This is the mail archive of the gcc-patches@gcc.gnu.org mailing list for the GCC project.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]
Other format: [Raw text]

Re: Handle data dependence relations with different bases


Richard Sandiford <richard.sandiford@linaro.org> writes:
> Eric Botcazou <ebotcazou@adacore.com> writes:
>> [Sorry for missing the previous messages]
>>
>>> Thanks.  Just been retesting, and I think I must have forgotten
>>> to include Ada last time.  It turns out that the patch causes a dg-scan
>>> regression in gnat.dg/vect17.adb, because we now think that if the
>>> array RECORD_TYPEs *do* alias in:
>>> 
>>>    procedure Add (X, Y : aliased Sarray; R : aliased out Sarray) is
>>>    begin
>>>       for I in Sarray'Range loop
>>>          R(I) := X(I) + Y(I);
>>>       end loop;
>>>    end;
>>> 
>>> then the dependence distance must be zero.  Eric, does that hold true
>>> for Ada?  I.e. if X and R (or Y and R) alias, must it be the case that
>>> X(I) can only alias R(I) and not for example R(I-1) or R(I+1)?
>>
>> Yes, I'd think so (even without the artificial RECORD_TYPE around the arrays).
>
> Good!
>
>>> 2017-06-07  Richard Sandiford  <richard.sandiford@linaro.org>
>>> 
>>> gcc/testsuite/
>>> 	* gnat.dg/vect17.ads (Sarray): Increase range to 1 .. 5.
>>> 	* gnat.dg/vect17.adb (Add): Create a dependence distance of 1
>>> 	when X = R or Y = R.
>>
>> I think that you need to modify vect15 and vect16 the same way.
>
> Ah, yeah.  And doing that shows that I'd not handled safelen for
> DDR_COULD_BE_INDEPENDENT_P.  I've fixed that locally.
>
> How does this look?  Tested on x86_64-linux-gnu both without the
> vectoriser changes and with the fixed vectoriser patch.

Here's a version of the patch that handles safelen.  I split the
handling out into a new function (vect_analyze_possibly_independent_ddr)
since it was getting too big to do inline.

Tested on aarch64-linux-gnu and x86_64-linux-gnu.  OK to install?

Thanks,
Richard


2017-07-27  Richard Sandiford  <richard.sandiford@linaro.org>

gcc/
	* tree-data-ref.h (subscript): Add access_fn field.
	(data_dependence_relation): Add could_be_independent_p.
	(SUB_ACCESS_FN, DDR_COULD_BE_INDEPENDENT_P): New macros.
	(same_access_functions): Move to tree-data-ref.c.
	* tree-data-ref.c (ref_contains_union_access_p): New function.
	(access_fn_component_p): Likewise.
	(access_fn_components_comparable_p): Likewise.
	(dr_analyze_indices): Add a reference to access_fn_component_p.
	(dump_data_dependence_relation): Use SUB_ACCESS_FN instead of
	DR_ACCESS_FN.
	(constant_access_functions): Likewise.
	(add_other_self_distances): Likewise.
	(same_access_functions): Likewise.  (Moved from tree-data-ref.h.)
	(initialize_data_dependence_relation): Use XCNEW and remove
	explicit zeroing of DDR_REVERSED_P.  Look for a subsequence
	of access functions that have the same type.  Allow the
	subsequence to end with different bases in some circumstances.
	Record the chosen access functions in SUB_ACCESS_FN.
	(build_classic_dist_vector_1): Replace ddr_a and ddr_b with
	a_index and b_index.  Use SUB_ACCESS_FN instead of DR_ACCESS_FN.
	(subscript_dependence_tester_1): Likewise dra and drb.
	(build_classic_dist_vector): Update calls accordingly.
	(subscript_dependence_tester): Likewise.
	* tree-ssa-loop-prefetch.c (determine_loop_nest_reuse): Check
	DDR_COULD_BE_INDEPENDENT_P.
	* tree-vectorizer.h (LOOP_REQUIRES_VERSIONING_FOR_ALIAS): Test
	comp_alias_ddrs instead of may_alias_ddrs.
	* tree-vect-data-refs.c (vect_analyze_possibly_independent_ddr):
	New function.
	(vect_analyze_data_ref_dependence): Use it if
	DDR_COULD_BE_INDEPENDENT_P, but fall back to using the recorded
	distance vectors if that fails.
	(dependence_distance_ge_vf): New function.
	(vect_prune_runtime_alias_test_list): Use it.  Don't clear
	LOOP_VINFO_MAY_ALIAS_DDRS.

gcc/testsuite/
	* gcc.dg/vect/vect-alias-check-3.c: New test.
	* gcc.dg/vect/vect-alias-check-4.c: Likewise.
	* gcc.dg/vect/vect-alias-check-5.c: Likewise.

Index: gcc/tree-data-ref.h
===================================================================
--- gcc/tree-data-ref.h	2017-07-27 13:10:29.620045506 +0100
+++ gcc/tree-data-ref.h	2017-07-27 13:10:33.023912613 +0100
@@ -260,6 +260,9 @@ struct conflict_function
 
 struct subscript
 {
+  /* The access functions of the two references.  */
+  tree access_fn[2];
+
   /* A description of the iterations for which the elements are
      accessed twice.  */
   conflict_function *conflicting_iterations_in_a;
@@ -278,6 +281,7 @@ struct subscript
 
 typedef struct subscript *subscript_p;
 
+#define SUB_ACCESS_FN(SUB, I) (SUB)->access_fn[I]
 #define SUB_CONFLICTS_IN_A(SUB) (SUB)->conflicting_iterations_in_a
 #define SUB_CONFLICTS_IN_B(SUB) (SUB)->conflicting_iterations_in_b
 #define SUB_LAST_CONFLICT(SUB) (SUB)->last_conflict
@@ -333,6 +337,33 @@ struct data_dependence_relation
   /* Set to true when the dependence relation is on the same data
      access.  */
   bool self_reference_p;
+
+  /* True if the dependence described is conservatively correct rather
+     than exact, and if it is still possible for the accesses to be
+     conditionally independent.  For example, the a and b references in:
+
+       struct s *a, *b;
+       for (int i = 0; i < n; ++i)
+         a->f[i] += b->f[i];
+
+     conservatively have a distance vector of (0), for the case in which
+     a == b, but the accesses are independent if a != b.  Similarly,
+     the a and b references in:
+
+       struct s *a, *b;
+       for (int i = 0; i < n; ++i)
+         a[0].f[i] += b[i].f[i];
+
+     conservatively have a distance vector of (0), but they are indepenent
+     when a != b + i.  In contrast, the references in:
+
+       struct s *a;
+       for (int i = 0; i < n; ++i)
+         a->f[i] += a->f[i];
+
+     have the same distance vector of (0), but the accesses can never be
+     independent.  */
+  bool could_be_independent_p;
 };
 
 typedef struct data_dependence_relation *ddr_p;
@@ -363,6 +394,7 @@ #define DDR_DIR_VECT(DDR, I) \
 #define DDR_DIST_VECT(DDR, I) \
   DDR_DIST_VECTS (DDR)[I]
 #define DDR_REVERSED_P(DDR) (DDR)->reversed_p
+#define DDR_COULD_BE_INDEPENDENT_P(DDR) (DDR)->could_be_independent_p
 
 
 bool dr_analyze_innermost (innermost_loop_behavior *, tree, struct loop *);
@@ -457,22 +489,6 @@ same_data_refs (data_reference_p a, data
       return false;
 
   return true;
-}
-
-/* Return true when the DDR contains two data references that have the
-   same access functions.  */
-
-static inline bool
-same_access_functions (const struct data_dependence_relation *ddr)
-{
-  unsigned i;
-
-  for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
-    if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
-			  DR_ACCESS_FN (DDR_B (ddr), i)))
-      return false;
-
-  return true;
 }
 
 /* Returns true when all the dependences are computable.  */
Index: gcc/tree-data-ref.c
===================================================================
--- gcc/tree-data-ref.c	2017-07-27 13:10:29.620045506 +0100
+++ gcc/tree-data-ref.c	2017-07-27 13:10:33.023912613 +0100
@@ -124,8 +124,7 @@ Software Foundation; either version 3, o
 } dependence_stats;
 
 static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
-					   struct data_reference *,
-					   struct data_reference *,
+					   unsigned int, unsigned int,
 					   struct loop *);
 /* Returns true iff A divides B.  */
 
@@ -145,6 +144,21 @@ int_divides_p (int a, int b)
   return ((b % a) == 0);
 }
 
+/* Return true if reference REF contains a union access.  */
+
+static bool
+ref_contains_union_access_p (tree ref)
+{
+  while (handled_component_p (ref))
+    {
+      ref = TREE_OPERAND (ref, 0);
+      if (TREE_CODE (TREE_TYPE (ref)) == UNION_TYPE
+	  || TREE_CODE (TREE_TYPE (ref)) == QUAL_UNION_TYPE)
+	return true;
+    }
+  return false;
+}
+
 
 
 /* Dump into FILE all the data references from DATAREFS.  */
@@ -434,13 +448,14 @@ dump_data_dependence_relation (FILE *out
       unsigned int i;
       struct loop *loopi;
 
-      for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
+      subscript *sub;
+      FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
 	{
 	  fprintf (outf, "  access_fn_A: ");
-	  print_generic_stmt (outf, DR_ACCESS_FN (dra, i));
+	  print_generic_stmt (outf, SUB_ACCESS_FN (sub, 0));
 	  fprintf (outf, "  access_fn_B: ");
-	  print_generic_stmt (outf, DR_ACCESS_FN (drb, i));
-	  dump_subscript (outf, DDR_SUBSCRIPT (ddr, i));
+	  print_generic_stmt (outf, SUB_ACCESS_FN (sub, 1));
+	  dump_subscript (outf, sub);
 	}
 
       fprintf (outf, "  inner loop index: %d\n", DDR_INNER_LOOP (ddr));
@@ -920,6 +935,27 @@ dr_analyze_innermost (innermost_loop_beh
   return true;
 }
 
+/* Return true if OP is a valid component reference for a DR access
+   function.  This accepts a subset of what handled_component_p accepts.  */
+
+static bool
+access_fn_component_p (tree op)
+{
+  switch (TREE_CODE (op))
+    {
+    case REALPART_EXPR:
+    case IMAGPART_EXPR:
+    case ARRAY_REF:
+      return true;
+
+    case COMPONENT_REF:
+      return TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == RECORD_TYPE;
+
+    default:
+      return false;
+    }
+}
+
 /* Determines the base object and the list of indices of memory reference
    DR, analyzed in LOOP and instantiated in loop nest NEST.  */
 
@@ -957,7 +993,9 @@ dr_analyze_indices (struct data_referenc
       access_fns.safe_push (integer_one_node);
     }
 
-  /* Analyze access functions of dimensions we know to be independent.  */
+  /* Analyze access functions of dimensions we know to be independent.
+     The list of component references handled here should be kept in
+     sync with access_fn_component_p.  */
   while (handled_component_p (ref))
     {
       if (TREE_CODE (ref) == ARRAY_REF)
@@ -2148,6 +2186,38 @@ dr_may_alias_p (const struct data_refere
   return refs_may_alias_p (addr_a, addr_b);
 }
 
+/* REF_A and REF_B both satisfy access_fn_component_p.  Return true
+   if it is meaningful to compare their associated access functions
+   when checking for dependencies.  */
+
+static bool
+access_fn_components_comparable_p (tree ref_a, tree ref_b)
+{
+  /* Allow pairs of component refs from the following sets:
+
+       { REALPART_EXPR, IMAGPART_EXPR }
+       { COMPONENT_REF }
+       { ARRAY_REF }.  */
+  tree_code code_a = TREE_CODE (ref_a);
+  tree_code code_b = TREE_CODE (ref_b);
+  if (code_a == IMAGPART_EXPR)
+    code_a = REALPART_EXPR;
+  if (code_b == IMAGPART_EXPR)
+    code_b = REALPART_EXPR;
+  if (code_a != code_b)
+    return false;
+
+  if (TREE_CODE (ref_a) == COMPONENT_REF)
+    /* ??? We cannot simply use the type of operand #0 of the refs here as
+       the Fortran compiler smuggles type punning into COMPONENT_REFs.
+       Use the DECL_CONTEXT of the FIELD_DECLs instead.  */
+    return (DECL_CONTEXT (TREE_OPERAND (ref_a, 1))
+	    == DECL_CONTEXT (TREE_OPERAND (ref_b, 1)));
+
+  return types_compatible_p (TREE_TYPE (TREE_OPERAND (ref_a, 0)),
+			     TREE_TYPE (TREE_OPERAND (ref_b, 0)));
+}
+
 /* Initialize a data dependence relation between data accesses A and
    B.  NB_LOOPS is the number of loops surrounding the references: the
    size of the classic distance/direction vectors.  */
@@ -2160,11 +2230,10 @@ initialize_data_dependence_relation (str
   struct data_dependence_relation *res;
   unsigned int i;
 
-  res = XNEW (struct data_dependence_relation);
+  res = XCNEW (struct data_dependence_relation);
   DDR_A (res) = a;
   DDR_B (res) = b;
   DDR_LOOP_NEST (res).create (0);
-  DDR_REVERSED_P (res) = false;
   DDR_SUBSCRIPTS (res).create (0);
   DDR_DIR_VECTS (res).create (0);
   DDR_DIST_VECTS (res).create (0);
@@ -2182,82 +2251,277 @@ initialize_data_dependence_relation (str
       return res;
     }
 
-  /* The case where the references are exactly the same.  */
-  if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
+  unsigned int num_dimensions_a = DR_NUM_DIMENSIONS (a);
+  unsigned int num_dimensions_b = DR_NUM_DIMENSIONS (b);
+  if (num_dimensions_a == 0 || num_dimensions_b == 0)
     {
-      if ((loop_nest.exists ()
-	   && !object_address_invariant_in_loop_p (loop_nest[0],
-						   DR_BASE_OBJECT (a)))
-	  || DR_NUM_DIMENSIONS (a) == 0)
+      DDR_ARE_DEPENDENT (res) = chrec_dont_know;
+      return res;
+    }
+
+  /* For unconstrained bases, the root (highest-indexed) subscript
+     describes a variation in the base of the original DR_REF rather
+     than a component access.  We have no type that accurately describes
+     the new DR_BASE_OBJECT (whose TREE_TYPE describes the type *after*
+     applying this subscript) so limit the search to the last real
+     component access.
+
+     E.g. for:
+
+	void
+	f (int a[][8], int b[][8])
+	{
+	  for (int i = 0; i < 8; ++i)
+	    a[i * 2][0] = b[i][0];
+	}
+
+     the a and b accesses have a single ARRAY_REF component reference [0]
+     but have two subscripts.  */
+  if (DR_UNCONSTRAINED_BASE (a))
+    num_dimensions_a -= 1;
+  if (DR_UNCONSTRAINED_BASE (b))
+    num_dimensions_b -= 1;
+
+  /* These structures describe sequences of component references in
+     DR_REF (A) and DR_REF (B).  Each component reference is tied to a
+     specific access function.  */
+  struct {
+    /* The sequence starts at DR_ACCESS_FN (A, START_A) of A and
+       DR_ACCESS_FN (B, START_B) of B (inclusive) and extends to higher
+       indices.  In C notation, these are the indices of the rightmost
+       component references; e.g. for a sequence .b.c.d, the start
+       index is for .d.  */
+    unsigned int start_a;
+    unsigned int start_b;
+
+    /* The sequence contains LENGTH consecutive access functions from
+       each DR.  */
+    unsigned int length;
+
+    /* The enclosing objects for the A and B sequences respectively,
+       i.e. the objects to which DR_ACCESS_FN (A, START_A + LENGTH - 1)
+       and DR_ACCESS_FN (B, START_B + LENGTH - 1) are applied.  */
+    tree object_a;
+    tree object_b;
+  } full_seq = {}, struct_seq = {};
+
+  /* Before each iteration of the loop:
+
+     - REF_A is what you get after applying DR_ACCESS_FN (A, INDEX_A) and
+     - REF_B is what you get after applying DR_ACCESS_FN (B, INDEX_B).  */
+  unsigned int index_a = 0;
+  unsigned int index_b = 0;
+  tree ref_a = DR_REF (a);
+  tree ref_b = DR_REF (b);
+
+  /* Now walk the component references from the final DR_REFs back up to
+     the enclosing base objects.  Each component reference corresponds
+     to one access function in the DR, with access function 0 being for
+     the final DR_REF and the highest-indexed access function being the
+     one that is applied to the base of the DR.
+
+     Look for a sequence of component references whose access functions
+     are comparable (see access_fn_components_comparable_p).  If more
+     than one such sequence exists, pick the one nearest the base
+     (which is the leftmost sequence in C notation).  Store this sequence
+     in FULL_SEQ.
+
+     For example, if we have:
+
+	struct foo { struct bar s; ... } (*a)[10], (*b)[10];
+
+	A: a[0][i].s.c.d
+	B: __real b[0][i].s.e[i].f
+
+     (where d is the same type as the real component of f) then the access
+     functions would be:
+
+			 0   1   2   3
+	A:              .d  .c  .s [i]
+
+		 0   1   2   3   4   5
+	B:  __real  .f [i]  .e  .s [i]
+
+     The A0/B2 column isn't comparable, since .d is a COMPONENT_REF
+     and [i] is an ARRAY_REF.  However, the A1/B3 column contains two
+     COMPONENT_REF accesses for struct bar, so is comparable.  Likewise
+     the A2/B4 column contains two COMPONENT_REF accesses for struct foo,
+     so is comparable.  The A3/B5 column contains two ARRAY_REFs that
+     index foo[10] arrays, so is again comparable.  The sequence is
+     therefore:
+
+        A: [1, 3]  (i.e. [i].s.c)
+        B: [3, 5]  (i.e. [i].s.e)
+
+     Also look for sequences of component references whose access
+     functions are comparable and whose enclosing objects have the same
+     RECORD_TYPE.  Store this sequence in STRUCT_SEQ.  In the above
+     example, STRUCT_SEQ would be:
+
+        A: [1, 2]  (i.e. s.c)
+        B: [3, 4]  (i.e. s.e)  */
+  while (index_a < num_dimensions_a && index_b < num_dimensions_b)
+    {
+      /* REF_A and REF_B must be one of the component access types
+	 allowed by dr_analyze_indices.  */
+      gcc_checking_assert (access_fn_component_p (ref_a));
+      gcc_checking_assert (access_fn_component_p (ref_b));
+
+      /* Get the immediately-enclosing objects for REF_A and REF_B,
+	 i.e. the references *before* applying DR_ACCESS_FN (A, INDEX_A)
+	 and DR_ACCESS_FN (B, INDEX_B).  */
+      tree object_a = TREE_OPERAND (ref_a, 0);
+      tree object_b = TREE_OPERAND (ref_b, 0);
+
+      tree type_a = TREE_TYPE (object_a);
+      tree type_b = TREE_TYPE (object_b);
+      if (access_fn_components_comparable_p (ref_a, ref_b))
+	{
+	  /* This pair of component accesses is comparable for dependence
+	     analysis, so we can include DR_ACCESS_FN (A, INDEX_A) and
+	     DR_ACCESS_FN (B, INDEX_B) in the sequence.  */
+	  if (full_seq.start_a + full_seq.length != index_a
+	      || full_seq.start_b + full_seq.length != index_b)
+	    {
+	      /* The accesses don't extend the current sequence,
+		 so start a new one here.  */
+	      full_seq.start_a = index_a;
+	      full_seq.start_b = index_b;
+	      full_seq.length = 0;
+	    }
+
+	  /* Add this pair of references to the sequence.  */
+	  full_seq.length += 1;
+	  full_seq.object_a = object_a;
+	  full_seq.object_b = object_b;
+
+	  /* If the enclosing objects are structures (and thus have the
+	     same RECORD_TYPE), record the new sequence in STRUCT_SEQ.  */
+	  if (TREE_CODE (type_a) == RECORD_TYPE)
+	    struct_seq = full_seq;
+
+	  /* Move to the next containing reference for both A and B.  */
+	  ref_a = object_a;
+	  ref_b = object_b;
+	  index_a += 1;
+	  index_b += 1;
+	  continue;
+	}
+
+      /* Try to approach equal type sizes.  */
+      if (!COMPLETE_TYPE_P (type_a)
+	  || !COMPLETE_TYPE_P (type_b)
+	  || !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_a))
+	  || !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_b)))
+	break;
+
+      unsigned HOST_WIDE_INT size_a = tree_to_uhwi (TYPE_SIZE_UNIT (type_a));
+      unsigned HOST_WIDE_INT size_b = tree_to_uhwi (TYPE_SIZE_UNIT (type_b));
+      if (size_a <= size_b)
 	{
-	  DDR_ARE_DEPENDENT (res) = chrec_dont_know;
-	  return res;
+	  index_a += 1;
+	  ref_a = object_a;
+	}
+      if (size_b <= size_a)
+	{
+	  index_b += 1;
+	  ref_b = object_b;
 	}
-      DDR_AFFINE_P (res) = true;
-      DDR_ARE_DEPENDENT (res) = NULL_TREE;
-      DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
-      DDR_LOOP_NEST (res) = loop_nest;
-      DDR_INNER_LOOP (res) = 0;
-      DDR_SELF_REFERENCE (res) = true;
-      for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
-       {
-         struct subscript *subscript;
-
-         subscript = XNEW (struct subscript);
-         SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
-         SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
-         SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
-         SUB_DISTANCE (subscript) = chrec_dont_know;
-         DDR_SUBSCRIPTS (res).safe_push (subscript);
-       }
-      return res;
     }
 
-  /* If the references do not access the same object, we do not know
-     whether they alias or not.  We do not care about TBAA or alignment
-     info so we can use OEP_ADDRESS_OF to avoid false negatives.
-     But the accesses have to use compatible types as otherwise the
-     built indices would not match.  */
-  if (!operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), OEP_ADDRESS_OF)
-      || !types_compatible_p (TREE_TYPE (DR_BASE_OBJECT (a)),
-			      TREE_TYPE (DR_BASE_OBJECT (b))))
+  /* See whether FULL_SEQ ends at the base and whether the two bases
+     are equal.  We do not care about TBAA or alignment info so we can
+     use OEP_ADDRESS_OF to avoid false negatives.  */
+  tree base_a = DR_BASE_OBJECT (a);
+  tree base_b = DR_BASE_OBJECT (b);
+  bool same_base_p = (full_seq.start_a + full_seq.length == num_dimensions_a
+		      && full_seq.start_b + full_seq.length == num_dimensions_b
+		      && DR_UNCONSTRAINED_BASE (a) == DR_UNCONSTRAINED_BASE (b)
+		      && operand_equal_p (base_a, base_b, OEP_ADDRESS_OF)
+		      && types_compatible_p (TREE_TYPE (base_a),
+					     TREE_TYPE (base_b))
+		      && (!loop_nest.exists ()
+			  || (object_address_invariant_in_loop_p
+			      (loop_nest[0], base_a))));
+
+  /* If the bases are the same, we can include the base variation too.
+     E.g. the b accesses in:
+
+       for (int i = 0; i < n; ++i)
+         b[i + 4][0] = b[i][0];
+
+     have a definite dependence distance of 4, while for:
+
+       for (int i = 0; i < n; ++i)
+         a[i + 4][0] = b[i][0];
+
+     the dependence distance depends on the gap between a and b.
+
+     If the bases are different then we can only rely on the sequence
+     rooted at a structure access, since arrays are allowed to overlap
+     arbitrarily and change shape arbitrarily.  E.g. we treat this as
+     valid code:
+
+       int a[256];
+       ...
+       ((int (*)[4][3]) &a[1])[i][0] += ((int (*)[4][3]) &a[2])[i][0];
+
+     where two lvalues with the same int[4][3] type overlap, and where
+     both lvalues are distinct from the object's declared type.  */
+  if (same_base_p)
     {
-      DDR_ARE_DEPENDENT (res) = chrec_dont_know;
-      return res;
+      if (DR_UNCONSTRAINED_BASE (a))
+	full_seq.length += 1;
     }
+  else
+    full_seq = struct_seq;
 
-  /* If the base of the object is not invariant in the loop nest, we cannot
-     analyze it.  TODO -- in fact, it would suffice to record that there may
-     be arbitrary dependences in the loops where the base object varies.  */
-  if ((loop_nest.exists ()
-       && !object_address_invariant_in_loop_p (loop_nest[0], DR_BASE_OBJECT (a)))
-      || DR_NUM_DIMENSIONS (a) == 0)
+  /* Punt if we didn't find a suitable sequence.  */
+  if (full_seq.length == 0)
     {
       DDR_ARE_DEPENDENT (res) = chrec_dont_know;
       return res;
     }
 
-  /* If the number of dimensions of the access to not agree we can have
-     a pointer access to a component of the array element type and an
-     array access while the base-objects are still the same.  Punt.  */
-  if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
+  if (!same_base_p)
     {
-      DDR_ARE_DEPENDENT (res) = chrec_dont_know;
-      return res;
+      /* Partial overlap is possible for different bases when strict aliasing
+	 is not in effect.  It's also possible if either base involves a union
+	 access; e.g. for:
+
+	   struct s1 { int a[2]; };
+	   struct s2 { struct s1 b; int c; };
+	   struct s3 { int d; struct s1 e; };
+	   union u { struct s2 f; struct s3 g; } *p, *q;
+
+	 the s1 at "p->f.b" (base "p->f") partially overlaps the s1 at
+	 "p->g.e" (base "p->g") and might partially overlap the s1 at
+	 "q->g.e" (base "q->g").  */
+      if (!flag_strict_aliasing
+	  || ref_contains_union_access_p (full_seq.object_a)
+	  || ref_contains_union_access_p (full_seq.object_b))
+	{
+	  DDR_ARE_DEPENDENT (res) = chrec_dont_know;
+	  return res;
+	}
+
+      DDR_COULD_BE_INDEPENDENT_P (res) = true;
     }
 
   DDR_AFFINE_P (res) = true;
   DDR_ARE_DEPENDENT (res) = NULL_TREE;
-  DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
+  DDR_SUBSCRIPTS (res).create (full_seq.length);
   DDR_LOOP_NEST (res) = loop_nest;
   DDR_INNER_LOOP (res) = 0;
   DDR_SELF_REFERENCE (res) = false;
 
-  for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
+  for (i = 0; i < full_seq.length; ++i)
     {
       struct subscript *subscript;
 
       subscript = XNEW (struct subscript);
+      SUB_ACCESS_FN (subscript, 0) = DR_ACCESS_FN (a, full_seq.start_a + i);
+      SUB_ACCESS_FN (subscript, 1) = DR_ACCESS_FN (b, full_seq.start_b + i);
       SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
       SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
       SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
@@ -3839,14 +4103,15 @@ add_outer_distances (struct data_depende
 }
 
 /* Return false when fail to represent the data dependence as a
-   distance vector.  INIT_B is set to true when a component has been
+   distance vector.  A_INDEX is the index of the first reference
+   (0 for DDR_A, 1 for DDR_B) and B_INDEX is the index of the
+   second reference.  INIT_B is set to true when a component has been
    added to the distance vector DIST_V.  INDEX_CARRY is then set to
    the index in DIST_V that carries the dependence.  */
 
 static bool
 build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
-			     struct data_reference *ddr_a,
-			     struct data_reference *ddr_b,
+			     unsigned int a_index, unsigned int b_index,
 			     lambda_vector dist_v, bool *init_b,
 			     int *index_carry)
 {
@@ -3864,8 +4129,8 @@ build_classic_dist_vector_1 (struct data
 	  return false;
 	}
 
-      access_fn_a = DR_ACCESS_FN (ddr_a, i);
-      access_fn_b = DR_ACCESS_FN (ddr_b, i);
+      access_fn_a = SUB_ACCESS_FN (subscript, a_index);
+      access_fn_b = SUB_ACCESS_FN (subscript, b_index);
 
       if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
 	  && TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
@@ -3925,10 +4190,11 @@ build_classic_dist_vector_1 (struct data
 constant_access_functions (const struct data_dependence_relation *ddr)
 {
   unsigned i;
+  subscript *sub;
 
-  for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
-    if (!evolution_function_is_constant_p (DR_ACCESS_FN (DDR_A (ddr), i))
-	|| !evolution_function_is_constant_p (DR_ACCESS_FN (DDR_B (ddr), i)))
+  FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
+    if (!evolution_function_is_constant_p (SUB_ACCESS_FN (sub, 0))
+	|| !evolution_function_is_constant_p (SUB_ACCESS_FN (sub, 1)))
       return false;
 
   return true;
@@ -3991,10 +4257,11 @@ add_other_self_distances (struct data_de
   lambda_vector dist_v;
   unsigned i;
   int index_carry = DDR_NB_LOOPS (ddr);
+  subscript *sub;
 
-  for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
+  FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
     {
-      tree access_fun = DR_ACCESS_FN (DDR_A (ddr), i);
+      tree access_fun = SUB_ACCESS_FN (sub, 0);
 
       if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
 	{
@@ -4006,7 +4273,7 @@ add_other_self_distances (struct data_de
 		  return;
 		}
 
-	      access_fun = DR_ACCESS_FN (DDR_A (ddr), 0);
+	      access_fun = SUB_ACCESS_FN (DDR_SUBSCRIPT (ddr, 0), 0);
 
 	      if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC)
 		add_multivariate_self_dist (ddr, access_fun);
@@ -4077,6 +4344,23 @@ add_distance_for_zero_overlaps (struct d
     }
 }
 
+/* Return true when the DDR contains two data references that have the
+   same access functions.  */
+
+static inline bool
+same_access_functions (const struct data_dependence_relation *ddr)
+{
+  unsigned i;
+  subscript *sub;
+
+  FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
+    if (!eq_evolutions_p (SUB_ACCESS_FN (sub, 0),
+			  SUB_ACCESS_FN (sub, 1)))
+      return false;
+
+  return true;
+}
+
 /* Compute the classic per loop distance vector.  DDR is the data
    dependence relation to build a vector from.  Return false when fail
    to represent the data dependence as a distance vector.  */
@@ -4108,8 +4392,7 @@ build_classic_dist_vector (struct data_d
     }
 
   dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
-  if (!build_classic_dist_vector_1 (ddr, DDR_A (ddr), DDR_B (ddr),
-				    dist_v, &init_b, &index_carry))
+  if (!build_classic_dist_vector_1 (ddr, 0, 1, dist_v, &init_b, &index_carry))
     return false;
 
   /* Save the distance vector if we initialized one.  */
@@ -4142,12 +4425,11 @@ build_classic_dist_vector (struct data_d
       if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
 	{
 	  lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
-	  if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr),
-					      loop_nest))
+	  if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest))
 	    return false;
 	  compute_subscript_distance (ddr);
-	  if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
-					    save_v, &init_b, &index_carry))
+	  if (!build_classic_dist_vector_1 (ddr, 1, 0, save_v, &init_b,
+					    &index_carry))
 	    return false;
 	  save_dist_v (ddr, save_v);
 	  DDR_REVERSED_P (ddr) = true;
@@ -4183,12 +4465,10 @@ build_classic_dist_vector (struct data_d
 	    {
 	      lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
 
-	      if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr),
-						  DDR_A (ddr), loop_nest))
+	      if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest))
 		return false;
 	      compute_subscript_distance (ddr);
-	      if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
-						opposite_v, &init_b,
+	      if (!build_classic_dist_vector_1 (ddr, 1, 0, opposite_v, &init_b,
 						&index_carry))
 		return false;
 
@@ -4267,13 +4547,13 @@ build_classic_dir_vector (struct data_de
     }
 }
 
-/* Helper function.  Returns true when there is a dependence between
-   data references DRA and DRB.  */
+/* Helper function.  Returns true when there is a dependence between the
+   data references.  A_INDEX is the index of the first reference (0 for
+   DDR_A, 1 for DDR_B) and B_INDEX is the index of the second reference.  */
 
 static bool
 subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
-			       struct data_reference *dra,
-			       struct data_reference *drb,
+			       unsigned int a_index, unsigned int b_index,
 			       struct loop *loop_nest)
 {
   unsigned int i;
@@ -4285,8 +4565,8 @@ subscript_dependence_tester_1 (struct da
     {
       conflict_function *overlaps_a, *overlaps_b;
 
-      analyze_overlapping_iterations (DR_ACCESS_FN (dra, i),
-				      DR_ACCESS_FN (drb, i),
+      analyze_overlapping_iterations (SUB_ACCESS_FN (subscript, a_index),
+				      SUB_ACCESS_FN (subscript, b_index),
 				      &overlaps_a, &overlaps_b,
 				      &last_conflicts, loop_nest);
 
@@ -4335,7 +4615,7 @@ subscript_dependence_tester_1 (struct da
 subscript_dependence_tester (struct data_dependence_relation *ddr,
 			     struct loop *loop_nest)
 {
-  if (subscript_dependence_tester_1 (ddr, DDR_A (ddr), DDR_B (ddr), loop_nest))
+  if (subscript_dependence_tester_1 (ddr, 0, 1, loop_nest))
     dependence_stats.num_dependence_dependent++;
 
   compute_subscript_distance (ddr);
Index: gcc/tree-ssa-loop-prefetch.c
===================================================================
--- gcc/tree-ssa-loop-prefetch.c	2017-07-27 13:10:29.620045506 +0100
+++ gcc/tree-ssa-loop-prefetch.c	2017-07-27 13:10:33.023912613 +0100
@@ -1668,6 +1668,7 @@ determine_loop_nest_reuse (struct loop *
       refb = (struct mem_ref *) DDR_B (dep)->aux;
 
       if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
+	  || DDR_COULD_BE_INDEPENDENT_P (dep)
 	  || DDR_NUM_DIST_VECTS (dep) == 0)
 	{
 	  /* If the dependence cannot be analyzed, assume that there might be
Index: gcc/tree-vectorizer.h
===================================================================
--- gcc/tree-vectorizer.h	2017-07-27 13:10:29.620045506 +0100
+++ gcc/tree-vectorizer.h	2017-07-27 13:10:33.024912868 +0100
@@ -358,7 +358,7 @@ #define LOOP_VINFO_ORIG_LOOP_INFO(L)
 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L)	\
   ((L)->may_misalign_stmts.length () > 0)
 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L)		\
-  ((L)->may_alias_ddrs.length () > 0)
+  ((L)->comp_alias_ddrs.length () > 0)
 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L)		\
   (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
 #define LOOP_REQUIRES_VERSIONING(L)			\
Index: gcc/tree-vect-data-refs.c
===================================================================
--- gcc/tree-vect-data-refs.c	2017-07-27 13:10:29.620045506 +0100
+++ gcc/tree-vect-data-refs.c	2017-07-27 13:10:33.024912868 +0100
@@ -160,6 +160,60 @@ vect_mark_for_runtime_alias_test (ddr_p
 }
 
 
+/* A subroutine of vect_analyze_data_ref_dependence.  Handle
+   DDR_COULD_BE_INDEPENDENT_P ddr DDR that has a known set of dependence
+   distances.  These distances are conservatively correct but they don't
+   reflect a guaranteed dependence.
+
+   Return true if this function does all the work necessary to avoid
+   an alias or false if the caller should use the dependence distances
+   to limit the vectorization factor in the usual way.  LOOP_DEPTH is
+   the depth of the loop described by LOOP_VINFO and the other arguments
+   are as for vect_analyze_data_ref_dependence.  */
+
+static bool
+vect_analyze_possibly_independent_ddr (data_dependence_relation *ddr,
+				       loop_vec_info loop_vinfo,
+				       int loop_depth, int *max_vf)
+{
+  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
+  lambda_vector dist_v;
+  unsigned int i;
+  FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
+    {
+      int dist = dist_v[loop_depth];
+      if (dist != 0 && !(dist > 0 && DDR_REVERSED_P (ddr)))
+	{
+	  /* If the user asserted safelen >= DIST consecutive iterations
+	     can be executed concurrently, assume independence.
+
+	     ??? An alternative would be to add the alias check even
+	     in this case, and vectorize the fallback loop with the
+	     maximum VF set to safelen.  However, if the user has
+	     explicitly given a length, it's less likely that that
+	     would be a win.  */
+	  if (loop->safelen >= 2 && abs_hwi (dist) <= loop->safelen)
+	    {
+	      if (loop->safelen < *max_vf)
+		*max_vf = loop->safelen;
+	      LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
+	      continue;
+	    }
+
+	  /* For dependence distances of 2 or more, we have the option
+	     of limiting VF or checking for an alias at runtime.
+	     Prefer to check at runtime if we can, to avoid limiting
+	     the VF unnecessarily when the bases are in fact independent.
+
+	     Note that the alias checks will be removed if the VF ends up
+	     being small enough.  */
+	  return vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
+	}
+    }
+  return true;
+}
+
+
 /* Function vect_analyze_data_ref_dependence.
 
    Return TRUE if there (might) exist a dependence between a memory-reference
@@ -305,6 +359,12 @@ vect_analyze_data_ref_dependence (struct
     }
 
   loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
+
+  if (DDR_COULD_BE_INDEPENDENT_P (ddr)
+      && vect_analyze_possibly_independent_ddr (ddr, loop_vinfo,
+						loop_depth, max_vf))
+    return false;
+
   FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
     {
       int dist = dist_v[loop_depth];
@@ -2878,6 +2938,44 @@ vect_no_alias_p (struct data_reference *
   return false;
 }
 
+/* Return true if the minimum nonzero dependence distance for loop LOOP_DEPTH
+   in DDR is >= VF.  */
+
+static bool
+dependence_distance_ge_vf (data_dependence_relation *ddr,
+			   unsigned int loop_depth, unsigned HOST_WIDE_INT vf)
+{
+  if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE
+      || DDR_NUM_DIST_VECTS (ddr) == 0)
+    return false;
+
+  /* If the dependence is exact, we should have limited the VF instead.  */
+  gcc_checking_assert (DDR_COULD_BE_INDEPENDENT_P (ddr));
+
+  unsigned int i;
+  lambda_vector dist_v;
+  FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
+    {
+      HOST_WIDE_INT dist = dist_v[loop_depth];
+      if (dist != 0
+	  && !(dist > 0 && DDR_REVERSED_P (ddr))
+	  && (unsigned HOST_WIDE_INT) abs_hwi (dist) < vf)
+	return false;
+    }
+
+  if (dump_enabled_p ())
+    {
+      dump_printf_loc (MSG_NOTE, vect_location,
+		       "dependence distance between ");
+      dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr)));
+      dump_printf (MSG_NOTE,  " and ");
+      dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr)));
+      dump_printf (MSG_NOTE,  " is >= VF\n");
+    }
+
+  return true;
+}
+
 /* Function vect_prune_runtime_alias_test_list.
 
    Prune a list of ddrs to be tested at run-time by versioning for alias.
@@ -2908,6 +3006,10 @@ vect_prune_runtime_alias_test_list (loop
 
   comp_alias_ddrs.create (may_alias_ddrs.length ());
 
+  unsigned int loop_depth
+    = index_in_loop_nest (LOOP_VINFO_LOOP (loop_vinfo)->num,
+			  LOOP_VINFO_LOOP_NEST (loop_vinfo));
+
   /* First, we collect all data ref pairs for aliasing checks.  */
   FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
     {
@@ -2917,6 +3019,11 @@ vect_prune_runtime_alias_test_list (loop
       tree segment_length_a, segment_length_b;
       gimple *stmt_a, *stmt_b;
 
+      /* Ignore the alias if the VF we chose ended up being no greater
+	 than the dependence distance.  */
+      if (dependence_distance_ge_vf (ddr, loop_depth, vect_factor))
+	continue;
+
       dr_a = DDR_A (ddr);
       stmt_a = DR_STMT (DDR_A (ddr));
       dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
@@ -2993,10 +3100,6 @@ vect_prune_runtime_alias_test_list (loop
       return false;
     }
 
-  /* All alias checks have been resolved at compilation time.  */
-  if (!comp_alias_ddrs.length ())
-    LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).truncate (0);
-
   return true;
 }
 
Index: gcc/testsuite/gcc.dg/vect/vect-alias-check-3.c
===================================================================
--- /dev/null	2017-07-27 10:25:31.671280760 +0100
+++ gcc/testsuite/gcc.dg/vect/vect-alias-check-3.c	2017-07-27 13:10:33.022912357 +0100
@@ -0,0 +1,120 @@
+/* { dg-do compile } */
+/* { dg-require-effective-target vect_int } */
+/* { dg-additional-options "--param vect-max-version-for-alias-checks=0 -fopenmp-simd" } */
+
+/* Intended to be larger than any VF.  */
+#define GAP 128
+#define N (GAP * 3)
+
+struct s { int x[N + 1]; };
+struct t { struct s x[N + 1]; };
+struct u { int x[N + 1]; int y; };
+struct v { struct s s; };
+
+void
+f1 (struct s *a, struct s *b)
+{
+  for (int i = 0; i < N; ++i)
+    a->x[i] += b->x[i];
+}
+
+void
+f2 (struct s *a, struct s *b)
+{
+  for (int i = 0; i < N; ++i)
+    a[1].x[i] += b[2].x[i];
+}
+
+void
+f3 (struct s *a, struct s *b)
+{
+  for (int i = 0; i < N; ++i)
+    a[1].x[i] += b[i].x[i];
+}
+
+void
+f4 (struct s *a, struct s *b)
+{
+  for (int i = 0; i < N; ++i)
+    a[i].x[i] += b[i].x[i];
+}
+
+void
+f5 (struct s *a, struct s *b)
+{
+  for (int i = 0; i < N; ++i)
+    a->x[i] += b->x[i + 1];
+}
+
+void
+f6 (struct s *a, struct s *b)
+{
+  for (int i = 0; i < N; ++i)
+    a[1].x[i] += b[2].x[i + 1];
+}
+
+void
+f7 (struct s *a, struct s *b)
+{
+  for (int i = 0; i < N; ++i)
+    a[1].x[i] += b[i].x[i + 1];
+}
+
+void
+f8 (struct s *a, struct s *b)
+{
+  for (int i = 0; i < N; ++i)
+    a[i].x[i] += b[i].x[i + 1];
+}
+
+void
+f9 (struct s *a, struct t *b)
+{
+  for (int i = 0; i < N; ++i)
+    a->x[i] += b->x[1].x[i];
+}
+
+void
+f10 (struct s *a, struct t *b)
+{
+  for (int i = 0; i < N; ++i)
+    a->x[i] += b->x[i].x[i];
+}
+
+void
+f11 (struct u *a, struct u *b)
+{
+  for (int i = 0; i < N; ++i)
+    a->x[i] += b->x[i] + b[i].y;
+}
+
+void
+f12 (struct s *a, struct s *b)
+{
+  for (int i = 0; i < GAP; ++i)
+    a->x[i + GAP] += b->x[i];
+}
+
+void
+f13 (struct s *a, struct s *b)
+{
+  for (int i = 0; i < GAP * 2; ++i)
+    a->x[i + GAP] += b->x[i];
+}
+
+void
+f14 (struct v *a, struct s *b)
+{
+  for (int i = 0; i < N; ++i)
+    a->s.x[i] = b->x[i];
+}
+
+void
+f15 (struct s *a, struct s *b)
+{
+  #pragma omp simd safelen(N)
+  for (int i = 0; i < N; ++i)
+    a->x[i + 1] += b->x[i];
+}
+
+/* { dg-final { scan-tree-dump-times "LOOP VECTORIZED" 15 "vect" } } */
Index: gcc/testsuite/gcc.dg/vect/vect-alias-check-4.c
===================================================================
--- /dev/null	2017-07-27 10:25:31.671280760 +0100
+++ gcc/testsuite/gcc.dg/vect/vect-alias-check-4.c	2017-07-27 13:10:33.022912357 +0100
@@ -0,0 +1,35 @@
+/* { dg-do compile } */
+/* { dg-require-effective-target vect_int } */
+/* { dg-additional-options "--param vect-max-version-for-alias-checks=0" } */
+
+#define N 16
+
+struct s1 { int a[N]; };
+struct s2 { struct s1 b; int c; };
+struct s3 { int d; struct s1 e; };
+union u { struct s2 f; struct s3 g; };
+
+/* We allow a and b to overlap arbitrarily.  */
+
+void
+f1 (int a[][N], int b[][N])
+{
+  for (int i = 0; i < N; ++i)
+    a[0][i] += b[0][i];
+}
+
+void
+f2 (union u *a, union u *b)
+{
+  for (int i = 0; i < N; ++i)
+    a->f.b.a[i] += b->g.e.a[i];
+}
+
+void
+f3 (struct s1 *a, struct s1 *b)
+{
+  for (int i = 0; i < N - 1; ++i)
+    a->a[i + 1] += b->a[i];
+}
+
+/* { dg-final { scan-tree-dump-not "LOOP VECTORIZED" "vect" } } */
Index: gcc/testsuite/gcc.dg/vect/vect-alias-check-5.c
===================================================================
--- /dev/null	2017-07-27 10:25:31.671280760 +0100
+++ gcc/testsuite/gcc.dg/vect/vect-alias-check-5.c	2017-07-27 13:10:33.022912357 +0100
@@ -0,0 +1,19 @@
+/* { dg-do compile } */
+/* { dg-require-effective-target vect_int } */
+
+/* Intended to be larger than any VF.  */
+#define GAP 128
+#define N (GAP * 3)
+
+struct s { int x[N]; };
+
+void
+f1 (struct s *a, struct s *b)
+{
+  for (int i = 0; i < GAP * 2; ++i)
+    a->x[i + GAP] += b->x[i];
+}
+
+/* { dg-final { scan-tree-dump-times "consider run-time aliasing" 1 "vect" } } */
+/* { dg-final { scan-tree-dump-times "improved number of alias checks from 1 to 0" 1 "vect" } } */
+/* { dg-final { scan-tree-dump-times "LOOP VECTORIZED" 1 "vect" } } */


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]