This is the mail archive of the gcc-patches@gcc.gnu.org mailing list for the GCC project.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]
Other format: [Raw text]

[PATCH] fold_range_test like optimization on GIMPLE (PR tree-optimization/46309)


Hi!

This patch implements a fold_range_test like optimization on GIMPLE, inside
tree-ssa-reassoc and tweaks fold-const.c so that most of the code can be
shared in between the two.
The advantage of the reassoc optimization is that it doesn't attempt to
merge just 2 ranges at a time, instead it sorts the ranges for the same
SSA_NAME and thus can optimize even cases where source code doesn't have
the numbers in a range test in increasing or decreasing order (and also
can optimize things that were in multiple statements in the source).
Additionally, it optimizes cases like
x == 1 || x == 3
into (x & ~2) == 1.

Bootstrapped/regtested on x86_64-linux and i686-linux, ok for trunk?

2011-09-27  Jakub Jelinek  <jakub@redhat.com>

	PR tree-optimization/46309
	* fold-const.c (make_range, merge_ranges): Remove prototypes.
	(range_binop): Likewise, no longer static.
	(make_range_step): New function.
	(make_range): Use it.
	* tree.h (make_range_step, range_binop): New prototypes.
	* Makefile.in (tree-ssa-reassoc.o): Depend on $(DIAGNOSTIC_CORE_H).
	* tree-ssa-reassoc.c: Include diagnostic-core.h.
	(struct range_entry): New type.
	(init_range_entry, range_entry_cmp, update_range_test,
	optimize_range_tests): New functions.
	(reassociate_bb): Call optimize_range_tests.

	* gcc.dg/pr46309.c: New test.

--- gcc/fold-const.c.jj	2011-09-05 12:28:53.000000000 +0200
+++ gcc/fold-const.c	2011-09-27 16:39:09.000000000 +0200
@@ -112,12 +112,8 @@ static tree decode_field_reference (loca
 static int all_ones_mask_p (const_tree, int);
 static tree sign_bit_p (tree, const_tree);
 static int simple_operand_p (const_tree);
-static tree range_binop (enum tree_code, tree, tree, int, tree, int);
 static tree range_predecessor (tree);
 static tree range_successor (tree);
-extern tree make_range (tree, int *, tree *, tree *, bool *);
-extern bool merge_ranges (int *, tree *, tree *, int, tree, tree, int,
-			  tree, tree);
 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
 static tree unextend (tree, int, int, tree);
@@ -3731,7 +3727,7 @@ simple_operand_p (const_tree exp)
    must be specified for a comparison.  ARG1 will be converted to ARG0's
    type if both are specified.  */
 
-static tree
+tree
 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
 	     tree arg1, int upper1_p)
 {
@@ -3790,6 +3786,255 @@ range_binop (enum tree_code code, tree t
   return constant_boolean_node (result, type);
 }
 
+/* Helper routine for make_range.  Perform one step for it, return
+   new expression if the loop should continue or NULL_TREE if it should
+   stop.  */
+
+tree
+make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
+		 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
+		 bool *strict_overflow_p)
+{
+  tree arg0_type = TREE_TYPE (arg0);
+  tree n_low, n_high, low = *p_low, high = *p_high;
+  int in_p = *p_in_p, n_in_p;
+
+  switch (code)
+    {
+    case TRUTH_NOT_EXPR:
+      *p_in_p = ! in_p;
+      return arg0;
+
+    case EQ_EXPR: case NE_EXPR:
+    case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
+      /* We can only do something if the range is testing for zero
+	 and if the second operand is an integer constant.  Note that
+	 saying something is "in" the range we make is done by
+	 complementing IN_P since it will set in the initial case of
+	 being not equal to zero; "out" is leaving it alone.  */
+      if (low == NULL_TREE || high == NULL_TREE
+	  || ! integer_zerop (low) || ! integer_zerop (high)
+	  || TREE_CODE (arg1) != INTEGER_CST)
+	return NULL_TREE;
+
+      switch (code)
+	{
+	case NE_EXPR:  /* - [c, c]  */
+	  low = high = arg1;
+	  break;
+	case EQ_EXPR:  /* + [c, c]  */
+	  in_p = ! in_p, low = high = arg1;
+	  break;
+	case GT_EXPR:  /* - [-, c] */
+	  low = 0, high = arg1;
+	  break;
+	case GE_EXPR:  /* + [c, -] */
+	  in_p = ! in_p, low = arg1, high = 0;
+	  break;
+	case LT_EXPR:  /* - [c, -] */
+	  low = arg1, high = 0;
+	  break;
+	case LE_EXPR:  /* + [-, c] */
+	  in_p = ! in_p, low = 0, high = arg1;
+	  break;
+	default:
+	  gcc_unreachable ();
+	}
+
+      /* If this is an unsigned comparison, we also know that EXP is
+	 greater than or equal to zero.  We base the range tests we make
+	 on that fact, so we record it here so we can parse existing
+	 range tests.  We test arg0_type since often the return type
+	 of, e.g. EQ_EXPR, is boolean.  */
+      if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
+	{
+	  if (! merge_ranges (&n_in_p, &n_low, &n_high,
+			      in_p, low, high, 1,
+			      build_int_cst (arg0_type, 0),
+			      NULL_TREE))
+	    return NULL_TREE;
+
+	  in_p = n_in_p, low = n_low, high = n_high;
+
+	  /* If the high bound is missing, but we have a nonzero low
+	     bound, reverse the range so it goes from zero to the low bound
+	     minus 1.  */
+	  if (high == 0 && low && ! integer_zerop (low))
+	    {
+	      in_p = ! in_p;
+	      high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
+				  integer_one_node, 0);
+	      low = build_int_cst (arg0_type, 0);
+	    }
+	}
+
+      *p_low = low;
+      *p_high = high;
+      *p_in_p = in_p;
+      return arg0;
+
+    case NEGATE_EXPR:
+      /* (-x) IN [a,b] -> x in [-b, -a]  */
+      n_low = range_binop (MINUS_EXPR, exp_type,
+			   build_int_cst (exp_type, 0),
+			   0, high, 1);
+      n_high = range_binop (MINUS_EXPR, exp_type,
+			    build_int_cst (exp_type, 0),
+			    0, low, 0);
+      if (n_high != 0 && TREE_OVERFLOW (n_high))
+	return NULL_TREE;
+      goto normalize;
+
+    case BIT_NOT_EXPR:
+      /* ~ X -> -X - 1  */
+      return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
+			 build_int_cst (exp_type, 1));
+
+    case PLUS_EXPR:
+    case MINUS_EXPR:
+      if (TREE_CODE (arg1) != INTEGER_CST)
+	return NULL_TREE;
+
+      /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
+	 move a constant to the other side.  */
+      if (!TYPE_UNSIGNED (arg0_type)
+	  && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
+	return NULL_TREE;
+
+      /* If EXP is signed, any overflow in the computation is undefined,
+	 so we don't worry about it so long as our computations on
+	 the bounds don't overflow.  For unsigned, overflow is defined
+	 and this is exactly the right thing.  */
+      n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
+			   arg0_type, low, 0, arg1, 0);
+      n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
+			    arg0_type, high, 1, arg1, 0);
+      if ((n_low != 0 && TREE_OVERFLOW (n_low))
+	  || (n_high != 0 && TREE_OVERFLOW (n_high)))
+	return NULL_TREE;
+
+      if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
+	*strict_overflow_p = true;
+
+      normalize:
+	/* Check for an unsigned range which has wrapped around the maximum
+	   value thus making n_high < n_low, and normalize it.  */
+	if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
+	  {
+	    low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
+			       integer_one_node, 0);
+	    high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
+				integer_one_node, 0);
+
+	    /* If the range is of the form +/- [ x+1, x ], we won't
+	       be able to normalize it.  But then, it represents the
+	       whole range or the empty set, so make it
+	       +/- [ -, - ].  */
+	    if (tree_int_cst_equal (n_low, low)
+		&& tree_int_cst_equal (n_high, high))
+	      low = high = 0;
+	    else
+	      in_p = ! in_p;
+	  }
+	else
+	  low = n_low, high = n_high;
+
+	*p_low = low;
+	*p_high = high;
+	*p_in_p = in_p;
+	return arg0;
+
+    CASE_CONVERT:
+    case NON_LVALUE_EXPR:
+      if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
+	return NULL_TREE;
+
+      if (! INTEGRAL_TYPE_P (arg0_type)
+	  || (low != 0 && ! int_fits_type_p (low, arg0_type))
+	  || (high != 0 && ! int_fits_type_p (high, arg0_type)))
+	return NULL_TREE;
+
+      n_low = low, n_high = high;
+
+      if (n_low != 0)
+	n_low = fold_convert_loc (loc, arg0_type, n_low);
+
+      if (n_high != 0)
+	n_high = fold_convert_loc (loc, arg0_type, n_high);
+
+      /* If we're converting arg0 from an unsigned type, to exp,
+	 a signed type,  we will be doing the comparison as unsigned.
+	 The tests above have already verified that LOW and HIGH
+	 are both positive.
+
+	 So we have to ensure that we will handle large unsigned
+	 values the same way that the current signed bounds treat
+	 negative values.  */
+
+      if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
+	{
+	  tree high_positive;
+	  tree equiv_type;
+	  /* For fixed-point modes, we need to pass the saturating flag
+	     as the 2nd parameter.  */
+	  if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
+	    equiv_type
+	      = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
+						TYPE_SATURATING (arg0_type));
+	  else
+	    equiv_type
+	      = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
+
+	  /* A range without an upper bound is, naturally, unbounded.
+	     Since convert would have cropped a very large value, use
+	     the max value for the destination type.  */
+	  high_positive
+	    = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
+	      : TYPE_MAX_VALUE (arg0_type);
+
+	  if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
+	    high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
+					     fold_convert_loc (loc, arg0_type,
+							       high_positive),
+					     build_int_cst (arg0_type, 1));
+
+	  /* If the low bound is specified, "and" the range with the
+	     range for which the original unsigned value will be
+	     positive.  */
+	  if (low != 0)
+	    {
+	      if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
+				  1, fold_convert_loc (loc, arg0_type,
+						       integer_zero_node),
+				  high_positive))
+		return NULL_TREE;
+
+	      in_p = (n_in_p == in_p);
+	    }
+	  else
+	    {
+	      /* Otherwise, "or" the range with the range of the input
+		 that will be interpreted as negative.  */
+	      if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
+				  1, fold_convert_loc (loc, arg0_type,
+						       integer_zero_node),
+				  high_positive))
+		return NULL_TREE;
+
+	      in_p = (in_p != n_in_p);
+	    }
+	}
+
+      *p_low = n_low;
+      *p_high = n_high;
+      *p_in_p = in_p;
+      return arg0;
+
+    default:
+      return NULL_TREE;
+    }
+}
+
 /* Given EXP, a logical expression, set the range it is testing into
    variables denoted by PIN_P, PLOW, and PHIGH.  Return the expression
    actually being tested.  *PLOW and *PHIGH will be made of the same
@@ -3804,10 +4049,10 @@ make_range (tree exp, int *pin_p, tree *
 	    bool *strict_overflow_p)
 {
   enum tree_code code;
-  tree arg0 = NULL_TREE, arg1 = NULL_TREE;
-  tree exp_type = NULL_TREE, arg0_type = NULL_TREE;
-  int in_p, n_in_p;
-  tree low, high, n_low, n_high;
+  tree arg0, arg1 = NULL_TREE;
+  tree exp_type, nexp;
+  int in_p;
+  tree low, high;
   location_t loc = EXPR_LOCATION (exp);
 
   /* Start with simply saying "EXP != 0" and then look at the code of EXP
@@ -3823,255 +4068,26 @@ make_range (tree exp, int *pin_p, tree *
     {
       code = TREE_CODE (exp);
       exp_type = TREE_TYPE (exp);
+      arg0 = NULL_TREE;
 
       if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
 	{
 	  if (TREE_OPERAND_LENGTH (exp) > 0)
 	    arg0 = TREE_OPERAND (exp, 0);
-	  if (TREE_CODE_CLASS (code) == tcc_comparison
-	      || TREE_CODE_CLASS (code) == tcc_unary
-	      || TREE_CODE_CLASS (code) == tcc_binary)
-	    arg0_type = TREE_TYPE (arg0);
 	  if (TREE_CODE_CLASS (code) == tcc_binary
 	      || TREE_CODE_CLASS (code) == tcc_comparison
 	      || (TREE_CODE_CLASS (code) == tcc_expression
 		  && TREE_OPERAND_LENGTH (exp) > 1))
 	    arg1 = TREE_OPERAND (exp, 1);
 	}
+      if (arg0 == NULL_TREE)
+	break;
 
-      switch (code)
-	{
-	case TRUTH_NOT_EXPR:
-	  in_p = ! in_p, exp = arg0;
-	  continue;
-
-	case EQ_EXPR: case NE_EXPR:
-	case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
-	  /* We can only do something if the range is testing for zero
-	     and if the second operand is an integer constant.  Note that
-	     saying something is "in" the range we make is done by
-	     complementing IN_P since it will set in the initial case of
-	     being not equal to zero; "out" is leaving it alone.  */
-	  if (low == 0 || high == 0
-	      || ! integer_zerop (low) || ! integer_zerop (high)
-	      || TREE_CODE (arg1) != INTEGER_CST)
-	    break;
-
-	  switch (code)
-	    {
-	    case NE_EXPR:  /* - [c, c]  */
-	      low = high = arg1;
-	      break;
-	    case EQ_EXPR:  /* + [c, c]  */
-	      in_p = ! in_p, low = high = arg1;
-	      break;
-	    case GT_EXPR:  /* - [-, c] */
-	      low = 0, high = arg1;
-	      break;
-	    case GE_EXPR:  /* + [c, -] */
-	      in_p = ! in_p, low = arg1, high = 0;
-	      break;
-	    case LT_EXPR:  /* - [c, -] */
-	      low = arg1, high = 0;
-	      break;
-	    case LE_EXPR:  /* + [-, c] */
-	      in_p = ! in_p, low = 0, high = arg1;
-	      break;
-	    default:
-	      gcc_unreachable ();
-	    }
-
-	  /* If this is an unsigned comparison, we also know that EXP is
-	     greater than or equal to zero.  We base the range tests we make
-	     on that fact, so we record it here so we can parse existing
-	     range tests.  We test arg0_type since often the return type
-	     of, e.g. EQ_EXPR, is boolean.  */
-	  if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
-	    {
-	      if (! merge_ranges (&n_in_p, &n_low, &n_high,
-				  in_p, low, high, 1,
-				  build_int_cst (arg0_type, 0),
-				  NULL_TREE))
-		break;
-
-	      in_p = n_in_p, low = n_low, high = n_high;
-
-	      /* If the high bound is missing, but we have a nonzero low
-		 bound, reverse the range so it goes from zero to the low bound
-		 minus 1.  */
-	      if (high == 0 && low && ! integer_zerop (low))
-		{
-		  in_p = ! in_p;
-		  high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
-				      integer_one_node, 0);
-		  low = build_int_cst (arg0_type, 0);
-		}
-	    }
-
-	  exp = arg0;
-	  continue;
-
-	case NEGATE_EXPR:
-	  /* (-x) IN [a,b] -> x in [-b, -a]  */
-	  n_low = range_binop (MINUS_EXPR, exp_type,
-			       build_int_cst (exp_type, 0),
-			       0, high, 1);
-	  n_high = range_binop (MINUS_EXPR, exp_type,
-				build_int_cst (exp_type, 0),
-				0, low, 0);
-	  if (n_high != 0 && TREE_OVERFLOW (n_high))
-	    break;
-	  goto normalize;
-
-	case BIT_NOT_EXPR:
-	  /* ~ X -> -X - 1  */
-	  exp = build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
-			    build_int_cst (exp_type, 1));
-	  continue;
-
-	case PLUS_EXPR:  case MINUS_EXPR:
-	  if (TREE_CODE (arg1) != INTEGER_CST)
-	    break;
-
-	  /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
-	     move a constant to the other side.  */
-	  if (!TYPE_UNSIGNED (arg0_type)
-	      && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
-	    break;
-
-	  /* If EXP is signed, any overflow in the computation is undefined,
-	     so we don't worry about it so long as our computations on
-	     the bounds don't overflow.  For unsigned, overflow is defined
-	     and this is exactly the right thing.  */
-	  n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
-			       arg0_type, low, 0, arg1, 0);
-	  n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
-				arg0_type, high, 1, arg1, 0);
-	  if ((n_low != 0 && TREE_OVERFLOW (n_low))
-	      || (n_high != 0 && TREE_OVERFLOW (n_high)))
-	    break;
-
-	  if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
-	    *strict_overflow_p = true;
-
-	normalize:
-	  /* Check for an unsigned range which has wrapped around the maximum
-	     value thus making n_high < n_low, and normalize it.  */
-	  if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
-	    {
-	      low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
-				 integer_one_node, 0);
-	      high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
-				  integer_one_node, 0);
-
-	      /* If the range is of the form +/- [ x+1, x ], we won't
-		 be able to normalize it.  But then, it represents the
-		 whole range or the empty set, so make it
-		 +/- [ -, - ].  */
-	      if (tree_int_cst_equal (n_low, low)
-		  && tree_int_cst_equal (n_high, high))
-		low = high = 0;
-	      else
-		in_p = ! in_p;
-	    }
-	  else
-	    low = n_low, high = n_high;
-
-	  exp = arg0;
-	  continue;
-
-	CASE_CONVERT: case NON_LVALUE_EXPR:
-	  if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
-	    break;
-
-	  if (! INTEGRAL_TYPE_P (arg0_type)
-	      || (low != 0 && ! int_fits_type_p (low, arg0_type))
-	      || (high != 0 && ! int_fits_type_p (high, arg0_type)))
-	    break;
-
-	  n_low = low, n_high = high;
-
-	  if (n_low != 0)
-	    n_low = fold_convert_loc (loc, arg0_type, n_low);
-
-	  if (n_high != 0)
-	    n_high = fold_convert_loc (loc, arg0_type, n_high);
-
-
-	  /* If we're converting arg0 from an unsigned type, to exp,
-	     a signed type,  we will be doing the comparison as unsigned.
-	     The tests above have already verified that LOW and HIGH
-	     are both positive.
-
-	     So we have to ensure that we will handle large unsigned
-	     values the same way that the current signed bounds treat
-	     negative values.  */
-
-	  if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
-	    {
-	      tree high_positive;
-	      tree equiv_type;
-	      /* For fixed-point modes, we need to pass the saturating flag
-		 as the 2nd parameter.  */
-	      if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
-		equiv_type = lang_hooks.types.type_for_mode
-			     (TYPE_MODE (arg0_type),
-			      TYPE_SATURATING (arg0_type));
-	      else
-		equiv_type = lang_hooks.types.type_for_mode
-			     (TYPE_MODE (arg0_type), 1);
-
-	      /* A range without an upper bound is, naturally, unbounded.
-		 Since convert would have cropped a very large value, use
-		 the max value for the destination type.  */
-	      high_positive
-		= TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
-		: TYPE_MAX_VALUE (arg0_type);
-
-	      if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
-		high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
-					     fold_convert_loc (loc, arg0_type,
-							       high_positive),
-					     build_int_cst (arg0_type, 1));
-
-	      /* If the low bound is specified, "and" the range with the
-		 range for which the original unsigned value will be
-		 positive.  */
-	      if (low != 0)
-		{
-		  if (! merge_ranges (&n_in_p, &n_low, &n_high,
-				      1, n_low, n_high, 1,
-				      fold_convert_loc (loc, arg0_type,
-							integer_zero_node),
-				      high_positive))
-		    break;
-
-		  in_p = (n_in_p == in_p);
-		}
-	      else
-		{
-		  /* Otherwise, "or" the range with the range of the input
-		     that will be interpreted as negative.  */
-		  if (! merge_ranges (&n_in_p, &n_low, &n_high,
-				      0, n_low, n_high, 1,
-				      fold_convert_loc (loc, arg0_type,
-							integer_zero_node),
-				      high_positive))
-		    break;
-
-		  in_p = (in_p != n_in_p);
-		}
-	    }
-
-	  exp = arg0;
-	  low = n_low, high = n_high;
-	  continue;
-
-	default:
-	  break;
-	}
-
-      break;
+      nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
+			      &high, &in_p, strict_overflow_p);
+      if (nexp == NULL_TREE)
+	break;
+      exp = nexp;
     }
 
   /* If EXP is a constant, we can evaluate whether this is true or false.  */
--- gcc/tree.h.jj	2011-09-20 21:43:07.000000000 +0200
+++ gcc/tree.h	2011-09-27 16:38:58.000000000 +0200
@@ -5384,7 +5384,10 @@ extern unsigned int get_pointer_alignmen
 extern tree fold_call_stmt (gimple, bool);
 extern tree gimple_fold_builtin_snprintf_chk (gimple, tree, enum built_in_function);
 extern tree make_range (tree, int *, tree *, tree *, bool *);
+extern tree make_range_step (location_t, enum tree_code, tree, tree, tree,
+			     tree *, tree *, int *, bool *);
 extern tree build_range_check (location_t, tree, tree, int, tree, tree);
+extern tree range_binop (enum tree_code, tree, tree, int, tree, int);
 extern bool merge_ranges (int *, tree *, tree *, int, tree, tree, int,
 			  tree, tree);
 extern void set_builtin_user_assembler_name (tree decl, const char *asmspec);
--- gcc/Makefile.in.jj	2011-09-18 21:20:04.000000000 +0200
+++ gcc/Makefile.in	2011-09-29 14:09:42.000000000 +0200
@@ -2641,7 +2641,7 @@ tree-ssa-reassoc.o : tree-ssa-reassoc.c 
    $(TM_H) coretypes.h $(TREE_DUMP_H) $(TREE_PASS_H) $(FLAGS_H) \
    tree-iterator.h $(BASIC_BLOCK_H) $(GIMPLE_H) $(TREE_INLINE_H) \
    $(VEC_H) langhooks.h alloc-pool.h pointer-set.h $(CFGLOOP_H) \
-   tree-pretty-print.h gimple-pretty-print.h
+   tree-pretty-print.h gimple-pretty-print.h $(DIAGNOSTIC_CORE_H)
 tree-optimize.o : tree-optimize.c $(TREE_FLOW_H) $(CONFIG_H) $(SYSTEM_H) \
    $(TREE_H) $(TM_P_H) $(GGC_H) output.h \
    $(DIAGNOSTIC_H) $(BASIC_BLOCK_H) $(FLAGS_H) $(TIMEVAR_H) $(TM_H) \
--- gcc/tree-ssa-reassoc.c.jj	2011-09-08 11:21:10.000000000 +0200
+++ gcc/tree-ssa-reassoc.c	2011-09-29 13:33:00.000000000 +0200
@@ -42,6 +42,7 @@ along with GCC; see the file COPYING3.  
 #include "flags.h"
 #include "target.h"
 #include "params.h"
+#include "diagnostic-core.h"
 
 /*  This is a simple global reassociation pass.  It is, in part, based
     on the LLVM pass of the same name (They do some things more/less
@@ -1568,6 +1569,422 @@ optimize_ops_list (enum tree_code opcode
     optimize_ops_list (opcode, ops);
 }
 
+/* The following functions are subroutines to optimize_range_tests and allow
+   it to try to change a logical combination of comparisons into a range
+   test.
+
+   For example, both
+	X == 2 || X == 5 || X == 3 || X == 4
+   and
+	X >= 2 && X <= 5
+   are converted to
+	(unsigned) (X - 2) <= 3
+
+   For more information see comments above fold_test_range in fold-const.c,
+   this implementation is for GIMPLE.  */
+
+struct range_entry
+{
+  tree exp;
+  tree low;
+  tree high;
+  bool in_p;
+  bool strict_overflow_p;
+  unsigned int idx, next;
+};
+
+/* This is similar to make_range in fold-const.c, but on top of
+   GIMPLE instead of trees.  */
+
+static void
+init_range_entry (struct range_entry *r, tree exp)
+{
+  int in_p;
+  tree low, high;
+  bool is_bool, strict_overflow_p;
+
+  r->exp = NULL_TREE;
+  r->in_p = false;
+  r->strict_overflow_p = false;
+  r->low = NULL_TREE;
+  r->high = NULL_TREE;
+  if (TREE_CODE (exp) != SSA_NAME || !INTEGRAL_TYPE_P (TREE_TYPE (exp)))
+    return;
+
+  /* Start with simply saying "EXP != 0" and then look at the code of EXP
+     and see if we can refine the range.  Some of the cases below may not
+     happen, but it doesn't seem worth worrying about this.  We "continue"
+     the outer loop when we've changed something; otherwise we "break"
+     the switch, which will "break" the while.  */
+  low = build_int_cst (TREE_TYPE (exp), 0);
+  high = low;
+  in_p = 0;
+  strict_overflow_p = false;
+  is_bool = TREE_CODE (TREE_TYPE (exp)) == BOOLEAN_TYPE;
+
+  while (1)
+    {
+      gimple stmt;
+      enum tree_code code;
+      tree arg0, arg1, exp_type;
+      tree nexp;
+      location_t loc;
+
+      if (TREE_CODE (exp) != SSA_NAME)
+	break;
+
+      stmt = SSA_NAME_DEF_STMT (exp);
+      if (!is_gimple_assign (stmt))
+	break;
+
+      code = gimple_assign_rhs_code (stmt);
+      arg0 = gimple_assign_rhs1 (stmt);
+      arg1 = gimple_assign_rhs2 (stmt);
+      exp_type = TREE_TYPE (exp);
+      loc = gimple_location (stmt);
+      switch (code)
+	{
+	case BIT_NOT_EXPR:
+	  if (TREE_CODE (TREE_TYPE (exp)) == BOOLEAN_TYPE)
+	    {
+	      in_p = !in_p;
+	      exp = arg0;
+	      continue;
+	    }
+	  break;
+	case SSA_NAME:
+	  exp = arg0;
+	  continue;
+	CASE_CONVERT:
+	  is_bool |= TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE;
+	  goto do_default;
+	case EQ_EXPR:
+	case NE_EXPR:
+	case LT_EXPR:
+	case LE_EXPR:
+	case GE_EXPR:
+	case GT_EXPR:
+	  is_bool = true;
+	  /* FALLTHRU */
+	do_default:
+	default:
+	  if (!is_bool)
+	    return;
+	  nexp = make_range_step (loc, code, arg0, arg1, exp_type,
+				  &low, &high, &in_p,
+				  &strict_overflow_p);
+	  if (nexp != NULL_TREE)
+	    {
+	      exp = nexp;
+	      gcc_assert (TREE_CODE (exp) == SSA_NAME);
+	      continue;
+	    }
+	  break;
+	}
+      break;
+    }
+  if (is_bool)
+    {
+      r->exp = exp;
+      r->in_p = in_p;
+      r->low = low;
+      r->high = high;
+      r->strict_overflow_p = strict_overflow_p;
+    }
+}
+
+/* Comparison function for qsort.  Sort entries
+   without SSA_NAME exp first, then with SSA_NAMEs sorted
+   by increasing SSA_NAME_VERSION, and for the same SSA_NAMEs
+   by increasing ->low and if ->low is the same, by increasing
+   ->high.  ->low == NULL_TREE means minimum, ->high == NULL_TREE
+   maximum.  */
+
+static int
+range_entry_cmp (const void *a, const void *b)
+{
+  const struct range_entry *p = (const struct range_entry *) a;
+  const struct range_entry *q = (const struct range_entry *) b;
+
+  if (p->exp != NULL_TREE && TREE_CODE (p->exp) == SSA_NAME)
+    {
+      if (q->exp != NULL_TREE && TREE_CODE (q->exp) == SSA_NAME)
+	{
+	  /* Group range_entries for the same SSA_NAME together.  */
+	  if (SSA_NAME_VERSION (p->exp) < SSA_NAME_VERSION (q->exp))
+	    return -1;
+	  else if (SSA_NAME_VERSION (p->exp) > SSA_NAME_VERSION (q->exp))
+	    return 1;
+	  /* If ->low is different, NULL low goes first, then by
+	     ascending low.  */
+	  if (p->low != NULL_TREE)
+	    {
+	      if (q->low != NULL_TREE)
+		{
+		  if (integer_onep (range_binop (LT_EXPR, integer_type_node,
+						 p->low, 0, q->low, 0)))
+		    return -1;
+		  if (integer_onep (range_binop (GT_EXPR, integer_type_node,
+						 p->low, 0, q->low, 0)))
+		    return 1;
+		}
+	      else
+		return 1;
+	    }
+	  else if (q->low != NULL_TREE)
+	    return -1;
+	  /* If ->high is different, NULL high goes last, before that by
+	     ascending high.  */
+	  if (p->high != NULL_TREE)
+	    {
+	      if (q->high != NULL_TREE)
+		{
+		  if (integer_onep (range_binop (LT_EXPR, integer_type_node,
+						 p->high, 0, q->high, 0)))
+		    return -1;
+		  if (integer_onep (range_binop (GT_EXPR, integer_type_node,
+						 p->high, 0, q->high, 0)))
+		    return 1;
+		}
+	      else
+		return -1;
+	    }
+	  else if (p->high != NULL_TREE)
+	    return 1;
+	  /* If both ranges are the same, sort below by ascending idx.  */
+	}
+      else
+	return 1;
+    }
+  else if (q->exp != NULL_TREE && TREE_CODE (q->exp) == SSA_NAME)
+    return -1;
+
+  if (p->idx < q->idx)
+    return -1;
+  else
+    {
+      gcc_checking_assert (p->idx > q->idx);
+      return 1;
+    }
+}
+
+/* Helper routine of optimize_range_test.
+   [EXP, IN_P, LOW, HIGH, STRICT_OVERFLOW_P] is a merged range for
+   RANGE and OTHERRANGE through OTHERRANGE + COUNT - 1 ranges,
+   OPCODE and OPS are arguments of optimize_range_tests.  Return
+   true if the range merge has been successful.  */
+
+static bool
+update_range_test (struct range_entry *range, struct range_entry *otherrange,
+		   unsigned int count, enum tree_code opcode,
+		   VEC (operand_entry_t, heap) **ops, tree exp, bool in_p,
+		   tree low, tree high, bool strict_overflow_p)
+{
+  tree op = VEC_index (operand_entry_t, *ops, range->idx)->op;
+  location_t loc = gimple_location (SSA_NAME_DEF_STMT (op));
+  tree tem = build_range_check (loc, TREE_TYPE (op), exp, in_p, low, high);
+  enum warn_strict_overflow_code wc = WARN_STRICT_OVERFLOW_COMPARISON;
+  gimple_stmt_iterator gsi;
+
+  if (tem == NULL_TREE)
+    return false;
+
+  if (strict_overflow_p && issue_strict_overflow_warning (wc))
+    warning_at (loc, OPT_Wstrict_overflow,
+		"assuming signed overflow does not occur "
+		"when simplifying range test");
+
+  if (dump_file && (dump_flags & TDF_DETAILS))
+    {
+      struct range_entry *r;
+      fprintf (dump_file, "Optimizing range tests ");
+      print_generic_expr (dump_file, range->exp, 0);
+      fprintf (dump_file, " %c[", range->in_p ? '+' : '-');
+      print_generic_expr (dump_file, range->low, 0);
+      fprintf (dump_file, ", ");
+      print_generic_expr (dump_file, range->high, 0);
+      fprintf (dump_file, "]");
+      for (r = otherrange; r < otherrange + count; r++)
+	{
+	  fprintf (dump_file, " and %c[", r->in_p ? '+' : '-');
+	  print_generic_expr (dump_file, r->low, 0);
+	  fprintf (dump_file, ", ");
+	  print_generic_expr (dump_file, r->high, 0);
+	  fprintf (dump_file, "]");
+	}
+      fprintf (dump_file, "\n into ");
+      print_generic_expr (dump_file, tem, 0);
+      fprintf (dump_file, "\n");
+    }
+
+  if (opcode == BIT_IOR_EXPR)
+    tem = invert_truthvalue_loc (loc, tem);
+
+  tem = fold_convert_loc (loc, TREE_TYPE (op), tem);
+  gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (op));
+  tem = force_gimple_operand_gsi (&gsi, tem, true, NULL_TREE, true,
+				  GSI_SAME_STMT);
+
+  VEC_index (operand_entry_t, *ops, range->idx)->op = tem;
+  range->exp = exp;
+  range->low = low;
+  range->high = high;
+  range->in_p = in_p;
+  range->strict_overflow_p = false;
+
+  for (range = otherrange; range < otherrange + count; range++)
+    {
+      VEC_index (operand_entry_t, *ops, range->idx)->op = error_mark_node;
+      range->exp = NULL_TREE;
+    }
+  return true;
+}
+
+/* Optimize range tests, similarly how fold_range_test optimizes
+   it on trees.  The tree code for the binary
+   operation between all the operands is OPCODE.  */
+
+static void
+optimize_range_tests (enum tree_code opcode,
+		      VEC (operand_entry_t, heap) **ops)
+{
+  unsigned int length = VEC_length (operand_entry_t, *ops), i, j, first;
+  operand_entry_t oe;
+  struct range_entry *ranges;
+  bool any_changes = false;
+
+  if (length == 1)
+    return;
+
+  ranges = XNEWVEC (struct range_entry, length);
+  for (i = 0; i < length; i++)
+    {
+      ranges[i].idx = i;
+      init_range_entry (ranges + i, VEC_index (operand_entry_t, *ops, i)->op);
+      /* For | invert it now, we will invert it again before emitting
+	 the optimized expression.  */
+      if (opcode == BIT_IOR_EXPR)
+	ranges[i].in_p = !ranges[i].in_p;
+    }
+
+  qsort (ranges, length, sizeof (*ranges), range_entry_cmp);
+  for (i = 0; i < length; i++)
+    if (ranges[i].exp != NULL_TREE && TREE_CODE (ranges[i].exp) == SSA_NAME)
+      break;
+
+  /* Try to merge ranges.  */
+  for (first = i; i < length; i++)
+    {
+      tree low = ranges[i].low;
+      tree high = ranges[i].high;
+      int in_p = ranges[i].in_p;
+      bool strict_overflow_p = ranges[i].strict_overflow_p;
+
+      for (j = i + 1; j < length; j++)
+	{
+	  if (ranges[i].exp != ranges[j].exp)
+	    break;
+	  if (!merge_ranges (&in_p, &low, &high, in_p, low, high,
+			     ranges[j].in_p, ranges[j].low, ranges[j].high))
+	    break;
+	  strict_overflow_p |= ranges[j].strict_overflow_p;
+	}
+
+      if (j > i + 1
+	  && update_range_test (ranges + i, ranges + i + 1, j - i - 1, opcode,
+				ops, ranges[i].exp, in_p, low, high,
+				strict_overflow_p))
+	{
+	  i = j - 1;
+	  any_changes = true;
+	}
+    }
+
+  /* Optimize X == CST1 || X == CST2
+     if popcount (CST1 ^ CST2) == 1 into
+     (X & ~(CST1 ^ CST2)) == (CST1 & ~(CST1 ^ CST2)).
+     Similarly for ranges.  E.g.
+     X != 2 && X != 3 && X != 10 && X != 11
+     will be transformed by the above loop into
+     (X - 2U) <= 1U && (X - 10U) <= 1U
+     and this loop can transform that into
+     ((X & ~8) - 2U) <= 1U.  */
+  for (i = first; i < length; i++)
+    {
+      tree lowi, highi, lowj, highj, type, lowxor, highxor, tem, exp;
+
+      if (ranges[i].exp == NULL_TREE || ranges[i].in_p)
+	continue;
+      type = TREE_TYPE (ranges[i].exp);
+      if (!INTEGRAL_TYPE_P (type))
+	continue;
+      lowi = ranges[i].low;
+      if (lowi == NULL_TREE)
+	lowi = TYPE_MIN_VALUE (type);
+      highi = ranges[i].high;
+      if (highi == NULL_TREE)
+	continue;
+      for (j = i + 1; j < length && j < i + 64; j++)
+	{
+	  if (ranges[j].exp == NULL_TREE)
+	    continue;
+	  if (ranges[i].exp != ranges[j].exp)
+	    break;
+	  if (ranges[j].in_p)
+	    continue;
+	  lowj = ranges[j].low;
+	  if (lowj == NULL_TREE)
+	    continue;
+	  highj = ranges[j].high;
+	  if (highj == NULL_TREE)
+	    highj = TYPE_MAX_VALUE (type);
+	  if (!integer_onep (range_binop (GT_EXPR, integer_type_node,
+					  lowj, 0, highi, 0)))
+	    continue;
+	  lowxor = range_binop (BIT_XOR_EXPR, NULL_TREE, lowi, 0, lowj, 0);
+	  if (lowxor == NULL_TREE)
+	    continue;
+	  gcc_checking_assert (!integer_zerop (lowxor));
+	  tem = range_binop (MINUS_EXPR, NULL_TREE, lowxor, 0,
+			     build_int_cst (type, 1), 0);
+	  tem = range_binop (BIT_AND_EXPR, NULL_TREE, lowxor, 0, tem, 0);
+	  if (!integer_zerop (tem))
+	    continue;
+	  highxor = range_binop (BIT_XOR_EXPR, NULL_TREE, highi, 0, highj, 0);
+	  if (!tree_int_cst_equal (lowxor, highxor))
+	    continue;
+	  tem = fold_build1 (BIT_NOT_EXPR, type, lowxor);
+	  exp = fold_build2 (BIT_AND_EXPR, type, ranges[i].exp, tem);
+	  lowj = fold_build2 (BIT_AND_EXPR, type, lowi, tem);
+	  highj = fold_build2 (BIT_AND_EXPR, type, highi, tem);
+	  if (update_range_test (ranges + i, ranges + j, 1, opcode, ops, exp,
+				 ranges[i].in_p, lowj, highj,
+				 ranges[i].strict_overflow_p
+				 || ranges[j].strict_overflow_p))
+	    {
+	      any_changes = true;
+	      break;
+	    }
+	}
+    }
+
+  if (any_changes)
+    {
+      j = 0;
+      FOR_EACH_VEC_ELT (operand_entry_t, *ops, i, oe)
+	{
+	  if (oe->op == error_mark_node)
+	    continue;
+	  else if (i != j)
+	    VEC_replace (operand_entry_t, *ops, j, oe);
+	  j++;
+	}
+      VEC_truncate (operand_entry_t, *ops, j);
+    }
+
+  XDELETEVEC (ranges);
+}
+
 /* Return true if OPERAND is defined by a PHI node which uses the LHS
    of STMT in it's operands.  This is also known as a "destructive
    update" operation.  */
@@ -2447,6 +2864,9 @@ reassociate_bb (basic_block bb)
 		  optimize_ops_list (rhs_code, &ops);
 		}
 
+	      if (rhs_code == BIT_IOR_EXPR || rhs_code == BIT_AND_EXPR)
+		optimize_range_tests (rhs_code, &ops);
+
 	      if (VEC_length (operand_entry_t, ops) == 1)
 		{
 		  if (dump_file && (dump_flags & TDF_DETAILS))
--- gcc/testsuite/gcc.dg/pr46309.c.jj	2011-09-29 14:03:28.000000000 +0200
+++ gcc/testsuite/gcc.dg/pr46309.c	2011-09-29 14:08:32.000000000 +0200
@@ -0,0 +1,66 @@
+/* PR tree-optimization/46309 */
+/* { dg-do compile } */
+/* { dg-options "-O2 -fdump-tree-reassoc-details" } */
+
+int
+f1 (int a)
+{
+  int v1 = (a == 3);
+  int v2 = (a == 1);
+  int v3 = (a == 4);
+  int v4 = (a == 2);
+  return v1 || v2 || v3 || v4;
+}
+
+int
+f2 (int a)
+{
+  int v1 = (a == 1);
+  int v2 = (a == 2);
+  int v3 = (a == 3);
+  int v4 = (a == 4);
+  return v1 || v2 || v3 || v4;
+}
+
+int
+f3 (int a)
+{
+  int v1 = (a == 3);
+  int v2 = (a == 1);
+  return v1 || v2;
+}
+
+int
+f4 (int a)
+{
+  int v1 = (a == 1);
+  int v2 = (a == 2);
+  return v1 || v2;
+}
+
+int
+f5 (unsigned int a)
+{
+  int v1 = (a <= 31);
+  int v2 = (a >= 64 && a <= 95);
+  return v1 || v2;
+}
+
+int
+f6 (unsigned int a)
+{
+  int v1 = (a <= 31);
+  int v2 = (a >= 64 && a <= 95);
+  int v3 = (a >= 128 && a <= 159);
+  int v4 = (a >= 192 && a <= 223);
+  return v1 || v2 || v3 || v4;
+}
+
+/* { dg-final { scan-tree-dump-times "Optimizing range tests a_\[0-9\]*.D. -.1, 1. and -.2, 2. and -.3, 3. and -.4, 4.\[\n\r\]* into" 2 "reassoc1" } } */
+/* { dg-final { scan-tree-dump-times "Optimizing range tests a_\[0-9\]*.D. -.1, 1. and -.3, 3.\[\n\r\]* into" 1 "reassoc1" } } */
+/* { dg-final { scan-tree-dump-times "Optimizing range tests a_\[0-9\]*.D. -.1, 1. and -.2, 2.\[\n\r\]* into" 1 "reassoc1" } } */
+/* { dg-final { scan-tree-dump-times "Optimizing range tests a_\[0-9\]*.D. -.0, 31. and -.64, 95.\[\n\r\]* into" 2 "reassoc1" } } */
+/* { dg-final { scan-tree-dump-times "Optimizing range tests a_\[0-9\]*.D. -.128, 159. and -.192, 223.\[\n\r\]* into" 1 "reassoc1" } } */
+/* { dg-final { scan-tree-dump-times "Optimizing range tests D.\[0-9\]*_\[0-9\]* -.0, 31. and -.128, 159.\[\n\r\]* into" 1 "reassoc2" } } */
+/* { dg-final { cleanup-tree-dump "reassoc1" } } */
+/* { dg-final { cleanup-tree-dump "reassoc2" } } */

	Jakub


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]