This is the mail archive of the gcc-patches@gcc.gnu.org mailing list for the GCC project.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]
Other format: [Raw text]

Re: PING^(n+1) fwprop merge (ping 6 or 7 by now)


On 5/7/06, Steven Bosscher <stevenb.gcc@gmail.com> wrote:
I have bootstrapped (multilib) the
patches on x86_64 for c,c++,objc,fortran,ada,java and I'm waiting for
the regression tests to complete.  Then I'll post the updated patch
with the test results (which should IMVHO be a requirement FWIW).


> There have been a significant number of changes > in the last few months, and it seems only reasonable to ensure that > significant changes in stage3 apply cleanly and don't cause regressions.

It would have been reasonable to don't let a patch go without any
reply whatsoever for four months, too.

The updates are a mere 3 changes that affect these two patches:
- CLEANUP_PRE_LOOP is gone
- execute in the tree_pass structure now is unsigned int
- validate_change_maybe_volatile is gone so that one hunk doesn't apply


> I'm not sure why Paolo isn't pinging these patches himself,


Paolo _has_ pinged his patches.  Many times.  And besides, I'm also an
author of this new pass, so they are my patches too.

>This is one reason why PINGs
> by interested third parties (other than the original contributor)
> carry slightly less weight.

RTFfwprop.c file and see my name on it so I don't consider myself a
third party, thank you very much.


> These submissions claim to be mostly performance neutral on SPEC, with a > slight hit for PPC,

No slight hit on PPC.  I appreciate you reply to my ping, but it would
have been helpful if you've read Paolo's complete story.  The PPC
regression was fixed already even before these fwprop patches were
posted.

> Personally, I'd love to see the 3% compile-time improvements from
> disabling path-following in CSE provided that the patch is safe and
> the performance impact on most platforms is negligible.  However,
> there are already complaints about the reasoning used to accept/reject
> significant changes in stage3, and whether they are truly ready for
> GCC just becuase they are pinged continually.

First of all, this work was finished in september last year.

Second, it has been on a branch (the dataflow branch) for months now,
which has been tested on a large number of targets.

Third, this is not a stage3 contribution, and I can't help that the
reviewers don't do their job.

If I post a patch in stage2, and early stage2 too if I may add, then
you should not slap me with "significant changes in stage3", but
instead ask yourself "why didn't I take the responsibility that I have
as a reviewer to comment on the patch?". IMHO you've forfeited  your
right to complain about timing if a patch has been pending as long as
these two.

> The postings for these patches also reported that these changes had
> only been bootstrapped and regression tested on i686-pc-linux-gnu.
> If someone was serious about their patches, they'd perhaps do slightly
> more than the required minimum testing.

But they had previously been bootstrapped and tested by me on
{i686,x86_64,ppc,ppc64,ia64}-suse-linux-gnu.  Plus SPEC on the two
x86* targets.  Plus nullstone on x86*. Plus PPC testing by David
Edelsohn.  Plus on a number of targets on the dataflow-branch. That
_is_ slightly more than the required minimum testing.

I realize you're not a mind reader, but when this patch was posted,
just testing on one target was enough for a patch contribution.  Now
you are raising the bar because, essentially, you and your fellow
reviewers have failed. That is the way I see it at least.

> There's also the issue of breakage and fallout.  Paolo's most recent
> patch is still causing mainline regressions on x86_64, see the post
> http://gcc.gnu.org/ml/gcc-patches/2006-04/msg00390.html and notice
> the "PING^n fwprop" in the title.

If you had read beyond the subject, you'd have seen that the
regressions mentioned concern a reload change, which also had to be
pinged because nobody is reviewing patches.  That message you point to
had nothing to do with fwprop other than the subject line.

Oh btw, I seem to recall that all your patches in the tree overflow
mess also have caused numerous regressions.  The difference between
yours and fwprops (if any, and I doubt it) is that you can approve
your own patches so that they are commited when they are ready, and
other people like Paolo and me have to wait until some reviewer is so
kind to take a little time to look at some patch. Which obviously
doesn't happen enough as proven by the huge number of pending patches
in e.g. the patch tracker. So you have time to fix whatever you've
broken, and we don't.

In fact, I'm fed up with your I-know-better attitude here.  Many of
the points you bring up have little or no relation to fwprop as far as
I can see, and none of them would have been particularly relevant if
these patches had been reviewed in time.

Your reply is the kind of message that makes me wonder why I try to
contibute to gcc at all.

Gr.
Steven


Here they are. Testresults are here: http://gcc.gnu.org/ml/gcc-testresults/2006-05/msg00346.html No new regressions compared to unpatched.

Gr.
Steven
	* Makefile.in: Add fwprop.o.
	* common.opt (-fforward-propagate): New.
	* df-core.c (df_bb_regno_last_use_find): Support case when there's
	no dataflow info attached to the insn.
	* fwprop.c: New file.
	* opts.c (decode_options): Don't enable CSE path following by default.
	Enable forward propagation at -O2.
	* params.def (PARAM_MAX_GCSE_PASSES): Enable two GCSE passes by default.
	* passes.c (init_optimization_passes): Schedule forward propagation.
	* rtl.h (find_occurrence): Declare.
	* rtlanal.c (find_occurrence): New.
	(loc_mentioned_in_p): Support NULL value of the second parameter.
	* timevar.def (TV_FWPROP): New.
	* tree-pass.h (pass_rtl_fwprop, pass_rtl_fwprop_with_addr): New.
	* doc/invoke.texi (Optimization Options): Document 

Index: doc/invoke.texi
===================================================================
--- doc/invoke.texi	(revision 113581)
+++ doc/invoke.texi	(working copy)
@@ -310,7 +310,7 @@ Objective-C and Objective-C++ Dialects}.
 -fcse-skip-blocks  -fcx-limited-range  -fdata-sections @gol
 -fdelayed-branch  -fdelete-null-pointer-checks -fearly-inlining @gol
 -fexpensive-optimizations  -ffast-math  -ffloat-store @gol
--fforce-addr  -ffunction-sections @gol
+-fforce-addr  -fforward-propagate  -ffunction-sections @gol
 -fgcse  -fgcse-lm  -fgcse-sm  -fgcse-las  -fgcse-after-reload @gol
 -fcrossjumping  -fif-conversion  -fif-conversion2 @gol
 -finline-functions  -finline-functions-called-once @gol
@@ -4565,6 +4565,16 @@ register-load. This option is now a nop 
 Force memory address constants to be copied into registers before
 doing arithmetic on them.
 
+@item -fforward-propagate
+@opindex fforward-propagate
+Perform a forward propagation pass on RTL, which try to combine two
+instructions and see if the result can be simplified.  If loop unrolling
+is active, two passes are performed and the second is scheduled after
+loop unrolling.
+
+This option is enabled by default at optimization levels @option{-O2},
+@option{-O3}, @option{-Os}.
+
 @item -fomit-frame-pointer
 @opindex fomit-frame-pointer
 Don't keep the frame pointer in a register for functions that
Index: tree-pass.h
===================================================================
--- tree-pass.h	(revision 113581)
+++ tree-pass.h	(working copy)
@@ -330,6 +330,8 @@ extern struct tree_opt_pass pass_rtl_eh;
 extern struct tree_opt_pass pass_initial_value_sets;
 extern struct tree_opt_pass pass_unshare_all_rtl;
 extern struct tree_opt_pass pass_instantiate_virtual_regs;
+extern struct tree_opt_pass pass_rtl_fwprop;
+extern struct tree_opt_pass pass_rtl_fwprop_addr;
 extern struct tree_opt_pass pass_jump2;
 extern struct tree_opt_pass pass_cse;
 extern struct tree_opt_pass pass_gcse;
Index: rtlanal.c
===================================================================
--- rtlanal.c	(revision 113581)
+++ rtlanal.c	(working copy)
@@ -552,6 +552,68 @@ count_occurrences (rtx x, rtx find, int 
     }
   return count;
 }
+
+/* Return a pointer to one of the occurrences of FIND in *PX.  */
+
+rtx *
+find_occurrence (rtx *px, rtx find)
+{
+  int i, j;
+  enum rtx_code code;
+  const char *format_ptr;
+  rtx x = *px;
+
+  if (x == find)
+    return px;
+
+  code = GET_CODE (x);
+  switch (code)
+    {
+    case REG:
+    case CONST_INT:
+    case CONST_DOUBLE:
+    case CONST_VECTOR:
+    case SYMBOL_REF:
+    case CODE_LABEL:
+    case PC:
+    case CC0:
+      return NULL;
+
+    case MEM:
+      if (MEM_P (find) && rtx_equal_p (x, find))
+	return px;
+      break;
+
+    default:
+      break;
+    }
+
+  format_ptr = GET_RTX_FORMAT (code);
+
+  for (i = 0; i < GET_RTX_LENGTH (code); i++)
+    {
+      rtx *result;
+      switch (*format_ptr++)
+	{
+	case 'e':
+	  result = find_occurrence (&XEXP (x, i), find);
+	  if (result)
+	    return result;
+	  break;
+
+	case 'E':
+	  for (j = 0; j < XVECLEN (x, i); j++)
+	    {
+	      result = find_occurrence (&XVECEXP (x, i, j), find);
+	      if (result)
+	        return result;
+	    }
+	  break;
+	}
+    }
+
+  return 0;
+}
 
 /* Nonzero if register REG appears somewhere within IN.
    Also works if REG is not a register; in this case it checks
@@ -2847,10 +2909,16 @@ auto_inc_p (rtx x)
 int
 loc_mentioned_in_p (rtx *loc, rtx in)
 {
-  enum rtx_code code = GET_CODE (in);
-  const char *fmt = GET_RTX_FORMAT (code);
+  enum rtx_code code;
+  const char *fmt;
   int i, j;
 
+  /* Allow this function to work in EXPR_LISTs.  */
+  if (!in)
+    return 0;
+
+  code = GET_CODE (in);
+  fmt = GET_RTX_FORMAT (code);
   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
     {
       if (loc == &in->u.fld[i].rt_rtx)
Index: df-core.c
===================================================================
--- df-core.c	(revision 113581)
+++ df-core.c	(working copy)
@@ -919,7 +919,11 @@ df_bb_regno_last_use_find (struct df *df
   FOR_BB_INSNS_REVERSE (bb, insn)
     {
       unsigned int uid = INSN_UID (insn);
-      for (use = DF_INSN_UID_GET (df, uid)->uses; use; use = use->next_ref)
+      struct df_insn_info *insn_info = DF_INSN_UID_GET (df, uid);
+      if (!insn_info)
+	continue;
+
+      for (use = insn_info->uses; use; use = use->next_ref)
 	if (DF_REF_REGNO (use) == regno)
 	  return use;
     }
@@ -938,7 +942,11 @@ df_bb_regno_first_def_find (struct df *d
   FOR_BB_INSNS (bb, insn)
     {
       unsigned int uid = INSN_UID (insn);
-      for (def = DF_INSN_UID_GET (df, uid)->defs; def; def = def->next_ref)
+      struct df_insn_info *insn_info = DF_INSN_UID_GET (df, uid);
+      if (!insn_info)
+	continue;
+
+      for (def = insn_info->defs; def; def = def->next_ref)
 	if (DF_REF_REGNO (def) == regno)
 	  return def;
     }
@@ -957,8 +965,11 @@ df_bb_regno_last_def_find (struct df *df
   FOR_BB_INSNS_REVERSE (bb, insn)
     {
       unsigned int uid = INSN_UID (insn);
+      struct df_insn_info *insn_info = DF_INSN_UID_GET (df, uid);
+      if (!insn_info)
+	continue;
 
-      for (def = DF_INSN_UID_GET (df, uid)->defs; def; def = def->next_ref)
+      for (def = insn_info->defs; def; def = def->next_ref)
 	if (DF_REF_REGNO (def) == regno)
 	  return def;
     }
Index: opts.c
===================================================================
--- opts.c	(revision 113581)
+++ opts.c	(working copy)
@@ -559,8 +559,7 @@ decode_options (unsigned int argc, const
       flag_thread_jumps = 1;
       flag_crossjumping = 1;
       flag_optimize_sibling_calls = 1;
-      flag_cse_follow_jumps = 1;
-      flag_cse_skip_blocks = 1;
+      flag_forward_propagate = 1;
       flag_gcse = 1;
       flag_expensive_optimizations = 1;
       flag_ipa_type_escape = 1;
Index: timevar.def
===================================================================
--- timevar.def	(revision 113581)
+++ timevar.def	(working copy)
@@ -128,6 +128,7 @@ DEFTIMEVAR (TV_TEMPLATE_INSTANTIATION, "
 DEFTIMEVAR (TV_EXPAND		     , "expand")
 DEFTIMEVAR (TV_VARCONST              , "varconst")
 DEFTIMEVAR (TV_JUMP                  , "jump")
+DEFTIMEVAR (TV_FWPROP                , "forward prop")
 DEFTIMEVAR (TV_CSE                   , "CSE")
 DEFTIMEVAR (TV_LOOP                  , "loop analysis")
 DEFTIMEVAR (TV_GCSE                  , "global CSE")
Index: common.opt
===================================================================
--- common.opt	(revision 113581)
+++ common.opt	(working copy)
@@ -440,6 +440,10 @@ fforce-mem
 Common Report Var(flag_force_mem)
 Copy memory operands into registers before use
 
+fforward-propagate
+Common Report Var(flag_forward_propagate)
+Perform a forward propagation pass on RTL
+
 ; Nonzero means don't put addresses of constant functions in registers.
 ; Used for compiling the Unix kernel, where strange substitutions are
 ; done on the assembly output.
Index: rtl.h
===================================================================
--- rtl.h	(revision 113581)
+++ rtl.h	(working copy)
@@ -1683,6 +1683,7 @@ extern HOST_WIDE_INT get_integer_term (r
 extern rtx get_related_value (rtx);
 extern int reg_mentioned_p (rtx, rtx);
 extern int count_occurrences (rtx, rtx, int);
+extern rtx *find_occurrence (rtx *, rtx);
 extern int reg_referenced_p (rtx, rtx);
 extern int reg_used_between_p (rtx, rtx, rtx);
 extern int reg_set_between_p (rtx, rtx, rtx);
Index: Makefile.in
===================================================================
--- Makefile.in	(revision 113581)
+++ Makefile.in	(working copy)
@@ -983,7 +983,7 @@ OBJS-common = \
  debug.o df-core.o df-problems.o df-scan.o dfp.o diagnostic.o dojump.o     \
  dominance.o loop-doloop.o	   					   \
  dwarf2asm.o dwarf2out.o emit-rtl.o except.o explow.o loop-iv.o		   \
- expmed.o expr.o final.o flow.o fold-const.o function.o gcse.o		   \
+ expmed.o expr.o final.o flow.o fold-const.o function.o fwprop.o gcse.o	   \
  genrtl.o ggc-common.o global.o graph.o gtype-desc.o			   \
  haifa-sched.o hooks.o ifcvt.o insn-attrtab.o insn-emit.o insn-modes.o	   \
  insn-extract.o insn-opinit.o insn-output.o insn-peep.o insn-recog.o	   \
@@ -2311,12 +2311,15 @@ cse.o : cse.c $(CONFIG_H) $(SYSTEM_H) co
    hard-reg-set.h $(FLAGS_H) insn-config.h $(RECOG_H) $(EXPR_H) toplev.h \
    output.h $(FUNCTION_H) $(BASIC_BLOCK_H) $(GGC_H) $(TM_P_H) $(TIMEVAR_H) \
    except.h $(TARGET_H) $(PARAMS_H) rtlhooks-def.h tree-pass.h $(REAL_H)
+fwprop.o : fwprop.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(RTL_H) \
+   toplev.h insn-config.h $(RECOG_H) $(FLAGS_H) $(OBSTACK_H) $(BASIC_BLOCK_H) \
+   output.h $(DF_H) alloc-pool.h $(TIMEVAR_H) tree-pass.h
 web.o : web.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(RTL_H) \
    hard-reg-set.h $(FLAGS_H) $(BASIC_BLOCK_H) $(FUNCTION_H) output.h toplev.h \
    $(DF_H) $(OBSTACK_H) timevar.h tree-pass.h
 see.o : see.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(RTL_H) \
    hard-reg-set.h $(FLAGS_H) $(BASIC_BLOCK_H) function.h output.h toplev.h \
-   $(DF_H) $(OBSTACK_H) timevar.h tree-pass.h
+   $(DF_H) $(OBSTACK_H) $(TIMEVAR_H) tree-pass.h
 gcse.o : gcse.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(RTL_H) \
    $(REGS_H) hard-reg-set.h $(FLAGS_H) $(REAL_H) insn-config.h $(GGC_H) \
    $(RECOG_H) $(EXPR_H) $(BASIC_BLOCK_H) $(FUNCTION_H) output.h toplev.h \
Index: passes.c
===================================================================
--- passes.c	(revision 113581)
+++ passes.c	(working copy)
@@ -635,6 +635,7 @@ init_optimization_passes (void)
   NEXT_PASS (pass_instantiate_virtual_regs);
   NEXT_PASS (pass_jump2);
   NEXT_PASS (pass_cse);
+  NEXT_PASS (pass_rtl_fwprop);
   NEXT_PASS (pass_gcse);
   NEXT_PASS (pass_jump_bypass);
   NEXT_PASS (pass_rtl_ifcvt);
@@ -645,6 +646,7 @@ init_optimization_passes (void)
   NEXT_PASS (pass_loop2);
   NEXT_PASS (pass_web);
   NEXT_PASS (pass_cse2);
+  NEXT_PASS (pass_rtl_fwprop_addr);
   NEXT_PASS (pass_life);
   NEXT_PASS (pass_combine);
   NEXT_PASS (pass_if_after_combine);
Index: params.def
===================================================================
--- params.def	(revision 113581)
+++ params.def	(working copy)
@@ -209,7 +209,7 @@ DEFPARAM(PARAM_MAX_GCSE_MEMORY,
 DEFPARAM(PARAM_MAX_GCSE_PASSES,
 	"max-gcse-passes",
 	"The maximum number of passes to make when doing GCSE",
-	1, 1, 0)
+	2, 1, 0)
 /* This is the threshold ratio when to perform partial redundancy
    elimination after reload. We perform partial redundancy elimination
    when the following holds:
Index: fwprop.c
===================================================================
--- fwprop.c	(revision 0)
+++ fwprop.c	(revision 0)
@@ -0,0 +1,960 @@
+/* RTL-based forward propagation pass for GNU compiler.
+   Copyright (C) 2005, 2006 Free Software Foundation, Inc.
+   Contributed by Paolo Bonzini and Steven Bosscher.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING.  If not, write to the Free
+Software Foundation, 59 Temple Place - Suite 330, Boston, MA
+02111-1307, USA.  */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "toplev.h"
+
+#include "timevar.h"
+#include "rtl.h"
+#include "emit-rtl.h"
+#include "insn-config.h"
+#include "recog.h"
+#include "flags.h"
+#include "obstack.h"
+#include "basic-block.h"
+#include "output.h"
+#include "df.h"
+#include "target.h"
+#include "cfgloop.h"
+#include "tree-pass.h"
+
+/* This pass does simple forward propagation and simplification when an
+   operand of an insn can only come from a single def.  This pass uses
+   df.c, so it is global.  However, we only do limited analysis of
+   available expressions.
+
+   1) The pass tries to propagate the source of the def into the use,
+   and checks if the result is independent of the substituted value.
+   For example, the high word of a (zero_extend:DI (reg:SI M)) is always
+   zero, independent of the source register.
+
+   In particular, we propagate constants into the use site.  Sometimes
+   RTL expansion did not put the constant in the same insn on purpose,
+   to satisfy a predicate, and the result will fail to be recognized;
+   but this happens rarely and in this case we can still create a
+   REG_EQUAL note.  For multi-word operations, this
+
+      (set (subreg:SI (reg:DI 120) 0) (const_int 0))
+      (set (subreg:SI (reg:DI 120) 4) (const_int -1))
+      (set (subreg:SI (reg:DI 122) 0)
+         (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
+      (set (subreg:SI (reg:DI 122) 4)
+         (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
+
+   can be simplified to the much simpler
+
+      (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
+      (set (subreg:SI (reg:DI 122) 4) (const_int -1))
+
+   This particular propagation is also effective at putting together
+   complex addressing modes.  We are more aggressive inside MEMs, in
+   that all definitions are propagated if the use is in a MEM; if the
+   result is a valid memory address we check address_cost to decide
+   whether the substitution is worthwhile.
+
+   2) The pass propagates register copies.  This is not as effective as
+   the copy propagation done by CSE's canon_reg, which works by walking
+   the instruction chain, it can help the other transformations.
+
+   We should consider removing this optimization, and instead reorder the
+   RTL passes, because GCSE does this transformation too.  With some luck,
+   the CSE pass at the end of rest_of_handle_gcse could also go away.
+
+   3) The pass looks for paradoxical subregs that are actually unnecessary.
+   Things like this:
+
+     (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
+     (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
+     (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
+                                (subreg:SI (reg:QI 121) 0)))
+
+   are very common on machines that can only do word-sized operations.
+   For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
+   if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
+   we can replace the paradoxical subreg with simply (reg:WIDE M).  The
+   above will simplify this to
+
+     (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
+     (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
+     (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
+
+   where the first two insns are now dead.  */
+
+
+static struct loops loops;
+static struct df *df;
+static int num_changes;
+
+
+/* Do not try to replace constant addresses or addresses of local and
+   argument slots.  These MEM expressions are made only once and inserted
+   in many instructions, as well as being used to control symbol table
+   output.  It is not safe to clobber them.
+
+   There are some uncommon cases where the address is already in a register
+   for some reason, but we cannot take advantage of that because we have
+   no easy way to unshare the MEM.  In addition, looking up all stack
+   addresses is costly.  */
+
+static bool
+can_simplify_addr (rtx addr)
+{
+  rtx reg;
+
+  if (GET_CODE (addr) == PLUS)
+    reg = XEXP (addr, 0);
+  else
+    reg = addr;
+
+  return !REG_P (reg)
+	 || (REGNO (reg) > FIRST_PSEUDO_REGISTER
+	     && REGNO (reg) != FRAME_POINTER_REGNUM
+	     && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
+	     && REGNO (reg) != ARG_POINTER_REGNUM);
+}
+
+/* Returns a canonical version of X for the address, from the point of view,
+   that all multiplications are represented as MULT instead of the multiply
+   by a power of 2 being represented as ASHIFT.
+
+   Every ASHIFT we find has been made by simplify_gen_binary and was not
+   there before, so it is not shared.  So we can do this in place.  */
+
+static void
+canonicalize_address (rtx x)
+{
+  for (;;)
+    switch (GET_CODE (x))
+      {
+      case ASHIFT:
+        if (GET_CODE (XEXP (x, 1)) == CONST_INT
+            && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
+            && INTVAL (XEXP (x, 1)) >= 0)
+	  {
+	    HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
+	    PUT_CODE (x, MULT);
+	    XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
+					GET_MODE (x));
+	  }
+
+	x = XEXP (x, 0);
+        break;
+
+      case PLUS:
+        if (GET_CODE (XEXP (x, 0)) == PLUS
+	    || GET_CODE (XEXP (x, 0)) == ASHIFT
+	    || GET_CODE (XEXP (x, 0)) == CONST)
+	  canonicalize_address (XEXP (x, 0));
+
+	x = XEXP (x, 1);
+        break;
+
+      case CONST:
+	x = XEXP (x, 0);
+        break;
+
+      default:
+        return;
+      }
+}
+
+/* OLD is a memory address.  Return whether it is good to use NEW instead,
+   for a memory access in the given MODE.  */
+
+static bool
+should_replace_address (rtx old, rtx new, enum machine_mode mode)
+{
+  int gain;
+
+  if (rtx_equal_p (old, new) || !memory_address_p (mode, new))
+    return false;
+
+  /* Copy propagation is always ok.  */
+  if (REG_P (old) && REG_P (new))
+    return true;
+
+  /* Prefer the new address if it is less expensive.  */
+  gain = address_cost (old, mode) - address_cost (new, mode);
+
+  /* If the addresses have equivalent cost, prefer the new address
+     if it has the highest `rtx_cost'.  That has the potential of
+     eliminating the most insns without additional costs, and it
+     is the same that cse.c used to do.  */
+  if (gain == 0)
+    gain = rtx_cost (new, SET) - rtx_cost (old, SET);
+
+  return (gain > 0);
+}
+
+/* Replace all occurrences of OLD in *PX with NEW and try to simplify the
+   resulting expression.  Replace *PX with a new RTL expression if an
+   occurrence of OLD was found.
+
+   If CAN_APPEAR is true, we always return true; if it is false, we
+   can return false if, for at least one occurrence OLD, we failed to
+   collapse the result to a constant.  For example, (mult:M (reg:M A)
+   (minus:M (reg:M B) (reg:M A))) may collapse to zero if replacing
+   (reg:M B) with (reg:M A).
+
+   CAN_APPEAR is disregarded inside MEMs: in that case, we always return
+   true if the simplification is a cheaper and valid memory address.
+
+   This is only a wrapper around simplify-rtx.c: do not add any pattern
+   matching code here.  (The sole exception is the handling of LO_SUM, but
+   that is because there is no simplify_gen_* function for LO_SUM).  */
+
+static bool
+propagate_rtx_1 (rtx *px, rtx old, rtx new, bool can_appear)
+{
+  rtx x = *px, tem = NULL_RTX, op0, op1, op2;
+  enum rtx_code code = GET_CODE (x);
+  enum machine_mode mode = GET_MODE (x);
+  enum machine_mode op_mode;
+  bool valid_ops = true;
+
+  /* If X is OLD_RTX, return NEW_RTX.  Otherwise, if this is an expression,
+     try to build a new expression from recursive substitution.  */
+
+  if (x == old)
+    {
+      *px = new;
+      return can_appear;
+    }
+
+  switch (GET_RTX_CLASS (code))
+    {
+    case RTX_UNARY:
+      op0 = XEXP (x, 0);
+      op_mode = GET_MODE (op0);
+      valid_ops &= propagate_rtx_1 (&op0, old, new, can_appear);
+      if (op0 == XEXP (x, 0))
+	return true;
+      tem = simplify_gen_unary (code, mode, op0, op_mode);
+      break;
+
+    case RTX_BIN_ARITH:
+    case RTX_COMM_ARITH:
+      op0 = XEXP (x, 0);
+      op1 = XEXP (x, 1);
+      valid_ops &= propagate_rtx_1 (&op0, old, new, can_appear);
+      valid_ops &= propagate_rtx_1 (&op1, old, new, can_appear);
+      if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
+	return true;
+      tem = simplify_gen_binary (code, mode, op0, op1);
+      break;
+
+    case RTX_COMPARE:
+    case RTX_COMM_COMPARE:
+      op0 = XEXP (x, 0);
+      op1 = XEXP (x, 1);
+      op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
+      valid_ops &= propagate_rtx_1 (&op0, old, new, can_appear);
+      valid_ops &= propagate_rtx_1 (&op1, old, new, can_appear);
+      if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
+	return true;
+      tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
+      break;
+
+    case RTX_TERNARY:
+    case RTX_BITFIELD_OPS:
+      op0 = XEXP (x, 0);
+      op1 = XEXP (x, 1);
+      op2 = XEXP (x, 2);
+      op_mode = GET_MODE (op0);
+      valid_ops &= propagate_rtx_1 (&op0, old, new, can_appear);
+      valid_ops &= propagate_rtx_1 (&op1, old, new, can_appear);
+      valid_ops &= propagate_rtx_1 (&op2, old, new, can_appear);
+      if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
+	return true;
+      if (op_mode == VOIDmode)
+	op_mode = GET_MODE (op0);
+      tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
+      break;
+
+    case RTX_EXTRA:
+      /* The only case we try to handle is a SUBREG.  */
+      if (code == SUBREG)
+	{
+          op0 = XEXP (x, 0);
+	  valid_ops &= propagate_rtx_1 (&op0, old, new, can_appear);
+          if (op0 == XEXP (x, 0))
+	    return true;
+	  tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
+				     SUBREG_BYTE (x));
+	}
+      break;
+
+    case RTX_OBJ:
+      if (code == MEM && x != new)
+	{
+	  rtx new_op0;
+	  op0 = XEXP (x, 0);
+
+	  /* There are some addresses that we cannot work on.  */
+	  if (!can_simplify_addr (op0))
+	    return true;
+
+	  op0 = new_op0 = targetm.delegitimize_address (op0);
+	  valid_ops &= propagate_rtx_1 (&new_op0, old, new, true);
+
+	  /* Dismiss transformation that we do not want to carry on.  */
+	  if (!valid_ops
+	      || new_op0 == op0
+	      || GET_MODE (new_op0) != GET_MODE (op0))
+	    return true;
+
+	  canonicalize_address (new_op0);
+
+	  /* Copy propagations are always ok.  Otherwise check the costs.  */
+	  if (!(REG_P (old) && REG_P (new))
+	      && !should_replace_address (op0, new_op0, GET_MODE (x)))
+	    return true;
+
+	  tem = replace_equiv_address_nv (x, new_op0);
+	}
+
+      else if (code == LO_SUM)
+	{
+          op0 = XEXP (x, 0);
+          op1 = XEXP (x, 1);
+
+	  /* The only simplification we do attempts to remove references to op0
+	     or make it constant -- in both cases, op0's invalidity will not
+	     make the result invalid.  */
+	  propagate_rtx_1 (&op0, old, new, true);
+	  valid_ops &= propagate_rtx_1 (&op1, old, new, can_appear);
+          if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
+	    return true;
+
+	  /* (lo_sum (high x) x) -> x  */
+	  if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
+	    tem = op1;
+	  else
+	    tem = gen_rtx_LO_SUM (mode, op0, op1);
+
+	  /* OP1 is likely not a legitimate address, otherwise there would have
+	     been no LO_SUM.  We want it to disappear if it is invalid, return
+	     false in that case.  */
+	  return memory_address_p (mode, tem);
+	}
+
+      else if (code == REG)
+	{
+	  if (rtx_equal_p (x, old))
+	    {
+              *px = new;
+              return can_appear;
+	    }
+	}
+      break;
+
+    default:
+      break;
+    }
+
+  /* No change, no trouble.  */
+  if (tem == NULL_RTX)
+    return true;
+
+  *px = tem;
+
+  /* The replacement we made so far is valid, if all of the recursive
+     replacements were valid, or we could simplify everything to
+     a constant.  */
+  return valid_ops || can_appear || CONSTANT_P (tem);
+}
+
+/* Replace all occurrences of OLD in X with NEW and try to simplify the
+   resulting expression (in mode MODE).  Return a new expresion if it is
+   a constant, otherwise X.
+
+   Simplifications where occurrences of NEW collapse to a constant are always
+   accepted.  All simplifications are accepted if NEW is a pseudo too.
+   Otherwise, we accept simplifications that have a lower or equal cost.  */
+
+static rtx
+propagate_rtx (rtx x, enum machine_mode mode, rtx old, rtx new)
+{
+  rtx tem;
+  bool collapsed;
+
+  if (REG_P (new) && REGNO (new) < FIRST_PSEUDO_REGISTER)
+    return NULL_RTX;
+
+  new = copy_rtx (new);
+
+  tem = x;
+  collapsed = propagate_rtx_1 (&tem, old, new, REG_P (new) || CONSTANT_P (new));
+  if (tem == x || !collapsed)
+    return NULL_RTX;
+
+  /* gen_lowpart_common will not be able to process VOIDmode entities other
+     than CONST_INTs.  */
+  if (GET_MODE (tem) == VOIDmode && GET_CODE (tem) != CONST_INT)
+    return NULL_RTX;
+
+  if (GET_MODE (tem) == VOIDmode)
+    tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
+  else
+    gcc_assert (GET_MODE (tem) == mode);
+
+  return tem;
+}
+
+
+
+
+/* Return true if the register from reference REF is killed
+   between FROM to (but not including) TO.  */
+
+static bool 
+local_ref_killed_between_p (struct df_ref * ref, rtx from, rtx to)
+{
+  while (from != to)
+    {
+      struct df_ref * def = DF_INSN_DEFS (df, from);
+      while (def)
+	{
+	  if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
+	    return true;
+	  def = def->next_ref;
+	}
+
+      from = NEXT_INSN (from);
+    }
+  return false;
+}
+
+
+/* Check if the given DEF is available in INSN.  This would require full
+   computation of available expressions; we check only restricted conditions:
+   - if DEF is the sole definition of its register, go ahead;
+   - in the same basic block, we check for no definitions killing the
+     definition of DEF_INSN;
+   - if USE's basic block has DEF's basic block as the sole predecessor,
+     we check if the definition is killed after DEF_INSN or before
+     TARGET_INSN insn, in their respective basic blocks.  */
+static bool
+use_killed_between (struct df_ref *use, rtx def_insn, rtx target_insn)
+{
+  basic_block def_bb, target_bb;
+  int regno;
+  struct df_ref * def;
+
+  /* Check if the reg in USE has only one definition.  We already
+     know that this definition reaches use, or we wouldn't be here.  */
+  regno = DF_REF_REGNO (use);
+  def = DF_REG_DEF_GET (df, regno)->reg_chain;
+  if (def && (def->next_reg == NULL))
+    return false;
+
+  /* Check if we are in the same basic block.  */
+  def_bb = BLOCK_FOR_INSN (def_insn);
+  target_bb = BLOCK_FOR_INSN (target_insn);
+  if (def_bb == target_bb)
+    return local_ref_killed_between_p (use, def_insn, target_insn);
+
+  /* Finally, if DEF_BB is the sole predecessor of TARGET_BB.  */
+  if (single_pred_p (target_bb)
+      && single_pred (target_bb) == def_bb)
+    {
+      struct df_ref *x;
+
+      /* See if USE is killed between DEF_INSN and the last insn in the
+	 basic block containing DEF_INSN.  */
+      x = df_bb_regno_last_def_find (df, def_bb, regno);
+      if (x && DF_INSN_LUID (df, x->insn) >= DF_INSN_LUID (df, def_insn))
+	return true;
+
+      /* See if USE is killed between TARGET_INSN and the first insn in the
+	 basic block containing TARGET_INSN.  */
+      x = df_bb_regno_first_def_find (df, target_bb, regno);
+      if (x && DF_INSN_LUID (df, x->insn) < DF_INSN_LUID (df, target_insn))
+	return true;
+
+      return false;
+    }
+
+  /* Otherwise assume the worst case.  */
+  return true;
+}
+
+
+/* for_each_rtx traversal function that returns 1 if BODY points to
+   a non-constant mem.  */
+
+static int
+varying_mem_p (rtx *body, void *data ATTRIBUTE_UNUSED)
+{
+  rtx x = *body;
+  return MEM_P (x) && !MEM_READONLY_P (x);
+}
+            
+/* Check if all uses in DEF_INSN can be used in TARGET_INSN.  This
+   would require full computation of available expressions;
+   we check only restricted conditions, see use_killed_between.  */
+static bool
+all_uses_available_at (rtx def_insn, rtx target_insn)
+{
+  struct df_ref * use;
+  rtx def_set = single_set (def_insn);
+
+  gcc_assert (def_set);
+
+  /* If target_insn comes right after def_insn, which is very common
+     for addresses, we can use a quicker test.  */
+  if (NEXT_INSN (def_insn) == target_insn
+      && REG_P (SET_DEST (def_set)))
+    {
+      rtx def_reg = SET_DEST (def_set);
+
+      /* If the insn uses the reg that it defines, the substitution is
+         invalid.  */
+      for (use = DF_INSN_USES (df, def_insn); use; use = use->next_ref)
+        if (rtx_equal_p (use->reg, def_reg))
+          return false;
+    }
+  else
+    {
+      /* Look at all the uses of DEF_INSN, and see if they are not
+	 killed between DEF_INSN and TARGET_INSN.  */
+      for (use = DF_INSN_USES (df, def_insn); use; use = use->next_ref)
+	if (use_killed_between (use, def_insn, target_insn))
+	  return false;
+    }
+
+  /* We don't do any analysis of memories or aliasing.  Reject any
+     instruction that involves references to non-constant memory.  */
+  return !for_each_rtx (&SET_SRC (def_set), varying_mem_p, NULL);
+}
+
+
+
+/* Inside INSN, the expression rooted at *LOC has been changed, moving some
+   uses from ORIG_USES.  Find those that are present, and create new items
+   in the data flow object of the pass.  Mark any new uses as having the
+   given TYPE.  */
+static void
+update_df (rtx insn, rtx *loc, struct df_ref *orig_uses, enum df_ref_type type,
+	   int new_flags)
+{
+  struct df_ref *use;
+
+  /* Else, add a use for the registers that were propagated.  */
+  for (use = orig_uses; use; use = use->next_ref)
+    {
+      struct df_ref *orig_use = use, *new_use;
+      rtx *new_loc = find_occurrence (loc, DF_REF_REG (orig_use));
+
+      if (!new_loc)
+	continue;
+
+      /* Add a new insn use.  Use the original type, because it says if the
+         use was within a MEM.  */
+      new_use = df_ref_create (df, DF_REF_REG (orig_use), new_loc,
+			       insn, BLOCK_FOR_INSN (insn),
+			       type, DF_REF_FLAGS (orig_use) | new_flags);
+
+      /* Set up the use-def chain.  */
+      df_chain_copy (df->problems_by_index[DF_CHAIN], 
+		     new_use, DF_REF_CHAIN (orig_use));
+    }
+}
+
+
+/* Try substituting NEW into LOC, which originated from forward propagation
+   of USE's value from NEW_DEF_INSN.  SET_REG_EQUAL says whether we are
+   substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
+   new insn is not recognized.  Return whether the substitution was
+   performed.  */
+
+static bool
+subst (struct df_ref *use, rtx *loc, rtx new, rtx def_insn, bool set_reg_equal)
+{
+  rtx insn = DF_REF_INSN (use);
+  enum df_ref_type type = DF_REF_TYPE (use);
+  int flags = DF_REF_FLAGS (use);
+
+  if (dump_file)
+    {
+      fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
+      print_inline_rtx (dump_file, *loc, 2);
+      fprintf (dump_file, "\n with ");
+      print_inline_rtx (dump_file, new, 2);
+      fprintf (dump_file, "\n");
+    }
+
+  if (validate_change (insn, loc, new, false))
+    {
+      num_changes++;
+      if (dump_file)
+	fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
+
+      /* Unlink the use that we changed.  */
+      df_ref_remove (df, use);
+      if (!CONSTANT_P (new))
+	update_df (insn, loc, DF_INSN_USES (df, def_insn), type, flags);
+
+      return true;
+    }
+  else
+    {
+      if (dump_file)
+	fprintf (dump_file, "Changes to insn %d not recognized\n",
+		 INSN_UID (insn));
+
+      /* Can also record a simplified value in a REG_EQUAL note, making a
+	 new one if one does not already exist.  */
+      if (set_reg_equal)
+	{
+	  if (dump_file)
+	    fprintf (dump_file, " Setting REG_EQUAL note\n");
+
+	  REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, copy_rtx (new),
+						REG_NOTES (insn));
+
+          if (!CONSTANT_P (new))
+	    update_df (insn, loc, DF_INSN_USES (df, def_insn),
+		       type, DF_REF_IN_NOTE);
+	}
+
+      return false;
+    }
+}
+
+
+/* If USE is a paradoxical subreg, see if it can be replaced by a pseudo.  */
+
+static bool
+forward_propagate_subreg (struct df_ref *use, rtx def_insn, rtx def_set)
+{
+  rtx use_reg = DF_REF_REG (use);
+  rtx use_insn, src;
+
+  /* Only consider paradoxical subregs... */
+  enum machine_mode use_mode = GET_MODE (use_reg);
+  if (GET_CODE (use_reg) != SUBREG
+      || !REG_P (SET_DEST (def_set))
+      || GET_MODE_SIZE (use_mode)
+	 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
+    return false;
+
+  /* If this is a paradoxical SUBREG, we have no idea what value the
+     extra bits would have.  However, if the operand is equivalent to
+     a SUBREG whose operand is the same as our mode, and all the modes
+     are within a word, we can just use the inner operand because
+     these SUBREGs just say how to treat the register.  */
+  use_insn = DF_REF_INSN (use);
+  src = SET_SRC (def_set);
+  if (GET_CODE (src) == SUBREG
+      && REG_P (SUBREG_REG (src))
+      && GET_MODE (SUBREG_REG (src)) == use_mode
+      && subreg_lowpart_p (src)
+      && all_uses_available_at (def_insn, use_insn))
+    return subst (use, DF_REF_LOC (use), SUBREG_REG (src), def_insn, false);
+  else
+    return false;
+}
+
+/* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
+   result.  */
+
+static bool
+forward_propagate_and_simplify (struct df_ref *use, rtx def_insn, rtx def_set)
+{
+  rtx use_insn = DF_REF_INSN (use);
+  rtx use_set = single_set (use_insn);
+  rtx src, reg, new, *loc;
+  bool set_reg_equal;
+  enum machine_mode mode;
+
+  if (!use_set)
+    return false;
+
+  /* Do not propagate into PC, CC0, etc.  */
+  if (GET_MODE (SET_DEST (use_set)) == VOIDmode)
+    return false;
+
+  /* If def and use are subreg, check if they match.  */
+  reg = DF_REF_REG (use);
+  if (GET_CODE (reg) == SUBREG
+      && GET_CODE (SET_DEST (def_set)) == SUBREG
+      && (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg)
+	  || GET_MODE (SET_DEST (def_set)) != GET_MODE (reg)))
+    return false;
+
+  /* Check if the def had a subreg, but the use has the whole reg.  */
+  if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
+    return false;
+
+  /* Check if the use has a subreg, but the def had the whole reg.  Unlike the
+     previous case, the optimization is possible and often useful indeed.  */
+  if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
+    reg = SUBREG_REG (reg);
+
+  /* Check if the substitution is valid (last, because it's the most
+     expensive check!).  */
+  src = SET_SRC (def_set);
+  if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
+    return false;
+
+  /* Check if the def is loading something from the constant pool; in this
+     case we would undo optimization such as compress_float_constant.
+     Still, we can set a REG_EQUAL note.  */
+  if (MEM_P (src) && MEM_READONLY_P (src))
+    {
+      rtx x = avoid_constant_pool_reference (src);
+      if (x != src)
+	{
+          rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
+	  rtx old = note ? XEXP (note, 0) : SET_SRC (use_set);
+	  rtx new = simplify_replace_rtx (old, src, x);
+	  if (old != new)	
+            set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new));
+	}
+      return false;
+    }
+
+  /* Else try simplifying.  */
+
+  if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
+    {
+      loc = &SET_DEST (use_set);
+      set_reg_equal = false;
+    }
+  else
+    {
+      rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
+      if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
+	loc = &XEXP (note, 0);
+      else
+	loc = &SET_SRC (use_set);
+	  
+      /* Do not replace an existing REG_EQUAL note if the insn is not
+	 recognized.  Either we're already replacing in the note, or
+	 we'll separately try plugging the definition in the note and
+	 simplifying.  */
+      set_reg_equal = (note == NULL_RTX);
+    }
+
+  if (GET_MODE (*loc) == VOIDmode)
+    mode = GET_MODE (SET_DEST (use_set));
+  else
+    mode = GET_MODE (*loc);
+
+  new = propagate_rtx (*loc, mode, reg, src);
+  return new && subst (use, loc, new, def_insn, set_reg_equal);
+}
+
+
+/* Given a use USE of an insn, if it has a single reaching
+   definition, try to forward propagate it into that insn.  */
+
+static void
+forward_propagate_into (struct df_ref *use)
+{
+  struct df_link *defs;
+  struct df_ref *def;
+  rtx def_insn, def_set, use_insn;
+  rtx parent;  
+
+  if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
+    return;
+
+  /* Only consider uses that have a single definition.  */
+  defs = DF_REF_CHAIN (use);
+  if (!defs || defs->next)
+    return;
+
+  def = defs->ref;
+  if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
+    return;
+
+  /* Do not propagate loop invariant definitions inside the loop if
+     we are going to unroll.  */
+  if (loops.num > 0
+      && DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
+    return;
+
+  /* Check if the use is still present in the insn!  */
+  use_insn = DF_REF_INSN (use);
+  if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
+    parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
+  else
+    parent = PATTERN (use_insn);
+
+  if (!loc_mentioned_in_p (DF_REF_LOC (use), parent))
+    return;
+
+  def_insn = DF_REF_INSN (def);
+  def_set = single_set (def_insn);
+  if (!def_set)
+    return;
+
+  /* Only try one kind of propagation.  If two are possible, we'll
+     do it on the following iterations.  */
+  if (!forward_propagate_and_simplify (use, def_insn, def_set))
+    forward_propagate_subreg (use, def_insn, def_set);
+}
+
+
+static void
+fwprop_init (void)
+{
+  num_changes = 0;
+  df = df_init (DF_SUBREGS | DF_EQUIV_NOTES);
+  df_chain_add_problem (df, DF_UD_CHAIN);
+  df_analyze (df);
+  df_dump (df, dump_file);
+
+  if (flag_rerun_cse_after_loop && (flag_unroll_loops || flag_peel_loops))
+    {
+      calculate_dominance_info (CDI_DOMINATORS);
+      flow_loops_find (&loops);
+    }
+}
+
+static void
+fwprop_done (void)
+{
+  df_finish (df);
+  cleanup_cfg (0);
+  delete_trivially_dead_insns (get_insns (), max_reg_num ());
+
+  if (dump_file)
+    fprintf (dump_file,
+	     "\nNumber of successful forward propagations: %d\n\n",
+	     num_changes);
+
+  if (flag_rerun_cse_after_loop && (flag_unroll_loops || flag_peel_loops))
+    {
+      flow_loops_free (&loops);
+      free_dominance_info (CDI_DOMINATORS);
+      loops.num = 0;
+    }
+
+}
+
+
+
+/* Main entry point.  */
+
+static bool
+gate_fwprop (void)
+{
+  return optimize > 0 && flag_forward_propagate;
+}
+
+static unsigned int
+fwprop (void)
+{
+  unsigned i;
+
+  fwprop_init ();
+
+  /* Go through all the uses.  update_df will create new ones at the
+     end, and we'll go through them as well.
+
+     Do not forward propagate addresses into loops until after unrolling.
+     CSE did so because it was able to fix its own mess, but we are not.  */
+
+  df_reorganize_refs (&df->use_info);
+  for (i = 0; i < DF_USES_SIZE (df); i++)
+    {
+      struct df_ref *use = DF_USES_GET (df, i);
+      if (use)
+	if (loops.num == 0
+	    || DF_REF_TYPE (use) == DF_REF_REG_USE
+	    || DF_REF_BB (use)->loop_father == NULL)
+	  forward_propagate_into (use);
+    }
+
+  fwprop_done ();
+
+  return 0;
+}
+
+struct tree_opt_pass pass_rtl_fwprop =
+{
+  "fwprop1",                            /* name */
+  gate_fwprop,				/* gate */   
+  fwprop,				/* execute */       
+  NULL,                                 /* sub */
+  NULL,                                 /* next */
+  0,                                    /* static_pass_number */
+  TV_FWPROP,                            /* tv_id */
+  0,                                    /* properties_required */
+  0,                                    /* properties_provided */
+  0,                                    /* properties_destroyed */
+  0,                                    /* todo_flags_start */
+  TODO_dump_func,                       /* todo_flags_finish */
+  0                                     /* letter */
+};
+
+static bool
+gate_fwprop_addr (void)
+{
+  return optimize > 0 && flag_forward_propagate && flag_rerun_cse_after_loop
+  	 && (flag_unroll_loops || flag_peel_loops);
+}
+
+static unsigned int
+fwprop_addr (void)
+{
+  unsigned i;
+  fwprop_init ();
+
+  /* Go through all the uses.  update_df will create new ones at the
+     end, and we'll go through them as well.  */
+  df_reorganize_refs (&df->use_info);
+  for (i = 0; i < DF_USES_SIZE (df); i++)
+    {
+      struct df_ref *use = DF_USES_GET (df, i);
+      if (use)
+	if (DF_REF_TYPE (use) != DF_REF_REG_USE
+	    && DF_REF_BB (use)->loop_father != NULL)
+	  forward_propagate_into (use);
+    }
+
+  fwprop_done ();
+
+  return 0;
+}
+
+struct tree_opt_pass pass_rtl_fwprop_addr =
+{
+  "fwprop2",                            /* name */
+  gate_fwprop_addr,			/* gate */   
+  fwprop_addr,				/* execute */       
+  NULL,                                 /* sub */
+  NULL,                                 /* next */
+  0,                                    /* static_pass_number */
+  TV_FWPROP,                            /* tv_id */
+  0,                                    /* properties_required */
+  0,                                    /* properties_provided */
+  0,                                    /* properties_destroyed */
+  0,                                    /* todo_flags_start */
+  TODO_dump_func,                       /* todo_flags_finish */
+  0                                     /* letter */
+};
	* cse.c (fold_rtx_subreg, fold_rtx_mem, find_best_addr,
	canon_for_address): Remove.
	(fold_rtx): Process SUBREGs and MEMs with equiv_constant, make
	simplification loop more straightforward by not calling fold_rtx
	recursively.
	(equiv_constant): Move here a small part of fold_rtx_subreg,
	do not call fold_rtx.  Call avoid_constant_pool_reference
	to process MEMs.
	* recog.c (canonicalize_change_group): New.
	* recog.h (canonicalize_change_group): New.

--- cse.c	(revision 113581)
+++ cse.c	(working copy)
@@ -600,7 +600,6 @@ static inline unsigned safe_hash (rtx, e
 static unsigned hash_rtx_string (const char *);
 
 static rtx canon_reg (rtx, rtx);
-static void find_best_addr (rtx, rtx *, enum machine_mode);
 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
 					   enum machine_mode *,
 					   enum machine_mode *);
@@ -731,57 +730,6 @@ approx_reg_cost (rtx x)
   return cost;
 }
 
-/* Returns a canonical version of X for the address, from the point of view,
-   that all multiplications are represented as MULT instead of the multiply
-   by a power of 2 being represented as ASHIFT.  */
-
-static rtx
-canon_for_address (rtx x)
-{
-  enum rtx_code code;
-  enum machine_mode mode;
-  rtx new = 0;
-  int i;
-  const char *fmt;
-  
-  if (!x)
-    return x;
-  
-  code = GET_CODE (x);
-  mode = GET_MODE (x);
-  
-  switch (code)
-    {
-    case ASHIFT:
-      if (GET_CODE (XEXP (x, 1)) == CONST_INT
-	  && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode)
-	  && INTVAL (XEXP (x, 1)) >= 0)
-        {
-	  new = canon_for_address (XEXP (x, 0));
-	  new = gen_rtx_MULT (mode, new,
-			      gen_int_mode ((HOST_WIDE_INT) 1
-				            << INTVAL (XEXP (x, 1)),
-					    mode));
-	}
-      break;
-    default:
-      break;
-      
-    }
-  if (new)
-    return new;
-  
-  /* Now recursively process each operand of this operation.  */
-  fmt = GET_RTX_FORMAT (code);
-  for (i = 0; i < GET_RTX_LENGTH (code); i++)
-    if (fmt[i] == 'e')
-      {
-	new = canon_for_address (XEXP (x, i));
-	XEXP (x, i) = new;
-      }
-  return x;
-}
-
 /* Return a negative value if an rtx A, whose costs are given by COST_A
    and REGCOST_A, is more desirable than an rtx B.
    Return a positive value if A is less desirable, or 0 if the two are
@@ -2822,231 +2770,6 @@ canon_reg (rtx x, rtx insn)
   return x;
 }
 
-/* LOC is a location within INSN that is an operand address (the contents of
-   a MEM).  Find the best equivalent address to use that is valid for this
-   insn.
-
-   On most CISC machines, complicated address modes are costly, and rtx_cost
-   is a good approximation for that cost.  However, most RISC machines have
-   only a few (usually only one) memory reference formats.  If an address is
-   valid at all, it is often just as cheap as any other address.  Hence, for
-   RISC machines, we use `address_cost' to compare the costs of various
-   addresses.  For two addresses of equal cost, choose the one with the
-   highest `rtx_cost' value as that has the potential of eliminating the
-   most insns.  For equal costs, we choose the first in the equivalence
-   class.  Note that we ignore the fact that pseudo registers are cheaper than
-   hard registers here because we would also prefer the pseudo registers.  */
-
-static void
-find_best_addr (rtx insn, rtx *loc, enum machine_mode mode)
-{
-  struct table_elt *elt;
-  rtx addr = *loc;
-  struct table_elt *p;
-  int found_better = 1;
-  int save_do_not_record = do_not_record;
-  int save_hash_arg_in_memory = hash_arg_in_memory;
-  int addr_volatile;
-  int regno;
-  unsigned hash;
-
-  /* Do not try to replace constant addresses or addresses of local and
-     argument slots.  These MEM expressions are made only once and inserted
-     in many instructions, as well as being used to control symbol table
-     output.  It is not safe to clobber them.
-
-     There are some uncommon cases where the address is already in a register
-     for some reason, but we cannot take advantage of that because we have
-     no easy way to unshare the MEM.  In addition, looking up all stack
-     addresses is costly.  */
-  if ((GET_CODE (addr) == PLUS
-       && REG_P (XEXP (addr, 0))
-       && GET_CODE (XEXP (addr, 1)) == CONST_INT
-       && (regno = REGNO (XEXP (addr, 0)),
-	   regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
-	   || regno == ARG_POINTER_REGNUM))
-      || (REG_P (addr)
-	  && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
-	      || regno == HARD_FRAME_POINTER_REGNUM
-	      || regno == ARG_POINTER_REGNUM))
-      || CONSTANT_ADDRESS_P (addr))
-    return;
-
-  /* If this address is not simply a register, try to fold it.  This will
-     sometimes simplify the expression.  Many simplifications
-     will not be valid, but some, usually applying the associative rule, will
-     be valid and produce better code.  */
-  if (!REG_P (addr))
-    {
-      rtx folded = canon_for_address (fold_rtx (addr, NULL_RTX));
-
-      if (folded != addr)
-	{
-	  int addr_folded_cost = address_cost (folded, mode);
-	  int addr_cost = address_cost (addr, mode);
-
-	  if ((addr_folded_cost < addr_cost
-	       || (addr_folded_cost == addr_cost
-		   /* ??? The rtx_cost comparison is left over from an older
-		      version of this code.  It is probably no longer helpful.*/
-		   && (rtx_cost (folded, MEM) > rtx_cost (addr, MEM)
-		       || approx_reg_cost (folded) < approx_reg_cost (addr))))
-	      && validate_change (insn, loc, folded, 0))
-	    addr = folded;
-	}
-    }
-
-  /* If this address is not in the hash table, we can't look for equivalences
-     of the whole address.  Also, ignore if volatile.  */
-
-  do_not_record = 0;
-  hash = HASH (addr, Pmode);
-  addr_volatile = do_not_record;
-  do_not_record = save_do_not_record;
-  hash_arg_in_memory = save_hash_arg_in_memory;
-
-  if (addr_volatile)
-    return;
-
-  elt = lookup (addr, hash, Pmode);
-
-  if (elt)
-    {
-      /* We need to find the best (under the criteria documented above) entry
-	 in the class that is valid.  We use the `flag' field to indicate
-	 choices that were invalid and iterate until we can't find a better
-	 one that hasn't already been tried.  */
-
-      for (p = elt->first_same_value; p; p = p->next_same_value)
-	p->flag = 0;
-
-      while (found_better)
-	{
-	  int best_addr_cost = address_cost (*loc, mode);
-	  int best_rtx_cost = (elt->cost + 1) >> 1;
-	  int exp_cost;
-	  struct table_elt *best_elt = elt;
-
-	  found_better = 0;
-	  for (p = elt->first_same_value; p; p = p->next_same_value)
-	    if (! p->flag)
-	      {
-		if ((REG_P (p->exp)
-		     || exp_equiv_p (p->exp, p->exp, 1, false))
-		    && ((exp_cost = address_cost (p->exp, mode)) < best_addr_cost
-			|| (exp_cost == best_addr_cost
-			    && ((p->cost + 1) >> 1) > best_rtx_cost)))
-		  {
-		    found_better = 1;
-		    best_addr_cost = exp_cost;
-		    best_rtx_cost = (p->cost + 1) >> 1;
-		    best_elt = p;
-		  }
-	      }
-
-	  if (found_better)
-	    {
-	      if (validate_change (insn, loc,
-				   canon_reg (copy_rtx (best_elt->exp),
-					      NULL_RTX), 0))
-		return;
-	      else
-		best_elt->flag = 1;
-	    }
-	}
-    }
-
-  /* If the address is a binary operation with the first operand a register
-     and the second a constant, do the same as above, but looking for
-     equivalences of the register.  Then try to simplify before checking for
-     the best address to use.  This catches a few cases:  First is when we
-     have REG+const and the register is another REG+const.  We can often merge
-     the constants and eliminate one insn and one register.  It may also be
-     that a machine has a cheap REG+REG+const.  Finally, this improves the
-     code on the Alpha for unaligned byte stores.  */
-
-  if (flag_expensive_optimizations
-      && ARITHMETIC_P (*loc)
-      && REG_P (XEXP (*loc, 0)))
-    {
-      rtx op1 = XEXP (*loc, 1);
-
-      do_not_record = 0;
-      hash = HASH (XEXP (*loc, 0), Pmode);
-      do_not_record = save_do_not_record;
-      hash_arg_in_memory = save_hash_arg_in_memory;
-
-      elt = lookup (XEXP (*loc, 0), hash, Pmode);
-      if (elt == 0)
-	return;
-
-      /* We need to find the best (under the criteria documented above) entry
-	 in the class that is valid.  We use the `flag' field to indicate
-	 choices that were invalid and iterate until we can't find a better
-	 one that hasn't already been tried.  */
-
-      for (p = elt->first_same_value; p; p = p->next_same_value)
-	p->flag = 0;
-
-      while (found_better)
-	{
-	  int best_addr_cost = address_cost (*loc, mode);
-	  int best_rtx_cost = (COST (*loc) + 1) >> 1;
-	  struct table_elt *best_elt = elt;
-	  rtx best_rtx = *loc;
-	  int count;
-
-	  /* This is at worst case an O(n^2) algorithm, so limit our search
-	     to the first 32 elements on the list.  This avoids trouble
-	     compiling code with very long basic blocks that can easily
-	     call simplify_gen_binary so many times that we run out of
-	     memory.  */
-
-	  found_better = 0;
-	  for (p = elt->first_same_value, count = 0;
-	       p && count < 32;
-	       p = p->next_same_value, count++)
-	    if (! p->flag
-		&& (REG_P (p->exp)
-		    || (GET_CODE (p->exp) != EXPR_LIST
-			&& exp_equiv_p (p->exp, p->exp, 1, false))))
-
-	      {
-		rtx new = simplify_gen_binary (GET_CODE (*loc), Pmode,
-					       p->exp, op1);
-		int new_cost;
-		
-		/* Get the canonical version of the address so we can accept
-		   more.  */
-		new = canon_for_address (new);
-		
-		new_cost = address_cost (new, mode);
-
-		if (new_cost < best_addr_cost
-		    || (new_cost == best_addr_cost
-			&& (COST (new) + 1) >> 1 > best_rtx_cost))
-		  {
-		    found_better = 1;
-		    best_addr_cost = new_cost;
-		    best_rtx_cost = (COST (new) + 1) >> 1;
-		    best_elt = p;
-		    best_rtx = new;
-		  }
-	      }
-
-	  if (found_better)
-	    {
-	      if (validate_change (insn, loc,
-				   canon_reg (copy_rtx (best_rtx),
-					      NULL_RTX), 0))
-		return;
-	      else
-		best_elt->flag = 1;
-	    }
-	}
-    }
-}
-
 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
    operation (EQ, NE, GT, etc.), follow it back through the hash table and
    what values are being compared.
@@ -3241,380 +2964,15 @@ find_comparison_args (enum rtx_code code
   return code;
 }
 
-/* Fold SUBREG.  */
-
-static rtx
-fold_rtx_subreg (rtx x, rtx insn)
-{
-  enum machine_mode mode = GET_MODE (x);
-  rtx folded_arg0;
-  rtx const_arg0;
-  rtx new;
-
-  /* See if we previously assigned a constant value to this SUBREG.  */
-  if ((new = lookup_as_function (x, CONST_INT)) != 0
-      || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
-    return new;
-
-  /* If this is a paradoxical SUBREG, we have no idea what value the
-     extra bits would have.  However, if the operand is equivalent to
-     a SUBREG whose operand is the same as our mode, and all the modes
-     are within a word, we can just use the inner operand because
-     these SUBREGs just say how to treat the register.
-
-     Similarly if we find an integer constant.  */
-
-  if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
-    {
-      enum machine_mode imode = GET_MODE (SUBREG_REG (x));
-      struct table_elt *elt;
-
-      if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
-	  && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
-	  && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
-			    imode)) != 0)
-	for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
-	  {
-	    if (CONSTANT_P (elt->exp)
-		&& GET_MODE (elt->exp) == VOIDmode)
-	      return elt->exp;
-
-	    if (GET_CODE (elt->exp) == SUBREG
-		&& GET_MODE (SUBREG_REG (elt->exp)) == mode
-		&& exp_equiv_p (elt->exp, elt->exp, 1, false))
-	      return copy_rtx (SUBREG_REG (elt->exp));
-	  }
-
-      return x;
-    }
-
-  /* Fold SUBREG_REG.  If it changed, see if we can simplify the
-     SUBREG.  We might be able to if the SUBREG is extracting a single
-     word in an integral mode or extracting the low part.  */
 
-  folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
-  const_arg0 = equiv_constant (folded_arg0);
-  if (const_arg0)
-    folded_arg0 = const_arg0;
-
-  if (folded_arg0 != SUBREG_REG (x))
-    {
-      new = simplify_subreg (mode, folded_arg0,
-			     GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
-      if (new)
-	return new;
-    }
-
-  if (REG_P (folded_arg0)
-      && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0)))
-    {
-      struct table_elt *elt;
-
-      elt = lookup (folded_arg0,
-		    HASH (folded_arg0, GET_MODE (folded_arg0)),
-		    GET_MODE (folded_arg0));
-
-      if (elt)
-	elt = elt->first_same_value;
-
-      if (subreg_lowpart_p (x))
-	/* If this is a narrowing SUBREG and our operand is a REG, see
-	   if we can find an equivalence for REG that is an arithmetic
-	   operation in a wider mode where both operands are
-	   paradoxical SUBREGs from objects of our result mode.  In
-	   that case, we couldn-t report an equivalent value for that
-	   operation, since we don't know what the extra bits will be.
-	   But we can find an equivalence for this SUBREG by folding
-	   that operation in the narrow mode.  This allows us to fold
-	   arithmetic in narrow modes when the machine only supports
-	   word-sized arithmetic.
-
-	   Also look for a case where we have a SUBREG whose operand
-	   is the same as our result.  If both modes are smaller than
-	   a word, we are simply interpreting a register in different
-	   modes and we can use the inner value.  */
-
-	for (; elt; elt = elt->next_same_value)
-	  {
-	    enum rtx_code eltcode = GET_CODE (elt->exp);
-
-	    /* Just check for unary and binary operations.  */
-	    if (UNARY_P (elt->exp)
-		&& eltcode != SIGN_EXTEND
-		&& eltcode != ZERO_EXTEND
-		&& GET_CODE (XEXP (elt->exp, 0)) == SUBREG
-		&& GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode
-		&& (GET_MODE_CLASS (mode)
-		    == GET_MODE_CLASS (GET_MODE (XEXP (elt->exp, 0)))))
-	      {
-		rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));
-
-		if (!REG_P (op0) && ! CONSTANT_P (op0))
-		  op0 = fold_rtx (op0, NULL_RTX);
-
-		op0 = equiv_constant (op0);
-		if (op0)
-		  new = simplify_unary_operation (GET_CODE (elt->exp), mode,
-						  op0, mode);
-	      }
-	    else if (ARITHMETIC_P (elt->exp)
-		     && eltcode != DIV && eltcode != MOD
-		     && eltcode != UDIV && eltcode != UMOD
-		     && eltcode != ASHIFTRT && eltcode != LSHIFTRT
-		     && eltcode != ROTATE && eltcode != ROTATERT
-		     && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
-			  && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
-			      == mode))
-			 || CONSTANT_P (XEXP (elt->exp, 0)))
-		     && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
-			  && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
-			      == mode))
-			 || CONSTANT_P (XEXP (elt->exp, 1))))
-	      {
-		rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
-		rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));
-
-		if (op0 && !REG_P (op0) && ! CONSTANT_P (op0))
-		  op0 = fold_rtx (op0, NULL_RTX);
-
-		if (op0)
-		  op0 = equiv_constant (op0);
-
-		if (op1 && !REG_P (op1) && ! CONSTANT_P (op1))
-		  op1 = fold_rtx (op1, NULL_RTX);
-
-		if (op1)
-		  op1 = equiv_constant (op1);
-
-		/* If we are looking for the low SImode part of
-		   (ashift:DI c (const_int 32)), it doesn't work to
-		   compute that in SImode, because a 32-bit shift in
-		   SImode is unpredictable.  We know the value is
-		   0.  */
-		if (op0 && op1
-		    && GET_CODE (elt->exp) == ASHIFT
-		    && GET_CODE (op1) == CONST_INT
-		    && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
-		  {
-		    if (INTVAL (op1)
-			< GET_MODE_BITSIZE (GET_MODE (elt->exp)))
-		      /* If the count fits in the inner mode's width,
-			 but exceeds the outer mode's width, the value
-			 will get truncated to 0 by the subreg.  */
-		      new = CONST0_RTX (mode);
-		    else
-		      /* If the count exceeds even the inner mode's width,
-			 don't fold this expression.  */
-		      new = 0;
-		  }
-		else if (op0 && op1)
-		  new = simplify_binary_operation (GET_CODE (elt->exp),
-						   mode, op0, op1);
-	      }
-
-	    else if (GET_CODE (elt->exp) == SUBREG
-		     && GET_MODE (SUBREG_REG (elt->exp)) == mode
-		     && (GET_MODE_SIZE (GET_MODE (folded_arg0))
-			 <= UNITS_PER_WORD)
-		     && exp_equiv_p (elt->exp, elt->exp, 1, false))
-	      new = copy_rtx (SUBREG_REG (elt->exp));
-
-	    if (new)
-	      return new;
-	  }
-      else
-	/* A SUBREG resulting from a zero extension may fold to zero
-	   if it extracts higher bits than the ZERO_EXTEND's source
-	   bits.  FIXME: if combine tried to, er, combine these
-	   instructions, this transformation may be moved to
-	   simplify_subreg.  */
-	for (; elt; elt = elt->next_same_value)
-	  {
-	    if (GET_CODE (elt->exp) == ZERO_EXTEND
-		&& subreg_lsb (x)
-		>= GET_MODE_BITSIZE (GET_MODE (XEXP (elt->exp, 0))))
-	      return CONST0_RTX (mode);
-	  }
-    }
-
-  return x;
-}
-
-/* Fold MEM.  */
-
-static rtx
-fold_rtx_mem (rtx x, rtx insn)
-{
-  enum machine_mode mode = GET_MODE (x);
-  rtx new;
-
-  /* If we are not actually processing an insn, don't try to find the
-     best address.  Not only don't we care, but we could modify the
-     MEM in an invalid way since we have no insn to validate
-     against.  */
-  if (insn != 0)
-    find_best_addr (insn, &XEXP (x, 0), mode);
-
-  {
-    /* Even if we don't fold in the insn itself, we can safely do so
-       here, in hopes of getting a constant.  */
-    rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
-    rtx base = 0;
-    HOST_WIDE_INT offset = 0;
-
-    if (REG_P (addr)
-	&& REGNO_QTY_VALID_P (REGNO (addr)))
-      {
-	int addr_q = REG_QTY (REGNO (addr));
-	struct qty_table_elem *addr_ent = &qty_table[addr_q];
-
-	if (GET_MODE (addr) == addr_ent->mode
-	    && addr_ent->const_rtx != NULL_RTX)
-	  addr = addr_ent->const_rtx;
-      }
-
-    /* Call target hook to avoid the effects of -fpic etc....  */
-    addr = targetm.delegitimize_address (addr);
-
-    /* If address is constant, split it into a base and integer
-       offset.  */
-    if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
-      base = addr;
-    else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
-	     && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
-      {
-	base = XEXP (XEXP (addr, 0), 0);
-	offset = INTVAL (XEXP (XEXP (addr, 0), 1));
-      }
-    else if (GET_CODE (addr) == LO_SUM
-	     && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
-      base = XEXP (addr, 1);
-
-    /* If this is a constant pool reference, we can fold it into its
-       constant to allow better value tracking.  */
-    if (base && GET_CODE (base) == SYMBOL_REF
-	&& CONSTANT_POOL_ADDRESS_P (base))
-      {
-	rtx constant = get_pool_constant (base);
-	enum machine_mode const_mode = get_pool_mode (base);
-	rtx new;
-
-	if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
-	  {
-	    constant_pool_entries_cost = COST (constant);
-	    constant_pool_entries_regcost = approx_reg_cost (constant);
-	  }
-
-	/* If we are loading the full constant, we have an
-	   equivalence.  */
-	if (offset == 0 && mode == const_mode)
-	  return constant;
-
-	/* If this actually isn't a constant (weird!), we can't do
-	   anything.  Otherwise, handle the two most common cases:
-	   extracting a word from a multi-word constant, and
-	   extracting the low-order bits.  Other cases don't seem
-	   common enough to worry about.  */
-	if (! CONSTANT_P (constant))
-	  return x;
-
-	if (GET_MODE_CLASS (mode) == MODE_INT
-	    && GET_MODE_SIZE (mode) == UNITS_PER_WORD
-	    && offset % UNITS_PER_WORD == 0
-	    && (new = operand_subword (constant,
-				       offset / UNITS_PER_WORD,
-				       0, const_mode)) != 0)
-	  return new;
-
-	if (((BYTES_BIG_ENDIAN
-	      && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
-	     || (! BYTES_BIG_ENDIAN && offset == 0))
-	    && (new = gen_lowpart (mode, constant)) != 0)
-	  return new;
-      }
-
-    /* If this is a reference to a label at a known position in a jump
-       table, we also know its value.  */
-    if (base && GET_CODE (base) == LABEL_REF)
-      {
-	rtx label = XEXP (base, 0);
-	rtx table_insn = NEXT_INSN (label);
-
-	if (table_insn && JUMP_P (table_insn)
-	    && GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
-	  {
-	    rtx table = PATTERN (table_insn);
-
-	    if (offset >= 0
-		&& (offset / GET_MODE_SIZE (GET_MODE (table))
-		    < XVECLEN (table, 0)))
-	      {
-		rtx label = XVECEXP
-		  (table, 0, offset / GET_MODE_SIZE (GET_MODE (table)));
-		rtx set;
-
-		/* If we have an insn that loads the label from the
-		   jumptable into a reg, we don't want to set the reg
-		   to the label, because this may cause a reference to
-		   the label to remain after the label is removed in
-		   some very obscure cases (PR middle-end/18628).  */
-		if (!insn)
-		  return label;
-
-		set = single_set (insn);
-
-		if (! set || SET_SRC (set) != x)
-		  return x;
-
-		/* If it's a jump, it's safe to reference the label.  */
-		if (SET_DEST (set) == pc_rtx)
-		  return label;
-
-		return x;
-	      }
-	  }
-	if (table_insn && JUMP_P (table_insn)
-	    && GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
-	  {
-	    rtx table = PATTERN (table_insn);
-
-	    if (offset >= 0
-		&& (offset / GET_MODE_SIZE (GET_MODE (table))
-		    < XVECLEN (table, 1)))
-	      {
-		offset /= GET_MODE_SIZE (GET_MODE (table));
-		new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
-				     XEXP (table, 0));
-
-		if (GET_MODE (table) != Pmode)
-		  new = gen_rtx_TRUNCATE (GET_MODE (table), new);
-
-		/* Indicate this is a constant.  This isn't a valid
-		   form of CONST, but it will only be used to fold the
-		   next insns and then discarded, so it should be
-		   safe.
-
-		   Note this expression must be explicitly discarded,
-		   by cse_insn, else it may end up in a REG_EQUAL note
-		   and "escape" to cause problems elsewhere.  */
-		return gen_rtx_CONST (GET_MODE (new), new);
-	      }
-	  }
-      }
-
-    return x;
-  }
-}
-
-/* If X is a nontrivial arithmetic operation on an argument
-   for which a constant value can be determined, return
-   the result of operating on that value, as a constant.
-   Otherwise, return X, possibly with one or more operands
-   modified by recursive calls to this function.
-
-   If X is a register whose contents are known, we do NOT
-   return those contents here.  equiv_constant is called to
-   perform that task.
+/* If X is a nontrivial arithmetic operation on an argument for which
+   a constant value can be determined, return the result of operating
+   on that value, as a constant.  Otherwise, return X, possibly with
+   one or more operands changed to a forward-propagated constant.
+
+   If X is a register whose contents are known, we do NOT return
+   those contents here; equiv_constant is called to perform that task.
+   For SUBREGs and MEMs, we do that both here and in equiv_constant.
 
    INSN is the insn that we may be modifying.  If it is 0, make a copy
    of X before modifying it.  */
@@ -3627,10 +2985,9 @@ fold_rtx (rtx x, rtx insn)
   const char *fmt;
   int i;
   rtx new = 0;
-  int copied = 0;
-  int must_swap = 0;
+  int changed = 0;
 
-  /* Folded equivalents of first two operands of X.  */
+  /* Operands of X.  */
   rtx folded_arg0;
   rtx folded_arg1;
 
@@ -3647,10 +3004,16 @@ fold_rtx (rtx x, rtx insn)
   if (x == 0)
     return x;
 
-  mode = GET_MODE (x);
+  /* Try to perform some initial simplifications on X.  */
   code = GET_CODE (x);
   switch (code)
     {
+    case MEM:
+    case SUBREG:
+      if ((new = equiv_constant (x)) != NULL_RTX)
+        return new;
+      return x;
+
     case CONST:
     case CONST_INT:
     case CONST_DOUBLE:
@@ -3670,28 +3033,6 @@ fold_rtx (rtx x, rtx insn)
       return prev_insn_cc0;
 #endif
 
-    case SUBREG:
-      return fold_rtx_subreg (x, insn);
-
-    case NOT:
-    case NEG:
-      /* If we have (NOT Y), see if Y is known to be (NOT Z).
-	 If so, (NOT Y) simplifies to Z.  Similarly for NEG.  */
-      new = lookup_as_function (XEXP (x, 0), code);
-      if (new)
-	return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
-      break;
-
-    case MEM:
-      return fold_rtx_mem (x, insn);
-
-#ifdef NO_FUNCTION_CSE
-    case CALL:
-      if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
-	return x;
-      break;
-#endif
-
     case ASM_OPERANDS:
       if (insn)
 	{
@@ -3699,12 +3040,21 @@ fold_rtx (rtx x, rtx insn)
 	    validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
 			     fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
 	}
+      return x;
+
+#ifdef NO_FUNCTION_CSE
+    case CALL:
+      if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
+	return x;
       break;
+#endif
 
+    /* Anything else goes through the loop below.  */
     default:
       break;
     }
 
+  mode = GET_MODE (x);
   const_arg0 = 0;
   const_arg1 = 0;
   const_arg2 = 0;
@@ -3717,55 +3067,13 @@ fold_rtx (rtx x, rtx insn)
   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
     if (fmt[i] == 'e')
       {
-	rtx arg = XEXP (x, i);
-	rtx folded_arg = arg, const_arg = 0;
-	enum machine_mode mode_arg = GET_MODE (arg);
-	rtx cheap_arg, expensive_arg;
-	rtx replacements[2];
-	int j;
-	int old_cost = COST_IN (XEXP (x, i), code);
-
-	/* Most arguments are cheap, so handle them specially.  */
-	switch (GET_CODE (arg))
-	  {
-	  case REG:
-	    /* This is the same as calling equiv_constant; it is duplicated
-	       here for speed.  */
-	    if (REGNO_QTY_VALID_P (REGNO (arg)))
-	      {
-		int arg_q = REG_QTY (REGNO (arg));
-		struct qty_table_elem *arg_ent = &qty_table[arg_q];
-
-		if (arg_ent->const_rtx != NULL_RTX
-		    && !REG_P (arg_ent->const_rtx)
-		    && GET_CODE (arg_ent->const_rtx) != PLUS)
-		  const_arg
-		    = gen_lowpart (GET_MODE (arg),
-					       arg_ent->const_rtx);
-	      }
-	    break;
-
-	  case CONST:
-	  case CONST_INT:
-	  case SYMBOL_REF:
-	  case LABEL_REF:
-	  case CONST_DOUBLE:
-	  case CONST_VECTOR:
-	    const_arg = arg;
-	    break;
-
+	rtx folded_arg = XEXP (x, i), const_arg;
+	enum machine_mode mode_arg = GET_MODE (folded_arg);
 #ifdef HAVE_cc0
-	  case CC0:
-	    folded_arg = prev_insn_cc0;
-	    mode_arg = prev_insn_cc0_mode;
-	    const_arg = equiv_constant (folded_arg);
-	    break;
+	if (CC0_P (folded_arg))
+	  folded_arg = prev_insn_cc0, mode_arg = prev_insn_cc0_mode;
 #endif
-
-	  default:
-	    folded_arg = fold_rtx (arg, insn);
-	    const_arg = equiv_constant (folded_arg);
-	  }
+	const_arg = equiv_constant (folded_arg);
 
 	/* For the first three operands, see if the operand
 	   is constant or equivalent to a constant.  */
@@ -3785,120 +3093,50 @@ fold_rtx (rtx x, rtx insn)
 	    break;
 	  }
 
-	/* Pick the least expensive of the folded argument and an
-	   equivalent constant argument.  */
-	if (const_arg == 0 || const_arg == folded_arg
-	    || COST_IN (const_arg, code) > COST_IN (folded_arg, code))
-	  cheap_arg = folded_arg, expensive_arg = const_arg;
-	else
-	  cheap_arg = const_arg, expensive_arg = folded_arg;
-
-	/* Try to replace the operand with the cheapest of the two
-	   possibilities.  If it doesn't work and this is either of the first
-	   two operands of a commutative operation, try swapping them.
-	   If THAT fails, try the more expensive, provided it is cheaper
-	   than what is already there.  */
-
-	if (cheap_arg == XEXP (x, i))
-	  continue;
-
-	if (insn == 0 && ! copied)
-	  {
-	    x = copy_rtx (x);
-	    copied = 1;
-	  }
-
-	/* Order the replacements from cheapest to most expensive.  */
-	replacements[0] = cheap_arg;
-	replacements[1] = expensive_arg;
-
-	for (j = 0; j < 2 && replacements[j]; j++)
-	  {
-	    int new_cost = COST_IN (replacements[j], code);
-
-	    /* Stop if what existed before was cheaper.  Prefer constants
-	       in the case of a tie.  */
-	    if (new_cost > old_cost
-		|| (new_cost == old_cost && CONSTANT_P (XEXP (x, i))))
-	      break;
+	/* Pick the least expensive of the argument and an equivalent constant
+	   argument.  */
+	if (const_arg != 0
+	    && const_arg != folded_arg
+	    && COST_IN (const_arg, code) <= COST_IN (folded_arg, code)
 
 	    /* It's not safe to substitute the operand of a conversion
 	       operator with a constant, as the conversion's identity
 	       depends upon the mode of its operand.  This optimization
 	       is handled by the call to simplify_unary_operation.  */
-	    if (GET_RTX_CLASS (code) == RTX_UNARY
-		&& GET_MODE (replacements[j]) != mode_arg0
-		&& (code == ZERO_EXTEND
-		    || code == SIGN_EXTEND
-		    || code == TRUNCATE
-		    || code == FLOAT_TRUNCATE
-		    || code == FLOAT_EXTEND
-		    || code == FLOAT
-		    || code == FIX
-		    || code == UNSIGNED_FLOAT
-		    || code == UNSIGNED_FIX))
-	      continue;
-
-	    if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
-	      break;
+	    && (GET_RTX_CLASS (code) != RTX_UNARY
+		|| GET_MODE (const_arg) == mode_arg0
+		|| (code != ZERO_EXTEND
+		    && code != SIGN_EXTEND
+		    && code != TRUNCATE
+		    && code != FLOAT_TRUNCATE
+		    && code != FLOAT_EXTEND
+		    && code != FLOAT
+		    && code != FIX
+		    && code != UNSIGNED_FLOAT
+		    && code != UNSIGNED_FIX)))
+	  folded_arg = const_arg;
 
-	    if (GET_RTX_CLASS (code) == RTX_COMM_COMPARE
-		|| GET_RTX_CLASS (code) == RTX_COMM_ARITH)
-	      {
-		validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
-		validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);
-
-		if (apply_change_group ())
-		  {
-		    /* Swap them back to be invalid so that this loop can
-		       continue and flag them to be swapped back later.  */
-		    rtx tem;
-
-		    tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
-				       XEXP (x, 1) = tem;
-		    must_swap = 1;
-		    break;
-		  }
-	      }
-	  }
-      }
+	if (folded_arg == XEXP (x, i))
+	  continue;
 
-    else
-      {
-	if (fmt[i] == 'E')
-	  /* Don't try to fold inside of a vector of expressions.
-	     Doing nothing is harmless.  */
-	  {;}
+	if (insn == NULL_RTX && !changed)
+	  x = copy_rtx (x);
+	changed = 1;
+	validate_change (insn, &XEXP (x, i), folded_arg, 1);
       }
 
-  /* If a commutative operation, place a constant integer as the second
-     operand unless the first operand is also a constant integer.  Otherwise,
-     place any constant second unless the first operand is also a constant.  */
-
-  if (COMMUTATIVE_P (x))
+  if (changed)
     {
-      if (must_swap
-	  || swap_commutative_operands_p (const_arg0 ? const_arg0
-						     : XEXP (x, 0),
-					  const_arg1 ? const_arg1
-						     : XEXP (x, 1)))
-	{
-	  rtx tem = XEXP (x, 0);
-
-	  if (insn == 0 && ! copied)
-	    {
-	      x = copy_rtx (x);
-	      copied = 1;
-	    }
-
-	  validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
-	  validate_change (insn, &XEXP (x, 1), tem, 1);
-	  if (apply_change_group ())
-	    {
-	      tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
-	      tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
-	    }
+      /* Canonicalize X if necessary, and keep const_argN and folded_argN
+	 consistent with the order in X.  */
+      if (canonicalize_change_group (insn, x))
+	{
+	  rtx tem;
+	  tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
+	  tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
 	}
+
+      apply_change_group ();
     }
 
   /* If X is an arithmetic operation, see if we can simplify it.  */
@@ -4403,16 +3641,31 @@ equiv_constant (rtx x)
   if (x == 0 || CONSTANT_P (x))
     return x;
 
-  /* If X is a MEM, try to fold it outside the context of any insn to see if
-     it might be equivalent to a constant.  That handles the case where it
-     is a constant-pool reference.  Then try to look it up in the hash table
-     in case it is something whose value we have seen before.  */
+  if (GET_CODE (x) == SUBREG)
+    {
+      rtx new;
+
+      /* See if we previously assigned a constant value to this SUBREG.  */
+      if ((new = lookup_as_function (x, CONST_INT)) != 0
+          || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
+        return new;
+
+      if (REG_P (SUBREG_REG (x))
+	  && (new = equiv_constant (SUBREG_REG (x))) != 0)
+        return simplify_subreg (GET_MODE (x), SUBREG_REG (x),
+				GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
+
+      return 0;
+    }
+
+  /* If X is a MEM, see if it is a constant-pool reference, or look it up in
+     the hash table in case its value was seen before.  */
 
   if (MEM_P (x))
     {
       struct table_elt *elt;
 
-      x = fold_rtx (x, NULL_RTX);
+      x = avoid_constant_pool_reference (x);
       if (CONSTANT_P (x))
 	return x;
 
--- recog.c	(revision 113581)
+++ recog.c	(working copy)
@@ -238,6 +238,28 @@ validate_change (rtx object, rtx *loc, r
     return apply_change_group ();
 }
 
+/* Keep X canonicalized if some changes have made it non-canonical; only
+   modifies the operands of X, not (for example) its code.  Simplifications
+   are not the job of this routine.
+
+   Return true if anything was changed.  */
+bool
+canonicalize_change_group (rtx insn, rtx x)
+{
+  if (COMMUTATIVE_P (x)
+      && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
+    {
+      /* Oops, the caller has made X no longer canonical.
+	 Let's redo the changes in the correct order.  */
+      rtx tem = XEXP (x, 0);
+      validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
+      validate_change (insn, &XEXP (x, 1), tem, 1);
+      return true;
+    }
+  else
+    return false;
+}
+  
 
 /* This subroutine of apply_change_group verifies whether the changes to INSN
    were valid; i.e. whether INSN can still be recognized.  */
--- recog.h	(revision 113581)
+++ recog.h	(working copy)
@@ -74,6 +74,7 @@ extern void init_recog_no_volatile (void
 extern int check_asm_operands (rtx);
 extern int asm_operand_ok (rtx, const char *);
 extern int validate_change (rtx, rtx *, rtx, int);
+extern bool canonicalize_change_group (rtx insn, rtx x);
 extern int insn_invalid_p (rtx);
 extern int verify_changes (int);
 extern void confirm_change_group (void);

Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]