This is the mail archive of the gcc-patches@gcc.gnu.org mailing list for the GCC project.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]
Other format: [Raw text]

libstdc++/8230


Gaby?

tested x86/linux

2002-11-15  Benjamin Kosnik  <bkoz@redhat.com>
            Gabriel Dos Reis  <gdr@integrable-solutions.net>

	PR libstdc++/8230
	* include/bits/stl_alloc.h: Use builtin_expect for the most
	obvious limit checks.
	(__default_alloc_template::allocate): Check for null, throw
	bad_alloc.
	* include/bits/vector.tcc: Formatting tweaks.
	* include/bits/stl_vector.h: Same.	
	* testsuite/20_util/allocator_members.cc (test02): Add.

Index: include/bits/stl_alloc.h
===================================================================
RCS file: /cvs/gcc/gcc/libstdc++-v3/include/bits/stl_alloc.h,v
retrieving revision 1.25
diff -c -p -r1.25 stl_alloc.h
*** include/bits/stl_alloc.h	18 Oct 2002 20:52:55 -0000	1.25
--- include/bits/stl_alloc.h	16 Nov 2002 01:38:10 -0000
*************** namespace std
*** 139,145 ****
        allocate(size_t __n)
        {
          void* __result = malloc(__n);
!         if (0 == __result) __result = _S_oom_malloc(__n);
          return __result;
        }
  
--- 139,146 ----
        allocate(size_t __n)
        {
          void* __result = malloc(__n);
!         if (__builtin_expect(__result == 0, 0))
! 	  __result = _S_oom_malloc(__n);
          return __result;
        }
  
*************** namespace std
*** 152,158 ****
        reallocate(void* __p, size_t /* old_sz */, size_t __new_sz)
        {
          void* __result = realloc(__p, __new_sz);
!         if (0 == __result)
            __result = _S_oom_realloc(__p, __new_sz);
          return __result;
        }
--- 153,159 ----
        reallocate(void* __p, size_t /* old_sz */, size_t __new_sz)
        {
          void* __result = realloc(__p, __new_sz);
!         if (__builtin_expect(__result == 0, 0))
            __result = _S_oom_realloc(__p, __new_sz);
          return __result;
        }
*************** namespace std
*** 181,188 ****
        for (;;)
          {
            __my_malloc_handler = __malloc_alloc_oom_handler;
!           if (0 == __my_malloc_handler)
!             std::__throw_bad_alloc();
            (*__my_malloc_handler)();
            __result = malloc(__n);
            if (__result)
--- 182,189 ----
        for (;;)
          {
            __my_malloc_handler = __malloc_alloc_oom_handler;
!           if (__builtin_expect(__my_malloc_handler == 0, 0))
!             __throw_bad_alloc();
            (*__my_malloc_handler)();
            __result = malloc(__n);
            if (__result)
*************** namespace std
*** 202,209 ****
        for (;;)
          {
            __my_malloc_handler = __malloc_alloc_oom_handler;
!           if (0 == __my_malloc_handler)
!             std::__throw_bad_alloc();
            (*__my_malloc_handler)();
            __result = realloc(__p, __n);
            if (__result)
--- 203,210 ----
        for (;;)
          {
            __my_malloc_handler = __malloc_alloc_oom_handler;
!           if (__builtin_expect(__my_malloc_handler == 0, 0))
!             __throw_bad_alloc();
            (*__my_malloc_handler)();
            __result = realloc(__p, __n);
            if (__result)
*************** namespace std
*** 232,238 ****
      public:
        static _Tp*
        allocate(size_t __n)
!       { return 0 == __n ? 0 : (_Tp*) _Alloc::allocate(__n * sizeof (_Tp)); }
    
        static _Tp*
        allocate()
--- 233,244 ----
      public:
        static _Tp*
        allocate(size_t __n)
!       {
! 	_Tp* __ret = 0;
! 	if (__n)
! 	  __ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
! 	return __ret;
!       }
    
        static _Tp*
        allocate()
*************** namespace std
*** 293,301 ****
        {
          char* __real_p = (char*)__p - (int) _S_extra;
          assert(*(size_t*)__real_p == __old_sz);
!         char* __result = (char*)
!           _Alloc::reallocate(__real_p, __old_sz + (int) _S_extra,
!                              __new_sz + (int) _S_extra);
          *(size_t*)__result = __new_sz;
          return __result + (int) _S_extra;
        }
--- 299,307 ----
        {
          char* __real_p = (char*)__p - (int) _S_extra;
          assert(*(size_t*)__real_p == __old_sz);
!         char* __result = (char*) _Alloc::reallocate(__real_p, 
! 						    __old_sz + (int) _S_extra,
! 						    __new_sz + (int) _S_extra);
          *(size_t*)__result = __new_sz;
          return __result + (int) _S_extra;
        }
*************** namespace std
*** 362,368 ****
  
        static size_t
        _S_freelist_index(size_t __bytes)
!       { return (((__bytes) + (size_t)_ALIGN-1)/(size_t)_ALIGN - 1); }
  
        // Returns an object of size __n, and optionally adds to size __n
        // free list.
--- 368,374 ----
  
        static size_t
        _S_freelist_index(size_t __bytes)
!       { return (((__bytes) + (size_t)_ALIGN - 1)/(size_t)_ALIGN - 1); }
  
        // Returns an object of size __n, and optionally adds to size __n
        // free list.
*************** namespace std
*** 402,408 ****
  	    else
  	      __atomic_add(&_S_force_new, -1);
  	    // Trust but verify...
! 	    assert (_S_force_new != 0);
  	  }
  
  	if ((__n > (size_t) _MAX_BYTES) || (_S_force_new > 0))
--- 408,414 ----
  	    else
  	      __atomic_add(&_S_force_new, -1);
  	    // Trust but verify...
! 	    assert(_S_force_new != 0);
  	  }
  
  	if ((__n > (size_t) _MAX_BYTES) || (_S_force_new > 0))
*************** namespace std
*** 416,428 ****
  	    // unwinding.
  	    _Lock __lock_instance;
  	    _Obj* __restrict__ __result = *__my_free_list;
! 	    if (__result == 0)
  	      __ret = _S_refill(_S_round_up(__n));
  	    else
  	      {
  		*__my_free_list = __result -> _M_free_list_link;
  		__ret = __result;
! 	      }
  	  }
  	return __ret;
        }
--- 422,436 ----
  	    // unwinding.
  	    _Lock __lock_instance;
  	    _Obj* __restrict__ __result = *__my_free_list;
! 	    if (__builtin_expect(__result == 0, 0))
  	      __ret = _S_refill(_S_round_up(__n));
  	    else
  	      {
  		*__my_free_list = __result -> _M_free_list_link;
  		__ret = __result;
! 	      }	    
! 	    if (__builtin_expect(__ret == 0, 0))
! 	      __throw_bad_alloc();
  	  }
  	return __ret;
        }
*************** namespace std
*** 510,516 ****
                *__my_free_list = (_Obj*)_S_start_free;
              }
            _S_start_free = (char*) __new_alloc::allocate(__bytes_to_get);
!           if (0 == _S_start_free)
              {
                size_t __i;
                _Obj* volatile* __my_free_list;
--- 518,524 ----
                *__my_free_list = (_Obj*)_S_start_free;
              }
            _S_start_free = (char*) __new_alloc::allocate(__bytes_to_get);
!           if (_S_start_free == 0)
              {
                size_t __i;
                _Obj* volatile* __my_free_list;
*************** namespace std
*** 523,529 ****
                  {
                    __my_free_list = _S_free_list + _S_freelist_index(__i);
                    __p = *__my_free_list;
!                   if (0 != __p)
                      {
                        *__my_free_list = __p -> _M_free_list_link;
                        _S_start_free = (char*)__p;
--- 531,537 ----
                  {
                    __my_free_list = _S_free_list + _S_freelist_index(__i);
                    __p = *__my_free_list;
!                   if (__p != 0)
                      {
                        *__my_free_list = __p -> _M_free_list_link;
                        _S_start_free = (char*)__p;
*************** namespace std
*** 569,585 ****
        *__my_free_list = __next_obj = (_Obj*)(__chunk + __n);
        for (__i = 1; ; __i++)
          {
!           __current_obj = __next_obj;
            __next_obj = (_Obj*)((char*)__next_obj + __n);
!           if (__nobjs - 1 == __i)
!             {
!               __current_obj -> _M_free_list_link = 0;
!               break;
!             }
!           else
!             __current_obj -> _M_free_list_link = __next_obj;
!         }
!       return(__result);
      }
  
  
--- 577,593 ----
        *__my_free_list = __next_obj = (_Obj*)(__chunk + __n);
        for (__i = 1; ; __i++)
          {
! 	  __current_obj = __next_obj;
            __next_obj = (_Obj*)((char*)__next_obj + __n);
! 	  if (__nobjs - 1 == __i)
! 	    {
! 	      __current_obj -> _M_free_list_link = 0;
! 	      break;
! 	    }
! 	  else
! 	    __current_obj -> _M_free_list_link = __next_obj;
! 	}
!       return __result;
      }
  
  
*************** namespace std
*** 600,606 ****
        __copy_sz = __new_sz > __old_sz? __old_sz : __new_sz;
        memcpy(__result, __p, __copy_sz);
        deallocate(__p, __old_sz);
!       return(__result);
      }
  #endif
  
--- 608,614 ----
        __copy_sz = __new_sz > __old_sz? __old_sz : __new_sz;
        memcpy(__result, __p, __copy_sz);
        deallocate(__p, __old_sz);
!       return __result;
      }
  #endif
  
*************** namespace std
*** 669,681 ****
        const_pointer
        address(const_reference __x) const { return &__x; }
  
!       // __n is permitted to be 0.  The C++ standard says nothing about what
!       // the return value is when __n == 0.
        _Tp*
        allocate(size_type __n, const void* = 0)
        {
!         return __n != 0
!           ? static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp))) : 0;
        }
  
        // __p is not permitted to be a null pointer.
--- 677,696 ----
        const_pointer
        address(const_reference __x) const { return &__x; }
  
!       // NB: __n is permitted to be 0.  The C++ standard says nothing
!       // about what the return value is when __n == 0.
        _Tp*
        allocate(size_type __n, const void* = 0)
        {
! 	_Tp* __ret = 0;
! 	if (__n)
! 	  {
! 	    if (__n <= this->max_size())
! 	      __ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
! 	    else
! 	      __throw_bad_alloc();
! 	  }
! 	return __ret;
        }
  
        // __p is not permitted to be a null pointer.
*************** namespace std
*** 719,730 ****
  
    /**
     *  @if maint
!    *  Allocator adaptor to turn an "SGI" style allocator (e.g., __alloc,
!    *  __malloc_alloc_template) into a "standard" conforming allocator.  Note
!    *  that this adaptor does *not* assume that all objects of the underlying
!    *  alloc class are identical, nor does it assume that all of the underlying
!    *  alloc's member functions are static member functions.  Note, also, that
!    *  __allocator<_Tp, __alloc> is essentially the same thing as allocator<_Tp>.
     *  @endif
     *  (See @link Allocators allocators info @endlink for more.)
     */
--- 734,746 ----
  
    /**
     *  @if maint
!    *  Allocator adaptor to turn an "SGI" style allocator (e.g.,
!    *  __alloc, __malloc_alloc_template) into a "standard" conforming
!    *  allocator.  Note that this adaptor does *not* assume that all
!    *  objects of the underlying alloc class are identical, nor does it
!    *  assume that all of the underlying alloc's member functions are
!    *  static member functions.  Note, also, that __allocator<_Tp,
!    *  __alloc> is essentially the same thing as allocator<_Tp>.
     *  @endif
     *  (See @link Allocators allocators info @endlink for more.)
     */
*************** namespace std
*** 732,738 ****
      struct __allocator
      {
        _Alloc __underlying_alloc;
! 
        typedef size_t    size_type;
        typedef ptrdiff_t difference_type;
        typedef _Tp*       pointer;
--- 748,754 ----
      struct __allocator
      {
        _Alloc __underlying_alloc;
!       
        typedef size_t    size_type;
        typedef ptrdiff_t difference_type;
        typedef _Tp*       pointer;
*************** namespace std
*** 761,789 ****
        const_pointer
        address(const_reference __x) const { return &__x; }
  
!     // __n is permitted to be 0.
!     _Tp*
!     allocate(size_type __n, const void* = 0)
!     {
!       return __n != 0
!         ? static_cast<_Tp*>(__underlying_alloc.allocate(__n * sizeof(_Tp)))
!         : 0;
!     }
  
!     // __p is not permitted to be a null pointer.
!     void
!     deallocate(pointer __p, size_type __n)
!     { __underlying_alloc.deallocate(__p, __n * sizeof(_Tp)); }
! 
!     size_type
!     max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
! 
!     void
!     construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
! 
!     void
!     destroy(pointer __p) { __p->~_Tp(); }
!   };
  
    template<typename _Alloc>
      struct __allocator<void, _Alloc>
--- 777,807 ----
        const_pointer
        address(const_reference __x) const { return &__x; }
  
!       // NB: __n is permitted to be 0.  The C++ standard says nothing
!       // about what the return value is when __n == 0.
!       _Tp*
!       allocate(size_type __n, const void* = 0)
!       {
! 	_Tp* __ret = 0;
! 	if (__n)
! 	  __ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
! 	return __ret;
!       }
  
!       // __p is not permitted to be a null pointer.
!       void
!       deallocate(pointer __p, size_type __n)
!       { __underlying_alloc.deallocate(__p, __n * sizeof(_Tp)); }
!       
!       size_type
!       max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
!       
!       void
!       construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
!       
!       void
!       destroy(pointer __p) { __p->~_Tp(); }
!     };
  
    template<typename _Alloc>
      struct __allocator<void, _Alloc>
Index: include/bits/stl_vector.h
===================================================================
RCS file: /cvs/gcc/gcc/libstdc++-v3/include/bits/stl_vector.h,v
retrieving revision 1.29
diff -c -p -r1.29 stl_vector.h
*** include/bits/stl_vector.h	10 Sep 2002 23:19:10 -0000	1.29
--- include/bits/stl_vector.h	16 Nov 2002 01:38:12 -0000
*************** namespace std
*** 73,134 ****
     *  See bits/stl_deque.h's _Deque_alloc_base for an explanation.
     *  @endif
    */
!   template <typename _Tp, typename _Allocator, bool _IsStatic>
      class _Vector_alloc_base
!   {
!   public:
!     typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
!             allocator_type;
!   
!     allocator_type
!     get_allocator() const { return _M_data_allocator; }
    
!     _Vector_alloc_base(const allocator_type& __a)
        : _M_data_allocator(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
!     {}
    
!   protected:
!     allocator_type _M_data_allocator;
!     _Tp*           _M_start;
!     _Tp*           _M_finish;
!     _Tp*           _M_end_of_storage;
!   
!     _Tp*
!     _M_allocate(size_t __n) { return _M_data_allocator.allocate(__n); }
!   
!     void
!     _M_deallocate(_Tp* __p, size_t __n)
!     { if (__p) _M_data_allocator.deallocate(__p, __n); }
!   };
    
!   /// @if maint Specialization for instanceless allocators.  @endif
!   template <typename _Tp, typename _Allocator>
!     class _Vector_alloc_base<_Tp, _Allocator, true>
!   {
!   public:
!     typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
!             allocator_type;
    
!     allocator_type
!     get_allocator() const { return allocator_type(); }
    
!     _Vector_alloc_base(const allocator_type&)
        : _M_start(0), _M_finish(0), _M_end_of_storage(0)
!     {}
!   
!   protected:
!     _Tp* _M_start;
!     _Tp* _M_finish;
!     _Tp* _M_end_of_storage;
!   
!     typedef typename _Alloc_traits<_Tp, _Allocator>::_Alloc_type _Alloc_type;
    
!     _Tp*
!     _M_allocate(size_t __n) { return _Alloc_type::allocate(__n); }
    
!     void
!     _M_deallocate(_Tp* __p, size_t __n) { _Alloc_type::deallocate(__p, __n);}
!   };
    
    
    /**
--- 73,134 ----
     *  See bits/stl_deque.h's _Deque_alloc_base for an explanation.
     *  @endif
    */
!   template<typename _Tp, typename _Allocator, bool _IsStatic>
      class _Vector_alloc_base
!     {
!     public:
!       typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
!       allocator_type;
! 
!       allocator_type
!       get_allocator() const { return _M_data_allocator; }
    
!       _Vector_alloc_base(const allocator_type& __a)
        : _M_data_allocator(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
!       { }
    
!     protected:
!       allocator_type _M_data_allocator;
!       _Tp*           _M_start;
!       _Tp*           _M_finish;
!       _Tp*           _M_end_of_storage;
    
!       _Tp*
!       _M_allocate(size_t __n) { return _M_data_allocator.allocate(__n); }
    
!       void
!       _M_deallocate(_Tp* __p, size_t __n)
!       { if (__p) _M_data_allocator.deallocate(__p, __n); }
!     };
    
!   /// @if maint Specialization for instanceless allocators.  @endif
!   template<typename _Tp, typename _Allocator>
!     class _Vector_alloc_base<_Tp, _Allocator, true>
!     {
!     public:
!       typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
!              allocator_type;
!   
!       allocator_type
!       get_allocator() const { return allocator_type(); }
!       
!       _Vector_alloc_base(const allocator_type&)
        : _M_start(0), _M_finish(0), _M_end_of_storage(0)
!       { }
    
!     protected:
!       _Tp* _M_start;
!       _Tp* _M_finish;
!       _Tp* _M_end_of_storage;
!   
!       typedef typename _Alloc_traits<_Tp, _Allocator>::_Alloc_type _Alloc_type;
!       
!       _Tp*
!       _M_allocate(size_t __n) { return _Alloc_type::allocate(__n); }
    
!       void
!       _M_deallocate(_Tp* __p, size_t __n) { _Alloc_type::deallocate(__p, __n);}
!     };
    
    
    /**
*************** namespace std
*** 136,164 ****
     *  See bits/stl_deque.h's _Deque_base for an explanation.
     *  @endif
    */
!   template <typename _Tp, typename _Alloc>
      struct _Vector_base
      : public _Vector_alloc_base<_Tp, _Alloc,
                                  _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
-   {
-   public:
-     typedef _Vector_alloc_base<_Tp, _Alloc,
-                                _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
-             _Base;
-     typedef typename _Base::allocator_type allocator_type;
-   
-     _Vector_base(const allocator_type& __a)
-       : _Base(__a) {}
-     _Vector_base(size_t __n, const allocator_type& __a)
-       : _Base(__a)
      {
!       _M_start = _M_allocate(__n);
!       _M_finish = _M_start;
!       _M_end_of_storage = _M_start + __n;
!     }
!   
!     ~_Vector_base() { _M_deallocate(_M_start, _M_end_of_storage - _M_start); }
!   };
    
    
    /**
--- 136,166 ----
     *  See bits/stl_deque.h's _Deque_base for an explanation.
     *  @endif
    */
!   template<typename _Tp, typename _Alloc>
      struct _Vector_base
      : public _Vector_alloc_base<_Tp, _Alloc,
                                  _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
      {
!     public:
!       typedef _Vector_alloc_base<_Tp, _Alloc,
! 				 _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
!          _Base;
!       typedef typename _Base::allocator_type allocator_type;
! 
!       _Vector_base(const allocator_type& __a)
!       : _Base(__a) { }
!       
!       _Vector_base(size_t __n, const allocator_type& __a)
!       : _Base(__a)
!       {
! 	_M_start = _M_allocate(__n);
! 	_M_finish = _M_start;
! 	_M_end_of_storage = _M_start + __n;
!       }
!       
!       ~_Vector_base() 
!       { _M_deallocate(_M_start, _M_end_of_storage - _M_start); }
!     };
    
    
    /**
*************** namespace std
*** 179,901 ****
     *  and saves the user from worrying about memory and size allocation.
     *  Subscripting ( @c [] ) access is also provided as with C-style arrays.
    */
!   template <typename _Tp, typename _Alloc = allocator<_Tp> >
      class vector : protected _Vector_base<_Tp, _Alloc>
!   {
!     // concept requirements
!     __glibcpp_class_requires(_Tp, _SGIAssignableConcept)
!   
!     typedef _Vector_base<_Tp, _Alloc>                     _Base;
!     typedef vector<_Tp, _Alloc>                           vector_type;
!   
!   public:
!     typedef _Tp 						value_type;
!     typedef value_type* 					pointer;
!     typedef const value_type* 				const_pointer;
!     typedef __gnu_cxx::__normal_iterator<pointer, vector_type> 	iterator;
!     typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
!                                                           const_iterator;
!     typedef std::reverse_iterator<const_iterator>    const_reverse_iterator;
!     typedef std::reverse_iterator<iterator>                reverse_iterator;
!     typedef value_type& 					reference;
!     typedef const value_type& 				const_reference;
!     typedef size_t 					size_type;
!     typedef ptrdiff_t 					difference_type;
!     typedef typename _Base::allocator_type                allocator_type;
!   
!   protected:
!     /** @if maint
!      *  These two functions and three data members are all from the top-most
!      *  base class, which varies depending on the type of %allocator.  They
!      *  should be pretty self-explanatory, as %vector uses a simple contiguous 
!      *  allocation scheme.
!      *  @endif
!     */
!     using _Base::_M_allocate;
!     using _Base::_M_deallocate;
!     using _Base::_M_start;
!     using _Base::_M_finish;
!     using _Base::_M_end_of_storage;
!   
!   public:
!     // [23.2.4.1] construct/copy/destroy
!     // (assign() and get_allocator() are also listed in this section)
!     /**
!      *  @brief  Default constructor creates no elements.
!     */
!     explicit
!     vector(const allocator_type& __a = allocator_type())
!       : _Base(__a) {}
!   
!     /**
!      *  @brief  Create a %vector with copies of an exemplar element.
!      *  @param  n  The number of elements to initially create.
!      *  @param  value  An element to copy.
!      * 
!      *  This constructor fills the %vector with @a n copies of @a value.
!     */
!     vector(size_type __n, const value_type& __value,
!            const allocator_type& __a = allocator_type())
        : _Base(__n, __a)
        { _M_finish = uninitialized_fill_n(_M_start, __n, __value); }
    
!     /**
!      *  @brief  Create a %vector with default elements.
!      *  @param  n  The number of elements to initially create.
!      * 
!      *  This constructor fills the %vector with @a n copies of a
!      *  default-constructed element.
!     */
!     explicit
!     vector(size_type __n)
        : _Base(__n, allocator_type())
        { _M_finish = uninitialized_fill_n(_M_start, __n, value_type()); }
!   
!     /**
!      *  @brief  %Vector copy constructor.
!      *  @param  x  A %vector of identical element and allocator types.
!      * 
!      *  The newly-created %vector uses a copy of the allocation object used
!      *  by @a x.  All the elements of @a x are copied, but any extra memory in
!      *  @a x (for fast expansion) will not be copied.
!     */
!     vector(const vector& __x)
        : _Base(__x.size(), __x.get_allocator())
        { _M_finish = uninitialized_copy(__x.begin(), __x.end(), _M_start); }
    
!     /**
!      *  @brief  Builds a %vector from a range.
!      *  @param  first  An input iterator.
!      *  @param  last  An input iterator.
!      * 
!      *  Create a %vector consisting of copies of the elements from [first,last).
!      *
!      *  If the iterators are forward, bidirectional, or random-access, then
!      *  this will call the elements' copy constructor N times (where N is
!      *  distance(first,last)) and do no memory reallocation.  But if only
!      *  input iterators are used, then this will do at most 2N calls to the
!      *  copy constructor, and logN memory reallocations.
!     */
!     template <typename _InputIterator>
!       vector(_InputIterator __first, _InputIterator __last,
!              const allocator_type& __a = allocator_type())
!         : _Base(__a)
!       {
!         // Check whether it's an integral type.  If so, it's not an iterator.
!         typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
!         _M_initialize_dispatch(__first, __last, _Integral());
!       }
    
!     /**
!      *  The dtor only erases the elements, and note that if the elements
!      *  themselves are pointers, the pointed-to memory is not touched in any
!      *  way.  Managing the pointer is the user's responsibilty.
!     */
!     ~vector() { _Destroy(_M_start, _M_finish); }
!   
!     /**
!      *  @brief  %Vector assignment operator.
!      *  @param  x  A %vector of identical element and allocator types.
!      * 
!      *  All the elements of @a x are copied, but any extra memory in @a x (for
!      *  fast expansion) will not be copied.  Unlike the copy constructor, the
!      *  allocator object is not copied.
!     */
!     vector&
!     operator=(const vector& __x);
!   
!     /**
!      *  @brief  Assigns a given value to a %vector.
!      *  @param  n  Number of elements to be assigned.
!      *  @param  val  Value to be assigned.
!      *
!      *  This function fills a %vector with @a n copies of the given value.
!      *  Note that the assignment completely changes the %vector and that the
!      *  resulting %vector's size is the same as the number of elements assigned.
!      *  Old data may be lost.
!     */
!     void
!     assign(size_type __n, const value_type& __val) { _M_fill_assign(__n, __val); }
!   
!     /**
!      *  @brief  Assigns a range to a %vector.
!      *  @param  first  An input iterator.
!      *  @param  last   An input iterator.
!      *
!      *  This function fills a %vector with copies of the elements in the
!      *  range [first,last).
!      *
!      *  Note that the assignment completely changes the %vector and that the
!      *  resulting %vector's size is the same as the number of elements assigned.
!      *  Old data may be lost.
!     */
!     template<typename _InputIterator>
        void
!       assign(_InputIterator __first, _InputIterator __last)
        {
!         // Check whether it's an integral type.  If so, it's not an iterator.
!         typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
!         _M_assign_dispatch(__first, __last, _Integral());
        }
    
!     /// Get a copy of the memory allocation object.
!     allocator_type
!     get_allocator() const { return _Base::get_allocator(); }
!   
!     // iterators
!     /**
!      *  Returns a read/write iterator that points to the first element in the
!      *  %vector.  Iteration is done in ordinary element order.
!     */
!     iterator
!     begin() { return iterator (_M_start); }
!   
!     /**
!      *  Returns a read-only (constant) iterator that points to the first element
!      *  in the %vector.  Iteration is done in ordinary element order.
!     */
!     const_iterator
!     begin() const { return const_iterator (_M_start); }
!   
!     /**
!      *  Returns a read/write iterator that points one past the last element in
!      *  the %vector.  Iteration is done in ordinary element order.
!     */
!     iterator
!     end() { return iterator (_M_finish); }
!   
!     /**
!      *  Returns a read-only (constant) iterator that points one past the last
!      *  element in the %vector.  Iteration is done in ordinary element order.
!     */
!     const_iterator
!     end() const { return const_iterator (_M_finish); }
!   
!     /**
!      *  Returns a read/write reverse iterator that points to the last element in
!      *  the %vector.  Iteration is done in reverse element order.
!     */
!     reverse_iterator
!     rbegin() { return reverse_iterator(end()); }
!   
!     /**
!      *  Returns a read-only (constant) reverse iterator that points to the last
!      *  element in the %vector.  Iteration is done in reverse element order.
!     */
!     const_reverse_iterator
!     rbegin() const { return const_reverse_iterator(end()); }
!   
!     /**
!      *  Returns a read/write reverse iterator that points to one before the
!      *  first element in the %vector.  Iteration is done in reverse element
!      *  order.
!     */
!     reverse_iterator
!     rend() { return reverse_iterator(begin()); }
!   
!     /**
!      *  Returns a read-only (constant) reverse iterator that points to one
!      *  before the first element in the %vector.  Iteration is done in reverse
!      *  element order.
!     */
!     const_reverse_iterator
!     rend() const { return const_reverse_iterator(begin()); }
!   
!     // [23.2.4.2] capacity
!     /**  Returns the number of elements in the %vector.  */
!     size_type
!     size() const { return size_type(end() - begin()); }
!   
!     /**  Returns the size() of the largest possible %vector.  */
!     size_type
!     max_size() const { return size_type(-1) / sizeof(value_type); }
!   
!     /**
!      *  @brief  Resizes the %vector to the specified number of elements.
!      *  @param  new_size  Number of elements the %vector should contain.
!      *  @param  x  Data with which new elements should be populated.
!      *
!      *  This function will %resize the %vector to the specified number of
!      *  elements.  If the number is smaller than the %vector's current size the
!      *  %vector is truncated, otherwise the %vector is extended and new elements
!      *  are populated with given data.
!     */
!     void
!     resize(size_type __new_size, const value_type& __x)
!     {
!       if (__new_size < size())
!         erase(begin() + __new_size, end());
!       else
!         insert(end(), __new_size - size(), __x);
!     }
!   
!     /**
!      *  @brief  Resizes the %vector to the specified number of elements.
!      *  @param  new_size  Number of elements the %vector should contain.
!      *
!      *  This function will resize the %vector to the specified number of
!      *  elements.  If the number is smaller than the %vector's current size the
!      *  %vector is truncated, otherwise the %vector is extended and new elements
!      *  are default-constructed.
!     */
!     void
!     resize(size_type __new_size) { resize(__new_size, value_type()); }
!   
!     /**
!      *  Returns the total number of elements that the %vector can hold before
!      *  needing to allocate more memory.
!     */
!     size_type
!     capacity() const
!     { return size_type(const_iterator(_M_end_of_storage) - begin()); }
!   
!     /**
!      *  Returns true if the %vector is empty.  (Thus begin() would equal end().)
!     */
!     bool
!     empty() const { return begin() == end(); }
!   
!     /**
!      *  @brief  Attempt to preallocate enough memory for specified number of
!      *          elements.
!      *  @param  n  Number of elements required.
!      *  @throw  std::length_error  If @a n exceeds @c max_size().
!      *
!      *  This function attempts to reserve enough memory for the %vector to hold
!      *  the specified number of elements.  If the number requested is more than
!      *  max_size(), length_error is thrown.
!      *
!      *  The advantage of this function is that if optimal code is a necessity
!      *  and the user can determine the number of elements that will be required,
!      *  the user can reserve the memory in %advance, and thus prevent a possible
!      *  reallocation of memory and copying of %vector data.
!     */
!     void
!     reserve(size_type __n);
!   
!     // element access
!     /**
!      *  @brief  Subscript access to the data contained in the %vector.
!      *  @param  n  The index of the element for which data should be accessed.
!      *  @return  Read/write reference to data.
!      *
!      *  This operator allows for easy, array-style, data access.
!      *  Note that data access with this operator is unchecked and out_of_range
!      *  lookups are not defined. (For checked lookups see at().)
!     */
!     reference
!     operator[](size_type __n) { return *(begin() + __n); }
!   
!     /**
!      *  @brief  Subscript access to the data contained in the %vector.
!      *  @param  n  The index of the element for which data should be accessed.
!      *  @return  Read-only (constant) reference to data.
!      *
!      *  This operator allows for easy, array-style, data access.
!      *  Note that data access with this operator is unchecked and out_of_range
!      *  lookups are not defined. (For checked lookups see at().)
!     */
!     const_reference
!     operator[](size_type __n) const { return *(begin() + __n); }
!   
!   protected:
!     /// @if maint Safety check used only from at().  @endif
!     void
!     _M_range_check(size_type __n) const
!     {
!       if (__n >= this->size())
!         __throw_out_of_range("vector [] access out of range");
!     }
!   
!   public:
!     /**
!      *  @brief  Provides access to the data contained in the %vector.
!      *  @param  n  The index of the element for which data should be accessed.
!      *  @return  Read/write reference to data.
!      *  @throw  std::out_of_range  If @a n is an invalid index.
!      *
!      *  This function provides for safer data access.  The parameter is first
!      *  checked that it is in the range of the vector.  The function throws
!      *  out_of_range if the check fails.
!     */
!     reference
!     at(size_type __n) { _M_range_check(__n); return (*this)[__n]; }
!   
!     /**
!      *  @brief  Provides access to the data contained in the %vector.
!      *  @param  n  The index of the element for which data should be accessed.
!      *  @return  Read-only (constant) reference to data.
!      *  @throw  std::out_of_range  If @a n is an invalid index.
!      *
!      *  This function provides for safer data access.  The parameter is first
!      *  checked that it is in the range of the vector.  The function throws
!      *  out_of_range if the check fails.
!     */
!     const_reference
!     at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; }
!   
!     /**
!      *  Returns a read/write reference to the data at the first element of the
!      *  %vector.
!     */
!     reference
!     front() { return *begin(); }
!   
!     /**
!      *  Returns a read-only (constant) reference to the data at the first
!      *  element of the %vector.
!     */
!     const_reference
!     front() const { return *begin(); }
!   
!     /**
!      *  Returns a read/write reference to the data at the last element of the
!      *  %vector.
!     */
!     reference
!     back() { return *(end() - 1); }
!   
!     /**
!      *  Returns a read-only (constant) reference to the data at the last
!      *  element of the %vector.
!     */
!     const_reference
!     back() const { return *(end() - 1); }
!   
!     // [23.2.4.3] modifiers
!     /**
!      *  @brief  Add data to the end of the %vector.
!      *  @param  x  Data to be added.
!      *
!      *  This is a typical stack operation.  The function creates an element at
!      *  the end of the %vector and assigns the given data to it.
!      *  Due to the nature of a %vector this operation can be done in constant
!      *  time if the %vector has preallocated space available.
!     */
!     void
!     push_back(const value_type& __x)
!     {
!       if (_M_finish != _M_end_of_storage)
        {
!         _Construct(_M_finish, __x);
!         ++_M_finish;
        }
!       else
!         _M_insert_aux(end(), __x);
!     }
!   
!     /**
!      *  @brief  Removes last element.
!      *
!      *  This is a typical stack operation. It shrinks the %vector by one.
!      *
!      *  Note that no data is returned, and if the last element's data is
!      *  needed, it should be retrieved before pop_back() is called.
!     */
!     void
!     pop_back()
!     {
!       --_M_finish;
!       _Destroy(_M_finish);
!     }
!   
!     /**
!      *  @brief  Inserts given value into %vector before specified iterator.
!      *  @param  position  An iterator into the %vector.
!      *  @param  x  Data to be inserted.
!      *  @return  An iterator that points to the inserted data.
!      *
!      *  This function will insert a copy of the given value before the specified
!      *  location.
!      *  Note that this kind of operation could be expensive for a %vector and if
!      *  it is frequently used the user should consider using std::list.
!     */
!     iterator
!     insert(iterator __position, const value_type& __x);
!   
!   #ifdef _GLIBCPP_DEPRECATED
!     /**
!      *  @brief  Inserts an element into the %vector.
!      *  @param  position  An iterator into the %vector.
!      *  @return  An iterator that points to the inserted element.
!      *
!      *  This function will insert a default-constructed element before the
!      *  specified location.  You should consider using
!      *  insert(position,value_type()) instead.
!      *  Note that this kind of operation could be expensive for a vector and if
!      *  it is frequently used the user should consider using std::list.
!      *
!      *  @note This was deprecated in 3.2 and will be removed in 3.4.  You must
!      *        define @c _GLIBCPP_DEPRECATED to make this visible in 3.2; see
!      *        c++config.h.
!     */
!     iterator
!     insert(iterator __position)
!     { return insert(__position, value_type()); }
!   #endif
!   
!     /**
!      *  @brief  Inserts a number of copies of given data into the %vector.
!      *  @param  position  An iterator into the %vector.
!      *  @param  n  Number of elements to be inserted.
!      *  @param  x  Data to be inserted.
!      *
!      *  This function will insert a specified number of copies of the given data
!      *  before the location specified by @a position.
!      *
!      *  Note that this kind of operation could be expensive for a %vector and if
!      *  it is frequently used the user should consider using std::list.
!     */
!     void
!     insert (iterator __pos, size_type __n, const value_type& __x)
!     { _M_fill_insert(__pos, __n, __x); }
!   
!     /**
!      *  @brief  Inserts a range into the %vector.
!      *  @param  pos  An iterator into the %vector.
!      *  @param  first  An input iterator.
!      *  @param  last   An input iterator.
!      *
!      *  This function will insert copies of the data in the range [first,last)
!      *  into the %vector before the location specified by @a pos.
!      *
!      *  Note that this kind of operation could be expensive for a %vector and if
!      *  it is frequently used the user should consider using std::list.
!     */
!     template<typename _InputIterator>
!       void
!       insert(iterator __pos, _InputIterator __first, _InputIterator __last)
!         {
!           // Check whether it's an integral type.  If so, it's not an iterator.
!           typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
!           _M_insert_dispatch(__pos, __first, __last, _Integral());
!         }
!   
!     /**
!      *  @brief  Remove element at given position.
!      *  @param  position  Iterator pointing to element to be erased.
!      *  @return  An iterator pointing to the next element (or end()).
!      *
!      *  This function will erase the element at the given position and thus
!      *  shorten the %vector by one.
!      *
!      *  Note This operation could be expensive and if it is frequently used the
!      *  user should consider using std::list.  The user is also cautioned that
!      *  this function only erases the element, and that if the element is itself
!      *  a pointer, the pointed-to memory is not touched in any way.  Managing
!      *  the pointer is the user's responsibilty.
!     */
!     iterator
!     erase(iterator __position);
!   
!     /**
!      *  @brief  Remove a range of elements.
!      *  @param  first  Iterator pointing to the first element to be erased.
!      *  @param  last  Iterator pointing to one past the last element to be
!      *                erased.
!      *  @return  An iterator pointing to the element pointed to by @a last
!      *           prior to erasing (or end()).
!      *
!      *  This function will erase the elements in the range [first,last) and
!      *  shorten the %vector accordingly.
!      *
!      *  Note This operation could be expensive and if it is frequently used the
!      *  user should consider using std::list.  The user is also cautioned that
!      *  this function only erases the elements, and that if the elements
!      *  themselves are pointers, the pointed-to memory is not touched in any
!      *  way.  Managing the pointer is the user's responsibilty.
!     */
!     iterator
!     erase(iterator __first, iterator __last);
!   
!     /**
!      *  @brief  Swaps data with another %vector.
!      *  @param  x  A %vector of the same element and allocator types.
!      *
!      *  This exchanges the elements between two vectors in constant time.
!      *  (Three pointers, so it should be quite fast.)
!      *  Note that the global std::swap() function is specialized such that
!      *  std::swap(v1,v2) will feed to this function.
!     */
!     void
!     swap(vector& __x)
!     {
!       std::swap(_M_start, __x._M_start);
!       std::swap(_M_finish, __x._M_finish);
!       std::swap(_M_end_of_storage, __x._M_end_of_storage);
!     }
!   
!     /**
!      *  Erases all the elements.  Note that this function only erases the
!      *  elements, and that if the elements themselves are pointers, the
!      *  pointed-to memory is not touched in any way.  Managing the pointer is
!      *  the user's responsibilty.
!     */
!     void
!     clear() { erase(begin(), end()); }
!   
!   protected:
!     /**
!      *  @if maint
!      *  Memory expansion handler.  Uses the member allocation function to
!      *  obtain @a n bytes of memory, and then copies [first,last) into it.
!      *  @endif
!     */
!     template <typename _ForwardIterator>
!     pointer
!       _M_allocate_and_copy(size_type __n,
!                            _ForwardIterator __first, _ForwardIterator __last)
!     {
!       pointer __result = _M_allocate(__n);
!       try
!         {
!           uninitialized_copy(__first, __last, __result);
!           return __result;
!         }
!       catch(...)
!         {
!   	_M_deallocate(__result, __n);
!   	__throw_exception_again;
!         }
!     }
!   
!   
!     // Internal constructor functions follow.
!   
!     // called by the range constructor to implement [23.1.1]/9
!     template<typename _Integer>
        void
!       _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
        {
!         _M_start = _M_allocate(__n);
!         _M_end_of_storage = _M_start + __n;
!         _M_finish = uninitialized_fill_n(_M_start, __n, __value);
        }
!   
!     // called by the range constructor to implement [23.1.1]/9
!     template<typename _InputIter>
        void
!       _M_initialize_dispatch(_InputIter __first, _InputIter __last,
! 	                     __false_type)
        {
!         typedef typename iterator_traits<_InputIter>::iterator_category
!                          _IterCategory;
!         _M_range_initialize(__first, __last, _IterCategory());
        }
!   
!     // called by the second initialize_dispatch above
!     template <typename _InputIterator>
!     void
!       _M_range_initialize(_InputIterator __first,
!                           _InputIterator __last, input_iterator_tag)
!     {
!       for ( ; __first != __last; ++__first)
!         push_back(*__first);
!     }
!   
!     // called by the second initialize_dispatch above
!     template <typename _ForwardIterator>
!     void _M_range_initialize(_ForwardIterator __first,
!                              _ForwardIterator __last, forward_iterator_tag)
!     {
!       size_type __n = distance(__first, __last);
!       _M_start = _M_allocate(__n);
!       _M_end_of_storage = _M_start + __n;
!       _M_finish = uninitialized_copy(__first, __last, _M_start);
!     }
!   
!   
!     // Internal assign functions follow.  The *_aux functions do the actual
!     // assignment work for the range versions.
!   
!     // called by the range assign to implement [23.1.1]/9
!     template<typename _Integer>
        void
!        _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
!        {
!          _M_fill_assign(static_cast<size_type>(__n),
!                         static_cast<value_type>(__val));
!        }
!   
!     // called by the range assign to implement [23.1.1]/9
!     template<typename _InputIter>
        void
!       _M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type)
        {
!         typedef typename iterator_traits<_InputIter>::iterator_category
!                          _IterCategory;
!         _M_assign_aux(__first, __last, _IterCategory());
        }
!   
!     // called by the second assign_dispatch above
!     template <typename _InputIterator>
!       void 
!       _M_assign_aux(_InputIterator __first, _InputIterator __last,
!   		  input_iterator_tag);
!   
!     // called by the second assign_dispatch above
!     template <typename _ForwardIterator>
!       void 
!       _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
!   		  forward_iterator_tag);
!   
!     // Called by assign(n,t), and the range assign when it turns out to be the
!     // same thing.
!     void
!     _M_fill_assign(size_type __n, const value_type& __val);
!   
!   
!     // Internal insert functions follow.
!   
!     // called by the range insert to implement [23.1.1]/9
!     template<typename _Integer>
        void
!       _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
!                          __true_type)
!       {
!         _M_fill_insert(__pos, static_cast<size_type>(__n),
!                               static_cast<value_type>(__val));
!       }
    
!     // called by the range insert to implement [23.1.1]/9
!     template<typename _InputIterator>
        void
!       _M_insert_dispatch(iterator __pos, _InputIterator __first,
!                          _InputIterator __last, __false_type)
!       {
!         typedef typename iterator_traits<_InputIterator>::iterator_category
!                          _IterCategory;
!         _M_range_insert(__pos, __first, __last, _IterCategory());
!       }
    
!     // called by the second insert_dispatch above
!     template <typename _InputIterator>
        void
!       _M_range_insert(iterator __pos,
!                       _InputIterator __first, _InputIterator __last,
!                       input_iterator_tag);
!   
!     // called by the second insert_dispatch above
!     template <typename _ForwardIterator>
!       void
!       _M_range_insert(iterator __pos,
!                       _ForwardIterator __first, _ForwardIterator __last,
!                       forward_iterator_tag);
!   
!     // Called by insert(p,n,x), and the range insert when it turns out to be
!     // the same thing.
!     void
!     _M_fill_insert (iterator __pos, size_type __n, const value_type& __x);
!   
!     // called by insert(p,x)
!     void
!     _M_insert_aux(iterator __position, const value_type& __x);
!   
!   #ifdef _GLIBCPP_DEPRECATED
!     // unused now (same situation as in deque)
!     void _M_insert_aux(iterator __position);
!   #endif
!   };
    
    
    /**
--- 181,924 ----
     *  and saves the user from worrying about memory and size allocation.
     *  Subscripting ( @c [] ) access is also provided as with C-style arrays.
    */
!   template<typename _Tp, typename _Alloc = allocator<_Tp> >
      class vector : protected _Vector_base<_Tp, _Alloc>
!     {
!       // Concept requirements.
!       __glibcpp_class_requires(_Tp, _SGIAssignableConcept)
!   
!       typedef _Vector_base<_Tp, _Alloc>                     _Base;
!       typedef vector<_Tp, _Alloc>                           vector_type;
!   
!     public:
!       typedef _Tp 						value_type;
!       typedef value_type* 					pointer;
!       typedef const value_type* 				const_pointer;
!       typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator;
!       typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
!       const_iterator;
!       typedef std::reverse_iterator<const_iterator>    	const_reverse_iterator;
!       typedef std::reverse_iterator<iterator>                reverse_iterator;
!       typedef value_type& 					reference;
!       typedef const value_type& 				const_reference;
!       typedef size_t 					size_type;
!       typedef ptrdiff_t 					difference_type;
!       typedef typename _Base::allocator_type                allocator_type;
!       
!     protected:
!       /** @if maint
!        *  These two functions and three data members are all from the
!        *  top-most base class, which varies depending on the type of
!        *  %allocator.  They should be pretty self-explanatory, as
!        *  %vector uses a simple contiguous allocation scheme.  @endif
!        */
!       using _Base::_M_allocate;
!       using _Base::_M_deallocate;
!       using _Base::_M_start;
!       using _Base::_M_finish;
!       using _Base::_M_end_of_storage;
!       
!     public:
!       // [23.2.4.1] construct/copy/destroy
!       // (assign() and get_allocator() are also listed in this section)
!       /**
!        *  @brief  Default constructor creates no elements.
!        */
!       explicit
!       vector(const allocator_type& __a = allocator_type())
!       : _Base(__a) { }
!   
!       /**
!        *  @brief  Create a %vector with copies of an exemplar element.
!        *  @param  n  The number of elements to initially create.
!        *  @param  value  An element to copy.
!        * 
!        *  This constructor fills the %vector with @a n copies of @a value.
!        */
!       vector(size_type __n, const value_type& __value,
! 	     const allocator_type& __a = allocator_type())
        : _Base(__n, __a)
        { _M_finish = uninitialized_fill_n(_M_start, __n, __value); }
    
!       /**
!        *  @brief  Create a %vector with default elements.
!        *  @param  n  The number of elements to initially create.
!        * 
!        *  This constructor fills the %vector with @a n copies of a
!        *  default-constructed element.
!        */
!       explicit
!       vector(size_type __n)
        : _Base(__n, allocator_type())
        { _M_finish = uninitialized_fill_n(_M_start, __n, value_type()); }
!       
!       /**
!        *  @brief  %Vector copy constructor.
!        *  @param  x  A %vector of identical element and allocator types.
!        * 
!        *  The newly-created %vector uses a copy of the allocation
!        *  object used by @a x.  All the elements of @a x are copied,
!        *  but any extra memory in
!        *  @a x (for fast expansion) will not be copied.
!        */
!       vector(const vector& __x)
        : _Base(__x.size(), __x.get_allocator())
        { _M_finish = uninitialized_copy(__x.begin(), __x.end(), _M_start); }
    
!       /**
!        *  @brief  Builds a %vector from a range.
!        *  @param  first  An input iterator.
!        *  @param  last  An input iterator.
!        * 
!        *  Create a %vector consisting of copies of the elements from
!        *  [first,last).
!        *
!        *  If the iterators are forward, bidirectional, or random-access, then
!        *  this will call the elements' copy constructor N times (where N is
!        *  distance(first,last)) and do no memory reallocation.  But if only
!        *  input iterators are used, then this will do at most 2N calls to the
!        *  copy constructor, and logN memory reallocations.
!        */
!       template<typename _InputIterator>
!         vector(_InputIterator __first, _InputIterator __last,
! 	       const allocator_type& __a = allocator_type())
! 	: _Base(__a)
!         {
! 	  // Check whether it's an integral type.  If so, it's not an iterator.
! 	  typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
! 	  _M_initialize_dispatch(__first, __last, _Integral());
! 	}
!       
!       /**
!        *  The dtor only erases the elements, and note that if the elements
!        *  themselves are pointers, the pointed-to memory is not touched in any
!        *  way.  Managing the pointer is the user's responsibilty.
!        */
!       ~vector() { _Destroy(_M_start, _M_finish); }
!   
!       /**
!        *  @brief  %Vector assignment operator.
!        *  @param  x  A %vector of identical element and allocator types.
!        * 
!        *  All the elements of @a x are copied, but any extra memory in
!        *  @a x (for fast expansion) will not be copied.  Unlike the
!        *  copy constructor, the allocator object is not copied.
!        */
!       vector&
!       operator=(const vector& __x);
!   
!       /**
!        *  @brief  Assigns a given value to a %vector.
!        *  @param  n  Number of elements to be assigned.
!        *  @param  val  Value to be assigned.
!        *
!        *  This function fills a %vector with @a n copies of the given
!        *  value.  Note that the assignment completely changes the
!        *  %vector and that the resulting %vector's size is the same as
!        *  the number of elements assigned.  Old data may be lost.
!        */
!       void
!       assign(size_type __n, const value_type& __val) 
!       { _M_fill_assign(__n, __val); }
    
!       /**
!        *  @brief  Assigns a range to a %vector.
!        *  @param  first  An input iterator.
!        *  @param  last   An input iterator.
!        *
!        *  This function fills a %vector with copies of the elements in the
!        *  range [first,last).
!        *
!        *  Note that the assignment completely changes the %vector and
!        *  that the resulting %vector's size is the same as the number
!        *  of elements assigned.  Old data may be lost.
!        */
!       template<typename _InputIterator>
!         void
!         assign(_InputIterator __first, _InputIterator __last)
!         {
! 	  // Check whether it's an integral type.  If so, it's not an iterator.
! 	  typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
! 	  _M_assign_dispatch(__first, __last, _Integral());
! 	}
!   
!       /// Get a copy of the memory allocation object.
!       allocator_type
!       get_allocator() const { return _Base::get_allocator(); }
!       
!       // iterators
!       /**
!        *  Returns a read/write iterator that points to the first element in the
!        *  %vector.  Iteration is done in ordinary element order.
!        */
!       iterator
!       begin() { return iterator (_M_start); }
!       
!       /**
!        *  Returns a read-only (constant) iterator that points to the
!        *  first element in the %vector.  Iteration is done in ordinary
!        *  element order.
!        */
!       const_iterator
!       begin() const { return const_iterator (_M_start); }
!       
!       /**
!        *  Returns a read/write iterator that points one past the last
!        *  element in the %vector.  Iteration is done in ordinary
!        *  element order.
!        */
!       iterator
!       end() { return iterator (_M_finish); }
!       
!       /**
!        *  Returns a read-only (constant) iterator that points one past the last
!        *  element in the %vector.  Iteration is done in ordinary element order.
!        */
!       const_iterator
!       end() const { return const_iterator (_M_finish); }
!       
!       /**
!        *  Returns a read/write reverse iterator that points to the
!        *  last element in the %vector.  Iteration is done in reverse
!        *  element order.
!        */
!       reverse_iterator
!       rbegin() { return reverse_iterator(end()); }
!       
!       /**
!        *  Returns a read-only (constant) reverse iterator that points
!        *  to the last element in the %vector.  Iteration is done in
!        *  reverse element order.
!        */
!       const_reverse_iterator
!       rbegin() const { return const_reverse_iterator(end()); }
!       
!       /**
!        *  Returns a read/write reverse iterator that points to one before the
!        *  first element in the %vector.  Iteration is done in reverse element
!        *  order.
!        */
!       reverse_iterator
!       rend() { return reverse_iterator(begin()); }
!       
!       /**
!        *  Returns a read-only (constant) reverse iterator that points
!        *  to one before the first element in the %vector.  Iteration
!        *  is done in reverse element order.
!        */
!       const_reverse_iterator
!       rend() const { return const_reverse_iterator(begin()); }
!   
!       // [23.2.4.2] capacity
!       /**  Returns the number of elements in the %vector.  */
!       size_type
!       size() const { return size_type(end() - begin()); }
!       
!       /**  Returns the size() of the largest possible %vector.  */
!       size_type
!       max_size() const { return size_type(-1) / sizeof(value_type); }
!       
!       /**
!        *  @brief  Resizes the %vector to the specified number of elements.
!        *  @param  new_size  Number of elements the %vector should contain.
!        *  @param  x  Data with which new elements should be populated.
!        *
!        *  This function will %resize the %vector to the specified
!        *  number of elements.  If the number is smaller than the
!        *  %vector's current size the %vector is truncated, otherwise
!        *  the %vector is extended and new elements are populated with
!        *  given data.
!        */
        void
!       resize(size_type __new_size, const value_type& __x)
        {
! 	if (__new_size < size())
! 	  erase(begin() + __new_size, end());
! 	else
! 	  insert(end(), __new_size - size(), __x);
        }
+       
+       /**
+        *  @brief  Resizes the %vector to the specified number of elements.
+        *  @param  new_size  Number of elements the %vector should contain.
+        *
+        *  This function will resize the %vector to the specified
+        *  number of elements.  If the number is smaller than the
+        *  %vector's current size the %vector is truncated, otherwise
+        *  the %vector is extended and new elements are
+        *  default-constructed.
+        */
+       void
+       resize(size_type __new_size) { resize(__new_size, value_type()); }
+       
+       /**
+        *  Returns the total number of elements that the %vector can hold before
+        *  needing to allocate more memory.
+        */
+       size_type
+       capacity() const
+       { return size_type(const_iterator(_M_end_of_storage) - begin()); }
+       
+       /**
+        *  Returns true if the %vector is empty.  (Thus begin() would
+        *  equal end().)
+        */
+       bool
+       empty() const { return begin() == end(); }
+       
+       /**
+        *  @brief  Attempt to preallocate enough memory for specified number of
+        *          elements.
+        *  @param  n  Number of elements required.
+        *  @throw  std::length_error  If @a n exceeds @c max_size().
+        *
+        *  This function attempts to reserve enough memory for the
+        *  %vector to hold the specified number of elements.  If the
+        *  number requested is more than max_size(), length_error is
+        *  thrown.
+        *
+        *  The advantage of this function is that if optimal code is a
+        *  necessity and the user can determine the number of elements
+        *  that will be required, the user can reserve the memory in
+        *  %advance, and thus prevent a possible reallocation of memory
+        *  and copying of %vector data.
+        */
+       void
+       reserve(size_type __n);
+       
+       // element access
+       /**
+        *  @brief  Subscript access to the data contained in the %vector.
+        *  @param  n  The index of the element for which data should be accessed.
+        *  @return  Read/write reference to data.
+        *
+        *  This operator allows for easy, array-style, data access.
+        *  Note that data access with this operator is unchecked and
+        *  out_of_range lookups are not defined. (For checked lookups
+        *  see at().)
+        */
+       reference
+       operator[](size_type __n) { return *(begin() + __n); }
+       
+       /**
+        *  @brief  Subscript access to the data contained in the %vector.
+        *  @param n The index of the element for which data should be
+        *  accessed.
+        *  @return  Read-only (constant) reference to data.
+        *
+        *  This operator allows for easy, array-style, data access.
+        *  Note that data access with this operator is unchecked and
+        *  out_of_range lookups are not defined. (For checked lookups
+        *  see at().)
+        */
+       const_reference
+       operator[](size_type __n) const { return *(begin() + __n); }
    
!     protected:
!       /// @if maint Safety check used only from at().  @endif
!       void
!       _M_range_check(size_type __n) const
        {
! 	if (__n >= this->size())
! 	  __throw_out_of_range("vector [] access out of range");
        }
!       
!     public:
!       /**
!        *  @brief  Provides access to the data contained in the %vector.
!        *  @param n The index of the element for which data should be
!        *  accessed.
!        *  @return  Read/write reference to data.
!        *  @throw  std::out_of_range  If @a n is an invalid index.
!        *
!        *  This function provides for safer data access.  The parameter is first
!        *  checked that it is in the range of the vector.  The function throws
!        *  out_of_range if the check fails.
!        */
!       reference
!       at(size_type __n) { _M_range_check(__n); return (*this)[__n]; }
!       
!       /**
!        *  @brief  Provides access to the data contained in the %vector.
!        *  @param n The index of the element for which data should be
!        *  accessed.
!        *  @return  Read-only (constant) reference to data.
!        *  @throw  std::out_of_range  If @a n is an invalid index.
!        *
!        *  This function provides for safer data access.  The parameter
!        *  is first checked that it is in the range of the vector.  The
!        *  function throws out_of_range if the check fails.
!        */
!       const_reference
!       at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; }
!       
!       /**
!        *  Returns a read/write reference to the data at the first
!        *  element of the %vector.
!        */
!       reference
!       front() { return *begin(); }
!       
!       /**
!        *  Returns a read-only (constant) reference to the data at the first
!        *  element of the %vector.
!        */
!       const_reference
!       front() const { return *begin(); }
!       
!       /**
!        *  Returns a read/write reference to the data at the last element of the
!        *  %vector.
!        */
!       reference
!       back() { return *(end() - 1); }
!       
!       /**
!        *  Returns a read-only (constant) reference to the data at the last
!        *  element of the %vector.
!        */
!       const_reference
!       back() const { return *(end() - 1); }
!   
!       // [23.2.4.3] modifiers
!       /**
!        *  @brief  Add data to the end of the %vector.
!        *  @param  x  Data to be added.
!        *
!        *  This is a typical stack operation.  The function creates an
!        *  element at the end of the %vector and assigns the given data
!        *  to it.  Due to the nature of a %vector this operation can be
!        *  done in constant time if the %vector has preallocated space
!        *  available.
!        */
        void
!       push_back(const value_type& __x)
        {
! 	if (_M_finish != _M_end_of_storage)
! 	  {
! 	    _Construct(_M_finish, __x);
! 	    ++_M_finish;
! 	  }
! 	else
! 	  _M_insert_aux(end(), __x);
        }
!       
!       /**
!        *  @brief  Removes last element.
!        *
!        *  This is a typical stack operation. It shrinks the %vector by one.
!        *
!        *  Note that no data is returned, and if the last element's data is
!        *  needed, it should be retrieved before pop_back() is called.
!        */
        void
!       pop_back()
        {
! 	--_M_finish;
! 	_Destroy(_M_finish);
        }
!       
!       /**
!        *  @brief  Inserts given value into %vector before specified iterator.
!        *  @param  position  An iterator into the %vector.
!        *  @param  x  Data to be inserted.
!        *  @return  An iterator that points to the inserted data.
!        *
!        *  This function will insert a copy of the given value before
!        *  the specified location.  Note that this kind of operation
!        *  could be expensive for a %vector and if it is frequently
!        *  used the user should consider using std::list.
!        */
!       iterator
!       insert(iterator __position, const value_type& __x);
!   
! #ifdef _GLIBCPP_DEPRECATED
!       /**
!        *  @brief  Inserts an element into the %vector.
!        *  @param  position  An iterator into the %vector.
!        *  @return  An iterator that points to the inserted element.
!        *
!        *  This function will insert a default-constructed element
!        *  before the specified location.  You should consider using
!        *  insert(position,value_type()) instead.  Note that this kind
!        *  of operation could be expensive for a vector and if it is
!        *  frequently used the user should consider using std::list.
!        *
!        *  @note This was deprecated in 3.2 and will be removed in 3.4.
!        *  You must define @c _GLIBCPP_DEPRECATED to make this visible
!        *  in 3.2; see c++config.h.
!        */
!       iterator
!       insert(iterator __position)
!       { return insert(__position, value_type()); }
! #endif
!       
!       /**
!        *  @brief  Inserts a number of copies of given data into the %vector.
!        *  @param  position  An iterator into the %vector.
!        *  @param  n  Number of elements to be inserted.
!        *  @param  x  Data to be inserted.
!        *
!        *  This function will insert a specified number of copies of
!        *  the given data before the location specified by @a position.
!        *
!        *  Note that this kind of operation could be expensive for a
!        *  %vector and if it is frequently used the user should
!        *  consider using std::list.
!        */
        void
!       insert(iterator __pos, size_type __n, const value_type& __x)
!       { _M_fill_insert(__pos, __n, __x); }
!       
!       /**
!        *  @brief  Inserts a range into the %vector.
!        *  @param  pos  An iterator into the %vector.
!        *  @param  first  An input iterator.
!        *  @param  last   An input iterator.
!        *
!        *  This function will insert copies of the data in the range
!        *  [first,last) into the %vector before the location specified
!        *  by @a pos.
!        *
!        *  Note that this kind of operation could be expensive for a
!        *  %vector and if it is frequently used the user should
!        *  consider using std::list.
!        */
!       template<typename _InputIterator>
!         void
!         insert(iterator __pos, _InputIterator __first, _InputIterator __last)
!         {
! 	  // Check whether it's an integral type.  If so, it's not an iterator.
! 	  typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
! 	  _M_insert_dispatch(__pos, __first, __last, _Integral());
! 	}
!       
!       /**
!        *  @brief  Remove element at given position.
!        *  @param  position  Iterator pointing to element to be erased.
!        *  @return  An iterator pointing to the next element (or end()).
!        *
!        *  This function will erase the element at the given position and thus
!        *  shorten the %vector by one.
!        *
!        *  Note This operation could be expensive and if it is
!        *  frequently used the user should consider using std::list.
!        *  The user is also cautioned that this function only erases
!        *  the element, and that if the element is itself a pointer,
!        *  the pointed-to memory is not touched in any way.  Managing
!        *  the pointer is the user's responsibilty.
!        */
!       iterator
!       erase(iterator __position);
!   
!       /**
!        *  @brief  Remove a range of elements.
!        *  @param  first  Iterator pointing to the first element to be erased.
!        *  @param  last  Iterator pointing to one past the last element to be
!        *                erased.
!        *  @return  An iterator pointing to the element pointed to by @a last
!        *           prior to erasing (or end()).
!        *
!        *  This function will erase the elements in the range [first,last) and
!        *  shorten the %vector accordingly.
!        *
!        *  Note This operation could be expensive and if it is
!        *  frequently used the user should consider using std::list.
!        *  The user is also cautioned that this function only erases
!        *  the elements, and that if the elements themselves are
!        *  pointers, the pointed-to memory is not touched in any way.
!        *  Managing the pointer is the user's responsibilty.
!        */
!       iterator
!       erase(iterator __first, iterator __last);
!       
!       /**
!        *  @brief  Swaps data with another %vector.
!        *  @param  x  A %vector of the same element and allocator types.
!        *
!        *  This exchanges the elements between two vectors in constant time.
!        *  (Three pointers, so it should be quite fast.)
!        *  Note that the global std::swap() function is specialized such that
!        *  std::swap(v1,v2) will feed to this function.
!        */
        void
!       swap(vector& __x)
        {
! 	std::swap(_M_start, __x._M_start);
! 	std::swap(_M_finish, __x._M_finish);
! 	std::swap(_M_end_of_storage, __x._M_end_of_storage);
        }
!       
!       /**
!        *  Erases all the elements.  Note that this function only erases the
!        *  elements, and that if the elements themselves are pointers, the
!        *  pointed-to memory is not touched in any way.  Managing the pointer is
!        *  the user's responsibilty.
!        */
        void
!       clear() { erase(begin(), end()); }
!       
!     protected:
!       /**
!        *  @if maint
!        *  Memory expansion handler.  Uses the member allocation function to
!        *  obtain @a n bytes of memory, and then copies [first,last) into it.
!        *  @endif
!        */
!       template<typename _ForwardIterator>
!         pointer
!         _M_allocate_and_copy(size_type __n,
! 			     _ForwardIterator __first, _ForwardIterator __last)
!         {
! 	  pointer __result = _M_allocate(__n);
! 	  try
! 	    {
! 	      uninitialized_copy(__first, __last, __result);
! 	      return __result;
! 	    }
! 	  catch(...)
! 	    {
! 	      _M_deallocate(__result, __n);
! 	      __throw_exception_again;
! 	    }
! 	}
!       
!       
!       // Internal constructor functions follow.
!       
!       // Called by the range constructor to implement [23.1.1]/9
!       template<typename _Integer>
!         void
!         _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
!         {
! 	  _M_start = _M_allocate(__n);
! 	  _M_end_of_storage = _M_start + __n;
! 	  _M_finish = uninitialized_fill_n(_M_start, __n, __value);
! 	}
!       
!       // Called by the range constructor to implement [23.1.1]/9
!       template<typename _InputIter>
!         void
!         _M_initialize_dispatch(_InputIter __first, _InputIter __last,
! 			       __false_type)
!         {
! 	  typedef typename iterator_traits<_InputIter>::iterator_category
! 	    _IterCategory;
! 	  _M_range_initialize(__first, __last, _IterCategory());
! 	}
!       
!       // Called by the second initialize_dispatch above
!       template<typename _InputIterator>
!         void
!         _M_range_initialize(_InputIterator __first,
! 			    _InputIterator __last, input_iterator_tag)
!         {
! 	  for ( ; __first != __last; ++__first)
! 	    push_back(*__first);
! 	}
!       
!       // Called by the second initialize_dispatch above
!       template<typename _ForwardIterator>
!         void 
!         _M_range_initialize(_ForwardIterator __first,
! 			    _ForwardIterator __last, forward_iterator_tag)
!         {
! 	  size_type __n = distance(__first, __last);
! 	  _M_start = _M_allocate(__n);
! 	  _M_end_of_storage = _M_start + __n;
! 	  _M_finish = uninitialized_copy(__first, __last, _M_start);
! 	}
!       
!       
!       // Internal assign functions follow.  The *_aux functions do the actual
!       // assignment work for the range versions.
!       
!       // Called by the range assign to implement [23.1.1]/9
!       template<typename _Integer>
!         void
!         _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
!         {
! 	  _M_fill_assign(static_cast<size_type>(__n),
! 			 static_cast<value_type>(__val));
! 	}
!       
!       // Called by the range assign to implement [23.1.1]/9
!       template<typename _InputIter>
!         void
!         _M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type)
!         {
! 	  typedef typename iterator_traits<_InputIter>::iterator_category
! 	    _IterCategory;
! 	  _M_assign_aux(__first, __last, _IterCategory());
! 	}
!       
!       // Called by the second assign_dispatch above
!       template<typename _InputIterator>
!         void 
!         _M_assign_aux(_InputIterator __first, _InputIterator __last,
! 		      input_iterator_tag);
!   
!       // Called by the second assign_dispatch above
!       template<typename _ForwardIterator>
!         void 
!         _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
! 		      forward_iterator_tag);
    
!       // Called by assign(n,t), and the range assign when it turns out
!       // to be the same thing.
        void
!       _M_fill_assign(size_type __n, const value_type& __val);
    
!       
!       // Internal insert functions follow.
!       
!       // Called by the range insert to implement [23.1.1]/9
!       template<typename _Integer>
!         void
!         _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
! 			   __true_type)
!         {
! 	  _M_fill_insert(__pos, static_cast<size_type>(__n),
! 			 static_cast<value_type>(__val));
! 	}
!       
!       // Called by the range insert to implement [23.1.1]/9
!       template<typename _InputIterator>
!         void
!         _M_insert_dispatch(iterator __pos, _InputIterator __first,
! 			   _InputIterator __last, __false_type)
!         {
! 	  typedef typename iterator_traits<_InputIterator>::iterator_category
! 	    _IterCategory;
! 	  _M_range_insert(__pos, __first, __last, _IterCategory());
! 	}
!       
!       // Called by the second insert_dispatch above
!       template<typename _InputIterator>
!         void
!         _M_range_insert(iterator __pos, _InputIterator __first, 
! 			_InputIterator __last, input_iterator_tag);
!       
!       // Called by the second insert_dispatch above
!       template<typename _ForwardIterator>
!         void
!         _M_range_insert(iterator __pos, _ForwardIterator __first, 
! 			_ForwardIterator __last, forward_iterator_tag);
!       
!       // Called by insert(p,n,x), and the range insert when it turns out to be
!       // the same thing.
!       void
!       _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
!       
!       // Called by insert(p,x)
        void
!       _M_insert_aux(iterator __position, const value_type& __x);
!       
! #ifdef _GLIBCPP_DEPRECATED
!       // Unused now (same situation as in deque)
!       void _M_insert_aux(iterator __position);
! #endif
!     };
    
    
    /**
*************** namespace std
*** 908,914 ****
     *  vectors.  Vectors are considered equivalent if their sizes are equal,
     *  and if corresponding elements compare equal.
    */
!   template <typename _Tp, typename _Alloc>
      inline bool
      operator==(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
      {
--- 931,937 ----
     *  vectors.  Vectors are considered equivalent if their sizes are equal,
     *  and if corresponding elements compare equal.
    */
!   template<typename _Tp, typename _Alloc>
      inline bool
      operator==(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
      {
*************** namespace std
*** 927,933 ****
     *
     *  See std::lexographical_compare() for how the determination is made.
    */
!   template <typename _Tp, typename _Alloc>
      inline bool
      operator<(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
      {
--- 950,956 ----
     *
     *  See std::lexographical_compare() for how the determination is made.
    */
!   template<typename _Tp, typename _Alloc>
      inline bool
      operator<(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
      {
*************** namespace std
*** 936,966 ****
      }
    
    /// Based on operator==
!   template <typename _Tp, typename _Alloc>
      inline bool
      operator!=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
      { return !(__x == __y); }
    
    /// Based on operator<
!   template <typename _Tp, typename _Alloc>
      inline bool
      operator>(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
      { return __y < __x; }
    
    /// Based on operator<
!   template <typename _Tp, typename _Alloc>
      inline bool
      operator<=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
      { return !(__y < __x); }
    
    /// Based on operator<
!   template <typename _Tp, typename _Alloc>
      inline bool
      operator>=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
      { return !(__x < __y); }
    
    /// See std::vector::swap().
!   template <typename _Tp, typename _Alloc>
      inline void
      swap(vector<_Tp,_Alloc>& __x, vector<_Tp,_Alloc>& __y)
      { __x.swap(__y); }
--- 959,989 ----
      }
    
    /// Based on operator==
!   template<typename _Tp, typename _Alloc>
      inline bool
      operator!=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
      { return !(__x == __y); }
    
    /// Based on operator<
!   template<typename _Tp, typename _Alloc>
      inline bool
      operator>(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
      { return __y < __x; }
    
    /// Based on operator<
!   template<typename _Tp, typename _Alloc>
      inline bool
      operator<=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
      { return !(__y < __x); }
    
    /// Based on operator<
!   template<typename _Tp, typename _Alloc>
      inline bool
      operator>=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y)
      { return !(__x < __y); }
    
    /// See std::vector::swap().
!   template<typename _Tp, typename _Alloc>
      inline void
      swap(vector<_Tp,_Alloc>& __x, vector<_Tp,_Alloc>& __y)
      { __x.swap(__y); }
Index: include/bits/vector.tcc
===================================================================
RCS file: /cvs/gcc/gcc/libstdc++-v3/include/bits/vector.tcc,v
retrieving revision 1.3
diff -c -p -r1.3 vector.tcc
*** include/bits/vector.tcc	13 Nov 2002 22:15:16 -0000	1.3
--- include/bits/vector.tcc	16 Nov 2002 01:38:12 -0000
***************
*** 63,69 ****
  
  namespace std
  {
!   template <typename _Tp, typename _Alloc>
      void
      vector<_Tp,_Alloc>::
      reserve(size_type __n)
--- 63,69 ----
  
  namespace std
  {
!   template<typename _Tp, typename _Alloc>
      void
      vector<_Tp,_Alloc>::
      reserve(size_type __n)
*************** namespace std
*** 82,88 ****
  	}
      }
    
!   template <typename _Tp, typename _Alloc>
      typename vector<_Tp,_Alloc>::iterator
      vector<_Tp,_Alloc>::
      insert(iterator __position, const value_type& __x)
--- 82,88 ----
  	}
      }
    
!   template<typename _Tp, typename _Alloc>
      typename vector<_Tp,_Alloc>::iterator
      vector<_Tp,_Alloc>::
      insert(iterator __position, const value_type& __x)
*************** namespace std
*** 98,104 ****
        return begin() + __n;
      }
    
!   template <typename _Tp, typename _Alloc>
      typename vector<_Tp,_Alloc>::iterator
      vector<_Tp,_Alloc>::
      erase(iterator __position)
--- 98,104 ----
        return begin() + __n;
      }
    
!   template<typename _Tp, typename _Alloc>
      typename vector<_Tp,_Alloc>::iterator
      vector<_Tp,_Alloc>::
      erase(iterator __position)
*************** namespace std
*** 110,116 ****
        return __position;
      }
    
!   template <typename _Tp, typename _Alloc>
      typename vector<_Tp,_Alloc>::iterator
      vector<_Tp,_Alloc>::
      erase(iterator __first, iterator __last)
--- 110,116 ----
        return __position;
      }
    
!   template<typename _Tp, typename _Alloc>
      typename vector<_Tp,_Alloc>::iterator
      vector<_Tp,_Alloc>::
      erase(iterator __first, iterator __last)
*************** namespace std
*** 121,127 ****
        return __first;
      }
    
!   template <typename _Tp, typename _Alloc>
      vector<_Tp,_Alloc>&
      vector<_Tp,_Alloc>::
      operator=(const vector<_Tp,_Alloc>& __x)
--- 121,127 ----
        return __first;
      }
    
!   template<typename _Tp, typename _Alloc>
      vector<_Tp,_Alloc>&
      vector<_Tp,_Alloc>::
      operator=(const vector<_Tp,_Alloc>& __x)
*************** namespace std
*** 152,158 ****
        return *this;
      }
    
!   template <typename _Tp, typename _Alloc>
      void
      vector<_Tp,_Alloc>::
      _M_fill_assign(size_t __n, const value_type& __val)
--- 152,158 ----
        return *this;
      }
    
!   template<typename _Tp, typename _Alloc>
      void
      vector<_Tp,_Alloc>::
      _M_fill_assign(size_t __n, const value_type& __val)
*************** namespace std
*** 171,177 ****
          erase(fill_n(begin(), __n, __val), end());
      }
    
!   template <typename _Tp, typename _Alloc> template <typename _InputIter>
      void
      vector<_Tp,_Alloc>::
      _M_assign_aux(_InputIter __first, _InputIter __last, input_iterator_tag)
--- 171,177 ----
          erase(fill_n(begin(), __n, __val), end());
      }
    
!   template<typename _Tp, typename _Alloc> template<typename _InputIter>
      void
      vector<_Tp,_Alloc>::
      _M_assign_aux(_InputIter __first, _InputIter __last, input_iterator_tag)
*************** namespace std
*** 185,191 ****
          insert(end(), __first, __last);
      }
    
!   template <typename _Tp, typename _Alloc> template <typename _ForwardIter>
      void
      vector<_Tp,_Alloc>::
      _M_assign_aux(_ForwardIter __first, _ForwardIter __last,
--- 185,191 ----
          insert(end(), __first, __last);
      }
    
!   template<typename _Tp, typename _Alloc> template<typename _ForwardIter>
      void
      vector<_Tp,_Alloc>::
      _M_assign_aux(_ForwardIter __first, _ForwardIter __last,
*************** namespace std
*** 216,222 ****
        }
      }
    
!   template <typename _Tp, typename _Alloc>
      void
      vector<_Tp,_Alloc>::
      _M_insert_aux(iterator __position, const _Tp& __x)
--- 216,222 ----
        }
      }
    
!   template<typename _Tp, typename _Alloc>
      void
      vector<_Tp,_Alloc>::
      _M_insert_aux(iterator __position, const _Tp& __x)
*************** namespace std
*** 259,265 ****
      }
    
    #ifdef _GLIBCPP_DEPRECATED
!   template <typename _Tp, typename _Alloc>
      void
      vector<_Tp,_Alloc>::
      _M_insert_aux(iterator __position)
--- 259,265 ----
      }
    
    #ifdef _GLIBCPP_DEPRECATED
!   template<typename _Tp, typename _Alloc>
      void
      vector<_Tp,_Alloc>::
      _M_insert_aux(iterator __position)
*************** namespace std
*** 302,364 ****
      }
    #endif
    
!   template <typename _Tp, typename _Alloc>
      void
      vector<_Tp,_Alloc>::
      _M_fill_insert(iterator __position, size_type __n, const value_type& __x)
      {
        if (__n != 0)
        {
!         if (size_type(_M_end_of_storage - _M_finish) >= __n) {
!           value_type __x_copy = __x;
!           const size_type __elems_after = end() - __position;
!           iterator __old_finish(_M_finish);
!           if (__elems_after > __n)
!           {
!             uninitialized_copy(_M_finish - __n, _M_finish, _M_finish);
!             _M_finish += __n;
!             copy_backward(__position, __old_finish - __n, __old_finish);
!             fill(__position, __position + __n, __x_copy);
!           }
!           else
!           {
!             uninitialized_fill_n(_M_finish, __n - __elems_after, __x_copy);
!             _M_finish += __n - __elems_after;
!             uninitialized_copy(__position, __old_finish, _M_finish);
!             _M_finish += __elems_after;
!             fill(__position, __old_finish, __x_copy);
!           }
!         }
          else
!         {
!           const size_type __old_size = size();
!           const size_type __len = __old_size + max(__old_size, __n);
!           iterator __new_start(_M_allocate(__len));
!           iterator __new_finish(__new_start);
!           try
!             {
!               __new_finish = uninitialized_copy(begin(), __position,
!                                                 __new_start);
!               __new_finish = uninitialized_fill_n(__new_finish, __n, __x);
!               __new_finish
!                 = uninitialized_copy(__position, end(), __new_finish);
!             }
!           catch(...)
!             {
!               _Destroy(__new_start,__new_finish);
!               _M_deallocate(__new_start.base(),__len);
!               __throw_exception_again;
!             }
!           _Destroy(_M_start, _M_finish);
!           _M_deallocate(_M_start, _M_end_of_storage - _M_start);
!           _M_start = __new_start.base();
!           _M_finish = __new_finish.base();
!           _M_end_of_storage = __new_start.base() + __len;
!         }
        }
      }
    
!   template <typename _Tp, typename _Alloc> template <typename _InputIterator>
      void
      vector<_Tp,_Alloc>::
      _M_range_insert(iterator __pos,
--- 302,365 ----
      }
    #endif
    
!   template<typename _Tp, typename _Alloc>
      void
      vector<_Tp,_Alloc>::
      _M_fill_insert(iterator __position, size_type __n, const value_type& __x)
      {
        if (__n != 0)
        {
!         if (size_type(_M_end_of_storage - _M_finish) >= __n) 
! 	  {
!            value_type __x_copy = __x;
! 	   const size_type __elems_after = end() - __position;
! 	   iterator __old_finish(_M_finish);
! 	   if (__elems_after > __n)
! 	     {
! 	       uninitialized_copy(_M_finish - __n, _M_finish, _M_finish);
! 	       _M_finish += __n;
! 	       copy_backward(__position, __old_finish - __n, __old_finish);
! 	       fill(__position, __position + __n, __x_copy);
! 	     }
! 	   else
! 	     {
! 	       uninitialized_fill_n(_M_finish, __n - __elems_after, __x_copy);
! 	       _M_finish += __n - __elems_after;
! 	       uninitialized_copy(__position, __old_finish, _M_finish);
! 	       _M_finish += __elems_after;
! 	       fill(__position, __old_finish, __x_copy);
! 	     }
! 	  }
          else
! 	  {
! 	    const size_type __old_size = size();
! 	    const size_type __len = __old_size + max(__old_size, __n);
! 	    iterator __new_start(_M_allocate(__len));
! 	    iterator __new_finish(__new_start);
! 	    try
! 	      {
! 		__new_finish = uninitialized_copy(begin(), __position,
! 						  __new_start);
! 		__new_finish = uninitialized_fill_n(__new_finish, __n, __x);
! 		__new_finish = uninitialized_copy(__position, end(), 
! 						  __new_finish);
! 	      }
! 	    catch(...)
! 	      {
! 		_Destroy(__new_start,__new_finish);
! 		_M_deallocate(__new_start.base(),__len);
! 		__throw_exception_again;
! 	      }
! 	    _Destroy(_M_start, _M_finish);
! 	    _M_deallocate(_M_start, _M_end_of_storage - _M_start);
! 	    _M_start = __new_start.base();
! 	    _M_finish = __new_finish.base();
! 	    _M_end_of_storage = __new_start.base() + __len;
! 	  }
        }
      }
    
!   template<typename _Tp, typename _Alloc> template<typename _InputIterator>
      void
      vector<_Tp,_Alloc>::
      _M_range_insert(iterator __pos,
*************** namespace std
*** 372,383 ****
        }
      }
    
!   template <typename _Tp, typename _Alloc> template <typename _ForwardIterator>
      void
      vector<_Tp,_Alloc>::
!     _M_range_insert(iterator __position,
!                     _ForwardIterator __first, _ForwardIterator __last,
!                     forward_iterator_tag)
      {
        if (__first != __last)
        {
--- 373,383 ----
        }
      }
    
!   template<typename _Tp, typename _Alloc> template<typename _ForwardIterator>
      void
      vector<_Tp,_Alloc>::
!     _M_range_insert(iterator __position,_ForwardIterator __first, 
! 		    _ForwardIterator __last, forward_iterator_tag)
      {
        if (__first != __last)
        {
Index: testsuite/20_util/allocator_members.cc
===================================================================
RCS file: /cvs/gcc/gcc/libstdc++-v3/testsuite/20_util/allocator_members.cc,v
retrieving revision 1.2
diff -c -p -r1.2 allocator_members.cc
*** testsuite/20_util/allocator_members.cc	7 Aug 2001 03:38:27 -0000	1.2
--- testsuite/20_util/allocator_members.cc	16 Nov 2002 01:38:12 -0000
***************
*** 1,6 ****
  // 2001-06-14  Benjamin Kosnik  <bkoz@redhat.com>
  
! // Copyright (C) 2001 Free Software Foundation, Inc.
  //
  // This file is part of the GNU ISO C++ Library.  This library is free
  // software; you can redistribute it and/or modify it under the
--- 1,6 ----
  // 2001-06-14  Benjamin Kosnik  <bkoz@redhat.com>
  
! // Copyright (C) 2001, 2002 Free Software Foundation, Inc.
  //
  // This file is part of the GNU ISO C++ Library.  This library is free
  // software; you can redistribute it and/or modify it under the
***************
*** 21,26 ****
--- 21,27 ----
  // 20.4.1.1 allocator members
  
  #include <memory>
+ #include <stdexcept>
  #include <cstdlib>
  #include <testsuite_hooks.h>
  
*************** void operator delete(void *v) throw()
*** 42,48 ****
    return std::free(v);
  }
  
! int main(void)
  {
    bool test = true;
    std::allocator<gnu> obj;
--- 43,49 ----
    return std::free(v);
  }
  
! void test01()
  {
    bool test = true;
    std::allocator<gnu> obj;
*************** int main(void)
*** 55,60 ****
--- 56,89 ----
  
    obj.deallocate(pobj, 256);
    VERIFY( check_delete );
+ }
+ 
+ // libstdc++/8230
+ void test02()
+ {
+   bool test = true;
+   try 
+     {
+       std::allocator<int> alloc;
+       const std::allocator<int>::size_type n = alloc.max_size();
+       int* p = alloc.allocate(n + 1);
+       p[n] = 2002;
+     } 
+   catch(const std::bad_alloc& e) 
+     {
+       // Allowed.
+       test = true;
+     }
+   catch(...) 
+     {
+       test = false;
+     }
+   VERIFY( test );
+ }
  
+ int main()
+ {
+   test01();
+   test02();
    return 0;
  }
Index: testsuite/23_containers/vector_capacity.cc
===================================================================
RCS file: /cvs/gcc/gcc/libstdc++-v3/testsuite/23_containers/vector_capacity.cc,v
retrieving revision 1.4
diff -c -p -r1.4 vector_capacity.cc
*** testsuite/23_containers/vector_capacity.cc	13 Nov 2002 22:15:17 -0000	1.4
--- testsuite/23_containers/vector_capacity.cc	16 Nov 2002 01:38:13 -0000
*************** void test02()
*** 99,107 ****
--- 99,128 ----
    }
  }
  
+ void test03()
+ {
+   bool test = true;
+   std::vector<int> v;
+   try
+     {
+       v.resize(v.max_size());  
+       v[v.max_size() - 1] = 2002;
+     }
+   catch (const std::bad_alloc& error)
+     {
+       test = true;
+     }
+   catch (...)
+     {
+       test = false;
+     }
+   VERIFY( test );
+ }
+ 
  int main()
  {
    test01();
    test02();
+   test03();
    return 0;
  }


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]