This is the mail archive of the gcc-patches@gcc.gnu.org mailing list for the GCC project.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]
Other format: [Raw text]

Re: patch to fix constant math - 4th patch - the wide-int class - patch ping for the next stage 1


richard,

here is a copy of the patch without the debugging that you asked me to remove.
I forgot to remove it before sending this patch.

kenny

On 04/16/2013 04:07 PM, Kenneth Zadeck wrote:
Richard,

I made major changes to wide-int along the lines you suggested. Each of the binary operations is now a template. There are 5 possible implementations of those operations, one for each of HWI, unsigned HWI, wide-int, rtl, and tree. Note that this is not exactly as you suggested, but it is along the same lines.

The HWI template sign extends the value to the precision of the first operand, the unsigned HWI is the same except that it is an unsigned extension. The wide-int version is used as before, but is in truth rarely used. The rtl and tree "logically" convert the value to a wide-int but in practice do something more efficient than converting to the wide-int. What they do is look inside the rtl or the tree and pass a pointer to the data and a length to the binary operation. This is perfectly safe in the position of a second operand to the binary operation because the lifetime is guaranteed to be very short. The wide-int implementation was also modified to do the same pointer trick allowing all 5 templates to share the same use of the data.

Note that currently the tree code is more crufty than one would like. This will clean up nicely when the tree-cst is changed to represent the value with an array and a length field.

So now, at least for the second operand of binary operations, the storage is never copied. I do not believe that there is a good similar trick for the first operand. i did not consider something like wide_int::add (a, b) to be a viable option; it seems to mis the point of using an object oriented language. So I think that you really have to copy the data into an instance of a wide int.

However, while all of this avoids ever having to pass a precision into the second operand, this patch does preserve the finite math implementation of wide-int. Finite math is really what people expect an optimizer to do, because it seamlessly matches what the machine is going to do.

I hope at this point, i can get a comprehensive review on these patches. I believe that I have done what is required.

There are two other patches that will be submitted in the next few minutes. The first one is an updated version of the rtl level patch. The only changes from what you have seen before are that the binary operations now use the templated binary operations. The second one is the first of the tree level patches. It converts builtins.c to use both use wide-int and it removes all assumptions that tree-csts are built with two HWIs.

Once builtins.c is accepted, i will convert the rest of the middle end patches. They will all be converted in a similar way.

Kenny

diff --git a/gcc/Makefile.in b/gcc/Makefile.in
index 109f865..514fabc 100644
--- a/gcc/Makefile.in
+++ b/gcc/Makefile.in
@@ -857,7 +857,7 @@ RTL_BASE_H = coretypes.h rtl.h rtl.def $(MACHMODE_H) reg-notes.def \
   insn-notes.def $(INPUT_H) $(REAL_H) statistics.h $(VEC_H) \
   $(FIXED_VALUE_H) alias.h $(HASHTAB_H)
 FIXED_VALUE_H = fixed-value.h $(MACHMODE_H) double-int.h
-RTL_H = $(RTL_BASE_H) $(FLAGS_H) genrtl.h
+RTL_H = $(RTL_BASE_H) $(FLAGS_H) genrtl.h wide-int.h
 RTL_ERROR_H = rtl-error.h $(RTL_H) $(DIAGNOSTIC_CORE_H)
 READ_MD_H = $(OBSTACK_H) $(HASHTAB_H) read-md.h
 PARAMS_H = params.h params.def
@@ -945,7 +945,7 @@ TREE_PRETTY_PRINT_H = tree-pretty-print.h $(PRETTY_PRINT_H)
 GIMPLE_PRETTY_PRINT_H = gimple-pretty-print.h $(TREE_PRETTY_PRINT_H)
 DIAGNOSTIC_CORE_H = diagnostic-core.h $(INPUT_H) bversion.h diagnostic.def
 DIAGNOSTIC_H = diagnostic.h $(DIAGNOSTIC_CORE_H) $(PRETTY_PRINT_H)
-DWARF2OUT_H = dwarf2out.h $(DWARF2_H)
+DWARF2OUT_H = dwarf2out.h $(DWARF2_H) wide-int.h
 C_PRETTY_PRINT_H = c-family/c-pretty-print.h $(PRETTY_PRINT_H) \
 	$(C_COMMON_H) $(TREE_H)
 SCEV_H = tree-scalar-evolution.h $(GGC_H) tree-chrec.h $(PARAMS_H)
@@ -1458,6 +1458,7 @@ OBJS = \
 	varpool.o \
 	vmsdbgout.o \
 	web.o \
+	wide-int.o \
 	xcoffout.o \
 	$(out_object_file) \
 	$(EXTRA_OBJS) \
@@ -2687,6 +2688,7 @@ targhooks.o : targhooks.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TREE_H) \
    tree-ssa-alias.h $(TREE_FLOW_H)
 common/common-targhooks.o : common/common-targhooks.c $(CONFIG_H) $(SYSTEM_H) \
    coretypes.h $(INPUT_H) $(TM_H) $(COMMON_TARGET_H) common/common-targhooks.h
+wide-int.o: wide-int.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(TREE_H)
 
 bversion.h: s-bversion; @true
 s-bversion: BASE-VER
@@ -2853,10 +2855,10 @@ emit-rtl.o : emit-rtl.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(RTL_H) \
    $(HASHTAB_H) $(TM_P_H) debug.h langhooks.h $(TREE_PASS_H) gt-emit-rtl.h \
    $(DF_H) $(PARAMS_H) $(TARGET_H)
 real.o : real.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(TREE_H) \
-   $(DIAGNOSTIC_CORE_H) $(TM_P_H) $(REAL_H) dfp.h realmpfr.h
+   $(DIAGNOSTIC_CORE_H) $(TM_P_H) $(REAL_H) dfp.h realmpfr.h wide-int.h
 realmpfr.o : realmpfr.c realmpfr.h $(CONFIG_H) $(SYSTEM_H) coretypes.h $(REAL_H) $(TREE_H)
 dfp.o : dfp.c dfp.h $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H)	$(TREE_H) \
-   $(TM_P_H) $(REAL_H) $(DECNUM_H)
+   $(TM_P_H) $(REAL_H) $(DECNUM_H) wide-int.h
 fixed-value.o: fixed-value.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) \
    $(TREE_H) $(REAL_H) $(DIAGNOSTIC_CORE_H)
 jump.o : jump.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) $(RTL_H) \
@@ -3941,15 +3943,16 @@ CFLAGS-gengtype-parse.o += -DGENERATOR_FILE
 build/gengtype-parse.o: $(BCONFIG_H)
 
 gengtype-state.o build/gengtype-state.o: gengtype-state.c $(SYSTEM_H) \
-  gengtype.h errors.h double-int.h version.h $(HASHTAB_H) $(OBSTACK_H) \
-  $(XREGEX_H)
+  gengtype.h errors.h double-int.h version.h $(HASHTAB_H)    \
+  $(OBSTACK_H) $(XREGEX_H)
 gengtype-state.o: $(CONFIG_H)
 CFLAGS-gengtype-state.o += -DGENERATOR_FILE
 build/gengtype-state.o: $(BCONFIG_H)
-
+wide-int.h: $(GTM_H) $(TREE_H) hwint.h $(OPTIONS_H) $(TM_H)             \
+  $(MACHMODE_H) double-int.h dumpfile.h $(REAL_H)
 gengtype.o build/gengtype.o : gengtype.c $(SYSTEM_H) gengtype.h 	\
-  rtl.def insn-notes.def errors.h double-int.h version.h $(HASHTAB_H) \
-  $(OBSTACK_H) $(XREGEX_H)
+  rtl.def insn-notes.def errors.h double-int.h wide-int.h version.h     \
+  $(HASHTAB_H) $(OBSTACK_H) $(XREGEX_H)
 gengtype.o: $(CONFIG_H)
 CFLAGS-gengtype.o += -DGENERATOR_FILE
 build/gengtype.o: $(BCONFIG_H)
diff --git a/gcc/wide-int.c b/gcc/wide-int.c
new file mode 100644
index 0000000..1ba2ca4
--- /dev/null
+++ b/gcc/wide-int.c
@@ -0,0 +1,2727 @@
+/* Operations with very long integers.
+   Copyright (C) 2012-2013 Free Software Foundation, Inc.
+   Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 3, or (at your option) any
+later version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "hwint.h"
+#include "wide-int.h"
+#include "rtl.h"
+#include "tree.h"
+#include "dumpfile.h"
+
+/* This is the maximal size of the buffer needed for dump.  */
+const int MAX_SIZE = 4 * (MAX_BITSIZE_MODE_ANY_INT / 4
+		     + MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_WIDE_INT + 32);
+
+/*
+ * Internal utilities.
+ */
+
+/* Quantities to deal with values that hold half of a wide int.  Used
+   in multiply and divide.  */
+#define HALF_INT_MASK (((HOST_WIDE_INT)1 << HOST_BITS_PER_HALF_WIDE_INT) - 1)
+
+#define BLOCK_OF(TARGET) ((TARGET) / HOST_BITS_PER_WIDE_INT)
+#define BLOCKS_NEEDED(PREC) \
+  (((PREC) + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT)
+#define SIGN_MASK(X) (((HOST_WIDE_INT)X) >> (HOST_BITS_PER_WIDE_INT - 1))
+/*
+ * Conversion routines in and out of wide-int.
+ */
+
+/* Convert OP0 into a wide int of PRECISION.  If the precision is less
+   than HOST_BITS_PER_WIDE_INT, zero extend the value of the word.
+   The overflow bit are set if the number was too large to fit in the
+   mode.  */
+
+wide_int
+wide_int::from_shwi (HOST_WIDE_INT op0,
+		     unsigned int precision, bool *overflow)
+{
+  wide_int result;
+
+  result.precision = precision;
+
+  if (precision < HOST_BITS_PER_WIDE_INT)
+    {
+      HOST_WIDE_INT t = sext_hwi (op0, precision);
+      if (t != op0 && overflow)
+	*overflow = true; 
+      op0 = t;
+    }
+
+  result.val[0] = op0;
+  result.len = 1;
+
+  return result;
+}
+
+/* Convert OP0 into a wide int of PRECISION.  If the precision is less
+   than HOST_BITS_PER_WIDE_INT, zero extend the value of the word.
+   The overflow bit are set if the number was too large to fit in the
+   mode.  */
+
+wide_int
+wide_int::from_uhwi (unsigned HOST_WIDE_INT op0, 
+		     unsigned int precision, bool *overflow)
+{
+  wide_int result;
+
+  result.precision = precision;
+
+  if (precision < HOST_BITS_PER_WIDE_INT)
+    {
+      unsigned HOST_WIDE_INT t = zext_hwi (op0, precision);
+      if (t != op0 && overflow)
+	*overflow = true;
+      op0 = t;
+    }
+
+  result.val[0] = op0;
+
+  /* If the top bit is a 1, we need to add another word of 0s since
+     that would not expand the right value since the infinite
+     expansion of any unsigned number must have 0s at the top.  */
+  if ((HOST_WIDE_INT)op0 < 0 && precision > HOST_BITS_PER_WIDE_INT)
+    {
+      result.val[1] = 0;
+      result.len = 2;
+    }
+  else
+    result.len = 1;
+
+  return result;
+}
+
+/* Create a wide_int from an array of host_wide_ints in OP1 of LEN.
+   The result has PRECISION.  */
+
+wide_int
+wide_int::from_array (const HOST_WIDE_INT *op1, unsigned int len, 
+		      unsigned int precision, bool need_canon)
+{
+  unsigned int i;
+  wide_int result;
+  
+  result.len = len;
+  result.precision = precision;
+
+  for (i=0; i < len; i++)
+    result.val[i] = op1[i];
+
+  if (need_canon)
+    result.canonize ();
+  return result;
+}
+
+/* Convert a double int into a wide int with precision PREC.  */
+
+wide_int
+wide_int::from_double_int (double_int di, unsigned int prec)
+{
+  HOST_WIDE_INT op = di.low;
+  wide_int result;
+
+  result.precision = prec;
+  result.len = (prec <= HOST_BITS_PER_WIDE_INT) ? 1 : 2;
+
+  if (prec < HOST_BITS_PER_WIDE_INT)
+    result.val[0] = sext_hwi (op, prec);
+  else
+    {
+      result.val[0] = op;
+      if (prec > HOST_BITS_PER_WIDE_INT)
+	{
+	  if (prec < HOST_BITS_PER_DOUBLE_INT)
+	    result.val[1] = sext_hwi (di.high, prec);
+	  else
+	    result.val[1] = di.high;
+	}
+    }
+
+  if (result.len == 2)
+    result.canonize ();
+
+  return result;
+}
+
+/* Convert a integer cst into a wide int.  */
+
+wide_int
+wide_int::from_tree (const_tree tcst)
+{
+  wide_int result;
+  tree type = TREE_TYPE (tcst);
+  unsigned int prec = TYPE_PRECISION (type);
+
+  result.precision = prec;
+
+  /* This will simplify out to just an array copy and a len copy.  */
+  result.val[0] = TREE_INT_CST_LOW (tcst);
+  result.val[1] = TREE_INT_CST_HIGH (tcst);
+  if (prec == HOST_BITS_PER_DOUBLE_INT 
+      && TYPE_UNSIGNED (type)
+      && TREE_INT_CST_HIGH (tcst) < 0)
+    {
+      result.val[2] = 0;
+      result.len = 3;
+    }
+  else if (prec > HOST_BITS_PER_WIDE_INT)
+    result.len = 2;
+  else if (prec == HOST_BITS_PER_WIDE_INT
+	   && TYPE_UNSIGNED (type)
+	   && (HOST_WIDE_INT)TREE_INT_CST_LOW (tcst) < 0)
+    result.len = 2;
+  else
+    result.len = 1;
+
+  return result;
+}
+
+/* Extract a constant integer from the X of type MODE.  The bits of
+   the integer are returned.  */
+
+wide_int
+wide_int::from_rtx (const_rtx x, enum machine_mode mode)
+{
+  wide_int result;
+  unsigned int prec = GET_MODE_PRECISION (mode);
+
+  gcc_assert (mode != VOIDmode);
+
+  result.precision = prec;
+
+  switch (GET_CODE (x))
+    {
+    case CONST_INT:
+      result.val[0] = INTVAL (x);
+      result.len = 1;
+      break;
+
+#if TARGET_SUPPORTS_WIDE_INT
+    case CONST_WIDE_INT:
+      {
+	int i;
+	result.len = CONST_WIDE_INT_NUNITS (x);
+	
+	for (i = 0; i < result.len; i++)
+	  result.val[i] = CONST_WIDE_INT_ELT (x, i);
+      }
+      break;
+#else
+    case CONST_DOUBLE:
+      result.len = 2;
+      result.val[0] = CONST_DOUBLE_LOW (x);
+      result.val[1] = CONST_DOUBLE_HIGH (x);
+      break;
+#endif
+
+    default:
+      gcc_unreachable ();
+    }
+
+  return result;
+}
+
+/* Construct from a buffer of length LEN.  BUFFER will be read according
+   to byte endianess and word endianess.  Only the lower LEN bytes
+   of the result are set; the remaining high bytes are cleared.  */
+
+wide_int
+wide_int::from_buffer (const unsigned char *buffer, int len)
+{
+  wide_int result = wide_int::zero (len * BITS_PER_UNIT);
+  int words = len / UNITS_PER_WORD;
+
+  for (int byte = 0; byte < len; byte++)
+    {
+      int offset;
+      int index;
+      int bitpos = byte * BITS_PER_UNIT;
+      unsigned HOST_WIDE_INT value;
+
+      if (len > UNITS_PER_WORD)
+	{
+	  int word = byte / UNITS_PER_WORD;
+
+	  if (WORDS_BIG_ENDIAN)
+	    word = (words - 1) - word;
+
+	  offset = word * UNITS_PER_WORD;
+
+	  if (BYTES_BIG_ENDIAN)
+	    offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
+	  else
+	    offset += byte % UNITS_PER_WORD;
+	}
+      else
+	offset = BYTES_BIG_ENDIAN ? (len - 1) - byte : byte;
+
+      value = (unsigned HOST_WIDE_INT) buffer[offset];
+
+      index = bitpos / HOST_BITS_PER_WIDE_INT;
+      result.val[index] |= value << bitpos;
+    }
+
+  result.canonize ();
+  return result;
+}
+
+
+/*
+ * Largest and smallest values in a mode.
+ */
+
+/* Produce the largest SGNed number that is represented in PREC.  The
+   resulting number is placed in a wide int of size PRECISION.  */
+
+wide_int
+wide_int::max_value (unsigned int prec, unsigned int precision, 
+		     SignOp sgn)
+{
+  wide_int result;
+  
+  result.precision = precision;
+
+  if (sgn == UNSIGNED)
+    {
+      /* The unsigned max is just all ones, for which the compressed
+	 rep is just a single HWI.  */ 
+      result.len = 1;
+      result.val[0] = (HOST_WIDE_INT)-1;
+    }
+  else
+    {
+      /* The signed max is all ones except the top bit.  This must be
+	 explicitly represented.  */
+      int i;
+      int small_prec = prec & (HOST_BITS_PER_WIDE_INT - 1);
+      int shift = (small_prec == 0) 
+	? HOST_BITS_PER_WIDE_INT - 1 : small_prec - 1;
+
+      result.len = BLOCKS_NEEDED (prec);
+      for (i = 0; i < result.len - 1; i++)
+	result.val[i] = (HOST_WIDE_INT)-1;
+
+      result.val[result.len - 1] = ((HOST_WIDE_INT)1 << shift) - 1;
+    }
+  
+  return result;
+}
+
+/* Produce the smallest SGNed number that is represented in PREC.  The
+   resulting number is placed in a wide int of size PRECISION.  */
+
+wide_int
+wide_int::min_value (unsigned int prec, unsigned int precision, 
+		     SignOp sgn)
+{
+  if (sgn == UNSIGNED)
+    {
+      /* The unsigned min is just all zeros, for which the compressed
+	 rep is just a single HWI.  */ 
+      wide_int result;
+      result.len = 1;
+      result.precision = precision;
+      result.val[0] = 0;
+      return result;
+    }
+  else
+    {
+      /* The signed min is all zeros except the top bit.  This must be
+	 explicitly represented.  */
+      return set_bit_in_zero (prec - 1, precision);
+    }
+}
+
+/*
+ * Public utilities.
+ */
+
+/* Check the upper HOST_WIDE_INTs of src to see if the length can be
+   shortened.  An upper HOST_WIDE_INT is unnecessary if it is all ones
+   or zeros and the top bit of the next lower word matches.
+
+   This function may change the representation of THIS, but does not
+   change the value that THIS represents.  It does not sign extend in
+   the case that the size of the mode is less than
+   HOST_BITS_PER_WIDE_INT.  */
+
+void
+wide_int::canonize ()
+{
+  int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
+  int blocks_needed = BLOCKS_NEEDED (precision);
+  HOST_WIDE_INT top;
+  int i;
+
+  if (len > blocks_needed)
+    len = blocks_needed;
+
+  /* Clean up the top bits for any mode that is not a multiple of a HWI.  */
+  if (len == blocks_needed && small_prec)
+    val[len - 1] = sext_hwi (val[len - 1], small_prec);
+
+  if (len == 1)
+    return;
+
+  top = val[len - 1];
+  if (top != 0 && top != (HOST_WIDE_INT)-1)
+    return;
+
+  /* At this point we know that the top is either 0 or -1.  Find the
+     first block that is not a copy of this.  */
+  for (i = len - 2; i >= 0; i--)
+    {
+      HOST_WIDE_INT x = val[i];
+      if (x != top)
+	{
+	  if (SIGN_MASK (x) == top)
+	    {
+	      len = i + 1;
+	      return;
+	    }
+
+	  /* We need an extra block because the top bit block i does
+	     not match the extension.  */
+	  len = i + 2;
+	  return;
+	}
+    }
+
+  /* The number is 0 or -1.  */
+  len = 1;
+}
+
+
+/* Make a copy of this.  */
+
+wide_int
+wide_int::copy () const
+{
+  wide_int result;
+  int i;
+
+  result.precision = precision;
+  result.len = len;
+
+  for (i = 0; i < result.len; i++)
+    result.val[i] = val[i];
+  return result;
+}
+
+
+/* Copy THIS replacing the precision with PREC.
+   It can do any of truncation, extension or copying.  */
+
+wide_int
+wide_int::force_to_size (unsigned int prec, SignOp sgn) const
+{
+  wide_int result;
+  int blocks_needed = BLOCKS_NEEDED (prec);
+  int i;
+
+  result.precision = prec;
+  result.len = blocks_needed < len ? blocks_needed : len;
+  for (i = 0; i < result.len; i++)
+    result.val[i] = val[i];
+
+  if (prec >= precision) 
+    {
+      /* Expanding */
+      int small_precision = precision & (HOST_BITS_PER_WIDE_INT - 1);
+
+      /* The only case we care about is unsigned because the rep is
+	 inherantly signed.  */
+      if (sgn == UNSIGNED)
+	{
+	  /* The top block in the existing rep must be zero extended,
+	     but this is all the work we need to do.  */
+	  if (small_precision 
+	      && (len == BLOCKS_NEEDED (precision)
+		  || len == blocks_needed))
+	    result.val[len-1] = zext_hwi (result.val[len-1], small_precision);
+	  else if (len == BLOCKS_NEEDED (precision) 
+		   && len < blocks_needed
+		   && small_precision == 0
+		   && result.val[result.len - 1] < 0)
+		    /* We need to put the 0 block on top to keep the value
+		       from being sign extended.  */ 
+		    result.val[result.len++] = 0;
+	}
+    }
+  else
+    {
+      /* Truncating.  */
+      int small_prec = prec & (HOST_BITS_PER_WIDE_INT - 1);
+      /* The only weird case we need to look at here is when we are
+         truncating within the top block.  We need to make sure that
+         everything in the block above the new precision is sign
+         extended.  Note that this is independent of the SGN.  This is
+         just to stay canonical.  */
+      if (small_prec && (blocks_needed == len))
+	result.val[blocks_needed-1]
+	  = sext_hwi (result.val[blocks_needed-1], small_prec);
+    }
+
+  return result;
+}
+
+/*
+ * public printing routines.
+ */
+
+/* Try to print the signed self in decimal to BUF if the number fits
+   in a HWI.  Other print in hex.  */
+
+void 
+wide_int::print_decs (char *buf) const
+{
+  if ((precision <= HOST_BITS_PER_WIDE_INT)
+      || (len == 1 && !neg_p ()))
+      sprintf (buf, HOST_WIDE_INT_PRINT_DEC, val[0]);
+  else
+    print_hex (buf);
+}
+
+/* Try to print the signed self in decimal to FILE if the number fits
+   in a HWI.  Other print in hex.  */
+
+void 
+wide_int::print_decs (FILE *file) const
+{
+  char buf[(2 * MAX_BITSIZE_MODE_ANY_INT / BITS_PER_UNIT) + 4];
+  print_decs (buf);
+  fputs (buf, file);
+}
+
+/* Try to print the unsigned self in decimal to BUF if the number fits
+   in a HWI.  Other print in hex.  */
+
+void 
+wide_int::print_decu (char *buf) const
+{
+  if ((precision <= HOST_BITS_PER_WIDE_INT)
+      || (len == 1 && !neg_p ()))
+      sprintf (buf, HOST_WIDE_INT_PRINT_UNSIGNED, val[0]);
+  else
+    print_hex (buf);
+}
+
+/* Try to print the signed self in decimal to FILE if the number fits
+   in a HWI.  Other print in hex.  */
+
+void 
+wide_int::print_decu (FILE *file) const
+{
+  char buf[(2 * MAX_BITSIZE_MODE_ANY_INT / BITS_PER_UNIT) + 4];
+  print_decu (buf);
+  fputs (buf, file);
+}
+
+void 
+wide_int::print_hex (char *buf) const
+{
+  int i = len;
+
+  if (zero_p ())
+    sprintf (buf, "0x");
+  else
+    {
+      if (neg_p ())
+	{
+	  int j;
+	  /* If the number is negative, we may need to pad value with
+	     0xFFF...  because the leading elements may be missing and
+	     we do not print a '-' with hex.  */
+	  for (j = BLOCKS_NEEDED (precision); j > i; j--)
+	    buf += sprintf (buf, HOST_WIDE_INT_PRINT_PADDED_HEX, (HOST_WIDE_INT) -1);
+	    
+	}
+      else
+	buf += sprintf (buf, HOST_WIDE_INT_PRINT_HEX, val [--i]);
+      while (-- i >= 0)
+	buf += sprintf (buf, HOST_WIDE_INT_PRINT_PADDED_HEX, val [i]);
+    }
+}
+
+/* Print one big hex number to FILE.  Note that some assemblers may not
+   accept this for large modes.  */
+void 
+wide_int::print_hex (FILE *file) const
+{
+  char buf[(2 * MAX_BITSIZE_MODE_ANY_INT / BITS_PER_UNIT) + 4];
+  print_hex (buf);
+  fputs (buf, file);
+}
+
+/*
+ * Comparisons, note that only equality is an operator.  The other
+ * comparisons cannot be operators since they are inherently singed or
+ * unsigned and C++ has no such operators.
+ */
+
+/* Return true if THIS == OP1.  */
+
+bool
+wide_int::eq_p_large (const HOST_WIDE_INT *op1, unsigned int op1len) const
+{
+  int l0 = len - 1;
+  int l1 = op1len - 1;
+  HOST_WIDE_INT op0mask = sign_mask ();
+  HOST_WIDE_INT op1mask = SIGN_MASK (op1[op1len - 1]);
+
+  while (l0 > l1)
+    if (val[l0--] != op1mask)
+      return false;
+
+  while (l1 > l0)
+    if (op1[l1--] != op0mask)
+      return false;
+
+  while (l0 >= 0)
+    if (val[l0--] != op1[l1--])
+      return false;
+
+  return true;
+}
+
+/* Return true if THIS < OP1 using signed comparisons.  */
+
+bool
+wide_int::lts_p_large (const HOST_WIDE_INT *op0, unsigned int op0len, 
+		       const HOST_WIDE_INT *op1, unsigned int op1len, 
+		       unsigned int precision)
+{
+  int l;
+  HOST_WIDE_INT s0, s1;
+  unsigned HOST_WIDE_INT u0, u1;
+  unsigned int blocks_needed = BLOCKS_NEEDED (precision);
+  HOST_WIDE_INT op0mask = SIGN_MASK (op0[op0len - 1]);
+  HOST_WIDE_INT op1mask = SIGN_MASK (op1[op1len - 1]);
+
+  /* Only the top block is compared as signed.  The rest are unsigned
+     comparisons.  */
+  s0 = blocks_needed == op0len ? op0[blocks_needed - 1] : op0mask;
+  s1 = blocks_needed == op1len ? op1[blocks_needed - 1] : op1mask;
+  if (s0 < s1)
+    return true;
+  if (s0 > s1)
+    return false;
+
+  l = (signed int)MAX (op0len, op1len);
+  /* We have already checked to top block so skip down.  */
+  l = (l == (signed int)blocks_needed) ? l - 2 : l - 1;
+
+  while (l >= 0)
+    {
+      u0 = l < (signed int)op0len ? op0[l] : op0mask;
+      u1 = l < (signed int)op1len ? op1[l] : op1mask;
+
+      if (u0 < u1)
+	return true;
+      if (u0 > u1)
+	return false;
+      l--;
+    }
+
+  return false;
+}
+
+/* Returns -1 if THIS < OP1, 0 if THIS == OP1 and 1 if A > OP1 using
+   signed compares.  */
+
+int
+wide_int::cmps_large (const HOST_WIDE_INT *op1, unsigned int op1len) const
+{
+  int l;
+  HOST_WIDE_INT s0, s1;
+  unsigned HOST_WIDE_INT u0, u1;
+  unsigned int blocks_needed = BLOCKS_NEEDED (precision);
+  HOST_WIDE_INT op0mask = sign_mask ();
+  HOST_WIDE_INT op1mask = SIGN_MASK (op1[op1len - 1]);
+
+  /* Only the top block is compared as signed.  The rest are unsigned
+     comparisons.  */
+  s0 = blocks_needed == (unsigned int)len ? val[blocks_needed - 1] : op0mask;
+  s1 = blocks_needed == op1len ? op1[blocks_needed - 1] : op1mask;
+  if (s0 < s1)
+    return -1;
+  if (s0 > s1)
+    return 1;
+
+  l = MAX (len, (signed int)op1len);
+  /* We have already checked to top block so skip down.  */
+  l = (l == (signed int)blocks_needed) ? l - 2 : l - 1;
+
+  while (l >= 0)
+    {
+      u0 = l < len ? val [l] : op0mask;
+      u1 = l < (signed int)op1len ? op1[l] : op1mask;
+
+      if (u0 < u1)
+	return -1;
+      if (u0 > u1)
+	return 1;
+      l--;
+    }
+
+  return 0;
+}
+
+/* Return true if OP0 < OP1 using unsigned comparisons.  */
+
+bool
+wide_int::ltu_p_large (const HOST_WIDE_INT *op0, unsigned int op0len, 
+		       const HOST_WIDE_INT *op1, unsigned int op1len)
+{
+  unsigned HOST_WIDE_INT x0;
+  unsigned HOST_WIDE_INT x1;
+  int l0 = op0len - 1;
+  int l1 = op1len - 1;
+  HOST_WIDE_INT op0mask = SIGN_MASK (op0[op0len - 1]);
+  HOST_WIDE_INT op1mask = SIGN_MASK (op1[op1len - 1]);
+
+  while (l0 > l1)
+    {
+      x0 = op0[l0--];
+      x1 = op1mask;
+      if (x0 < x1)
+	return true;
+      if (x0 > x1)
+	return false;
+    }
+
+  while (l1 > l0)
+    {
+      x0 = op0mask;
+      x1 = op1[l1--];
+      if (x0 < x1)
+	return true;
+      if (x0 > x1)
+	return false;
+    }
+
+  while (l0 >= 0)
+    {
+      x0 = op0[l0--];
+      x1 = op1[l1--];
+      if (x0 < x1)
+	return true;
+      if (x0 > x1)
+	return false;
+    }
+
+  return false;
+}
+
+/* Returns -1 if THIS < OP1, 0 if THIS == OP1 and 1 if A > OP1 using
+   unsigned compares.  */
+
+int
+wide_int::cmpu_large (const HOST_WIDE_INT *op1, unsigned int op1len) const
+{
+  unsigned HOST_WIDE_INT x0;
+  unsigned HOST_WIDE_INT x1;
+  int l0 = len - 1;
+  int l1 = op1len - 1;
+  HOST_WIDE_INT op0mask = sign_mask ();
+  HOST_WIDE_INT op1mask = SIGN_MASK (op1[op1len - 1]);
+
+  while (l0 > l1)
+    {
+      x0 = val[l0--];
+      x1 = op1mask;
+      if (x0 < x1)
+	return -1;
+      else if (x0 > x1)
+	return 1;
+    }
+
+  while (l1 > l0)
+    {
+      x0 = op0mask;
+      x1 = op1[l1--];
+      if (x0 < x1)
+	return -1;
+      if (x0 > x1)
+	return 1;
+    }
+
+  while (l0 >= 0)
+    {
+      x0 = val[l0--];
+      x1 = op1[l1--];
+      if (x0 < x1)
+	return -1;
+      if (x0 > x1)
+	return 1;
+    }
+
+  return 0;
+}
+
+/* Return true if THIS has the sign bit set to 1 and all other bits are
+   zero.  */
+
+bool
+wide_int::only_sign_bit_p (unsigned int prec) const
+{
+  int i;
+  HOST_WIDE_INT x;
+  int small_prec;
+  bool result;
+
+  if (BLOCKS_NEEDED (prec) != len)
+    {
+      result = false;
+      goto ex;
+    }
+
+  for (i=0; i < len - 1; i++)
+    if (val[i] != 0)
+      {
+	result = false;
+	goto ex;
+      }
+
+  x = val[len - 1];
+  small_prec = prec & (HOST_BITS_PER_WIDE_INT - 1);
+  if (small_prec)
+    x = x << (HOST_BITS_PER_WIDE_INT - small_prec);
+
+  result = x == ((HOST_WIDE_INT)1) << (HOST_BITS_PER_WIDE_INT - 1);
+
+ ex:
+  return result;
+}
+
+/* Returns true if THIS fits into range of TYPE.  Signedness of OP0 is
+   assumed to be the same as the signedness of TYPE.  */
+
+bool
+wide_int::fits_to_tree_p (const_tree type) const
+{
+  int type_prec = TYPE_PRECISION (type);
+
+  if (TYPE_UNSIGNED (type))
+    return fits_u_p (type_prec);
+  else
+    return fits_s_p (type_prec);
+}
+
+/* Returns true of THIS fits in the unsigned range of precision.  */
+
+bool
+wide_int::fits_s_p (unsigned int prec) const
+{
+  if (len < BLOCKS_NEEDED (prec))
+    return true;
+
+  if (precision <= prec)
+    return true;
+
+  return *this == sext (prec);
+}
+
+
+/* Returns true if THIS fits into range of TYPE.  */
+
+bool
+wide_int::fits_u_p (unsigned int prec) const
+{
+  if (len < BLOCKS_NEEDED (prec))
+    return true;
+
+  if (precision <= prec)
+    return true;
+
+  return *this == zext (prec);
+}
+
+/*
+ * Extension.
+ */
+
+/* Sign extend THIS starting at OFFSET.  The precision of the result
+   are the same as THIS.  */
+
+wide_int
+wide_int::sext (unsigned int offset) const
+{
+  wide_int result;
+  int off;
+
+  gcc_assert (precision >= offset);
+
+  if (precision <= HOST_BITS_PER_WIDE_INT)
+    {
+      result.precision = precision;
+      if (offset < precision)
+	result.val[0] = sext_hwi (val[0], offset);
+      else
+	/* If offset is greater or equal to precision there is nothing
+	   to do since the internal rep is already sign extended.  */
+	result.val[0] = val[0];
+
+      result.len = 1;
+    }
+  else if (precision == offset)
+    result = *this;
+  else
+    {
+      result = decompress (offset, precision);
+      
+      /* Now we can do the real sign extension.  */
+      off = offset & (HOST_BITS_PER_WIDE_INT - 1);
+      if (off)
+	{
+	  int block = BLOCK_OF (offset);
+	  result.val[block] = sext_hwi (val[block], off);
+	  result.len = block + 1;
+	}
+      /* We never need an extra element for sign extended values.  */
+    }    
+
+  return result;
+}
+
+/* Zero extend THIS starting at OFFSET.  The precision of the result
+   are the same as THIS.  */
+
+wide_int
+wide_int::zext (unsigned int offset) const
+{
+  wide_int result;
+  int off;
+  int block;
+
+  gcc_assert (precision >= offset);
+
+  if (precision <= HOST_BITS_PER_WIDE_INT)
+    {
+      result.precision = precision;
+      if (offset < precision)
+	result.val[0] = zext_hwi (val[0], offset);
+      else if (offset == precision)
+	result.val[0] = val[0];
+	/* If offset was greater than the precision we need to zero
+	   extend from the old precision since the internal rep was
+	   equivalent to sign extended.  */
+      else
+	result.val[0] = zext_hwi (val[0], precision);
+	
+      result.len = 1;
+    }
+  else if (precision == offset)
+    result = *this;
+  else
+    {
+      result = decompress (offset, precision);
+
+      /* Now we can do the real zero extension.  */
+      off = offset & (HOST_BITS_PER_WIDE_INT - 1);
+      block = BLOCK_OF (offset);
+      if (off)
+	{
+	  result.val[block] = zext_hwi (val[block], off);
+	  result.len = block + 1;
+	}
+      else
+	/* See if we need an extra zero element to satisfy the
+	   compression rule.  */
+	if (val[block - 1] < 0 && offset < precision)
+	  {
+	    result.val[block] = 0;
+	    result.len += 1;
+	  }
+    }
+  return result;
+}
+
+/*
+ * Masking, inserting, shifting, rotating.
+ */
+
+/* Return a value with a one bit inserted in THIS at BITPOS.  */
+
+wide_int
+wide_int::set_bit (unsigned int bitpos) const
+{
+  wide_int result;
+  int i, j;
+
+  if (bitpos >= precision)
+    result = copy ();
+  else
+    {
+      result = decompress (bitpos, precision);
+      j = bitpos / HOST_BITS_PER_WIDE_INT;
+      i = bitpos & (HOST_BITS_PER_WIDE_INT - 1);
+      result.val[j] |= ((HOST_WIDE_INT)1) << i;
+    }
+
+  return result;
+}
+
+/* Insert a 1 bit into 0 at BITPOS producing an number with PRECISION.  */
+
+wide_int
+wide_int::set_bit_in_zero (unsigned int bitpos, unsigned int prec)
+{
+  wide_int result;
+  int blocks_needed = BLOCKS_NEEDED (bitpos + 1);
+  int i, j;
+
+  result.precision = prec;
+  if (bitpos >= prec)
+    {
+      result.len = 1;
+      result.val[0] = 0;
+    }
+  else
+    {
+      result.len = blocks_needed;
+      for (i = 0; i < blocks_needed; i++)
+	result.val[i] = 0;
+      
+      j = bitpos / HOST_BITS_PER_WIDE_INT;
+      i = bitpos & (HOST_BITS_PER_WIDE_INT - 1);
+      result.val[j] |= ((HOST_WIDE_INT)1) << i;
+    }
+
+  return result;
+}
+
+/* Insert WIDTH bits from OP0 into THIS starting at START.  */
+
+wide_int
+wide_int::insert (const wide_int &op0, unsigned int start, 
+		  unsigned int width) const
+{
+  wide_int result;
+  wide_int mask;
+  wide_int tmp;
+
+  if (start + width >= precision) 
+    width = precision - start;
+
+  mask = shifted_mask (start, width, false, precision);
+  tmp = op0.lshift (start, 0, precision, NONE);
+  result = tmp & mask;
+
+  tmp = and_not (mask);
+  result = result | tmp;
+
+  return result;
+}
+
+/* bswap THIS.  */
+
+wide_int
+wide_int::bswap () const
+{
+  wide_int result;
+  int i, s;
+  int end;
+  int len = BLOCKS_NEEDED (precision);
+
+  /* This is not a well defined operation if the precision is not a
+     multiple of 8.  */
+  gcc_assert ((precision & 0x7) == 0);
+
+  result.precision = precision;
+  result.len = len;
+
+  for (i = 0; i < len; i++)
+    result.val[i] = 0;
+
+  /* Only swap the bytes that are not the padding.  */
+  if ((precision & (HOST_BITS_PER_WIDE_INT - 1))
+      && (this->len == len))
+    end = precision;
+  else
+    end = this->len * HOST_BITS_PER_WIDE_INT;
+
+  for (s = 0; s < end; s += 8)
+    {
+      unsigned int d = precision - s - 8;
+      unsigned HOST_WIDE_INT byte;
+
+      int block = s / HOST_BITS_PER_WIDE_INT;
+      int offset = s & (HOST_BITS_PER_WIDE_INT - 1);
+
+      byte = (val[block] >> offset) & 0xff;
+
+      block = d / HOST_BITS_PER_WIDE_INT;
+      offset = d & (HOST_BITS_PER_WIDE_INT - 1);
+
+      result.val[block] |= byte << offset;
+    }
+
+  result.canonize ();
+  return result;
+}
+
+/* Return a result mask where the lower WIDTH bits are ones and the
+   bits above that up to the precision are zeros.  The result is
+   inverted if NEGATE is true.  The result is made with PREC. */
+
+wide_int
+wide_int::mask (unsigned int width, bool negate, unsigned int prec)
+{
+  wide_int result;
+  unsigned int i = 0;
+  int shift;
+
+  gcc_assert (width < 2 * MAX_BITSIZE_MODE_ANY_INT);
+  gcc_assert (prec <= 2 * MAX_BITSIZE_MODE_ANY_INT);
+
+  if (width == 0)
+    {
+      if (negate)
+	result = wide_int::minus_one (prec);
+      else
+	result = wide_int::zero (prec);
+    }
+  else
+    {
+      result.precision = prec;
+      
+      while (i < width / HOST_BITS_PER_WIDE_INT)
+	result.val[i++] = negate ? 0 : (HOST_WIDE_INT)-1;
+      
+      shift = width & (HOST_BITS_PER_WIDE_INT - 1);
+      if (shift != 0)
+	{
+	  HOST_WIDE_INT last = (((HOST_WIDE_INT)1) << shift) - 1;
+	  result.val[i++] = negate ? ~last : last;
+	}
+      result.len = i;
+    }
+
+  return result;
+}
+
+/* Return a result mask of WIDTH ones starting at START and the
+   bits above that up to the precision are zeros.  The result is
+   inverted if NEGATE is true.  */
+wide_int
+wide_int::shifted_mask (unsigned int start, unsigned int width, 
+			bool negate, unsigned int prec)
+{
+  wide_int result;
+  unsigned int i = 0;
+  unsigned int shift;
+  unsigned int end = start + width;
+  HOST_WIDE_INT block;
+
+  if (start + width > prec)
+    width = prec - start;
+ 
+  if (width == 0)
+    {
+      if (negate)
+	result = wide_int::minus_one (prec);
+      else
+	result = wide_int::zero (prec);
+      return result;
+    }
+
+  result.precision = prec;
+
+  while (i < start / HOST_BITS_PER_WIDE_INT)
+    result.val[i++] = negate ? (HOST_WIDE_INT)-1 : 0;
+
+  shift = start & (HOST_BITS_PER_WIDE_INT - 1);
+  if (shift)
+    {
+      block = (((HOST_WIDE_INT)1) << shift) - 1;
+      shift = (end) & (HOST_BITS_PER_WIDE_INT - 1);
+      if (shift)
+	{
+	  /* case 000111000 */
+	  block = (((HOST_WIDE_INT)1) << shift) - block - 1;
+	  result.val[i++] = negate ? ~block : block;
+	  result.len = i;
+	  return result;
+	}
+      else
+	/* ...111000 */
+	result.val[i++] = negate ? block : ~block;
+    }
+
+  while (i < end / HOST_BITS_PER_WIDE_INT)
+    /* 1111111 */
+    result.val[i++] = negate ? 0 : (HOST_WIDE_INT)-1;
+
+  shift = end & (HOST_BITS_PER_WIDE_INT - 1);
+  if (shift != 0)
+    {
+      /* 000011111 */
+      block = (((HOST_WIDE_INT)1) << shift) - 1;
+      result.val[i++] = negate ? ~block : block;
+    }
+
+  result.len = i;
+  return result;
+}
+
+
+/*
+ * logical operations.
+ */
+
+/* Return THIS & OP1.  */
+
+wide_int
+wide_int::and_large (const HOST_WIDE_INT *op1, unsigned int op1len) const
+{
+  wide_int result;
+  int l0 = len - 1;
+  int l1 = op1len - 1;
+  bool need_canon = true;
+
+  result.len = MAX (len, op1len);
+  result.precision = precision;
+
+  if (l0 > l1)
+    {
+      if (SIGN_MASK (op1[op1len - 1]) == 0)
+	{
+	  l0 = l1;
+	  result.len = l1 + 1;
+	}
+      else
+	{
+	  need_canon = false;
+	  while (l0 > l1)
+	    {
+	      result.val[l0] = val[l0];
+	      l0--;
+	    }
+	}
+    }
+  else if (l1 > l0)
+    {
+      if (sign_mask () == 0)
+	result.len = l0 + 1;
+      else
+	{
+	  need_canon = false;
+	  while (l1 > l0)
+	    {
+	      result.val[l1] = op1[l1];
+	      l1--;
+	    }
+	}
+    }
+
+  while (l0 >= 0)
+    {
+      result.val[l0] = val[l0] & op1[l0];
+      l0--;
+    }
+
+  if (need_canon)
+    result.canonize ();
+  return result;
+}
+
+/* Return THIS & ~OP1.  */
+
+wide_int
+wide_int::and_not_large (const HOST_WIDE_INT *op1, unsigned int op1len) const
+{
+  wide_int result;
+  int l0 = len - 1;
+  int l1 = op1len - 1;
+  bool need_canon = true;
+
+  result.len = MAX (len, op1len);
+  result.precision = precision;
+
+  if (l0 > l1)
+    {
+      if (SIGN_MASK (op1[op1len - 1]) != 0)
+	{
+	  l0 = l1;
+	  result.len = l1 + 1;
+	}
+      else
+	{
+	  need_canon = false;
+	  while (l0 > l1)
+	    {
+	      result.val[l0] = val[l0];
+	      l0--;
+	    }
+	}
+    }
+  else if (l1 > l0)
+    {
+      if (sign_mask () == 0)
+	result.len = l0 + 1;
+      else
+	{
+	  need_canon = false;
+	  while (l1 > l0)
+	    {
+	      result.val[l1] = ~op1[l1];
+	      l1--;
+	    }
+	}
+    }
+
+  while (l0 >= 0)
+    {
+      result.val[l0] = val[l0] & ~op1[l0];
+      l0--;
+    }
+
+  if (need_canon)
+    result.canonize ();
+
+  return result;
+}
+
+/* Return THIS | OP1.  */
+
+wide_int
+wide_int::or_large (const HOST_WIDE_INT *op1, unsigned int op1len) const
+{
+  wide_int result;
+  int l0 = len - 1;
+  int l1 = op1len - 1;
+  bool need_canon = true;
+
+  result.len = MAX (len, op1len);
+  result.precision = precision;
+
+  if (l0 > l1)
+    {
+      if (SIGN_MASK (op1[op1len - 1]) != 0)
+	{
+	  l0 = l1;
+	  result.len = l1 + 1;
+	}
+      else
+	{
+	  need_canon = false;
+	  while (l0 > l1)
+	    {
+	      result.val[l0] = val[l0];
+	      l0--;
+	    }
+	}
+    }
+  else if (l1 > l0)
+    {
+      if (sign_mask () != 0)
+	result.len = l0 + 1;
+      else
+	{
+	  need_canon = false;
+	  while (l1 > l0)
+	    {
+	      result.val[l1] = op1[l1];
+	      l1--;
+	    }
+	}
+    }
+
+  while (l0 >= 0)
+    {
+      result.val[l0] = val[l0] | op1[l0];
+      l0--;
+    }
+
+  if (need_canon)
+    result.canonize ();
+
+  return result;
+}
+
+/* Return THIS | ~OP1.  */
+
+wide_int
+wide_int::or_not_large (const HOST_WIDE_INT *op1, unsigned int op1len) const
+{
+  wide_int result;
+  int l0 = len - 1;
+  int l1 = op1len - 1;
+  bool need_canon = true;
+
+  result.len = MAX (len, op1len);
+  result.precision = precision;
+
+  if (l0 > l1)
+    {
+      if (SIGN_MASK (op1[op1len - 1]) == 0)
+	{
+	  l0 = l1;
+	  result.len = l1 + 1;
+	}
+      else
+	{
+	  need_canon = false;
+	  while (l0 > l1)
+	    {
+	      result.val[l0] = val[l0];
+	      l0--;
+	    }
+	}
+    }
+  else if (l1 > l0)
+    {
+      if (sign_mask () != 0)
+	result.len = l0 + 1;
+      else
+	{
+	  need_canon = false;
+	  while (l1 > l0)
+	    {
+	      result.val[l1] = ~op1[l1];
+	      l1--;
+	    }
+	}
+    }
+
+  while (l0 >= 0)
+    {
+      result.val[l0] = val[l0] | ~op1[l0];
+      l0--;
+    }
+
+  if (need_canon)
+    result.canonize ();
+  return result;
+}
+
+/* Return the exclusive ior (xor) of THIS and OP1.  */
+
+wide_int
+wide_int::xor_large (const HOST_WIDE_INT *op1, unsigned int op1len) const
+{
+  wide_int result;
+  int l0 = len - 1;
+  int l1 = op1len - 1;
+
+  result.len = MAX (len, op1len);
+  result.precision = precision;
+
+  while (l0 > l1)
+    {
+      result.val[l0] = val[l0] ^ SIGN_MASK (op1[op1len - 1]);
+      l0--;
+    }
+
+  while (l1 > l0)
+    {
+      result.val[l1] = sign_mask () ^ op1[l1];
+      l1--;
+    }
+
+  while (l0 >= 0)
+    {
+      result.val[l0] = val[l0] ^ op1[l0];
+      l0--;
+    }
+
+  result.canonize ();
+  return result;
+}
+
+/*
+ * math
+ */
+
+/* Absolute value of THIS.  */
+
+wide_int
+wide_int::abs () const
+{
+  if (sign_mask ())
+    return neg ();
+
+  wide_int result = copy ();
+  return result;
+}
+
+/* Add of THIS and OP1.  No overflow is detected.  */
+
+wide_int
+wide_int::add_large (const HOST_WIDE_INT *op1, unsigned int op1len) const
+{
+  wide_int result;
+  unsigned HOST_WIDE_INT o0, o1;
+  unsigned HOST_WIDE_INT x = 0;
+  unsigned HOST_WIDE_INT carry = 0;
+  unsigned HOST_WIDE_INT mask0, mask1;
+  unsigned int i, small_prec;
+
+  result.precision = precision;
+  result.len = MAX (len, op1len);
+  mask0 = sign_mask ();
+  mask1 = SIGN_MASK (op1[op1len - 1]);
+  /* Add all of the explicitly defined elements.  */
+  for (i = 0; i < result.len; i++)
+    {
+      o0 = i < len ? (unsigned HOST_WIDE_INT)val[i] : mask0;
+      o1 = i < op1len ? (unsigned HOST_WIDE_INT)op1[i] : mask1;
+      x = o0 + o1 + carry;
+      result.val[i] = x;
+      carry = x < o0;
+    }
+
+  if (len * HOST_BITS_PER_WIDE_INT < precision)
+    {
+      result.val[result.len] = mask0 + mask1 + carry;
+      result.len++;
+    }
+
+  small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
+  if (small_prec != 0 && BLOCKS_NEEDED (precision) == result.len)
+    {
+      /* Modes with weird precisions.  */
+      i = result.len - 1;
+      result.val[i] = sext_hwi (result.val[i], small_prec);
+    }
+
+  result.canonize ();
+  return result;
+}
+
+/* Add of OP0 and OP1 with overflow checking.  If the result overflows
+   within the precision, set OVERFLOW.  OVERFLOW is assumed to be
+   sticky so it should be initialized.  SGN controls if signed or
+   unsigned overflow is checked.  */
+
+wide_int
+wide_int::add (const wide_int &op1, SignOp sgn, bool *overflow) const
+{
+  wide_int result;
+  unsigned HOST_WIDE_INT o0 = 0;
+  unsigned HOST_WIDE_INT o1 = 0;
+  unsigned HOST_WIDE_INT x = 0;
+  unsigned HOST_WIDE_INT carry = 0;
+  unsigned HOST_WIDE_INT old_carry = 0;
+  unsigned HOST_WIDE_INT mask0, mask1;
+  int i, small_prec;
+
+  gcc_checking_assert (precision == op1.precision);
+
+  result.precision = precision;
+  result.len = MAX (len, op1.len);
+  mask0 = sign_mask ();
+  mask1 = op1.sign_mask ();
+
+  /* Add all of the explicitly defined elements.  */
+  for (i = 0; i < len; i++)
+    {
+      o0 = val[i];
+      o1 = op1.val[i];
+      x = o0 + o1 + carry;
+      result.val [i] = x;
+      old_carry = carry;
+      carry = x < o0;
+    }
+
+  /* Uncompress the rest.  */
+  for (i = len; i < op1.len; i++)
+    {
+      o0 = val[i];
+      o1 = mask1;
+      x = o0 + o1 + carry;
+      result.val[i] = x;
+      old_carry = carry;
+      carry = x < o0;
+    }
+  for (i = len; i < op1.len; i++)
+    {
+      o0 = mask0;
+      o1 = op1.val[i];
+      x = o0 + o1 + carry;
+      result.val[i] = x;
+      old_carry = carry;
+      carry = x < o0;
+    }
+
+  if (len * HOST_BITS_PER_WIDE_INT < precision)
+    {
+      result.val[result.len] = mask0 + mask1 + carry;
+      result.len++;
+      /* If we were short, we could not have overflowed.  */
+      goto ex;
+    }
+
+  small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
+  if (small_prec == 0)
+    {
+      if (sgn == wide_int::SIGNED)
+	{
+	  if (((!(o0 ^ o1)) & (x ^ o0)) >> (HOST_BITS_PER_WIDE_INT - 1))
+	    *overflow = true;
+	}
+      else if (old_carry)
+	{
+	  if ((~o0) <= o1)
+	    *overflow = true;
+	}
+      else
+	{
+	  if ((~o0) < o1)
+	    *overflow = true;
+	}
+    }
+  else
+    {
+      if (sgn == wide_int::UNSIGNED)
+	{
+	  /* The caveat for unsigned is to get rid of the bits above
+	     the precision before doing the addition.  To check the
+	     overflow, clear these bits and then redo the last
+	     addition.  If there are any non zero bits above the prec,
+	     we overflowed. */
+	  o0 = zext_hwi (o0, small_prec);
+	  o1 = zext_hwi (o1, small_prec);
+	  x = o0 + o1 + old_carry;
+	  if (x >> small_prec)
+	    *overflow = true;
+	}
+      else 
+	{
+	  /* Overflow in this case is easy since we can see bits beyond
+	     the precision.  If the value computed is not the sign
+	     extended value, then we have overflow.  */
+	  unsigned HOST_WIDE_INT y = sext_hwi (x, small_prec);
+	  if (x != y)
+	    *overflow = true;
+	}
+    }
+
+ ex:
+  result.canonize ();
+  return result;
+}
+
+
+/* Count leading zeros of THIS but only looking at the bits in the
+   smallest HWI of size mode.  */
+
+wide_int
+wide_int::clz () const
+{
+  int i;
+  int start;
+  int count;
+  HOST_WIDE_INT v;
+  int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
+
+  if (zero_p ())
+    {
+      enum machine_mode mode = mode_for_size (precision, MODE_INT, 0);
+      if (mode == BLKmode)
+	mode_for_size (precision, MODE_PARTIAL_INT, 0); 
+
+      /* Even if the value at zero is undefined, we have to come up
+	 with some replacement.  Seems good enough.  */
+      if (mode == BLKmode)
+	count = precision;
+      else if (!CLZ_DEFINED_VALUE_AT_ZERO (mode, count))
+	count = precision;
+    }
+  else
+    {
+      /* The high order block is special if it is the last block and the
+	 precision is not an even multiple of HOST_BITS_PER_WIDE_INT.  We
+	 have to clear out any ones above the precision before doing clz
+	 on this block.  */
+      if (BLOCKS_NEEDED (precision) == len && small_prec)
+	{
+	  v = zext_hwi (val[len - 1], small_prec);
+	  count = clz_hwi (v) - (HOST_BITS_PER_WIDE_INT - small_prec);
+	  start = len - 2;
+	  if (v != 0)
+	    return from_shwi (count, precision);
+	}
+      else
+	{
+	  count = HOST_BITS_PER_WIDE_INT * (BLOCKS_NEEDED (precision) - len);
+	  start = len - 1;
+	}
+      
+      for (i = start; i >= 0; i--)
+	{
+	  v = elt (i);
+	  count += clz_hwi (v);
+	  if (v != 0)
+	    break;
+	}
+    }
+  return from_shwi (count, precision);
+}
+
+/* Count the number of redundant leading bits of THIS.  Return result
+   as a HOST_WIDE_INT.  */
+
+wide_int
+wide_int::clrsb () const
+{
+  if (neg_p ())
+    return operator ~ ().clz () - 1;
+
+  return clz () - 1;
+}
+
+/* Count zeros of THIS.   */
+
+wide_int
+wide_int::ctz () const
+{
+  int i;
+  unsigned int count = 0;
+  HOST_WIDE_INT v;
+  int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
+  int end;
+  bool more_to_do;
+
+  if (zero_p ())
+    {
+      enum machine_mode mode = mode_for_size (precision, MODE_INT, 0);
+      if (mode == BLKmode)
+	mode_for_size (precision, MODE_PARTIAL_INT, 0); 
+
+      /* Even if the value at zero is undefined, we have to come up
+	 with some replacement.  Seems good enough.  */
+      if (mode == BLKmode)
+	count = precision;
+      else if (!CTZ_DEFINED_VALUE_AT_ZERO (mode, count))
+	count = precision;
+    }
+  else
+    {
+      /* The high order block is special if it is the last block and the
+	 precision is not an even multiple of HOST_BITS_PER_WIDE_INT.  We
+	 have to clear out any ones above the precision before doing clz
+	 on this block.  */
+      if (BLOCKS_NEEDED (precision) == len && small_prec)
+	{
+	  end = len - 1;
+	  more_to_do = true;
+	}
+      else
+	{
+	  end = len;
+	  more_to_do = false;
+	}
+      
+      for (i = 0; i < end; i++)
+	{
+	  v = val[i];
+	  count += ctz_hwi (v);
+	  if (v != 0)
+	    return wide_int::from_shwi (count, precision);
+	}
+      
+      if (more_to_do)
+	{
+	  v = zext_hwi (val[len - 1], small_prec);
+	  count = ctz_hwi (v);
+	  /* The top word was all zeros so we have to cut it back to prec,
+	     because we are counting some of the zeros above the
+	     interesting part.  */
+	  if (count > precision)
+	    count = precision;
+	}
+      else
+	/* Skip over the blocks that are not represented.  They must be
+	   all zeros at this point.  */
+	count = precision;
+    }
+
+  return wide_int::from_shwi (count, precision);
+}
+
+/* ffs of THIS.  */
+
+wide_int
+wide_int::ffs () const
+{
+  HOST_WIDE_INT count = ctz ().to_shwi ();
+  if (count == precision)
+    count = 0;
+  else
+    count += 1;
+  return wide_int::from_shwi (count, precision);
+}
+
+/* Subroutines of the multiplication and division operations.  Unpack
+   the first IN_LEN HOST_WIDE_INTs in INPUT into 2 * IN_LEN
+   HOST_HALF_WIDE_INTs of RESULT.  The rest of RESULT is filled by
+   uncompressing the top bit of INPUT[IN_LEN - 1].  */
+
+static void
+wi_unpack (unsigned HOST_HALF_WIDE_INT *result, 
+	   const unsigned HOST_WIDE_INT *input,
+	   int in_len, int out_len)
+{
+  int i;
+  int j = 0;
+  HOST_WIDE_INT mask;
+
+  for (i = 0; i <in_len; i++)
+    {
+      result[j++] = input[i];
+      result[j++] = input[i] >> HOST_BITS_PER_HALF_WIDE_INT;
+    }
+  mask = SIGN_MASK (input[in_len - 1]);
+  mask &= HALF_INT_MASK;
+
+  /* Smear the sign bit.  */
+  while (j < out_len)
+    result[j++] = mask;
+}
+
+/* The inverse of wi_unpack.  IN_LEN is the the number of input
+   blocks.  The number of output blocks will be half this amount.  */
+
+static void
+wi_pack (unsigned HOST_WIDE_INT *result, 
+	 const unsigned HOST_HALF_WIDE_INT *input, 
+	 int in_len)
+{
+  int i = 0;
+  int j = 0;
+
+  while (i < in_len - 2)
+    {
+      result[j++] = (unsigned HOST_WIDE_INT)input[i] 
+	| ((unsigned HOST_WIDE_INT)input[i + 1] << HOST_BITS_PER_HALF_WIDE_INT);
+      i += 2;
+    }
+
+  /* Handle the case where in_len is odd.   For this we zero extend.  */
+  if (i & 1)
+    result[j++] = (unsigned HOST_WIDE_INT)input[i];
+  else
+    result[j++] = (unsigned HOST_WIDE_INT)input[i] 
+      | ((unsigned HOST_WIDE_INT)input[i + 1] << HOST_BITS_PER_HALF_WIDE_INT);
+}
+
+/* Return an integer that is the exact log2 of THIS.  */
+
+wide_int
+wide_int::exact_log2 () const
+{
+  int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
+  wide_int count;
+  wide_int result;
+
+  if (precision <= HOST_BITS_PER_WIDE_INT)
+    {
+      HOST_WIDE_INT v;
+      if (small_prec)
+	v = zext_hwi (val[0], small_prec);
+      else
+	v = val[0];
+      result = wide_int::from_shwi (::exact_log2 (v), precision);
+    }
+  else
+    {
+      count = ctz ();
+      if (clz () + count + 1 == precision)
+	result = count;
+      else
+	result = wide_int::from_shwi (-1, precision);
+    }
+  return result;
+}
+
+/* Return an integer that is the floor log2 of THIS.  */
+
+wide_int
+wide_int::floor_log2 () const
+{
+  int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
+  wide_int result;
+
+  if (precision <= HOST_BITS_PER_WIDE_INT)
+    {
+      HOST_WIDE_INT v;
+      if (small_prec)
+	v = zext_hwi (val[0], small_prec);
+      else
+	v = val[0];
+      result = wide_int::from_shwi (::floor_log2 (v), precision);
+    }
+  else
+    result = wide_int::from_shwi (precision, precision) - 1 - clz ();
+  return result;
+}
+
+
+/* Multiply Op1 by Op2.  If HIGH is set, only the upper half of the
+   result is returned.  If FULL is set, the entire result is returned
+   in a mode that is twice the width of the inputs.  However, that
+   mode needs to exist if the value is to be usable.  Clients that use
+   FULL need to check for this.
+
+   If HIGH or FULL are not setm throw away the upper half after the check
+   is made to see if it overflows.  Unfortunately there is no better
+   way to check for overflow than to do this.  OVERFLOW is assumed to
+   be sticky so it should be initialized.  SGN controls the signess
+   and is used to check overflow or if HIGH or FULL is set.  */
+
+wide_int
+wide_int::mul_internal (bool high, bool full, 
+			const wide_int *op1, 
+			const HOST_WIDE_INT *op2, unsigned int op2len,
+			wide_int::SignOp sgn,  bool *overflow, 
+			bool needs_overflow)
+{
+  wide_int result;
+  unsigned HOST_WIDE_INT o0, o1, k, t;
+  unsigned int i;
+  unsigned int j;
+  unsigned int prec = op1->get_precision ();
+  unsigned int blocks_needed = BLOCKS_NEEDED (prec);
+  unsigned int half_blocks_needed = blocks_needed * 2;
+  /* The sizes here are scaled to support a 2x largest mode by 2x
+     largest mode yielding a 4x largest mode result.  This is what is
+     needed by vpn.  */
+
+  unsigned HOST_HALF_WIDE_INT 
+    u[2 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
+  unsigned HOST_HALF_WIDE_INT 
+    v[2 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
+  /* The '2' in 'R' is because we are internally doing a full
+     multiply.  */
+  unsigned HOST_HALF_WIDE_INT 
+    r[2 * 2 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
+  HOST_WIDE_INT mask = ((HOST_WIDE_INT)1 << HOST_BITS_PER_HALF_WIDE_INT) - 1;
+
+  /* If the top level routine did not really pass in an overflow, then
+     just make sure that we never attempt to set it.  */
+  if (overflow == 0)
+    needs_overflow = false;
+  result.precision = op1->precision;
+
+  if (high || full || needs_overflow)
+    {
+      /* If we need to check for overflow, we can only do half wide
+	 multiplies quickly because we need to look at the top bits to
+	 check for the overflow.  */
+      if (prec <= HOST_BITS_PER_HALF_WIDE_INT)
+	{
+	  HOST_WIDE_INT t, r;
+	  result.len = 1;
+	  o0 = op1->elt (0);
+	  o1 = op2[0];
+	  r = o0 * o1;
+	  /* Signed shift down will leave 0 or -1 if there was no
+	     overflow for signed or 0 for unsigned.  */
+	  t = SIGN_MASK (r);
+	  if (needs_overflow)
+	    {
+	      if (sgn == wide_int::SIGNED)
+		{
+		  if (t != (HOST_WIDE_INT)-1 && t != 0)
+		    *overflow = true;
+		}
+	      else
+		{
+		  if (t != 0)
+		    *overflow = true;
+		}
+	    }
+	  if (full)
+	    {
+	      result.val[0] = sext_hwi (r, prec * 2);
+	      result.precision = op1->precision * 2;
+	    }
+	  else if (high)
+	    result.val[0] = r >> prec;
+	  else
+	    result.val[0] = sext_hwi (r, prec);
+	  return result;
+	}
+    }
+
+  wi_unpack (u, (const unsigned HOST_WIDE_INT*)op1->val, op1->len,
+	     half_blocks_needed);
+  wi_unpack (v, (const unsigned HOST_WIDE_INT*)op2, op2len,
+	     half_blocks_needed);
+
+  /* The 2 is for a full mult.  */
+  memset (r, 0, half_blocks_needed * 2 
+	  * HOST_BITS_PER_HALF_WIDE_INT / BITS_PER_UNIT);
+
+  for (j = 0; j < half_blocks_needed; j++)
+    {
+      k = 0;
+      for (i = 0; i < half_blocks_needed; i++)
+	{
+	  t = ((unsigned HOST_WIDE_INT)u[i] * (unsigned HOST_WIDE_INT)v[j]
+	       + r[i + j] + k);
+	  r[i + j] = t & HALF_INT_MASK;
+	  k = t >> HOST_BITS_PER_HALF_WIDE_INT;
+	}
+      r[j + half_blocks_needed] = k;
+    }
+
+  /* We did unsigned math above.  For signed we must adjust the
+     product (assuming we need to see that).  */
+  if (sgn == wide_int::SIGNED && (full || high || needs_overflow))
+    {
+      unsigned HOST_WIDE_INT b;
+      if ((*op1).neg_p ())
+	{
+	  b = 0;
+	  for (i = 0; i < half_blocks_needed; i++)
+	    {
+	      t = (unsigned HOST_WIDE_INT)r[i + half_blocks_needed]
+		- (unsigned HOST_WIDE_INT)v[i] - b;
+	      r[i + half_blocks_needed] = t & HALF_INT_MASK;
+	      b = t >> (HOST_BITS_PER_WIDE_INT - 1);
+	    }
+	}
+      if (op2[op2len-1] < 0)
+	{
+	  b = 0;
+	  for (i = 0; i < half_blocks_needed; i++)
+	    {
+	      t = (unsigned HOST_WIDE_INT)r[i + half_blocks_needed]
+		- (unsigned HOST_WIDE_INT)u[i] - b;
+	      r[i + half_blocks_needed] = t & HALF_INT_MASK;
+	      b = t >> (HOST_BITS_PER_WIDE_INT - 1);
+	    }
+	}
+    }
+
+  if (needs_overflow)
+    {
+      HOST_WIDE_INT top;
+
+      /* For unsigned, overflow is true if any of the top bits are set.
+	 For signed, overflow is true if any of the top bits are not equal
+	 to the sign bit.  */
+      if (sgn == wide_int::UNSIGNED)
+	top = 0;
+      else
+	{
+	  top = r[(half_blocks_needed) - 1];
+	  top = SIGN_MASK (top << (HOST_BITS_PER_WIDE_INT / 2));
+	  top &= mask;
+	}
+      
+      for (i = half_blocks_needed; i < half_blocks_needed * 2; i++)
+	if (((HOST_WIDE_INT)(r[i] & mask)) != top)
+	  *overflow = true; 
+    }
+
+  if (full)
+    {
+      /* compute [2prec] <- [prec] * [prec] */
+      wi_pack ((unsigned HOST_WIDE_INT*)result.val, r, 2 * half_blocks_needed);
+      result.len = blocks_needed * 2;
+      result.precision = op1->precision * 2;
+    }
+  else if (high)
+    {
+      /* compute [prec] <- ([prec] * [prec]) >> [prec] */
+      wi_pack ((unsigned HOST_WIDE_INT*)&result.val [blocks_needed >> 1],
+	       r, half_blocks_needed);
+      result.len = blocks_needed;
+    }
+  else
+    {
+      /* compute [prec] <- ([prec] * [prec]) && ((1 << [prec]) - 1) */
+      wi_pack ((unsigned HOST_WIDE_INT*)result.val, r, half_blocks_needed);
+      result.len = blocks_needed;
+    }
+      
+  result.canonize ();
+  return result;
+}
+
+/* Compute the parity of THIS.  */
+
+wide_int
+wide_int::parity () const
+{
+  wide_int count = popcount ();
+  return count & 1;
+}
+
+/* Compute the population count of THIS.  */
+
+wide_int
+wide_int::popcount () const
+{
+  int i;
+  int start;
+  int count;
+  HOST_WIDE_INT v;
+  int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
+
+  /* The high order block is special if it is the last block and the
+     precision is not an even multiple of HOST_BITS_PER_WIDE_INT.  We
+     have to clear out any ones above the precision before doing clz
+     on this block.  */
+  if (BLOCKS_NEEDED (precision) == len && small_prec)
+    {
+      v = zext_hwi (val[len - 1], small_prec);
+      count = popcount_hwi (v);
+      start = len - 2;
+    }
+  else
+    {
+      if (sign_mask ())
+	count = HOST_BITS_PER_WIDE_INT * (BLOCKS_NEEDED (precision) - len);
+      else
+	count = 0;
+      start = len - 1;
+    }
+
+  for (i = start; i >= 0; i--)
+    {
+      v = val[i];
+      count += popcount_hwi (v);
+    }
+  return wide_int::from_shwi (count, precision);
+}
+
+/* Subtract of THIS and OP1.  No overflow is detected.  */
+
+wide_int
+wide_int::sub_large (const HOST_WIDE_INT *op1, unsigned int op1len) const
+{
+  wide_int result;
+  unsigned HOST_WIDE_INT o0, o1;
+  unsigned HOST_WIDE_INT x = 0;
+  /* We implement subtraction as an in place negate and add.  Negation
+     is just inversion and add 1, so we can do the add of 1 by just
+     starting the borrow in of the first element at 1.  */
+  unsigned HOST_WIDE_INT borrow = 0;
+  unsigned HOST_WIDE_INT mask0, mask1;
+  unsigned int i, small_prec;
+
+  result.precision = precision;
+  result.len = MAX (len, op1len);
+  mask0 = sign_mask ();
+  mask1 = SIGN_MASK (op1[op1len - 1]);
+
+  /* Subtract all of the explicitly defined elements.  */
+  for (i = 0; i < result.len; i++)
+    {
+      o0 = i < len ? (unsigned HOST_WIDE_INT)val[i] : mask0;
+      o1 = i < op1len ? (unsigned HOST_WIDE_INT)op1[i] : mask1;
+      x = o0 - o1 - borrow;
+      result.val[i] = x;
+      borrow = o0 < o1;
+    }
+
+  if (len * HOST_BITS_PER_WIDE_INT < precision)
+    {
+      result.val[result.len] = mask0 - mask1 - borrow;
+      result.len++;
+    }
+
+  small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
+  if (small_prec != 0 && BLOCKS_NEEDED (precision) == result.len)
+    {
+      /* Modes with weird precisions.  */
+      i = result.len - 1;
+      result.val[i] = sext_hwi (result.val[i], small_prec);
+    }
+
+  result.canonize ();
+  return result;
+}
+
+/* Subtract of THIS and OP1 with overflow checking.  If the result
+   overflows within the precision, set OVERFLOW.  OVERFLOW is assumed
+   to be sticky so it should be initialized.  SGN controls if signed or
+   unsigned overflow is checked.  */
+
+wide_int
+wide_int::sub (const wide_int &op1, SignOp sgn, bool *overflow) const
+{
+  wide_int result;
+  unsigned HOST_WIDE_INT o0 = 0;
+  unsigned HOST_WIDE_INT o1 = 0;
+  unsigned HOST_WIDE_INT x = 0;
+  unsigned HOST_WIDE_INT borrow = 0;
+  unsigned HOST_WIDE_INT old_borrow = 0;
+  unsigned HOST_WIDE_INT mask0, mask1;
+  int i, small_prec;
+
+  gcc_checking_assert (precision == op1.precision);
+
+  result.precision = precision;
+  result.len = MAX (len, op1.len);
+  mask0 = sign_mask ();
+  mask1 = op1.sign_mask ();
+
+  /* Subtract all of the explicitly defined elements.  */
+  for (i = 0; i < len; i++)
+    {
+      o0 = val[i];
+      o1 = op1.val[i];
+      x = o0 - o1 - borrow;
+      result.val[i] = x;
+      old_borrow = borrow;
+      borrow = o0 < o1;
+    }
+
+  /* Uncompress the rest.  */
+  for (i = len; i < op1.len; i++)
+    {
+      o0 = val[i];
+      o1 = mask1;
+      x = o0 - o1 - borrow;
+      result.val[i] = x;
+      old_borrow = borrow;
+      borrow = o0 < o1;
+    }
+
+  for (i = op1.len; i < len; i++)
+    {
+      o0 = mask0;
+      o1 = op1.val[i];
+      x = o0 - o1 - borrow;
+      result.val[i] = x;
+      old_borrow = borrow;
+      borrow = o0 < o1;
+    }
+
+  if (len * HOST_BITS_PER_WIDE_INT < precision)
+    {
+      result.val[result.len] = mask0 - mask1 - borrow;
+      result.len++;
+      /* If we were short, we could not have overflowed.  */
+    }
+  else
+    {
+      small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
+      if (small_prec == 0)
+	{
+	  if (sgn == wide_int::SIGNED)
+	    {
+	      if (((x ^ o0) & (x ^ o0)) >> (HOST_BITS_PER_WIDE_INT - 1))
+		*overflow = true;
+	    }
+	  else if (old_borrow)
+	    {
+	      if ((~o0) <= o1)
+		*overflow = true;
+	    }
+	  else
+	    {
+	      if ((~o0) < o1)
+		*overflow = true;
+	    }
+	}
+      else
+	{
+	  if (sgn == wide_int::UNSIGNED)
+	    {
+	      /* The caveat for unsigned is to get rid of the bits above
+		 the precision before doing the addition.  To check the
+		 overflow, clear these bits and then redo the last
+		 addition.  If there are any non zero bits above the prec,
+		 we overflowed. */
+	      o0 = zext_hwi (o0, small_prec);
+	      o1 = zext_hwi (o1, small_prec);
+	      x = o0 - o1 - old_borrow;
+	      if (x >> small_prec)
+		*overflow = true;
+	    }
+	  else 
+	    {
+	      /* Overflow in this case is easy since we can see bits beyond
+		 the precision.  If the value computed is not the sign
+		 extended value, then we have overflow.  */
+	      unsigned HOST_WIDE_INT y = sext_hwi (x, small_prec);
+	      if (x != y)
+		*overflow = true;
+	    }
+	}
+    }
+
+  result.canonize ();
+  return result;
+}
+
+/*
+ * Division and Mod
+ */
+
+/* Compute B_QUOTIENT and B_REMAINDER from B_DIVIDEND/B_DIVISOR.  The
+   algorithm is a small modification of the algorithm in Hacker's
+   Delight by Warren, which itself is a small modification of Knuth's
+   algorithm.  M is the number of significant elements of U however
+   there needs to be at least one extra element of B_DIVIDEND
+   allocated, N is the number of elements of B_DIVISOR.  */
+
+void
+wide_int::divmod_internal_2 (unsigned HOST_HALF_WIDE_INT *b_quotient, 
+			     unsigned HOST_HALF_WIDE_INT *b_remainder,
+			     unsigned HOST_HALF_WIDE_INT *b_dividend, 
+			     unsigned HOST_HALF_WIDE_INT *b_divisor, 
+			     int m, int n)
+{
+  /* The "digits" are a HOST_HALF_WIDE_INT which the size of half of a
+     HOST_WIDE_INT and stored in the lower bits of each word.  This
+     algorithm should work properly on both 32 and 64 bit
+     machines.  */
+  unsigned HOST_WIDE_INT b
+    = (unsigned HOST_WIDE_INT)1 << HOST_BITS_PER_HALF_WIDE_INT;
+  unsigned HOST_WIDE_INT qhat;   /* Estimate of quotient digit.  */
+  unsigned HOST_WIDE_INT rhat;   /* A remainder.  */
+  unsigned HOST_WIDE_INT p;      /* Product of two digits.  */
+  HOST_WIDE_INT s, i, j, t, k;
+
+  /* Single digit divisor.  */
+  if (n == 1)
+    {
+      k = 0;
+      for (j = m - 1; j >= 0; j--)
+	{
+	  b_quotient[j] = (k * b + b_dividend[j])/b_divisor[0];
+	  k = ((k * b + b_dividend[j])
+	       - ((unsigned HOST_WIDE_INT)b_quotient[j]
+		  * (unsigned HOST_WIDE_INT)b_divisor[0]));
+	}
+      b_remainder[0] = k;
+      return;
+    }
+
+  s = clz_hwi (b_divisor[n-1]) - HOST_BITS_PER_HALF_WIDE_INT; /* CHECK clz */
+
+  /* Normalize B_DIVIDEND and B_DIVISOR.  Unlike the published
+     algorithm, we can overwrite b_dividend and b_divisor, so we do
+     that.  */
+  for (i = n - 1; i > 0; i--)
+    b_divisor[i] = (b_divisor[i] << s)
+      | (b_divisor[i-1] >> (HOST_BITS_PER_HALF_WIDE_INT - s));
+  b_divisor[0] = b_divisor[0] << s;
+
+  b_dividend[m] = b_dividend[m-1] >> (HOST_BITS_PER_HALF_WIDE_INT - s);
+  for (i = m - 1; i > 0; i--)
+    b_dividend[i] = (b_dividend[i] << s)
+      | (b_dividend[i-1] >> (HOST_BITS_PER_HALF_WIDE_INT - s));
+  b_dividend[0] = b_dividend[0] << s;
+
+  /* Main loop.  */
+  for (j = m - n; j >= 0; j--)
+    {
+      qhat = (b_dividend[j+n] * b + b_dividend[j+n-1]) / b_divisor[n-1];
+      rhat = (b_dividend[j+n] * b + b_dividend[j+n-1]) - qhat * b_divisor[n-1];
+    again:
+      if (qhat >= b || qhat * b_divisor[n-2] > b * rhat + b_dividend[j+n-2])
+	{
+	  qhat -= 1;
+	  rhat += b_divisor[n-1];
+	  if (rhat < b)
+	    goto again;
+	}
+
+      /* Multiply and subtract.  */
+      k = 0;
+      for (i = 0; i < n; i++)
+	{
+	  p = qhat * b_divisor[i];
+	  t = b_dividend[i+j] - k - (p & HALF_INT_MASK);
+	  b_dividend[i + j] = t;
+	  k = ((p >> HOST_BITS_PER_HALF_WIDE_INT)
+	       - (t >> HOST_BITS_PER_HALF_WIDE_INT));
+	}
+      t = b_dividend[j+n] - k;
+      b_dividend[j+n] = t;
+
+      b_quotient[j] = qhat;
+      if (t < 0)
+	{
+	  b_quotient[j] -= 1;
+	  k = 0;
+	  for (i = 0; i < n; i++)
+	    {
+	      t = (HOST_WIDE_INT)b_dividend[i+j] + b_divisor[i] + k;
+	      b_dividend[i+j] = t;
+	      k = t >> HOST_BITS_PER_HALF_WIDE_INT;
+	    }
+	  b_dividend[j+n] += k;
+	}
+    }
+  for (i = 0; i < n; i++)
+    b_remainder[i] = (b_dividend[i] >> s) 
+      | (b_dividend[i+1] << (HOST_BITS_PER_HALF_WIDE_INT - s));
+}
+
+
+/* Do a truncating divide DIVISOR into DIVIDEND.  The result is the
+   same size as the operands.  SIGN is either wide_int::SIGNED or
+   wide_int::UNSIGNED.  */
+
+wide_int
+wide_int::divmod_internal (bool compute_quotient, 
+			   const wide_int *dividend, 
+			   const HOST_WIDE_INT *divisor,
+			   unsigned int divisorlen,
+			   wide_int::SignOp sgn, wide_int *remainder,
+			   bool compute_remainder, 
+			   bool *oflow)
+{
+  wide_int quotient, u0, u1;
+  unsigned int prec = dividend->get_precision();
+  int blocks_needed = 2 * BLOCKS_NEEDED (prec);
+  /* The '2' in the next 4 vars are because they are built on half
+     sized wide ints.  */
+  unsigned HOST_HALF_WIDE_INT 
+    b_quotient[MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
+  unsigned HOST_HALF_WIDE_INT
+    b_remainder[MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
+  unsigned HOST_HALF_WIDE_INT
+    b_dividend[(MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT) + 1];
+  unsigned HOST_HALF_WIDE_INT
+    b_divisor[MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
+  int m, n;
+  bool dividend_neg = false;
+  bool divisor_neg = false;
+  bool overflow = false;
+
+  if (divisor[0] == 0 && divisorlen == 1)
+    overflow = true;
+
+  /* The smallest signed number / -1 causes overflow.  */
+  if (sgn == wide_int::SIGNED)
+    {
+      wide_int t = wide_int::set_bit_in_zero (prec - 1, prec);
+      if (*dividend == t && divisor[0] == -1 && divisorlen == 1)
+	overflow = true;
+    }
+
+  quotient.precision = prec;
+  remainder->precision = prec;
+
+  /* If overflow is set, just get out.  There will only be grief by
+     continuing.  */
+  if (overflow)
+    {
+      if (compute_remainder)
+	{
+	  remainder->len = 1;
+	  remainder->val[0] = 0;
+	}
+      if (oflow != 0)
+	*oflow = true;
+      return wide_int::zero (prec);
+    }
+
+  /* Do it on the host if you can.  */
+  if (prec <= HOST_BITS_PER_WIDE_INT)
+    {
+      quotient.len = 1;
+      remainder->len = 1;
+      if (sgn == wide_int::SIGNED)
+	{
+	  quotient.val[0] 
+	    = sext_hwi (dividend->val[0] / divisor[0], prec);
+	  remainder->val[0] 
+	    = sext_hwi (dividend->val[0] % divisor[0], prec);
+	}
+      else
+	{
+	  unsigned HOST_WIDE_INT o0 = dividend->val[0];
+	  unsigned HOST_WIDE_INT o1 = divisor[0];
+
+	  if (prec < HOST_BITS_PER_WIDE_INT)
+	    {
+	      o0 = zext_hwi (o0, prec);
+	      o1 = zext_hwi (o1, prec);
+	    }
+	  quotient.val[0] = sext_hwi (o0 / o1, prec);
+	  remainder->val[0] = sext_hwi (o0 % o1, prec);
+	}
+      return quotient;
+    }
+
+  /* Make the divisor and divident positive and remember what we
+     did.  */
+  if (sgn == wide_int::SIGNED)
+    {
+      if (dividend->sign_mask ())
+	{
+	  u0 = dividend->neg ();
+	  dividend = &u0;
+	  dividend_neg = true;
+	}
+      if (divisor[divisorlen - 1] < 0)
+	{
+	  u1 = wide_int::zero (dividend->precision).sub_large (divisor, divisorlen);
+	  divisor = u1.val;
+	  divisorlen = u1.len;
+	  divisor_neg = true;
+	}
+    }
+
+  wi_unpack (b_dividend, (const unsigned HOST_WIDE_INT*)dividend->val,
+	     dividend->len, blocks_needed);
+  wi_unpack (b_divisor, (const unsigned HOST_WIDE_INT*)divisor, 
+	     divisorlen, blocks_needed);
+
+  if (dividend->sign_mask ())
+    m = blocks_needed;
+  else
+    m = 2 * dividend->get_len ();
+
+  if (SIGN_MASK (divisor[divisorlen - 1]))
+    n = blocks_needed;
+  else
+    n = 2 * divisorlen;
+
+  /* It is known that the top input block to the divisor is non zero,
+     but when this block is split into two half blocks, it may be that
+     the top half block is zero.  Skip over this half block.  */
+  if (b_divisor[n - 1] == 0)
+    n--;
+
+  divmod_internal_2 (b_quotient, b_remainder, b_dividend, b_divisor, m, n);
+
+  if (compute_quotient)
+    {
+      wi_pack ((unsigned HOST_WIDE_INT*)quotient.val, b_quotient, m);
+      quotient.len = m / 2;
+      quotient.canonize ();
+      /* The quotient is neg if exactly one of the divisor or dividend is
+	 neg.  */
+      if (dividend_neg != divisor_neg)
+	quotient = quotient.neg ();
+    }
+  else
+    quotient = wide_int::zero (dividend->precision);
+
+  if (compute_remainder)
+    {
+      wi_pack ((unsigned HOST_WIDE_INT*)remainder->val, b_remainder, n);
+      if (n & 1)
+	n++;
+      remainder->len = n / 2;
+      (*remainder).canonize ();
+      /* The remainder is always the same sign as the dividend.  */
+      if (dividend_neg)
+	*remainder = (*remainder).neg ();
+    }
+  else
+    *remainder = wide_int::zero (dividend->precision);
+  return quotient;
+}
+
+
+/*
+ * Shifting, rotating and extraction.
+ */
+
+/* Extract WIDTH bits from THIS starting at OFFSET.  The result is
+   assumed to fit in a HOST_WIDE_INT.  This function is safe in that
+   it can properly access elements that may not be explicitly
+   represented.  */
+
+HOST_WIDE_INT
+wide_int::extract_to_hwi (int offset, int width) const
+{
+  int start_elt, end_elt, shift;
+  HOST_WIDE_INT x;
+
+  /* Get rid of the easy cases first.   */
+  if (offset >= len * HOST_BITS_PER_WIDE_INT)
+    return sign_mask ();
+  if (offset + width <= 0)
+    return 0;
+
+  shift = offset & (HOST_BITS_PER_WIDE_INT - 1);
+  if (offset < 0)
+    {
+      start_elt = -1;
+      end_elt = 0;
+      x = 0;
+    }
+  else
+    {
+      start_elt = offset / HOST_BITS_PER_WIDE_INT;
+      end_elt = (offset + width - 1) / HOST_BITS_PER_WIDE_INT;
+      x = start_elt >= len 
+	? sign_mask ()
+	: (unsigned HOST_WIDE_INT)val[start_elt] >> shift;
+    }
+
+  if (start_elt != end_elt)
+    {
+      HOST_WIDE_INT y = end_elt == len
+	? sign_mask () : val[end_elt];
+
+      x |= y << (HOST_BITS_PER_WIDE_INT - shift);
+    }
+
+  if (width != HOST_BITS_PER_WIDE_INT)
+    x &= ((HOST_WIDE_INT)1 << width) - 1;
+
+  return x;
+}
+
+
+/* Left shift THIS by CNT.  See the definition of Op.TRUNC for how to
+   set Z.  Since this is used internally, it has the ability to
+   specify the BISIZE and PRECISION independently.  This is useful
+   when inserting a small value into a larger one.  */
+
+wide_int
+wide_int::lshift_large (unsigned int cnt, unsigned int res_prec) const
+{
+  wide_int result;
+  unsigned int i;
+
+  result.precision = res_prec;
+
+  if (cnt >= res_prec)
+    {
+      result.val[0] = 0;
+      result.len = 1;
+      return result;
+    }
+
+  for (i = 0; i < res_prec; i += HOST_BITS_PER_WIDE_INT)
+    result.val[i / HOST_BITS_PER_WIDE_INT]
+      = extract_to_hwi (i - cnt, HOST_BITS_PER_WIDE_INT);
+
+  result.len = BLOCKS_NEEDED (res_prec);
+  result.canonize ();
+
+  return result;
+}
+
+/* Unsigned right shift THIS by CNT.  See the definition of Op.TRUNC
+   for how to set Z.  */
+
+wide_int
+wide_int::rshiftu_large (unsigned int cnt) const
+{
+  wide_int result;
+  int stop_block, offset, i;
+
+  result.precision = precision;
+
+  if (cnt >= precision)
+    {
+      result.val[0] = 0;
+      result.len = 1;
+      return result;
+    }
+
+  stop_block = BLOCKS_NEEDED (precision - cnt);
+  for (i = 0; i < stop_block; i++)
+    result.val[i]
+      = extract_to_hwi ((i * HOST_BITS_PER_WIDE_INT) + cnt,
+			HOST_BITS_PER_WIDE_INT);
+
+  result.len = stop_block;
+
+  offset = (precision - cnt) & (HOST_BITS_PER_WIDE_INT - 1);
+  if (offset)
+    result.val[stop_block - 1] = zext_hwi (result.val[stop_block - 1], offset);
+  else
+    /* The top block had a 1 at the top position so it will decompress
+       wrong unless a zero block is added.  This only works because we
+       know the shift was greater than 0.  */
+    if (result.val[stop_block - 1] < 0)
+      result.val[result.len++] = 0;
+  return result;
+}
+
+/* Signed right shift THIS by CNT.  See the definition of Op.TRUNC for
+   how to set Z.  */
+
+wide_int
+wide_int::rshifts_large (unsigned int cnt) const
+{
+  wide_int result;
+  int stop_block, i;
+
+  result.precision = precision;
+
+  if (cnt >= precision)
+    {
+      HOST_WIDE_INT m = sign_mask ();
+      result.val[0] = m;
+      result.len = 1;
+      return result;
+    }
+
+  stop_block = BLOCKS_NEEDED (precision - cnt);
+  for (i = 0; i < stop_block; i++)
+    result.val[i]
+      = extract_to_hwi ((i * HOST_BITS_PER_WIDE_INT) + cnt,
+			HOST_BITS_PER_WIDE_INT);
+
+  result.len = stop_block;
+
+  /* No need to sign extend the last block, since it extract_to_hwi
+     already did that.  */
+  return result;
+}
+
+/*
+ * Private utilities.
+ */
+/* Decompress THIS for at least TARGET bits into a result with
+   precision PREC.  */
+
+wide_int
+wide_int::decompress (unsigned int target, unsigned int prec) const
+{
+  wide_int result;
+  int blocks_needed = BLOCKS_NEEDED (target);
+  HOST_WIDE_INT mask;
+  int len, i;
+
+  result.precision = prec;
+  result.len = blocks_needed;
+
+  for (i = 0; i < this->len; i++)
+    result.val[i] = val[i];
+
+  len = this->len;
+
+  if (target > result.precision)
+    return result;
+
+  /* The extension that we are doing here is not sign extension, it is
+     decompression.  */
+  mask = sign_mask ();
+  while (len < blocks_needed)
+    result.val[len++] = mask;
+
+  return result;
+}
+
diff --git a/gcc/wide-int.h b/gcc/wide-int.h
new file mode 100644
index 0000000..7fec321
--- /dev/null
+++ b/gcc/wide-int.h
@@ -0,0 +1,2464 @@
+/* Operations with very long integers.
+   Copyright (C) 2012-2013 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 3, or (at your option) any
+later version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
+
+#ifndef WIDE_INT_H
+#define WIDE_INT_H
+
+/* A wide integer is currently represented as a vector of
+   HOST_WIDE_INTs.  The vector contains enough elements to hold a
+   value of MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_WIDE_INT which is
+   a derived for each host target combination.  The values are stored
+   in the vector with the least signicant HOST_BITS_PER_WIDE_INT bits
+   of the value stored in element 0.
+
+   A wide_int contains three fields: the vector (VAL), precision and a
+   length, (LEN).  The length is the number of HWIs needed to
+   represent the value.
+
+   Since most integers used in a compiler are small values, it is
+   generally profitable to use a representation of the value that is
+   shorter than the modes precision.  LEN is used to indicate the
+   number of elements of the vector that are in use.  When LEN *
+   HOST_BITS_PER_WIDE_INT < the precision, the value has been
+   compressed.  The values of the elements of the vector greater than
+   LEN - 1. are all equal to the highest order bit of LEN.
+
+   The representation does not contain any information inherant about
+   signedness of the represented value, so it can be used to represent
+   both signed and unsigned numbers.   For operations where the results
+   depend on signedness (division, comparisons), the signedness must
+   be specified separately.  For operations where the signness
+   matters, one of the operands to the operation specifies either
+   wide_int::SIGNED or wide_int::UNSIGNED.
+
+   The numbers are stored as sign entended numbers as a means of
+   compression.  Leading HOST_WIDE_INTS that contain strings of either
+   -1 or 0 are removed as long as they can be reconstructed from the
+   top bit that is being represented.
+
+   All constructors for wide_int take either a precision, an enum
+   machine_mode or tree_type.  */
+
+
+#ifndef GENERATOR_FILE
+#include "tree.h"
+#include "system.h"
+#include "hwint.h"
+#include "options.h"
+#include "tm.h"
+#include "insn-modes.h"
+#include "machmode.h"
+#include "double-int.h"
+#include <gmp.h>
+#include "dumpfile.h"
+#include "real.h"
+
+#define WIDE_INT_MAX_ELTS \
+  ((4 * MAX_BITSIZE_MODE_ANY_INT + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT)
+
+class wide_int {
+  /* Internal representation.  */
+  
+  /* VAL is set to a size that is capable of computing a full
+     multiplication on the largest mode that is represented on the
+     target.  The full multiplication is use by tree-vrp.  tree-vpn
+     currently does a 2x largest mode by 2x largest mode yielding a 4x
+     largest mode result.  If operations are added that require larger
+     buffers, then VAL needs to be changed.  */
+  HOST_WIDE_INT val[WIDE_INT_MAX_ELTS];
+  unsigned short len;
+  unsigned int precision;
+
+ public:
+  enum ShiftOp {
+    NONE,
+    /* There are two uses for the wide-int shifting functions.  The
+       first use is as an emulation of the target hardware.  The
+       second use is as service routines for other optimizations.  The
+       first case needs to be identified by passing TRUNC as the value
+       of ShiftOp so that shift amount is properly handled according to the
+       SHIFT_COUNT_TRUNCATED flag.  For the second case, the shift
+       amount is always truncated by the bytesize of the mode of
+       THIS.  */
+    TRUNC
+  };
+
+  enum SignOp {
+    /* Many of the math functions produce different results depending
+       on if they are SIGNED or UNSIGNED.  In general, there are two
+       different functions, whose names are prefixed with an 'S" and
+       or an 'U'.  However, for some math functions there is also a
+       routine that does not have the prefix and takes an SignOp
+       parameter of SIGNED or UNSIGNED.  */
+    SIGNED,
+    UNSIGNED
+  };
+
+  /* Conversions.  */
+
+  static wide_int from_shwi (HOST_WIDE_INT op0, 
+			     unsigned int precision, bool *overflow = 0);
+  static wide_int from_uhwi (unsigned HOST_WIDE_INT op0, 
+			     unsigned int precision, bool *overflow = 0);
+
+  inline static wide_int from_hwi (HOST_WIDE_INT op0, const_tree type, 
+				   bool *overflow = 0);
+  inline static wide_int from_shwi (HOST_WIDE_INT op0, enum machine_mode mode, 
+				    bool *overflow = 0);
+  inline static wide_int from_uhwi (unsigned HOST_WIDE_INT op0, 
+				    enum machine_mode mode, 
+				    bool *overflow = 0);
+  static wide_int from_array (const HOST_WIDE_INT* op0,
+			      unsigned int len, 
+			      unsigned int precision, bool need_canon = true); 
+  inline static wide_int from_array (const HOST_WIDE_INT* op0,
+				     unsigned int len,
+				     enum machine_mode mode);
+  inline static wide_int from_array (const HOST_WIDE_INT* op0,
+				     unsigned int len,
+				     const_tree type);
+
+  static wide_int from_double_int (double_int, 
+				   unsigned int precision);
+  inline static wide_int from_double_int (double_int, enum machine_mode);
+  static wide_int from_tree (const_tree);
+  static wide_int from_rtx (const_rtx, enum machine_mode);
+  static wide_int from_buffer (const unsigned char*, int);
+
+  inline HOST_WIDE_INT to_shwi (unsigned int prec = 0) const;
+  inline unsigned HOST_WIDE_INT to_uhwi (unsigned int prec = 0) const;
+
+  /* Largest and smallest values that are represented in modes or precisions.  */
+
+  static wide_int max_value (unsigned int prec, 
+			     unsigned int precision, SignOp sgn);
+  inline static wide_int max_value (unsigned int precision, SignOp sgn);
+  inline static wide_int max_value (const_tree type);
+  inline static wide_int max_value (enum machine_mode mode, SignOp sgn);
+  
+  static wide_int min_value (unsigned int prec, 
+			     unsigned int precision, SignOp sgn);
+  inline static wide_int min_value (unsigned int precision, SignOp sgn);
+  inline static wide_int min_value (const_tree type);
+  inline static wide_int min_value (enum machine_mode mode, SignOp sgn);
+  
+  /* Small constants */
+
+  inline static wide_int minus_one (unsigned int prec);
+  inline static wide_int zero (unsigned int prec);
+  inline static wide_int one (unsigned int prec);
+  inline static wide_int two (unsigned int prec);
+
+  /* Accessors.  */
+
+  inline unsigned short get_len () const;
+  inline unsigned int get_precision () const;
+  inline HOST_WIDE_INT elt (unsigned int i) const;
+
+  /* Printing functions.  */
+
+  void print_dec (char *buf, SignOp sgn) const;
+  void print_dec (FILE *file, SignOp sgn) const;
+  void print_decs (char *buf) const;
+  void print_decs (FILE *file) const;
+  void print_decu (char *buf) const;
+  void print_decu (FILE *file) const;
+  void print_hex (char *buf) const;
+  void print_hex (FILE *file) const;
+
+  /* Comparative functions.  */
+
+  inline bool minus_one_p () const;
+  inline bool zero_p () const;
+  inline bool one_p () const;
+  inline bool neg_p () const;
+
+  template <typename T>
+    inline bool operator == (T c) const;
+  
+  template <typename T>
+    inline bool operator != (T c) const;
+  
+  template <typename T>
+    inline bool gt_p (T c, SignOp sgn) const;
+  template <typename T>
+    inline bool gts_p (T c) const;
+  template <typename T>
+    inline bool gtu_p (T c) const;
+  
+  template <typename T>
+    inline bool lt_p (T c, SignOp sgn) const;
+  template <typename T>
+    inline bool lts_p (T c) const;
+  template <typename T>
+    inline bool ltu_p (T c) const;
+  
+  template <typename T>
+    inline int cmp (T c, SignOp sgn) const;
+  template <typename T>
+    inline int cmps (T c) const;
+  template <typename T>
+    inline int cmpu (T c) const;
+  
+  bool only_sign_bit_p (unsigned int prec) const;
+  inline bool only_sign_bit_p () const;
+  inline bool fits_uhwi_p () const;
+  inline bool fits_shwi_p () const;
+  bool fits_to_tree_p (const_tree type) const;
+  bool fits_u_p (unsigned int prec) const;
+  bool fits_s_p (unsigned int prec) const;
+
+  /* Min and max */
+
+  template <typename T>
+    inline wide_int min (T c, SignOp sgn) const;
+    inline wide_int min (const wide_int &op1, SignOp sgn) const;
+  template <typename T>
+    inline wide_int max (T c, SignOp sgn) const;
+    inline wide_int max (const wide_int &op1, SignOp sgn) const;
+  template <typename T>
+    inline wide_int smin (T c) const;
+    inline wide_int smin (const wide_int &op1) const;
+  template <typename T>
+    inline wide_int smax (T c) const;
+    inline wide_int smax (const wide_int &op1) const;
+  template <typename T>
+    inline wide_int umin (T c) const;
+    inline wide_int umin (const wide_int &op1) const;
+  template <typename T>
+    inline wide_int umax (T c) const;
+    inline wide_int umax (const wide_int &op1) const;
+
+  /* Extension, these do not change the precision.  */
+
+  inline wide_int ext (unsigned int offset, SignOp sgn) const;
+  wide_int sext (unsigned int offset) const;
+  wide_int zext (unsigned int offset) const;
+
+  /* Make a fast copy.  */
+
+  wide_int copy () const;
+
+  /* These change the underlying precision.  */
+  
+  wide_int force_to_size (unsigned int precision, SignOp sgn) const;
+  inline wide_int force_to_size (enum machine_mode mode, SignOp sgn) const;
+  inline wide_int force_to_size (const_tree type) const;
+  inline wide_int force_to_size (const_tree type, SignOp sgn) const;
+
+  inline wide_int sforce_to_size (enum machine_mode mode) const;
+  inline wide_int sforce_to_size (const_tree type) const;
+  inline wide_int zforce_to_size (enum machine_mode mode) const;
+  inline wide_int zforce_to_size (const_tree type) const;
+
+  /* Masking, and Insertion  */
+
+  wide_int set_bit (unsigned int bitpos) const;
+  static wide_int set_bit_in_zero (unsigned int bitpos, unsigned int prec);
+  inline static wide_int set_bit_in_zero (unsigned int, 
+					  enum machine_mode mode);
+  inline static wide_int set_bit_in_zero (unsigned int, const_tree type);
+  wide_int insert (const wide_int &op0, unsigned int offset,
+		   unsigned int width) const;
+
+  wide_int bswap () const;
+
+  static wide_int mask (unsigned int start, bool negate, 
+			unsigned int prec);
+  inline static wide_int mask (unsigned int start, bool negate, 
+			       enum machine_mode mode);
+  inline static wide_int mask (unsigned int start, bool negate,
+			       const_tree type);
+
+  static wide_int shifted_mask (unsigned int start, unsigned int width,
+				bool negate, unsigned int prec);
+  inline static wide_int shifted_mask (unsigned int start, unsigned int width, 
+				       bool negate, enum machine_mode mode);
+  inline static wide_int shifted_mask (unsigned int start, unsigned int width, 
+				       bool negate, const_tree type);
+
+  inline HOST_WIDE_INT sign_mask () const;
+
+  /* Logicals */
+
+  template <typename T>
+    inline wide_int operator & (T c) const;
+  template <typename T>
+    inline wide_int and_not (T c) const;
+  inline wide_int operator ~ () const;
+  template <typename T>
+    inline wide_int operator | (T c) const;
+  template <typename T>
+    inline wide_int or_not (T c) const;
+  template <typename T>
+    inline wide_int operator ^ (T c) const;
+  
+  /* Arithmetic operation functions, alpha sorted.  */
+  
+  wide_int abs () const;
+  template <typename T>
+    inline wide_int operator + (T c) const;
+  wide_int add (const wide_int &x, SignOp sgn, bool *overflow) const;
+  
+  wide_int clz () const;
+  wide_int clrsb () const;
+  wide_int ctz () const;
+  wide_int exact_log2 () const;
+  wide_int floor_log2 () const;
+  wide_int ffs () const;
+  
+  template <typename T>
+    inline wide_int operator * (T c) const;
+  template <typename T>
+    inline wide_int mul (T c, SignOp sgn, bool *overflow) const;
+  template <typename T>
+    inline wide_int smul (T c, bool *overflow) const;
+  template <typename T>
+    inline wide_int umul (T c, bool *overflow) const;
+  template <typename T>
+    inline wide_int mul_full (T c, SignOp sgn) const;
+  template <typename T>
+    inline wide_int smul_full (T c) const;
+  template <typename T>
+    inline wide_int umul_full (T c) const;
+  template <typename T>
+    inline wide_int mul_high (T c, SignOp sgn) const;
+  
+  inline wide_int neg () const;
+  inline wide_int neg (bool *overflow) const;
+  
+  wide_int parity () const;
+  wide_int popcount () const;
+  
+  template <typename T>
+    inline wide_int operator - (T c) const;
+  wide_int sub (const wide_int &x, SignOp sgn, bool *overflow) const;
+  
+  /* Divison and mod.  These are the ones that are actually used, but
+     there are a lot of them.  */
+  
+  template <typename T>
+    inline wide_int div_trunc (T c, SignOp sgn, bool *overflow = 0) const;
+  template <typename T>
+    inline wide_int sdiv_trunc (T c) const;
+  template <typename T>
+    inline wide_int udiv_trunc (T c) const;
+  
+  template <typename T>
+    inline wide_int div_floor (T c, SignOp sgn, bool *overflow = 0) const;
+  template <typename T>
+    inline wide_int udiv_floor (T c) const;
+  template <typename T>
+    inline wide_int sdiv_floor (T c) const;
+  template <typename T>
+    inline wide_int div_ceil (T c, SignOp sgn, bool *overflow = 0) const;
+  template <typename T>
+    inline wide_int div_round (T c, SignOp sgn, bool *overflow = 0) const;
+  
+  template <typename T>
+    inline wide_int divmod_trunc (T c, wide_int *mod, SignOp sgn) const;
+  template <typename T>
+    inline wide_int sdivmod_trunc (T c, wide_int *mod) const;
+  template <typename T>
+    inline wide_int udivmod_trunc (T c, wide_int *mod) const;
+  
+  template <typename T>
+    inline wide_int divmod_floor (T c, wide_int *mod, SignOp sgn) const;
+  template <typename T>
+    inline wide_int sdivmod_floor (T c, wide_int *mod) const;
+  
+  template <typename T>
+    inline wide_int mod_trunc (T c, SignOp sgn, bool *overflow = 0) const;
+  template <typename T>
+    inline wide_int smod_trunc (T c) const;
+  template <typename T>
+    inline wide_int umod_trunc (T c) const;
+  
+  template <typename T>
+    inline wide_int mod_floor (T c, SignOp sgn, bool *overflow = 0) const;
+  template <typename T>
+    inline wide_int umod_floor (T c) const;
+  template <typename T>
+    inline wide_int mod_ceil (T c, SignOp sgn, bool *overflow = 0) const;
+  template <typename T>
+    inline wide_int mod_round (T c, SignOp sgn, bool *overflow = 0) const;
+  
+  /* Shifting rotating and extracting.  */
+  HOST_WIDE_INT extract_to_hwi (int offset, int width) const;
+  
+  template <typename T>
+    inline wide_int lshift (T c, unsigned int bitsize = 0,
+			    unsigned int precision = 0,
+			    ShiftOp z = NONE) const;
+
+  template <typename T>
+    inline wide_int lrotate (T c) const;
+  inline wide_int lrotate (unsigned HOST_WIDE_INT y) const;
+
+  template <typename T>
+    inline wide_int rshift (T c, SignOp sgn, 
+			    unsigned int bitsize = 0,
+			    ShiftOp z = NONE) const;
+  template <typename T>
+    inline wide_int rshiftu (T c, unsigned int bitsize = 0,
+			     ShiftOp z = NONE) const;
+  template <typename T>
+    inline wide_int rshifts (T c, unsigned int bitsize = 0,
+			     ShiftOp z = NONE) const;
+
+  template <typename T>
+    inline wide_int rrotate (T c) const;
+    inline wide_int rrotate (unsigned HOST_WIDE_INT y) const;
+
+  static const int DUMP_MAX = (2 * (MAX_BITSIZE_MODE_ANY_INT / 4
+			       + MAX_BITSIZE_MODE_ANY_INT 
+				    / HOST_BITS_PER_WIDE_INT + 32));
+  char *dump (char* buf) const;
+ private:
+
+  /* 
+   * Internal versions that do the work if the values do not fit in a
+   * HWI.
+   */ 
+
+  /* Comparisons */
+  bool eq_p_large (const HOST_WIDE_INT *, unsigned int) const;
+  static bool lts_p_large (const HOST_WIDE_INT *, unsigned int, 
+			   const HOST_WIDE_INT *, unsigned int,
+			   unsigned int);
+  int cmps_large (const HOST_WIDE_INT *, unsigned int) const;
+  static bool ltu_p_large (const HOST_WIDE_INT *, unsigned int, 
+			   const HOST_WIDE_INT *, unsigned int);
+  int cmpu_large (const HOST_WIDE_INT *, unsigned int) const;
+
+  /* Logicals.  */
+  wide_int and_large (const HOST_WIDE_INT *, unsigned int) const;
+  wide_int and_not_large (const HOST_WIDE_INT *, unsigned int) const;
+  wide_int or_large (const HOST_WIDE_INT *, unsigned int) const;
+  wide_int or_not_large (const HOST_WIDE_INT *, unsigned int) const;
+  wide_int xor_large (const HOST_WIDE_INT *, unsigned int) const;
+
+  /* Arithmetic */
+  wide_int add_large (const HOST_WIDE_INT *, unsigned int) const;
+  wide_int sub_large (const HOST_WIDE_INT *, unsigned int) const;
+
+  wide_int lshift_large (unsigned int cnt, unsigned int res_prec) const;
+  wide_int rshiftu_large (unsigned int cnt) const;
+  wide_int rshifts_large (unsigned int cnt) const;
+
+  static wide_int
+    mul_internal (bool high, bool full, 
+		  const wide_int *op1, const HOST_WIDE_INT *op2, unsigned int op2len,
+		  wide_int::SignOp sgn,  bool *overflow, bool needs_overflow);
+  static void
+    divmod_internal_2 (unsigned HOST_HALF_WIDE_INT *b_quotient, 
+		       unsigned HOST_HALF_WIDE_INT *b_remainder,
+		       unsigned HOST_HALF_WIDE_INT *b_dividend, 
+		       unsigned HOST_HALF_WIDE_INT *b_divisor, 
+		       int m, int n);
+  static wide_int
+    divmod_internal (bool compute_quotient, 
+		     const wide_int *dividend, const HOST_WIDE_INT *, unsigned int,
+		     wide_int::SignOp sgn, wide_int *remainder,
+		     bool compute_remainder, 
+		     bool *overflow);
+
+
+  /* Private utility routines.  */
+  wide_int decompress (unsigned int target, unsigned int precision) const;
+  void canonize ();
+  static inline int trunc_shift (const HOST_WIDE_INT *cnt, unsigned int len, 
+				 unsigned int bitsize, ShiftOp z);
+
+  /* The following template and its overrides are used for the second
+     operand of binary functions.  They access the value are package
+     it so that the operation can be done.  These have been
+     implemented so that pointer copying is done from the rep of the
+     second operand rather than actual data copying.  This is safe
+     even for garbage collected objects since the value is immediately
+     throw away.  
+
+     The first two templates match all integers.  */
+
+  template <typename T>
+  static inline const HOST_WIDE_INT* to_shwi2 (HOST_WIDE_INT *s, int *l, T x)
+  { 
+    s[0] = x;
+    if (~(T)0 < (T)0
+	|| sizeof (T) < sizeof (HOST_WIDE_INT))
+      {
+	*l = 1;
+      }
+    else
+      {
+	s[1] = 0;
+	*l = 2;	  
+      }
+    return s;
+  }
+  
+  static inline const HOST_WIDE_INT* to_shwi2 (HOST_WIDE_INT *s ATTRIBUTE_UNUSED,
+					int *l, const wide_int &y)
+  {
+    *l = y.len;
+    return y.val;
+  }
+
+  /* This overload may just return the pointer to the value and set
+     the length.  */
+  static inline const HOST_WIDE_INT* to_shwi2 (HOST_WIDE_INT *s, int *l, const_tree tcst)
+  {
+    /* This is rather complex now, in the future when the rep for tree
+       cst is changed, it will be just a pointer and len copy.  */
+    tree type = TREE_TYPE (tcst);
+    unsigned int prec = TYPE_PRECISION (type);
+
+    if (prec == HOST_BITS_PER_DOUBLE_INT 
+	&& TYPE_UNSIGNED (type)
+	&& TREE_INT_CST_HIGH (tcst) < 0)
+      {
+	/* Copy the result because it does not fit in two HWIs.  */
+	s[0] = TREE_INT_CST_LOW (tcst);
+	s[1] = TREE_INT_CST_HIGH (tcst);
+	s[2] = 0;
+	*l = 3;
+	return s;
+      }
+    else
+      {
+	if (prec > HOST_BITS_PER_WIDE_INT)
+	  *l = 2;
+	else
+	  {
+	    if (prec == HOST_BITS_PER_WIDE_INT
+		&& TYPE_UNSIGNED (type)
+		&& (HOST_WIDE_INT)TREE_INT_CST_LOW (tcst) < 0)
+	      *l = 2;
+	    else
+	      *l = 1;
+	  }
+	return (const HOST_WIDE_INT*)&TREE_INT_CST_LOW (tcst);
+      }
+  }
+
+  /* There should logically be an overload for rtl here, but it cannot
+     be here because of circular include issues.  It is in rtl.h.  */
+  static inline const HOST_WIDE_INT* to_shwi2 
+    (HOST_WIDE_INT *s ATTRIBUTE_UNUSED, int *l, rtx rcst);
+
+};
+
+/* Insert a 1 bit into 0 at BITPOS producing an number with precision
+   taken from MODE.  */
+
+wide_int
+wide_int::set_bit_in_zero (unsigned int bitpos, enum machine_mode mode)
+{
+  return wide_int::set_bit_in_zero (bitpos, GET_MODE_PRECISION (mode));
+}
+
+/* Insert a 1 bit into 0 at BITPOS producing an number with precision
+   taken from TYPE.  */
+
+wide_int
+wide_int::set_bit_in_zero (unsigned int bitpos, const_tree type)
+{
+
+  return wide_int::set_bit_in_zero (bitpos, TYPE_PRECISION (type));
+}
+
+/* Return a result mask where the lower WIDTH bits are ones and the
+   bits above that up to the precision are zeros.  The result is
+   inverted if NEGATE is true.  The result is made with precision
+   taken from MODE.  */
+
+wide_int
+wide_int::mask (unsigned int width, bool negate, enum machine_mode mode)
+{
+  return wide_int::mask (width, negate, GET_MODE_PRECISION (mode));
+}
+
+/* Return a result mask where the lower WIDTH bits are ones and the
+   bits above that up to the precision are zeros.  The result is
+   inverted if NEGATE is true.  The result is made with precision
+   taken from TYPE.  */
+
+wide_int
+wide_int::mask (unsigned int width, bool negate, const_tree type)
+{
+
+  return wide_int::mask (width, negate, TYPE_PRECISION (type));
+}
+
+/* Return a result mask of WIDTH ones starting at START and the bits
+   above that up to the precision are zeros.  The result is inverted
+   if NEGATE is true.  The result is made with precision taken from
+   MODE.  */
+
+wide_int
+wide_int::shifted_mask (unsigned int start, unsigned int width, 
+			bool negate, enum machine_mode mode)
+{
+  return wide_int::shifted_mask (start, width, negate,
+				 GET_MODE_PRECISION (mode));
+}
+
+/* Return a result mask of WIDTH ones starting at START and the bits
+   above that up to the precision are zeros.  The result is inverted
+   if NEGATE is true.  The result is made with precision taken from
+   TYPE.  */
+
+wide_int
+wide_int::shifted_mask (unsigned int start, unsigned int width, 
+			bool negate, const_tree type)
+{
+
+  return wide_int::shifted_mask (start, width, negate,
+				 TYPE_PRECISION (type));
+}
+
+/* Produce 0 or -1 that is the smear of the sign bit.  */
+
+HOST_WIDE_INT
+wide_int::sign_mask () const
+{
+  int i = len - 1;
+  if (precision < HOST_BITS_PER_WIDE_INT)
+    return ((val[0] << (HOST_BITS_PER_WIDE_INT - precision))
+	    >> (HOST_BITS_PER_WIDE_INT - 1));
+
+  /* VRP appears to be badly broken and this is a very ugly fix.  */
+  if (i >= 0)
+    return val[i] >> (HOST_BITS_PER_WIDE_INT - 1);
+
+  gcc_unreachable ();
+#if 0
+  return val[len - 1] >> (HOST_BITS_PER_WIDE_INT - 1);
+#endif
+}
+
+/* Conversions */
+
+/* Convert OP0 into a wide_int with parameters taken from TYPE.  If
+   the value does not fit, set OVERFLOW.  */
+
+wide_int
+wide_int::from_hwi (HOST_WIDE_INT op0, const_tree type, 
+		    bool *overflow)
+{
+  unsigned int prec = TYPE_PRECISION (type);
+
+  if (TYPE_UNSIGNED (type))
+    return wide_int::from_uhwi (op0, prec, overflow);
+  else
+    return wide_int::from_shwi (op0, prec, overflow);
+}
+
+/* Convert signed OP0 into a wide_int with parameters taken from
+   MODE. If the value does not fit, set OVERFLOW. */
+
+wide_int
+wide_int::from_shwi (HOST_WIDE_INT op0, enum machine_mode mode, 
+		     bool *overflow)
+{
+  unsigned int prec = GET_MODE_PRECISION (mode);
+
+  return wide_int::from_shwi (op0, prec, overflow);
+}
+
+/* Convert unsigned OP0 into a wide_int with parameters taken from
+   MODE. If the value does not fit, set OVERFLOW. */
+
+wide_int
+wide_int::from_uhwi (unsigned HOST_WIDE_INT op0, enum machine_mode mode, 
+		     bool *overflow)
+{
+  unsigned int prec = GET_MODE_PRECISION (mode);
+
+  return wide_int::from_uhwi (op0, prec, overflow);
+}
+
+/* Return THIS as a signed HOST_WIDE_INT.  If THIS does not fit in
+   PREC, the information is lost. */
+
+HOST_WIDE_INT 
+wide_int::to_shwi (unsigned int prec) const
+{
+  HOST_WIDE_INT result;
+
+  if (prec == 0)
+    prec = precision;
+
+  if (prec < HOST_BITS_PER_WIDE_INT)
+    result = sext_hwi (val[0], prec);
+  else
+    result = val[0];
+
+  return result;
+}
+
+/* Return THIS as an unsigned HOST_WIDE_INT.  If THIS does not fit in
+   PREC, the information is lost. */
+
+unsigned HOST_WIDE_INT 
+wide_int::to_uhwi (unsigned int prec) const
+{
+  HOST_WIDE_INT result;
+
+  if (prec == 0)
+    prec = precision;
+
+  if (prec < HOST_BITS_PER_WIDE_INT)
+    result = zext_hwi (val[0], prec);
+  else
+    result = val[0];
+
+  return result;
+}
+
+
+/* Convert OP0 of LEN into a wide_int with parameters taken from
+   MODE. If the value does not fit, set OVERFLOW. */
+
+wide_int
+wide_int::from_array (const HOST_WIDE_INT* op0, unsigned int len, 
+		      enum machine_mode mode)
+{
+  unsigned int prec = GET_MODE_PRECISION (mode);
+
+  return wide_int::from_array (op0, len, prec);
+}
+
+/* Convert OP0 of LEN into a wide_int with parameters taken from
+   MODE. If the value does not fit, set OVERFLOW. */
+
+wide_int
+wide_int::from_array (const HOST_WIDE_INT* op0, unsigned int len, 
+		      const_tree type)
+{
+  unsigned int prec = TYPE_PRECISION (type);
+
+  return wide_int::from_array (op0, len, prec);
+}
+
+/* Convert double_int OP0 into a wide_int with parameters taken from
+   MODE.  */
+
+wide_int
+wide_int::from_double_int (double_int op0, enum machine_mode mode)
+{
+  unsigned int prec = GET_MODE_PRECISION (mode);
+
+  return wide_int::from_double_int (op0, prec);
+}
+
+/* Min and Max value helpers.  */
+
+/* Produce the largest SGNed number that is represented in PRECISION.
+   The result is represented in PRECISION.  SGN must be SIGNED or
+   UNSIGNED.  */
+
+wide_int
+wide_int::max_value (unsigned int precision, SignOp sgn)
+{
+  return max_value (precision, precision, sgn);
+}
+  
+/* Produce the largest number that is represented in MODE. The
+   precision are taken from mode.  SGN must be SIGNED or
+   UNSIGNED.  */
+
+wide_int
+wide_int::max_value (enum machine_mode mode, SignOp sgn)
+{
+  unsigned int prec = GET_MODE_PRECISION (mode);
+  return max_value (prec, prec, sgn);
+}
+
+/* Produce the largest number that is represented in TYPE. The
+   precision and sign are taken from TYPE.  */
+
+wide_int
+wide_int::max_value (const_tree type)
+{
+  unsigned int prec = TYPE_PRECISION (type);
+  return max_value (prec, prec, TYPE_UNSIGNED (type) ? UNSIGNED : SIGNED);
+}
+
+/* Produce the smallest SGNed number that is represented in PRECISION.
+   The result is represented in PRECISION.  SGN must be SIGNED or
+   UNSIGNED.  */
+
+wide_int
+wide_int::min_value (unsigned int precision, SignOp sgn)
+{
+  return min_value (precision, precision, sgn);
+}
+  
+/* Produce the smallest number that is represented in MODE. The
+   precision are taken from mode.  SGN must be SIGNED or UNSIGNED.  */
+
+wide_int
+wide_int::min_value (enum machine_mode mode, SignOp sgn)
+{
+  unsigned int prec = GET_MODE_PRECISION (mode);
+  return min_value (prec, prec, sgn);
+}
+
+/* Produce the smallest number that is represented in TYPE. The
+   precision and sign are taken from TYPE.  */
+
+wide_int
+wide_int::min_value (const_tree type)
+{
+  unsigned int prec = TYPE_PRECISION (type);
+  return min_value (prec, prec, TYPE_UNSIGNED (type) ? UNSIGNED : SIGNED);
+}
+
+
+/* Small constants.  */
+
+/* Return a wide int of -1 with precision PREC.  */
+
+wide_int
+wide_int::minus_one (unsigned int prec)
+{
+  return wide_int::from_shwi (-1, prec);
+}
+
+/* Return a wide int of 0 with precision PREC.  */
+
+wide_int
+wide_int::zero (unsigned int prec)
+{
+  return wide_int::from_shwi (0, prec);
+}
+
+/* Return a wide int of 1 with precision PREC.  */
+
+wide_int
+wide_int::one (unsigned int prec)
+{
+  return wide_int::from_shwi (1, prec);
+}
+
+/* Return a wide int of 2 with precision PREC.  */
+
+wide_int
+wide_int::two (unsigned int prec)
+{
+  return wide_int::from_shwi (2, prec);
+}
+
+/* Public accessors for the interior of a wide int.  */
+
+/* Get the number of host wide ints actually represented within the
+   wide int.  */
+
+unsigned short
+wide_int::get_len () const
+{
+  return len;
+}
+
+/* Get precision of the value represented within the wide int.  */
+
+unsigned int
+wide_int::get_precision () const
+{
+  return precision;
+}
+
+/* Get a particular element of the wide int.  */
+
+HOST_WIDE_INT
+wide_int::elt (unsigned int i) const
+{
+  return i >= len ? sign_mask () : val[i];
+}
+
+/* Return true if THIS is -1.  */
+
+bool
+wide_int::minus_one_p () const
+{
+  return len == 1 && val[0] == (HOST_WIDE_INT)-1;
+}
+
+/* Return true if THIS is 0.  */
+
+bool
+wide_int::zero_p () const
+{
+  return len == 1 && val[0] == 0;
+}
+
+/* Return true if THIS is 1.  */
+
+bool
+wide_int::one_p () const
+{
+  return len == 1 && val[0] == 1;
+}
+
+/* Return true if THIS is negative.  */
+
+bool
+wide_int::neg_p () const
+{
+  return sign_mask () != 0;
+}
+
+/*
+ * Comparisons, note that only equality is an operator.  The other
+ * comparisons cannot be operators since they are inherently signed or
+ * unsigned and C++ has no such operators.
+ */
+
+/* Return true if THIS == OP1.  */
+
+template <typename T>
+bool
+wide_int::operator == (T c) const
+{
+  bool result;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  if (precision < HOST_BITS_PER_WIDE_INT)
+    {
+      unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT)1 << precision) - 1;
+      result = (val[0] & mask) == (s[0] & mask);
+    }
+  else if (precision == HOST_BITS_PER_WIDE_INT)
+      result = val[0] == s[0];
+  else
+    result = eq_p_large (s, cl);
+
+  return result;
+}
+
+/* Return true if THIS is not equal to OP1. */ 
+
+template <typename T>
+bool
+wide_int::operator != (T c) const
+{
+  return !(*this == c);
+}  
+
+/* Return true if THIS is less than OP1.  Signness is indicated by
+   OP.  */
+
+template <typename T>
+bool
+wide_int::lt_p (T c, SignOp op) const
+{
+  if (op == SIGNED)
+    return lts_p (c);
+  else
+    return ltu_p (c);
+}  
+
+/* Return true if THIS < OP1 using signed comparisons.  */
+
+template <typename T>
+bool
+wide_int::lts_p (T c) const
+{
+  bool result;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  if (precision <= HOST_BITS_PER_WIDE_INT)
+    /* The values are already logically sign extended.  */
+    result = val[0] < s[0];
+  else
+    result = lts_p_large (val, len, s, cl, precision);
+  return result;
+}
+
+/* Return true if THIS < OP1 using unsigned comparisons.  */
+
+template <typename T>
+bool
+wide_int::ltu_p (T c) const
+{
+  unsigned HOST_WIDE_INT x0;
+  unsigned HOST_WIDE_INT x1;
+  bool result;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  if (precision <= HOST_BITS_PER_WIDE_INT)
+    {
+      if (precision < HOST_BITS_PER_WIDE_INT)
+	{
+	  x0 = zext_hwi (val[0], precision);
+	  x1 = zext_hwi (s[0], precision);
+	}
+      else
+	{
+	  x0 = val[0];
+	  x1 = s[0];
+	}
+
+      result = x0 < x1;
+    }
+  else
+    result = ltu_p_large (val, len, s, cl);
+  return result;
+}
+
+/* Return true if THIS is greater than OP1.  Signness is indicated by
+   OP.  */
+
+template <typename T>
+bool
+wide_int::gt_p (T c, SignOp op) const
+{
+  if (op == SIGNED)
+    return gts_p (c);
+  else
+    return gtu_p (c);
+}  
+
+/* Return true if THIS < OP1 using signed comparisons.  */
+
+template <typename T>
+bool
+wide_int::gts_p (T c) const
+{
+  bool result;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  if (precision <= HOST_BITS_PER_WIDE_INT)
+    {
+      /* The values are already logically sign extended.  */
+      result = val[0] > s[0];
+    }
+  else
+    /* Reverse the parms and use ltu.  */
+    result = lts_p_large (s, cl, val, len, precision);
+  return result;
+}
+
+/* Return true if THIS < OP1 using unsigned comparisons.  */
+
+template <typename T>
+bool
+wide_int::gtu_p (T c) const
+{
+  unsigned HOST_WIDE_INT x0;
+  unsigned HOST_WIDE_INT x1;
+  bool result;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  if (precision <= HOST_BITS_PER_WIDE_INT)
+    {
+      if (precision < HOST_BITS_PER_WIDE_INT)
+	{
+	  x0 = zext_hwi (val[0], precision);
+	  x1 = zext_hwi (s[0], precision);
+	}
+      else
+	{
+	  x0 = val[0];
+	  x1 = s[0];
+	}
+
+      result = x0 > x1;
+    }
+  else 
+    /* Reverse the parms and use ltu.  */
+    result = ltu_p_large (s, cl, val, len);
+  return result;
+}
+
+
+/* Return -1 0 or 1 depending on how THIS compares with OP1.  Signness
+   is indicated by OP.  */
+
+template <typename T>
+int
+wide_int::cmp (T c, SignOp op) const
+{
+  if (op == SIGNED)
+    return cmps (c);
+  else
+    return cmpu (c);
+}  
+
+
+/* Returns -1 if THIS < OP1, 0 if THIS == OP1 and 1 if A > OP1 using
+   signed compares.  */
+
+template <typename T>
+int
+wide_int::cmps (T c) const
+{
+  int result;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  if (precision <= HOST_BITS_PER_WIDE_INT)
+    {
+      /* The values are already logically sign extended.  */
+      if (val[0] < s[0])
+	result = -1;
+      else if (val[0] > s[0])
+	result = 1;
+      else 
+	result = 0;
+    }
+  else
+    result = cmps_large (s, cl);
+  return result;
+}
+
+/* Returns -1 if THIS < OP1, 0 if THIS == OP1 and 1 if A > OP1 using
+   unsigned compares.  */
+
+template <typename T>
+int
+wide_int::cmpu (T c) const
+{
+  unsigned HOST_WIDE_INT x0;
+  unsigned HOST_WIDE_INT x1;
+  int result;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+
+  if (precision <= HOST_BITS_PER_WIDE_INT)
+    {
+      if (precision < HOST_BITS_PER_WIDE_INT)
+	{
+	  x0 = zext_hwi (val[0], precision);
+	  x1 = zext_hwi (s[0], precision);
+	}
+      else
+	{
+	  x0 = val[0];
+	  x1 = s[0];
+	}
+
+      if (x0 < x1)
+	result = -1;
+      else if (x0 == x1)
+	result = 0;
+      else
+	result = 1;
+    }
+  else
+    result = cmpu_large (s, cl);
+  return result;
+}
+
+
+/* Return the signed or unsigned min of THIS and OP1. */
+
+template <typename T>
+wide_int
+wide_int::min (T c, SignOp sgn) const
+{
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  if (sgn == SIGNED)
+    return lts_p (c) ? (*this) : wide_int::from_array (s, cl, precision, false);
+  else
+    return ltu_p (c) ? (*this) : wide_int::from_array (s, cl, precision, false);
+}  
+
+/* Return the signed or unsigned min of THIS and OP1. */
+
+wide_int
+wide_int::min (const wide_int &op1, SignOp sgn) const
+{
+  if (sgn == SIGNED)
+    return lts_p (op1) ? (*this) : op1;
+  else
+    return ltu_p (op1) ? (*this) : op1;
+}  
+
+/* Return the signed or unsigned max of THIS and OP1. */
+
+template <typename T>
+wide_int
+wide_int::max (T c, SignOp sgn) const
+{
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  if (sgn == SIGNED)
+    return gts_p (c) ? (*this) : wide_int::from_array (s, cl, precision, false);
+  else
+    return gtu_p (c) ? (*this) : wide_int::from_array (s, cl, precision, false);
+}  
+
+/* Return the signed or unsigned max of THIS and OP1. */
+
+wide_int
+wide_int::max (const wide_int &op1, SignOp sgn) const
+{
+  if (sgn == SIGNED)
+    return gts_p (op1) ? (*this) : op1;
+  else
+    return gtu_p (op1) ? (*this) : op1;
+}  
+
+/* Return the signed min of THIS and OP1. */
+
+template <typename T>
+wide_int
+wide_int::smin (T c) const
+{
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  return lts_p (c) ? (*this) : wide_int::from_array (s, cl, precision, false);
+}  
+
+/* Return the signed min of THIS and OP1. */
+
+wide_int
+wide_int::smin (const wide_int &op1) const
+{
+  return lts_p (op1) ? (*this) : op1;
+}  
+
+/* Return the signed max of THIS and OP1. */
+
+template <typename T>
+wide_int
+wide_int::smax (T c) const
+{
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  return gts_p (c) ? (*this) : wide_int::from_array (s, cl, precision, false);
+}  
+
+/* Return the signed max of THIS and OP1. */
+
+wide_int
+wide_int::smax (const wide_int &op1) const
+{
+  return gts_p (op1) ? (*this) : op1;
+}  
+
+/* Return the unsigned min of THIS and OP1. */
+
+template <typename T>
+wide_int
+wide_int::umin (T c) const
+{
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  return ltu_p (c) ? (*this) : wide_int::from_array (s, cl, precision, false);
+}  
+
+/* Return the unsigned min of THIS and OP1. */
+
+wide_int
+wide_int::umin (const wide_int &op1) const
+{
+  return ltu_p (op1) ? (*this) : op1;
+}  
+
+/* Return the unsigned max of THIS and OP1. */
+
+template <typename T>
+wide_int
+wide_int::umax (T c) const
+{
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  return gtu_p (c) ? (*this) : wide_int::from_array (s, cl, precision, false);
+}  
+
+/* Return the unsigned max of THIS and OP1. */
+
+wide_int
+wide_int::umax (const wide_int &op1) const
+{
+  return gtu_p (op1) ? (*this) : op1;
+}  
+
+/* Return true if THIS has the sign bit set to 1 and all other bits are
+   zero.  */
+
+bool
+wide_int::only_sign_bit_p () const
+{
+  return only_sign_bit_p (precision);
+}
+
+/* Return true if THIS fits in a HOST_WIDE_INT with no loss of
+   precision.  */
+
+bool
+wide_int::fits_shwi_p () const
+{
+  return len == 1;
+}
+
+/* Return true if THIS fits in an unsigned HOST_WIDE_INT with no loss
+   of precision.  */
+
+bool
+wide_int::fits_uhwi_p () const
+{
+  return len == 1 
+    || (len == 2 && val[1] == 0);
+}
+
+/* Return THIS extended to PREC.  The signness of the extension is
+   specified by OP.  */
+
+wide_int 
+wide_int::ext (unsigned int prec, SignOp z) const
+{
+  if (z == UNSIGNED)
+    return zext (prec);
+  else
+    return sext (prec);
+}
+
+/* Return THIS forced to the precision of TYPE.  If this is extension,
+   the sign is set by SGN. */
+
+wide_int 
+wide_int::force_to_size (enum machine_mode mode, SignOp sgn) const
+{
+  unsigned int prec = GET_MODE_PRECISION (mode);
+
+  return force_to_size (prec, sgn);
+}
+
+/* Return THIS forced to the precision and sign of TYPE.  If this is
+   extension, the sign is set by SGN. */
+
+wide_int 
+wide_int::force_to_size (const_tree type) const
+{
+  unsigned int prec = TYPE_PRECISION (type);
+  SignOp sgn = TYPE_UNSIGNED (type) ? UNSIGNED : SIGNED;
+
+  return force_to_size (prec, sgn);
+}
+
+/* Return THIS zero extended to the precision of TYPE but extends
+   using SGN.  If this is extension, the sign is set by SGN. */
+
+wide_int 
+wide_int::force_to_size (const_tree type, SignOp sgn) const
+{
+  unsigned int prec = TYPE_PRECISION (type);
+
+  return force_to_size (prec, sgn);
+}
+
+/* Return THIS forced to the precision of TYPE.  If this is extension,
+   it is signed. */
+
+wide_int 
+wide_int::sforce_to_size (enum machine_mode mode) const
+{
+  unsigned int prec = GET_MODE_PRECISION (mode);
+
+  return force_to_size (prec, SIGNED);
+}
+
+/* Return THIS zero extended to the precision of TYPE but extends
+   using SGN.  If this is extension, it is signed. */
+
+wide_int 
+wide_int::sforce_to_size (const_tree type) const
+{
+  unsigned int prec = TYPE_PRECISION (type);
+
+  return force_to_size (prec, SIGNED);
+}
+
+/* Return THIS forced to the precision of TYPE.  If this
+   is extension, it is unsigned. */
+
+wide_int 
+wide_int::zforce_to_size (enum machine_mode mode) const
+{
+  unsigned int prec = GET_MODE_PRECISION (mode);
+
+  return force_to_size (prec, UNSIGNED);
+}
+
+/* Return THIS zero extended to the precision of TYPE but extends
+   using SGN.  If this is extension, it is unsigned. */
+
+wide_int 
+wide_int::zforce_to_size (const_tree type) const
+{
+  unsigned int prec = TYPE_PRECISION (type);
+
+  return force_to_size (prec, UNSIGNED);
+}
+
+/*
+ * Logicals.
+ */
+
+/* Return THIS & OP1.  */
+
+template <typename T>
+wide_int
+wide_int::operator & (T c) const
+{
+  wide_int result;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+  
+  if (precision <= HOST_BITS_PER_WIDE_INT)
+    {
+      result.len = 1;
+      result.precision = precision;
+      result.val[0] = val[0] & s[0];
+    }
+  else
+    result = and_large (s, cl);
+  return result;
+}
+
+
+/* Return THIS & ~OP1.  */
+
+template <typename T>
+wide_int
+wide_int::and_not (T c) const
+{
+  wide_int result;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  if (precision <= HOST_BITS_PER_WIDE_INT)
+    {
+      result.len = 1;
+      result.precision = precision;
+      result.val[0] = val[0] & ~s[0];
+    }
+  else
+    result = and_not_large (s, cl);
+  return result;
+}
+
+
+/* Return the logical negation (bitwise complement) of THIS.  */
+
+wide_int
+wide_int::operator ~ () const
+{
+  wide_int result;
+  int l0 = len - 1;
+
+  result.len = len;
+  result.precision = precision;
+
+  while (l0 >= 0)
+    {
+      result.val[l0] = ~val[l0];
+      l0--;
+    }
+  return result;
+}
+
+/* Return THIS | OP1.  */
+
+template <typename T>
+wide_int
+wide_int::operator | (T c) const
+{
+  wide_int result;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  if (precision <= HOST_BITS_PER_WIDE_INT)
+    {
+      result.len = 1;
+      result.precision = precision;
+      result.val[0] = val[0] | s[0];
+    }
+  else
+    result = or_large (s, cl);
+  return result;
+}
+
+
+/* Return THIS | ~OP1.  */
+
+template <typename T>
+wide_int
+wide_int::or_not (T c) const
+{
+  wide_int result;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+  
+  if (precision <= HOST_BITS_PER_WIDE_INT)
+    {
+      result.len = 1;
+      result.precision = precision;
+      result.val[0] = val[0] | ~s[0];
+    }
+  else
+    result = or_not_large (s, cl);
+  return result;
+}
+
+
+/* Return THIS ^ OP1.  */
+
+template <typename T>
+wide_int
+wide_int::operator ^ (T c) const
+{
+  wide_int result;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+  
+  if (precision <= HOST_BITS_PER_WIDE_INT)
+    {
+      result.len = 1;
+      result.precision = precision;
+      result.val[0] = val[0] ^ s[0];
+    }
+  else
+    result = xor_large (s, cl);
+  return result;
+}
+
+/*
+ * Integer arithmetic
+ */
+
+/* Return THIS + OP1.  */
+
+template <typename T>
+wide_int
+wide_int::operator + (T c) const
+{
+  wide_int result;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+  
+  if (precision <= HOST_BITS_PER_WIDE_INT)
+    {
+      result.len = 1;
+      result.precision = precision;
+      result.val[0] = val[0] + s[0];
+      if (precision < HOST_BITS_PER_WIDE_INT)
+	result.val[0] = sext_hwi (result.val[0], precision);
+    }
+  else
+    result = add_large (s, cl);
+  return result;
+}
+
+/* Multiply THIS and OP1.  The result is the same precision as the
+   operands, so there is no reason for signed or unsigned
+   versions.  */
+
+template <typename T>
+wide_int
+wide_int::operator * (T c) const
+{
+  wide_int result;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+  bool overflow = false;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  if (precision <= HOST_BITS_PER_WIDE_INT)
+    {
+      result.len = 1;
+      result.precision = precision;
+      result.val[0] = val[0] * s[0];
+      if (precision < HOST_BITS_PER_WIDE_INT)
+	result.val[0] = sext_hwi (result.val[0], precision);
+    }
+  else
+    result = mul_internal (false, false, this, s, cl, UNSIGNED, &overflow, false);
+  return result;
+}
+
+/* Multiply THIS and OP1.  The signess is specified with SGN.
+   OVERFLOW is set true if the result overflows.  */
+
+template <typename T>
+wide_int 
+wide_int::mul (T c, SignOp sgn, bool *overflow) const
+{
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  return mul_internal (false, false, this, s, cl, sgn, overflow, true);
+}
+
+/* Signed multiply THIS and OP1.  The result is the same precision as
+   the operands.  OVERFLOW is set true if the result overflows.  */
+
+template <typename T>
+wide_int
+wide_int::smul (T c, bool *overflow) const
+{
+  return mul (c, SIGNED, overflow);
+}
+
+/* Unsigned multiply THIS and OP1.  The result is the same precision
+   as the operands.  OVERFLOW is set true if the result overflows.  */
+
+template <typename T>
+wide_int
+wide_int::umul (T c, bool *overflow) const
+{
+  return mul (c, UNSIGNED, overflow);
+}
+
+/* Multiply THIS and OP1.  The signess is specified with SGN.  The
+   result is twice the precision as the operands.  The signess is
+   specified with SGN.  */
+
+template <typename T>
+wide_int
+wide_int::mul_full (T c, SignOp sgn) const
+{
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  return mul_internal (false, true, this, s, cl, sgn, 0, false);
+}
+
+/* Signed multiply THIS and OP1.  The result is twice the precision as
+   the operands.  */
+
+template <typename T>
+wide_int
+wide_int::smul_full (T c) const
+{
+  return mul_full (c, SIGNED);
+}
+
+/* Unsigned multiply THIS and OP1.  The result is twice the precision
+   as the operands.  */
+
+template <typename T>
+wide_int
+wide_int::umul_full (T c) const
+{
+  return mul_full (c, UNSIGNED);
+}
+
+/* Multiply THIS and OP1 and return the high part of that result.  The
+   signess is specified with SGN.  The result is the same precision as
+   the operands.  The mode is the same mode as the operands.  The
+   signess is specified with y.  */
+
+template <typename T>
+wide_int
+wide_int::mul_high (T c, SignOp sgn) const
+{
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+  return mul_internal (true, false, this, s, cl, sgn, 0, false);
+}
+
+/* Negate THIS.  */
+
+wide_int
+wide_int::neg () const
+{
+  wide_int z = wide_int::from_shwi (0, precision);
+  return z - *this;
+}
+
+/* Negate THIS.  Set overflow if the value cannot be negated.  */
+
+wide_int
+wide_int::neg (bool *overflow) const
+{
+  wide_int z = wide_int::from_shwi (0, precision);
+  if (only_sign_bit_p ())
+    *overflow = true;
+
+  return z - *this;
+}
+
+/* Return THIS - OP1.  */
+
+template <typename T>
+wide_int
+wide_int::operator - (T c) const
+{
+  wide_int result;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+  
+  if (precision <= HOST_BITS_PER_WIDE_INT)
+    {
+      result.len = 1;
+      result.precision = precision;
+      result.val[0] = val[0] - s[0];
+      if (precision < HOST_BITS_PER_WIDE_INT)
+	result.val[0] = sext_hwi (result.val[0], precision);
+    }
+  else
+    result = sub_large (s, cl);
+  return result;
+}
+
+
+
+/* Divide DIVISOR into THIS.  The result is the same size as the
+   operands.  The sign is specified in SGN.  The output is truncated.
+   Overflow is set to true if the result overflows, otherwise it is
+   not set.  */
+template <typename T>
+wide_int
+wide_int::div_trunc (T c, SignOp sgn, bool *overflow) const
+{
+  wide_int remainder;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+  
+  return divmod_internal (true, this, s, cl, sgn, 
+			  &remainder, false, overflow);
+}
+
+/* Signed divide with truncation of result.  */
+
+template <typename T>
+wide_int
+wide_int::sdiv_trunc (T c) const
+{
+  return div_trunc (c, SIGNED);
+}
+
+/* Unsigned divide with truncation of result.  */
+
+template <typename T>
+wide_int
+wide_int::udiv_trunc (T c) const
+{
+  return div_trunc (c, UNSIGNED);
+}
+
+/* Divide DIVISOR into THIS.  The result is the same size as the
+   operands.  The sign is specified in SGN.  The output is floor
+   truncated.  Overflow is set to true if the result overflows,
+   otherwise it is not set.  */
+
+template <typename T>
+wide_int
+wide_int::div_floor (T c, SignOp sgn, bool *overflow) const
+{
+  wide_int remainder;
+  wide_int quotient;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  quotient = divmod_internal (true, this, s, cl, sgn, 
+			      &remainder, true, overflow);
+  if (sgn == SIGNED && quotient.neg_p () && !remainder.zero_p ())
+    return quotient - 1;
+  return quotient;
+}
+
+/* Unsigned divide with floor truncation of result.  */
+
+template <typename T>
+wide_int
+wide_int::udiv_floor (T c) const
+{
+  bool overflow;
+
+  return div_floor (c, UNSIGNED, &overflow);
+}
+
+/* Signed divide with floor truncation of result.  */
+
+template <typename T>
+wide_int
+wide_int::sdiv_floor (T c) const
+{
+  bool overflow;
+
+  return div_floor (c, SIGNED, &overflow);
+}
+
+/* Divide DIVISOR into THIS.  The result is the same size as the
+   operands.  The sign is specified in SGN.  The output is ceil
+   truncated.  Overflow is set to true if the result overflows,
+   otherwise it is not set.  */
+
+template <typename T>
+wide_int
+wide_int::div_ceil (T c, SignOp sgn, bool *overflow) const
+{
+  wide_int remainder;
+  wide_int quotient;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  quotient = divmod_internal (true, this, s, cl, sgn, 
+			      &remainder, true, overflow);
+
+  if (!remainder.zero_p ())
+    {
+      if (sgn == UNSIGNED || quotient.neg_p ())
+	return quotient;
+      else
+	return quotient + 1;
+    }
+  return quotient;
+}
+
+/* Divide DIVISOR into THIS.  The result is the same size as the
+   operands.  The sign is specified in SGN.  The output is round
+   truncated.  Overflow is set to true if the result overflows,
+   otherwise it is not set.  */
+
+template <typename T>
+wide_int
+wide_int::div_round (T c, SignOp sgn, bool *overflow) const
+{
+  wide_int remainder;
+  wide_int quotient;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  quotient = divmod_internal (true, this, s, cl, sgn, 
+			      &remainder, true, overflow);
+  if (!remainder.zero_p ())
+    {
+      wide_int divisor = wide_int::from_array (s, cl, precision);
+      if (sgn == SIGNED)
+	{
+	  wide_int p_remainder = remainder.neg_p () ? remainder.neg () : remainder;
+	  wide_int p_divisor = divisor.neg_p () ? divisor.neg () : divisor;
+	  p_divisor = p_divisor.rshiftu_large (1);
+	  
+	  if (p_divisor.gts_p (p_remainder)) 
+	    {
+	      if (quotient.neg_p ())
+		return quotient - 1;
+	      else 
+		return quotient + 1;
+	    }
+	}
+      else
+	{
+	  wide_int p_divisor = divisor.rshiftu_large (1);
+	  if (p_divisor.gtu_p (remainder))
+	    return quotient + 1;
+	}
+    }
+  return quotient;
+}
+
+/* Divide DIVISOR into THIS producing both the quotient and remainder.
+   The result is the same size as the operands.  The sign is specified
+   in SGN.  The output is truncated.  */
+
+template <typename T>
+wide_int
+wide_int::divmod_trunc (T c, wide_int *remainder, SignOp sgn) const
+{
+  bool overflow = false;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  return divmod_internal (true, this, s, cl, sgn, 
+			  remainder, true, &overflow);
+}
+
+/* Signed divide/mod with truncation of result.  */
+
+template <typename T>
+wide_int
+wide_int::sdivmod_trunc (T c, wide_int *mod) const
+{
+  return divmod_trunc (c, mod, SIGNED);
+}
+
+/* Unsigned divide/mod with truncation of result.  */
+
+template <typename T>
+wide_int
+wide_int::udivmod_trunc (T c, wide_int *mod) const
+{
+  return divmod_trunc (c, mod, UNSIGNED);
+}
+
+/* Divide DIVISOR into THIS.  The remainder is also produced in
+   REMAINDER.  The result is the same size as the operands.  The sign
+   is specified in SGN.  The output is floor truncated.  Overflow is
+   set to true if the result overflows, otherwise it is not set.  */
+
+template <typename T>
+wide_int
+wide_int::divmod_floor (T c, wide_int *remainder, SignOp sgn) const
+{
+  wide_int quotient;
+  bool overflow = false;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  quotient = divmod_internal (true, this, s, cl, sgn, 
+			      remainder, true, &overflow);
+  if (sgn == SIGNED && quotient.neg_p () && !(*remainder).zero_p ())
+    {
+      *remainder = *remainder - wide_int::from_array (s, cl, precision);
+      return quotient - 1;
+    }
+  return quotient;
+}
+
+/* Signed divide/mod with floor truncation of result.  */
+
+template <typename T>
+wide_int
+wide_int::sdivmod_floor (T c, wide_int *mod) const
+{
+  return divmod_floor (c, mod, SIGNED);
+}
+
+/* Divide DIVISOR into THIS producing the remainder.  The result is
+   the same size as the operands.  The sign is specified in SGN.  The
+   output is truncated.  Overflow is set to true if the result
+   overflows, otherwise it is not set.  */
+
+template <typename T>
+wide_int
+wide_int::mod_trunc (T c, SignOp sgn, bool *overflow) const
+{
+  wide_int remainder;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  divmod_internal (true, this, s, cl, sgn, 
+			  &remainder, true, overflow);
+  return remainder;
+}
+
+/* Signed mod with truncation of result.  */
+
+template <typename T>
+wide_int
+wide_int::smod_trunc (T c) const
+{
+  return mod_trunc (c, SIGNED);
+}
+
+/* Unsigned mod with truncation of result.  */
+
+template <typename T>
+wide_int
+wide_int::umod_trunc (T c) const
+{
+  return mod_trunc (c, UNSIGNED);
+}
+
+/* Divide DIVISOR into THIS producing the remainder.  The result is
+   the same size as the operands.  The sign is specified in SGN.  The
+   output is floor truncated.  Overflow is set to true if the result
+   overflows, otherwise it is not set.  */
+
+template <typename T>
+wide_int
+wide_int::mod_floor (T c, SignOp sgn, bool *overflow) const
+{
+  wide_int remainder;
+  wide_int quotient;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  quotient = divmod_internal (true, this, s, cl, sgn, 
+			      &remainder, true, overflow);
+
+  if (sgn == SIGNED && quotient.neg_p () && !remainder.zero_p ())
+    return remainder - wide_int::from_array (s, cl, precision);
+  return remainder;
+}
+
+/* Unsigned mod with floor truncation of result.  */
+
+template <typename T>
+wide_int
+wide_int::umod_floor (T c) const
+{
+  bool overflow;
+
+  return mod_floor (c, UNSIGNED, &overflow);
+}
+
+/* Divide DIVISOR into THIS producing the remainder.  The result is the
+   same size as the operands.  The sign is specified in SGN.  The
+   output is ceil truncated.  Overflow is set to true if the result
+   overflows, otherwise it is not set.  */
+
+template <typename T>
+wide_int
+wide_int::mod_ceil (T c, SignOp sgn, bool *overflow) const
+{
+  wide_int remainder;
+  wide_int quotient;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  quotient = divmod_internal (true, this, s, cl, sgn, 
+			      &remainder, true, overflow);
+
+  if (!remainder.zero_p ())
+    {
+      if (sgn == UNSIGNED || quotient.neg_p ())
+	return remainder;
+      else
+	return remainder - wide_int::from_array (s, cl, precision);
+    }
+  return remainder;
+}
+
+/* Divide DIVISOR into THIS producing the remainder.  The result is
+   the same size as the operands.  The sign is specified in SGN.  The
+   output is round truncated.  Overflow is set to true if the result
+   overflows, otherwise it is not set.  */
+
+template <typename T>
+wide_int
+wide_int::mod_round (T c, SignOp sgn, bool *overflow) const
+{
+  wide_int remainder;
+  wide_int quotient;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  quotient = divmod_internal (true, this, s, cl, sgn, 
+			      &remainder, true, overflow);
+
+  if (!remainder.zero_p ())
+    {
+      wide_int divisor = wide_int::from_array (s, cl, precision);
+      if (sgn == SIGNED)
+	{
+	  wide_int p_remainder = remainder.neg_p () ? remainder.neg () : remainder;
+	  wide_int p_divisor = divisor.neg_p () ? divisor.neg () : divisor;
+	  p_divisor = p_divisor.rshiftu_large (1);
+	  
+	  if (p_divisor.gts_p (p_remainder)) 
+	    {
+	      if (quotient.neg_p ())
+		return remainder + divisor;
+	      else 
+		return remainder - divisor;
+	    }
+	}
+      else
+	{
+	  wide_int p_divisor = divisor.rshiftu_large (1);
+	  if (p_divisor.gtu_p (remainder))
+	    return remainder - divisor;
+	}
+    }
+  return remainder;
+}
+
+
+/* If SHIFT_COUNT_TRUNCATED is defined, truncate CNT.   
+
+   At first look, the shift truncation code does not look right.
+   Shifts (and rotates) are done according to the precision of the
+   mode but the shift count is truncated according to the bitsize of
+   the mode.  This is how real hardware works (Knuth's mix machine is
+   the only known exception to this rule, but it was never real).
+
+   On an ideal machine, like Knuth's mix machine, a shift count is a
+   word long and all of the bits of that word are examined to compute
+   the shift amount.  But on real hardware, especially on machines
+   with fast (single cycle shifts) that takes too long.  On these
+   machines, the amount of time to perform a shift dictates the cycle
+   time of the machine so corners are cut to keep this fast.  A
+   comparison of an entire 64 bit word would take something like 6
+   gate delays before the shifting can even start.
+
+   So real hardware only looks at a small part of the shift amount.
+   On ibm machines, this tends to be 1 more than what is necessary to
+   encode the shift amount.  The rest of the world looks at only the
+   minimum number of bits.  This means that only 3 gate delays are
+   necessary to set up the shifter.
+
+   On the other hand, right shifts and rotates must be according to
+   the precision or the operation does not make any sense. 
+
+   This function is called in two contexts.  If OP == TRUNC, this
+   function provides a count that matches the semantics of the target
+   machine depending on the value of SHIFT_COUNT_TRUNCATED.  Note that
+   if SHIFT_COUNT_TRUNCATED is not defined, this function may produce
+   -1 as a value if the shift amount is greater than the bitsize of
+   the mode.  -1 is a surrogate for a very large amount.
+
+   If OP == NONE, then this function always truncates the shift value
+   to the bitsize because this shifting operation is a function that
+   is internal to GCC.  */
+
+inline int
+wide_int::trunc_shift (const HOST_WIDE_INT *cnt, unsigned int len ATTRIBUTE_UNUSED,
+		       unsigned int bitsize, ShiftOp trunc_op)
+{
+  if (trunc_op == TRUNC)
+    {
+      gcc_checking_assert (bitsize != 0);
+#ifdef SHIFT_COUNT_TRUNCATED
+      return cnt[0] & (bitsize - 1);
+#else
+      if (cnt[0] < bitsize && cnt[0] >= 0 && len == 1)
+	return cnt[0];
+      else 
+	return -1;
+#endif
+    }
+  else if (bitsize == 0)
+    return cnt[0];
+  else
+    return cnt[0] & (bitsize - 1);
+}
+
+/* Left shift THIS by C.  See the definition of Op.TRUNC for how to
+   set TRUNC_OP.  Since this is used internally, it has the ability to
+   specify the BITSIZE  and PRECISION independently.  This is useful
+   when inserting a small value into a larger one.  */
+
+template <typename T>
+wide_int
+wide_int::lshift (T c, unsigned int bitsize, 
+		  unsigned int res_prec, ShiftOp trunc_op) const
+{
+  wide_int result;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+  HOST_WIDE_INT shift;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  if (res_prec == 0)
+    res_prec = precision;
+
+  shift = trunc_shift (s, cl, bitsize, trunc_op);
+  if (shift == -1)
+    result = wide_int::zero (precision);
+  else if (shift == 0 && res_prec == precision)
+    result = *this;
+  /* Handle the simple case quickly.   */
+  else if (res_prec <= HOST_BITS_PER_WIDE_INT)
+    {
+      result.precision = res_prec;
+      result.len = 1;
+      result.val[0] = val[0] << shift;
+    }
+  else
+    result = lshift_large (shift, res_prec);
+  return result;
+}
+
+/* Rotate THIS left by Y within its precision.  */
+
+template <typename T>
+wide_int
+wide_int::lrotate (T c) const
+{
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  return lrotate ((unsigned HOST_WIDE_INT)s[0]);
+}
+
+
+/* Rotate THIS left by CNT within its precision.  */
+
+wide_int
+wide_int::lrotate (unsigned HOST_WIDE_INT cnt) const
+{
+  wide_int left, right, result;
+
+  left = lshift (cnt);
+  right = rshiftu (precision - cnt);
+  result = left | right;
+
+  return result;
+}
+
+
+/* Right shift THIS by Y.  SGN indicates the sign.  TRUNC_OP indicates the
+   truncation option.  */
+
+template <typename T>
+wide_int
+wide_int::rshift (T c, SignOp sgn, 
+		  unsigned int bitsize, ShiftOp trunc_op) const
+{
+  if (sgn == UNSIGNED)
+    return rshiftu (c, bitsize, trunc_op);
+  else
+    return rshifts (c, bitsize, trunc_op);
+}
+
+
+/* Unsigned right shift THIS by CNT.  See the definition of Op.TRUNC
+   for how to set TRUNC_OP.  */
+
+template <typename T>
+wide_int
+wide_int::rshiftu (T c, unsigned int bitsize,
+		   ShiftOp trunc_op) const
+{
+  wide_int result;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+  HOST_WIDE_INT shift;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  shift = trunc_shift (s, cl, bitsize, trunc_op);
+  
+  if (shift == 0)
+    result = copy ();
+  else if (shift == -1)
+    result = wide_int::zero (precision);
+  else if (precision <= HOST_BITS_PER_WIDE_INT)
+    {
+      /* Handle the simple case quickly.   */
+      unsigned HOST_WIDE_INT x = val[0];
+
+      result.precision = precision;
+      result.len = 1;
+
+      if (precision < HOST_BITS_PER_WIDE_INT)
+	x = zext_hwi (x, precision);
+
+      result.val[0] = x >> shift;
+    }
+  else 
+    result = rshiftu_large (shift);
+  return result;
+}
+
+/* Signed right shift THIS by CNT.  See the definition of Op.TRUNC for
+   how to set TRUNC_OP.  */
+
+template <typename T>
+wide_int
+wide_int::rshifts (T c, unsigned int bitsize,
+		   ShiftOp trunc_op) const
+{
+  wide_int result;
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+  HOST_WIDE_INT shift;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  shift = trunc_shift (s, cl, bitsize, trunc_op);
+  
+  if (shift == 0)
+    result = copy ();
+  else if (shift == -1)
+    result = wide_int::zero (precision);
+  else if (precision <= HOST_BITS_PER_WIDE_INT)
+    {
+      /* Handle the simple case quickly.   */
+      HOST_WIDE_INT x = val[0];
+
+      result.precision = precision;
+      result.len = 1;
+      result.val[0] = x >> shift;
+    }
+  else 
+    result = rshifts_large (shift);
+  return result;
+}
+
+/* Rotate THIS right by Y within its precision.  */
+
+
+template <typename T>
+wide_int
+wide_int::rrotate (T c) const
+{
+  HOST_WIDE_INT ws[WIDE_INT_MAX_ELTS];
+  const HOST_WIDE_INT *s;
+  int cl;
+
+  s = to_shwi2 (ws, &cl, c);
+
+  return rrotate ((unsigned HOST_WIDE_INT) s[0]);
+}
+
+
+/* Rotate THIS left by CNT within its precision.  */
+
+wide_int
+wide_int::rrotate (unsigned HOST_WIDE_INT cnt) const
+{
+  wide_int left, right, result;
+
+  left = lshift (precision - cnt);
+  right = rshiftu (cnt);
+  result = left | right;
+
+  return result;
+}
+
+/* tree related routines.  */
+
+extern tree wide_int_to_tree (tree type, const wide_int &cst);
+extern tree wide_int_to_infinite_tree (tree type, const wide_int &cst, 
+				       unsigned int prec);
+extern tree force_fit_type_wide (tree, const wide_int &, int, bool);
+
+/* real related routines.  */
+extern wide_int real_to_integer (const REAL_VALUE_TYPE *, bool *, int);
+extern wide_int decimal_real_to_integer (const REAL_VALUE_TYPE *, bool *, int);
+
+
+/* Conversion to and from GMP integer representations.  */
+
+void mpz_set_wide_int (mpz_t, wide_int, bool);
+wide_int mpz_get_wide_int (const_tree, mpz_t, bool);
+#endif /* GENERATOR FILE */
+
+#endif /* WIDE_INT_H */

Attachment: p4-6.clog
Description: Text document


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]