loop-linear -fdump-tree-ltrans-all -march=i486" { target { i?86-*-* && ilp32} } } */
-double foo(double *a)
-{
-       int i,j;
-       double r = 0.0;
-      for (i=0; i<100; ++i)
-               for (j=0; j<1000; ++j)
-                      r += a[j*100+i];
-       return r;
-}
-
-/* { dg-final { scan-tree-dump-times "transformed loop" 1 "ltrans"} } */ 
-/* { dg-final { cleanup-tree-dump "ltrans" } } */
diff --git a/gcc/testsuite/gcc.dg/tree-ssa/pr20256.c b/gcc/testsuite/gcc.dg/tree-ssa/pr20256.c
deleted file mode 100644
index aa482ed..0000000
--- a/gcc/testsuite/gcc.dg/tree-ssa/pr20256.c
+++ /dev/null
@@ -1,25 +0,0 @@
-/* { dg-do compile } */ 
-/* { dg-options "-O2 -ftree-loop-linear -fdump-tree-ltrans-all" } */
-/* { dg-require-effective-target size32plus } */
-
-int foo()
-{
-  int x[2][2], y[2];
-  int i, n, s;
-
-  /* This is a reduction: there is a scalar dependence that cannot be
-     removed by rewriting IVs.  This code cannot and should not be
-     transformed into a perfect loop.  */
-  for (n = 0; n < 2; n++)
-    {
-      s = 0;
-      for (i = 0; i < 2; i++)
-        s += x[n][i]*y[i];
-      s += 1;
-    }
-
-  return s;
-}
-
-/* { dg-final { scan-tree-dump-times "converted loop nest to perfect loop nest" 0 "ltrans"} } */ 
-/* { dg-final { cleanup-tree-dump "ltrans" } } */
diff --git a/gcc/testsuite/gcc.dg/tree-ssa/pr23820.c b/gcc/testsuite/gcc.dg/tree-ssa/pr23820.c
deleted file mode 100644
index ee855e1..0000000
--- a/gcc/testsuite/gcc.dg/tree-ssa/pr23820.c
+++ /dev/null
@@ -1,26 +0,0 @@
-/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-loop-linear" } */
-
-int t [2][4];
-
-void foo (void)
-{
-  int i, j, k, v;
-  float e;
-  for (;;)
-    {
-      v = 0;
-      for (j = 0; j < 2; j ++)
-        {
-          for (k = 2; k < 4; k ++)
-            {
-              e = 0.0;
-              for (i = 0; i < 4; i ++)
-                e += t [j][i];
-              if (e)
-                v = j;
-            }
-        }
-      t [v][0] = 0;
-    }
-}
diff --git a/gcc/testsuite/gcc.dg/tree-ssa/pr24309.c b/gcc/testsuite/gcc.dg/tree-ssa/pr24309.c
deleted file mode 100644
index b50e7a8..0000000
--- a/gcc/testsuite/gcc.dg/tree-ssa/pr24309.c
+++ /dev/null
@@ -1,18 +0,0 @@
-/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-loop-linear" } */
-
-float weight[10];
-void lsp_weight_quant(float *x, char *cdbk)
-{
-   int i,j;
-   float dist;
-   int best_id=0;
-   for (i=0;i<16;i++)
-   {
-      for (j=0;j<10;j++)
-         dist=dist+weight[j];
-      if (dist<0)
-         best_id=i;
-   }
-   x[j] = cdbk[best_id*10+j];
-}
diff --git a/gcc/testsuite/gcc.dg/tree-ssa/pr26435.c b/gcc/testsuite/gcc.dg/tree-ssa/pr26435.c
deleted file mode 100644
index 907c5d2..0000000
--- a/gcc/testsuite/gcc.dg/tree-ssa/pr26435.c
+++ /dev/null
@@ -1,20 +0,0 @@
-/* { dg-do compile } */ 
-/* { dg-options "-O2 -ftree-loop-linear -fdump-tree-ltrans-all" } */
-/* { dg-require-effective-target size32plus } */
-
-int foo(int *p, int n)
-{
-  int i, j, k = 0;
-
-  /* This is a reduction: there is a scalar dependence that cannot be
-     removed by rewriting IVs.  This code cannot and should not be
-     transformed into a perfect loop.  */
-  for (i = 0; i < 2; ++i, p += n)
-    for (j = 0; j < 2; ++j)
-      k += p[j];
-
-  return k;
-}
-
-/* { dg-final { scan-tree-dump-times "converted loop nest to perfect loop nest" 0 "ltrans"} } */ 
-/* { dg-final { cleanup-tree-dump "ltrans" } } */
diff --git a/gcc/testsuite/gcc.dg/tree-ssa/pr31183.c b/gcc/testsuite/gcc.dg/tree-ssa/pr31183.c
deleted file mode 100644
index 000d7b5..0000000
--- a/gcc/testsuite/gcc.dg/tree-ssa/pr31183.c
+++ /dev/null
@@ -1,14 +0,0 @@
-/* { dg-do compile } */ 
-/* { dg-options "-O2 -ftree-loop-linear" } */
-
-int buf[256 * 9];
-int f() 
-{
-  int i, j;
-
-  for (i = 0; i < 256; ++i)
-    for (j = 0; j < 8; ++j)
-      buf[j + 1] = buf[j] + 1;
-
-  return buf[10];
-}
diff --git a/gcc/testsuite/gcc.dg/tree-ssa/pr33576.c b/gcc/testsuite/gcc.dg/tree-ssa/pr33576.c
deleted file mode 100644
index 2470762..0000000
--- a/gcc/testsuite/gcc.dg/tree-ssa/pr33576.c
+++ /dev/null
@@ -1,20 +0,0 @@
-/* { dg-do compile } */ 
-/* { dg-options "-O2 -ftree-loop-linear" } */
-
-int a1[6][4][4];
-short b1[16];
-
-int c1;
-void CalculateQuantParam(void)
-{
-  int i, j, k, temp;
-
-   for(k=0; k<6; k++)
-      for(j=0; j<4; j++)
-        for(i=0; i<4; i++)
-        {
-          temp = (i<<2)+j;
-          a1[k][j][i]  = c1/b1[temp];
-        }
-}
-
diff --git a/gcc/testsuite/gcc.dg/tree-ssa/pr33766.c b/gcc/testsuite/gcc.dg/tree-ssa/pr33766.c
deleted file mode 100644
index f6bb506..0000000
--- a/gcc/testsuite/gcc.dg/tree-ssa/pr33766.c
+++ /dev/null
@@ -1,19 +0,0 @@
-/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-loop-linear" } */
-
-float
-fxt1_quantize_ALPHA1()
-{
-        int j1;
-        int i;
-        float *tv;
-        for (j1 = 1; j1; j1++) {
-                float e;
-                for (i = 1; i; i++)
-                        e = tv[i];
-                if (e)
-                        i = j1;
-        }
-        return tv[i];
-}
-
diff --git a/gcc/testsuite/gcc.dg/tree-ssa/pr34017.c b/gcc/testsuite/gcc.dg/tree-ssa/pr34017.c
deleted file mode 100644
index ee279b7..0000000
--- a/gcc/testsuite/gcc.dg/tree-ssa/pr34017.c
+++ /dev/null
@@ -1,26 +0,0 @@
-/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-loop-linear" } */
-
-extern int s;
-
-void
-foo (int *x, int y, int z)
-{
- int m, n;
- int o;
- int p = x[0];
- o = s;
- for (m = 0; m < s; m++)
-   for (n = 0; n < s; n++)
-     {
-       if (x[n] != p)
-         continue;
-       if (m > z)
-         z = m;
-       if (n < o)
-         o = n;
-     }
- for (m = y; m <= z; m++)
-   {
-   }
-}
diff --git a/gcc/testsuite/gcc.dg/tree-ssa/pr34123.c b/gcc/testsuite/gcc.dg/tree-ssa/pr34123.c
deleted file mode 100644
index 81dbf3a..0000000
--- a/gcc/testsuite/gcc.dg/tree-ssa/pr34123.c
+++ /dev/null
@@ -1,18 +0,0 @@
-/* { dg-do compile } */
-/* { dg-options "-O2 -ftree-loop-linear" } */
-
-/* Testcase by Martin Michlmayr <tbm@cyrius.com> */
-
-static unsigned char sbox[256] = {
-};
-void MD2Transform (unsigned char state[16])
-{
-  unsigned char t = 0;
-  int i, j;
-  for (i = 0; i < 16; i++)
-    {
-      for (j = 0; j < 2; j++)
-        t = (state[j] ^= sbox[t]);
-      t += i;
-    }
-}
diff --git a/gcc/testsuite/gcc.dg/tree-ssa/pr36287.c b/gcc/testsuite/gcc.dg/tree-ssa/pr36287.c
deleted file mode 100644
index 51b77c7..0000000
--- a/gcc/testsuite/gcc.dg/tree-ssa/pr36287.c
+++ /dev/null
@@ -1,22 +0,0 @@
-/* { dg-do compile } */
-/* { dg-options "-O -ftree-loop-linear" } */
-
-int tab[2][2];
-
-int foo ()
-{
-  int i, j, k;
-
-  for (i = 0; i < 2; ++i)
-    for (j = 0; j < 2; ++j)
-      for (k = 0; k < 2; ++k) 
-	{}
-
-  for (i = 0; i < 2; ++i)
-    for (j = 0; j < 2; ++j)
-      if (i == 0)
-	tab[i][j] = 0;
-
-  return tab[0][1];
-}
-
diff --git a/gcc/testsuite/gcc.dg/tree-ssa/pr37686.c b/gcc/testsuite/gcc.dg/tree-ssa/pr37686.c
deleted file mode 100644
index a5094bf..0000000
--- a/gcc/testsuite/gcc.dg/tree-ssa/pr37686.c
+++ /dev/null
@@ -1,48 +0,0 @@
-/* { dg-do compile { target powerpc*-*-* } } */
-/* { dg-options "-O3 -ftree-loop-linear" } */
-
-unsigned char inUse[256];
-unsigned char len[6][258];
-int code[6][258];
-unsigned int crc32Table[256] = { };
-  unsigned int getGlobalCRC (void) { }
-  int bsLive;
-void bsW (int n, unsigned int v) {
- while (bsLive >= 8) {}
- }
- void hbAssignCodes (int * code,         unsigned char * length, int minLen,
-int maxLen, int alphaSize) {
-   int n, vec, i;
-   for (n = minLen;n <= maxLen;n++)
-       for (i = 0; i < alphaSize;i++)
-      code[i] = vec;
-   }
-  void sendMTFValues (void) {
-   int v, t, i, j, gs, ge, totc, bt, bc, iter;
-   int nSelectors, alphaSize, minLen, maxLen, selCtr;
-   int nGroups, nBytes;
- {
-    while (1)
-  {
-  break;
-  }
-       hbAssignCodes (&code[t][0], &len[t][0], minLen, maxLen, alphaSize);
-     unsigned char inUse16[16];
-     for (i = 0;i < 16;i++)
- if (inUse16[i])
-  {
-      for (j = 0;j < 16;j++)
-   if (inUse[i * 16 + j])    { }
-    }
-   }
-   for (i = 0; i < nSelectors;i++)     { }
-   for (t = 0; t < nGroups;t++)
- {
-       int curr = len[t][0];
-       for (i = 0; i < alphaSize;i++)
-          while (curr < len[t][i])     { }
-     }
-   while (1)
-       for (i = gs; i <= ge;i++)  { }
- }
-
diff --git a/gcc/testsuite/gfortran.dg/graphite/interchange-4.f b/gcc/testsuite/gfortran.dg/graphite/interchange-4.f
new file mode 100644
index 0000000..3d42811
--- /dev/null
+++ b/gcc/testsuite/gfortran.dg/graphite/interchange-4.f
@@ -0,0 +1,29 @@
+      subroutine s231 (ntimes,ld,n,ctime,dtime,a,b,c,d,e,aa,bb,cc)
+c
+c     loop interchange
+c     loop with multiple dimension recursion
+c
+      integer ntimes, ld, n, i, nl, j
+      double precision a(n), b(n), c(n), d(n), e(n), aa(ld,n),
+     +                 bb(ld,n), cc(ld,n)
+      double precision chksum, cs2d
+      real t1, t2, second, ctime, dtime
+
+      call init(ld,n,a,b,c,d,e,aa,bb,cc,'s231 ')
+      t1 = second()
+      do 1 nl = 1,ntimes/n
+      do 10 i=1,n
+         do 20 j=2,n
+            aa(i,j) = aa(i,j-1) + bb(i,j)
+   20    continue
+   10 continue
+      call dummy(ld,n,a,b,c,d,e,aa,bb,cc,1.d0)
+   1  continue
+      t2 = second() - t1 - ctime - ( dtime * float(ntimes/n) )
+      chksum = cs2d(n,aa)
+      call check (chksum,(ntimes/n)*n*(n-1),n,t2,'s231 ')
+      return
+      end
+
+! { dg-final { scan-tree-dump-times "will be interchanged" 1 "graphite" { xfail *-*-* } } }
+! { dg-final { cleanup-tree-dump "graphite" } }
diff --git a/gcc/testsuite/gfortran.dg/graphite/interchange-5.f b/gcc/testsuite/gfortran.dg/graphite/interchange-5.f
new file mode 100644
index 0000000..658f10a
--- /dev/null
+++ b/gcc/testsuite/gfortran.dg/graphite/interchange-5.f
@@ -0,0 +1,30 @@
+      subroutine s235 (ntimes,ld,n,ctime,dtime,a,b,c,d,e,aa,bb,cc)
+c
+c     loop interchanging
+c     imperfectly nested loops
+c
+      integer ntimes, ld, n, i, nl, j
+      double precision a(n), b(n), c(n), d(n), e(n), aa(ld,n),
+     +                 bb(ld,n), cc(ld,n)
+      double precision chksum, cs1d, cs2d
+      real t1, t2, second, ctime, dtime
+
+      call init(ld,n,a,b,c,d,e,aa,bb,cc,'s235 ')
+      t1 = second()
+      do 1 nl = 1,ntimes/n
+      do 10 i = 1,n
+         a(i) =  a(i) + b(i) * c(i)
+         do 20 j = 2,n
+            aa(i,j) = aa(i,j-1) +  bb(i,j) * a(i)
+  20     continue
+  10  continue
+      call dummy(ld,n,a,b,c,d,e,aa,bb,cc,1.d0)
+  1   continue
+      t2 = second() - t1 - ctime - ( dtime * float(ntimes/n) )
+      chksum = cs2d(n,aa) + cs1d(n,a)
+      call check (chksum,(ntimes/n)*n*(n-1),n,t2,'s235 ')
+      return
+      end
+
+! { dg-final { scan-tree-dump-times "will be interchanged" 1 "graphite" { xfail *-*-* } } }
+! { dg-final { cleanup-tree-dump "graphite" } }
diff --git a/gcc/testsuite/gfortran.dg/graphite/pr29290.f90 b/gcc/testsuite/gfortran.dg/graphite/pr29290.f90
new file mode 100644
index 0000000..8968d88
--- /dev/null
+++ b/gcc/testsuite/gfortran.dg/graphite/pr29290.f90
@@ -0,0 +1,9 @@
+! PR tree-optimization/29290
+! { dg-do compile }
+! { dg-options "-O3 -ftree-loop-linear" }
+
+subroutine pr29290 (a, b, c, d)
+  integer c, d
+  real*8 a(c,c), b(c,c)
+  a(1:d,1:d) = b(1:d,1:d)
+end
diff --git a/gcc/testsuite/gfortran.dg/graphite/pr29581.f90 b/gcc/testsuite/gfortran.dg/graphite/pr29581.f90
new file mode 100644
index 0000000..3e4a39e
--- /dev/null
+++ b/gcc/testsuite/gfortran.dg/graphite/pr29581.f90
@@ -0,0 +1,27 @@
+! PR tree-optimization/29581
+! { dg-do run }
+! { dg-options "-O2 -ftree-loop-linear" }
+
+      SUBROUTINE FOO (K)
+      INTEGER I, J, K, A(5,5), B
+      COMMON A
+      A(1,1) = 1
+ 10   B = 0
+      DO 30 I = 1, K
+        DO 20 J = 1, K
+          B = B + A(I,J)
+ 20     CONTINUE
+        A(I,I) = A(I,I) * 2
+ 30   CONTINUE
+      IF (B.GE.3) RETURN
+      GO TO 10
+      END SUBROUTINE
+
+      PROGRAM BAR
+        INTEGER A(5,5)
+        COMMON A
+        CALL FOO (2)
+        IF (A(1,1).NE.8) CALL ABORT
+        A(1,1) = 0
+        IF (ANY(A.NE.0)) CALL ABORT
+      END
diff --git a/gcc/testsuite/gfortran.dg/graphite/pr36286.f90 b/gcc/testsuite/gfortran.dg/graphite/pr36286.f90
new file mode 100644
index 0000000..bcdef08
--- /dev/null
+++ b/gcc/testsuite/gfortran.dg/graphite/pr36286.f90
@@ -0,0 +1,14 @@
+! { dg-do compile }
+! { dg-options "-O1 -ftree-loop-linear" }
+! PR tree-optimization/36286
+
+program test_count
+    integer, dimension(2,3) :: a, b
+    a = reshape( (/ 1, 3, 5, 2, 4, 6 /), (/ 2, 3 /))
+    b = reshape( (/ 0, 3, 5, 7, 4, 8 /), (/ 2, 3 /))
+    print '(3l6)', a.ne.b
+    print *, a(1,:).ne.b(1,:)
+    print *, a(2,:).ne.b(2,:)
+    print *, count(a.ne.b)
+end program test_count
+
diff --git a/gcc/testsuite/gfortran.dg/graphite/pr36922.f b/gcc/testsuite/gfortran.dg/graphite/pr36922.f
new file mode 100644
index 0000000..6aa95be
--- /dev/null
+++ b/gcc/testsuite/gfortran.dg/graphite/pr36922.f
@@ -0,0 +1,16 @@
+C PR tree-optimization/36922
+C { dg-do compile }
+C { dg-options "-O2 -ftree-loop-linear" }
+      SUBROUTINE PR36922(N,F,Z,C)
+      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
+      DIMENSION C(23821),Z(0:2*N+1),F(0:2*N)
+      I=0
+      DO L=0,N
+        DO M=0,L
+          DO M2=M,L
+            I=I+1
+            C(I)=F(L+M)*F(L-M)*Z(L-M2)/(F(M2+M)*F(M2-M)*F(L-M2)*F(L-M2))
+          ENDDO
+        ENDDO
+      ENDDO
+      END
diff --git a/gcc/testsuite/gfortran.dg/graphite/pr39516.f b/gcc/testsuite/gfortran.dg/graphite/pr39516.f
new file mode 100644
index 0000000..3d6104a
--- /dev/null
+++ b/gcc/testsuite/gfortran.dg/graphite/pr39516.f
@@ -0,0 +1,20 @@
+C PR tree-optimization/39516
+C { dg-do compile }
+C { dg-options "-O2 -ftree-loop-linear" }
+      SUBROUTINE SUB(A, B, M)
+      IMPLICIT NONE
+      DOUBLE PRECISION A(20,20), B(20)
+      INTEGER*8 I, J, K, M
+      DO I=1,M
+        DO J=1,M
+          A(I,J)=A(I,J)+1
+        END DO
+      END DO
+      DO K=1,20
+        DO I=1,M
+          DO J=1,M
+            B(I)=B(I)+A(I,J)
+          END DO
+        END DO
+      END DO
+      END SUBROUTINE
diff --git a/gcc/testsuite/gfortran.dg/loop_nest_1.f90 b/gcc/testsuite/gfortran.dg/loop_nest_1.f90
deleted file mode 100644
index 8968d88..0000000
--- a/gcc/testsuite/gfortran.dg/loop_nest_1.f90
+++ /dev/null
@@ -1,9 +0,0 @@
-! PR tree-optimization/29290
-! { dg-do compile }
-! { dg-options "-O3 -ftree-loop-linear" }
-
-subroutine pr29290 (a, b, c, d)
-  integer c, d
-  real*8 a(c,c), b(c,c)
-  a(1:d,1:d) = b(1:d,1:d)
-end
diff --git a/gcc/testsuite/gfortran.dg/ltrans-7.f90 b/gcc/testsuite/gfortran.dg/ltrans-7.f90
deleted file mode 100644
index 583edf2..0000000
--- a/gcc/testsuite/gfortran.dg/ltrans-7.f90
+++ /dev/null
@@ -1,31 +0,0 @@
-! { dg-do compile }
-! { dg-options "-O2 -ftree-loop-linear -fdump-tree-ltrans-all" }
-! { dg-options "-O2 -ftree-loop-linear -fdump-tree-ltrans-all -march=i486" { target { i?86-*-* && ilp32 } } }
-
-Program FOO
-  IMPLICIT INTEGER	(I-N)
-  IMPLICIT REAL*8	(A-H, O-Z)
-  PARAMETER (N1=1335, N2=1335)
-  COMMON U(N1,N2), V(N1,N2), P(N1,N2)
-
-  PC = 0.0D0
-  UC = 0.0D0
-  VC = 0.0D0
-
-  do I = 1, M
-     do J = 1, M
-        PC = PC + abs(P(I,J))
-        UC = UC + abs(U(I,J))
-        VC = VC + abs(V(I,J))
-     end do
-     U(I,I) = U(I,I) * ( mod (I, 100) /100.)
-  end do
-
-  write(6,366) PC, UC, VC
-366  format(/, ' PC = ',E12.4,/,' UC = ',E12.4,/,' VC = ',E12.4,/)
-
-end Program FOO
-
-! Please do not XFAIL.
-! { dg-final { scan-tree-dump-times "transformed loop" 1 "ltrans" } }
-! { dg-final { cleanup-tree-dump "ltrans" } }
diff --git a/gcc/testsuite/gfortran.dg/pr29581.f90 b/gcc/testsuite/gfortran.dg/pr29581.f90
deleted file mode 100644
index 3e4a39e..0000000
--- a/gcc/testsuite/gfortran.dg/pr29581.f90
+++ /dev/null
@@ -1,27 +0,0 @@
-! PR tree-optimization/29581
-! { dg-do run }
-! { dg-options "-O2 -ftree-loop-linear" }
-
-      SUBROUTINE FOO (K)
-      INTEGER I, J, K, A(5,5), B
-      COMMON A
-      A(1,1) = 1
- 10   B = 0
-      DO 30 I = 1, K
-        DO 20 J = 1, K
-          B = B + A(I,J)
- 20     CONTINUE
-        A(I,I) = A(I,I) * 2
- 30   CONTINUE
-      IF (B.GE.3) RETURN
-      GO TO 10
-      END SUBROUTINE
-
-      PROGRAM BAR
-        INTEGER A(5,5)
-        COMMON A
-        CALL FOO (2)
-        IF (A(1,1).NE.8) CALL ABORT
-        A(1,1) = 0
-        IF (ANY(A.NE.0)) CALL ABORT
-      END
diff --git a/gcc/testsuite/gfortran.dg/pr36286.f90 b/gcc/testsuite/gfortran.dg/pr36286.f90
deleted file mode 100644
index bcdef08..0000000
--- a/gcc/testsuite/gfortran.dg/pr36286.f90
+++ /dev/null
@@ -1,14 +0,0 @@
-! { dg-do compile }
-! { dg-options "-O1 -ftree-loop-linear" }
-! PR tree-optimization/36286
-
-program test_count
-    integer, dimension(2,3) :: a, b
-    a = reshape( (/ 1, 3, 5, 2, 4, 6 /), (/ 2, 3 /))
-    b = reshape( (/ 0, 3, 5, 7, 4, 8 /), (/ 2, 3 /))
-    print '(3l6)', a.ne.b
-    print *, a(1,:).ne.b(1,:)
-    print *, a(2,:).ne.b(2,:)
-    print *, count(a.ne.b)
-end program test_count
-
diff --git a/gcc/testsuite/gfortran.dg/pr36922.f b/gcc/testsuite/gfortran.dg/pr36922.f
deleted file mode 100644
index 6aa95be..0000000
--- a/gcc/testsuite/gfortran.dg/pr36922.f
+++ /dev/null
@@ -1,16 +0,0 @@
-C PR tree-optimization/36922
-C { dg-do compile }
-C { dg-options "-O2 -ftree-loop-linear" }
-      SUBROUTINE PR36922(N,F,Z,C)
-      IMPLICIT DOUBLE PRECISION(A-H,O-Z)
-      DIMENSION C(23821),Z(0:2*N+1),F(0:2*N)
-      I=0
-      DO L=0,N
-        DO M=0,L
-          DO M2=M,L
-            I=I+1
-            C(I)=F(L+M)*F(L-M)*Z(L-M2)/(F(M2+M)*F(M2-M)*F(L-M2)*F(L-M2))
-          ENDDO
-        ENDDO
-      ENDDO
-      END
diff --git a/gcc/testsuite/gfortran.dg/pr39516.f b/gcc/testsuite/gfortran.dg/pr39516.f
deleted file mode 100644
index 3d6104a..0000000
--- a/gcc/testsuite/gfortran.dg/pr39516.f
+++ /dev/null
@@ -1,20 +0,0 @@
-C PR tree-optimization/39516
-C { dg-do compile }
-C { dg-options "-O2 -ftree-loop-linear" }
-      SUBROUTINE SUB(A, B, M)
-      IMPLICIT NONE
-      DOUBLE PRECISION A(20,20), B(20)
-      INTEGER*8 I, J, K, M
-      DO I=1,M
-        DO J=1,M
-          A(I,J)=A(I,J)+1
-        END DO
-      END DO
-      DO K=1,20
-        DO I=1,M
-          DO J=1,M
-            B(I)=B(I)+A(I,J)
-          END DO
-        END DO
-      END DO
-      END SUBROUTINE
diff --git a/gcc/tree-data-ref.c b/gcc/tree-data-ref.c
index ccc0091..7a5fe89 100644
--- a/gcc/tree-data-ref.c
+++ b/gcc/tree-data-ref.c
@@ -340,6 +340,18 @@ print_dir_vectors (FILE *outf, VEC (lambda_vector, heap) *dir_vects,
     print_direction_vector (outf, v, length);
 }
 
+/* Print out a vector VEC of length N to OUTFILE.  */
+
+static inline void
+print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
+{
+  int i;
+
+  for (i = 0; i < n; i++)
+    fprintf (outfile, "%3d ", vector[i]);
+  fprintf (outfile, "\n");
+}
+
 /* Print a vector of distance vectors.  */
 
 void
@@ -2064,6 +2076,168 @@ compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
   affine_fn_free (overlaps_b_xyz);
 }
 
+/* Copy the elements of vector VEC1 with length SIZE to VEC2.  */
+
+static void
+lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
+		    int size)
+{
+  memcpy (vec2, vec1, size * sizeof (*vec1));
+}
+
+/* Copy the elements of M x N matrix MAT1 to MAT2.  */
+
+static void
+lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2,
+		    int m, int n)
+{
+  int i;
+
+  for (i = 0; i < m; i++)
+    lambda_vector_copy (mat1[i], mat2[i], n);
+}
+
+/* Store the N x N identity matrix in MAT.  */
+
+static void
+lambda_matrix_id (lambda_matrix mat, int size)
+{
+  int i, j;
+
+  for (i = 0; i < size; i++)
+    for (j = 0; j < size; j++)
+      mat[i][j] = (i == j) ? 1 : 0;
+}
+
+/* Return the first nonzero element of vector VEC1 between START and N.
+   We must have START <= N.   Returns N if VEC1 is the zero vector.  */
+
+static int
+lambda_vector_first_nz (lambda_vector vec1, int n, int start)
+{
+  int j = start;
+  while (j < n && vec1[j] == 0)
+    j++;
+  return j;
+}
+
+/* Add a multiple of row R1 of matrix MAT with N columns to row R2:
+   R2 = R2 + CONST1 * R1.  */
+
+static void
+lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2, int const1)
+{
+  int i;
+
+  if (const1 == 0)
+    return;
+
+  for (i = 0; i < n; i++)
+    mat[r2][i] += const1 * mat[r1][i];
+}
+
+/* Swap rows R1 and R2 in matrix MAT.  */
+
+static void
+lambda_matrix_row_exchange (lambda_matrix mat, int r1, int r2)
+{
+  lambda_vector row;
+
+  row = mat[r1];
+  mat[r1] = mat[r2];
+  mat[r2] = row;
+}
+
+/* Multiply vector VEC1 of length SIZE by a constant CONST1,
+   and store the result in VEC2.  */
+
+static void
+lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
+			  int size, int const1)
+{
+  int i;
+
+  if (const1 == 0)
+    lambda_vector_clear (vec2, size);
+  else
+    for (i = 0; i < size; i++)
+      vec2[i] = const1 * vec1[i];
+}
+
+/* Negate vector VEC1 with length SIZE and store it in VEC2.  */
+
+static void
+lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
+		      int size)
+{
+  lambda_vector_mult_const (vec1, vec2, size, -1);
+}
+
+/* Negate row R1 of matrix MAT which has N columns.  */
+
+static void
+lambda_matrix_row_negate (lambda_matrix mat, int n, int r1)
+{
+  lambda_vector_negate (mat[r1], mat[r1], n);
+}
+
+/* Return true if two vectors are equal.  */
+
+static bool
+lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
+{
+  int i;
+  for (i = 0; i < size; i++)
+    if (vec1[i] != vec2[i])
+      return false;
+  return true;
+}
+
+/* Given an M x N integer matrix A, this function determines an M x
+   M unimodular matrix U, and an M x N echelon matrix S such that
+   "U.A = S".  This decomposition is also known as "right Hermite".
+
+   Ref: Algorithm 2.1 page 33 in "Loop Transformations for
+   Restructuring Compilers" Utpal Banerjee.  */
+
+static void
+lambda_matrix_right_hermite (lambda_matrix A, int m, int n,
+			     lambda_matrix S, lambda_matrix U)
+{
+  int i, j, i0 = 0;
+
+  lambda_matrix_copy (A, S, m, n);
+  lambda_matrix_id (U, m);
+
+  for (j = 0; j < n; j++)
+    {
+      if (lambda_vector_first_nz (S[j], m, i0) < m)
+	{
+	  ++i0;
+	  for (i = m - 1; i >= i0; i--)
+	    {
+	      while (S[i][j] != 0)
+		{
+		  int sigma, factor, a, b;
+
+		  a = S[i-1][j];
+		  b = S[i][j];
+		  sigma = (a * b < 0) ? -1: 1;
+		  a = abs (a);
+		  b = abs (b);
+		  factor = sigma * (a / b);
+
+		  lambda_matrix_row_add (S, n, i, i-1, -factor);
+		  lambda_matrix_row_exchange (S, i, i-1);
+
+		  lambda_matrix_row_add (U, m, i, i-1, -factor);
+		  lambda_matrix_row_exchange (U, i, i-1);
+		}
+	    }
+	}
+    }
+}
+
 /* Determines the overlapping elements due to accesses CHREC_A and
    CHREC_B, that are affine functions.  This function cannot handle
    symbolic evolution functions, ie. when initial conditions are
diff --git a/gcc/tree-data-ref.h b/gcc/tree-data-ref.h
index 7865576..2e85677 100644
--- a/gcc/tree-data-ref.h
+++ b/gcc/tree-data-ref.h
@@ -23,7 +23,6 @@ along with GCC; see the file COPYING3.  If not see
 #define GCC_TREE_DATA_REF_H
 
 #include "graphds.h"
-#include "lambda.h"
 #include "omega.h"
 #include "tree-chrec.h"
 
@@ -96,6 +95,19 @@ struct dr_alias
   bitmap vops;
 };
 
+/* An integer vector.  A vector formally consists of an element of a vector
+   space. A vector space is a set that is closed under vector addition
+   and scalar multiplication.  In this vector space, an element is a list of
+   integers.  */
+typedef int *lambda_vector;
+DEF_VEC_P(lambda_vector);
+DEF_VEC_ALLOC_P(lambda_vector,heap);
+DEF_VEC_ALLOC_P(lambda_vector,gc);
+
+/* An integer matrix.  A matrix consists of m vectors of length n (IE
+   all vectors are the same length).  */
+typedef lambda_vector *lambda_matrix;
+
 /* Each vector of the access matrix represents a linear access
    function for a subscript.  First elements correspond to the
    leftmost indices, ie. for a[i][j] the first vector corresponds to
@@ -494,6 +506,22 @@ ddrs_have_anti_deps (VEC (ddr_p, heap) *dependence_relations)
   return false;
 }
 
+/* Returns the dependence level for a vector DIST of size LENGTH.
+   LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
+   to the sequence of statements, not carried by any loop.  */
+
+static inline unsigned
+dependence_level (lambda_vector dist_vect, int length)
+{
+  int i;
+
+  for (i = 0; i < length; i++)
+    if (dist_vect[i] != 0)
+      return i + 1;
+
+  return 0;
+}
+
 /* Return the dependence level for the DDR relation.  */
 
 static inline unsigned
@@ -629,16 +657,6 @@ rdg_has_similar_memory_accesses (struct graph *rdg, int v1, int v2)
 				       RDG_STMT (rdg, v2));
 }
 
-/* In lambda-code.c  */
-bool lambda_transform_legal_p (lambda_trans_matrix, int,
-			       VEC (ddr_p, heap) *);
-void lambda_collect_parameters (VEC (data_reference_p, heap) *,
-				VEC (tree, heap) **);
-bool lambda_compute_access_matrices (VEC (data_reference_p, heap) *,
-				     VEC (tree, heap) *,
-				     VEC (loop_p, heap) *,
-				     struct obstack *);
-
 /* In tree-data-ref.c  */
 void split_constant_offset (tree , tree *, tree *);
 
@@ -656,4 +674,86 @@ DEF_VEC_ALLOC_P (rdgc, heap);
 DEF_VEC_P (bitmap);
 DEF_VEC_ALLOC_P (bitmap, heap);
 
+/* Compute the greatest common divisor of a VECTOR of SIZE numbers.  */
+
+static inline int
+lambda_vector_gcd (lambda_vector vector, int size)
+{
+  int i;
+  int gcd1 = 0;
+
+  if (size > 0)
+    {
+      gcd1 = vector[0];
+      for (i = 1; i < size; i++)
+	gcd1 = gcd (gcd1, vector[i]);
+    }
+  return gcd1;
+}
+
+/* Allocate a new vector of given SIZE.  */
+
+static inline lambda_vector
+lambda_vector_new (int size)
+{
+  return (lambda_vector) ggc_alloc_cleared_atomic (sizeof (int) * size);
+}
+
+/* Clear out vector VEC1 of length SIZE.  */
+
+static inline void
+lambda_vector_clear (lambda_vector vec1, int size)
+{
+  memset (vec1, 0, size * sizeof (*vec1));
+}
+
+/* Returns true when the vector V is lexicographically positive, in
+   other words, when the first nonzero element is positive.  */
+
+static inline bool
+lambda_vector_lexico_pos (lambda_vector v,
+			  unsigned n)
+{
+  unsigned i;
+  for (i = 0; i < n; i++)
+    {
+      if (v[i] == 0)
+	continue;
+      if (v[i] < 0)
+	return false;
+      if (v[i] > 0)
+	return true;
+    }
+  return true;
+}
+
+/* Return true if vector VEC1 of length SIZE is the zero vector.  */
+
+static inline bool
+lambda_vector_zerop (lambda_vector vec1, int size)
+{
+  int i;
+  for (i = 0; i < size; i++)
+    if (vec1[i] != 0)
+      return false;
+  return true;
+}
+
+/* Allocate a matrix of M rows x  N cols.  */
+
+static inline lambda_matrix
+lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
+{
+  lambda_matrix mat;
+  int i;
+
+  mat = (lambda_matrix) obstack_alloc (lambda_obstack,
+				       sizeof (lambda_vector *) * m);
+
+  for (i = 0; i < m; i++)
+    mat[i] = lambda_vector_new (n);
+
+  return mat;
+}
+
 #endif  /* GCC_TREE_DATA_REF_H  */
diff --git a/gcc/tree-flow.h b/gcc/tree-flow.h
index 682907c..1720859 100644
--- a/gcc/tree-flow.h
+++ b/gcc/tree-flow.h
@@ -856,6 +856,4 @@ void warn_function_noreturn (tree);
 
 void swap_tree_operands (gimple, tree *, tree *);
 
-int least_common_multiple (int, int);
-
 #endif /* _TREE_FLOW_H  */
diff --git a/gcc/tree-loop-linear.c b/gcc/tree-loop-linear.c
deleted file mode 100644
index 5b19c17..0000000
--- a/gcc/tree-loop-linear.c
+++ /dev/null
@@ -1,423 +0,0 @@
-/* Linear Loop transforms
-   Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009, 2010
-   Free Software Foundation, Inc.
-   Contributed by Daniel Berlin <dberlin@dberlin.org>.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3.  If not see
-<http://www.gnu.org/licenses/>.  */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tree-flow.h"
-#include "cfgloop.h"
-#include "tree-chrec.h"
-#include "tree-data-ref.h"
-#include "tree-scalar-evolution.h"
-#include "tree-pass.h"
-#include "lambda.h"
-
-/* Linear loop transforms include any composition of interchange,
-   scaling, skewing, and reversal.  They are used to change the
-   iteration order of loop nests in order to optimize data locality of
-   traversals, or remove dependences that prevent
-   parallelization/vectorization/etc.
-
-   TODO: Determine reuse vectors/matrix and use it to determine optimal
-   transform matrix for locality purposes.
-   TODO: Completion of partial transforms.  */
-
-/* Gather statistics for loop interchange.  LOOP is the loop being
-   considered. The first loop in the considered loop nest is
-   FIRST_LOOP, and consequently, the index of the considered loop is
-   obtained by LOOP->DEPTH - FIRST_LOOP->DEPTH
-
-   Initializes:
-   - DEPENDENCE_STEPS the sum of all the data dependence distances
-   carried by loop LOOP,
-
-   - NB_DEPS_NOT_CARRIED_BY_LOOP the number of dependence relations
-   for which the loop LOOP is not carrying any dependence,
-
-   - ACCESS_STRIDES the sum of all the strides in LOOP.
-
-   Example: for the following loop,
-
-   | loop_1 runs 1335 times
-   |   loop_2 runs 1335 times
-   |     A[{{0, +, 1}_1, +, 1335}_2]
-   |     B[{{0, +, 1}_1, +, 1335}_2]
-   |   endloop_2
-   |   A[{0, +, 1336}_1]
-   | endloop_1
-
-   gather_interchange_stats (in loop_1) will return
-   DEPENDENCE_STEPS = 3002
-   NB_DEPS_NOT_CARRIED_BY_LOOP = 5
-   ACCESS_STRIDES = 10694
-
-   gather_interchange_stats (in loop_2) will return
-   DEPENDENCE_STEPS = 3000
-   NB_DEPS_NOT_CARRIED_BY_LOOP = 7
-   ACCESS_STRIDES = 8010
-*/
-
-static void
-gather_interchange_stats (VEC (ddr_p, heap) *dependence_relations ATTRIBUTE_UNUSED,
-			  VEC (data_reference_p, heap) *datarefs ATTRIBUTE_UNUSED,
-			  struct loop *loop ATTRIBUTE_UNUSED,
-			  struct loop *first_loop ATTRIBUTE_UNUSED,
-			  unsigned int *dependence_steps ATTRIBUTE_UNUSED,
-			  unsigned int *nb_deps_not_carried_by_loop ATTRIBUTE_UNUSED,
-			  double_int *access_strides ATTRIBUTE_UNUSED)
-{
-  unsigned int i, j;
-  struct data_dependence_relation *ddr;
-  struct data_reference *dr;
-
-  *dependence_steps = 0;
-  *nb_deps_not_carried_by_loop = 0;
-  *access_strides = double_int_zero;
-
-  FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr)
-    {
-      /* If we don't know anything about this dependence, or the distance
-	 vector is NULL, or there is no dependence, then there is no reuse of
-	 data.  */
-      if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
-	  || DDR_ARE_DEPENDENT (ddr) == chrec_known
-	  || DDR_NUM_DIST_VECTS (ddr) == 0)
-	continue;
-
-      for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
-	{
-	  int dist = DDR_DIST_VECT (ddr, j)[loop_depth (loop) - loop_depth (first_loop)];
-
-	  if (dist == 0)
-	    (*nb_deps_not_carried_by_loop) += 1;
-
-	  else if (dist < 0)
-	    (*dependence_steps) += -dist;
-
-	  else
-	    (*dependence_steps) += dist;
-	}
-    }
-
-  /* Compute the access strides.  */
-  FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
-    {
-      unsigned int it;
-      tree ref = DR_REF (dr);
-      gimple stmt = DR_STMT (dr);
-      struct loop *stmt_loop = loop_containing_stmt (stmt);
-      struct loop *inner_loop = first_loop->inner;
-
-      if (inner_loop != stmt_loop
-	  && !flow_loop_nested_p (inner_loop, stmt_loop))
-	continue;
-
-      for (it = 0; it < DR_NUM_DIMENSIONS (dr);
-	   it++, ref = TREE_OPERAND (ref, 0))
-	{
-	  int num = am_vector_index_for_loop (DR_ACCESS_MATRIX (dr), loop->num);
-	  int istride = AM_GET_ACCESS_MATRIX_ELEMENT (DR_ACCESS_MATRIX (dr), it, num);
-	  tree array_size = TYPE_SIZE (TREE_TYPE (ref));
-	  double_int dstride;
-
-	  if (array_size == NULL_TREE
-	      || TREE_CODE (array_size) != INTEGER_CST)
-	    continue;
-
-	  dstride = double_int_mul (tree_to_double_int (array_size),
-				    shwi_to_double_int (istride));
-	  (*access_strides) = double_int_add (*access_strides, dstride);
-	}
-    }
-}
-
-/* Attempt to apply interchange transformations to TRANS to maximize the
-   spatial and temporal locality of the loop.
-   Returns the new transform matrix.  The smaller the reuse vector
-   distances in the inner loops, the fewer the cache misses.
-   FIRST_LOOP is the loop->num of the first loop in the analyzed loop
-   nest.  */
-
-
-static lambda_trans_matrix
-try_interchange_loops (lambda_trans_matrix trans,
-		       unsigned int depth,
-		       VEC (ddr_p, heap) *dependence_relations,
-		       VEC (data_reference_p, heap) *datarefs,
-		       struct loop *first_loop)
-{
-  bool res;
-  struct loop *loop_i;
-  struct loop *loop_j;
-  unsigned int dependence_steps_i, dependence_steps_j;
-  double_int access_strides_i, access_strides_j;
-  double_int small, large, nb_iter;
-  double_int l1_cache_size, l2_cache_size;
-  int cmp;
-  unsigned int nb_deps_not_carried_by_i, nb_deps_not_carried_by_j;
-  struct data_dependence_relation *ddr;
-
-  if (VEC_length (ddr_p, dependence_relations) == 0)
-    return trans;
-
-  /* When there is an unknown relation in the dependence_relations, we
-     know that it is no worth looking at this loop nest: give up.  */
-  ddr = VEC_index (ddr_p, dependence_relations, 0);
-  if (ddr == NULL || DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
-    return trans;
-
-  l1_cache_size = uhwi_to_double_int (L1_CACHE_SIZE * 1024);
-  l2_cache_size = uhwi_to_double_int (L2_CACHE_SIZE * 1024);
-
-  /* LOOP_I is always the outer loop.  */
-  for (loop_j = first_loop->inner;
-       loop_j;
-       loop_j = loop_j->inner)
-    for (loop_i = first_loop;
-	 loop_depth (loop_i) < loop_depth (loop_j);
-	 loop_i = loop_i->inner)
-      {
-	gather_interchange_stats (dependence_relations, datarefs,
-				  loop_i, first_loop,
-				  &dependence_steps_i,
-				  &nb_deps_not_carried_by_i,
-				  &access_strides_i);
-	gather_interchange_stats (dependence_relations, datarefs,
-				  loop_j, first_loop,
-				  &dependence_steps_j,
-				  &nb_deps_not_carried_by_j,
-				  &access_strides_j);
-
-	/* Heuristics for loop interchange profitability:
-
-	   0. Don't transform if the smallest stride is larger than
-	      the L2 cache, or if the largest stride multiplied by the
-	      number of iterations is smaller than the L1 cache.
-
-	   1. (spatial locality) Inner loops should have smallest
-              dependence steps.
-
-	   2. (spatial locality) Inner loops should contain more
-	   dependence relations not carried by the loop.
-
-	   3. (temporal locality) Inner loops should have smallest
-	      array access strides.
-	*/
-
-	cmp = double_int_ucmp (access_strides_i, access_strides_j);
-	small = cmp < 0 ? access_strides_i : access_strides_j;
-	large = cmp < 0 ? access_strides_j : access_strides_i;
-
-	if (double_int_ucmp (small, l2_cache_size) > 0)
-	  continue;
-
-	res = cmp < 0 ?
-	  estimated_loop_iterations (loop_j, false, &nb_iter):
-	  estimated_loop_iterations (loop_i, false, &nb_iter);
-
-	if (res
-	    && double_int_ucmp (double_int_mul (large, nb_iter),
-				l1_cache_size) < 0)
-	  continue;
-
-	if (dependence_steps_i < dependence_steps_j
-	    || nb_deps_not_carried_by_i > nb_deps_not_carried_by_j
-	    || cmp < 0)
-	  {
-	    lambda_matrix_row_exchange (LTM_MATRIX (trans),
-					loop_depth (loop_i) - loop_depth (first_loop),
-					loop_depth (loop_j) - loop_depth (first_loop));
-	    /* Validate the resulting matrix.  When the transformation
-	       is not valid, reverse to the previous transformation.  */
-	    if (!lambda_transform_legal_p (trans, depth, dependence_relations))
-	      lambda_matrix_row_exchange (LTM_MATRIX (trans),
-					  loop_depth (loop_i) - loop_depth (first_loop),
-					  loop_depth (loop_j) - loop_depth (first_loop));
-	  }
-      }
-
-  return trans;
-}
-
-/* Return the number of nested loops in LOOP_NEST, or 0 if the loops
-   are not perfectly nested.  */
-
-unsigned int
-perfect_loop_nest_depth (struct loop *loop_nest)
-{
-  struct loop *temp;
-  unsigned int depth = 1;
-
-  /* If it's not a loop nest, we don't want it.  We also don't handle
-     sibling loops properly, which are loops of the following form:
-
-     | for (i = 0; i < 50; i++)
-     |   {
-     |     for (j = 0; j < 50; j++)
-     |       {
-     |        ...
-     |       }
-     |     for (j = 0; j < 50; j++)
-     |       {
-     |        ...
-     |       }
-     |   }
-  */
-
-  if (!loop_nest->inner || !single_exit (loop_nest))
-    return 0;
-
-  for (temp = loop_nest->inner; temp; temp = temp->inner)
-    {
-      /* If we have a sibling loop or multiple exit edges, jump ship.  */
-      if (temp->next || !single_exit (temp))
-	return 0;
-
-      depth++;
-    }
-
-  return depth;
-}
-
-/* Perform a set of linear transforms on loops.  */
-
-void
-linear_transform_loops (void)
-{
-  bool modified = false;
-  loop_iterator li;
-  VEC(tree,heap) *oldivs = NULL;
-  VEC(tree,heap) *invariants = NULL;
-  VEC(tree,heap) *lambda_parameters = NULL;
-  VEC(gimple,heap) *remove_ivs = VEC_alloc (gimple, heap, 3);
-  struct loop *loop_nest;
-  gimple oldiv_stmt;
-  unsigned i;
-
-  FOR_EACH_LOOP (li, loop_nest, 0)
-    {
-      unsigned int depth = 0;
-      VEC (ddr_p, heap) *dependence_relations;
-      VEC (data_reference_p, heap) *datarefs;
-
-      lambda_loopnest before, after;
-      lambda_trans_matrix trans;
-      struct obstack lambda_obstack;
-      struct loop *loop;
-      VEC (loop_p, heap) *nest;
-      VEC (loop_p, heap) *ln;
-
-      depth = perfect_loop_nest_depth (loop_nest);
-      if (depth == 0)
-	continue;
-
-      nest = VEC_alloc (loop_p, heap, 3);
-      for (loop = loop_nest; loop; loop = loop->inner)
-	VEC_safe_push (loop_p, heap, nest, loop);
-
-      gcc_obstack_init (&lambda_obstack);
-      VEC_truncate (tree, oldivs, 0);
-      VEC_truncate (tree, invariants, 0);
-      VEC_truncate (tree, lambda_parameters, 0);
-
-      datarefs = VEC_alloc (data_reference_p, heap, 10);
-      dependence_relations = VEC_alloc (ddr_p, heap, 10 * 10);
-      ln = VEC_alloc (loop_p, heap, 3);
-      if (!compute_data_dependences_for_loop (loop_nest, true, &ln, &datarefs,
-					      &dependence_relations))
-	goto free_and_continue;
-
-      lambda_collect_parameters (datarefs, &lambda_parameters);
-      if (!lambda_compute_access_matrices (datarefs, lambda_parameters,
-					   nest, &lambda_obstack))
-	goto free_and_continue;
-
-      if (dump_file && (dump_flags & TDF_DETAILS))
-	dump_ddrs (dump_file, dependence_relations);
-
-      /* Build the transformation matrix.  */
-      trans = lambda_trans_matrix_new (depth, depth, &lambda_obstack);
-      lambda_matrix_id (LTM_MATRIX (trans), depth);
-      trans = try_interchange_loops (trans, depth, dependence_relations,
-				     datarefs, loop_nest);
-
-      if (lambda_trans_matrix_id_p (trans))
-	{
-	  if (dump_file)
-	   fprintf (dump_file, "Won't transform loop. Optimal transform is the identity transform\n");
-	  goto free_and_continue;
-	}
-
-      /* Check whether the transformation is legal.  */
-      if (!lambda_transform_legal_p (trans, depth, dependence_relations))
-	{
-	  if (dump_file)
-	    fprintf (dump_file, "Can't transform loop, transform is illegal:\n");
-	  goto free_and_continue;
-	}
-
-      before = gcc_loopnest_to_lambda_loopnest (loop_nest, &oldivs,
-                                                &invariants, &lambda_obstack);
-
-      if (!before)
-	goto free_and_continue;
-
-      if (dump_file)
-	{
-	  fprintf (dump_file, "Before:\n");
-	  print_lambda_loopnest (dump_file, before, 'i');
-	}
-
-      after = lambda_loopnest_transform (before, trans, &lambda_obstack);
-
-      if (dump_file)
-	{
-	  fprintf (dump_file, "After:\n");
-	  print_lambda_loopnest (dump_file, after, 'u');
-	}
-
-      lambda_loopnest_to_gcc_loopnest (loop_nest, oldivs, invariants,
-				       &remove_ivs,
-                                       after, trans, &lambda_obstack);
-      modified = true;
-
-      if (dump_file)
-	fprintf (dump_file, "Successfully transformed loop.\n");
-
-    free_and_continue:
-      obstack_free (&lambda_obstack, NULL);
-      free_dependence_relations (dependence_relations);
-      free_data_refs (datarefs);
-      VEC_free (loop_p, heap, nest);
-      VEC_free (loop_p, heap, ln);
-    }
-
-  FOR_EACH_VEC_ELT (gimple, remove_ivs, i, oldiv_stmt)
-    remove_iv (oldiv_stmt);
-
-  VEC_free (tree, heap, oldivs);
-  VEC_free (tree, heap, invariants);
-  VEC_free (gimple, heap, remove_ivs);
-  scev_reset ();
-
-  if (modified)
-    rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa_full_phi);
-}
diff --git a/gcc/tree-parloops.c b/gcc/tree-parloops.c
index 9ece887..1feb028 100644
--- a/gcc/tree-parloops.c
+++ b/gcc/tree-parloops.c
@@ -240,6 +240,125 @@ name_to_copy_elt_hash (const void *aa)
   return (hashval_t) a->version;
 }
 
+/* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
+   matrix.  Rather than use floats, we simply keep a single DENOMINATOR that
+   represents the denominator for every element in the matrix.  */
+typedef struct lambda_trans_matrix_s
+{
+  lambda_matrix matrix;
+  int rowsize;
+  int colsize;
+  int denominator;
+} *lambda_trans_matrix;
+#define LTM_MATRIX(T) ((T)->matrix)
+#define LTM_ROWSIZE(T) ((T)->rowsize)
+#define LTM_COLSIZE(T) ((T)->colsize)
+#define LTM_DENOMINATOR(T) ((T)->denominator)
+
+/* Allocate a new transformation matrix.  */
+
+static lambda_trans_matrix
+lambda_trans_matrix_new (int colsize, int rowsize,
+			 struct obstack * lambda_obstack)
+{
+  lambda_trans_matrix ret;
+
+  ret = (lambda_trans_matrix)
+    obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
+  LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
+  LTM_ROWSIZE (ret) = rowsize;
+  LTM_COLSIZE (ret) = colsize;
+  LTM_DENOMINATOR (ret) = 1;
+  return ret;
+}
+
+/* Multiply a vector VEC by a matrix MAT.
+   MAT is an M*N matrix, and VEC is a vector with length N.  The result
+   is stored in DEST which must be a vector of length M.  */
+
+static void
+lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
+			   lambda_vector vec, lambda_vector dest)
+{
+  int i, j;
+
+  lambda_vector_clear (dest, m);
+  for (i = 0; i < m; i++)
+    for (j = 0; j < n; j++)
+      dest[i] += matrix[i][j] * vec[j];
+}
+
+/* Return true if TRANS is a legal transformation matrix that respects
+   the dependence vectors in DISTS and DIRS.  The conservative answer
+   is false.
+
+   "Wolfe proves that a unimodular transformation represented by the
+   matrix T is legal when applied to a loop nest with a set of
+   lexicographically non-negative distance vectors RDG if and only if
+   for each vector d in RDG, (T.d >= 0) is lexicographically positive.
+   i.e.: if and only if it transforms the lexicographically positive
+   distance vectors to lexicographically positive vectors.  Note that
+   a unimodular matrix must transform the zero vector (and only it) to
+   the zero vector." S.Muchnick.  */
+
+static bool
+lambda_transform_legal_p (lambda_trans_matrix trans,
+			  int nb_loops,
+			  VEC (ddr_p, heap) *dependence_relations)
+{
+  unsigned int i, j;
+  lambda_vector distres;
+  struct data_dependence_relation *ddr;
+
+  gcc_assert (LTM_COLSIZE (trans) == nb_loops
+	      && LTM_ROWSIZE (trans) == nb_loops);
+
+  /* When there are no dependences, the transformation is correct.  */
+  if (VEC_length (ddr_p, dependence_relations) == 0)
+    return true;
+
+  ddr = VEC_index (ddr_p, dependence_relations, 0);
+  if (ddr == NULL)
+    return true;
+
+  /* When there is an unknown relation in the dependence_relations, we
+     know that it is no worth looking at this loop nest: give up.  */
+  if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+    return false;
+
+  distres = lambda_vector_new (nb_loops);
+
+  /* For each distance vector in the dependence graph.  */
+  FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr)
+    {
+      /* Don't care about relations for which we know that there is no
+	 dependence, nor about read-read (aka. output-dependences):
+	 these data accesses can happen in any order.  */
+      if (DDR_ARE_DEPENDENT (ddr) == chrec_known
+	  || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
+	continue;
+
+      /* Conservatively answer: "this transformation is not valid".  */
+      if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
+	return false;
+
+      /* If the dependence could not be captured by a distance vector,
+	 conservatively answer that the transform is not valid.  */
+      if (DDR_NUM_DIST_VECTS (ddr) == 0)
+	return false;
+
+      /* Compute trans.dist_vect */
+      for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
+	{
+	  lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
+				     DDR_DIST_VECT (ddr, j), distres);
+
+	  if (!lambda_vector_lexico_pos (distres, nb_loops))
+	    return false;
+	}
+    }
+  return true;
+}
 
 /* Data dependency analysis. Returns true if the iterations of LOOP
    are independent on each other (that is, if we can execute them
diff --git a/gcc/tree-pass.h b/gcc/tree-pass.h
index a87a770..c614861 100644
--- a/gcc/tree-pass.h
+++ b/gcc/tree-pass.h
@@ -274,7 +274,7 @@ struct dump_file_info
 /* Insert PHI nodes everywhere they are needed.  No pruning of the
    IDF is done.  This is used by passes that need the PHI nodes for
    O_j even if it means that some arguments will come from the default
-   definition of O_j's symbol (e.g., pass_linear_transform).
+   definition of O_j's symbol.
 
    WARNING: If you need to use this flag, chances are that your pass
    may be doing something wrong.  Inserting PHI nodes for an old name
@@ -428,7 +428,6 @@ extern struct gimple_opt_pass pass_rename_ssa_copies;
 extern struct gimple_opt_pass pass_rest_of_compilation;
 extern struct gimple_opt_pass pass_sink_code;
 extern struct gimple_opt_pass pass_fre;
-extern struct gimple_opt_pass pass_linear_transform;
 extern struct gimple_opt_pass pass_check_data_deps;
 extern struct gimple_opt_pass pass_copy_prop;
 extern struct gimple_opt_pass pass_vrp;
diff --git a/gcc/tree-ssa-loop.c b/gcc/tree-ssa-loop.c
index d1d7142..149358d 100644
--- a/gcc/tree-ssa-loop.c
+++ b/gcc/tree-ssa-loop.c
@@ -246,45 +246,6 @@ struct gimple_opt_pass pass_vectorize =
  }
 };
 
-/* Loop nest optimizations.  */
-
-static unsigned int
-tree_linear_transform (void)
-{
-  if (number_of_loops () <= 1)
-    return 0;
-
-  linear_transform_loops ();
-  return 0;
-}
-
-static bool
-gate_tree_linear_transform (void)
-{
-  return flag_tree_loop_linear != 0;
-}
-
-struct gimple_opt_pass pass_linear_transform =
-{
- {
-  GIMPLE_PASS,
-  "ltrans",				/* name */
-  gate_tree_linear_transform,		/* gate */
-  tree_linear_transform,       		/* execute */
-  NULL,					/* sub */
-  NULL,					/* next */
-  0,					/* static_pass_number */
-  TV_TREE_LINEAR_TRANSFORM,  		/* tv_id */
-  PROP_cfg | PROP_ssa,			/* properties_required */
-  0,					/* properties_provided */
-  0,					/* properties_destroyed */
-  0,					/* todo_flags_start */
-  TODO_dump_func
-    | TODO_update_ssa_only_virtuals
-    | TODO_ggc_collect			/* todo_flags_finish */
- }
-};
-
 /* GRAPHITE optimizations.  */
 
 static unsigned int
@@ -305,6 +266,7 @@ gate_graphite_transforms (void)
      is turned on.  */
   if (flag_loop_block
       || flag_loop_interchange
+      || flag_tree_loop_linear
       || flag_loop_strip_mine
       || flag_graphite_identity
       || flag_loop_parallelize_all
@@ -312,6 +274,10 @@ gate_graphite_transforms (void)
       || flag_graphite_opencl)
     flag_graphite = 1;
 
+  /* Make flag_tree_loop_linear an alias of flag_loop_interchange.  */
+  if (flag_tree_loop_linear)
+    flag_loop_interchange = flag_tree_loop_linear;
+
   return flag_graphite != 0;
 }
 
-- 
1.7.1


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]