]> gcc.gnu.org Git - gcc.git/blame - gcc/gimple.c
Add flag -ftree-loop-if-convert-stores.
[gcc.git] / gcc / gimple.c
CommitLineData
726a989a
RB
1/* Gimple IR support functions.
2
6a4d4e8a 3 Copyright 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
726a989a
RB
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
d7f09764 26#include "target.h"
726a989a
RB
27#include "tree.h"
28#include "ggc.h"
726a989a
RB
29#include "hard-reg-set.h"
30#include "basic-block.h"
31#include "gimple.h"
38d2336a 32#include "toplev.h"
726a989a
RB
33#include "diagnostic.h"
34#include "tree-flow.h"
35#include "value-prof.h"
36#include "flags.h"
d7f09764 37#include "alias.h"
4537ec0c 38#include "demangle.h"
726a989a 39
d7f09764
DN
40/* Global type table. FIXME lto, it should be possible to re-use some
41 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
42 etc), but those assume that types were built with the various
43 build_*_type routines which is not the case with the streamer. */
44static htab_t gimple_types;
45static struct pointer_map_t *type_hash_cache;
46
47/* Global type comparison cache. */
48static htab_t gtc_visited;
88ca1146 49static struct obstack gtc_ob;
726a989a 50
f2c4a81c 51/* All the tuples have their operand vector (if present) at the very bottom
726a989a
RB
52 of the structure. Therefore, the offset required to find the
53 operands vector the size of the structure minus the size of the 1
54 element tree array at the end (see gimple_ops). */
f2c4a81c
RH
55#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
56 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
6bc7bc14 57EXPORTED_CONST size_t gimple_ops_offset_[] = {
f2c4a81c
RH
58#include "gsstruct.def"
59};
60#undef DEFGSSTRUCT
61
62#define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
63static const size_t gsstruct_code_size[] = {
64#include "gsstruct.def"
65};
66#undef DEFGSSTRUCT
67
68#define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
69const char *const gimple_code_name[] = {
70#include "gimple.def"
71};
72#undef DEFGSCODE
73
74#define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
75EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
726a989a
RB
76#include "gimple.def"
77};
78#undef DEFGSCODE
79
80#ifdef GATHER_STATISTICS
81/* Gimple stats. */
82
83int gimple_alloc_counts[(int) gimple_alloc_kind_all];
84int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
85
86/* Keep in sync with gimple.h:enum gimple_alloc_kind. */
87static const char * const gimple_alloc_kind_names[] = {
88 "assignments",
89 "phi nodes",
90 "conditionals",
91 "sequences",
92 "everything else"
93};
94
95#endif /* GATHER_STATISTICS */
96
97/* A cache of gimple_seq objects. Sequences are created and destroyed
98 fairly often during gimplification. */
99static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
100
101/* Private API manipulation functions shared only with some
102 other files. */
103extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
104extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
105
106/* Gimple tuple constructors.
107 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
108 be passed a NULL to start with an empty sequence. */
109
110/* Set the code for statement G to CODE. */
111
112static inline void
113gimple_set_code (gimple g, enum gimple_code code)
114{
115 g->gsbase.code = code;
116}
117
726a989a
RB
118/* Return the number of bytes needed to hold a GIMPLE statement with
119 code CODE. */
120
f2c4a81c 121static inline size_t
726a989a
RB
122gimple_size (enum gimple_code code)
123{
f2c4a81c 124 return gsstruct_code_size[gss_for_code (code)];
726a989a
RB
125}
126
726a989a
RB
127/* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
128 operands. */
129
d7f09764 130gimple
726a989a
RB
131gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
132{
133 size_t size;
134 gimple stmt;
135
136 size = gimple_size (code);
137 if (num_ops > 0)
138 size += sizeof (tree) * (num_ops - 1);
139
140#ifdef GATHER_STATISTICS
141 {
142 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
143 gimple_alloc_counts[(int) kind]++;
144 gimple_alloc_sizes[(int) kind] += size;
145 }
146#endif
147
a9429e29 148 stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT);
726a989a
RB
149 gimple_set_code (stmt, code);
150 gimple_set_num_ops (stmt, num_ops);
151
152 /* Do not call gimple_set_modified here as it has other side
153 effects and this tuple is still not completely built. */
154 stmt->gsbase.modified = 1;
155
156 return stmt;
157}
158
159/* Set SUBCODE to be the code of the expression computed by statement G. */
160
161static inline void
162gimple_set_subcode (gimple g, unsigned subcode)
163{
164 /* We only have 16 bits for the RHS code. Assert that we are not
165 overflowing it. */
166 gcc_assert (subcode < (1 << 16));
167 g->gsbase.subcode = subcode;
168}
169
170
171
172/* Build a tuple with operands. CODE is the statement to build (which
173 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
b8698a0f 174 for the new tuple. NUM_OPS is the number of operands to allocate. */
726a989a
RB
175
176#define gimple_build_with_ops(c, s, n) \
177 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
178
179static gimple
b5b8b0ac 180gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
726a989a
RB
181 unsigned num_ops MEM_STAT_DECL)
182{
183 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
184 gimple_set_subcode (s, subcode);
185
186 return s;
187}
188
189
190/* Build a GIMPLE_RETURN statement returning RETVAL. */
191
192gimple
193gimple_build_return (tree retval)
194{
bbbbb16a 195 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
726a989a
RB
196 if (retval)
197 gimple_return_set_retval (s, retval);
198 return s;
199}
200
d086d311
RG
201/* Reset alias information on call S. */
202
203void
204gimple_call_reset_alias_info (gimple s)
205{
206 if (gimple_call_flags (s) & ECF_CONST)
207 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
208 else
209 pt_solution_reset (gimple_call_use_set (s));
210 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
211 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
212 else
213 pt_solution_reset (gimple_call_clobber_set (s));
214}
215
726a989a
RB
216/* Helper for gimple_build_call, gimple_build_call_vec and
217 gimple_build_call_from_tree. Build the basic components of a
218 GIMPLE_CALL statement to function FN with NARGS arguments. */
219
220static inline gimple
221gimple_build_call_1 (tree fn, unsigned nargs)
222{
bbbbb16a 223 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
7c9577be
RG
224 if (TREE_CODE (fn) == FUNCTION_DECL)
225 fn = build_fold_addr_expr (fn);
726a989a 226 gimple_set_op (s, 1, fn);
d086d311 227 gimple_call_reset_alias_info (s);
726a989a
RB
228 return s;
229}
230
231
232/* Build a GIMPLE_CALL statement to function FN with the arguments
233 specified in vector ARGS. */
234
235gimple
236gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
237{
238 unsigned i;
239 unsigned nargs = VEC_length (tree, args);
240 gimple call = gimple_build_call_1 (fn, nargs);
241
242 for (i = 0; i < nargs; i++)
243 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
244
245 return call;
246}
247
248
249/* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
250 arguments. The ... are the arguments. */
251
252gimple
253gimple_build_call (tree fn, unsigned nargs, ...)
254{
255 va_list ap;
256 gimple call;
257 unsigned i;
258
259 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
260
261 call = gimple_build_call_1 (fn, nargs);
262
263 va_start (ap, nargs);
264 for (i = 0; i < nargs; i++)
265 gimple_call_set_arg (call, i, va_arg (ap, tree));
266 va_end (ap);
267
268 return call;
269}
270
271
272/* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
273 assumed to be in GIMPLE form already. Minimal checking is done of
274 this fact. */
275
276gimple
277gimple_build_call_from_tree (tree t)
278{
279 unsigned i, nargs;
280 gimple call;
281 tree fndecl = get_callee_fndecl (t);
282
283 gcc_assert (TREE_CODE (t) == CALL_EXPR);
284
285 nargs = call_expr_nargs (t);
286 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
287
288 for (i = 0; i < nargs; i++)
289 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
290
291 gimple_set_block (call, TREE_BLOCK (t));
292
293 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
294 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
295 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
296 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
297 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
298 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
299 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
9bb1a81b 300 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
d665b6e5 301 gimple_set_no_warning (call, TREE_NO_WARNING (t));
726a989a
RB
302
303 return call;
304}
305
306
307/* Extract the operands and code for expression EXPR into *SUBCODE_P,
0354c0c7 308 *OP1_P, *OP2_P and *OP3_P respectively. */
726a989a
RB
309
310void
0354c0c7
BS
311extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
312 tree *op2_p, tree *op3_p)
726a989a 313{
82d6e6fc 314 enum gimple_rhs_class grhs_class;
726a989a
RB
315
316 *subcode_p = TREE_CODE (expr);
82d6e6fc 317 grhs_class = get_gimple_rhs_class (*subcode_p);
726a989a 318
0354c0c7 319 if (grhs_class == GIMPLE_TERNARY_RHS)
726a989a
RB
320 {
321 *op1_p = TREE_OPERAND (expr, 0);
322 *op2_p = TREE_OPERAND (expr, 1);
0354c0c7
BS
323 *op3_p = TREE_OPERAND (expr, 2);
324 }
325 else if (grhs_class == GIMPLE_BINARY_RHS)
326 {
327 *op1_p = TREE_OPERAND (expr, 0);
328 *op2_p = TREE_OPERAND (expr, 1);
329 *op3_p = NULL_TREE;
726a989a 330 }
82d6e6fc 331 else if (grhs_class == GIMPLE_UNARY_RHS)
726a989a
RB
332 {
333 *op1_p = TREE_OPERAND (expr, 0);
334 *op2_p = NULL_TREE;
0354c0c7 335 *op3_p = NULL_TREE;
726a989a 336 }
82d6e6fc 337 else if (grhs_class == GIMPLE_SINGLE_RHS)
726a989a
RB
338 {
339 *op1_p = expr;
340 *op2_p = NULL_TREE;
0354c0c7 341 *op3_p = NULL_TREE;
726a989a
RB
342 }
343 else
344 gcc_unreachable ();
345}
346
347
348/* Build a GIMPLE_ASSIGN statement.
349
350 LHS of the assignment.
351 RHS of the assignment which can be unary or binary. */
352
353gimple
354gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
355{
356 enum tree_code subcode;
0354c0c7 357 tree op1, op2, op3;
726a989a 358
0354c0c7
BS
359 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
360 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2, op3
726a989a
RB
361 PASS_MEM_STAT);
362}
363
364
365/* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
366 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
367 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
368
369gimple
370gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
0354c0c7 371 tree op2, tree op3 MEM_STAT_DECL)
726a989a
RB
372{
373 unsigned num_ops;
374 gimple p;
375
376 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
377 code). */
378 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
b8698a0f 379
b5b8b0ac 380 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
726a989a
RB
381 PASS_MEM_STAT);
382 gimple_assign_set_lhs (p, lhs);
383 gimple_assign_set_rhs1 (p, op1);
384 if (op2)
385 {
386 gcc_assert (num_ops > 2);
387 gimple_assign_set_rhs2 (p, op2);
388 }
389
0354c0c7
BS
390 if (op3)
391 {
392 gcc_assert (num_ops > 3);
393 gimple_assign_set_rhs3 (p, op3);
394 }
395
726a989a
RB
396 return p;
397}
398
399
400/* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
401
402 DST/SRC are the destination and source respectively. You can pass
403 ungimplified trees in DST or SRC, in which case they will be
404 converted to a gimple operand if necessary.
405
406 This function returns the newly created GIMPLE_ASSIGN tuple. */
407
5fd8300b 408gimple
726a989a 409gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
b8698a0f 410{
726a989a
RB
411 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
412 gimplify_and_add (t, seq_p);
413 ggc_free (t);
414 return gimple_seq_last_stmt (*seq_p);
415}
416
417
418/* Build a GIMPLE_COND statement.
419
420 PRED is the condition used to compare LHS and the RHS.
421 T_LABEL is the label to jump to if the condition is true.
422 F_LABEL is the label to jump to otherwise. */
423
424gimple
425gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
426 tree t_label, tree f_label)
427{
428 gimple p;
429
430 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
431 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
432 gimple_cond_set_lhs (p, lhs);
433 gimple_cond_set_rhs (p, rhs);
434 gimple_cond_set_true_label (p, t_label);
435 gimple_cond_set_false_label (p, f_label);
436 return p;
437}
438
439
440/* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
441
442void
443gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
444 tree *lhs_p, tree *rhs_p)
445{
db3927fb 446 location_t loc = EXPR_LOCATION (cond);
726a989a
RB
447 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
448 || TREE_CODE (cond) == TRUTH_NOT_EXPR
449 || is_gimple_min_invariant (cond)
450 || SSA_VAR_P (cond));
451
452 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
453
454 /* Canonicalize conditionals of the form 'if (!VAL)'. */
455 if (*code_p == TRUTH_NOT_EXPR)
456 {
457 *code_p = EQ_EXPR;
458 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
db3927fb 459 *rhs_p = fold_convert_loc (loc, TREE_TYPE (*lhs_p), integer_zero_node);
726a989a
RB
460 }
461 /* Canonicalize conditionals of the form 'if (VAL)' */
462 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
463 {
464 *code_p = NE_EXPR;
465 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
db3927fb 466 *rhs_p = fold_convert_loc (loc, TREE_TYPE (*lhs_p), integer_zero_node);
726a989a
RB
467 }
468}
469
470
471/* Build a GIMPLE_COND statement from the conditional expression tree
472 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
473
474gimple
475gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
476{
477 enum tree_code code;
478 tree lhs, rhs;
479
480 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
481 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
482}
483
484/* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
485 boolean expression tree COND. */
486
487void
488gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
489{
490 enum tree_code code;
491 tree lhs, rhs;
492
493 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
494 gimple_cond_set_condition (stmt, code, lhs, rhs);
495}
496
497/* Build a GIMPLE_LABEL statement for LABEL. */
498
499gimple
500gimple_build_label (tree label)
501{
bbbbb16a 502 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
726a989a
RB
503 gimple_label_set_label (p, label);
504 return p;
505}
506
507/* Build a GIMPLE_GOTO statement to label DEST. */
508
509gimple
510gimple_build_goto (tree dest)
511{
bbbbb16a 512 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
726a989a
RB
513 gimple_goto_set_dest (p, dest);
514 return p;
515}
516
517
518/* Build a GIMPLE_NOP statement. */
519
b8698a0f 520gimple
726a989a
RB
521gimple_build_nop (void)
522{
523 return gimple_alloc (GIMPLE_NOP, 0);
524}
525
526
527/* Build a GIMPLE_BIND statement.
528 VARS are the variables in BODY.
529 BLOCK is the containing block. */
530
531gimple
532gimple_build_bind (tree vars, gimple_seq body, tree block)
533{
534 gimple p = gimple_alloc (GIMPLE_BIND, 0);
535 gimple_bind_set_vars (p, vars);
536 if (body)
537 gimple_bind_set_body (p, body);
538 if (block)
539 gimple_bind_set_block (p, block);
540 return p;
541}
542
543/* Helper function to set the simple fields of a asm stmt.
544
545 STRING is a pointer to a string that is the asm blocks assembly code.
546 NINPUT is the number of register inputs.
547 NOUTPUT is the number of register outputs.
548 NCLOBBERS is the number of clobbered registers.
549 */
550
551static inline gimple
b8698a0f 552gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
1c384bf1 553 unsigned nclobbers, unsigned nlabels)
726a989a
RB
554{
555 gimple p;
556 int size = strlen (string);
557
1c384bf1
RH
558 /* ASMs with labels cannot have outputs. This should have been
559 enforced by the front end. */
560 gcc_assert (nlabels == 0 || noutputs == 0);
561
bbbbb16a 562 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
1c384bf1 563 ninputs + noutputs + nclobbers + nlabels);
726a989a
RB
564
565 p->gimple_asm.ni = ninputs;
566 p->gimple_asm.no = noutputs;
567 p->gimple_asm.nc = nclobbers;
1c384bf1 568 p->gimple_asm.nl = nlabels;
726a989a
RB
569 p->gimple_asm.string = ggc_alloc_string (string, size);
570
571#ifdef GATHER_STATISTICS
572 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
573#endif
b8698a0f 574
726a989a
RB
575 return p;
576}
577
578/* Build a GIMPLE_ASM statement.
579
580 STRING is the assembly code.
581 NINPUT is the number of register inputs.
582 NOUTPUT is the number of register outputs.
583 NCLOBBERS is the number of clobbered registers.
584 INPUTS is a vector of the input register parameters.
585 OUTPUTS is a vector of the output register parameters.
1c384bf1
RH
586 CLOBBERS is a vector of the clobbered register parameters.
587 LABELS is a vector of destination labels. */
726a989a
RB
588
589gimple
b8698a0f 590gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
1c384bf1
RH
591 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers,
592 VEC(tree,gc)* labels)
726a989a
RB
593{
594 gimple p;
595 unsigned i;
596
597 p = gimple_build_asm_1 (string,
598 VEC_length (tree, inputs),
b8698a0f 599 VEC_length (tree, outputs),
1c384bf1
RH
600 VEC_length (tree, clobbers),
601 VEC_length (tree, labels));
b8698a0f 602
726a989a
RB
603 for (i = 0; i < VEC_length (tree, inputs); i++)
604 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
605
606 for (i = 0; i < VEC_length (tree, outputs); i++)
607 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
608
609 for (i = 0; i < VEC_length (tree, clobbers); i++)
610 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
b8698a0f 611
1c384bf1
RH
612 for (i = 0; i < VEC_length (tree, labels); i++)
613 gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i));
b8698a0f 614
726a989a
RB
615 return p;
616}
617
618/* Build a GIMPLE_CATCH statement.
619
620 TYPES are the catch types.
621 HANDLER is the exception handler. */
622
623gimple
624gimple_build_catch (tree types, gimple_seq handler)
625{
626 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
627 gimple_catch_set_types (p, types);
628 if (handler)
629 gimple_catch_set_handler (p, handler);
630
631 return p;
632}
633
634/* Build a GIMPLE_EH_FILTER statement.
635
636 TYPES are the filter's types.
637 FAILURE is the filter's failure action. */
638
639gimple
640gimple_build_eh_filter (tree types, gimple_seq failure)
641{
642 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
643 gimple_eh_filter_set_types (p, types);
644 if (failure)
645 gimple_eh_filter_set_failure (p, failure);
646
647 return p;
648}
649
1d65f45c
RH
650/* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
651
652gimple
653gimple_build_eh_must_not_throw (tree decl)
654{
786f715d 655 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
1d65f45c
RH
656
657 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
658 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
d7f09764 659 gimple_eh_must_not_throw_set_fndecl (p, decl);
1d65f45c
RH
660
661 return p;
662}
663
726a989a
RB
664/* Build a GIMPLE_TRY statement.
665
666 EVAL is the expression to evaluate.
667 CLEANUP is the cleanup expression.
668 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
669 whether this is a try/catch or a try/finally respectively. */
670
671gimple
672gimple_build_try (gimple_seq eval, gimple_seq cleanup,
673 enum gimple_try_flags kind)
674{
675 gimple p;
676
677 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
678 p = gimple_alloc (GIMPLE_TRY, 0);
679 gimple_set_subcode (p, kind);
680 if (eval)
681 gimple_try_set_eval (p, eval);
682 if (cleanup)
683 gimple_try_set_cleanup (p, cleanup);
684
685 return p;
686}
687
688/* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
689
690 CLEANUP is the cleanup expression. */
691
692gimple
693gimple_build_wce (gimple_seq cleanup)
694{
695 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
696 if (cleanup)
697 gimple_wce_set_cleanup (p, cleanup);
698
699 return p;
700}
701
702
1d65f45c 703/* Build a GIMPLE_RESX statement. */
726a989a
RB
704
705gimple
706gimple_build_resx (int region)
707{
1d65f45c
RH
708 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
709 p->gimple_eh_ctrl.region = region;
726a989a
RB
710 return p;
711}
712
713
714/* The helper for constructing a gimple switch statement.
715 INDEX is the switch's index.
716 NLABELS is the number of labels in the switch excluding the default.
717 DEFAULT_LABEL is the default label for the switch statement. */
718
b8698a0f 719gimple
1d65f45c 720gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
726a989a
RB
721{
722 /* nlabels + 1 default label + 1 index. */
bbbbb16a 723 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
1d65f45c 724 1 + (default_label != NULL) + nlabels);
726a989a 725 gimple_switch_set_index (p, index);
1d65f45c
RH
726 if (default_label)
727 gimple_switch_set_default_label (p, default_label);
726a989a
RB
728 return p;
729}
730
731
732/* Build a GIMPLE_SWITCH statement.
733
734 INDEX is the switch's index.
b8698a0f 735 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
726a989a
RB
736 ... are the labels excluding the default. */
737
b8698a0f 738gimple
726a989a
RB
739gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
740{
741 va_list al;
1d65f45c
RH
742 unsigned i, offset;
743 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
726a989a
RB
744
745 /* Store the rest of the labels. */
746 va_start (al, default_label);
1d65f45c
RH
747 offset = (default_label != NULL);
748 for (i = 0; i < nlabels; i++)
749 gimple_switch_set_label (p, i + offset, va_arg (al, tree));
726a989a
RB
750 va_end (al);
751
752 return p;
753}
754
755
756/* Build a GIMPLE_SWITCH statement.
757
758 INDEX is the switch's index.
759 DEFAULT_LABEL is the default label
760 ARGS is a vector of labels excluding the default. */
761
762gimple
763gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
764{
1d65f45c
RH
765 unsigned i, offset, nlabels = VEC_length (tree, args);
766 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
726a989a 767
1d65f45c
RH
768 /* Copy the labels from the vector to the switch statement. */
769 offset = (default_label != NULL);
770 for (i = 0; i < nlabels; i++)
771 gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i));
726a989a
RB
772
773 return p;
774}
775
1d65f45c
RH
776/* Build a GIMPLE_EH_DISPATCH statement. */
777
778gimple
779gimple_build_eh_dispatch (int region)
780{
781 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
782 p->gimple_eh_ctrl.region = region;
783 return p;
784}
726a989a 785
b5b8b0ac
AO
786/* Build a new GIMPLE_DEBUG_BIND statement.
787
788 VAR is bound to VALUE; block and location are taken from STMT. */
789
790gimple
791gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
792{
793 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
794 (unsigned)GIMPLE_DEBUG_BIND, 2
795 PASS_MEM_STAT);
796
797 gimple_debug_bind_set_var (p, var);
798 gimple_debug_bind_set_value (p, value);
799 if (stmt)
800 {
801 gimple_set_block (p, gimple_block (stmt));
802 gimple_set_location (p, gimple_location (stmt));
803 }
804
805 return p;
806}
807
808
726a989a
RB
809/* Build a GIMPLE_OMP_CRITICAL statement.
810
811 BODY is the sequence of statements for which only one thread can execute.
812 NAME is optional identifier for this critical block. */
813
b8698a0f 814gimple
726a989a
RB
815gimple_build_omp_critical (gimple_seq body, tree name)
816{
817 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
818 gimple_omp_critical_set_name (p, name);
819 if (body)
820 gimple_omp_set_body (p, body);
821
822 return p;
823}
824
825/* Build a GIMPLE_OMP_FOR statement.
826
827 BODY is sequence of statements inside the for loop.
b8698a0f 828 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
726a989a
RB
829 lastprivate, reductions, ordered, schedule, and nowait.
830 COLLAPSE is the collapse count.
831 PRE_BODY is the sequence of statements that are loop invariant. */
832
833gimple
834gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
835 gimple_seq pre_body)
836{
837 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
838 if (body)
839 gimple_omp_set_body (p, body);
840 gimple_omp_for_set_clauses (p, clauses);
841 p->gimple_omp_for.collapse = collapse;
a9429e29
LB
842 p->gimple_omp_for.iter
843 = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
726a989a
RB
844 if (pre_body)
845 gimple_omp_for_set_pre_body (p, pre_body);
846
847 return p;
848}
849
850
851/* Build a GIMPLE_OMP_PARALLEL statement.
852
853 BODY is sequence of statements which are executed in parallel.
854 CLAUSES, are the OMP parallel construct's clauses.
855 CHILD_FN is the function created for the parallel threads to execute.
856 DATA_ARG are the shared data argument(s). */
857
b8698a0f
L
858gimple
859gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
726a989a
RB
860 tree data_arg)
861{
862 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
863 if (body)
864 gimple_omp_set_body (p, body);
865 gimple_omp_parallel_set_clauses (p, clauses);
866 gimple_omp_parallel_set_child_fn (p, child_fn);
867 gimple_omp_parallel_set_data_arg (p, data_arg);
868
869 return p;
870}
871
872
873/* Build a GIMPLE_OMP_TASK statement.
874
875 BODY is sequence of statements which are executed by the explicit task.
876 CLAUSES, are the OMP parallel construct's clauses.
877 CHILD_FN is the function created for the parallel threads to execute.
878 DATA_ARG are the shared data argument(s).
879 COPY_FN is the optional function for firstprivate initialization.
880 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
881
b8698a0f 882gimple
726a989a
RB
883gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
884 tree data_arg, tree copy_fn, tree arg_size,
885 tree arg_align)
886{
887 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
888 if (body)
889 gimple_omp_set_body (p, body);
890 gimple_omp_task_set_clauses (p, clauses);
891 gimple_omp_task_set_child_fn (p, child_fn);
892 gimple_omp_task_set_data_arg (p, data_arg);
893 gimple_omp_task_set_copy_fn (p, copy_fn);
894 gimple_omp_task_set_arg_size (p, arg_size);
895 gimple_omp_task_set_arg_align (p, arg_align);
896
897 return p;
898}
899
900
901/* Build a GIMPLE_OMP_SECTION statement for a sections statement.
902
903 BODY is the sequence of statements in the section. */
904
905gimple
906gimple_build_omp_section (gimple_seq body)
907{
908 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
909 if (body)
910 gimple_omp_set_body (p, body);
911
912 return p;
913}
914
915
916/* Build a GIMPLE_OMP_MASTER statement.
917
918 BODY is the sequence of statements to be executed by just the master. */
919
b8698a0f 920gimple
726a989a
RB
921gimple_build_omp_master (gimple_seq body)
922{
923 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
924 if (body)
925 gimple_omp_set_body (p, body);
926
927 return p;
928}
929
930
931/* Build a GIMPLE_OMP_CONTINUE statement.
932
933 CONTROL_DEF is the definition of the control variable.
934 CONTROL_USE is the use of the control variable. */
935
b8698a0f 936gimple
726a989a
RB
937gimple_build_omp_continue (tree control_def, tree control_use)
938{
939 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
940 gimple_omp_continue_set_control_def (p, control_def);
941 gimple_omp_continue_set_control_use (p, control_use);
942 return p;
943}
944
945/* Build a GIMPLE_OMP_ORDERED statement.
946
947 BODY is the sequence of statements inside a loop that will executed in
948 sequence. */
949
b8698a0f 950gimple
726a989a
RB
951gimple_build_omp_ordered (gimple_seq body)
952{
953 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
954 if (body)
955 gimple_omp_set_body (p, body);
956
957 return p;
958}
959
960
961/* Build a GIMPLE_OMP_RETURN statement.
962 WAIT_P is true if this is a non-waiting return. */
963
b8698a0f 964gimple
726a989a
RB
965gimple_build_omp_return (bool wait_p)
966{
967 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
968 if (wait_p)
969 gimple_omp_return_set_nowait (p);
970
971 return p;
972}
973
974
975/* Build a GIMPLE_OMP_SECTIONS statement.
976
977 BODY is a sequence of section statements.
978 CLAUSES are any of the OMP sections contsruct's clauses: private,
979 firstprivate, lastprivate, reduction, and nowait. */
980
b8698a0f 981gimple
726a989a
RB
982gimple_build_omp_sections (gimple_seq body, tree clauses)
983{
984 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
985 if (body)
986 gimple_omp_set_body (p, body);
987 gimple_omp_sections_set_clauses (p, clauses);
988
989 return p;
990}
991
992
993/* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
994
995gimple
996gimple_build_omp_sections_switch (void)
997{
998 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
999}
1000
1001
1002/* Build a GIMPLE_OMP_SINGLE statement.
1003
1004 BODY is the sequence of statements that will be executed once.
1005 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1006 copyprivate, nowait. */
1007
b8698a0f 1008gimple
726a989a
RB
1009gimple_build_omp_single (gimple_seq body, tree clauses)
1010{
1011 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1012 if (body)
1013 gimple_omp_set_body (p, body);
1014 gimple_omp_single_set_clauses (p, clauses);
1015
1016 return p;
1017}
1018
1019
726a989a
RB
1020/* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1021
1022gimple
1023gimple_build_omp_atomic_load (tree lhs, tree rhs)
1024{
1025 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1026 gimple_omp_atomic_load_set_lhs (p, lhs);
1027 gimple_omp_atomic_load_set_rhs (p, rhs);
1028 return p;
1029}
1030
1031/* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1032
1033 VAL is the value we are storing. */
1034
1035gimple
1036gimple_build_omp_atomic_store (tree val)
1037{
1038 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1039 gimple_omp_atomic_store_set_val (p, val);
1040 return p;
1041}
1042
1043/* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1044 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1045
1046gimple
1047gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1048{
1049 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1050 /* Ensure all the predictors fit into the lower bits of the subcode. */
e0c68ce9 1051 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
726a989a
RB
1052 gimple_predict_set_predictor (p, predictor);
1053 gimple_predict_set_outcome (p, outcome);
1054 return p;
1055}
1056
cea094ed 1057#if defined ENABLE_GIMPLE_CHECKING
726a989a
RB
1058/* Complain of a gimple type mismatch and die. */
1059
1060void
1061gimple_check_failed (const_gimple gs, const char *file, int line,
1062 const char *function, enum gimple_code code,
1063 enum tree_code subcode)
1064{
1065 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1066 gimple_code_name[code],
1067 tree_code_name[subcode],
1068 gimple_code_name[gimple_code (gs)],
1069 gs->gsbase.subcode > 0
1070 ? tree_code_name[gs->gsbase.subcode]
1071 : "",
1072 function, trim_filename (file), line);
1073}
726a989a
RB
1074#endif /* ENABLE_GIMPLE_CHECKING */
1075
1076
1077/* Allocate a new GIMPLE sequence in GC memory and return it. If
1078 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1079 instead. */
1080
1081gimple_seq
1082gimple_seq_alloc (void)
1083{
1084 gimple_seq seq = gimple_seq_cache;
1085 if (seq)
1086 {
1087 gimple_seq_cache = gimple_seq_cache->next_free;
1088 gcc_assert (gimple_seq_cache != seq);
1089 memset (seq, 0, sizeof (*seq));
1090 }
1091 else
1092 {
a9429e29 1093 seq = ggc_alloc_cleared_gimple_seq_d ();
726a989a
RB
1094#ifdef GATHER_STATISTICS
1095 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1096 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1097#endif
1098 }
1099
1100 return seq;
1101}
1102
1103/* Return SEQ to the free pool of GIMPLE sequences. */
1104
1105void
1106gimple_seq_free (gimple_seq seq)
1107{
1108 if (seq == NULL)
1109 return;
1110
1111 gcc_assert (gimple_seq_first (seq) == NULL);
1112 gcc_assert (gimple_seq_last (seq) == NULL);
1113
1114 /* If this triggers, it's a sign that the same list is being freed
1115 twice. */
1116 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
b8698a0f 1117
726a989a
RB
1118 /* Add SEQ to the pool of free sequences. */
1119 seq->next_free = gimple_seq_cache;
1120 gimple_seq_cache = seq;
1121}
1122
1123
1124/* Link gimple statement GS to the end of the sequence *SEQ_P. If
1125 *SEQ_P is NULL, a new sequence is allocated. */
1126
1127void
1128gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1129{
1130 gimple_stmt_iterator si;
1131
1132 if (gs == NULL)
1133 return;
1134
1135 if (*seq_p == NULL)
1136 *seq_p = gimple_seq_alloc ();
1137
1138 si = gsi_last (*seq_p);
1139 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1140}
1141
1142
1143/* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1144 NULL, a new sequence is allocated. */
1145
1146void
1147gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1148{
1149 gimple_stmt_iterator si;
1150
1151 if (src == NULL)
1152 return;
1153
1154 if (*dst_p == NULL)
1155 *dst_p = gimple_seq_alloc ();
1156
1157 si = gsi_last (*dst_p);
1158 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1159}
1160
1161
1162/* Helper function of empty_body_p. Return true if STMT is an empty
1163 statement. */
1164
1165static bool
1166empty_stmt_p (gimple stmt)
1167{
1168 if (gimple_code (stmt) == GIMPLE_NOP)
1169 return true;
1170 if (gimple_code (stmt) == GIMPLE_BIND)
1171 return empty_body_p (gimple_bind_body (stmt));
1172 return false;
1173}
1174
1175
1176/* Return true if BODY contains nothing but empty statements. */
1177
1178bool
1179empty_body_p (gimple_seq body)
1180{
1181 gimple_stmt_iterator i;
1182
726a989a
RB
1183 if (gimple_seq_empty_p (body))
1184 return true;
1185 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
b5b8b0ac
AO
1186 if (!empty_stmt_p (gsi_stmt (i))
1187 && !is_gimple_debug (gsi_stmt (i)))
726a989a
RB
1188 return false;
1189
1190 return true;
1191}
1192
1193
1194/* Perform a deep copy of sequence SRC and return the result. */
1195
1196gimple_seq
1197gimple_seq_copy (gimple_seq src)
1198{
1199 gimple_stmt_iterator gsi;
82d6e6fc 1200 gimple_seq new_seq = gimple_seq_alloc ();
726a989a
RB
1201 gimple stmt;
1202
1203 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1204 {
1205 stmt = gimple_copy (gsi_stmt (gsi));
82d6e6fc 1206 gimple_seq_add_stmt (&new_seq, stmt);
726a989a
RB
1207 }
1208
82d6e6fc 1209 return new_seq;
726a989a
RB
1210}
1211
1212
1213/* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1214 on each one. WI is as in walk_gimple_stmt.
b8698a0f 1215
726a989a
RB
1216 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1217 value is stored in WI->CALLBACK_RESULT and the statement that
1218 produced the value is returned.
1219
1220 Otherwise, all the statements are walked and NULL returned. */
1221
1222gimple
1223walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1224 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1225{
1226 gimple_stmt_iterator gsi;
1227
1228 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1229 {
1230 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1231 if (ret)
1232 {
1233 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1234 to hold it. */
1235 gcc_assert (wi);
1236 wi->callback_result = ret;
1237 return gsi_stmt (gsi);
1238 }
1239 }
1240
1241 if (wi)
1242 wi->callback_result = NULL_TREE;
1243
1244 return NULL;
1245}
1246
1247
1248/* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1249
1250static tree
1251walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1252 struct walk_stmt_info *wi)
1253{
1c384bf1 1254 tree ret, op;
726a989a
RB
1255 unsigned noutputs;
1256 const char **oconstraints;
1c384bf1 1257 unsigned i, n;
726a989a
RB
1258 const char *constraint;
1259 bool allows_mem, allows_reg, is_inout;
1260
1261 noutputs = gimple_asm_noutputs (stmt);
1262 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1263
1264 if (wi)
1265 wi->is_lhs = true;
1266
1267 for (i = 0; i < noutputs; i++)
1268 {
1c384bf1 1269 op = gimple_asm_output_op (stmt, i);
726a989a
RB
1270 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1271 oconstraints[i] = constraint;
1272 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1273 &is_inout);
1274 if (wi)
1275 wi->val_only = (allows_reg || !allows_mem);
1276 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1277 if (ret)
1278 return ret;
1279 }
1280
1c384bf1
RH
1281 n = gimple_asm_ninputs (stmt);
1282 for (i = 0; i < n; i++)
726a989a 1283 {
1c384bf1 1284 op = gimple_asm_input_op (stmt, i);
726a989a
RB
1285 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1286 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1287 oconstraints, &allows_mem, &allows_reg);
1288 if (wi)
1c384bf1
RH
1289 {
1290 wi->val_only = (allows_reg || !allows_mem);
1291 /* Although input "m" is not really a LHS, we need a lvalue. */
1292 wi->is_lhs = !wi->val_only;
1293 }
726a989a
RB
1294 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1295 if (ret)
1296 return ret;
1297 }
1298
1299 if (wi)
1300 {
1301 wi->is_lhs = false;
1302 wi->val_only = true;
1303 }
1304
1c384bf1
RH
1305 n = gimple_asm_nlabels (stmt);
1306 for (i = 0; i < n; i++)
1307 {
1308 op = gimple_asm_label_op (stmt, i);
1309 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1310 if (ret)
1311 return ret;
1312 }
1313
726a989a
RB
1314 return NULL_TREE;
1315}
1316
1317
1318/* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1319 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1320
1321 CALLBACK_OP is called on each operand of STMT via walk_tree.
1322 Additional parameters to walk_tree must be stored in WI. For each operand
1323 OP, walk_tree is called as:
1324
1325 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1326
1327 If CALLBACK_OP returns non-NULL for an operand, the remaining
1328 operands are not scanned.
1329
1330 The return value is that returned by the last call to walk_tree, or
1331 NULL_TREE if no CALLBACK_OP is specified. */
1332
6a4d4e8a 1333tree
726a989a
RB
1334walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1335 struct walk_stmt_info *wi)
1336{
1337 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1338 unsigned i;
1339 tree ret = NULL_TREE;
1340
1341 switch (gimple_code (stmt))
1342 {
1343 case GIMPLE_ASSIGN:
cb3d597d
EB
1344 /* Walk the RHS operands. If the LHS is of a non-renamable type or
1345 is a register variable, we may use a COMPONENT_REF on the RHS. */
726a989a 1346 if (wi)
cb3d597d
EB
1347 {
1348 tree lhs = gimple_assign_lhs (stmt);
1349 wi->val_only
1350 = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs))
1351 || !gimple_assign_single_p (stmt);
1352 }
726a989a
RB
1353
1354 for (i = 1; i < gimple_num_ops (stmt); i++)
1355 {
1356 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1357 pset);
1358 if (ret)
1359 return ret;
1360 }
1361
1362 /* Walk the LHS. If the RHS is appropriate for a memory, we
1363 may use a COMPONENT_REF on the LHS. */
1364 if (wi)
1365 {
1366 /* If the RHS has more than 1 operand, it is not appropriate
1367 for the memory. */
1368 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1369 || !gimple_assign_single_p (stmt);
1370 wi->is_lhs = true;
1371 }
1372
1373 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1374 if (ret)
1375 return ret;
1376
1377 if (wi)
1378 {
1379 wi->val_only = true;
1380 wi->is_lhs = false;
1381 }
1382 break;
1383
1384 case GIMPLE_CALL:
1385 if (wi)
523968bf
RG
1386 {
1387 wi->is_lhs = false;
1388 wi->val_only = true;
1389 }
726a989a
RB
1390
1391 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1392 if (ret)
1393 return ret;
1394
1395 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1396 if (ret)
1397 return ret;
1398
1399 for (i = 0; i < gimple_call_num_args (stmt); i++)
1400 {
523968bf
RG
1401 if (wi)
1402 wi->val_only = is_gimple_reg_type (gimple_call_arg (stmt, i));
726a989a
RB
1403 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1404 pset);
1405 if (ret)
1406 return ret;
1407 }
1408
523968bf
RG
1409 if (gimple_call_lhs (stmt))
1410 {
1411 if (wi)
1412 {
1413 wi->is_lhs = true;
1414 wi->val_only = is_gimple_reg_type (gimple_call_lhs (stmt));
1415 }
726a989a 1416
523968bf
RG
1417 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1418 if (ret)
1419 return ret;
1420 }
726a989a
RB
1421
1422 if (wi)
523968bf
RG
1423 {
1424 wi->is_lhs = false;
1425 wi->val_only = true;
1426 }
726a989a
RB
1427 break;
1428
1429 case GIMPLE_CATCH:
1430 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1431 pset);
1432 if (ret)
1433 return ret;
1434 break;
1435
1436 case GIMPLE_EH_FILTER:
1437 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1438 pset);
1439 if (ret)
1440 return ret;
1441 break;
1442
726a989a
RB
1443 case GIMPLE_ASM:
1444 ret = walk_gimple_asm (stmt, callback_op, wi);
1445 if (ret)
1446 return ret;
1447 break;
1448
1449 case GIMPLE_OMP_CONTINUE:
1450 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1451 callback_op, wi, pset);
1452 if (ret)
1453 return ret;
1454
1455 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1456 callback_op, wi, pset);
1457 if (ret)
1458 return ret;
1459 break;
1460
1461 case GIMPLE_OMP_CRITICAL:
1462 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1463 pset);
1464 if (ret)
1465 return ret;
1466 break;
1467
1468 case GIMPLE_OMP_FOR:
1469 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1470 pset);
1471 if (ret)
1472 return ret;
1473 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1474 {
1475 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1476 wi, pset);
1477 if (ret)
1478 return ret;
1479 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1480 wi, pset);
1481 if (ret)
1482 return ret;
1483 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1484 wi, pset);
1485 if (ret)
1486 return ret;
1487 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1488 wi, pset);
1489 }
1490 if (ret)
1491 return ret;
1492 break;
1493
1494 case GIMPLE_OMP_PARALLEL:
1495 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1496 wi, pset);
1497 if (ret)
1498 return ret;
1499 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1500 wi, pset);
1501 if (ret)
1502 return ret;
1503 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1504 wi, pset);
1505 if (ret)
1506 return ret;
1507 break;
1508
1509 case GIMPLE_OMP_TASK:
1510 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1511 wi, pset);
1512 if (ret)
1513 return ret;
1514 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1515 wi, pset);
1516 if (ret)
1517 return ret;
1518 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1519 wi, pset);
1520 if (ret)
1521 return ret;
1522 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1523 wi, pset);
1524 if (ret)
1525 return ret;
1526 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1527 wi, pset);
1528 if (ret)
1529 return ret;
1530 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1531 wi, pset);
1532 if (ret)
1533 return ret;
1534 break;
1535
1536 case GIMPLE_OMP_SECTIONS:
1537 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1538 wi, pset);
1539 if (ret)
1540 return ret;
1541
1542 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1543 wi, pset);
1544 if (ret)
1545 return ret;
1546
1547 break;
1548
1549 case GIMPLE_OMP_SINGLE:
1550 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1551 pset);
1552 if (ret)
1553 return ret;
1554 break;
1555
1556 case GIMPLE_OMP_ATOMIC_LOAD:
1557 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1558 pset);
1559 if (ret)
1560 return ret;
1561
1562 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1563 pset);
1564 if (ret)
1565 return ret;
1566 break;
1567
1568 case GIMPLE_OMP_ATOMIC_STORE:
1569 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1570 wi, pset);
1571 if (ret)
1572 return ret;
1573 break;
1574
1575 /* Tuples that do not have operands. */
1576 case GIMPLE_NOP:
1577 case GIMPLE_RESX:
1578 case GIMPLE_OMP_RETURN:
1579 case GIMPLE_PREDICT:
1580 break;
1581
1582 default:
1583 {
1584 enum gimple_statement_structure_enum gss;
1585 gss = gimple_statement_structure (stmt);
1586 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1587 for (i = 0; i < gimple_num_ops (stmt); i++)
1588 {
1589 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1590 if (ret)
1591 return ret;
1592 }
1593 }
1594 break;
1595 }
1596
1597 return NULL_TREE;
1598}
1599
1600
1601/* Walk the current statement in GSI (optionally using traversal state
1602 stored in WI). If WI is NULL, no state is kept during traversal.
1603 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1604 that it has handled all the operands of the statement, its return
1605 value is returned. Otherwise, the return value from CALLBACK_STMT
1606 is discarded and its operands are scanned.
1607
1608 If CALLBACK_STMT is NULL or it didn't handle the operands,
1609 CALLBACK_OP is called on each operand of the statement via
1610 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1611 operand, the remaining operands are not scanned. In this case, the
1612 return value from CALLBACK_OP is returned.
1613
1614 In any other case, NULL_TREE is returned. */
1615
1616tree
1617walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1618 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1619{
1620 gimple ret;
1621 tree tree_ret;
1622 gimple stmt = gsi_stmt (*gsi);
1623
1624 if (wi)
1625 wi->gsi = *gsi;
1626
1627 if (wi && wi->want_locations && gimple_has_location (stmt))
1628 input_location = gimple_location (stmt);
1629
1630 ret = NULL;
1631
1632 /* Invoke the statement callback. Return if the callback handled
1633 all of STMT operands by itself. */
1634 if (callback_stmt)
1635 {
1636 bool handled_ops = false;
1637 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1638 if (handled_ops)
1639 return tree_ret;
1640
1641 /* If CALLBACK_STMT did not handle operands, it should not have
1642 a value to return. */
1643 gcc_assert (tree_ret == NULL);
1644
1645 /* Re-read stmt in case the callback changed it. */
1646 stmt = gsi_stmt (*gsi);
1647 }
1648
1649 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1650 if (callback_op)
1651 {
1652 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1653 if (tree_ret)
1654 return tree_ret;
1655 }
1656
1657 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1658 switch (gimple_code (stmt))
1659 {
1660 case GIMPLE_BIND:
1661 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1662 callback_op, wi);
1663 if (ret)
1664 return wi->callback_result;
1665 break;
1666
1667 case GIMPLE_CATCH:
1668 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1669 callback_op, wi);
1670 if (ret)
1671 return wi->callback_result;
1672 break;
1673
1674 case GIMPLE_EH_FILTER:
1675 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1676 callback_op, wi);
1677 if (ret)
1678 return wi->callback_result;
1679 break;
1680
1681 case GIMPLE_TRY:
1682 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1683 wi);
1684 if (ret)
1685 return wi->callback_result;
1686
1687 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1688 callback_op, wi);
1689 if (ret)
1690 return wi->callback_result;
1691 break;
1692
1693 case GIMPLE_OMP_FOR:
1694 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1695 callback_op, wi);
1696 if (ret)
1697 return wi->callback_result;
1698
1699 /* FALL THROUGH. */
1700 case GIMPLE_OMP_CRITICAL:
1701 case GIMPLE_OMP_MASTER:
1702 case GIMPLE_OMP_ORDERED:
1703 case GIMPLE_OMP_SECTION:
1704 case GIMPLE_OMP_PARALLEL:
1705 case GIMPLE_OMP_TASK:
1706 case GIMPLE_OMP_SECTIONS:
1707 case GIMPLE_OMP_SINGLE:
1708 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1709 wi);
1710 if (ret)
1711 return wi->callback_result;
1712 break;
1713
1714 case GIMPLE_WITH_CLEANUP_EXPR:
1715 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1716 callback_op, wi);
1717 if (ret)
1718 return wi->callback_result;
1719 break;
1720
1721 default:
1722 gcc_assert (!gimple_has_substatements (stmt));
1723 break;
1724 }
1725
1726 return NULL;
1727}
1728
1729
1730/* Set sequence SEQ to be the GIMPLE body for function FN. */
1731
1732void
1733gimple_set_body (tree fndecl, gimple_seq seq)
1734{
1735 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1736 if (fn == NULL)
1737 {
1738 /* If FNDECL still does not have a function structure associated
1739 with it, then it does not make sense for it to receive a
1740 GIMPLE body. */
1741 gcc_assert (seq == NULL);
1742 }
1743 else
1744 fn->gimple_body = seq;
1745}
1746
1747
abbd64b9
JS
1748/* Return the body of GIMPLE statements for function FN. After the
1749 CFG pass, the function body doesn't exist anymore because it has
1750 been split up into basic blocks. In this case, it returns
1751 NULL. */
726a989a
RB
1752
1753gimple_seq
1754gimple_body (tree fndecl)
1755{
1756 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1757 return fn ? fn->gimple_body : NULL;
1758}
1759
39ecc018
JH
1760/* Return true when FNDECL has Gimple body either in unlowered
1761 or CFG form. */
1762bool
1763gimple_has_body_p (tree fndecl)
1764{
1765 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1766 return (gimple_body (fndecl) || (fn && fn->cfg));
1767}
726a989a
RB
1768
1769/* Detect flags from a GIMPLE_CALL. This is just like
1770 call_expr_flags, but for gimple tuples. */
1771
1772int
1773gimple_call_flags (const_gimple stmt)
1774{
1775 int flags;
1776 tree decl = gimple_call_fndecl (stmt);
1777 tree t;
1778
1779 if (decl)
1780 flags = flags_from_decl_or_type (decl);
1781 else
1782 {
1783 t = TREE_TYPE (gimple_call_fn (stmt));
1784 if (t && TREE_CODE (t) == POINTER_TYPE)
1785 flags = flags_from_decl_or_type (TREE_TYPE (t));
1786 else
1787 flags = 0;
1788 }
1789
9bb1a81b
JM
1790 if (stmt->gsbase.subcode & GF_CALL_NOTHROW)
1791 flags |= ECF_NOTHROW;
1792
726a989a
RB
1793 return flags;
1794}
1795
0b7b376d
RG
1796/* Detects argument flags for argument number ARG on call STMT. */
1797
1798int
1799gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1800{
1801 tree type = TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt)));
1802 tree attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1803 if (!attr)
1804 return 0;
1805
1806 attr = TREE_VALUE (TREE_VALUE (attr));
1807 if (1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1808 return 0;
1809
1810 switch (TREE_STRING_POINTER (attr)[1 + arg])
1811 {
1812 case 'x':
1813 case 'X':
1814 return EAF_UNUSED;
1815
1816 case 'R':
1817 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1818
1819 case 'r':
1820 return EAF_NOCLOBBER | EAF_NOESCAPE;
1821
1822 case 'W':
1823 return EAF_DIRECT | EAF_NOESCAPE;
1824
1825 case 'w':
1826 return EAF_NOESCAPE;
1827
1828 case '.':
1829 default:
1830 return 0;
1831 }
1832}
1833
1834/* Detects return flags for the call STMT. */
1835
1836int
1837gimple_call_return_flags (const_gimple stmt)
1838{
1839 tree type;
1840 tree attr = NULL_TREE;
1841
1842 if (gimple_call_flags (stmt) & ECF_MALLOC)
1843 return ERF_NOALIAS;
1844
1845 type = TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt)));
1846 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1847 if (!attr)
1848 return 0;
1849
1850 attr = TREE_VALUE (TREE_VALUE (attr));
1851 if (TREE_STRING_LENGTH (attr) < 1)
1852 return 0;
1853
1854 switch (TREE_STRING_POINTER (attr)[0])
1855 {
1856 case '1':
1857 case '2':
1858 case '3':
1859 case '4':
1860 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1861
1862 case 'm':
1863 return ERF_NOALIAS;
1864
1865 case '.':
1866 default:
1867 return 0;
1868 }
1869}
726a989a
RB
1870
1871/* Return true if GS is a copy assignment. */
1872
1873bool
1874gimple_assign_copy_p (gimple gs)
1875{
1876 return gimple_code (gs) == GIMPLE_ASSIGN
1877 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1878 == GIMPLE_SINGLE_RHS
1879 && is_gimple_val (gimple_op (gs, 1));
1880}
1881
1882
1883/* Return true if GS is a SSA_NAME copy assignment. */
1884
1885bool
1886gimple_assign_ssa_name_copy_p (gimple gs)
1887{
1888 return (gimple_code (gs) == GIMPLE_ASSIGN
1889 && (get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1890 == GIMPLE_SINGLE_RHS)
1891 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1892 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1893}
1894
1895
1896/* Return true if GS is an assignment with a singleton RHS, i.e.,
1897 there is no operator associated with the assignment itself.
1898 Unlike gimple_assign_copy_p, this predicate returns true for
1899 any RHS operand, including those that perform an operation
1900 and do not have the semantics of a copy, such as COND_EXPR. */
1901
1902bool
1903gimple_assign_single_p (gimple gs)
1904{
1905 return (gimple_code (gs) == GIMPLE_ASSIGN
1906 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1907 == GIMPLE_SINGLE_RHS);
1908}
1909
1910/* Return true if GS is an assignment with a unary RHS, but the
1911 operator has no effect on the assigned value. The logic is adapted
1912 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1913 instances in which STRIP_NOPS was previously applied to the RHS of
1914 an assignment.
1915
1916 NOTE: In the use cases that led to the creation of this function
1917 and of gimple_assign_single_p, it is typical to test for either
1918 condition and to proceed in the same manner. In each case, the
1919 assigned value is represented by the single RHS operand of the
1920 assignment. I suspect there may be cases where gimple_assign_copy_p,
1921 gimple_assign_single_p, or equivalent logic is used where a similar
1922 treatment of unary NOPs is appropriate. */
b8698a0f 1923
726a989a
RB
1924bool
1925gimple_assign_unary_nop_p (gimple gs)
1926{
1927 return (gimple_code (gs) == GIMPLE_ASSIGN
1a87cf0c 1928 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
726a989a
RB
1929 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1930 && gimple_assign_rhs1 (gs) != error_mark_node
1931 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1932 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1933}
1934
1935/* Set BB to be the basic block holding G. */
1936
1937void
1938gimple_set_bb (gimple stmt, basic_block bb)
1939{
1940 stmt->gsbase.bb = bb;
1941
1942 /* If the statement is a label, add the label to block-to-labels map
1943 so that we can speed up edge creation for GIMPLE_GOTOs. */
1944 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
1945 {
1946 tree t;
1947 int uid;
1948
1949 t = gimple_label_label (stmt);
1950 uid = LABEL_DECL_UID (t);
1951 if (uid == -1)
1952 {
1953 unsigned old_len = VEC_length (basic_block, label_to_block_map);
1954 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1955 if (old_len <= (unsigned) uid)
1956 {
5006671f 1957 unsigned new_len = 3 * uid / 2 + 1;
726a989a
RB
1958
1959 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
1960 new_len);
1961 }
1962 }
1963
1964 VEC_replace (basic_block, label_to_block_map, uid, bb);
1965 }
1966}
1967
1968
726a989a
RB
1969/* Modify the RHS of the assignment pointed-to by GSI using the
1970 operands in the expression tree EXPR.
1971
1972 NOTE: The statement pointed-to by GSI may be reallocated if it
1973 did not have enough operand slots.
1974
1975 This function is useful to convert an existing tree expression into
1976 the flat representation used for the RHS of a GIMPLE assignment.
1977 It will reallocate memory as needed to expand or shrink the number
1978 of operand slots needed to represent EXPR.
1979
1980 NOTE: If you find yourself building a tree and then calling this
1981 function, you are most certainly doing it the slow way. It is much
1982 better to build a new assignment or to use the function
1983 gimple_assign_set_rhs_with_ops, which does not require an
1984 expression tree to be built. */
1985
1986void
1987gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1988{
1989 enum tree_code subcode;
0354c0c7 1990 tree op1, op2, op3;
726a989a 1991
0354c0c7
BS
1992 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1993 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
726a989a
RB
1994}
1995
1996
1997/* Set the RHS of assignment statement pointed-to by GSI to CODE with
0354c0c7 1998 operands OP1, OP2 and OP3.
726a989a
RB
1999
2000 NOTE: The statement pointed-to by GSI may be reallocated if it
2001 did not have enough operand slots. */
2002
2003void
0354c0c7
BS
2004gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
2005 tree op1, tree op2, tree op3)
726a989a
RB
2006{
2007 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
2008 gimple stmt = gsi_stmt (*gsi);
2009
2010 /* If the new CODE needs more operands, allocate a new statement. */
2011 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
2012 {
2013 tree lhs = gimple_assign_lhs (stmt);
2014 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
2015 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
2016 gsi_replace (gsi, new_stmt, true);
2017 stmt = new_stmt;
2018
2019 /* The LHS needs to be reset as this also changes the SSA name
2020 on the LHS. */
2021 gimple_assign_set_lhs (stmt, lhs);
2022 }
2023
2024 gimple_set_num_ops (stmt, new_rhs_ops + 1);
2025 gimple_set_subcode (stmt, code);
2026 gimple_assign_set_rhs1 (stmt, op1);
2027 if (new_rhs_ops > 1)
2028 gimple_assign_set_rhs2 (stmt, op2);
0354c0c7
BS
2029 if (new_rhs_ops > 2)
2030 gimple_assign_set_rhs3 (stmt, op3);
726a989a
RB
2031}
2032
2033
2034/* Return the LHS of a statement that performs an assignment,
2035 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2036 for a call to a function that returns no value, or for a
2037 statement other than an assignment or a call. */
2038
2039tree
2040gimple_get_lhs (const_gimple stmt)
2041{
e0c68ce9 2042 enum gimple_code code = gimple_code (stmt);
726a989a
RB
2043
2044 if (code == GIMPLE_ASSIGN)
2045 return gimple_assign_lhs (stmt);
2046 else if (code == GIMPLE_CALL)
2047 return gimple_call_lhs (stmt);
2048 else
2049 return NULL_TREE;
2050}
2051
2052
2053/* Set the LHS of a statement that performs an assignment,
2054 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2055
2056void
2057gimple_set_lhs (gimple stmt, tree lhs)
2058{
e0c68ce9 2059 enum gimple_code code = gimple_code (stmt);
726a989a
RB
2060
2061 if (code == GIMPLE_ASSIGN)
2062 gimple_assign_set_lhs (stmt, lhs);
2063 else if (code == GIMPLE_CALL)
2064 gimple_call_set_lhs (stmt, lhs);
2065 else
2066 gcc_unreachable();
2067}
2068
21cf7180
AO
2069/* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
2070 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
2071 expression with a different value.
2072
2073 This will update any annotations (say debug bind stmts) referring
2074 to the original LHS, so that they use the RHS instead. This is
2075 done even if NLHS and LHS are the same, for it is understood that
2076 the RHS will be modified afterwards, and NLHS will not be assigned
2077 an equivalent value.
2078
2079 Adjusting any non-annotation uses of the LHS, if needed, is a
2080 responsibility of the caller.
2081
2082 The effect of this call should be pretty much the same as that of
2083 inserting a copy of STMT before STMT, and then removing the
2084 original stmt, at which time gsi_remove() would have update
2085 annotations, but using this function saves all the inserting,
2086 copying and removing. */
2087
2088void
2089gimple_replace_lhs (gimple stmt, tree nlhs)
2090{
2091 if (MAY_HAVE_DEBUG_STMTS)
2092 {
2093 tree lhs = gimple_get_lhs (stmt);
2094
2095 gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
2096
2097 insert_debug_temp_for_var_def (NULL, lhs);
2098 }
2099
2100 gimple_set_lhs (stmt, nlhs);
2101}
726a989a
RB
2102
2103/* Return a deep copy of statement STMT. All the operands from STMT
2104 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
2105 and VUSE operand arrays are set to empty in the new copy. */
2106
2107gimple
2108gimple_copy (gimple stmt)
2109{
2110 enum gimple_code code = gimple_code (stmt);
2111 unsigned num_ops = gimple_num_ops (stmt);
2112 gimple copy = gimple_alloc (code, num_ops);
2113 unsigned i;
2114
2115 /* Shallow copy all the fields from STMT. */
2116 memcpy (copy, stmt, gimple_size (code));
2117
2118 /* If STMT has sub-statements, deep-copy them as well. */
2119 if (gimple_has_substatements (stmt))
2120 {
2121 gimple_seq new_seq;
2122 tree t;
2123
2124 switch (gimple_code (stmt))
2125 {
2126 case GIMPLE_BIND:
2127 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2128 gimple_bind_set_body (copy, new_seq);
2129 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2130 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2131 break;
2132
2133 case GIMPLE_CATCH:
2134 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2135 gimple_catch_set_handler (copy, new_seq);
2136 t = unshare_expr (gimple_catch_types (stmt));
2137 gimple_catch_set_types (copy, t);
2138 break;
2139
2140 case GIMPLE_EH_FILTER:
2141 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2142 gimple_eh_filter_set_failure (copy, new_seq);
2143 t = unshare_expr (gimple_eh_filter_types (stmt));
2144 gimple_eh_filter_set_types (copy, t);
2145 break;
2146
2147 case GIMPLE_TRY:
2148 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2149 gimple_try_set_eval (copy, new_seq);
2150 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2151 gimple_try_set_cleanup (copy, new_seq);
2152 break;
2153
2154 case GIMPLE_OMP_FOR:
2155 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2156 gimple_omp_for_set_pre_body (copy, new_seq);
2157 t = unshare_expr (gimple_omp_for_clauses (stmt));
2158 gimple_omp_for_set_clauses (copy, t);
2159 copy->gimple_omp_for.iter
a9429e29
LB
2160 = ggc_alloc_vec_gimple_omp_for_iter
2161 (gimple_omp_for_collapse (stmt));
726a989a
RB
2162 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2163 {
2164 gimple_omp_for_set_cond (copy, i,
2165 gimple_omp_for_cond (stmt, i));
2166 gimple_omp_for_set_index (copy, i,
2167 gimple_omp_for_index (stmt, i));
2168 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2169 gimple_omp_for_set_initial (copy, i, t);
2170 t = unshare_expr (gimple_omp_for_final (stmt, i));
2171 gimple_omp_for_set_final (copy, i, t);
2172 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2173 gimple_omp_for_set_incr (copy, i, t);
2174 }
2175 goto copy_omp_body;
2176
2177 case GIMPLE_OMP_PARALLEL:
2178 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2179 gimple_omp_parallel_set_clauses (copy, t);
2180 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2181 gimple_omp_parallel_set_child_fn (copy, t);
2182 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2183 gimple_omp_parallel_set_data_arg (copy, t);
2184 goto copy_omp_body;
2185
2186 case GIMPLE_OMP_TASK:
2187 t = unshare_expr (gimple_omp_task_clauses (stmt));
2188 gimple_omp_task_set_clauses (copy, t);
2189 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2190 gimple_omp_task_set_child_fn (copy, t);
2191 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2192 gimple_omp_task_set_data_arg (copy, t);
2193 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2194 gimple_omp_task_set_copy_fn (copy, t);
2195 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2196 gimple_omp_task_set_arg_size (copy, t);
2197 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2198 gimple_omp_task_set_arg_align (copy, t);
2199 goto copy_omp_body;
2200
2201 case GIMPLE_OMP_CRITICAL:
2202 t = unshare_expr (gimple_omp_critical_name (stmt));
2203 gimple_omp_critical_set_name (copy, t);
2204 goto copy_omp_body;
2205
2206 case GIMPLE_OMP_SECTIONS:
2207 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2208 gimple_omp_sections_set_clauses (copy, t);
2209 t = unshare_expr (gimple_omp_sections_control (stmt));
2210 gimple_omp_sections_set_control (copy, t);
2211 /* FALLTHRU */
2212
2213 case GIMPLE_OMP_SINGLE:
2214 case GIMPLE_OMP_SECTION:
2215 case GIMPLE_OMP_MASTER:
2216 case GIMPLE_OMP_ORDERED:
2217 copy_omp_body:
2218 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2219 gimple_omp_set_body (copy, new_seq);
2220 break;
2221
2222 case GIMPLE_WITH_CLEANUP_EXPR:
2223 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2224 gimple_wce_set_cleanup (copy, new_seq);
2225 break;
2226
2227 default:
2228 gcc_unreachable ();
2229 }
2230 }
2231
2232 /* Make copy of operands. */
2233 if (num_ops > 0)
2234 {
2235 for (i = 0; i < num_ops; i++)
2236 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2237
ccacdf06 2238 /* Clear out SSA operand vectors on COPY. */
726a989a
RB
2239 if (gimple_has_ops (stmt))
2240 {
2241 gimple_set_def_ops (copy, NULL);
2242 gimple_set_use_ops (copy, NULL);
726a989a
RB
2243 }
2244
2245 if (gimple_has_mem_ops (stmt))
2246 {
5006671f
RG
2247 gimple_set_vdef (copy, gimple_vdef (stmt));
2248 gimple_set_vuse (copy, gimple_vuse (stmt));
726a989a
RB
2249 }
2250
5006671f
RG
2251 /* SSA operands need to be updated. */
2252 gimple_set_modified (copy, true);
726a989a
RB
2253 }
2254
2255 return copy;
2256}
2257
2258
2259/* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2260 a MODIFIED field. */
2261
2262void
2263gimple_set_modified (gimple s, bool modifiedp)
2264{
2265 if (gimple_has_ops (s))
2266 {
2267 s->gsbase.modified = (unsigned) modifiedp;
2268
2269 if (modifiedp
2270 && cfun->gimple_df
2271 && is_gimple_call (s)
2272 && gimple_call_noreturn_p (s))
2273 VEC_safe_push (gimple, gc, MODIFIED_NORETURN_CALLS (cfun), s);
2274 }
2275}
2276
2277
2278/* Return true if statement S has side-effects. We consider a
2279 statement to have side effects if:
2280
2281 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2282 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2283
2284bool
2285gimple_has_side_effects (const_gimple s)
2286{
2287 unsigned i;
2288
b5b8b0ac
AO
2289 if (is_gimple_debug (s))
2290 return false;
2291
726a989a
RB
2292 /* We don't have to scan the arguments to check for
2293 volatile arguments, though, at present, we still
2294 do a scan to check for TREE_SIDE_EFFECTS. */
2295 if (gimple_has_volatile_ops (s))
2296 return true;
2297
2298 if (is_gimple_call (s))
2299 {
2300 unsigned nargs = gimple_call_num_args (s);
2301
2302 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2303 return true;
2304 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2305 /* An infinite loop is considered a side effect. */
2306 return true;
2307
2308 if (gimple_call_lhs (s)
2309 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2310 {
2311 gcc_assert (gimple_has_volatile_ops (s));
2312 return true;
2313 }
2314
2315 if (TREE_SIDE_EFFECTS (gimple_call_fn (s)))
2316 return true;
2317
2318 for (i = 0; i < nargs; i++)
2319 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2320 {
2321 gcc_assert (gimple_has_volatile_ops (s));
2322 return true;
2323 }
2324
2325 return false;
2326 }
2327 else
2328 {
2329 for (i = 0; i < gimple_num_ops (s); i++)
2330 if (TREE_SIDE_EFFECTS (gimple_op (s, i)))
2331 {
2332 gcc_assert (gimple_has_volatile_ops (s));
2333 return true;
2334 }
2335 }
2336
2337 return false;
2338}
2339
2340/* Return true if the RHS of statement S has side effects.
2341 We may use it to determine if it is admissable to replace
2342 an assignment or call with a copy of a previously-computed
2343 value. In such cases, side-effects due the the LHS are
2344 preserved. */
2345
2346bool
2347gimple_rhs_has_side_effects (const_gimple s)
2348{
2349 unsigned i;
2350
2351 if (is_gimple_call (s))
2352 {
2353 unsigned nargs = gimple_call_num_args (s);
2354
2355 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2356 return true;
2357
2358 /* We cannot use gimple_has_volatile_ops here,
2359 because we must ignore a volatile LHS. */
2360 if (TREE_SIDE_EFFECTS (gimple_call_fn (s))
2361 || TREE_THIS_VOLATILE (gimple_call_fn (s)))
2362 {
2363 gcc_assert (gimple_has_volatile_ops (s));
2364 return true;
2365 }
2366
2367 for (i = 0; i < nargs; i++)
2368 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2369 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2370 return true;
2371
2372 return false;
2373 }
2374 else if (is_gimple_assign (s))
2375 {
2376 /* Skip the first operand, the LHS. */
2377 for (i = 1; i < gimple_num_ops (s); i++)
2378 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2379 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2380 {
2381 gcc_assert (gimple_has_volatile_ops (s));
2382 return true;
2383 }
2384 }
b5b8b0ac
AO
2385 else if (is_gimple_debug (s))
2386 return false;
726a989a
RB
2387 else
2388 {
2389 /* For statements without an LHS, examine all arguments. */
2390 for (i = 0; i < gimple_num_ops (s); i++)
2391 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2392 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2393 {
2394 gcc_assert (gimple_has_volatile_ops (s));
2395 return true;
2396 }
2397 }
2398
2399 return false;
2400}
2401
2402
2403/* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2404 Return true if S can trap. If INCLUDE_LHS is true and S is a
2405 GIMPLE_ASSIGN, the LHS of the assignment is also checked.
2406 Otherwise, only the RHS of the assignment is checked. */
2407
2408static bool
2409gimple_could_trap_p_1 (gimple s, bool include_lhs)
2410{
2411 unsigned i, start;
2412 tree t, div = NULL_TREE;
2413 enum tree_code op;
2414
2415 start = (is_gimple_assign (s) && !include_lhs) ? 1 : 0;
2416
2417 for (i = start; i < gimple_num_ops (s); i++)
2418 if (tree_could_trap_p (gimple_op (s, i)))
2419 return true;
2420
2421 switch (gimple_code (s))
2422 {
2423 case GIMPLE_ASM:
2424 return gimple_asm_volatile_p (s);
2425
2426 case GIMPLE_CALL:
2427 t = gimple_call_fndecl (s);
2428 /* Assume that calls to weak functions may trap. */
2429 if (!t || !DECL_P (t) || DECL_WEAK (t))
2430 return true;
2431 return false;
2432
2433 case GIMPLE_ASSIGN:
2434 t = gimple_expr_type (s);
2435 op = gimple_assign_rhs_code (s);
2436 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2437 div = gimple_assign_rhs2 (s);
2438 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2439 (INTEGRAL_TYPE_P (t)
2440 && TYPE_OVERFLOW_TRAPS (t)),
2441 div));
2442
2443 default:
2444 break;
2445 }
2446
2447 return false;
2448
2449}
2450
2451
2452/* Return true if statement S can trap. */
2453
2454bool
2455gimple_could_trap_p (gimple s)
2456{
2457 return gimple_could_trap_p_1 (s, true);
2458}
2459
2460
2461/* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2462
2463bool
2464gimple_assign_rhs_could_trap_p (gimple s)
2465{
2466 gcc_assert (is_gimple_assign (s));
2467 return gimple_could_trap_p_1 (s, false);
2468}
2469
2470
2471/* Print debugging information for gimple stmts generated. */
2472
2473void
2474dump_gimple_statistics (void)
2475{
2476#ifdef GATHER_STATISTICS
2477 int i, total_tuples = 0, total_bytes = 0;
2478
2479 fprintf (stderr, "\nGIMPLE statements\n");
2480 fprintf (stderr, "Kind Stmts Bytes\n");
2481 fprintf (stderr, "---------------------------------------\n");
2482 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2483 {
2484 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2485 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2486 total_tuples += gimple_alloc_counts[i];
2487 total_bytes += gimple_alloc_sizes[i];
2488 }
2489 fprintf (stderr, "---------------------------------------\n");
2490 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2491 fprintf (stderr, "---------------------------------------\n");
2492#else
2493 fprintf (stderr, "No gimple statistics\n");
2494#endif
2495}
2496
2497
726a989a
RB
2498/* Return the number of operands needed on the RHS of a GIMPLE
2499 assignment for an expression with tree code CODE. */
2500
2501unsigned
2502get_gimple_rhs_num_ops (enum tree_code code)
2503{
2504 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2505
2506 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2507 return 1;
2508 else if (rhs_class == GIMPLE_BINARY_RHS)
2509 return 2;
0354c0c7
BS
2510 else if (rhs_class == GIMPLE_TERNARY_RHS)
2511 return 3;
726a989a
RB
2512 else
2513 gcc_unreachable ();
2514}
2515
2516#define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2517 (unsigned char) \
2518 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2519 : ((TYPE) == tcc_binary \
2520 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2521 : ((TYPE) == tcc_constant \
2522 || (TYPE) == tcc_declaration \
2523 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2524 : ((SYM) == TRUTH_AND_EXPR \
2525 || (SYM) == TRUTH_OR_EXPR \
2526 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2527 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
0354c0c7
BS
2528 : ((SYM) == WIDEN_MULT_PLUS_EXPR \
2529 || (SYM) == WIDEN_MULT_MINUS_EXPR) ? GIMPLE_TERNARY_RHS \
726a989a
RB
2530 : ((SYM) == COND_EXPR \
2531 || (SYM) == CONSTRUCTOR \
2532 || (SYM) == OBJ_TYPE_REF \
2533 || (SYM) == ASSERT_EXPR \
2534 || (SYM) == ADDR_EXPR \
2535 || (SYM) == WITH_SIZE_EXPR \
726a989a 2536 || (SYM) == SSA_NAME \
726a989a
RB
2537 || (SYM) == POLYNOMIAL_CHREC \
2538 || (SYM) == DOT_PROD_EXPR \
2539 || (SYM) == VEC_COND_EXPR \
2540 || (SYM) == REALIGN_LOAD_EXPR) ? GIMPLE_SINGLE_RHS \
2541 : GIMPLE_INVALID_RHS),
2542#define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2543
2544const unsigned char gimple_rhs_class_table[] = {
2545#include "all-tree.def"
2546};
2547
2548#undef DEFTREECODE
2549#undef END_OF_BASE_TREE_CODES
2550
2551/* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2552
2553/* Validation of GIMPLE expressions. */
2554
726a989a
RB
2555/* Returns true iff T is a valid RHS for an assignment to a renamed
2556 user -- or front-end generated artificial -- variable. */
2557
2558bool
2559is_gimple_reg_rhs (tree t)
2560{
ba4d8f9d 2561 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
726a989a
RB
2562}
2563
2564/* Returns true iff T is a valid RHS for an assignment to an un-renamed
2565 LHS, or for a call argument. */
2566
2567bool
2568is_gimple_mem_rhs (tree t)
2569{
2570 /* If we're dealing with a renamable type, either source or dest must be
2571 a renamed variable. */
2572 if (is_gimple_reg_type (TREE_TYPE (t)))
2573 return is_gimple_val (t);
2574 else
ba4d8f9d 2575 return is_gimple_val (t) || is_gimple_lvalue (t);
726a989a
RB
2576}
2577
2578/* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2579
2580bool
2581is_gimple_lvalue (tree t)
2582{
2583 return (is_gimple_addressable (t)
2584 || TREE_CODE (t) == WITH_SIZE_EXPR
2585 /* These are complex lvalues, but don't have addresses, so they
2586 go here. */
2587 || TREE_CODE (t) == BIT_FIELD_REF);
2588}
2589
2590/* Return true if T is a GIMPLE condition. */
2591
2592bool
2593is_gimple_condexpr (tree t)
2594{
2595 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2596 && !tree_could_trap_p (t)
2597 && is_gimple_val (TREE_OPERAND (t, 0))
2598 && is_gimple_val (TREE_OPERAND (t, 1))));
2599}
2600
2601/* Return true if T is something whose address can be taken. */
2602
2603bool
2604is_gimple_addressable (tree t)
2605{
70f34814
RG
2606 return (is_gimple_id (t) || handled_component_p (t)
2607 || TREE_CODE (t) == MEM_REF);
726a989a
RB
2608}
2609
2610/* Return true if T is a valid gimple constant. */
2611
2612bool
2613is_gimple_constant (const_tree t)
2614{
2615 switch (TREE_CODE (t))
2616 {
2617 case INTEGER_CST:
2618 case REAL_CST:
2619 case FIXED_CST:
2620 case STRING_CST:
2621 case COMPLEX_CST:
2622 case VECTOR_CST:
2623 return true;
2624
2625 /* Vector constant constructors are gimple invariant. */
2626 case CONSTRUCTOR:
2627 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2628 return TREE_CONSTANT (t);
2629 else
2630 return false;
2631
2632 default:
2633 return false;
2634 }
2635}
2636
2637/* Return true if T is a gimple address. */
2638
2639bool
2640is_gimple_address (const_tree t)
2641{
2642 tree op;
2643
2644 if (TREE_CODE (t) != ADDR_EXPR)
2645 return false;
2646
2647 op = TREE_OPERAND (t, 0);
2648 while (handled_component_p (op))
2649 {
2650 if ((TREE_CODE (op) == ARRAY_REF
2651 || TREE_CODE (op) == ARRAY_RANGE_REF)
2652 && !is_gimple_val (TREE_OPERAND (op, 1)))
2653 return false;
2654
2655 op = TREE_OPERAND (op, 0);
2656 }
2657
70f34814 2658 if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
726a989a
RB
2659 return true;
2660
2661 switch (TREE_CODE (op))
2662 {
2663 case PARM_DECL:
2664 case RESULT_DECL:
2665 case LABEL_DECL:
2666 case FUNCTION_DECL:
2667 case VAR_DECL:
2668 case CONST_DECL:
2669 return true;
2670
2671 default:
2672 return false;
2673 }
2674}
2675
00fc2333
JH
2676/* Strip out all handled components that produce invariant
2677 offsets. */
726a989a 2678
00fc2333
JH
2679static const_tree
2680strip_invariant_refs (const_tree op)
726a989a 2681{
726a989a
RB
2682 while (handled_component_p (op))
2683 {
2684 switch (TREE_CODE (op))
2685 {
2686 case ARRAY_REF:
2687 case ARRAY_RANGE_REF:
2688 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2689 || TREE_OPERAND (op, 2) != NULL_TREE
2690 || TREE_OPERAND (op, 3) != NULL_TREE)
00fc2333 2691 return NULL;
726a989a
RB
2692 break;
2693
2694 case COMPONENT_REF:
2695 if (TREE_OPERAND (op, 2) != NULL_TREE)
00fc2333 2696 return NULL;
726a989a
RB
2697 break;
2698
2699 default:;
2700 }
2701 op = TREE_OPERAND (op, 0);
2702 }
2703
00fc2333
JH
2704 return op;
2705}
2706
2707/* Return true if T is a gimple invariant address. */
2708
2709bool
2710is_gimple_invariant_address (const_tree t)
2711{
2712 const_tree op;
2713
2714 if (TREE_CODE (t) != ADDR_EXPR)
2715 return false;
2716
2717 op = strip_invariant_refs (TREE_OPERAND (t, 0));
70f34814
RG
2718 if (!op)
2719 return false;
00fc2333 2720
70f34814
RG
2721 if (TREE_CODE (op) == MEM_REF)
2722 {
2723 const_tree op0 = TREE_OPERAND (op, 0);
2724 return (TREE_CODE (op0) == ADDR_EXPR
2725 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
2726 || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
2727 }
2728
2729 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
00fc2333
JH
2730}
2731
2732/* Return true if T is a gimple invariant address at IPA level
2733 (so addresses of variables on stack are not allowed). */
2734
2735bool
2736is_gimple_ip_invariant_address (const_tree t)
2737{
2738 const_tree op;
2739
2740 if (TREE_CODE (t) != ADDR_EXPR)
2741 return false;
2742
2743 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2744
2745 return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op));
726a989a
RB
2746}
2747
2748/* Return true if T is a GIMPLE minimal invariant. It's a restricted
2749 form of function invariant. */
2750
2751bool
2752is_gimple_min_invariant (const_tree t)
2753{
2754 if (TREE_CODE (t) == ADDR_EXPR)
2755 return is_gimple_invariant_address (t);
2756
2757 return is_gimple_constant (t);
2758}
2759
00fc2333
JH
2760/* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2761 form of gimple minimal invariant. */
2762
2763bool
2764is_gimple_ip_invariant (const_tree t)
2765{
2766 if (TREE_CODE (t) == ADDR_EXPR)
2767 return is_gimple_ip_invariant_address (t);
2768
2769 return is_gimple_constant (t);
2770}
2771
726a989a
RB
2772/* Return true if T looks like a valid GIMPLE statement. */
2773
2774bool
2775is_gimple_stmt (tree t)
2776{
2777 const enum tree_code code = TREE_CODE (t);
2778
2779 switch (code)
2780 {
2781 case NOP_EXPR:
2782 /* The only valid NOP_EXPR is the empty statement. */
2783 return IS_EMPTY_STMT (t);
2784
2785 case BIND_EXPR:
2786 case COND_EXPR:
2787 /* These are only valid if they're void. */
2788 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2789
2790 case SWITCH_EXPR:
2791 case GOTO_EXPR:
2792 case RETURN_EXPR:
2793 case LABEL_EXPR:
2794 case CASE_LABEL_EXPR:
2795 case TRY_CATCH_EXPR:
2796 case TRY_FINALLY_EXPR:
2797 case EH_FILTER_EXPR:
2798 case CATCH_EXPR:
726a989a 2799 case ASM_EXPR:
726a989a
RB
2800 case STATEMENT_LIST:
2801 case OMP_PARALLEL:
2802 case OMP_FOR:
2803 case OMP_SECTIONS:
2804 case OMP_SECTION:
2805 case OMP_SINGLE:
2806 case OMP_MASTER:
2807 case OMP_ORDERED:
2808 case OMP_CRITICAL:
2809 case OMP_TASK:
2810 /* These are always void. */
2811 return true;
2812
2813 case CALL_EXPR:
2814 case MODIFY_EXPR:
2815 case PREDICT_EXPR:
2816 /* These are valid regardless of their type. */
2817 return true;
2818
2819 default:
2820 return false;
2821 }
2822}
2823
2824/* Return true if T is a variable. */
2825
2826bool
2827is_gimple_variable (tree t)
2828{
2829 return (TREE_CODE (t) == VAR_DECL
2830 || TREE_CODE (t) == PARM_DECL
2831 || TREE_CODE (t) == RESULT_DECL
2832 || TREE_CODE (t) == SSA_NAME);
2833}
2834
2835/* Return true if T is a GIMPLE identifier (something with an address). */
2836
2837bool
2838is_gimple_id (tree t)
2839{
2840 return (is_gimple_variable (t)
2841 || TREE_CODE (t) == FUNCTION_DECL
2842 || TREE_CODE (t) == LABEL_DECL
2843 || TREE_CODE (t) == CONST_DECL
2844 /* Allow string constants, since they are addressable. */
2845 || TREE_CODE (t) == STRING_CST);
2846}
2847
2848/* Return true if TYPE is a suitable type for a scalar register variable. */
2849
2850bool
2851is_gimple_reg_type (tree type)
2852{
4636b850 2853 return !AGGREGATE_TYPE_P (type);
726a989a
RB
2854}
2855
2856/* Return true if T is a non-aggregate register variable. */
2857
2858bool
2859is_gimple_reg (tree t)
2860{
2861 if (TREE_CODE (t) == SSA_NAME)
2862 t = SSA_NAME_VAR (t);
2863
726a989a
RB
2864 if (!is_gimple_variable (t))
2865 return false;
2866
2867 if (!is_gimple_reg_type (TREE_TYPE (t)))
2868 return false;
2869
2870 /* A volatile decl is not acceptable because we can't reuse it as
2871 needed. We need to copy it into a temp first. */
2872 if (TREE_THIS_VOLATILE (t))
2873 return false;
2874
2875 /* We define "registers" as things that can be renamed as needed,
2876 which with our infrastructure does not apply to memory. */
2877 if (needs_to_live_in_memory (t))
2878 return false;
2879
2880 /* Hard register variables are an interesting case. For those that
2881 are call-clobbered, we don't know where all the calls are, since
2882 we don't (want to) take into account which operations will turn
2883 into libcalls at the rtl level. For those that are call-saved,
2884 we don't currently model the fact that calls may in fact change
2885 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2886 level, and so miss variable changes that might imply. All around,
2887 it seems safest to not do too much optimization with these at the
2888 tree level at all. We'll have to rely on the rtl optimizers to
2889 clean this up, as there we've got all the appropriate bits exposed. */
2890 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2891 return false;
2892
4636b850
RG
2893 /* Complex and vector values must have been put into SSA-like form.
2894 That is, no assignments to the individual components. */
2895 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2896 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2897 return DECL_GIMPLE_REG_P (t);
2898
726a989a
RB
2899 return true;
2900}
2901
2902
726a989a
RB
2903/* Return true if T is a GIMPLE variable whose address is not needed. */
2904
2905bool
2906is_gimple_non_addressable (tree t)
2907{
2908 if (TREE_CODE (t) == SSA_NAME)
2909 t = SSA_NAME_VAR (t);
2910
2911 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
2912}
2913
2914/* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2915
2916bool
2917is_gimple_val (tree t)
2918{
2919 /* Make loads from volatiles and memory vars explicit. */
2920 if (is_gimple_variable (t)
2921 && is_gimple_reg_type (TREE_TYPE (t))
2922 && !is_gimple_reg (t))
2923 return false;
2924
726a989a
RB
2925 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2926}
2927
2928/* Similarly, but accept hard registers as inputs to asm statements. */
2929
2930bool
2931is_gimple_asm_val (tree t)
2932{
2933 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2934 return true;
2935
2936 return is_gimple_val (t);
2937}
2938
2939/* Return true if T is a GIMPLE minimal lvalue. */
2940
2941bool
2942is_gimple_min_lval (tree t)
2943{
ba4d8f9d
RG
2944 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
2945 return false;
70f34814 2946 return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
726a989a
RB
2947}
2948
2949/* Return true if T is a typecast operation. */
2950
2951bool
2952is_gimple_cast (tree t)
2953{
2954 return (CONVERT_EXPR_P (t)
2955 || TREE_CODE (t) == FIX_TRUNC_EXPR);
2956}
2957
2958/* Return true if T is a valid function operand of a CALL_EXPR. */
2959
2960bool
2961is_gimple_call_addr (tree t)
2962{
2963 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
2964}
2965
70f34814
RG
2966/* Return true if T is a valid address operand of a MEM_REF. */
2967
2968bool
2969is_gimple_mem_ref_addr (tree t)
2970{
2971 return (is_gimple_reg (t)
2972 || TREE_CODE (t) == INTEGER_CST
2973 || (TREE_CODE (t) == ADDR_EXPR
2974 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
2975 || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
2976}
2977
726a989a
RB
2978/* If T makes a function call, return the corresponding CALL_EXPR operand.
2979 Otherwise, return NULL_TREE. */
2980
2981tree
2982get_call_expr_in (tree t)
2983{
2984 if (TREE_CODE (t) == MODIFY_EXPR)
2985 t = TREE_OPERAND (t, 1);
2986 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2987 t = TREE_OPERAND (t, 0);
2988 if (TREE_CODE (t) == CALL_EXPR)
2989 return t;
2990 return NULL_TREE;
2991}
2992
2993
2994/* Given a memory reference expression T, return its base address.
2995 The base address of a memory reference expression is the main
2996 object being referenced. For instance, the base address for
2997 'array[i].fld[j]' is 'array'. You can think of this as stripping
2998 away the offset part from a memory address.
2999
3000 This function calls handled_component_p to strip away all the inner
3001 parts of the memory reference until it reaches the base object. */
3002
3003tree
3004get_base_address (tree t)
3005{
3006 while (handled_component_p (t))
3007 t = TREE_OPERAND (t, 0);
b8698a0f 3008
70f34814
RG
3009 if (TREE_CODE (t) == MEM_REF
3010 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
3011 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
4b228e61
RG
3012 else if (TREE_CODE (t) == TARGET_MEM_REF
3013 && TMR_SYMBOL (t))
3014 t = TMR_SYMBOL (t);
70f34814 3015
726a989a
RB
3016 if (SSA_VAR_P (t)
3017 || TREE_CODE (t) == STRING_CST
3018 || TREE_CODE (t) == CONSTRUCTOR
70f34814
RG
3019 || INDIRECT_REF_P (t)
3020 || TREE_CODE (t) == MEM_REF)
726a989a
RB
3021 return t;
3022 else
3023 return NULL_TREE;
3024}
3025
3026void
3027recalculate_side_effects (tree t)
3028{
3029 enum tree_code code = TREE_CODE (t);
3030 int len = TREE_OPERAND_LENGTH (t);
3031 int i;
3032
3033 switch (TREE_CODE_CLASS (code))
3034 {
3035 case tcc_expression:
3036 switch (code)
3037 {
3038 case INIT_EXPR:
3039 case MODIFY_EXPR:
3040 case VA_ARG_EXPR:
3041 case PREDECREMENT_EXPR:
3042 case PREINCREMENT_EXPR:
3043 case POSTDECREMENT_EXPR:
3044 case POSTINCREMENT_EXPR:
3045 /* All of these have side-effects, no matter what their
3046 operands are. */
3047 return;
3048
3049 default:
3050 break;
3051 }
3052 /* Fall through. */
3053
3054 case tcc_comparison: /* a comparison expression */
3055 case tcc_unary: /* a unary arithmetic expression */
3056 case tcc_binary: /* a binary arithmetic expression */
3057 case tcc_reference: /* a reference */
3058 case tcc_vl_exp: /* a function call */
3059 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
3060 for (i = 0; i < len; ++i)
3061 {
3062 tree op = TREE_OPERAND (t, i);
3063 if (op && TREE_SIDE_EFFECTS (op))
3064 TREE_SIDE_EFFECTS (t) = 1;
3065 }
3066 break;
3067
13f95bdb
EB
3068 case tcc_constant:
3069 /* No side-effects. */
3070 return;
3071
726a989a 3072 default:
726a989a
RB
3073 gcc_unreachable ();
3074 }
3075}
3076
3077/* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
3078 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
3079 we failed to create one. */
3080
3081tree
3082canonicalize_cond_expr_cond (tree t)
3083{
b66a1bac
RG
3084 /* Strip conversions around boolean operations. */
3085 if (CONVERT_EXPR_P (t)
3086 && truth_value_p (TREE_CODE (TREE_OPERAND (t, 0))))
3087 t = TREE_OPERAND (t, 0);
3088
726a989a 3089 /* For (bool)x use x != 0. */
b66a1bac
RG
3090 if (CONVERT_EXPR_P (t)
3091 && TREE_CODE (TREE_TYPE (t)) == BOOLEAN_TYPE)
726a989a
RB
3092 {
3093 tree top0 = TREE_OPERAND (t, 0);
3094 t = build2 (NE_EXPR, TREE_TYPE (t),
3095 top0, build_int_cst (TREE_TYPE (top0), 0));
3096 }
3097 /* For !x use x == 0. */
3098 else if (TREE_CODE (t) == TRUTH_NOT_EXPR)
3099 {
3100 tree top0 = TREE_OPERAND (t, 0);
3101 t = build2 (EQ_EXPR, TREE_TYPE (t),
3102 top0, build_int_cst (TREE_TYPE (top0), 0));
3103 }
3104 /* For cmp ? 1 : 0 use cmp. */
3105 else if (TREE_CODE (t) == COND_EXPR
3106 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
3107 && integer_onep (TREE_OPERAND (t, 1))
3108 && integer_zerop (TREE_OPERAND (t, 2)))
3109 {
3110 tree top0 = TREE_OPERAND (t, 0);
3111 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
3112 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
3113 }
3114
3115 if (is_gimple_condexpr (t))
3116 return t;
3117
3118 return NULL_TREE;
3119}
3120
e6c99067
DN
3121/* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
3122 the positions marked by the set ARGS_TO_SKIP. */
3123
c6f7cfc1 3124gimple
5c0466b5 3125gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
c6f7cfc1
JH
3126{
3127 int i;
3128 tree fn = gimple_call_fn (stmt);
3129 int nargs = gimple_call_num_args (stmt);
3130 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
3131 gimple new_stmt;
3132
3133 for (i = 0; i < nargs; i++)
3134 if (!bitmap_bit_p (args_to_skip, i))
3135 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
3136
3137 new_stmt = gimple_build_call_vec (fn, vargs);
3138 VEC_free (tree, heap, vargs);
3139 if (gimple_call_lhs (stmt))
3140 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
3141
5006671f
RG
3142 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
3143 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
3144
c6f7cfc1
JH
3145 gimple_set_block (new_stmt, gimple_block (stmt));
3146 if (gimple_has_location (stmt))
3147 gimple_set_location (new_stmt, gimple_location (stmt));
8d2adc24 3148 gimple_call_copy_flags (new_stmt, stmt);
c6f7cfc1 3149 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
5006671f
RG
3150
3151 gimple_set_modified (new_stmt, true);
3152
c6f7cfc1
JH
3153 return new_stmt;
3154}
3155
5006671f 3156
d7f09764
DN
3157static hashval_t gimple_type_hash (const void *);
3158
3159/* Structure used to maintain a cache of some type pairs compared by
3160 gimple_types_compatible_p when comparing aggregate types. There are
c4fcd06a 3161 three possible values for SAME_P:
d7f09764
DN
3162
3163 -2: The pair (T1, T2) has just been inserted in the table.
d7f09764
DN
3164 0: T1 and T2 are different types.
3165 1: T1 and T2 are the same type.
3166
c4fcd06a
RG
3167 The two elements in the SAME_P array are indexed by the comparison
3168 mode gtc_mode. */
3169
d7f09764
DN
3170struct type_pair_d
3171{
88ca1146
RG
3172 unsigned int uid1;
3173 unsigned int uid2;
c4fcd06a 3174 signed char same_p[2];
d7f09764
DN
3175};
3176typedef struct type_pair_d *type_pair_t;
3177
d4398a43
RG
3178DEF_VEC_P(type_pair_t);
3179DEF_VEC_ALLOC_P(type_pair_t,heap);
3180
d7f09764
DN
3181/* Return a hash value for the type pair pointed-to by P. */
3182
3183static hashval_t
3184type_pair_hash (const void *p)
3185{
3186 const struct type_pair_d *pair = (const struct type_pair_d *) p;
88ca1146
RG
3187 hashval_t val1 = pair->uid1;
3188 hashval_t val2 = pair->uid2;
d7f09764
DN
3189 return (iterative_hash_hashval_t (val2, val1)
3190 ^ iterative_hash_hashval_t (val1, val2));
3191}
3192
3193/* Compare two type pairs pointed-to by P1 and P2. */
3194
3195static int
3196type_pair_eq (const void *p1, const void *p2)
3197{
3198 const struct type_pair_d *pair1 = (const struct type_pair_d *) p1;
3199 const struct type_pair_d *pair2 = (const struct type_pair_d *) p2;
88ca1146
RG
3200 return ((pair1->uid1 == pair2->uid1 && pair1->uid2 == pair2->uid2)
3201 || (pair1->uid1 == pair2->uid2 && pair1->uid2 == pair2->uid1));
d7f09764
DN
3202}
3203
3204/* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3205 entry if none existed. */
3206
3207static type_pair_t
88ca1146 3208lookup_type_pair (tree t1, tree t2, htab_t *visited_p, struct obstack *ob_p)
d7f09764
DN
3209{
3210 struct type_pair_d pair;
3211 type_pair_t p;
3212 void **slot;
3213
3214 if (*visited_p == NULL)
88ca1146
RG
3215 {
3216 *visited_p = htab_create (251, type_pair_hash, type_pair_eq, NULL);
3217 gcc_obstack_init (ob_p);
3218 }
d7f09764 3219
88ca1146
RG
3220 pair.uid1 = TYPE_UID (t1);
3221 pair.uid2 = TYPE_UID (t2);
d7f09764
DN
3222 slot = htab_find_slot (*visited_p, &pair, INSERT);
3223
3224 if (*slot)
3225 p = *((type_pair_t *) slot);
3226 else
3227 {
88ca1146
RG
3228 p = XOBNEW (ob_p, struct type_pair_d);
3229 p->uid1 = TYPE_UID (t1);
3230 p->uid2 = TYPE_UID (t2);
c4fcd06a
RG
3231 p->same_p[0] = -2;
3232 p->same_p[1] = -2;
d7f09764
DN
3233 *slot = (void *) p;
3234 }
3235
3236 return p;
3237}
3238
d4398a43
RG
3239/* Per pointer state for the SCC finding. The on_sccstack flag
3240 is not strictly required, it is true when there is no hash value
3241 recorded for the type and false otherwise. But querying that
3242 is slower. */
3243
3244struct sccs
3245{
3246 unsigned int dfsnum;
3247 unsigned int low;
3248 bool on_sccstack;
3249 union {
3250 hashval_t hash;
c4fcd06a 3251 signed char same_p;
d4398a43
RG
3252 } u;
3253};
3254
3255static unsigned int next_dfs_num;
3256static unsigned int gtc_next_dfs_num;
d7f09764 3257
77785f4f
RG
3258/* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3259 true then if any type has no name return false, otherwise return
3260 true if both types have no names. */
d7f09764
DN
3261
3262static bool
77785f4f 3263compare_type_names_p (tree t1, tree t2, bool for_completion_p)
d7f09764
DN
3264{
3265 tree name1 = TYPE_NAME (t1);
3266 tree name2 = TYPE_NAME (t2);
3267
77785f4f
RG
3268 /* Consider anonymous types all unique for completion. */
3269 if (for_completion_p
3270 && (!name1 || !name2))
d7f09764
DN
3271 return false;
3272
77785f4f 3273 if (name1 && TREE_CODE (name1) == TYPE_DECL)
d7f09764
DN
3274 {
3275 name1 = DECL_NAME (name1);
77785f4f
RG
3276 if (for_completion_p
3277 && !name1)
d7f09764
DN
3278 return false;
3279 }
77785f4f 3280 gcc_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
d7f09764 3281
77785f4f 3282 if (name2 && TREE_CODE (name2) == TYPE_DECL)
d7f09764
DN
3283 {
3284 name2 = DECL_NAME (name2);
77785f4f
RG
3285 if (for_completion_p
3286 && !name2)
d7f09764
DN
3287 return false;
3288 }
77785f4f 3289 gcc_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
d7f09764
DN
3290
3291 /* Identifiers can be compared with pointer equality rather
3292 than a string comparison. */
3293 if (name1 == name2)
3294 return true;
3295
3296 return false;
3297}
3298
d025732d
EB
3299/* Return true if the field decls F1 and F2 are at the same offset.
3300
3301 This is intended to be used on GIMPLE types only. In order to
3302 compare GENERIC types, use fields_compatible_p instead. */
d7f09764 3303
1e4bc4eb 3304bool
d025732d 3305gimple_compare_field_offset (tree f1, tree f2)
d7f09764
DN
3306{
3307 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
d025732d
EB
3308 {
3309 tree offset1 = DECL_FIELD_OFFSET (f1);
3310 tree offset2 = DECL_FIELD_OFFSET (f2);
3311 return ((offset1 == offset2
3312 /* Once gimplification is done, self-referential offsets are
3313 instantiated as operand #2 of the COMPONENT_REF built for
3314 each access and reset. Therefore, they are not relevant
3315 anymore and fields are interchangeable provided that they
3316 represent the same access. */
3317 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
3318 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
3319 && (DECL_SIZE (f1) == DECL_SIZE (f2)
3320 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
3321 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
3322 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
3323 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
3324 || operand_equal_p (offset1, offset2, 0))
3325 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3326 DECL_FIELD_BIT_OFFSET (f2)));
3327 }
d7f09764
DN
3328
3329 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3330 should be, so handle differing ones specially by decomposing
3331 the offset into a byte and bit offset manually. */
3332 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3333 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3334 {
3335 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3336 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3337 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3338 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3339 + bit_offset1 / BITS_PER_UNIT);
3340 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3341 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3342 + bit_offset2 / BITS_PER_UNIT);
3343 if (byte_offset1 != byte_offset2)
3344 return false;
3345 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3346 }
3347
3348 return false;
3349}
3350
f5d6836a
RG
3351/* If the type T1 and the type T2 are a complete and an incomplete
3352 variant of the same type return true. */
bcee752e
RG
3353
3354static bool
f5d6836a 3355gimple_compatible_complete_and_incomplete_subtype_p (tree t1, tree t2)
bcee752e 3356{
bcee752e
RG
3357 /* If one pointer points to an incomplete type variant of
3358 the other pointed-to type they are the same. */
3359 if (TREE_CODE (t1) == TREE_CODE (t2)
3360 && RECORD_OR_UNION_TYPE_P (t1)
3361 && (!COMPLETE_TYPE_P (t1)
3362 || !COMPLETE_TYPE_P (t2))
3363 && TYPE_QUALS (t1) == TYPE_QUALS (t2)
3364 && compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3365 TYPE_MAIN_VARIANT (t2), true))
f5d6836a 3366 return true;
bcee752e
RG
3367 return false;
3368}
3369
d4398a43 3370static bool
c4fcd06a
RG
3371gimple_types_compatible_p_1 (tree, tree, enum gtc_mode, type_pair_t,
3372 VEC(type_pair_t, heap) **,
d4398a43 3373 struct pointer_map_t *, struct obstack *);
d7f09764 3374
d4398a43
RG
3375/* DFS visit the edge from the callers type pair with state *STATE to
3376 the pair T1, T2 while operating in FOR_MERGING_P mode.
3377 Update the merging status if it is not part of the SCC containing the
3378 callers pair and return it.
3379 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3380
3381static bool
c4fcd06a 3382gtc_visit (tree t1, tree t2, enum gtc_mode mode,
d4398a43
RG
3383 struct sccs *state,
3384 VEC(type_pair_t, heap) **sccstack,
3385 struct pointer_map_t *sccstate,
3386 struct obstack *sccstate_obstack)
d7f09764 3387{
d4398a43
RG
3388 struct sccs *cstate = NULL;
3389 type_pair_t p;
3390 void **slot;
d7f09764
DN
3391
3392 /* Check first for the obvious case of pointer identity. */
3393 if (t1 == t2)
d4398a43 3394 return true;
d7f09764
DN
3395
3396 /* Check that we have two types to compare. */
3397 if (t1 == NULL_TREE || t2 == NULL_TREE)
d4398a43 3398 return false;
d7f09764 3399
35e3a6e9
RG
3400 /* If the types have been previously registered and found equal
3401 they still are. */
3402 if (TYPE_CANONICAL (t1)
3403 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
d4398a43 3404 return true;
35e3a6e9 3405
d7f09764
DN
3406 /* Can't be the same type if the types don't have the same code. */
3407 if (TREE_CODE (t1) != TREE_CODE (t2))
d4398a43 3408 return false;
b0cc341f
RG
3409
3410 /* Can't be the same type if they have different CV qualifiers. */
3411 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
d4398a43 3412 return false;
d7f09764
DN
3413
3414 /* Void types are always the same. */
3415 if (TREE_CODE (t1) == VOID_TYPE)
d4398a43 3416 return true;
d7f09764 3417
c9549072 3418 /* Do some simple checks before doing three hashtable queries. */
b0cc341f
RG
3419 if (INTEGRAL_TYPE_P (t1)
3420 || SCALAR_FLOAT_TYPE_P (t1)
3421 || FIXED_POINT_TYPE_P (t1)
3422 || TREE_CODE (t1) == VECTOR_TYPE
b23dc2c0
RG
3423 || TREE_CODE (t1) == COMPLEX_TYPE
3424 || TREE_CODE (t1) == OFFSET_TYPE)
b0cc341f
RG
3425 {
3426 /* Can't be the same type if they have different alignment,
3427 sign, precision or mode. */
3428 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3429 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3430 || TYPE_MODE (t1) != TYPE_MODE (t2)
3431 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
d4398a43 3432 return false;
b0cc341f
RG
3433
3434 if (TREE_CODE (t1) == INTEGER_TYPE
3435 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3436 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
d4398a43 3437 return false;
b0cc341f
RG
3438
3439 /* That's all we need to check for float and fixed-point types. */
3440 if (SCALAR_FLOAT_TYPE_P (t1)
3441 || FIXED_POINT_TYPE_P (t1))
d4398a43 3442 return true;
b0cc341f
RG
3443
3444 /* For integral types fall thru to more complex checks. */
3445 }
d7f09764 3446
c9549072
EB
3447 else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1))
3448 {
3449 /* Can't be the same type if they have different alignment or mode. */
3450 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3451 || TYPE_MODE (t1) != TYPE_MODE (t2))
d4398a43 3452 return false;
c9549072
EB
3453 }
3454
d7f09764
DN
3455 /* If the hash values of t1 and t2 are different the types can't
3456 possibly be the same. This helps keeping the type-pair hashtable
3457 small, only tracking comparisons for hash collisions. */
3458 if (gimple_type_hash (t1) != gimple_type_hash (t2))
d4398a43 3459 return false;
d7f09764 3460
d4398a43 3461 /* Allocate a new cache entry for this comparison. */
c4fcd06a
RG
3462 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3463 if (p->same_p[mode] == 0 || p->same_p[mode] == 1)
d7f09764
DN
3464 {
3465 /* We have already decided whether T1 and T2 are the
3466 same, return the cached result. */
c4fcd06a 3467 return p->same_p[mode] == 1;
d7f09764 3468 }
d4398a43 3469
d4398a43
RG
3470 if ((slot = pointer_map_contains (sccstate, p)) != NULL)
3471 cstate = (struct sccs *)*slot;
3472 if (!cstate)
d7f09764 3473 {
d4398a43
RG
3474 bool res;
3475 /* Not yet visited. DFS recurse. */
c4fcd06a 3476 res = gimple_types_compatible_p_1 (t1, t2, mode, p,
d4398a43
RG
3477 sccstack, sccstate, sccstate_obstack);
3478 if (!cstate)
3479 cstate = (struct sccs *)* pointer_map_contains (sccstate, p);
3480 state->low = MIN (state->low, cstate->low);
3481 /* If the type is no longer on the SCC stack and thus is not part
c4fcd06a
RG
3482 of the parents SCC, return its state. Otherwise we will
3483 ignore this pair and assume equality. */
d4398a43
RG
3484 if (!cstate->on_sccstack)
3485 return res;
d7f09764 3486 }
d4398a43
RG
3487 if (cstate->dfsnum < state->dfsnum
3488 && cstate->on_sccstack)
3489 state->low = MIN (cstate->dfsnum, state->low);
d7f09764 3490
d4398a43
RG
3491 /* We are part of our parents SCC, skip this entry and return true. */
3492 return true;
3493}
3494
3495/* Worker for gimple_types_compatible.
3496 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3497
3498static bool
c4fcd06a
RG
3499gimple_types_compatible_p_1 (tree t1, tree t2, enum gtc_mode mode,
3500 type_pair_t p,
d4398a43
RG
3501 VEC(type_pair_t, heap) **sccstack,
3502 struct pointer_map_t *sccstate,
3503 struct obstack *sccstate_obstack)
3504{
d4398a43
RG
3505 struct sccs *state;
3506
c4fcd06a 3507 gcc_assert (p->same_p[mode] == -2);
d7f09764 3508
d4398a43
RG
3509 state = XOBNEW (sccstate_obstack, struct sccs);
3510 *pointer_map_insert (sccstate, p) = state;
3511
3512 VEC_safe_push (type_pair_t, heap, *sccstack, p);
3513 state->dfsnum = gtc_next_dfs_num++;
3514 state->low = state->dfsnum;
3515 state->on_sccstack = true;
d7f09764
DN
3516
3517 /* If their attributes are not the same they can't be the same type. */
3518 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
3519 goto different_types;
3520
d7f09764
DN
3521 /* Do type-specific comparisons. */
3522 switch (TREE_CODE (t1))
3523 {
d4398a43
RG
3524 case VECTOR_TYPE:
3525 case COMPLEX_TYPE:
c4fcd06a 3526 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
d4398a43
RG
3527 state, sccstack, sccstate, sccstate_obstack))
3528 goto different_types;
3529 goto same_types;
3530
d7f09764
DN
3531 case ARRAY_TYPE:
3532 /* Array types are the same if the element types are the same and
3533 the number of elements are the same. */
c4fcd06a 3534 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
d4398a43 3535 state, sccstack, sccstate, sccstate_obstack)
b0cc341f
RG
3536 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
3537 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
d7f09764
DN
3538 goto different_types;
3539 else
3540 {
3541 tree i1 = TYPE_DOMAIN (t1);
3542 tree i2 = TYPE_DOMAIN (t2);
3543
3544 /* For an incomplete external array, the type domain can be
3545 NULL_TREE. Check this condition also. */
3546 if (i1 == NULL_TREE && i2 == NULL_TREE)
3547 goto same_types;
3548 else if (i1 == NULL_TREE || i2 == NULL_TREE)
3549 goto different_types;
3550 /* If for a complete array type the possibly gimplified sizes
3551 are different the types are different. */
3552 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
3553 || (TYPE_SIZE (i1)
3554 && TYPE_SIZE (i2)
3555 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
3556 goto different_types;
3557 else
3558 {
3559 tree min1 = TYPE_MIN_VALUE (i1);
3560 tree min2 = TYPE_MIN_VALUE (i2);
3561 tree max1 = TYPE_MAX_VALUE (i1);
3562 tree max2 = TYPE_MAX_VALUE (i2);
3563
3564 /* The minimum/maximum values have to be the same. */
3565 if ((min1 == min2
f56000ed
EB
3566 || (min1 && min2
3567 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
3568 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
3569 || operand_equal_p (min1, min2, 0))))
d7f09764 3570 && (max1 == max2
f56000ed
EB
3571 || (max1 && max2
3572 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
3573 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
3574 || operand_equal_p (max1, max2, 0)))))
d7f09764
DN
3575 goto same_types;
3576 else
3577 goto different_types;
3578 }
3579 }
3580
3581 case METHOD_TYPE:
3582 /* Method types should belong to the same class. */
d4398a43 3583 if (!gtc_visit (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2),
c4fcd06a 3584 mode, state, sccstack, sccstate, sccstate_obstack))
d7f09764
DN
3585 goto different_types;
3586
3587 /* Fallthru */
3588
3589 case FUNCTION_TYPE:
3590 /* Function types are the same if the return type and arguments types
3591 are the same. */
c4fcd06a 3592 if ((mode != GTC_DIAG
f5d6836a
RG
3593 || !gimple_compatible_complete_and_incomplete_subtype_p
3594 (TREE_TYPE (t1), TREE_TYPE (t2)))
c4fcd06a 3595 && !gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
d4398a43 3596 state, sccstack, sccstate, sccstate_obstack))
bcee752e
RG
3597 goto different_types;
3598
3599 if (!targetm.comp_type_attributes (t1, t2))
d7f09764 3600 goto different_types;
bcee752e
RG
3601
3602 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
3603 goto same_types;
d7f09764
DN
3604 else
3605 {
bcee752e 3606 tree parms1, parms2;
d7f09764 3607
bcee752e
RG
3608 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3609 parms1 && parms2;
3610 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
d7f09764 3611 {
c4fcd06a 3612 if ((mode == GTC_MERGE
f5d6836a
RG
3613 || !gimple_compatible_complete_and_incomplete_subtype_p
3614 (TREE_VALUE (parms1), TREE_VALUE (parms2)))
c4fcd06a 3615 && !gtc_visit (TREE_VALUE (parms1), TREE_VALUE (parms2), mode,
d4398a43 3616 state, sccstack, sccstate, sccstate_obstack))
d7f09764 3617 goto different_types;
d7f09764 3618 }
bcee752e
RG
3619
3620 if (parms1 || parms2)
3621 goto different_types;
3622
3623 goto same_types;
d7f09764
DN
3624 }
3625
b23dc2c0
RG
3626 case OFFSET_TYPE:
3627 {
c4fcd06a 3628 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
d4398a43
RG
3629 state, sccstack, sccstate, sccstate_obstack)
3630 || !gtc_visit (TYPE_OFFSET_BASETYPE (t1),
c4fcd06a 3631 TYPE_OFFSET_BASETYPE (t2), mode,
d4398a43 3632 state, sccstack, sccstate, sccstate_obstack))
b23dc2c0
RG
3633 goto different_types;
3634
3635 goto same_types;
3636 }
3637
d7f09764
DN
3638 case POINTER_TYPE:
3639 case REFERENCE_TYPE:
e575382e
RG
3640 {
3641 /* If the two pointers have different ref-all attributes,
3642 they can't be the same type. */
3643 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3644 goto different_types;
d7f09764 3645
e575382e
RG
3646 /* If one pointer points to an incomplete type variant of
3647 the other pointed-to type they are the same. */
c4fcd06a 3648 if (mode == GTC_DIAG
f5d6836a
RG
3649 && gimple_compatible_complete_and_incomplete_subtype_p
3650 (TREE_TYPE (t1), TREE_TYPE (t2)))
bcee752e 3651 goto same_types;
e575382e
RG
3652
3653 /* Otherwise, pointer and reference types are the same if the
3654 pointed-to types are the same. */
c4fcd06a 3655 if (gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
d4398a43 3656 state, sccstack, sccstate, sccstate_obstack))
e575382e
RG
3657 goto same_types;
3658
3659 goto different_types;
3660 }
d7f09764 3661
b0cc341f
RG
3662 case INTEGER_TYPE:
3663 case BOOLEAN_TYPE:
3664 {
3665 tree min1 = TYPE_MIN_VALUE (t1);
3666 tree max1 = TYPE_MAX_VALUE (t1);
3667 tree min2 = TYPE_MIN_VALUE (t2);
3668 tree max2 = TYPE_MAX_VALUE (t2);
3669 bool min_equal_p = false;
3670 bool max_equal_p = false;
3671
3672 /* If either type has a minimum value, the other type must
3673 have the same. */
3674 if (min1 == NULL_TREE && min2 == NULL_TREE)
3675 min_equal_p = true;
3676 else if (min1 && min2 && operand_equal_p (min1, min2, 0))
3677 min_equal_p = true;
3678
3679 /* Likewise, if either type has a maximum value, the other
3680 type must have the same. */
3681 if (max1 == NULL_TREE && max2 == NULL_TREE)
3682 max_equal_p = true;
3683 else if (max1 && max2 && operand_equal_p (max1, max2, 0))
3684 max_equal_p = true;
3685
3686 if (!min_equal_p || !max_equal_p)
3687 goto different_types;
3688
3689 goto same_types;
3690 }
3691
d7f09764 3692 case ENUMERAL_TYPE:
e575382e 3693 {
b0cc341f
RG
3694 /* FIXME lto, we cannot check bounds on enumeral types because
3695 different front ends will produce different values.
3696 In C, enumeral types are integers, while in C++ each element
3697 will have its own symbolic value. We should decide how enums
3698 are to be represented in GIMPLE and have each front end lower
3699 to that. */
e575382e 3700 tree v1, v2;
d7f09764 3701
b0cc341f 3702 /* For enumeral types, all the values must be the same. */
e575382e
RG
3703 if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
3704 goto same_types;
d7f09764 3705
e575382e
RG
3706 for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
3707 v1 && v2;
3708 v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
3709 {
3710 tree c1 = TREE_VALUE (v1);
3711 tree c2 = TREE_VALUE (v2);
d7f09764 3712
e575382e
RG
3713 if (TREE_CODE (c1) == CONST_DECL)
3714 c1 = DECL_INITIAL (c1);
d7f09764 3715
e575382e
RG
3716 if (TREE_CODE (c2) == CONST_DECL)
3717 c2 = DECL_INITIAL (c2);
d7f09764 3718
e575382e
RG
3719 if (tree_int_cst_equal (c1, c2) != 1)
3720 goto different_types;
3721 }
d7f09764 3722
e575382e
RG
3723 /* If one enumeration has more values than the other, they
3724 are not the same. */
3725 if (v1 || v2)
3726 goto different_types;
d7f09764 3727
e575382e
RG
3728 goto same_types;
3729 }
d7f09764
DN
3730
3731 case RECORD_TYPE:
3732 case UNION_TYPE:
3733 case QUAL_UNION_TYPE:
e575382e
RG
3734 {
3735 tree f1, f2;
d7f09764 3736
e575382e
RG
3737 /* The struct tags shall compare equal. */
3738 if (!compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3739 TYPE_MAIN_VARIANT (t2), false))
3740 goto different_types;
77785f4f 3741
e575382e
RG
3742 /* For aggregate types, all the fields must be the same. */
3743 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
3744 f1 && f2;
3745 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3746 {
3747 /* The fields must have the same name, offset and type. */
3748 if (DECL_NAME (f1) != DECL_NAME (f2)
b0cc341f 3749 || DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
d025732d 3750 || !gimple_compare_field_offset (f1, f2)
c4fcd06a 3751 || !gtc_visit (TREE_TYPE (f1), TREE_TYPE (f2), mode,
d4398a43 3752 state, sccstack, sccstate, sccstate_obstack))
e575382e
RG
3753 goto different_types;
3754 }
d7f09764 3755
e575382e
RG
3756 /* If one aggregate has more fields than the other, they
3757 are not the same. */
3758 if (f1 || f2)
3759 goto different_types;
d7f09764 3760
e575382e
RG
3761 goto same_types;
3762 }
d7f09764 3763
d7f09764 3764 default:
b0cc341f 3765 gcc_unreachable ();
d7f09764
DN
3766 }
3767
3768 /* Common exit path for types that are not compatible. */
3769different_types:
d4398a43
RG
3770 state->u.same_p = 0;
3771 goto pop;
d7f09764
DN
3772
3773 /* Common exit path for types that are compatible. */
3774same_types:
d4398a43
RG
3775 state->u.same_p = 1;
3776 goto pop;
d7f09764 3777
d4398a43
RG
3778pop:
3779 if (state->low == state->dfsnum)
3780 {
3781 type_pair_t x;
d7f09764 3782
d4398a43
RG
3783 /* Pop off the SCC and set its cache values. */
3784 do
3785 {
3786 struct sccs *cstate;
3787 x = VEC_pop (type_pair_t, *sccstack);
3788 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
3789 cstate->on_sccstack = false;
c4fcd06a 3790 x->same_p[mode] = cstate->u.same_p;
d4398a43
RG
3791 }
3792 while (x != p);
3793 }
d7f09764 3794
d4398a43
RG
3795 return state->u.same_p;
3796}
d7f09764 3797
d4398a43
RG
3798/* Return true iff T1 and T2 are structurally identical. When
3799 FOR_MERGING_P is true the an incomplete type and a complete type
3800 are considered different, otherwise they are considered compatible. */
d7f09764 3801
d4398a43 3802bool
c4fcd06a 3803gimple_types_compatible_p (tree t1, tree t2, enum gtc_mode mode)
d7f09764 3804{
d4398a43
RG
3805 VEC(type_pair_t, heap) *sccstack = NULL;
3806 struct pointer_map_t *sccstate;
3807 struct obstack sccstate_obstack;
3808 type_pair_t p = NULL;
3809 bool res;
3810
3811 /* Before starting to set up the SCC machinery handle simple cases. */
3812
3813 /* Check first for the obvious case of pointer identity. */
3814 if (t1 == t2)
3815 return true;
3816
3817 /* Check that we have two types to compare. */
3818 if (t1 == NULL_TREE || t2 == NULL_TREE)
3819 return false;
3820
3821 /* If the types have been previously registered and found equal
3822 they still are. */
3823 if (TYPE_CANONICAL (t1)
3824 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
3825 return true;
3826
3827 /* Can't be the same type if the types don't have the same code. */
3828 if (TREE_CODE (t1) != TREE_CODE (t2))
3829 return false;
3830
3831 /* Can't be the same type if they have different CV qualifiers. */
3832 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3833 return false;
3834
3835 /* Void types are always the same. */
3836 if (TREE_CODE (t1) == VOID_TYPE)
3837 return true;
3838
3839 /* Do some simple checks before doing three hashtable queries. */
3840 if (INTEGRAL_TYPE_P (t1)
3841 || SCALAR_FLOAT_TYPE_P (t1)
3842 || FIXED_POINT_TYPE_P (t1)
3843 || TREE_CODE (t1) == VECTOR_TYPE
3844 || TREE_CODE (t1) == COMPLEX_TYPE
3845 || TREE_CODE (t1) == OFFSET_TYPE)
3846 {
3847 /* Can't be the same type if they have different alignment,
3848 sign, precision or mode. */
3849 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3850 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3851 || TYPE_MODE (t1) != TYPE_MODE (t2)
3852 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3853 return false;
3854
3855 if (TREE_CODE (t1) == INTEGER_TYPE
3856 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3857 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3858 return false;
3859
3860 /* That's all we need to check for float and fixed-point types. */
3861 if (SCALAR_FLOAT_TYPE_P (t1)
3862 || FIXED_POINT_TYPE_P (t1))
3863 return true;
3864
3865 /* For integral types fall thru to more complex checks. */
3866 }
3867
3868 else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1))
3869 {
3870 /* Can't be the same type if they have different alignment or mode. */
3871 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3872 || TYPE_MODE (t1) != TYPE_MODE (t2))
3873 return false;
3874 }
3875
3876 /* If the hash values of t1 and t2 are different the types can't
3877 possibly be the same. This helps keeping the type-pair hashtable
3878 small, only tracking comparisons for hash collisions. */
3879 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3880 return false;
3881
3882 /* If we've visited this type pair before (in the case of aggregates
3883 with self-referential types), and we made a decision, return it. */
c4fcd06a
RG
3884 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3885 if (p->same_p[mode] == 0 || p->same_p[mode] == 1)
d4398a43
RG
3886 {
3887 /* We have already decided whether T1 and T2 are the
3888 same, return the cached result. */
c4fcd06a 3889 return p->same_p[mode] == 1;
d4398a43
RG
3890 }
3891
3892 /* Now set up the SCC machinery for the comparison. */
3893 gtc_next_dfs_num = 1;
3894 sccstate = pointer_map_create ();
3895 gcc_obstack_init (&sccstate_obstack);
c4fcd06a 3896 res = gimple_types_compatible_p_1 (t1, t2, mode, p,
d4398a43
RG
3897 &sccstack, sccstate, &sccstate_obstack);
3898 VEC_free (type_pair_t, heap, sccstack);
3899 pointer_map_destroy (sccstate);
3900 obstack_free (&sccstate_obstack, NULL);
3901
3902 return res;
3903}
d7f09764 3904
d7f09764
DN
3905
3906static hashval_t
3907iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **,
3908 struct pointer_map_t *, struct obstack *);
3909
3910/* DFS visit the edge from the callers type with state *STATE to T.
3911 Update the callers type hash V with the hash for T if it is not part
3912 of the SCC containing the callers type and return it.
3913 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3914
3915static hashval_t
3916visit (tree t, struct sccs *state, hashval_t v,
3917 VEC (tree, heap) **sccstack,
3918 struct pointer_map_t *sccstate,
3919 struct obstack *sccstate_obstack)
3920{
3921 struct sccs *cstate = NULL;
3922 void **slot;
3923
3924 /* If there is a hash value recorded for this type then it can't
3925 possibly be part of our parent SCC. Simply mix in its hash. */
3926 if ((slot = pointer_map_contains (type_hash_cache, t)))
3927 return iterative_hash_hashval_t ((hashval_t) (size_t) *slot, v);
3928
3929 if ((slot = pointer_map_contains (sccstate, t)) != NULL)
3930 cstate = (struct sccs *)*slot;
3931 if (!cstate)
3932 {
3933 hashval_t tem;
3934 /* Not yet visited. DFS recurse. */
3935 tem = iterative_hash_gimple_type (t, v,
3936 sccstack, sccstate, sccstate_obstack);
3937 if (!cstate)
3938 cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
3939 state->low = MIN (state->low, cstate->low);
3940 /* If the type is no longer on the SCC stack and thus is not part
3941 of the parents SCC mix in its hash value. Otherwise we will
3942 ignore the type for hashing purposes and return the unaltered
3943 hash value. */
3944 if (!cstate->on_sccstack)
3945 return tem;
3946 }
3947 if (cstate->dfsnum < state->dfsnum
3948 && cstate->on_sccstack)
3949 state->low = MIN (cstate->dfsnum, state->low);
3950
3951 /* We are part of our parents SCC, skip this type during hashing
3952 and return the unaltered hash value. */
3953 return v;
3954}
3955
77785f4f 3956/* Hash NAME with the previous hash value V and return it. */
d7f09764
DN
3957
3958static hashval_t
77785f4f 3959iterative_hash_name (tree name, hashval_t v)
d7f09764 3960{
d7f09764
DN
3961 if (!name)
3962 return v;
3963 if (TREE_CODE (name) == TYPE_DECL)
3964 name = DECL_NAME (name);
3965 if (!name)
3966 return v;
3967 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
d7f09764
DN
3968 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
3969}
3970
3971/* Returning a hash value for gimple type TYPE combined with VAL.
3972 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
3973
3974 To hash a type we end up hashing in types that are reachable.
3975 Through pointers we can end up with cycles which messes up the
3976 required property that we need to compute the same hash value
3977 for structurally equivalent types. To avoid this we have to
3978 hash all types in a cycle (the SCC) in a commutative way. The
3979 easiest way is to not mix in the hashes of the SCC members at
3980 all. To make this work we have to delay setting the hash
3981 values of the SCC until it is complete. */
3982
3983static hashval_t
3984iterative_hash_gimple_type (tree type, hashval_t val,
3985 VEC(tree, heap) **sccstack,
3986 struct pointer_map_t *sccstate,
3987 struct obstack *sccstate_obstack)
3988{
3989 hashval_t v;
3990 void **slot;
3991 struct sccs *state;
3992
3993#ifdef ENABLE_CHECKING
3994 /* Not visited during this DFS walk nor during previous walks. */
3995 gcc_assert (!pointer_map_contains (type_hash_cache, type)
3996 && !pointer_map_contains (sccstate, type));
3997#endif
3998 state = XOBNEW (sccstate_obstack, struct sccs);
3999 *pointer_map_insert (sccstate, type) = state;
4000
4001 VEC_safe_push (tree, heap, *sccstack, type);
4002 state->dfsnum = next_dfs_num++;
4003 state->low = state->dfsnum;
4004 state->on_sccstack = true;
4005
4006 /* Combine a few common features of types so that types are grouped into
4007 smaller sets; when searching for existing matching types to merge,
4008 only existing types having the same features as the new type will be
4009 checked. */
4010 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
4011 v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
4012 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
4013
4014 /* Do not hash the types size as this will cause differences in
4015 hash values for the complete vs. the incomplete type variant. */
4016
4017 /* Incorporate common features of numerical types. */
4018 if (INTEGRAL_TYPE_P (type)
4019 || SCALAR_FLOAT_TYPE_P (type)
4020 || FIXED_POINT_TYPE_P (type))
4021 {
4022 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
4023 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
4024 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
4025 }
4026
4027 /* For pointer and reference types, fold in information about the type
4028 pointed to but do not recurse into possibly incomplete types to
4029 avoid hash differences for complete vs. incomplete types. */
4030 if (POINTER_TYPE_P (type))
4031 {
021ed367 4032 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
d7f09764
DN
4033 {
4034 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
77785f4f
RG
4035 v = iterative_hash_name
4036 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
d7f09764
DN
4037 }
4038 else
4039 v = visit (TREE_TYPE (type), state, v,
4040 sccstack, sccstate, sccstate_obstack);
4041 }
4042
f798226d
RG
4043 /* For integer types hash the types min/max values and the string flag. */
4044 if (TREE_CODE (type) == INTEGER_TYPE)
4045 {
429c98c9
RG
4046 /* OMP lowering can introduce error_mark_node in place of
4047 random local decls in types. */
4048 if (TYPE_MIN_VALUE (type) != error_mark_node)
4049 v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
4050 if (TYPE_MAX_VALUE (type) != error_mark_node)
4051 v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
f798226d
RG
4052 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4053 }
4054
4055 /* For array types hash their domain and the string flag. */
4056 if (TREE_CODE (type) == ARRAY_TYPE
4057 && TYPE_DOMAIN (type))
4058 {
4059 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4060 v = visit (TYPE_DOMAIN (type), state, v,
4061 sccstack, sccstate, sccstate_obstack);
4062 }
4063
4064 /* Recurse for aggregates with a single element type. */
d7f09764
DN
4065 if (TREE_CODE (type) == ARRAY_TYPE
4066 || TREE_CODE (type) == COMPLEX_TYPE
4067 || TREE_CODE (type) == VECTOR_TYPE)
4068 v = visit (TREE_TYPE (type), state, v,
4069 sccstack, sccstate, sccstate_obstack);
4070
4071 /* Incorporate function return and argument types. */
4072 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4073 {
4074 unsigned na;
4075 tree p;
4076
4077 /* For method types also incorporate their parent class. */
4078 if (TREE_CODE (type) == METHOD_TYPE)
4079 v = visit (TYPE_METHOD_BASETYPE (type), state, v,
4080 sccstack, sccstate, sccstate_obstack);
4081
bcee752e
RG
4082 /* For result types allow mismatch in completeness. */
4083 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
4084 {
4085 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4086 v = iterative_hash_name
4087 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
4088 }
4089 else
4090 v = visit (TREE_TYPE (type), state, v,
4091 sccstack, sccstate, sccstate_obstack);
d7f09764
DN
4092
4093 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
4094 {
bcee752e
RG
4095 /* For argument types allow mismatch in completeness. */
4096 if (RECORD_OR_UNION_TYPE_P (TREE_VALUE (p)))
4097 {
4098 v = iterative_hash_hashval_t (TREE_CODE (TREE_VALUE (p)), v);
4099 v = iterative_hash_name
4100 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_VALUE (p))), v);
4101 }
4102 else
4103 v = visit (TREE_VALUE (p), state, v,
4104 sccstack, sccstate, sccstate_obstack);
d7f09764
DN
4105 na++;
4106 }
4107
4108 v = iterative_hash_hashval_t (na, v);
4109 }
4110
4111 if (TREE_CODE (type) == RECORD_TYPE
4112 || TREE_CODE (type) == UNION_TYPE
4113 || TREE_CODE (type) == QUAL_UNION_TYPE)
4114 {
4115 unsigned nf;
4116 tree f;
4117
77785f4f 4118 v = iterative_hash_name (TYPE_NAME (TYPE_MAIN_VARIANT (type)), v);
d7f09764
DN
4119
4120 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
4121 {
77785f4f 4122 v = iterative_hash_name (DECL_NAME (f), v);
d7f09764
DN
4123 v = visit (TREE_TYPE (f), state, v,
4124 sccstack, sccstate, sccstate_obstack);
4125 nf++;
4126 }
4127
4128 v = iterative_hash_hashval_t (nf, v);
4129 }
4130
4131 /* Record hash for us. */
d4398a43 4132 state->u.hash = v;
d7f09764
DN
4133
4134 /* See if we found an SCC. */
4135 if (state->low == state->dfsnum)
4136 {
4137 tree x;
4138
4139 /* Pop off the SCC and set its hash values. */
4140 do
4141 {
4142 struct sccs *cstate;
4143 x = VEC_pop (tree, *sccstack);
4144 gcc_assert (!pointer_map_contains (type_hash_cache, x));
4145 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
4146 cstate->on_sccstack = false;
4147 slot = pointer_map_insert (type_hash_cache, x);
d4398a43 4148 *slot = (void *) (size_t) cstate->u.hash;
d7f09764
DN
4149 }
4150 while (x != type);
4151 }
4152
4153 return iterative_hash_hashval_t (v, val);
4154}
4155
4156
4157/* Returns a hash value for P (assumed to be a type). The hash value
4158 is computed using some distinguishing features of the type. Note
4159 that we cannot use pointer hashing here as we may be dealing with
4160 two distinct instances of the same type.
4161
4162 This function should produce the same hash value for two compatible
4163 types according to gimple_types_compatible_p. */
4164
4165static hashval_t
4166gimple_type_hash (const void *p)
4167{
ddd4d0e1 4168 const_tree t = (const_tree) p;
d7f09764
DN
4169 VEC(tree, heap) *sccstack = NULL;
4170 struct pointer_map_t *sccstate;
4171 struct obstack sccstate_obstack;
4172 hashval_t val;
4173 void **slot;
4174
4175 if (type_hash_cache == NULL)
4176 type_hash_cache = pointer_map_create ();
4177
4178 if ((slot = pointer_map_contains (type_hash_cache, p)) != NULL)
4179 return iterative_hash_hashval_t ((hashval_t) (size_t) *slot, 0);
4180
4181 /* Perform a DFS walk and pre-hash all reachable types. */
4182 next_dfs_num = 1;
4183 sccstate = pointer_map_create ();
4184 gcc_obstack_init (&sccstate_obstack);
ddd4d0e1 4185 val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
d7f09764
DN
4186 &sccstack, sccstate, &sccstate_obstack);
4187 VEC_free (tree, heap, sccstack);
4188 pointer_map_destroy (sccstate);
4189 obstack_free (&sccstate_obstack, NULL);
4190
4191 return val;
4192}
4193
4194
4195/* Returns nonzero if P1 and P2 are equal. */
4196
4197static int
4198gimple_type_eq (const void *p1, const void *p2)
4199{
4200 const_tree t1 = (const_tree) p1;
4201 const_tree t2 = (const_tree) p2;
f5d6836a 4202 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
c4fcd06a 4203 CONST_CAST_TREE (t2), GTC_MERGE);
d7f09764
DN
4204}
4205
4206
4207/* Register type T in the global type table gimple_types.
4208 If another type T', compatible with T, already existed in
4209 gimple_types then return T', otherwise return T. This is used by
4210 LTO to merge identical types read from different TUs. */
4211
4212tree
4213gimple_register_type (tree t)
4214{
4215 void **slot;
4216
4217 gcc_assert (TYPE_P (t));
4218
4a2ac96f
RG
4219 /* In TYPE_CANONICAL we cache the result of gimple_register_type.
4220 It is initially set to NULL during LTO streaming. */
4221 if (TYPE_CANONICAL (t))
4222 return TYPE_CANONICAL (t);
4223
20d36f0e
RG
4224 /* Always register the main variant first. This is important so we
4225 pick up the non-typedef variants as canonical, otherwise we'll end
4226 up taking typedef ids for structure tags during comparison. */
4227 if (TYPE_MAIN_VARIANT (t) != t)
4228 gimple_register_type (TYPE_MAIN_VARIANT (t));
4229
d7f09764
DN
4230 if (gimple_types == NULL)
4231 gimple_types = htab_create (16381, gimple_type_hash, gimple_type_eq, 0);
4232
4233 slot = htab_find_slot (gimple_types, t, INSERT);
4234 if (*slot
4235 && *(tree *)slot != t)
4236 {
4237 tree new_type = (tree) *((tree *) slot);
4238
4239 /* Do not merge types with different addressability. */
4240 gcc_assert (TREE_ADDRESSABLE (t) == TREE_ADDRESSABLE (new_type));
4241
4242 /* If t is not its main variant then make t unreachable from its
4243 main variant list. Otherwise we'd queue up a lot of duplicates
4244 there. */
4245 if (t != TYPE_MAIN_VARIANT (t))
4246 {
4247 tree tem = TYPE_MAIN_VARIANT (t);
4248 while (tem && TYPE_NEXT_VARIANT (tem) != t)
4249 tem = TYPE_NEXT_VARIANT (tem);
4250 if (tem)
4251 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
4252 TYPE_NEXT_VARIANT (t) = NULL_TREE;
4253 }
4254
4255 /* If we are a pointer then remove us from the pointer-to or
4256 reference-to chain. Otherwise we'd queue up a lot of duplicates
4257 there. */
4258 if (TREE_CODE (t) == POINTER_TYPE)
4259 {
4260 if (TYPE_POINTER_TO (TREE_TYPE (t)) == t)
4261 TYPE_POINTER_TO (TREE_TYPE (t)) = TYPE_NEXT_PTR_TO (t);
4262 else
4263 {
4264 tree tem = TYPE_POINTER_TO (TREE_TYPE (t));
4265 while (tem && TYPE_NEXT_PTR_TO (tem) != t)
4266 tem = TYPE_NEXT_PTR_TO (tem);
4267 if (tem)
4268 TYPE_NEXT_PTR_TO (tem) = TYPE_NEXT_PTR_TO (t);
4269 }
4270 TYPE_NEXT_PTR_TO (t) = NULL_TREE;
4271 }
4272 else if (TREE_CODE (t) == REFERENCE_TYPE)
4273 {
4274 if (TYPE_REFERENCE_TO (TREE_TYPE (t)) == t)
4275 TYPE_REFERENCE_TO (TREE_TYPE (t)) = TYPE_NEXT_REF_TO (t);
4276 else
4277 {
4278 tree tem = TYPE_REFERENCE_TO (TREE_TYPE (t));
4279 while (tem && TYPE_NEXT_REF_TO (tem) != t)
4280 tem = TYPE_NEXT_REF_TO (tem);
4281 if (tem)
4282 TYPE_NEXT_REF_TO (tem) = TYPE_NEXT_REF_TO (t);
4283 }
4284 TYPE_NEXT_REF_TO (t) = NULL_TREE;
4285 }
4286
4a2ac96f 4287 TYPE_CANONICAL (t) = new_type;
d7f09764
DN
4288 t = new_type;
4289 }
4290 else
4a2ac96f
RG
4291 {
4292 TYPE_CANONICAL (t) = t;
4293 *slot = (void *) t;
4294 }
d7f09764
DN
4295
4296 return t;
4297}
4298
4299
4300/* Show statistics on references to the global type table gimple_types. */
4301
4302void
4303print_gimple_types_stats (void)
4304{
4305 if (gimple_types)
4306 fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, "
4307 "%ld searches, %ld collisions (ratio: %f)\n",
4308 (long) htab_size (gimple_types),
4309 (long) htab_elements (gimple_types),
4310 (long) gimple_types->searches,
4311 (long) gimple_types->collisions,
4312 htab_collisions (gimple_types));
4313 else
4314 fprintf (stderr, "GIMPLE type table is empty\n");
4315 if (gtc_visited)
c4fcd06a 4316 fprintf (stderr, "GIMPLE type comparison table: size %ld, %ld "
0d0bfe17 4317 "elements, %ld searches, %ld collisions (ratio: %f)\n",
d7f09764
DN
4318 (long) htab_size (gtc_visited),
4319 (long) htab_elements (gtc_visited),
4320 (long) gtc_visited->searches,
4321 (long) gtc_visited->collisions,
4322 htab_collisions (gtc_visited));
4323 else
4324 fprintf (stderr, "GIMPLE type comparison table is empty\n");
4325}
4326
0d0bfe17
RG
4327/* Free the gimple type hashtables used for LTO type merging. */
4328
4329void
4330free_gimple_type_tables (void)
4331{
4332 /* Last chance to print stats for the tables. */
4333 if (flag_lto_report)
4334 print_gimple_types_stats ();
4335
4336 if (gimple_types)
4337 {
4338 htab_delete (gimple_types);
4339 gimple_types = NULL;
4340 }
4341 if (type_hash_cache)
4342 {
4343 pointer_map_destroy (type_hash_cache);
4344 type_hash_cache = NULL;
4345 }
4346 if (gtc_visited)
4347 {
4348 htab_delete (gtc_visited);
88ca1146 4349 obstack_free (&gtc_ob, NULL);
0d0bfe17
RG
4350 gtc_visited = NULL;
4351 }
4352}
4353
d7f09764
DN
4354
4355/* Return a type the same as TYPE except unsigned or
4356 signed according to UNSIGNEDP. */
4357
4358static tree
4359gimple_signed_or_unsigned_type (bool unsignedp, tree type)
4360{
4361 tree type1;
4362
4363 type1 = TYPE_MAIN_VARIANT (type);
4364 if (type1 == signed_char_type_node
4365 || type1 == char_type_node
4366 || type1 == unsigned_char_type_node)
4367 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4368 if (type1 == integer_type_node || type1 == unsigned_type_node)
4369 return unsignedp ? unsigned_type_node : integer_type_node;
4370 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
4371 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4372 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
4373 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4374 if (type1 == long_long_integer_type_node
4375 || type1 == long_long_unsigned_type_node)
4376 return unsignedp
4377 ? long_long_unsigned_type_node
4378 : long_long_integer_type_node;
a6766312
KT
4379 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
4380 return unsignedp
4381 ? int128_unsigned_type_node
4382 : int128_integer_type_node;
d7f09764
DN
4383#if HOST_BITS_PER_WIDE_INT >= 64
4384 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
4385 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4386#endif
4387 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
4388 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4389 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
4390 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4391 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
4392 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4393 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
4394 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4395
4396#define GIMPLE_FIXED_TYPES(NAME) \
4397 if (type1 == short_ ## NAME ## _type_node \
4398 || type1 == unsigned_short_ ## NAME ## _type_node) \
4399 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
4400 : short_ ## NAME ## _type_node; \
4401 if (type1 == NAME ## _type_node \
4402 || type1 == unsigned_ ## NAME ## _type_node) \
4403 return unsignedp ? unsigned_ ## NAME ## _type_node \
4404 : NAME ## _type_node; \
4405 if (type1 == long_ ## NAME ## _type_node \
4406 || type1 == unsigned_long_ ## NAME ## _type_node) \
4407 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
4408 : long_ ## NAME ## _type_node; \
4409 if (type1 == long_long_ ## NAME ## _type_node \
4410 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
4411 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
4412 : long_long_ ## NAME ## _type_node;
4413
4414#define GIMPLE_FIXED_MODE_TYPES(NAME) \
4415 if (type1 == NAME ## _type_node \
4416 || type1 == u ## NAME ## _type_node) \
4417 return unsignedp ? u ## NAME ## _type_node \
4418 : NAME ## _type_node;
4419
4420#define GIMPLE_FIXED_TYPES_SAT(NAME) \
4421 if (type1 == sat_ ## short_ ## NAME ## _type_node \
4422 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
4423 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
4424 : sat_ ## short_ ## NAME ## _type_node; \
4425 if (type1 == sat_ ## NAME ## _type_node \
4426 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
4427 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
4428 : sat_ ## NAME ## _type_node; \
4429 if (type1 == sat_ ## long_ ## NAME ## _type_node \
4430 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
4431 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
4432 : sat_ ## long_ ## NAME ## _type_node; \
4433 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
4434 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
4435 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
4436 : sat_ ## long_long_ ## NAME ## _type_node;
4437
4438#define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
4439 if (type1 == sat_ ## NAME ## _type_node \
4440 || type1 == sat_ ## u ## NAME ## _type_node) \
4441 return unsignedp ? sat_ ## u ## NAME ## _type_node \
4442 : sat_ ## NAME ## _type_node;
4443
4444 GIMPLE_FIXED_TYPES (fract);
4445 GIMPLE_FIXED_TYPES_SAT (fract);
4446 GIMPLE_FIXED_TYPES (accum);
4447 GIMPLE_FIXED_TYPES_SAT (accum);
4448
4449 GIMPLE_FIXED_MODE_TYPES (qq);
4450 GIMPLE_FIXED_MODE_TYPES (hq);
4451 GIMPLE_FIXED_MODE_TYPES (sq);
4452 GIMPLE_FIXED_MODE_TYPES (dq);
4453 GIMPLE_FIXED_MODE_TYPES (tq);
4454 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
4455 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
4456 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
4457 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
4458 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
4459 GIMPLE_FIXED_MODE_TYPES (ha);
4460 GIMPLE_FIXED_MODE_TYPES (sa);
4461 GIMPLE_FIXED_MODE_TYPES (da);
4462 GIMPLE_FIXED_MODE_TYPES (ta);
4463 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
4464 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
4465 GIMPLE_FIXED_MODE_TYPES_SAT (da);
4466 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
4467
4468 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
4469 the precision; they have precision set to match their range, but
4470 may use a wider mode to match an ABI. If we change modes, we may
4471 wind up with bad conversions. For INTEGER_TYPEs in C, must check
4472 the precision as well, so as to yield correct results for
4473 bit-field types. C++ does not have these separate bit-field
4474 types, and producing a signed or unsigned variant of an
4475 ENUMERAL_TYPE may cause other problems as well. */
4476 if (!INTEGRAL_TYPE_P (type)
4477 || TYPE_UNSIGNED (type) == unsignedp)
4478 return type;
4479
4480#define TYPE_OK(node) \
4481 (TYPE_MODE (type) == TYPE_MODE (node) \
4482 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
4483 if (TYPE_OK (signed_char_type_node))
4484 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4485 if (TYPE_OK (integer_type_node))
4486 return unsignedp ? unsigned_type_node : integer_type_node;
4487 if (TYPE_OK (short_integer_type_node))
4488 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4489 if (TYPE_OK (long_integer_type_node))
4490 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4491 if (TYPE_OK (long_long_integer_type_node))
4492 return (unsignedp
4493 ? long_long_unsigned_type_node
4494 : long_long_integer_type_node);
a6766312
KT
4495 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
4496 return (unsignedp
4497 ? int128_unsigned_type_node
4498 : int128_integer_type_node);
d7f09764
DN
4499
4500#if HOST_BITS_PER_WIDE_INT >= 64
4501 if (TYPE_OK (intTI_type_node))
4502 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4503#endif
4504 if (TYPE_OK (intDI_type_node))
4505 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4506 if (TYPE_OK (intSI_type_node))
4507 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4508 if (TYPE_OK (intHI_type_node))
4509 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4510 if (TYPE_OK (intQI_type_node))
4511 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4512
4513#undef GIMPLE_FIXED_TYPES
4514#undef GIMPLE_FIXED_MODE_TYPES
4515#undef GIMPLE_FIXED_TYPES_SAT
4516#undef GIMPLE_FIXED_MODE_TYPES_SAT
4517#undef TYPE_OK
4518
4519 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
4520}
4521
4522
4523/* Return an unsigned type the same as TYPE in other respects. */
4524
4525tree
4526gimple_unsigned_type (tree type)
4527{
4528 return gimple_signed_or_unsigned_type (true, type);
4529}
4530
4531
4532/* Return a signed type the same as TYPE in other respects. */
4533
4534tree
4535gimple_signed_type (tree type)
4536{
4537 return gimple_signed_or_unsigned_type (false, type);
4538}
4539
4540
4541/* Return the typed-based alias set for T, which may be an expression
4542 or a type. Return -1 if we don't do anything special. */
4543
4544alias_set_type
4545gimple_get_alias_set (tree t)
4546{
4547 tree u;
4548
4549 /* Permit type-punning when accessing a union, provided the access
4550 is directly through the union. For example, this code does not
4551 permit taking the address of a union member and then storing
4552 through it. Even the type-punning allowed here is a GCC
4553 extension, albeit a common and useful one; the C standard says
4554 that such accesses have implementation-defined behavior. */
4555 for (u = t;
4556 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
4557 u = TREE_OPERAND (u, 0))
4558 if (TREE_CODE (u) == COMPONENT_REF
4559 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
4560 return 0;
4561
4562 /* That's all the expressions we handle specially. */
4563 if (!TYPE_P (t))
4564 return -1;
4565
4566 /* For convenience, follow the C standard when dealing with
4567 character types. Any object may be accessed via an lvalue that
4568 has character type. */
4569 if (t == char_type_node
4570 || t == signed_char_type_node
4571 || t == unsigned_char_type_node)
4572 return 0;
4573
4574 /* Allow aliasing between signed and unsigned variants of the same
4575 type. We treat the signed variant as canonical. */
4576 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
4577 {
4578 tree t1 = gimple_signed_type (t);
4579
4580 /* t1 == t can happen for boolean nodes which are always unsigned. */
4581 if (t1 != t)
4582 return get_alias_set (t1);
4583 }
4584 else if (POINTER_TYPE_P (t))
4585 {
14cf68d9 4586 /* From the common C and C++ langhook implementation:
d7f09764 4587
14cf68d9 4588 Unfortunately, there is no canonical form of a pointer type.
d7f09764
DN
4589 In particular, if we have `typedef int I', then `int *', and
4590 `I *' are different types. So, we have to pick a canonical
4591 representative. We do this below.
4592
4593 Technically, this approach is actually more conservative that
4594 it needs to be. In particular, `const int *' and `int *'
4595 should be in different alias sets, according to the C and C++
4596 standard, since their types are not the same, and so,
4597 technically, an `int **' and `const int **' cannot point at
4598 the same thing.
4599
4600 But, the standard is wrong. In particular, this code is
4601 legal C++:
4602
4603 int *ip;
4604 int **ipp = &ip;
4605 const int* const* cipp = ipp;
4606 And, it doesn't make sense for that to be legal unless you
4607 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
4608 the pointed-to types. This issue has been reported to the
4609 C++ committee. */
14cf68d9
RG
4610
4611 /* In addition to the above canonicalization issue with LTO
4612 we should also canonicalize `T (*)[]' to `T *' avoiding
4613 alias issues with pointer-to element types and pointer-to
4614 array types.
4615
4616 Likewise we need to deal with the situation of incomplete
4617 pointed-to types and make `*(struct X **)&a' and
4618 `*(struct X {} **)&a' alias. Otherwise we will have to
4619 guarantee that all pointer-to incomplete type variants
4620 will be replaced by pointer-to complete type variants if
4621 they are available.
4622
4623 With LTO the convenient situation of using `void *' to
4624 access and store any pointer type will also become
f883d997 4625 more apparent (and `void *' is just another pointer-to
14cf68d9
RG
4626 incomplete type). Assigning alias-set zero to `void *'
4627 and all pointer-to incomplete types is a not appealing
4628 solution. Assigning an effective alias-set zero only
4629 affecting pointers might be - by recording proper subset
4630 relationships of all pointer alias-sets.
4631
4632 Pointer-to function types are another grey area which
4633 needs caution. Globbing them all into one alias-set
4634 or the above effective zero set would work. */
4635
4636 /* For now just assign the same alias-set to all pointers.
4637 That's simple and avoids all the above problems. */
4638 if (t != ptr_type_node)
4639 return get_alias_set (ptr_type_node);
d7f09764
DN
4640 }
4641
4642 return -1;
4643}
4644
4645
5006671f
RG
4646/* Data structure used to count the number of dereferences to PTR
4647 inside an expression. */
4648struct count_ptr_d
4649{
4650 tree ptr;
4651 unsigned num_stores;
4652 unsigned num_loads;
4653};
4654
4655/* Helper for count_uses_and_derefs. Called by walk_tree to look for
4656 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
4657
4658static tree
4659count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
4660{
4661 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
4662 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
4663
4664 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
4665 pointer 'ptr' is *not* dereferenced, it is simply used to compute
4666 the address of 'fld' as 'ptr + offsetof(fld)'. */
4667 if (TREE_CODE (*tp) == ADDR_EXPR)
4668 {
4669 *walk_subtrees = 0;
4670 return NULL_TREE;
4671 }
4672
70f34814 4673 if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr)
5006671f
RG
4674 {
4675 if (wi_p->is_lhs)
4676 count_p->num_stores++;
4677 else
4678 count_p->num_loads++;
4679 }
4680
4681 return NULL_TREE;
4682}
4683
4684/* Count the number of direct and indirect uses for pointer PTR in
4685 statement STMT. The number of direct uses is stored in
4686 *NUM_USES_P. Indirect references are counted separately depending
4687 on whether they are store or load operations. The counts are
4688 stored in *NUM_STORES_P and *NUM_LOADS_P. */
4689
4690void
4691count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
4692 unsigned *num_loads_p, unsigned *num_stores_p)
4693{
4694 ssa_op_iter i;
4695 tree use;
4696
4697 *num_uses_p = 0;
4698 *num_loads_p = 0;
4699 *num_stores_p = 0;
4700
4701 /* Find out the total number of uses of PTR in STMT. */
4702 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4703 if (use == ptr)
4704 (*num_uses_p)++;
4705
4706 /* Now count the number of indirect references to PTR. This is
4707 truly awful, but we don't have much choice. There are no parent
4708 pointers inside INDIRECT_REFs, so an expression like
4709 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
4710 find all the indirect and direct uses of x_1 inside. The only
4711 shortcut we can take is the fact that GIMPLE only allows
4712 INDIRECT_REFs inside the expressions below. */
4713 if (is_gimple_assign (stmt)
4714 || gimple_code (stmt) == GIMPLE_RETURN
4715 || gimple_code (stmt) == GIMPLE_ASM
4716 || is_gimple_call (stmt))
4717 {
4718 struct walk_stmt_info wi;
4719 struct count_ptr_d count;
4720
4721 count.ptr = ptr;
4722 count.num_stores = 0;
4723 count.num_loads = 0;
4724
4725 memset (&wi, 0, sizeof (wi));
4726 wi.info = &count;
4727 walk_gimple_op (stmt, count_ptr_derefs, &wi);
4728
4729 *num_stores_p = count.num_stores;
4730 *num_loads_p = count.num_loads;
4731 }
4732
4733 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
4734}
4735
346ef3fa
RG
4736/* From a tree operand OP return the base of a load or store operation
4737 or NULL_TREE if OP is not a load or a store. */
4738
4739static tree
4740get_base_loadstore (tree op)
4741{
4742 while (handled_component_p (op))
4743 op = TREE_OPERAND (op, 0);
4744 if (DECL_P (op)
4745 || INDIRECT_REF_P (op)
70f34814 4746 || TREE_CODE (op) == MEM_REF
346ef3fa
RG
4747 || TREE_CODE (op) == TARGET_MEM_REF)
4748 return op;
4749 return NULL_TREE;
4750}
4751
4752/* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
4753 VISIT_ADDR if non-NULL on loads, store and address-taken operands
4754 passing the STMT, the base of the operand and DATA to it. The base
4755 will be either a decl, an indirect reference (including TARGET_MEM_REF)
4756 or the argument of an address expression.
4757 Returns the results of these callbacks or'ed. */
4758
4759bool
4760walk_stmt_load_store_addr_ops (gimple stmt, void *data,
4761 bool (*visit_load)(gimple, tree, void *),
4762 bool (*visit_store)(gimple, tree, void *),
4763 bool (*visit_addr)(gimple, tree, void *))
4764{
4765 bool ret = false;
4766 unsigned i;
4767 if (gimple_assign_single_p (stmt))
4768 {
4769 tree lhs, rhs;
4770 if (visit_store)
4771 {
4772 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
4773 if (lhs)
4774 ret |= visit_store (stmt, lhs, data);
4775 }
4776 rhs = gimple_assign_rhs1 (stmt);
ad8a1ac0
RG
4777 while (handled_component_p (rhs))
4778 rhs = TREE_OPERAND (rhs, 0);
346ef3fa
RG
4779 if (visit_addr)
4780 {
4781 if (TREE_CODE (rhs) == ADDR_EXPR)
4782 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4783 else if (TREE_CODE (rhs) == TARGET_MEM_REF
fff1894c 4784 && TMR_BASE (rhs) != NULL_TREE
346ef3fa
RG
4785 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
4786 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
4787 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
4788 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
4789 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
4790 0), data);
fff1894c
AB
4791 lhs = gimple_assign_lhs (stmt);
4792 if (TREE_CODE (lhs) == TARGET_MEM_REF
4793 && TMR_BASE (lhs) != NULL_TREE
4794 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
4795 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
346ef3fa
RG
4796 }
4797 if (visit_load)
4798 {
4799 rhs = get_base_loadstore (rhs);
4800 if (rhs)
4801 ret |= visit_load (stmt, rhs, data);
4802 }
4803 }
4804 else if (visit_addr
4805 && (is_gimple_assign (stmt)
4d7a65ea 4806 || gimple_code (stmt) == GIMPLE_COND))
346ef3fa
RG
4807 {
4808 for (i = 0; i < gimple_num_ops (stmt); ++i)
4809 if (gimple_op (stmt, i)
4810 && TREE_CODE (gimple_op (stmt, i)) == ADDR_EXPR)
4811 ret |= visit_addr (stmt, TREE_OPERAND (gimple_op (stmt, i), 0), data);
4812 }
4813 else if (is_gimple_call (stmt))
4814 {
4815 if (visit_store)
4816 {
4817 tree lhs = gimple_call_lhs (stmt);
4818 if (lhs)
4819 {
4820 lhs = get_base_loadstore (lhs);
4821 if (lhs)
4822 ret |= visit_store (stmt, lhs, data);
4823 }
4824 }
4825 if (visit_load || visit_addr)
4826 for (i = 0; i < gimple_call_num_args (stmt); ++i)
4827 {
4828 tree rhs = gimple_call_arg (stmt, i);
4829 if (visit_addr
4830 && TREE_CODE (rhs) == ADDR_EXPR)
4831 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4832 else if (visit_load)
4833 {
4834 rhs = get_base_loadstore (rhs);
4835 if (rhs)
4836 ret |= visit_load (stmt, rhs, data);
4837 }
4838 }
4839 if (visit_addr
4840 && gimple_call_chain (stmt)
4841 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
4842 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
4843 data);
1d24fdd9
RG
4844 if (visit_addr
4845 && gimple_call_return_slot_opt_p (stmt)
4846 && gimple_call_lhs (stmt) != NULL_TREE
4d61856d 4847 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
1d24fdd9 4848 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
346ef3fa
RG
4849 }
4850 else if (gimple_code (stmt) == GIMPLE_ASM)
4851 {
4852 unsigned noutputs;
4853 const char *constraint;
4854 const char **oconstraints;
4855 bool allows_mem, allows_reg, is_inout;
4856 noutputs = gimple_asm_noutputs (stmt);
4857 oconstraints = XALLOCAVEC (const char *, noutputs);
4858 if (visit_store || visit_addr)
4859 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
4860 {
4861 tree link = gimple_asm_output_op (stmt, i);
4862 tree op = get_base_loadstore (TREE_VALUE (link));
4863 if (op && visit_store)
4864 ret |= visit_store (stmt, op, data);
4865 if (visit_addr)
4866 {
4867 constraint = TREE_STRING_POINTER
4868 (TREE_VALUE (TREE_PURPOSE (link)));
4869 oconstraints[i] = constraint;
4870 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4871 &allows_reg, &is_inout);
4872 if (op && !allows_reg && allows_mem)
4873 ret |= visit_addr (stmt, op, data);
4874 }
4875 }
4876 if (visit_load || visit_addr)
4877 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
4878 {
4879 tree link = gimple_asm_input_op (stmt, i);
4880 tree op = TREE_VALUE (link);
4881 if (visit_addr
4882 && TREE_CODE (op) == ADDR_EXPR)
4883 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4884 else if (visit_load || visit_addr)
4885 {
4886 op = get_base_loadstore (op);
4887 if (op)
4888 {
4889 if (visit_load)
4890 ret |= visit_load (stmt, op, data);
4891 if (visit_addr)
4892 {
4893 constraint = TREE_STRING_POINTER
4894 (TREE_VALUE (TREE_PURPOSE (link)));
4895 parse_input_constraint (&constraint, 0, 0, noutputs,
4896 0, oconstraints,
4897 &allows_mem, &allows_reg);
4898 if (!allows_reg && allows_mem)
4899 ret |= visit_addr (stmt, op, data);
4900 }
4901 }
4902 }
4903 }
4904 }
4905 else if (gimple_code (stmt) == GIMPLE_RETURN)
4906 {
4907 tree op = gimple_return_retval (stmt);
4908 if (op)
4909 {
4910 if (visit_addr
4911 && TREE_CODE (op) == ADDR_EXPR)
4912 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4913 else if (visit_load)
4914 {
4915 op = get_base_loadstore (op);
4916 if (op)
4917 ret |= visit_load (stmt, op, data);
4918 }
4919 }
4920 }
4921 else if (visit_addr
4922 && gimple_code (stmt) == GIMPLE_PHI)
4923 {
4924 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
4925 {
4926 tree op = PHI_ARG_DEF (stmt, i);
4927 if (TREE_CODE (op) == ADDR_EXPR)
4928 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4929 }
4930 }
4931
4932 return ret;
4933}
4934
4935/* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
4936 should make a faster clone for this case. */
4937
4938bool
4939walk_stmt_load_store_ops (gimple stmt, void *data,
4940 bool (*visit_load)(gimple, tree, void *),
4941 bool (*visit_store)(gimple, tree, void *))
4942{
4943 return walk_stmt_load_store_addr_ops (stmt, data,
4944 visit_load, visit_store, NULL);
4945}
4946
ccacdf06
RG
4947/* Helper for gimple_ior_addresses_taken_1. */
4948
4949static bool
4950gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
4951 tree addr, void *data)
4952{
4953 bitmap addresses_taken = (bitmap)data;
2ea9dc64
RG
4954 addr = get_base_address (addr);
4955 if (addr
4956 && DECL_P (addr))
ccacdf06
RG
4957 {
4958 bitmap_set_bit (addresses_taken, DECL_UID (addr));
4959 return true;
4960 }
4961 return false;
4962}
4963
4964/* Set the bit for the uid of all decls that have their address taken
4965 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
4966 were any in this stmt. */
4967
4968bool
4969gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
4970{
4971 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
4972 gimple_ior_addresses_taken_1);
4973}
4974
4537ec0c
DN
4975
4976/* Return a printable name for symbol DECL. */
4977
4978const char *
4979gimple_decl_printable_name (tree decl, int verbosity)
4980{
98b2dfbb
RG
4981 if (!DECL_NAME (decl))
4982 return NULL;
4537ec0c
DN
4983
4984 if (DECL_ASSEMBLER_NAME_SET_P (decl))
4985 {
4986 const char *str, *mangled_str;
4987 int dmgl_opts = DMGL_NO_OPTS;
4988
4989 if (verbosity >= 2)
4990 {
4991 dmgl_opts = DMGL_VERBOSE
4537ec0c
DN
4992 | DMGL_ANSI
4993 | DMGL_GNU_V3
4994 | DMGL_RET_POSTFIX;
4995 if (TREE_CODE (decl) == FUNCTION_DECL)
4996 dmgl_opts |= DMGL_PARAMS;
4997 }
4998
4999 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
5000 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
5001 return (str) ? str : mangled_str;
5002 }
5003
5004 return IDENTIFIER_POINTER (DECL_NAME (decl));
5005}
5006
c54c785d
JH
5007/* Return true when STMT is builtins call to CODE. */
5008
5009bool
5010gimple_call_builtin_p (gimple stmt, enum built_in_function code)
5011{
5012 tree fndecl;
5013 return (is_gimple_call (stmt)
5014 && (fndecl = gimple_call_fndecl (stmt)) != NULL
5015 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
5016 && DECL_FUNCTION_CODE (fndecl) == code);
5017}
5018
726a989a 5019#include "gt-gimple.h"
This page took 1.330042 seconds and 5 git commands to generate.