]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/sem_aggr.adb
ada: Deep delta aggregates cleanup.
[gcc.git] / gcc / ada / sem_aggr.adb
CommitLineData
996ae0b0
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- S E M _ A G G R --
6-- --
7-- B o d y --
8-- --
cccef051 9-- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
996ae0b0
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
157a9bf5 13-- ware Foundation; either version 3, or (at your option) any later ver- --
996ae0b0
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
157a9bf5
ES
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
996ae0b0
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
996ae0b0
RK
23-- --
24------------------------------------------------------------------------------
25
104f58db
BD
26with Aspects; use Aspects;
27with Atree; use Atree;
28with Checks; use Checks;
29with Einfo; use Einfo;
104f58db
BD
30with Einfo.Utils; use Einfo.Utils;
31with Elists; use Elists;
32with Errout; use Errout;
33with Expander; use Expander;
34with Exp_Ch6; use Exp_Ch6;
35with Exp_Tss; use Exp_Tss;
36with Exp_Util; use Exp_Util;
37with Freeze; use Freeze;
38with Itypes; use Itypes;
39with Lib; use Lib;
40with Lib.Xref; use Lib.Xref;
41with Namet; use Namet;
42with Namet.Sp; use Namet.Sp;
43with Nmake; use Nmake;
44with Nlists; use Nlists;
45with Opt; use Opt;
46with Restrict; use Restrict;
47with Rident; use Rident;
48with Sem; use Sem;
49with Sem_Aux; use Sem_Aux;
e1dfbb03 50with Sem_Case; use Sem_Case;
104f58db
BD
51with Sem_Cat; use Sem_Cat;
52with Sem_Ch3; use Sem_Ch3;
104f58db
BD
53with Sem_Ch8; use Sem_Ch8;
54with Sem_Ch13; use Sem_Ch13;
55with Sem_Dim; use Sem_Dim;
56with Sem_Eval; use Sem_Eval;
57with Sem_Res; use Sem_Res;
58with Sem_Util; use Sem_Util;
59with Sem_Type; use Sem_Type;
60with Sem_Warn; use Sem_Warn;
61with Sinfo; use Sinfo;
62with Sinfo.Nodes; use Sinfo.Nodes;
63with Sinfo.Utils; use Sinfo.Utils;
64with Snames; use Snames;
65with Stringt; use Stringt;
66with Stand; use Stand;
67with Style; use Style;
68with Targparm; use Targparm;
69with Tbuild; use Tbuild;
70with Ttypes; use Ttypes;
71with Uintp; use Uintp;
bc50ac71 72with Warnsw; use Warnsw;
996ae0b0 73
996ae0b0
RK
74package body Sem_Aggr is
75
76 type Case_Bounds is record
82893775
AC
77 Lo : Node_Id;
78 -- Low bound of choice. Once we sort the Case_Table, then entries
79 -- will be in order of ascending Choice_Lo values.
80
81 Hi : Node_Id;
82 -- High Bound of choice. The sort does not pay any attention to the
83 -- high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
84
85 Highest : Uint;
86 -- If there are duplicates or missing entries, then in the sorted
87 -- table, this records the highest value among Choice_Hi values
88 -- seen so far, including this entry.
89
90 Choice : Node_Id;
91 -- The node of the choice
996ae0b0
RK
92 end record;
93
38f44fd6
PT
94 type Case_Table_Type is array (Pos range <>) of Case_Bounds;
95 -- Table type used by Check_Case_Choices procedure
996ae0b0
RK
96
97 -----------------------
98 -- Local Subprograms --
99 -----------------------
100
101 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
82893775
AC
102 -- Sort the Case Table using the Lower Bound of each Choice as the key. A
103 -- simple insertion sort is used since the choices in a case statement will
104 -- usually be in near sorted order.
996ae0b0 105
9b96e234
JM
106 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
107 -- Ada 2005 (AI-231): Check bad usage of null for a component for which
108 -- null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
109 -- the array case (the component type of the array will be used) or an
110 -- E_Component/E_Discriminant entity in the record case, in which case the
111 -- type of the component will be used for the test. If Typ is any other
112 -- kind of entity, the call is ignored. Expr is the component node in the
8133b9d1 113 -- aggregate which is known to have a null value. A warning message will be
9b96e234
JM
114 -- issued if the component is null excluding.
115 --
116 -- It would be better to pass the proper type for Typ ???
2820d220 117
ca44152f
ES
118 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id);
119 -- Check that Expr is either not limited or else is one of the cases of
120 -- expressions allowed for a limited component association (namely, an
121 -- aggregate, function call, or <> notation). Report error for violations.
480156b2 122 -- Expression is also OK in an instance or inlining context, because we
812e6118 123 -- have already preanalyzed and it is known to be type correct.
ca44152f 124
996ae0b0
RK
125 ------------------------------------------------------
126 -- Subprograms used for RECORD AGGREGATE Processing --
127 ------------------------------------------------------
128
129 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
130 -- This procedure performs all the semantic checks required for record
131 -- aggregates. Note that for aggregates analysis and resolution go
132 -- hand in hand. Aggregate analysis has been delayed up to here and
133 -- it is done while resolving the aggregate.
134 --
135 -- N is the N_Aggregate node.
136 -- Typ is the record type for the aggregate resolution
137 --
9b96e234
JM
138 -- While performing the semantic checks, this procedure builds a new
139 -- Component_Association_List where each record field appears alone in a
140 -- Component_Choice_List along with its corresponding expression. The
141 -- record fields in the Component_Association_List appear in the same order
142 -- in which they appear in the record type Typ.
996ae0b0 143 --
9b96e234
JM
144 -- Once this new Component_Association_List is built and all the semantic
145 -- checks performed, the original aggregate subtree is replaced with the
0ad46f04
PT
146 -- new named record aggregate just built. This new record aggregate has no
147 -- positional associations, so its Expressions field is set to No_List.
148 -- Note that subtree substitution is performed with Rewrite so as to be
149 -- able to retrieve the original aggregate.
996ae0b0
RK
150 --
151 -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
152 -- yields the aggregate format expected by Gigi. Typically, this kind of
153 -- tree manipulations are done in the expander. However, because the
9b96e234
JM
154 -- semantic checks that need to be performed on record aggregates really go
155 -- hand in hand with the record aggregate normalization, the aggregate
996ae0b0 156 -- subtree transformation is performed during resolution rather than
9b96e234
JM
157 -- expansion. Had we decided otherwise we would have had to duplicate most
158 -- of the code in the expansion procedure Expand_Record_Aggregate. Note,
c7ce71c2 159 -- however, that all the expansion concerning aggregates for tagged records
9b96e234 160 -- is done in Expand_Record_Aggregate.
996ae0b0
RK
161 --
162 -- The algorithm of Resolve_Record_Aggregate proceeds as follows:
163 --
164 -- 1. Make sure that the record type against which the record aggregate
c9a1acdc
AC
165 -- has to be resolved is not abstract. Furthermore if the type is a
166 -- null aggregate make sure the input aggregate N is also null.
996ae0b0
RK
167 --
168 -- 2. Verify that the structure of the aggregate is that of a record
169 -- aggregate. Specifically, look for component associations and ensure
170 -- that each choice list only has identifiers or the N_Others_Choice
171 -- node. Also make sure that if present, the N_Others_Choice occurs
172 -- last and by itself.
173 --
c9a1acdc
AC
174 -- 3. If Typ contains discriminants, the values for each discriminant is
175 -- looked for. If the record type Typ has variants, we check that the
176 -- expressions corresponding to each discriminant ruling the (possibly
177 -- nested) variant parts of Typ, are static. This allows us to determine
178 -- the variant parts to which the rest of the aggregate must conform.
179 -- The names of discriminants with their values are saved in a new
180 -- association list, New_Assoc_List which is later augmented with the
181 -- names and values of the remaining components in the record type.
996ae0b0
RK
182 --
183 -- During this phase we also make sure that every discriminant is
c9a1acdc
AC
184 -- assigned exactly one value. Note that when several values for a given
185 -- discriminant are found, semantic processing continues looking for
186 -- further errors. In this case it's the first discriminant value found
187 -- which we will be recorded.
996ae0b0
RK
188 --
189 -- IMPORTANT NOTE: For derived tagged types this procedure expects
190 -- First_Discriminant and Next_Discriminant to give the correct list
191 -- of discriminants, in the correct order.
192 --
c9a1acdc
AC
193 -- 4. After all the discriminant values have been gathered, we can set the
194 -- Etype of the record aggregate. If Typ contains no discriminants this
195 -- is straightforward: the Etype of N is just Typ, otherwise a new
196 -- implicit constrained subtype of Typ is built to be the Etype of N.
996ae0b0
RK
197 --
198 -- 5. Gather the remaining record components according to the discriminant
199 -- values. This involves recursively traversing the record type
200 -- structure to see what variants are selected by the given discriminant
201 -- values. This processing is a little more convoluted if Typ is a
202 -- derived tagged types since we need to retrieve the record structure
203 -- of all the ancestors of Typ.
204 --
c9a1acdc
AC
205 -- 6. After gathering the record components we look for their values in the
206 -- record aggregate and emit appropriate error messages should we not
207 -- find such values or should they be duplicated.
208 --
209 -- 7. We then make sure no illegal component names appear in the record
210 -- aggregate and make sure that the type of the record components
211 -- appearing in a same choice list is the same. Finally we ensure that
212 -- the others choice, if present, is used to provide the value of at
213 -- least a record component.
214 --
215 -- 8. The original aggregate node is replaced with the new named aggregate
216 -- built in steps 3 through 6, as explained earlier.
217 --
218 -- Given the complexity of record aggregate resolution, the primary goal of
219 -- this routine is clarity and simplicity rather than execution and storage
220 -- efficiency. If there are only positional components in the aggregate the
221 -- running time is linear. If there are associations the running time is
222 -- still linear as long as the order of the associations is not too far off
223 -- the order of the components in the record type. If this is not the case
224 -- the running time is at worst quadratic in the size of the association
225 -- list.
996ae0b0
RK
226
227 procedure Check_Misspelled_Component
9c290e69
PO
228 (Elements : Elist_Id;
229 Component : Node_Id);
c9a1acdc
AC
230 -- Give possible misspelling diagnostic if Component is likely to be a
231 -- misspelling of one of the components of the Assoc_List. This is called
232 -- by Resolve_Aggr_Expr after producing an invalid component error message.
996ae0b0 233
996ae0b0
RK
234 -----------------------------------------------------
235 -- Subprograms used for ARRAY AGGREGATE Processing --
236 -----------------------------------------------------
237
238 function Resolve_Array_Aggregate
239 (N : Node_Id;
240 Index : Node_Id;
241 Index_Constr : Node_Id;
242 Component_Typ : Entity_Id;
ca44152f 243 Others_Allowed : Boolean) return Boolean;
996ae0b0
RK
244 -- This procedure performs the semantic checks for an array aggregate.
245 -- True is returned if the aggregate resolution succeeds.
ca44152f 246 --
996ae0b0 247 -- The procedure works by recursively checking each nested aggregate.
9f4fd324 248 -- Specifically, after checking a sub-aggregate nested at the i-th level
996ae0b0 249 -- we recursively check all the subaggregates at the i+1-st level (if any).
b045f2f2 250 -- Note that aggregates analysis and resolution go hand in hand.
996ae0b0
RK
251 -- Aggregate analysis has been delayed up to here and it is done while
252 -- resolving the aggregate.
253 --
254 -- N is the current N_Aggregate node to be checked.
255 --
256 -- Index is the index node corresponding to the array sub-aggregate that
257 -- we are currently checking (RM 4.3.3 (8)). Its Etype is the
258 -- corresponding index type (or subtype).
259 --
260 -- Index_Constr is the node giving the applicable index constraint if
261 -- any (RM 4.3.3 (10)). It "is a constraint provided by certain
262 -- contexts [...] that can be used to determine the bounds of the array
263 -- value specified by the aggregate". If Others_Allowed below is False
264 -- there is no applicable index constraint and this node is set to Index.
265 --
266 -- Component_Typ is the array component type.
267 --
268 -- Others_Allowed indicates whether an others choice is allowed
269 -- in the context where the top-level aggregate appeared.
270 --
271 -- The algorithm of Resolve_Array_Aggregate proceeds as follows:
272 --
273 -- 1. Make sure that the others choice, if present, is by itself and
274 -- appears last in the sub-aggregate. Check that we do not have
275 -- positional and named components in the array sub-aggregate (unless
276 -- the named association is an others choice). Finally if an others
12a13f01 277 -- choice is present, make sure it is allowed in the aggregate context.
996ae0b0
RK
278 --
279 -- 2. If the array sub-aggregate contains discrete_choices:
280 --
281 -- (A) Verify their validity. Specifically verify that:
282 --
283 -- (a) If a null range is present it must be the only possible
284 -- choice in the array aggregate.
285 --
286 -- (b) Ditto for a non static range.
287 --
288 -- (c) Ditto for a non static expression.
289 --
290 -- In addition this step analyzes and resolves each discrete_choice,
291 -- making sure that its type is the type of the corresponding Index.
292 -- If we are not at the lowest array aggregate level (in the case of
293 -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
294 -- recursively on each component expression. Otherwise, resolve the
295 -- bottom level component expressions against the expected component
296 -- type ONLY IF the component corresponds to a single discrete choice
297 -- which is not an others choice (to see why read the DELAYED
298 -- COMPONENT RESOLUTION below).
299 --
300 -- (B) Determine the bounds of the sub-aggregate and lowest and
301 -- highest choice values.
302 --
303 -- 3. For positional aggregates:
304 --
305 -- (A) Loop over the component expressions either recursively invoking
306 -- Resolve_Array_Aggregate on each of these for multi-dimensional
307 -- array aggregates or resolving the bottom level component
308 -- expressions against the expected component type.
309 --
310 -- (B) Determine the bounds of the positional sub-aggregates.
311 --
312 -- 4. Try to determine statically whether the evaluation of the array
313 -- sub-aggregate raises Constraint_Error. If yes emit proper
314 -- warnings. The precise checks are the following:
315 --
316 -- (A) Check that the index range defined by aggregate bounds is
317 -- compatible with corresponding index subtype.
318 -- We also check against the base type. In fact it could be that
319 -- Low/High bounds of the base type are static whereas those of
320 -- the index subtype are not. Thus if we can statically catch
321 -- a problem with respect to the base type we are guaranteed
322 -- that the same problem will arise with the index subtype
323 --
324 -- (B) If we are dealing with a named aggregate containing an others
325 -- choice and at least one discrete choice then make sure the range
326 -- specified by the discrete choices does not overflow the
327 -- aggregate bounds. We also check against the index type and base
328 -- type bounds for the same reasons given in (A).
329 --
330 -- (C) If we are dealing with a positional aggregate with an others
331 -- choice make sure the number of positional elements specified
332 -- does not overflow the aggregate bounds. We also check against
333 -- the index type and base type bounds as mentioned in (A).
334 --
335 -- Finally construct an N_Range node giving the sub-aggregate bounds.
336 -- Set the Aggregate_Bounds field of the sub-aggregate to be this
337 -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
338 -- to build the appropriate aggregate subtype. Aggregate_Bounds
339 -- information is needed during expansion.
340 --
341 -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
342 -- expressions in an array aggregate may call Duplicate_Subexpr or some
343 -- other routine that inserts code just outside the outermost aggregate.
344 -- If the array aggregate contains discrete choices or an others choice,
345 -- this may be wrong. Consider for instance the following example.
346 --
347 -- type Rec is record
348 -- V : Integer := 0;
349 -- end record;
350 --
351 -- type Acc_Rec is access Rec;
352 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
353 --
354 -- Then the transformation of "new Rec" that occurs during resolution
355 -- entails the following code modifications
356 --
357 -- P7b : constant Acc_Rec := new Rec;
fbf5a39b 358 -- RecIP (P7b.all);
996ae0b0
RK
359 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
360 --
361 -- This code transformation is clearly wrong, since we need to call
362 -- "new Rec" for each of the 3 array elements. To avoid this problem we
363 -- delay resolution of the components of non positional array aggregates
364 -- to the expansion phase. As an optimization, if the discrete choice
365 -- specifies a single value we do not delay resolution.
366
c0471c61 367 function Array_Aggr_Subtype (N : Node_Id; Typ : Entity_Id) return Entity_Id;
996ae0b0
RK
368 -- This routine returns the type or subtype of an array aggregate.
369 --
370 -- N is the array aggregate node whose type we return.
371 --
372 -- Typ is the context type in which N occurs.
373 --
c45b6ae0 374 -- This routine creates an implicit array subtype whose bounds are
996ae0b0
RK
375 -- those defined by the aggregate. When this routine is invoked
376 -- Resolve_Array_Aggregate has already processed aggregate N. Thus the
377 -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
c7ce71c2 378 -- sub-aggregate bounds. When building the aggregate itype, this function
996ae0b0
RK
379 -- traverses the array aggregate N collecting such Aggregate_Bounds and
380 -- constructs the proper array aggregate itype.
381 --
382 -- Note that in the case of multidimensional aggregates each inner
383 -- sub-aggregate corresponding to a given array dimension, may provide a
384 -- different bounds. If it is possible to determine statically that
385 -- some sub-aggregates corresponding to the same index do not have the
386 -- same bounds, then a warning is emitted. If such check is not possible
387 -- statically (because some sub-aggregate bounds are dynamic expressions)
388 -- then this job is left to the expander. In all cases the particular
389 -- bounds that this function will chose for a given dimension is the first
390 -- N_Range node for a sub-aggregate corresponding to that dimension.
391 --
392 -- Note that the Raises_Constraint_Error flag of an array aggregate
393 -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
394 -- is set in Resolve_Array_Aggregate but the aggregate is not
395 -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
396 -- first construct the proper itype for the aggregate (Gigi needs
21d7ef70 397 -- this). After constructing the proper itype we will eventually replace
996ae0b0
RK
398 -- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
399 -- Of course in cases such as:
400 --
401 -- type Arr is array (integer range <>) of Integer;
402 -- A : Arr := (positive range -1 .. 2 => 0);
403 --
404 -- The bounds of the aggregate itype are cooked up to look reasonable
405 -- (in this particular case the bounds will be 1 .. 2).
406
996ae0b0 407 procedure Make_String_Into_Aggregate (N : Node_Id);
21d7ef70 408 -- A string literal can appear in a context in which a one dimensional
996ae0b0
RK
409 -- array of characters is expected. This procedure simply rewrites the
410 -- string as an aggregate, prior to resolution.
411
10c257af
ES
412 function Resolve_Null_Array_Aggregate (N : Node_Id) return Boolean;
413 -- For the Ada 2022 construct, build a subtype with a null range for each
414 -- dimension, using the bounds from the context subtype (if the subtype
415 -- is constrained). If the subtype is unconstrained, then the bounds
416 -- are determined in much the same way as the bounds for a null string
417 -- literal with no applicable index constraint.
10c257af 418
8d9a1ba7
PMR
419 ---------------------------------
420 -- Delta aggregate processing --
421 ---------------------------------
422
423 procedure Resolve_Delta_Array_Aggregate (N : Node_Id; Typ : Entity_Id);
424 procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
0191a24e
SB
425 procedure Resolve_Deep_Delta_Assoc (N : Node_Id; Typ : Entity_Id);
426 -- Resolve the names/expressions in a component association for
427 -- a deep delta aggregate. Typ is the type of the enclosing object.
8d9a1ba7 428
996ae0b0
RK
429 ------------------------
430 -- Array_Aggr_Subtype --
431 ------------------------
432
433 function Array_Aggr_Subtype
b87971f3
AC
434 (N : Node_Id;
435 Typ : Entity_Id) return Entity_Id
996ae0b0
RK
436 is
437 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
ec53a6da 438 -- Number of aggregate index dimensions
996ae0b0
RK
439
440 Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
ec53a6da 441 -- Constrained N_Range of each index dimension in our aggregate itype
996ae0b0 442
58009744
AC
443 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
444 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
ec53a6da 445 -- Low and High bounds for each index dimension in our aggregate itype
996ae0b0
RK
446
447 Is_Fully_Positional : Boolean := True;
448
449 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
fb468a94
AC
450 -- N is an array (sub-)aggregate. Dim is the dimension corresponding
451 -- to (sub-)aggregate N. This procedure collects and removes the side
452 -- effects of the constrained N_Range nodes corresponding to each index
2b3d67a5
AC
453 -- dimension of our aggregate itype. These N_Range nodes are collected
454 -- in Aggr_Range above.
ec53a6da 455 --
996ae0b0
RK
456 -- Likewise collect in Aggr_Low & Aggr_High above the low and high
457 -- bounds of each index dimension. If, when collecting, two bounds
458 -- corresponding to the same dimension are static and found to differ,
459 -- then emit a warning, and mark N as raising Constraint_Error.
460
461 -------------------------
462 -- Collect_Aggr_Bounds --
463 -------------------------
464
465 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
466 This_Range : constant Node_Id := Aggregate_Bounds (N);
ec53a6da 467 -- The aggregate range node of this specific sub-aggregate
996ae0b0 468
93d0457e
PT
469 This_Low : constant Node_Id := Low_Bound (This_Range);
470 This_High : constant Node_Id := High_Bound (This_Range);
ec53a6da 471 -- The aggregate bounds of this specific sub-aggregate
996ae0b0
RK
472
473 Assoc : Node_Id;
474 Expr : Node_Id;
475
476 begin
fb468a94
AC
477 Remove_Side_Effects (This_Low, Variable_Ref => True);
478 Remove_Side_Effects (This_High, Variable_Ref => True);
479
996ae0b0
RK
480 -- Collect the first N_Range for a given dimension that you find.
481 -- For a given dimension they must be all equal anyway.
482
483 if No (Aggr_Range (Dim)) then
484 Aggr_Low (Dim) := This_Low;
485 Aggr_High (Dim) := This_High;
486 Aggr_Range (Dim) := This_Range;
487
488 else
489 if Compile_Time_Known_Value (This_Low) then
490 if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
be035558 491 Aggr_Low (Dim) := This_Low;
996ae0b0
RK
492
493 elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
494 Set_Raises_Constraint_Error (N);
43417b90 495 Error_Msg_Warn := SPARK_Mode /= On;
4a28b181
AC
496 Error_Msg_N ("sub-aggregate low bound mismatch<<", N);
497 Error_Msg_N ("\Constraint_Error [<<", N);
996ae0b0
RK
498 end if;
499 end if;
500
501 if Compile_Time_Known_Value (This_High) then
502 if not Compile_Time_Known_Value (Aggr_High (Dim)) then
be035558 503 Aggr_High (Dim) := This_High;
996ae0b0
RK
504
505 elsif
506 Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
507 then
508 Set_Raises_Constraint_Error (N);
43417b90 509 Error_Msg_Warn := SPARK_Mode /= On;
4a28b181
AC
510 Error_Msg_N ("sub-aggregate high bound mismatch<<", N);
511 Error_Msg_N ("\Constraint_Error [<<", N);
996ae0b0
RK
512 end if;
513 end if;
514 end if;
515
516 if Dim < Aggr_Dimension then
517
518 -- Process positional components
519
520 if Present (Expressions (N)) then
521 Expr := First (Expressions (N));
522 while Present (Expr) loop
523 Collect_Aggr_Bounds (Expr, Dim + 1);
524 Next (Expr);
525 end loop;
526 end if;
527
528 -- Process component associations
529
530 if Present (Component_Associations (N)) then
531 Is_Fully_Positional := False;
532
533 Assoc := First (Component_Associations (N));
534 while Present (Assoc) loop
535 Expr := Expression (Assoc);
536 Collect_Aggr_Bounds (Expr, Dim + 1);
537 Next (Assoc);
538 end loop;
539 end if;
540 end if;
541 end Collect_Aggr_Bounds;
542
543 -- Array_Aggr_Subtype variables
544
545 Itype : Entity_Id;
b87971f3 546 -- The final itype of the overall aggregate
996ae0b0 547
fbf5a39b 548 Index_Constraints : constant List_Id := New_List;
ec53a6da 549 -- The list of index constraints of the aggregate itype
996ae0b0
RK
550
551 -- Start of processing for Array_Aggr_Subtype
552
553 begin
b87971f3
AC
554 -- Make sure that the list of index constraints is properly attached to
555 -- the tree, and then collect the aggregate bounds.
996ae0b0 556
fe43084c
ES
557 -- If no aggregaate bounds have been set, this is an aggregate with
558 -- iterator specifications and a dynamic size to be determined by
559 -- first pass of expanded code.
560
561 if No (Aggregate_Bounds (N)) then
562 return Typ;
563 end if;
564
996ae0b0 565 Set_Parent (Index_Constraints, N);
59a23beb
PT
566
567 -- When resolving a null aggregate we created a list of aggregate bounds
568 -- for the consecutive dimensions. The bounds for the first dimension
569 -- are attached as the Aggregate_Bounds of the aggregate node.
570
571 if Is_Null_Aggregate (N) then
572 declare
573 This_Range : Node_Id := Aggregate_Bounds (N);
574 begin
575 for J in 1 .. Aggr_Dimension loop
576 Aggr_Range (J) := This_Range;
577 Next_Index (This_Range);
578
579 -- Remove bounds from the list, so they can be reattached as
580 -- the First_Index/Next_Index again by the code that also
581 -- handles non-null aggregates.
582
583 Remove (Aggr_Range (J));
584 end loop;
585 end;
586 else
587 Collect_Aggr_Bounds (N, 1);
588 end if;
996ae0b0 589
3b42c566 590 -- Build the list of constrained indexes of our aggregate itype
996ae0b0
RK
591
592 for J in 1 .. Aggr_Dimension loop
593 Create_Index : declare
fbf5a39b
AC
594 Index_Base : constant Entity_Id :=
595 Base_Type (Etype (Aggr_Range (J)));
996ae0b0
RK
596 Index_Typ : Entity_Id;
597
598 begin
8133b9d1
ES
599 -- Construct the Index subtype, and associate it with the range
600 -- construct that generates it.
996ae0b0 601
8133b9d1
ES
602 Index_Typ :=
603 Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
996ae0b0
RK
604
605 Set_Etype (Index_Typ, Index_Base);
606
607 if Is_Character_Type (Index_Base) then
608 Set_Is_Character_Type (Index_Typ);
609 end if;
610
611 Set_Size_Info (Index_Typ, (Index_Base));
612 Set_RM_Size (Index_Typ, RM_Size (Index_Base));
613 Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
614 Set_Scalar_Range (Index_Typ, Aggr_Range (J));
615
616 if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
617 Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
618 end if;
619
620 Set_Etype (Aggr_Range (J), Index_Typ);
621
622 Append (Aggr_Range (J), To => Index_Constraints);
623 end Create_Index;
624 end loop;
625
626 -- Now build the Itype
627
628 Itype := Create_Itype (E_Array_Subtype, N);
629
b87971f3
AC
630 Set_First_Rep_Item (Itype, First_Rep_Item (Typ));
631 Set_Convention (Itype, Convention (Typ));
632 Set_Depends_On_Private (Itype, Has_Private_Component (Typ));
633 Set_Etype (Itype, Base_Type (Typ));
634 Set_Has_Alignment_Clause (Itype, Has_Alignment_Clause (Typ));
635 Set_Is_Aliased (Itype, Is_Aliased (Typ));
a517d6c1 636 Set_Is_Independent (Itype, Is_Independent (Typ));
b87971f3 637 Set_Depends_On_Private (Itype, Depends_On_Private (Typ));
996ae0b0 638
fbf5a39b
AC
639 Copy_Suppress_Status (Index_Check, Typ, Itype);
640 Copy_Suppress_Status (Length_Check, Typ, Itype);
641
996ae0b0
RK
642 Set_First_Index (Itype, First (Index_Constraints));
643 Set_Is_Constrained (Itype, True);
644 Set_Is_Internal (Itype, True);
996ae0b0 645
619bfd9f
ES
646 if Has_Predicates (Typ) then
647 Set_Has_Predicates (Itype);
648
a096f12e
ES
649 -- If the base type has a predicate, capture the predicated parent
650 -- or the existing predicate function for SPARK use.
651
619bfd9f
ES
652 if Present (Predicate_Function (Typ)) then
653 Set_Predicate_Function (Itype, Predicate_Function (Typ));
a096f12e
ES
654
655 elsif Is_Itype (Typ) then
619bfd9f 656 Set_Predicated_Parent (Itype, Predicated_Parent (Typ));
a096f12e
ES
657
658 else
659 Set_Predicated_Parent (Itype, Typ);
619bfd9f
ES
660 end if;
661 end if;
662
996ae0b0 663 -- A simple optimization: purely positional aggregates of static
b87971f3
AC
664 -- components should be passed to gigi unexpanded whenever possible, and
665 -- regardless of the staticness of the bounds themselves. Subsequent
666 -- checks in exp_aggr verify that type is not packed, etc.
996ae0b0 667
58009744
AC
668 Set_Size_Known_At_Compile_Time
669 (Itype,
8133b9d1
ES
670 Is_Fully_Positional
671 and then Comes_From_Source (N)
672 and then Size_Known_At_Compile_Time (Component_Type (Typ)));
996ae0b0 673
b87971f3 674 -- We always need a freeze node for a packed array subtype, so that we
8ca597af 675 -- can build the Packed_Array_Impl_Type corresponding to the subtype. If
b87971f3
AC
676 -- expansion is disabled, the packed array subtype is not built, and we
677 -- must not generate a freeze node for the type, or else it will appear
678 -- incomplete to gigi.
996ae0b0 679
b87971f3
AC
680 if Is_Packed (Itype)
681 and then not In_Spec_Expression
996ae0b0
RK
682 and then Expander_Active
683 then
684 Freeze_Itype (Itype, N);
685 end if;
686
687 return Itype;
688 end Array_Aggr_Subtype;
689
690 --------------------------------
691 -- Check_Misspelled_Component --
692 --------------------------------
693
694 procedure Check_Misspelled_Component
9c290e69
PO
695 (Elements : Elist_Id;
696 Component : Node_Id)
996ae0b0
RK
697 is
698 Max_Suggestions : constant := 2;
699
700 Nr_Of_Suggestions : Natural := 0;
701 Suggestion_1 : Entity_Id := Empty;
702 Suggestion_2 : Entity_Id := Empty;
703 Component_Elmt : Elmt_Id;
704
705 begin
b87971f3 706 -- All the components of List are matched against Component and a count
e49de265 707 -- is maintained of possible misspellings. When at the end of the
a90bd866 708 -- analysis there are one or two (not more) possible misspellings,
e49de265 709 -- these misspellings will be suggested as possible corrections.
996ae0b0 710
c80d4855
RD
711 Component_Elmt := First_Elmt (Elements);
712 while Nr_Of_Suggestions <= Max_Suggestions
713 and then Present (Component_Elmt)
714 loop
715 if Is_Bad_Spelling_Of
716 (Chars (Node (Component_Elmt)),
717 Chars (Component))
718 then
719 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
996ae0b0 720
c80d4855
RD
721 case Nr_Of_Suggestions is
722 when 1 => Suggestion_1 := Node (Component_Elmt);
723 when 2 => Suggestion_2 := Node (Component_Elmt);
e49de265 724 when others => null;
c80d4855
RD
725 end case;
726 end if;
996ae0b0 727
c80d4855
RD
728 Next_Elmt (Component_Elmt);
729 end loop;
996ae0b0 730
c80d4855 731 -- Report at most two suggestions
996ae0b0 732
c80d4855 733 if Nr_Of_Suggestions = 1 then
4e7a4f6e 734 Error_Msg_NE -- CODEFIX
c80d4855 735 ("\possible misspelling of&", Component, Suggestion_1);
996ae0b0 736
c80d4855
RD
737 elsif Nr_Of_Suggestions = 2 then
738 Error_Msg_Node_2 := Suggestion_2;
4e7a4f6e 739 Error_Msg_NE -- CODEFIX
c80d4855
RD
740 ("\possible misspelling of& or&", Component, Suggestion_1);
741 end if;
996ae0b0
RK
742 end Check_Misspelled_Component;
743
ca44152f
ES
744 ----------------------------------------
745 -- Check_Expr_OK_In_Limited_Aggregate --
746 ----------------------------------------
747
748 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id) is
749 begin
750 if Is_Limited_Type (Etype (Expr))
751 and then Comes_From_Source (Expr)
ca44152f 752 then
36428cc4
AC
753 if In_Instance_Body or else In_Inlined_Body then
754 null;
755
756 elsif not OK_For_Limited_Init (Etype (Expr), Expr) then
757 Error_Msg_N
758 ("initialization not allowed for limited types", Expr);
ca44152f
ES
759 Explain_Limited_Type (Etype (Expr), Expr);
760 end if;
761 end if;
762 end Check_Expr_OK_In_Limited_Aggregate;
763
0191a24e
SB
764 --------------------
765 -- Is_Deep_Choice --
766 --------------------
767
768 function Is_Deep_Choice
769 (Choice : Node_Id;
770 Aggr_Type : Type_Kind_Id) return Boolean
771 is
772 Pref : Node_Id := Choice;
773 begin
774 while not Is_Root_Prefix_Of_Deep_Choice (Pref) loop
775 Pref := Prefix (Pref);
776 end loop;
777
778 if Is_Array_Type (Aggr_Type) then
779 return Paren_Count (Pref) > 0
780 and then Pref /= Choice;
781 else
782 return Pref /= Choice;
783 end if;
784 end Is_Deep_Choice;
785
9f90d123
AC
786 -------------------------
787 -- Is_Others_Aggregate --
788 -------------------------
789
790 function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
27c3d986
EB
791 Assoc : constant List_Id := Component_Associations (Aggr);
792
9f90d123
AC
793 begin
794 return No (Expressions (Aggr))
27c3d986 795 and then Nkind (First (Choice_List (First (Assoc)))) = N_Others_Choice;
9f90d123
AC
796 end Is_Others_Aggregate;
797
0191a24e
SB
798 -----------------------------------
799 -- Is_Root_Prefix_Of_Deep_Choice --
800 -----------------------------------
801
802 function Is_Root_Prefix_Of_Deep_Choice (Pref : Node_Id) return Boolean is
803 begin
804 return Paren_Count (Pref) > 0
805 or else Nkind (Pref) not in N_Indexed_Component
806 | N_Selected_Component;
807 end Is_Root_Prefix_Of_Deep_Choice;
808
27c3d986
EB
809 -------------------------
810 -- Is_Single_Aggregate --
811 -------------------------
812
813 function Is_Single_Aggregate (Aggr : Node_Id) return Boolean is
814 Assoc : constant List_Id := Component_Associations (Aggr);
815
816 begin
817 return No (Expressions (Aggr))
818 and then No (Next (First (Assoc)))
819 and then No (Next (First (Choice_List (First (Assoc)))));
820 end Is_Single_Aggregate;
821
10c257af
ES
822 -----------------------
823 -- Is_Null_Aggregate --
824 -----------------------
825
826 function Is_Null_Aggregate (N : Node_Id) return Boolean is
827 begin
828 return Ada_Version >= Ada_2022
829 and then Is_Homogeneous_Aggregate (N)
830 and then Is_Empty_List (Expressions (N))
831 and then Is_Empty_List (Component_Associations (N));
832 end Is_Null_Aggregate;
833
834 ----------------------------------------
835 -- Is_Null_Array_Aggregate_High_Bound --
836 ----------------------------------------
837
838 function Is_Null_Array_Aggregate_High_Bound (N : Node_Id) return Boolean is
839 Original_N : constant Node_Id := Original_Node (N);
840 begin
841 return Ada_Version >= Ada_2022
842 and then not Comes_From_Source (Original_N)
843 and then Nkind (Original_N) = N_Attribute_Reference
844 and then
845 Get_Attribute_Id (Attribute_Name (Original_N)) = Attribute_Pred
846 and then Nkind (Parent (N)) in N_Range | N_Op_Le
847 and then not Comes_From_Source (Parent (N));
848 end Is_Null_Array_Aggregate_High_Bound;
849
996ae0b0
RK
850 --------------------------------
851 -- Make_String_Into_Aggregate --
852 --------------------------------
853
854 procedure Make_String_Into_Aggregate (N : Node_Id) is
fbf5a39b 855 Exprs : constant List_Id := New_List;
996ae0b0 856 Loc : constant Source_Ptr := Sloc (N);
996ae0b0
RK
857 Str : constant String_Id := Strval (N);
858 Strlen : constant Nat := String_Length (Str);
fbf5a39b
AC
859 C : Char_Code;
860 C_Node : Node_Id;
861 New_N : Node_Id;
862 P : Source_Ptr;
996ae0b0
RK
863
864 begin
fbf5a39b 865 P := Loc + 1;
95349238 866 for J in 1 .. Strlen loop
996ae0b0
RK
867 C := Get_String_Char (Str, J);
868 Set_Character_Literal_Name (C);
869
82c80734
RD
870 C_Node :=
871 Make_Character_Literal (P,
872 Chars => Name_Find,
873 Char_Literal_Value => UI_From_CC (C));
996ae0b0 874 Set_Etype (C_Node, Any_Character);
996ae0b0
RK
875 Append_To (Exprs, C_Node);
876
877 P := P + 1;
b87971f3 878 -- Something special for wide strings???
996ae0b0
RK
879 end loop;
880
881 New_N := Make_Aggregate (Loc, Expressions => Exprs);
882 Set_Analyzed (New_N);
883 Set_Etype (New_N, Any_Composite);
884
885 Rewrite (N, New_N);
886 end Make_String_Into_Aggregate;
887
888 -----------------------
889 -- Resolve_Aggregate --
890 -----------------------
891
892 procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
fb00cc70 893 Loc : constant Source_Ptr := Sloc (N);
996ae0b0
RK
894
895 Aggr_Subtyp : Entity_Id;
896 -- The actual aggregate subtype. This is not necessarily the same as Typ
897 -- which is the subtype of the context in which the aggregate was found.
898
66b69678
AC
899 Others_Box : Boolean := False;
900 -- Set to True if N represents a simple aggregate with only
901 -- (others => <>), not nested as part of another aggregate.
902
c061e99b
EB
903 function Is_Full_Access_Aggregate (N : Node_Id) return Boolean;
904 -- If a full access object is initialized with an aggregate or is
905 -- assigned an aggregate, we have to prevent a piecemeal access or
906 -- assignment to the object, even if the aggregate is to be expanded.
907 -- We create a temporary for the aggregate, and assign the temporary
908 -- instead, so that the back end can generate an atomic move for it.
909 -- This is only done in the context of an object declaration or an
910 -- assignment. Function is a noop and returns false in other contexts.
911
66b69678
AC
912 function Within_Aggregate (N : Node_Id) return Boolean;
913 -- Return True if N is part of an N_Aggregate
914
c061e99b
EB
915 ------------------------------
916 -- Is_Full_Access_Aggregate --
917 ------------------------------
918
919 function Is_Full_Access_Aggregate (N : Node_Id) return Boolean is
920 Loc : constant Source_Ptr := Sloc (N);
921
922 New_N : Node_Id;
923 Par : Node_Id;
924 Temp : Entity_Id;
925 Typ : Entity_Id;
926
927 begin
928 Par := Parent (N);
929
930 -- Aggregate may be qualified, so find outer context
931
932 if Nkind (Par) = N_Qualified_Expression then
933 Par := Parent (Par);
934 end if;
935
936 if not Comes_From_Source (Par) then
937 return False;
938 end if;
939
940 case Nkind (Par) is
941 when N_Assignment_Statement =>
942 Typ := Etype (Name (Par));
943
944 if not Is_Full_Access (Typ)
945 and then not Is_Full_Access_Object (Name (Par))
946 then
947 return False;
948 end if;
949
950 when N_Object_Declaration =>
951 Typ := Etype (Defining_Identifier (Par));
952
953 if not Is_Full_Access (Typ)
954 and then not Is_Full_Access (Defining_Identifier (Par))
955 then
956 return False;
957 end if;
958
959 when others =>
960 return False;
961 end case;
962
963 Temp := Make_Temporary (Loc, 'T', N);
964 New_N :=
965 Make_Object_Declaration (Loc,
966 Defining_Identifier => Temp,
967 Constant_Present => True,
968 Object_Definition => New_Occurrence_Of (Typ, Loc),
969 Expression => Relocate_Node (N));
970 Insert_Action (Par, New_N);
971
972 Rewrite (N, New_Occurrence_Of (Temp, Loc));
973 Analyze_And_Resolve (N, Typ);
974
975 return True;
976 end Is_Full_Access_Aggregate;
977
66b69678
AC
978 ----------------------
979 -- Within_Aggregate --
980 ----------------------
981
982 function Within_Aggregate (N : Node_Id) return Boolean is
983 P : Node_Id := Parent (N);
984 begin
985 while Present (P) loop
986 if Nkind (P) = N_Aggregate then
987 return True;
988 end if;
989
990 P := Parent (P);
991 end loop;
992
993 return False;
994 end Within_Aggregate;
995
fb00cc70
ES
996 -- Start of processing for Resolve_Aggregate
997
996ae0b0 998 begin
6d2a1120
RD
999 -- Ignore junk empty aggregate resulting from parser error
1000
1001 if No (Expressions (N))
1002 and then No (Component_Associations (N))
1003 and then not Null_Record_Present (N)
1004 then
1005 return;
c061e99b
EB
1006
1007 -- If the aggregate is assigned to a full access variable, we have
1008 -- to prevent a piecemeal assignment even if the aggregate is to be
1009 -- expanded. We create a temporary for the aggregate, and assign the
1010 -- temporary instead, so that the back end can generate an atomic move
1011 -- for it. This is properly an expansion activity but it must be done
1012 -- before resolution because aggregate resolution cannot be done twice.
1013
1014 elsif Expander_Active and then Is_Full_Access_Aggregate (N) then
1015 return;
6d2a1120
RD
1016 end if;
1017
0180fd26
AC
1018 -- If the aggregate has box-initialized components, its type must be
1019 -- frozen so that initialization procedures can properly be called
64ac53f4 1020 -- in the resolution that follows. The replacement of boxes with
0180fd26 1021 -- initialization calls is properly an expansion activity but it must
f5da7a97 1022 -- be done during resolution.
0180fd26
AC
1023
1024 if Expander_Active
f5da7a97 1025 and then Present (Component_Associations (N))
0180fd26
AC
1026 then
1027 declare
66b69678
AC
1028 Comp : Node_Id;
1029 First_Comp : Boolean := True;
0180fd26
AC
1030
1031 begin
1032 Comp := First (Component_Associations (N));
1033 while Present (Comp) loop
1034 if Box_Present (Comp) then
66b69678
AC
1035 if First_Comp
1036 and then No (Expressions (N))
1037 and then Nkind (First (Choices (Comp))) = N_Others_Choice
1038 and then not Within_Aggregate (N)
1039 then
1040 Others_Box := True;
1041 end if;
1042
0180fd26
AC
1043 Insert_Actions (N, Freeze_Entity (Typ, N));
1044 exit;
1045 end if;
fe0ec02f 1046
66b69678 1047 First_Comp := False;
0180fd26
AC
1048 Next (Comp);
1049 end loop;
1050 end;
1051 end if;
1052
fbf5a39b 1053 -- Check for aggregates not allowed in configurable run-time mode.
b87971f3
AC
1054 -- We allow all cases of aggregates that do not come from source, since
1055 -- these are all assumed to be small (e.g. bounds of a string literal).
1056 -- We also allow aggregates of types we know to be small.
fbf5a39b
AC
1057
1058 if not Support_Aggregates_On_Target
1059 and then Comes_From_Source (N)
c7c7dd3a
EB
1060 and then (not Known_Static_Esize (Typ)
1061 or else Esize (Typ) > System_Max_Integer_Size)
fbf5a39b
AC
1062 then
1063 Error_Msg_CRT ("aggregate", N);
1064 end if;
996ae0b0 1065
0ab80019 1066 -- Ada 2005 (AI-287): Limited aggregates allowed
579fda56 1067
17fa48b1 1068 -- In an instance, ignore aggregate subcomponents that may be limited,
67645bde
AC
1069 -- because they originate in view conflicts. If the original aggregate
1070 -- is legal and the actuals are legal, the aggregate itself is legal.
19f0526a 1071
67645bde
AC
1072 if Is_Limited_Type (Typ)
1073 and then Ada_Version < Ada_2005
1074 and then not In_Instance
1075 then
fbf5a39b
AC
1076 Error_Msg_N ("aggregate type cannot be limited", N);
1077 Explain_Limited_Type (Typ, N);
996ae0b0
RK
1078
1079 elsif Is_Class_Wide_Type (Typ) then
1080 Error_Msg_N ("type of aggregate cannot be class-wide", N);
1081
1082 elsif Typ = Any_String
1083 or else Typ = Any_Composite
1084 then
1085 Error_Msg_N ("no unique type for aggregate", N);
1086 Set_Etype (N, Any_Composite);
1087
1088 elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
1089 Error_Msg_N ("null record forbidden in array aggregate", N);
1090
11f89257 1091 elsif Has_Aspect (Typ, Aspect_Aggregate)
3bb4836f 1092 and then Ekind (Typ) /= E_Record_Type
81e68a19 1093 and then Ada_Version >= Ada_2022
3bb4836f 1094 then
b045f2f2
MP
1095 -- Check for Ada 2022 and () aggregate.
1096
1097 if not Is_Homogeneous_Aggregate (N) then
1098 Error_Msg_N ("container aggregate must use '['], not ()", N);
1099 end if;
1100
3bb4836f
ES
1101 Resolve_Container_Aggregate (N, Typ);
1102
67138e09
JM
1103 -- Check Ada 2022 empty aggregate [] initializing a record type that has
1104 -- aspect aggregate; the empty aggregate will be expanded into a call to
1105 -- the empty function specified in the aspect aggregate.
1106
1107 elsif Has_Aspect (Typ, Aspect_Aggregate)
1108 and then Ekind (Typ) = E_Record_Type
1109 and then Is_Homogeneous_Aggregate (N)
1110 and then Is_Empty_List (Expressions (N))
1111 and then Is_Empty_List (Component_Associations (N))
1112 and then Ada_Version >= Ada_2022
1113 then
1114 Resolve_Container_Aggregate (N, Typ);
1115
996ae0b0
RK
1116 elsif Is_Record_Type (Typ) then
1117 Resolve_Record_Aggregate (N, Typ);
1118
1119 elsif Is_Array_Type (Typ) then
1120
54740d7d
AC
1121 -- First a special test, for the case of a positional aggregate of
1122 -- characters which can be replaced by a string literal.
ca44152f 1123
54740d7d
AC
1124 -- Do not perform this transformation if this was a string literal
1125 -- to start with, whose components needed constraint checks, or if
1126 -- the component type is non-static, because it will require those
1127 -- checks and be transformed back into an aggregate. If the index
1128 -- type is not Integer the aggregate may represent a user-defined
1129 -- string type but the context might need the original type so we
1130 -- do not perform the transformation at this point.
996ae0b0
RK
1131
1132 if Number_Dimensions (Typ) = 1
ca44152f 1133 and then Is_Standard_Character_Type (Component_Type (Typ))
996ae0b0
RK
1134 and then No (Component_Associations (N))
1135 and then not Is_Limited_Composite (Typ)
1136 and then not Is_Private_Composite (Typ)
1137 and then not Is_Bit_Packed_Array (Typ)
1138 and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
edab6088 1139 and then Is_OK_Static_Subtype (Component_Type (Typ))
54740d7d
AC
1140 and then Base_Type (Etype (First_Index (Typ))) =
1141 Base_Type (Standard_Integer)
996ae0b0
RK
1142 then
1143 declare
1144 Expr : Node_Id;
1145
1146 begin
1147 Expr := First (Expressions (N));
1148 while Present (Expr) loop
1149 exit when Nkind (Expr) /= N_Character_Literal;
1150 Next (Expr);
1151 end loop;
1152
1153 if No (Expr) then
1154 Start_String;
1155
1156 Expr := First (Expressions (N));
1157 while Present (Expr) loop
82c80734 1158 Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
996ae0b0
RK
1159 Next (Expr);
1160 end loop;
1161
f915704f 1162 Rewrite (N, Make_String_Literal (Loc, End_String));
996ae0b0
RK
1163
1164 Analyze_And_Resolve (N, Typ);
1165 return;
1166 end if;
1167 end;
1168 end if;
1169
1170 -- Here if we have a real aggregate to deal with
1171
1172 Array_Aggregate : declare
1173 Aggr_Resolved : Boolean;
fbf5a39b 1174 Aggr_Typ : constant Entity_Id := Etype (Typ);
b87971f3
AC
1175 -- This is the unconstrained array type, which is the type against
1176 -- which the aggregate is to be resolved. Typ itself is the array
1177 -- type of the context which may not be the same subtype as the
1178 -- subtype for the final aggregate.
996ae0b0 1179
10c257af
ES
1180 Is_Null_Aggr : constant Boolean := Is_Null_Aggregate (N);
1181
996ae0b0 1182 begin
f915704f 1183 -- In the following we determine whether an OTHERS choice is
996ae0b0
RK
1184 -- allowed inside the array aggregate. The test checks the context
1185 -- in which the array aggregate occurs. If the context does not
f915704f 1186 -- permit it, or the aggregate type is unconstrained, an OTHERS
56e94186
AC
1187 -- choice is not allowed (except that it is always allowed on the
1188 -- right-hand side of an assignment statement; in this case the
f18344b7
BD
1189 -- constrainedness of the type doesn't matter, because an array
1190 -- object is always constrained).
d8387153
ES
1191
1192 -- If expansion is disabled (generic context, or semantics-only
b87971f3
AC
1193 -- mode) actual subtypes cannot be constructed, and the type of an
1194 -- object may be its unconstrained nominal type. However, if the
f18344b7
BD
1195 -- context is an assignment statement, OTHERS is allowed, because
1196 -- the target of the assignment will have a constrained subtype
1197 -- when fully compiled. Ditto if the context is an initialization
1198 -- procedure where a component may have a predicate function that
1199 -- carries the base type.
d8387153 1200
996ae0b0
RK
1201 -- Note that there is no node for Explicit_Actual_Parameter.
1202 -- To test for this context we therefore have to test for node
1203 -- N_Parameter_Association which itself appears only if there is a
1204 -- formal parameter. Consequently we also need to test for
1205 -- N_Procedure_Call_Statement or N_Function_Call.
1206
5f6fb720
AC
1207 -- The context may be an N_Reference node, created by expansion.
1208 -- Legality of the others clause was established in the source,
1209 -- so the context is legal.
1210
b87971f3 1211 Set_Etype (N, Aggr_Typ); -- May be overridden later on
c45b6ae0 1212
10c257af
ES
1213 if Is_Null_Aggr then
1214 Set_Etype (N, Typ);
1215 Aggr_Resolved := Resolve_Null_Array_Aggregate (N);
1216
1217 elsif Nkind (Parent (N)) = N_Assignment_Statement
ffdd5248 1218 or else Inside_Init_Proc
e917aec2 1219 or else (Is_Constrained (Typ)
4a08c95c
AC
1220 and then Nkind (Parent (N)) in
1221 N_Parameter_Association
1222 | N_Function_Call
1223 | N_Procedure_Call_Statement
1224 | N_Generic_Association
1225 | N_Formal_Object_Declaration
1226 | N_Simple_Return_Statement
1227 | N_Object_Declaration
1228 | N_Component_Declaration
1229 | N_Parameter_Specification
1230 | N_Qualified_Expression
4590d973 1231 | N_Unchecked_Type_Conversion
4a08c95c
AC
1232 | N_Reference
1233 | N_Aggregate
1234 | N_Extension_Aggregate
1235 | N_Component_Association
1236 | N_Case_Expression_Alternative
1237 | N_If_Expression
1238 | N_Expression_With_Actions)
996ae0b0
RK
1239 then
1240 Aggr_Resolved :=
1241 Resolve_Array_Aggregate
1242 (N,
1243 Index => First_Index (Aggr_Typ),
1244 Index_Constr => First_Index (Typ),
1245 Component_Typ => Component_Type (Typ),
1246 Others_Allowed => True);
996ae0b0
RK
1247 else
1248 Aggr_Resolved :=
1249 Resolve_Array_Aggregate
1250 (N,
1251 Index => First_Index (Aggr_Typ),
1252 Index_Constr => First_Index (Aggr_Typ),
1253 Component_Typ => Component_Type (Typ),
1254 Others_Allowed => False);
1255 end if;
1256
1257 if not Aggr_Resolved then
f5afb270
AC
1258
1259 -- A parenthesized expression may have been intended as an
1260 -- aggregate, leading to a type error when analyzing the
1261 -- component. This can also happen for a nested component
1262 -- (see Analyze_Aggr_Expr).
1263
1264 if Paren_Count (N) > 0 then
1265 Error_Msg_N
1266 ("positional aggregate cannot have one component", N);
1267 end if;
1268
996ae0b0 1269 Aggr_Subtyp := Any_Composite;
e917aec2 1270
996ae0b0
RK
1271 else
1272 Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
1273 end if;
1274
1275 Set_Etype (N, Aggr_Subtyp);
1276 end Array_Aggregate;
1277
d8387153
ES
1278 elsif Is_Private_Type (Typ)
1279 and then Present (Full_View (Typ))
8256c1bf 1280 and then (In_Inlined_Body or In_Instance_Body)
d8387153
ES
1281 and then Is_Composite_Type (Full_View (Typ))
1282 then
1283 Resolve (N, Full_View (Typ));
1284
996ae0b0
RK
1285 else
1286 Error_Msg_N ("illegal context for aggregate", N);
996ae0b0
RK
1287 end if;
1288
b87971f3
AC
1289 -- If we can determine statically that the evaluation of the aggregate
1290 -- raises Constraint_Error, then replace the aggregate with an
1291 -- N_Raise_Constraint_Error node, but set the Etype to the right
1292 -- aggregate subtype. Gigi needs this.
996ae0b0
RK
1293
1294 if Raises_Constraint_Error (N) then
1295 Aggr_Subtyp := Etype (N);
07fc65c4 1296 Rewrite (N,
bd65a2d7 1297 Make_Raise_Constraint_Error (Loc, Reason => CE_Range_Check_Failed));
996ae0b0
RK
1298 Set_Raises_Constraint_Error (N);
1299 Set_Etype (N, Aggr_Subtyp);
1300 Set_Analyzed (N);
1301 end if;
d3820795 1302
66b69678
AC
1303 if Warn_On_No_Value_Assigned
1304 and then Others_Box
1305 and then not Is_Fully_Initialized_Type (Etype (N))
1306 then
1307 Error_Msg_N ("?v?aggregate not fully initialized", N);
1308 end if;
1309
22e89283 1310 Check_Function_Writable_Actuals (N);
996ae0b0
RK
1311 end Resolve_Aggregate;
1312
1313 -----------------------------
1314 -- Resolve_Array_Aggregate --
1315 -----------------------------
1316
1317 function Resolve_Array_Aggregate
1318 (N : Node_Id;
1319 Index : Node_Id;
1320 Index_Constr : Node_Id;
1321 Component_Typ : Entity_Id;
ca44152f 1322 Others_Allowed : Boolean) return Boolean
996ae0b0
RK
1323 is
1324 Loc : constant Source_Ptr := Sloc (N);
1325
1326 Failure : constant Boolean := False;
1327 Success : constant Boolean := True;
1328
1329 Index_Typ : constant Entity_Id := Etype (Index);
1330 Index_Typ_Low : constant Node_Id := Type_Low_Bound (Index_Typ);
1331 Index_Typ_High : constant Node_Id := Type_High_Bound (Index_Typ);
b87971f3
AC
1332 -- The type of the index corresponding to the array sub-aggregate along
1333 -- with its low and upper bounds.
996ae0b0
RK
1334
1335 Index_Base : constant Entity_Id := Base_Type (Index_Typ);
1336 Index_Base_Low : constant Node_Id := Type_Low_Bound (Index_Base);
1337 Index_Base_High : constant Node_Id := Type_High_Bound (Index_Base);
b87971f3 1338 -- Ditto for the base type
996ae0b0 1339
ef74daea
AC
1340 Others_Present : Boolean := False;
1341
1342 Nb_Choices : Nat := 0;
1343 -- Contains the overall number of named choices in this sub-aggregate
1344
996ae0b0
RK
1345 function Add (Val : Uint; To : Node_Id) return Node_Id;
1346 -- Creates a new expression node where Val is added to expression To.
1347 -- Tries to constant fold whenever possible. To must be an already
1348 -- analyzed expression.
1349
1350 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
f915704f
AC
1351 -- Checks that AH (the upper bound of an array aggregate) is less than
1352 -- or equal to BH (the upper bound of the index base type). If the check
1353 -- fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1354 -- set, and AH is replaced with a duplicate of BH.
996ae0b0
RK
1355
1356 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
1357 -- Checks that range AL .. AH is compatible with range L .. H. Emits a
b87971f3 1358 -- warning if not and sets the Raises_Constraint_Error flag in N.
996ae0b0
RK
1359
1360 procedure Check_Length (L, H : Node_Id; Len : Uint);
1361 -- Checks that range L .. H contains at least Len elements. Emits a
b87971f3 1362 -- warning if not and sets the Raises_Constraint_Error flag in N.
996ae0b0
RK
1363
1364 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
ec53a6da 1365 -- Returns True if range L .. H is dynamic or null
996ae0b0
RK
1366
1367 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
1368 -- Given expression node From, this routine sets OK to False if it
1369 -- cannot statically evaluate From. Otherwise it stores this static
1370 -- value into Value.
1371
1372 function Resolve_Aggr_Expr
1373 (Expr : Node_Id;
ca44152f 1374 Single_Elmt : Boolean) return Boolean;
12a13f01 1375 -- Resolves aggregate expression Expr. Returns False if resolution
996ae0b0 1376 -- fails. If Single_Elmt is set to False, the expression Expr may be
b87971f3 1377 -- used to initialize several array aggregate elements (this can happen
f915704f 1378 -- for discrete choices such as "L .. H => Expr" or the OTHERS choice).
b87971f3
AC
1379 -- In this event we do not resolve Expr unless expansion is disabled.
1380 -- To know why, see the DELAYED COMPONENT RESOLUTION note above.
ca5af305 1381 --
be54247f
PT
1382 -- NOTE: In the case of "... => <>", we pass the N_Component_Association
1383 -- node as Expr, since there is no Expression and we need a Sloc for the
1384 -- error message.
996ae0b0 1385
ef74daea
AC
1386 procedure Resolve_Iterated_Component_Association
1387 (N : Node_Id;
1388 Index_Typ : Entity_Id);
1389 -- For AI12-061
1390
65ab836d
JM
1391 procedure Warn_On_Null_Component_Association (Expr : Node_Id);
1392 -- Expr is either a conditional expression or a case expression of an
1393 -- iterated component association initializing the aggregate N with
1394 -- components that can never be null. Report warning on associations
1395 -- that may initialize some component with a null value.
1396
996ae0b0
RK
1397 ---------
1398 -- Add --
1399 ---------
1400
1401 function Add (Val : Uint; To : Node_Id) return Node_Id is
1402 Expr_Pos : Node_Id;
1403 Expr : Node_Id;
1404 To_Pos : Node_Id;
1405
1406 begin
1407 if Raises_Constraint_Error (To) then
1408 return To;
1409 end if;
1410
1411 -- First test if we can do constant folding
1412
1413 if Compile_Time_Known_Value (To)
1414 or else Nkind (To) = N_Integer_Literal
1415 then
1416 Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
1417 Set_Is_Static_Expression (Expr_Pos);
1418 Set_Etype (Expr_Pos, Etype (To));
1419 Set_Analyzed (Expr_Pos, Analyzed (To));
1420
1421 if not Is_Enumeration_Type (Index_Typ) then
1422 Expr := Expr_Pos;
1423
1424 -- If we are dealing with enumeration return
1425 -- Index_Typ'Val (Expr_Pos)
1426
1427 else
1428 Expr :=
1429 Make_Attribute_Reference
1430 (Loc,
e4494292 1431 Prefix => New_Occurrence_Of (Index_Typ, Loc),
996ae0b0
RK
1432 Attribute_Name => Name_Val,
1433 Expressions => New_List (Expr_Pos));
1434 end if;
1435
1436 return Expr;
1437 end if;
1438
1439 -- If we are here no constant folding possible
1440
1441 if not Is_Enumeration_Type (Index_Base) then
1442 Expr :=
1443 Make_Op_Add (Loc,
f915704f
AC
1444 Left_Opnd => Duplicate_Subexpr (To),
1445 Right_Opnd => Make_Integer_Literal (Loc, Val));
996ae0b0
RK
1446
1447 -- If we are dealing with enumeration return
1448 -- Index_Typ'Val (Index_Typ'Pos (To) + Val)
1449
1450 else
1451 To_Pos :=
1452 Make_Attribute_Reference
1453 (Loc,
e4494292 1454 Prefix => New_Occurrence_Of (Index_Typ, Loc),
996ae0b0
RK
1455 Attribute_Name => Name_Pos,
1456 Expressions => New_List (Duplicate_Subexpr (To)));
1457
1458 Expr_Pos :=
1459 Make_Op_Add (Loc,
58009744
AC
1460 Left_Opnd => To_Pos,
1461 Right_Opnd => Make_Integer_Literal (Loc, Val));
996ae0b0
RK
1462
1463 Expr :=
1464 Make_Attribute_Reference
1465 (Loc,
e4494292 1466 Prefix => New_Occurrence_Of (Index_Typ, Loc),
996ae0b0
RK
1467 Attribute_Name => Name_Val,
1468 Expressions => New_List (Expr_Pos));
f915704f
AC
1469
1470 -- If the index type has a non standard representation, the
1471 -- attributes 'Val and 'Pos expand into function calls and the
1472 -- resulting expression is considered non-safe for reevaluation
1473 -- by the backend. Relocate it into a constant temporary in order
1474 -- to make it safe for reevaluation.
1475
1476 if Has_Non_Standard_Rep (Etype (N)) then
1477 declare
1478 Def_Id : Entity_Id;
1479
1480 begin
1481 Def_Id := Make_Temporary (Loc, 'R', Expr);
1482 Set_Etype (Def_Id, Index_Typ);
1483 Insert_Action (N,
1484 Make_Object_Declaration (Loc,
1485 Defining_Identifier => Def_Id,
e4494292
RD
1486 Object_Definition =>
1487 New_Occurrence_Of (Index_Typ, Loc),
f915704f
AC
1488 Constant_Present => True,
1489 Expression => Relocate_Node (Expr)));
1490
e4494292 1491 Expr := New_Occurrence_Of (Def_Id, Loc);
f915704f
AC
1492 end;
1493 end if;
996ae0b0
RK
1494 end if;
1495
1496 return Expr;
1497 end Add;
1498
1499 -----------------
1500 -- Check_Bound --
1501 -----------------
1502
1503 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
1504 Val_BH : Uint;
1505 Val_AH : Uint;
1506
1507 OK_BH : Boolean;
1508 OK_AH : Boolean;
1509
1510 begin
1511 Get (Value => Val_BH, From => BH, OK => OK_BH);
1512 Get (Value => Val_AH, From => AH, OK => OK_AH);
1513
1514 if OK_BH and then OK_AH and then Val_BH < Val_AH then
1515 Set_Raises_Constraint_Error (N);
43417b90 1516 Error_Msg_Warn := SPARK_Mode /= On;
4a28b181
AC
1517 Error_Msg_N ("upper bound out of range<<", AH);
1518 Error_Msg_N ("\Constraint_Error [<<", AH);
996ae0b0
RK
1519
1520 -- You need to set AH to BH or else in the case of enumerations
3b42c566 1521 -- indexes we will not be able to resolve the aggregate bounds.
996ae0b0
RK
1522
1523 AH := Duplicate_Subexpr (BH);
1524 end if;
1525 end Check_Bound;
1526
1527 ------------------
1528 -- Check_Bounds --
1529 ------------------
1530
1531 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
1532 Val_L : Uint;
1533 Val_H : Uint;
1534 Val_AL : Uint;
1535 Val_AH : Uint;
1536
f91e8020
GD
1537 OK_L : Boolean;
1538 OK_H : Boolean;
1539
996ae0b0 1540 OK_AL : Boolean;
f91e8020
GD
1541 OK_AH : Boolean;
1542 pragma Warnings (Off, OK_AL);
1543 pragma Warnings (Off, OK_AH);
996ae0b0
RK
1544
1545 begin
1546 if Raises_Constraint_Error (N)
1547 or else Dynamic_Or_Null_Range (AL, AH)
1548 then
1549 return;
1550 end if;
1551
1552 Get (Value => Val_L, From => L, OK => OK_L);
1553 Get (Value => Val_H, From => H, OK => OK_H);
1554
1555 Get (Value => Val_AL, From => AL, OK => OK_AL);
1556 Get (Value => Val_AH, From => AH, OK => OK_AH);
1557
1558 if OK_L and then Val_L > Val_AL then
1559 Set_Raises_Constraint_Error (N);
43417b90 1560 Error_Msg_Warn := SPARK_Mode /= On;
4a28b181
AC
1561 Error_Msg_N ("lower bound of aggregate out of range<<", N);
1562 Error_Msg_N ("\Constraint_Error [<<", N);
996ae0b0
RK
1563 end if;
1564
1565 if OK_H and then Val_H < Val_AH then
1566 Set_Raises_Constraint_Error (N);
43417b90 1567 Error_Msg_Warn := SPARK_Mode /= On;
4a28b181
AC
1568 Error_Msg_N ("upper bound of aggregate out of range<<", N);
1569 Error_Msg_N ("\Constraint_Error [<<", N);
996ae0b0
RK
1570 end if;
1571 end Check_Bounds;
1572
1573 ------------------
1574 -- Check_Length --
1575 ------------------
1576
1577 procedure Check_Length (L, H : Node_Id; Len : Uint) is
1578 Val_L : Uint;
1579 Val_H : Uint;
1580
1581 OK_L : Boolean;
1582 OK_H : Boolean;
1583
1584 Range_Len : Uint;
1585
1586 begin
1587 if Raises_Constraint_Error (N) then
1588 return;
1589 end if;
1590
1591 Get (Value => Val_L, From => L, OK => OK_L);
1592 Get (Value => Val_H, From => H, OK => OK_H);
1593
1594 if not OK_L or else not OK_H then
1595 return;
1596 end if;
1597
1598 -- If null range length is zero
1599
1600 if Val_L > Val_H then
1601 Range_Len := Uint_0;
1602 else
1603 Range_Len := Val_H - Val_L + 1;
1604 end if;
1605
1606 if Range_Len < Len then
1607 Set_Raises_Constraint_Error (N);
43417b90 1608 Error_Msg_Warn := SPARK_Mode /= On;
4a28b181
AC
1609 Error_Msg_N ("too many elements<<", N);
1610 Error_Msg_N ("\Constraint_Error [<<", N);
996ae0b0
RK
1611 end if;
1612 end Check_Length;
1613
1614 ---------------------------
1615 -- Dynamic_Or_Null_Range --
1616 ---------------------------
1617
1618 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
1619 Val_L : Uint;
1620 Val_H : Uint;
1621
1622 OK_L : Boolean;
1623 OK_H : Boolean;
1624
1625 begin
1626 Get (Value => Val_L, From => L, OK => OK_L);
1627 Get (Value => Val_H, From => H, OK => OK_H);
1628
1629 return not OK_L or else not OK_H
1630 or else not Is_OK_Static_Expression (L)
1631 or else not Is_OK_Static_Expression (H)
1632 or else Val_L > Val_H;
1633 end Dynamic_Or_Null_Range;
1634
1635 ---------
1636 -- Get --
1637 ---------
1638
1639 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
1640 begin
1641 OK := True;
1642
1643 if Compile_Time_Known_Value (From) then
1644 Value := Expr_Value (From);
1645
1646 -- If expression From is something like Some_Type'Val (10) then
1f0b1e48 1647 -- Value = 10.
996ae0b0
RK
1648
1649 elsif Nkind (From) = N_Attribute_Reference
1650 and then Attribute_Name (From) = Name_Val
1651 and then Compile_Time_Known_Value (First (Expressions (From)))
1652 then
1653 Value := Expr_Value (First (Expressions (From)));
996ae0b0
RK
1654 else
1655 Value := Uint_0;
1656 OK := False;
1657 end if;
1658 end Get;
1659
1660 -----------------------
1661 -- Resolve_Aggr_Expr --
1662 -----------------------
1663
1664 function Resolve_Aggr_Expr
1665 (Expr : Node_Id;
ca44152f 1666 Single_Elmt : Boolean) return Boolean
996ae0b0 1667 is
fbf5a39b
AC
1668 Nxt_Ind : constant Node_Id := Next_Index (Index);
1669 Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
12a13f01 1670 -- Index is the current index corresponding to the expression
996ae0b0
RK
1671
1672 Resolution_OK : Boolean := True;
ec53a6da 1673 -- Set to False if resolution of the expression failed
996ae0b0
RK
1674
1675 begin
199c6a10
AC
1676 -- Defend against previous errors
1677
1678 if Nkind (Expr) = N_Error
1679 or else Error_Posted (Expr)
1680 then
1681 return True;
1682 end if;
1683
996ae0b0
RK
1684 -- If the array type against which we are resolving the aggregate
1685 -- has several dimensions, the expressions nested inside the
1686 -- aggregate must be further aggregates (or strings).
1687
1688 if Present (Nxt_Ind) then
1689 if Nkind (Expr) /= N_Aggregate then
1690
1691 -- A string literal can appear where a one-dimensional array
1692 -- of characters is expected. If the literal looks like an
1693 -- operator, it is still an operator symbol, which will be
1694 -- transformed into a string when analyzed.
1695
1696 if Is_Character_Type (Component_Typ)
1697 and then No (Next_Index (Nxt_Ind))
4a08c95c 1698 and then Nkind (Expr) in N_String_Literal | N_Operator_Symbol
996ae0b0
RK
1699 then
1700 -- A string literal used in a multidimensional array
1701 -- aggregate in place of the final one-dimensional
1702 -- aggregate must not be enclosed in parentheses.
1703
1704 if Paren_Count (Expr) /= 0 then
ed2233dc 1705 Error_Msg_N ("no parenthesis allowed here", Expr);
996ae0b0
RK
1706 end if;
1707
1708 Make_String_Into_Aggregate (Expr);
1709
1710 else
1711 Error_Msg_N ("nested array aggregate expected", Expr);
9d0c3761
AC
1712
1713 -- If the expression is parenthesized, this may be
1714 -- a missing component association for a 1-aggregate.
1715
1716 if Paren_Count (Expr) > 0 then
ed2233dc 1717 Error_Msg_N
58009744
AC
1718 ("\if single-component aggregate is intended, "
1719 & "write e.g. (1 ='> ...)", Expr);
9d0c3761 1720 end if;
f5afb270 1721
996ae0b0
RK
1722 return Failure;
1723 end if;
1724 end if;
1725
ca5af305
AC
1726 -- If it's "... => <>", nothing to resolve
1727
1728 if Nkind (Expr) = N_Component_Association then
1729 pragma Assert (Box_Present (Expr));
1730 return Success;
1731 end if;
1732
0ab80019 1733 -- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
35b7fa6a
AC
1734 -- Required to check the null-exclusion attribute (if present).
1735 -- This value may be overridden later on.
1736
1737 Set_Etype (Expr, Etype (N));
1738
996ae0b0
RK
1739 Resolution_OK := Resolve_Array_Aggregate
1740 (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
1741
ca5af305 1742 else
ca5af305
AC
1743 -- If it's "... => <>", nothing to resolve
1744
1745 if Nkind (Expr) = N_Component_Association then
1746 pragma Assert (Box_Present (Expr));
1747 return Success;
1748 end if;
1749
1750 -- Do not resolve the expressions of discrete or others choices
1751 -- unless the expression covers a single component, or the
1752 -- expander is inactive.
1753
92b751fd 1754 -- In SPARK mode, expressions that can perform side effects will
06b599fd
YM
1755 -- be recognized by the gnat2why back-end, and the whole
1756 -- subprogram will be ignored. So semantic analysis can be
1757 -- performed safely.
9f8d1e5c 1758
ca5af305 1759 if Single_Elmt
4460a9bc 1760 or else not Expander_Active
ca5af305
AC
1761 or else In_Spec_Expression
1762 then
1763 Analyze_And_Resolve (Expr, Component_Typ);
1764 Check_Expr_OK_In_Limited_Aggregate (Expr);
1765 Check_Non_Static_Context (Expr);
1766 Aggregate_Constraint_Checks (Expr, Component_Typ);
1767 Check_Unset_Reference (Expr);
1768 end if;
996ae0b0
RK
1769 end if;
1770
dec6faf1
AC
1771 -- If an aggregate component has a type with predicates, an explicit
1772 -- predicate check must be applied, as for an assignment statement,
152f64c2 1773 -- because the aggregate might not be expanded into individual
07eb872e
AC
1774 -- component assignments. If the expression covers several components
1775 -- the analysis and the predicate check take place later.
dec6faf1 1776
619bfd9f 1777 if Has_Predicates (Component_Typ)
07eb872e
AC
1778 and then Analyzed (Expr)
1779 then
887d102a
AC
1780 Apply_Predicate_Check (Expr, Component_Typ);
1781 end if;
1782
996ae0b0
RK
1783 if Raises_Constraint_Error (Expr)
1784 and then Nkind (Parent (Expr)) /= N_Component_Association
1785 then
1786 Set_Raises_Constraint_Error (N);
1787 end if;
1788
d79e621a 1789 -- If the expression has been marked as requiring a range check,
edab6088
RD
1790 -- then generate it here. It's a bit odd to be generating such
1791 -- checks in the analyzer, but harmless since Generate_Range_Check
1792 -- does nothing (other than making sure Do_Range_Check is set) if
1793 -- the expander is not active.
d79e621a
GD
1794
1795 if Do_Range_Check (Expr) then
d79e621a
GD
1796 Generate_Range_Check (Expr, Component_Typ, CE_Range_Check_Failed);
1797 end if;
1798
996ae0b0
RK
1799 return Resolution_OK;
1800 end Resolve_Aggr_Expr;
1801
ef74daea
AC
1802 --------------------------------------------
1803 -- Resolve_Iterated_Component_Association --
1804 --------------------------------------------
1805
1806 procedure Resolve_Iterated_Component_Association
1807 (N : Node_Id;
1808 Index_Typ : Entity_Id)
1809 is
ef74daea 1810 Loc : constant Source_Ptr := Sloc (N);
fb00cc70
ES
1811 Id : constant Entity_Id := Defining_Identifier (N);
1812
1813 -----------------------
1814 -- Remove_References --
1815 -----------------------
1816
022f9894
PT
1817 function Remove_Reference (N : Node_Id) return Traverse_Result;
1818 -- Remove reference to the entity Id after analysis, so it can be
fb00cc70
ES
1819 -- properly reanalyzed after construct is expanded into a loop.
1820
022f9894 1821 function Remove_Reference (N : Node_Id) return Traverse_Result is
fb00cc70
ES
1822 begin
1823 if Nkind (N) = N_Identifier
1824 and then Present (Entity (N))
1825 and then Entity (N) = Id
1826 then
1827 Set_Entity (N, Empty);
1828 Set_Etype (N, Empty);
1829 end if;
1830 Set_Analyzed (N, False);
1831 return OK;
022f9894 1832 end Remove_Reference;
fb00cc70 1833
022f9894 1834 procedure Remove_References is new Traverse_Proc (Remove_Reference);
fb00cc70
ES
1835
1836 -- Local variables
ef74daea
AC
1837
1838 Choice : Node_Id;
1839 Dummy : Boolean;
022f9894 1840 Scop : Entity_Id;
be54247f 1841 Expr : constant Node_Id := Expression (N);
fb00cc70
ES
1842
1843 -- Start of processing for Resolve_Iterated_Component_Association
ef74daea
AC
1844
1845 begin
439dae60
BD
1846 Error_Msg_Ada_2022_Feature ("iterated component", Loc);
1847
44bd2755
PT
1848 -- Create a scope in which to introduce an index, to make it visible
1849 -- for the analysis of component expression.
ff49b805 1850
44bd2755
PT
1851 Scop := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
1852 Set_Etype (Scop, Standard_Void_Type);
1853 Set_Parent (Scop, Parent (N));
1854 Push_Scope (Scop);
ef74daea 1855
44bd2755
PT
1856 -- If there is iterator specification, then its preanalysis will make
1857 -- the index visible.
ef74daea 1858
44bd2755
PT
1859 if Present (Iterator_Specification (N)) then
1860 Preanalyze (Iterator_Specification (N));
1861
1862 -- Otherwise, analyze discrete choices and make the index visible
b03d3f73 1863
fe43084c 1864 else
44bd2755
PT
1865 -- Insert index name into current scope but don't decorate it yet,
1866 -- so that a premature usage of this name in discrete choices will
1867 -- be nicely diagnosed.
1868
1869 Enter_Name (Id);
1870
fe43084c 1871 Choice := First (Discrete_Choices (N));
b03d3f73 1872
fe43084c
ES
1873 while Present (Choice) loop
1874 if Nkind (Choice) = N_Others_Choice then
1875 Others_Present := True;
b03d3f73
AC
1876
1877 else
fe43084c
ES
1878 Analyze (Choice);
1879
1880 -- Choice can be a subtype name, a range, or an expression
1881
1882 if Is_Entity_Name (Choice)
1883 and then Is_Type (Entity (Choice))
1884 and then
1885 Base_Type (Entity (Choice)) = Base_Type (Index_Typ)
1886 then
1887 null;
1888
1889 else
1890 Analyze_And_Resolve (Choice, Index_Typ);
1891 end if;
b03d3f73 1892 end if;
ef74daea 1893
fe43084c
ES
1894 Next (Choice);
1895 end loop;
ef74daea 1896
44bd2755 1897 -- Decorate the index variable
9eb8d5b4 1898
44bd2755
PT
1899 Set_Etype (Id, Index_Typ);
1900 Mutate_Ekind (Id, E_Variable);
25e4024c 1901 Set_Is_Not_Self_Hidden (Id);
44bd2755
PT
1902 Set_Scope (Id, Scop);
1903 end if;
d940c627 1904
be54247f 1905 -- Analyze expression without expansion, to verify legality.
02fb1280
PT
1906 -- When generating code, we then remove references to the index
1907 -- variable, because the expression will be analyzed anew after
1908 -- rewritting as a loop with a new index variable; when not
1909 -- generating code we leave the analyzed expression as it is.
fb00cc70 1910
f34b3115 1911 Dummy := Resolve_Aggr_Expr (Expr, Single_Elmt => False);
02fb1280
PT
1912
1913 if Operating_Mode /= Check_Semantics then
1914 Remove_References (Expr);
1915 end if;
d940c627
ES
1916
1917 -- An iterated_component_association may appear in a nested
1918 -- aggregate for a multidimensional structure: preserve the bounds
1919 -- computed for the expression, as well as the anonymous array
1920 -- type generated for it; both are needed during array expansion.
d940c627
ES
1921
1922 if Nkind (Expr) = N_Aggregate then
1923 Set_Aggregate_Bounds (Expression (N), Aggregate_Bounds (Expr));
1924 Set_Etype (Expression (N), Etype (Expr));
9eb8d5b4 1925 end if;
ef74daea 1926
ef74daea
AC
1927 End_Scope;
1928 end Resolve_Iterated_Component_Association;
1929
65ab836d
JM
1930 ----------------------------------------
1931 -- Warn_On_Null_Component_Association --
1932 ----------------------------------------
1933
1934 procedure Warn_On_Null_Component_Association (Expr : Node_Id) is
1935 Comp_Typ : constant Entity_Id := Component_Type (Etype (N));
1936
1937 procedure Check_Case_Expr (N : Node_Id);
1938 -- Check if a case expression may initialize some component with a
1939 -- null value.
1940
1941 procedure Check_Cond_Expr (N : Node_Id);
1942 -- Check if a conditional expression may initialize some component
1943 -- with a null value.
1944
1945 procedure Check_Expr (Expr : Node_Id);
1946 -- Check if an expression may initialize some component with a
1947 -- null value.
1948
1949 procedure Warn_On_Null_Expression_And_Rewrite (Null_Expr : Node_Id);
1950 -- Report warning on known null expression and replace the expression
1951 -- by a raise constraint error node.
1952
1953 ---------------------
1954 -- Check_Case_Expr --
1955 ---------------------
1956
1957 procedure Check_Case_Expr (N : Node_Id) is
1958 Alt_Node : Node_Id := First (Alternatives (N));
1959
1960 begin
1961 while Present (Alt_Node) loop
1962 Check_Expr (Expression (Alt_Node));
1963 Next (Alt_Node);
1964 end loop;
1965 end Check_Case_Expr;
1966
1967 ---------------------
1968 -- Check_Cond_Expr --
1969 ---------------------
1970
1971 procedure Check_Cond_Expr (N : Node_Id) is
1972 If_Expr : Node_Id := N;
1973 Then_Expr : Node_Id;
1974 Else_Expr : Node_Id;
1975
1976 begin
1977 Then_Expr := Next (First (Expressions (If_Expr)));
1978 Else_Expr := Next (Then_Expr);
1979
1980 Check_Expr (Then_Expr);
1981
1982 -- Process elsif parts (if any)
1983
1984 while Nkind (Else_Expr) = N_If_Expression loop
1985 If_Expr := Else_Expr;
1986 Then_Expr := Next (First (Expressions (If_Expr)));
1987 Else_Expr := Next (Then_Expr);
1988
1989 Check_Expr (Then_Expr);
1990 end loop;
1991
1992 if Known_Null (Else_Expr) then
1993 Warn_On_Null_Expression_And_Rewrite (Else_Expr);
1994 end if;
1995 end Check_Cond_Expr;
1996
1997 ----------------
1998 -- Check_Expr --
1999 ----------------
2000
2001 procedure Check_Expr (Expr : Node_Id) is
2002 begin
2003 if Known_Null (Expr) then
2004 Warn_On_Null_Expression_And_Rewrite (Expr);
2005
2006 elsif Nkind (Expr) = N_If_Expression then
2007 Check_Cond_Expr (Expr);
2008
2009 elsif Nkind (Expr) = N_Case_Expression then
2010 Check_Case_Expr (Expr);
2011 end if;
2012 end Check_Expr;
2013
2014 -----------------------------------------
2015 -- Warn_On_Null_Expression_And_Rewrite --
2016 -----------------------------------------
2017
2018 procedure Warn_On_Null_Expression_And_Rewrite (Null_Expr : Node_Id) is
2019 begin
2020 Error_Msg_N
2021 ("(Ada 2005) NULL not allowed in null-excluding component??",
2022 Null_Expr);
2023 Error_Msg_N
2024 ("\Constraint_Error might be raised at run time??", Null_Expr);
2025
2026 -- We cannot use Apply_Compile_Time_Constraint_Error because in
2027 -- some cases the components are rewritten and the runtime error
2028 -- would be missed.
2029
2030 Rewrite (Null_Expr,
2031 Make_Raise_Constraint_Error (Sloc (Null_Expr),
2032 Reason => CE_Access_Check_Failed));
2033
2034 Set_Etype (Null_Expr, Comp_Typ);
2035 Set_Analyzed (Null_Expr);
2036 end Warn_On_Null_Expression_And_Rewrite;
2037
2038 -- Start of processing for Warn_On_Null_Component_Association
2039
2040 begin
2041 pragma Assert (Can_Never_Be_Null (Comp_Typ));
2042
2043 case Nkind (Expr) is
2044 when N_If_Expression =>
2045 Check_Cond_Expr (Expr);
2046
2047 when N_Case_Expression =>
2048 Check_Case_Expr (Expr);
2049
2050 when others =>
2051 pragma Assert (False);
2052 null;
2053 end case;
2054 end Warn_On_Null_Component_Association;
2055
ef74daea 2056 -- Local variables
996ae0b0 2057
58009744
AC
2058 Assoc : Node_Id;
2059 Choice : Node_Id;
2060 Expr : Node_Id;
f91e8020 2061 Discard : Node_Id;
996ae0b0
RK
2062
2063 Aggr_Low : Node_Id := Empty;
2064 Aggr_High : Node_Id := Empty;
c7ce71c2 2065 -- The actual low and high bounds of this sub-aggregate
996ae0b0 2066
ef74daea
AC
2067 Case_Table_Size : Nat;
2068 -- Contains the size of the case table needed to sort aggregate choices
2069
996ae0b0
RK
2070 Choices_Low : Node_Id := Empty;
2071 Choices_High : Node_Id := Empty;
2072 -- The lowest and highest discrete choices values for a named aggregate
2073
ef74daea
AC
2074 Delete_Choice : Boolean;
2075 -- Used when replacing a subtype choice with predicate by a list
2076
fe43084c
ES
2077 Has_Iterator_Specifications : Boolean := False;
2078 -- Flag to indicate that all named associations are iterated component
2079 -- associations with iterator specifications, in which case the
2080 -- expansion will create two loops: one to evaluate the size and one
2081 -- to generate the elements (4.3.3 (20.2/5)).
2082
996ae0b0 2083 Nb_Elements : Uint := Uint_0;
c7ce71c2 2084 -- The number of elements in a positional aggregate
996ae0b0 2085
996ae0b0
RK
2086 Nb_Discrete_Choices : Nat := 0;
2087 -- The overall number of discrete choices (not counting others choice)
2088
996ae0b0
RK
2089 -- Start of processing for Resolve_Array_Aggregate
2090
2091 begin
6d2a1120
RD
2092 -- Ignore junk empty aggregate resulting from parser error
2093
2094 if No (Expressions (N))
2095 and then No (Component_Associations (N))
2096 and then not Null_Record_Present (N)
2097 then
f85d7dee 2098 return Failure;
6d2a1120
RD
2099 end if;
2100
b045f2f2
MP
2101 -- Disable the warning for GNAT Mode to allow for easier transition.
2102
a124b526 2103 if Ada_Version_Explicit >= Ada_2022
b045f2f2
MP
2104 and then Warn_On_Obsolescent_Feature
2105 and then not GNAT_Mode
2106 and then not Is_Homogeneous_Aggregate (N)
2107 and then not Is_Enum_Array_Aggregate (N)
2108 and then Is_Parenthesis_Aggregate (N)
2109 and then Nkind (Parent (N)) /= N_Qualified_Expression
5a35fe64 2110 and then Comes_From_Source (N)
b045f2f2
MP
2111 then
2112 Error_Msg_N
2113 ("?j?array aggregate using () is an" &
2114 " obsolescent syntax, use '['] instead", N);
2115 end if;
2116
996ae0b0
RK
2117 -- STEP 1: make sure the aggregate is correctly formatted
2118
d9275e87
PT
2119 if Is_Null_Aggregate (N) then
2120 null;
2121
2122 elsif Present (Component_Associations (N)) then
fe43084c
ES
2123
2124 -- Verify that all or none of the component associations
2125 -- include an iterator specification.
2126
2127 Assoc := First (Component_Associations (N));
2128 if Nkind (Assoc) = N_Iterated_Component_Association
2129 and then Present (Iterator_Specification (Assoc))
2130 then
2131 -- All other component associations must have an iterator spec.
2132
2133 Next (Assoc);
2134 while Present (Assoc) loop
2135 if Nkind (Assoc) /= N_Iterated_Component_Association
2136 or else No (Iterator_Specification (Assoc))
2137 then
2138 Error_Msg_N ("mixed iterated component association"
84f20139 2139 & " (RM 4.3.3 (17.1/5))",
fe43084c 2140 Assoc);
f85d7dee 2141 return Failure;
fe43084c
ES
2142 end if;
2143
2144 Next (Assoc);
2145 end loop;
2146
2147 Has_Iterator_Specifications := True;
2148
2149 else
2150 -- or none of them do.
2151
2152 Next (Assoc);
2153 while Present (Assoc) loop
2154 if Nkind (Assoc) = N_Iterated_Component_Association
2155 and then Present (Iterator_Specification (Assoc))
2156 then
2157 Error_Msg_N ("mixed iterated component association"
84f20139 2158 & " (RM 4.3.3 (17.1/5))",
fe43084c 2159 Assoc);
f85d7dee 2160 return Failure;
fe43084c
ES
2161 end if;
2162
2163 Next (Assoc);
2164 end loop;
2165
fe43084c
ES
2166 end if;
2167
996ae0b0
RK
2168 Assoc := First (Component_Associations (N));
2169 while Present (Assoc) loop
ef74daea
AC
2170 if Nkind (Assoc) = N_Iterated_Component_Association then
2171 Resolve_Iterated_Component_Association (Assoc, Index_Typ);
9bde1fc6
SB
2172
2173 elsif Nkind (Assoc) /= N_Component_Association then
2174 Error_Msg_N
2175 ("invalid component association for aggregate", Assoc);
2176 return Failure;
ef74daea
AC
2177 end if;
2178
b2c1aa8f 2179 Choice := First (Choice_List (Assoc));
2791be24 2180 Delete_Choice := False;
996ae0b0
RK
2181 while Present (Choice) loop
2182 if Nkind (Choice) = N_Others_Choice then
2183 Others_Present := True;
2184
b2c1aa8f 2185 if Choice /= First (Choice_List (Assoc))
996ae0b0
RK
2186 or else Present (Next (Choice))
2187 then
ed2233dc 2188 Error_Msg_N
996ae0b0
RK
2189 ("OTHERS must appear alone in a choice list", Choice);
2190 return Failure;
2191 end if;
2192
2193 if Present (Next (Assoc)) then
ed2233dc 2194 Error_Msg_N
996ae0b0
RK
2195 ("OTHERS must appear last in an aggregate", Choice);
2196 return Failure;
2197 end if;
2198
0ab80019 2199 if Ada_Version = Ada_83
996ae0b0 2200 and then Assoc /= First (Component_Associations (N))
4a08c95c
AC
2201 and then Nkind (Parent (N)) in
2202 N_Assignment_Statement | N_Object_Declaration
996ae0b0
RK
2203 then
2204 Error_Msg_N
2205 ("(Ada 83) illegal context for OTHERS choice", N);
2206 end if;
2791be24
AC
2207
2208 elsif Is_Entity_Name (Choice) then
2209 Analyze (Choice);
2210
2211 declare
2212 E : constant Entity_Id := Entity (Choice);
2213 New_Cs : List_Id;
2214 P : Node_Id;
2215 C : Node_Id;
2216
2217 begin
2218 if Is_Type (E) and then Has_Predicates (E) then
2219 Freeze_Before (N, E);
2220
067d80d8
YM
2221 if Has_Dynamic_Predicate_Aspect (E)
2222 or else Has_Ghost_Predicate_Aspect (E)
2223 then
b330e3c8 2224 Error_Msg_NE
067d80d8 2225 ("subtype& has non-static predicate, not allowed "
b330e3c8 2226 & "in aggregate choice", Choice, E);
24de083f 2227
4b259b2d 2228 elsif not Is_OK_Static_Subtype (E) then
b330e3c8
AC
2229 Error_Msg_NE
2230 ("non-static subtype& has predicate, not allowed "
2231 & "in aggregate choice", Choice, E);
24de083f
AC
2232 end if;
2233
2791be24
AC
2234 -- If the subtype has a static predicate, replace the
2235 -- original choice with the list of individual values
65f1ca2e 2236 -- covered by the predicate.
3abbc5c2 2237 -- This should be deferred to expansion time ???
2791be24 2238
65f1ca2e 2239 if Present (Static_Discrete_Predicate (E)) then
2791be24
AC
2240 Delete_Choice := True;
2241
2242 New_Cs := New_List;
60f908dd 2243 P := First (Static_Discrete_Predicate (E));
2791be24
AC
2244 while Present (P) loop
2245 C := New_Copy (P);
2246 Set_Sloc (C, Sloc (Choice));
2247 Append_To (New_Cs, C);
2248 Next (P);
2249 end loop;
2250
2251 Insert_List_After (Choice, New_Cs);
2252 end if;
2253 end if;
2254 end;
996ae0b0
RK
2255 end if;
2256
2257 Nb_Choices := Nb_Choices + 1;
2791be24
AC
2258
2259 declare
2260 C : constant Node_Id := Choice;
2261
2262 begin
2263 Next (Choice);
2264
2265 if Delete_Choice then
2266 Remove (C);
2267 Nb_Choices := Nb_Choices - 1;
2268 Delete_Choice := False;
2269 end if;
2270 end;
996ae0b0
RK
2271 end loop;
2272
2273 Next (Assoc);
2274 end loop;
2275 end if;
2276
2277 -- At this point we know that the others choice, if present, is by
2278 -- itself and appears last in the aggregate. Check if we have mixed
2279 -- positional and discrete associations (other than the others choice).
2280
2281 if Present (Expressions (N))
2282 and then (Nb_Choices > 1
2283 or else (Nb_Choices = 1 and then not Others_Present))
2284 then
2285 Error_Msg_N
4f3a016f 2286 ("cannot mix named and positional associations in array aggregate",
ef74daea 2287 First (Choice_List (First (Component_Associations (N)))));
996ae0b0
RK
2288 return Failure;
2289 end if;
2290
2291 -- Test for the validity of an others choice if present
2292
2293 if Others_Present and then not Others_Allowed then
f456de4c
YM
2294 declare
2295 Others_N : constant Node_Id :=
2296 First (Choice_List (First (Component_Associations (N))));
2297 begin
2298 Error_Msg_N ("OTHERS choice not allowed here", Others_N);
2299 Error_Msg_N ("\qualify the aggregate with a constrained subtype "
2300 & "to provide bounds for it", Others_N);
2301 return Failure;
2302 end;
996ae0b0
RK
2303 end if;
2304
07fc65c4
GB
2305 -- Protect against cascaded errors
2306
2307 if Etype (Index_Typ) = Any_Type then
2308 return Failure;
2309 end if;
2310
996ae0b0
RK
2311 -- STEP 2: Process named components
2312
2313 if No (Expressions (N)) then
996ae0b0
RK
2314 if Others_Present then
2315 Case_Table_Size := Nb_Choices - 1;
2316 else
2317 Case_Table_Size := Nb_Choices;
2318 end if;
2319
2320 Step_2 : declare
10edebe7
AC
2321 function Empty_Range (A : Node_Id) return Boolean;
2322 -- If an association covers an empty range, some warnings on the
2323 -- expression of the association can be disabled.
2324
2325 -----------------
2326 -- Empty_Range --
2327 -----------------
2328
2329 function Empty_Range (A : Node_Id) return Boolean is
65ab836d
JM
2330 R : Node_Id;
2331
10edebe7 2332 begin
65ab836d
JM
2333 if Nkind (A) = N_Iterated_Component_Association then
2334 R := First (Discrete_Choices (A));
2335 else
2336 R := First (Choices (A));
2337 end if;
2338
10edebe7
AC
2339 return No (Next (R))
2340 and then Nkind (R) = N_Range
2341 and then Compile_Time_Compare
2342 (Low_Bound (R), High_Bound (R), False) = GT;
2343 end Empty_Range;
2344
2345 -- Local variables
2346
996ae0b0
RK
2347 Low : Node_Id;
2348 High : Node_Id;
2349 -- Denote the lowest and highest values in an aggregate choice
2350
996ae0b0
RK
2351 S_Low : Node_Id := Empty;
2352 S_High : Node_Id := Empty;
2353 -- if a choice in an aggregate is a subtype indication these
2354 -- denote the lowest and highest values of the subtype
2355
38f44fd6
PT
2356 Table : Case_Table_Type (1 .. Case_Table_Size);
2357 -- Used to sort all the different choice values
996ae0b0
RK
2358
2359 Single_Choice : Boolean;
2360 -- Set to true every time there is a single discrete choice in a
2361 -- discrete association
2362
2363 Prev_Nb_Discrete_Choices : Nat;
b87971f3
AC
2364 -- Used to keep track of the number of discrete choices in the
2365 -- current association.
996ae0b0 2366
c0b11850
AC
2367 Errors_Posted_On_Choices : Boolean := False;
2368 -- Keeps track of whether any choices have semantic errors
2369
5a521b8a
AC
2370 -- Start of processing for Step_2
2371
996ae0b0 2372 begin
ec53a6da 2373 -- STEP 2 (A): Check discrete choices validity
fe43084c 2374 -- No need if this is an element iteration.
996ae0b0
RK
2375
2376 Assoc := First (Component_Associations (N));
fe43084c
ES
2377 while Present (Assoc)
2378 and then Present (Choice_List (Assoc))
2379 loop
996ae0b0 2380 Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
ef74daea
AC
2381 Choice := First (Choice_List (Assoc));
2382
996ae0b0
RK
2383 loop
2384 Analyze (Choice);
2385
2386 if Nkind (Choice) = N_Others_Choice then
2387 Single_Choice := False;
2388 exit;
2389
2390 -- Test for subtype mark without constraint
2391
2392 elsif Is_Entity_Name (Choice) and then
2393 Is_Type (Entity (Choice))
2394 then
2395 if Base_Type (Entity (Choice)) /= Index_Base then
2396 Error_Msg_N
2397 ("invalid subtype mark in aggregate choice",
2398 Choice);
2399 return Failure;
2400 end if;
2401
ca44152f
ES
2402 -- Case of subtype indication
2403
996ae0b0
RK
2404 elsif Nkind (Choice) = N_Subtype_Indication then
2405 Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
2406
24de083f 2407 if Has_Dynamic_Predicate_Aspect
067d80d8
YM
2408 (Entity (Subtype_Mark (Choice)))
2409 or else Has_Ghost_Predicate_Aspect
2410 (Entity (Subtype_Mark (Choice)))
24de083f 2411 then
58009744 2412 Error_Msg_NE
067d80d8 2413 ("subtype& has non-static predicate, "
58009744
AC
2414 & "not allowed in aggregate choice",
2415 Choice, Entity (Subtype_Mark (Choice)));
24de083f
AC
2416 end if;
2417
324ac540 2418 -- Does the subtype indication evaluation raise CE?
996ae0b0
RK
2419
2420 Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
2421 Get_Index_Bounds (Choice, Low, High);
2422 Check_Bounds (S_Low, S_High, Low, High);
2423
ca44152f
ES
2424 -- Case of range or expression
2425
2426 else
996ae0b0 2427 Resolve (Choice, Index_Base);
fbf5a39b 2428 Check_Unset_Reference (Choice);
996ae0b0
RK
2429 Check_Non_Static_Context (Choice);
2430
c0b11850
AC
2431 -- If semantic errors were posted on the choice, then
2432 -- record that for possible early return from later
2433 -- processing (see handling of enumeration choices).
2434
2435 if Error_Posted (Choice) then
2436 Errors_Posted_On_Choices := True;
2437 end if;
2438
996ae0b0 2439 -- Do not range check a choice. This check is redundant
b87971f3
AC
2440 -- since this test is already done when we check that the
2441 -- bounds of the array aggregate are within range.
996ae0b0
RK
2442
2443 Set_Do_Range_Check (Choice, False);
2444 end if;
2445
2446 -- If we could not resolve the discrete choice stop here
2447
2448 if Etype (Choice) = Any_Type then
2449 return Failure;
2450
ec53a6da 2451 -- If the discrete choice raises CE get its original bounds
996ae0b0
RK
2452
2453 elsif Nkind (Choice) = N_Raise_Constraint_Error then
2454 Set_Raises_Constraint_Error (N);
2455 Get_Index_Bounds (Original_Node (Choice), Low, High);
2456
2457 -- Otherwise get its bounds as usual
2458
2459 else
2460 Get_Index_Bounds (Choice, Low, High);
2461 end if;
2462
2463 if (Dynamic_Or_Null_Range (Low, High)
2464 or else (Nkind (Choice) = N_Subtype_Indication
2465 and then
2466 Dynamic_Or_Null_Range (S_Low, S_High)))
2467 and then Nb_Choices /= 1
2468 then
2469 Error_Msg_N
58009744
AC
2470 ("dynamic or empty choice in aggregate "
2471 & "must be the only choice", Choice);
996ae0b0
RK
2472 return Failure;
2473 end if;
2474
2f7ae2aa
BD
2475 if not (All_Composite_Constraints_Static (Low)
2476 and then All_Composite_Constraints_Static (High)
2477 and then All_Composite_Constraints_Static (S_Low)
2478 and then All_Composite_Constraints_Static (S_High))
2479 then
2480 Check_Restriction (No_Dynamic_Sized_Objects, Choice);
2481 end if;
2482
996ae0b0 2483 Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
82893775
AC
2484 Table (Nb_Discrete_Choices).Lo := Low;
2485 Table (Nb_Discrete_Choices).Hi := High;
2486 Table (Nb_Discrete_Choices).Choice := Choice;
996ae0b0
RK
2487
2488 Next (Choice);
2489
2490 if No (Choice) then
9b96e234 2491
996ae0b0
RK
2492 -- Check if we have a single discrete choice and whether
2493 -- this discrete choice specifies a single value.
2494
2495 Single_Choice :=
8f563162
AC
2496 Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1
2497 and then Low = High;
996ae0b0
RK
2498
2499 exit;
2500 end if;
2501 end loop;
2502
0ab80019 2503 -- Ada 2005 (AI-231)
2820d220 2504
0791fbe9 2505 if Ada_Version >= Ada_2005
5a521b8a 2506 and then not Empty_Range (Assoc)
ec53a6da 2507 then
65ab836d
JM
2508 if Known_Null (Expression (Assoc)) then
2509 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2510
2511 -- Report warning on iterated component association that may
2512 -- initialize some component of an array of null-excluding
2513 -- access type components with a null value. For example:
2514
2515 -- type AList is array (...) of not null access Integer;
2516 -- L : AList :=
2517 -- [for J in A'Range =>
2518 -- (if Func (J) = 0 then A(J)'Access else Null)];
2519
2520 elsif Ada_Version >= Ada_2022
2521 and then Can_Never_Be_Null (Component_Type (Etype (N)))
2522 and then Nkind (Assoc) = N_Iterated_Component_Association
2523 and then Nkind (Expression (Assoc)) in N_If_Expression
2524 | N_Case_Expression
2525 then
2526 Warn_On_Null_Component_Association (Expression (Assoc));
2527 end if;
82c80734 2528 end if;
2820d220 2529
0ab80019 2530 -- Ada 2005 (AI-287): In case of default initialized component
b87971f3 2531 -- we delay the resolution to the expansion phase.
c45b6ae0
AC
2532
2533 if Box_Present (Assoc) then
2534
b87971f3
AC
2535 -- Ada 2005 (AI-287): In case of default initialization of a
2536 -- component the expander will generate calls to the
ca5af305
AC
2537 -- corresponding initialization subprogram. We need to call
2538 -- Resolve_Aggr_Expr to check the rules about
2539 -- dimensionality.
c45b6ae0 2540
882eadaf
RD
2541 if not Resolve_Aggr_Expr
2542 (Assoc, Single_Elmt => Single_Choice)
ca5af305
AC
2543 then
2544 return Failure;
2545 end if;
c45b6ae0 2546
3b612313
PT
2547 -- ??? Checks for dynamically tagged expressions below will
2548 -- be only applied to iterated_component_association after
2549 -- expansion; in particular, errors might not be reported when
2550 -- -gnatc switch is used.
2551
9eb8d5b4 2552 elsif Nkind (Assoc) = N_Iterated_Component_Association then
3b612313 2553 null; -- handled above, in a loop context
9eb8d5b4 2554
882eadaf
RD
2555 elsif not Resolve_Aggr_Expr
2556 (Expression (Assoc), Single_Elmt => Single_Choice)
996ae0b0
RK
2557 then
2558 return Failure;
4755cce9
JM
2559
2560 -- Check incorrect use of dynamically tagged expression
2561
2562 -- We differentiate here two cases because the expression may
2563 -- not be decorated. For example, the analysis and resolution
b87971f3
AC
2564 -- of the expression associated with the others choice will be
2565 -- done later with the full aggregate. In such case we
4755cce9
JM
2566 -- duplicate the expression tree to analyze the copy and
2567 -- perform the required check.
2568
7d0d27d9 2569 elsif No (Etype (Expression (Assoc))) then
4755cce9
JM
2570 declare
2571 Save_Analysis : constant Boolean := Full_Analysis;
2572 Expr : constant Node_Id :=
2573 New_Copy_Tree (Expression (Assoc));
2574
2575 begin
2576 Expander_Mode_Save_And_Set (False);
2577 Full_Analysis := False;
6ff6152d
ES
2578
2579 -- Analyze the expression, making sure it is properly
2580 -- attached to the tree before we do the analysis.
2581
2582 Set_Parent (Expr, Parent (Expression (Assoc)));
4755cce9 2583 Analyze (Expr);
094cefda 2584
a6ac7311
AC
2585 -- Compute its dimensions now, rather than at the end of
2586 -- resolution, because in the case of multidimensional
888be6b1
AC
2587 -- aggregates subsequent expansion may lead to spurious
2588 -- errors.
2589
2590 Check_Expression_Dimensions (Expr, Component_Typ);
2591
094cefda
AC
2592 -- If the expression is a literal, propagate this info
2593 -- to the expression in the association, to enable some
2594 -- optimizations downstream.
2595
2596 if Is_Entity_Name (Expr)
2597 and then Present (Entity (Expr))
2598 and then Ekind (Entity (Expr)) = E_Enumeration_Literal
2599 then
2600 Analyze_And_Resolve
2601 (Expression (Assoc), Component_Typ);
2602 end if;
2603
4755cce9
JM
2604 Full_Analysis := Save_Analysis;
2605 Expander_Mode_Restore;
2606
2607 if Is_Tagged_Type (Etype (Expr)) then
2608 Check_Dynamically_Tagged_Expression
2609 (Expr => Expr,
2610 Typ => Component_Type (Etype (N)),
2611 Related_Nod => N);
2612 end if;
2613 end;
2614
2615 elsif Is_Tagged_Type (Etype (Expression (Assoc))) then
2616 Check_Dynamically_Tagged_Expression
1c612f29
RD
2617 (Expr => Expression (Assoc),
2618 Typ => Component_Type (Etype (N)),
4755cce9 2619 Related_Nod => N);
996ae0b0
RK
2620 end if;
2621
2622 Next (Assoc);
2623 end loop;
2624
2625 -- If aggregate contains more than one choice then these must be
882eadaf
RD
2626 -- static. Check for duplicate and missing values.
2627
2628 -- Note: there is duplicated code here wrt Check_Choice_Set in
2629 -- the body of Sem_Case, and it is possible we could just reuse
2630 -- that procedure. To be checked ???
996ae0b0
RK
2631
2632 if Nb_Discrete_Choices > 1 then
882eadaf
RD
2633 Check_Choices : declare
2634 Choice : Node_Id;
2635 -- Location of choice for messages
996ae0b0 2636
882eadaf
RD
2637 Hi_Val : Uint;
2638 Lo_Val : Uint;
2639 -- High end of one range and Low end of the next. Should be
2640 -- contiguous if there is no hole in the list of values.
996ae0b0 2641
82893775
AC
2642 Lo_Dup : Uint;
2643 Hi_Dup : Uint;
2644 -- End points of duplicated range
2645
882eadaf
RD
2646 Missing_Or_Duplicates : Boolean := False;
2647 -- Set True if missing or duplicate choices found
996ae0b0 2648
882eadaf
RD
2649 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id);
2650 -- Output continuation message with a representation of the
2651 -- bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
2652 -- choice node where the message is to be posted.
996ae0b0 2653
882eadaf
RD
2654 ------------------------
2655 -- Output_Bad_Choices --
2656 ------------------------
996ae0b0 2657
882eadaf
RD
2658 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id) is
2659 begin
2660 -- Enumeration type case
996ae0b0 2661
882eadaf
RD
2662 if Is_Enumeration_Type (Index_Typ) then
2663 Error_Msg_Name_1 :=
2664 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Lo, Loc));
2665 Error_Msg_Name_2 :=
2666 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Hi, Loc));
2667
2668 if Lo = Hi then
2669 Error_Msg_N ("\\ %!", C);
2670 else
2671 Error_Msg_N ("\\ % .. %!", C);
996ae0b0
RK
2672 end if;
2673
882eadaf 2674 -- Integer types case
996ae0b0 2675
882eadaf
RD
2676 else
2677 Error_Msg_Uint_1 := Lo;
2678 Error_Msg_Uint_2 := Hi;
996ae0b0 2679
882eadaf
RD
2680 if Lo = Hi then
2681 Error_Msg_N ("\\ ^!", C);
2682 else
2683 Error_Msg_N ("\\ ^ .. ^!", C);
2684 end if;
2685 end if;
2686 end Output_Bad_Choices;
996ae0b0 2687
882eadaf 2688 -- Start of processing for Check_Choices
996ae0b0 2689
882eadaf
RD
2690 begin
2691 Sort_Case_Table (Table);
996ae0b0 2692
82893775
AC
2693 -- First we do a quick linear loop to find out if we have
2694 -- any duplicates or missing entries (usually we have a
2695 -- legal aggregate, so this will get us out quickly).
996ae0b0 2696
882eadaf 2697 for J in 1 .. Nb_Discrete_Choices - 1 loop
82893775
AC
2698 Hi_Val := Expr_Value (Table (J).Hi);
2699 Lo_Val := Expr_Value (Table (J + 1).Lo);
882eadaf 2700
82893775
AC
2701 if Lo_Val <= Hi_Val
2702 or else (Lo_Val > Hi_Val + 1
2703 and then not Others_Present)
2704 then
882eadaf 2705 Missing_Or_Duplicates := True;
82893775 2706 exit;
882eadaf
RD
2707 end if;
2708 end loop;
996ae0b0 2709
82893775
AC
2710 -- If we have missing or duplicate entries, first fill in
2711 -- the Highest entries to make life easier in the following
2712 -- loops to detect bad entries.
882eadaf 2713
82893775
AC
2714 if Missing_Or_Duplicates then
2715 Table (1).Highest := Expr_Value (Table (1).Hi);
882eadaf 2716
82893775
AC
2717 for J in 2 .. Nb_Discrete_Choices loop
2718 Table (J).Highest :=
2719 UI_Max
2720 (Table (J - 1).Highest, Expr_Value (Table (J).Hi));
2721 end loop;
882eadaf 2722
82893775
AC
2723 -- Loop through table entries to find duplicate indexes
2724
2725 for J in 2 .. Nb_Discrete_Choices loop
2726 Lo_Val := Expr_Value (Table (J).Lo);
2727 Hi_Val := Expr_Value (Table (J).Hi);
2728
2729 -- Case where we have duplicates (the lower bound of
2730 -- this choice is less than or equal to the highest
2731 -- high bound found so far).
2732
2733 if Lo_Val <= Table (J - 1).Highest then
2734
2735 -- We move backwards looking for duplicates. We can
2736 -- abandon this loop as soon as we reach a choice
2737 -- highest value that is less than Lo_Val.
2738
2739 for K in reverse 1 .. J - 1 loop
2740 exit when Table (K).Highest < Lo_Val;
2741
2742 -- Here we may have duplicates between entries
2743 -- for K and J. Get range of duplicates.
2744
2745 Lo_Dup :=
2746 UI_Max (Lo_Val, Expr_Value (Table (K).Lo));
2747 Hi_Dup :=
2748 UI_Min (Hi_Val, Expr_Value (Table (K).Hi));
2749
2750 -- Nothing to do if duplicate range is null
882eadaf 2751
82893775
AC
2752 if Lo_Dup > Hi_Dup then
2753 null;
2754
65f1ca2e 2755 -- Otherwise place proper message
82893775
AC
2756
2757 else
2758 -- We place message on later choice, with a
2759 -- line reference to the earlier choice.
2760
2761 if Sloc (Table (J).Choice) <
2762 Sloc (Table (K).Choice)
2763 then
2764 Choice := Table (K).Choice;
2765 Error_Msg_Sloc := Sloc (Table (J).Choice);
2766 else
2767 Choice := Table (J).Choice;
2768 Error_Msg_Sloc := Sloc (Table (K).Choice);
2769 end if;
2770
2771 if Lo_Dup = Hi_Dup then
2772 Error_Msg_N
2773 ("index value in array aggregate "
2774 & "duplicates the one given#!", Choice);
2775 else
2776 Error_Msg_N
2777 ("index values in array aggregate "
2778 & "duplicate those given#!", Choice);
2779 end if;
2780
2781 Output_Bad_Choices (Lo_Dup, Hi_Dup, Choice);
2782 end if;
2783 end loop;
996ae0b0 2784 end if;
882eadaf 2785 end loop;
996ae0b0 2786
82893775
AC
2787 -- Loop through entries in table to find missing indexes.
2788 -- Not needed if others, since missing impossible.
2789
2790 if not Others_Present then
2791 for J in 2 .. Nb_Discrete_Choices loop
2792 Lo_Val := Expr_Value (Table (J).Lo);
2793 Hi_Val := Table (J - 1).Highest;
2794
2795 if Lo_Val > Hi_Val + 1 then
16a569d2 2796
7b4ebba5
AC
2797 declare
2798 Error_Node : Node_Id;
16a569d2 2799
7b4ebba5
AC
2800 begin
2801 -- If the choice is the bound of a range in
2802 -- a subtype indication, it is not in the
2803 -- source lists for the aggregate itself, so
2804 -- post the error on the aggregate. Otherwise
2805 -- post it on choice itself.
16a569d2 2806
7b4ebba5 2807 Choice := Table (J).Choice;
16a569d2 2808
7b4ebba5
AC
2809 if Is_List_Member (Choice) then
2810 Error_Node := Choice;
2811 else
2812 Error_Node := N;
2813 end if;
82893775 2814
7b4ebba5
AC
2815 if Hi_Val + 1 = Lo_Val - 1 then
2816 Error_Msg_N
2817 ("missing index value "
2818 & "in array aggregate!", Error_Node);
2819 else
2820 Error_Msg_N
2821 ("missing index values "
2822 & "in array aggregate!", Error_Node);
2823 end if;
82893775 2824
7b4ebba5
AC
2825 Output_Bad_Choices
2826 (Hi_Val + 1, Lo_Val - 1, Error_Node);
2827 end;
82893775
AC
2828 end if;
2829 end loop;
2830 end if;
2831
2832 -- If either missing or duplicate values, return failure
882eadaf 2833
882eadaf
RD
2834 Set_Etype (N, Any_Composite);
2835 return Failure;
2836 end if;
2837 end Check_Choices;
996ae0b0
RK
2838 end if;
2839
fe43084c
ES
2840 if Has_Iterator_Specifications then
2841 -- Bounds will be determined dynamically.
2842
2843 return Success;
2844 end if;
2845
996ae0b0
RK
2846 -- STEP 2 (B): Compute aggregate bounds and min/max choices values
2847
2848 if Nb_Discrete_Choices > 0 then
82893775
AC
2849 Choices_Low := Table (1).Lo;
2850 Choices_High := Table (Nb_Discrete_Choices).Hi;
996ae0b0
RK
2851 end if;
2852
ca44152f
ES
2853 -- If Others is present, then bounds of aggregate come from the
2854 -- index constraint (not the choices in the aggregate itself).
2855
996ae0b0
RK
2856 if Others_Present then
2857 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2858
596b25f9
AC
2859 -- Abandon processing if either bound is already signalled as
2860 -- an error (prevents junk cascaded messages and blow ups).
2861
2862 if Nkind (Aggr_Low) = N_Error
2863 or else
2864 Nkind (Aggr_High) = N_Error
2865 then
2866 return False;
2867 end if;
2868
ca44152f
ES
2869 -- No others clause present
2870
996ae0b0 2871 else
ca44152f
ES
2872 -- Special processing if others allowed and not present. This
2873 -- means that the bounds of the aggregate come from the index
2874 -- constraint (and the length must match).
2875
2876 if Others_Allowed then
2877 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2878
596b25f9
AC
2879 -- Abandon processing if either bound is already signalled
2880 -- as an error (stop junk cascaded messages and blow ups).
2881
2882 if Nkind (Aggr_Low) = N_Error
2883 or else
2884 Nkind (Aggr_High) = N_Error
2885 then
2886 return False;
2887 end if;
2888
ca44152f
ES
2889 -- If others allowed, and no others present, then the array
2890 -- should cover all index values. If it does not, we will
2891 -- get a length check warning, but there is two cases where
2892 -- an additional warning is useful:
2893
2894 -- If we have no positional components, and the length is
2895 -- wrong (which we can tell by others being allowed with
2896 -- missing components), and the index type is an enumeration
2897 -- type, then issue appropriate warnings about these missing
2898 -- components. They are only warnings, since the aggregate
2899 -- is fine, it's just the wrong length. We skip this check
2900 -- for standard character types (since there are no literals
2901 -- and it is too much trouble to concoct them), and also if
50ea6357
AC
2902 -- any of the bounds have values that are not known at
2903 -- compile time.
ca44152f 2904
58009744
AC
2905 -- Another case warranting a warning is when the length
2906 -- is right, but as above we have an index type that is
2907 -- an enumeration, and the bounds do not match. This is a
2908 -- case where dubious sliding is allowed and we generate a
2909 -- warning that the bounds do not match.
ca44152f
ES
2910
2911 if No (Expressions (N))
2912 and then Nkind (Index) = N_Range
2913 and then Is_Enumeration_Type (Etype (Index))
2914 and then not Is_Standard_Character_Type (Etype (Index))
2915 and then Compile_Time_Known_Value (Aggr_Low)
2916 and then Compile_Time_Known_Value (Aggr_High)
2917 and then Compile_Time_Known_Value (Choices_Low)
2918 and then Compile_Time_Known_Value (Choices_High)
2919 then
c0b11850
AC
2920 -- If any of the expressions or range bounds in choices
2921 -- have semantic errors, then do not attempt further
2922 -- resolution, to prevent cascaded errors.
d610088d 2923
c0b11850
AC
2924 if Errors_Posted_On_Choices then
2925 return Failure;
d610088d
AC
2926 end if;
2927
ca44152f
ES
2928 declare
2929 ALo : constant Node_Id := Expr_Value_E (Aggr_Low);
2930 AHi : constant Node_Id := Expr_Value_E (Aggr_High);
2931 CLo : constant Node_Id := Expr_Value_E (Choices_Low);
2932 CHi : constant Node_Id := Expr_Value_E (Choices_High);
2933
2934 Ent : Entity_Id;
2935
2936 begin
ebd34478 2937 -- Warning case 1, missing values at start/end. Only
ca44152f
ES
2938 -- do the check if the number of entries is too small.
2939
2940 if (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2941 <
2942 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2943 then
2944 Error_Msg_N
324ac540
AC
2945 ("missing index value(s) in array aggregate??",
2946 N);
ca44152f
ES
2947
2948 -- Output missing value(s) at start
2949
2950 if Chars (ALo) /= Chars (CLo) then
2951 Ent := Prev (CLo);
2952
2953 if Chars (ALo) = Chars (Ent) then
2954 Error_Msg_Name_1 := Chars (ALo);
324ac540 2955 Error_Msg_N ("\ %??", N);
ca44152f
ES
2956 else
2957 Error_Msg_Name_1 := Chars (ALo);
2958 Error_Msg_Name_2 := Chars (Ent);
324ac540 2959 Error_Msg_N ("\ % .. %??", N);
ca44152f
ES
2960 end if;
2961 end if;
2962
2963 -- Output missing value(s) at end
2964
2965 if Chars (AHi) /= Chars (CHi) then
2966 Ent := Next (CHi);
2967
2968 if Chars (AHi) = Chars (Ent) then
2969 Error_Msg_Name_1 := Chars (Ent);
324ac540 2970 Error_Msg_N ("\ %??", N);
ca44152f
ES
2971 else
2972 Error_Msg_Name_1 := Chars (Ent);
2973 Error_Msg_Name_2 := Chars (AHi);
324ac540 2974 Error_Msg_N ("\ % .. %??", N);
ca44152f
ES
2975 end if;
2976 end if;
2977
2978 -- Warning case 2, dubious sliding. The First_Subtype
2979 -- test distinguishes between a constrained type where
2980 -- sliding is not allowed (so we will get a warning
2981 -- later that Constraint_Error will be raised), and
2982 -- the unconstrained case where sliding is permitted.
2983
2984 elsif (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2985 =
2986 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2987 and then Chars (ALo) /= Chars (CLo)
2988 and then
2989 not Is_Constrained (First_Subtype (Etype (N)))
2990 then
2991 Error_Msg_N
324ac540 2992 ("bounds of aggregate do not match target??", N);
ca44152f
ES
2993 end if;
2994 end;
2995 end if;
2996 end if;
2997
f3d0f304 2998 -- If no others, aggregate bounds come from aggregate
ca44152f 2999
996ae0b0
RK
3000 Aggr_Low := Choices_Low;
3001 Aggr_High := Choices_High;
3002 end if;
3003 end Step_2;
3004
3005 -- STEP 3: Process positional components
3006
3007 else
3008 -- STEP 3 (A): Process positional elements
3009
3010 Expr := First (Expressions (N));
3011 Nb_Elements := Uint_0;
3012 while Present (Expr) loop
3013 Nb_Elements := Nb_Elements + 1;
3014
82c80734
RD
3015 -- Ada 2005 (AI-231)
3016
58009744 3017 if Ada_Version >= Ada_2005 and then Known_Null (Expr) then
82c80734
RD
3018 Check_Can_Never_Be_Null (Etype (N), Expr);
3019 end if;
2820d220 3020
ef74daea 3021 if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
996ae0b0
RK
3022 return Failure;
3023 end if;
3024
4755cce9
JM
3025 -- Check incorrect use of dynamically tagged expression
3026
3027 if Is_Tagged_Type (Etype (Expr)) then
3028 Check_Dynamically_Tagged_Expression
3029 (Expr => Expr,
3030 Typ => Component_Type (Etype (N)),
3031 Related_Nod => N);
3032 end if;
3033
996ae0b0
RK
3034 Next (Expr);
3035 end loop;
3036
3037 if Others_Present then
3038 Assoc := Last (Component_Associations (N));
c45b6ae0 3039
82c80734
RD
3040 -- Ada 2005 (AI-231)
3041
58009744 3042 if Ada_Version >= Ada_2005 and then Known_Null (Assoc) then
9b96e234 3043 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
82c80734 3044 end if;
2820d220 3045
ebd34478 3046 -- Ada 2005 (AI-287): In case of default initialized component,
c45b6ae0
AC
3047 -- we delay the resolution to the expansion phase.
3048
3049 if Box_Present (Assoc) then
3050
ebd34478
AC
3051 -- Ada 2005 (AI-287): In case of default initialization of a
3052 -- component the expander will generate calls to the
ca5af305
AC
3053 -- corresponding initialization subprogram. We need to call
3054 -- Resolve_Aggr_Expr to check the rules about
3055 -- dimensionality.
c45b6ae0 3056
ca5af305
AC
3057 if not Resolve_Aggr_Expr (Assoc, Single_Elmt => False) then
3058 return Failure;
3059 end if;
c45b6ae0
AC
3060
3061 elsif not Resolve_Aggr_Expr (Expression (Assoc),
3062 Single_Elmt => False)
996ae0b0
RK
3063 then
3064 return Failure;
4755cce9
JM
3065
3066 -- Check incorrect use of dynamically tagged expression. The
3067 -- expression of the others choice has not been resolved yet.
3068 -- In order to diagnose the semantic error we create a duplicate
3069 -- tree to analyze it and perform the check.
3070
fb00cc70 3071 elsif Nkind (Assoc) /= N_Iterated_Component_Association then
4755cce9
JM
3072 declare
3073 Save_Analysis : constant Boolean := Full_Analysis;
3074 Expr : constant Node_Id :=
3075 New_Copy_Tree (Expression (Assoc));
3076
3077 begin
3078 Expander_Mode_Save_And_Set (False);
3079 Full_Analysis := False;
3080 Analyze (Expr);
3081 Full_Analysis := Save_Analysis;
3082 Expander_Mode_Restore;
3083
3084 if Is_Tagged_Type (Etype (Expr)) then
3085 Check_Dynamically_Tagged_Expression
58009744
AC
3086 (Expr => Expr,
3087 Typ => Component_Type (Etype (N)),
4755cce9
JM
3088 Related_Nod => N);
3089 end if;
3090 end;
996ae0b0
RK
3091 end if;
3092 end if;
3093
3094 -- STEP 3 (B): Compute the aggregate bounds
3095
3096 if Others_Present then
3097 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
3098
3099 else
3100 if Others_Allowed then
f91e8020 3101 Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
996ae0b0
RK
3102 else
3103 Aggr_Low := Index_Typ_Low;
3104 end if;
3105
3106 Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
3107 Check_Bound (Index_Base_High, Aggr_High);
3108 end if;
3109 end if;
3110
3111 -- STEP 4: Perform static aggregate checks and save the bounds
3112
3113 -- Check (A)
3114
3115 Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
3116 Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
3117
3118 -- Check (B)
3119
3120 if Others_Present and then Nb_Discrete_Choices > 0 then
3121 Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
3122 Check_Bounds (Index_Typ_Low, Index_Typ_High,
3123 Choices_Low, Choices_High);
3124 Check_Bounds (Index_Base_Low, Index_Base_High,
3125 Choices_Low, Choices_High);
3126
3127 -- Check (C)
3128
3129 elsif Others_Present and then Nb_Elements > 0 then
3130 Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
3131 Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
3132 Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
996ae0b0
RK
3133 end if;
3134
3135 if Raises_Constraint_Error (Aggr_Low)
3136 or else Raises_Constraint_Error (Aggr_High)
3137 then
3138 Set_Raises_Constraint_Error (N);
3139 end if;
3140
3141 Aggr_Low := Duplicate_Subexpr (Aggr_Low);
3142
3143 -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
3144 -- since the addition node returned by Add is not yet analyzed. Attach
ebd34478 3145 -- to tree and analyze first. Reset analyzed flag to ensure it will get
9b96e234 3146 -- analyzed when it is a literal bound whose type must be properly set.
996ae0b0
RK
3147
3148 if Others_Present or else Nb_Discrete_Choices > 0 then
3149 Aggr_High := Duplicate_Subexpr (Aggr_High);
3150
3151 if Etype (Aggr_High) = Universal_Integer then
3152 Set_Analyzed (Aggr_High, False);
3153 end if;
3154 end if;
3155
3d923671
AC
3156 -- If the aggregate already has bounds attached to it, it means this is
3157 -- a positional aggregate created as an optimization by
3158 -- Exp_Aggr.Convert_To_Positional, so we don't want to change those
3159 -- bounds.
3160
f7d1b4a7
PT
3161 if Present (Aggregate_Bounds (N))
3162 and then not Others_Allowed
3163 and then not Comes_From_Source (N)
3164 then
ebd34478 3165 Aggr_Low := Low_Bound (Aggregate_Bounds (N));
3d923671
AC
3166 Aggr_High := High_Bound (Aggregate_Bounds (N));
3167 end if;
3168
996ae0b0
RK
3169 Set_Aggregate_Bounds
3170 (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
3171
3172 -- The bounds may contain expressions that must be inserted upwards.
3173 -- Attach them fully to the tree. After analysis, remove side effects
3174 -- from upper bound, if still needed.
3175
3176 Set_Parent (Aggregate_Bounds (N), N);
3177 Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
fbf5a39b 3178 Check_Unset_Reference (Aggregate_Bounds (N));
996ae0b0
RK
3179
3180 if not Others_Present and then Nb_Discrete_Choices = 0 then
82893775
AC
3181 Set_High_Bound
3182 (Aggregate_Bounds (N),
3183 Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
996ae0b0
RK
3184 end if;
3185
d976bf74 3186 -- Check the dimensions of each component in the array aggregate
0929eaeb
AC
3187
3188 Analyze_Dimension_Array_Aggregate (N, Component_Typ);
3189
996ae0b0
RK
3190 return Success;
3191 end Resolve_Array_Aggregate;
3192
745f5698
ES
3193 ---------------------------------
3194 -- Resolve_Container_Aggregate --
3195 ---------------------------------
3196
3197 procedure Resolve_Container_Aggregate (N : Node_Id; Typ : Entity_Id) is
c0bab60b 3198 procedure Resolve_Iterated_Association
4f6ebe2a
ES
3199 (Comp : Node_Id;
3200 Key_Type : Entity_Id;
3201 Elmt_Type : Entity_Id);
c0bab60b
ES
3202 -- Resolve choices and expression in an iterated component association
3203 -- or an iterated element association, which has a key_expression.
0b4034c0
GD
3204 -- This is similar but not identical to the handling of this construct
3205 -- in an array aggregate.
4f6ebe2a 3206 -- For a named container, the type of each choice must be compatible
0b4034c0 3207 -- with the key type. For a positional container, the choice must be
4f6ebe2a
ES
3208 -- a subtype indication or an iterator specification that determines
3209 -- an element type.
3210
745f5698
ES
3211 Asp : constant Node_Id := Find_Value_Of_Aspect (Typ, Aspect_Aggregate);
3212
3213 Empty_Subp : Node_Id := Empty;
3214 Add_Named_Subp : Node_Id := Empty;
3215 Add_Unnamed_Subp : Node_Id := Empty;
3216 New_Indexed_Subp : Node_Id := Empty;
3217 Assign_Indexed_Subp : Node_Id := Empty;
3218
c0bab60b
ES
3219 ----------------------------------
3220 -- Resolve_Iterated_Association --
3221 ----------------------------------
4f6ebe2a 3222
c0bab60b 3223 procedure Resolve_Iterated_Association
4f6ebe2a
ES
3224 (Comp : Node_Id;
3225 Key_Type : Entity_Id;
3226 Elmt_Type : Entity_Id)
3227 is
439dae60 3228 Loc : constant Source_Ptr := Sloc (N);
c0bab60b 3229 Choice : Node_Id;
aacbf376 3230 Copy : Node_Id;
c0bab60b
ES
3231 Ent : Entity_Id;
3232 Expr : Node_Id;
3233 Key_Expr : Node_Id;
3234 Id : Entity_Id;
3235 Id_Name : Name_Id;
c0bab60b 3236 Typ : Entity_Id := Empty;
4f6ebe2a
ES
3237
3238 begin
439dae60
BD
3239 Error_Msg_Ada_2022_Feature ("iterated component", Loc);
3240
c0bab60b
ES
3241 -- If this is an Iterated_Element_Association then either a
3242 -- an Iterator_Specification or a Loop_Parameter specification
3243 -- is present. In both cases a Key_Expression is present.
3244
3245 if Nkind (Comp) = N_Iterated_Element_Association then
aacbf376
MP
3246
3247 -- Create a temporary scope to avoid some modifications from
3248 -- escaping the Analyze call below. The original Tree will be
3249 -- reanalyzed later.
3250
3251 Ent := New_Internal_Entity
3252 (E_Loop, Current_Scope, Sloc (Comp), 'L');
3253 Set_Etype (Ent, Standard_Void_Type);
3254 Set_Parent (Ent, Parent (Comp));
3255 Push_Scope (Ent);
3256
c0bab60b 3257 if Present (Loop_Parameter_Specification (Comp)) then
aacbf376
MP
3258 Copy := Copy_Separate_Tree (Comp);
3259
3260 Analyze
3261 (Loop_Parameter_Specification (Copy));
3262
c0bab60b
ES
3263 Id_Name := Chars (Defining_Identifier
3264 (Loop_Parameter_Specification (Comp)));
3265 else
aacbf376
MP
3266 Copy := Copy_Separate_Tree (Iterator_Specification (Comp));
3267 Analyze (Copy);
3268
c0bab60b
ES
3269 Id_Name := Chars (Defining_Identifier
3270 (Iterator_Specification (Comp)));
3271 end if;
3272
3273 -- Key expression must have the type of the key. We analyze
3274 -- a copy of the original expression, because it will be
3275 -- reanalyzed and copied as needed during expansion of the
3276 -- corresponding loop.
3277
3278 Key_Expr := Key_Expression (Comp);
3279 Analyze_And_Resolve (New_Copy_Tree (Key_Expr), Key_Type);
aacbf376 3280 End_Scope;
c0bab60b 3281
99c419b2
VI
3282 Typ := Key_Type;
3283
c0bab60b 3284 elsif Present (Iterator_Specification (Comp)) then
c57fbb12
VI
3285 -- Create a temporary scope to avoid some modifications from
3286 -- escaping the Analyze call below. The original Tree will be
3287 -- reanalyzed later.
3288
3289 Ent := New_Internal_Entity
3290 (E_Loop, Current_Scope, Sloc (Comp), 'L');
3291 Set_Etype (Ent, Standard_Void_Type);
3292 Set_Parent (Ent, Parent (Comp));
3293 Push_Scope (Ent);
3294
aacbf376 3295 Copy := Copy_Separate_Tree (Iterator_Specification (Comp));
d983abeb
PT
3296 Id_Name :=
3297 Chars (Defining_Identifier (Iterator_Specification (Comp)));
aacbf376 3298
c57fbb12
VI
3299 Preanalyze (Copy);
3300
3301 End_Scope;
3302
aacbf376 3303 Typ := Etype (Defining_Identifier (Copy));
4f6ebe2a 3304
8092c199
AC
3305 else
3306 Choice := First (Discrete_Choices (Comp));
4f6ebe2a 3307
8092c199
AC
3308 while Present (Choice) loop
3309 Analyze (Choice);
4f6ebe2a 3310
8092c199 3311 -- Choice can be a subtype name, a range, or an expression
4f6ebe2a 3312
8092c199
AC
3313 if Is_Entity_Name (Choice)
3314 and then Is_Type (Entity (Choice))
3315 and then Base_Type (Entity (Choice)) = Base_Type (Key_Type)
3316 then
3317 null;
4f6ebe2a 3318
8092c199
AC
3319 elsif Present (Key_Type) then
3320 Analyze_And_Resolve (Choice, Key_Type);
99c419b2 3321 Typ := Key_Type;
8092c199
AC
3322 else
3323 Typ := Etype (Choice); -- assume unique for now
3324 end if;
4f6ebe2a 3325
8092c199
AC
3326 Next (Choice);
3327 end loop;
c0bab60b
ES
3328
3329 Id_Name := Chars (Defining_Identifier (Comp));
8092c199 3330 end if;
4f6ebe2a
ES
3331
3332 -- Create a scope in which to introduce an index, which is usually
3333 -- visible in the expression for the component, and needed for its
3334 -- analysis.
3335
c0bab60b 3336 Id := Make_Defining_Identifier (Sloc (Comp), Id_Name);
aacbf376
MP
3337 Ent := New_Internal_Entity (E_Loop,
3338 Current_Scope, Sloc (Comp), 'L');
4f6ebe2a
ES
3339 Set_Etype (Ent, Standard_Void_Type);
3340 Set_Parent (Ent, Parent (Comp));
3341 Push_Scope (Ent);
4f6ebe2a
ES
3342
3343 -- Insert and decorate the loop variable in the current scope.
3344 -- The expression has to be analyzed once the loop variable is
3345 -- directly visible. Mark the variable as referenced to prevent
3346 -- spurious warnings, given that subsequent uses of its name in the
3347 -- expression will reference the internal (synonym) loop variable.
3348
3349 Enter_Name (Id);
fa02302b 3350
99c419b2
VI
3351 pragma Assert (Present (Typ));
3352 Set_Etype (Id, Typ);
4f6ebe2a 3353
2e02ab86 3354 Mutate_Ekind (Id, E_Variable);
25e4024c 3355 Set_Is_Not_Self_Hidden (Id);
4f6ebe2a
ES
3356 Set_Scope (Id, Ent);
3357 Set_Referenced (Id);
3358
3359 -- Analyze a copy of the expression, to verify legality. We use
3360 -- a copy because the expression will be analyzed anew when the
3361 -- enclosing aggregate is expanded, and the construct is rewritten
3362 -- as a loop with a new index variable.
3363
3364 Expr := New_Copy_Tree (Expression (Comp));
3365 Preanalyze_And_Resolve (Expr, Elmt_Type);
3366 End_Scope;
c0bab60b
ES
3367
3368 end Resolve_Iterated_Association;
4f6ebe2a 3369
aacbf376
MP
3370 -- Start of processing for Resolve_Container_Aggregate
3371
745f5698 3372 begin
4f6ebe2a 3373 pragma Assert (Nkind (Asp) = N_Aggregate);
745f5698 3374
4f6ebe2a
ES
3375 Set_Etype (N, Typ);
3376 Parse_Aspect_Aggregate (Asp,
3377 Empty_Subp, Add_Named_Subp, Add_Unnamed_Subp,
3378 New_Indexed_Subp, Assign_Indexed_Subp);
3379
7a21651f
ES
3380 if Present (Add_Unnamed_Subp)
3381 and then No (New_Indexed_Subp)
67138e09 3382 and then Present (Etype (Add_Unnamed_Subp))
3da0e4ae 3383 and then Etype (Add_Unnamed_Subp) /= Any_Type
7a21651f 3384 then
4f6ebe2a
ES
3385 declare
3386 Elmt_Type : constant Entity_Id :=
3387 Etype (Next_Formal
3388 (First_Formal (Entity (Add_Unnamed_Subp))));
3389 Comp : Node_Id;
3390
3391 begin
3392 if Present (Expressions (N)) then
3393 -- positional aggregate
3394
3395 Comp := First (Expressions (N));
3396 while Present (Comp) loop
3397 Analyze_And_Resolve (Comp, Elmt_Type);
3398 Next (Comp);
3399 end loop;
3400 end if;
745f5698 3401
4f6ebe2a
ES
3402 -- Empty aggregate, to be replaced by Empty during
3403 -- expansion, or iterated component association.
3404
3405 if Present (Component_Associations (N)) then
3406 declare
3407 Comp : Node_Id := First (Component_Associations (N));
3408 begin
745f5698 3409 while Present (Comp) loop
4f6ebe2a
ES
3410 if Nkind (Comp) /=
3411 N_Iterated_Component_Association
3412 then
3413 Error_Msg_N ("illegal component association "
3414 & "for unnamed container aggregate", Comp);
3415 return;
3416 else
c0bab60b 3417 Resolve_Iterated_Association
4f6ebe2a
ES
3418 (Comp, Empty, Elmt_Type);
3419 end if;
3420
745f5698
ES
3421 Next (Comp);
3422 end loop;
4f6ebe2a
ES
3423 end;
3424 end if;
3425 end;
745f5698 3426
3da0e4ae
MP
3427 elsif Present (Add_Named_Subp)
3428 and then Etype (Add_Named_Subp) /= Any_Type
3429 then
4f6ebe2a
ES
3430 declare
3431 -- Retrieves types of container, key, and element from the
3432 -- specified insertion procedure.
3433
3434 Container : constant Entity_Id :=
3435 First_Formal (Entity (Add_Named_Subp));
3436 Key_Type : constant Entity_Id := Etype (Next_Formal (Container));
3437 Elmt_Type : constant Entity_Id :=
3438 Etype (Next_Formal (Next_Formal (Container)));
3439 Comp : Node_Id;
3440 Choice : Node_Id;
3441
3442 begin
3443 Comp := First (Component_Associations (N));
3444 while Present (Comp) loop
3445 if Nkind (Comp) = N_Component_Association then
3446 Choice := First (Choices (Comp));
3447
3448 while Present (Choice) loop
3449 Analyze_And_Resolve (Choice, Key_Type);
7a21651f 3450 if not Is_Static_Expression (Choice) then
9ed2b86d 3451 Error_Msg_N ("choice must be static", Choice);
7a21651f
ES
3452 end if;
3453
4f6ebe2a
ES
3454 Next (Choice);
3455 end loop;
3456
3457 Analyze_And_Resolve (Expression (Comp), Elmt_Type);
3458
c0bab60b
ES
3459 elsif Nkind (Comp) in
3460 N_Iterated_Component_Association |
3461 N_Iterated_Element_Association
3462 then
3463 Resolve_Iterated_Association
4f6ebe2a 3464 (Comp, Key_Type, Elmt_Type);
745f5698 3465 end if;
4f6ebe2a
ES
3466
3467 Next (Comp);
3468 end loop;
3469 end;
7a21651f 3470
3da0e4ae
MP
3471 elsif Present (Assign_Indexed_Subp)
3472 and then Etype (Assign_Indexed_Subp) /= Any_Type
3473 then
08c8883f
ES
3474 -- Indexed Aggregate. Positional or indexed component
3475 -- can be present, but not both. Choices must be static
3476 -- values or ranges with static bounds.
7a21651f
ES
3477
3478 declare
3479 Container : constant Entity_Id :=
3480 First_Formal (Entity (Assign_Indexed_Subp));
3481 Index_Type : constant Entity_Id := Etype (Next_Formal (Container));
3482 Comp_Type : constant Entity_Id :=
3483 Etype (Next_Formal (Next_Formal (Container)));
d4780139
ES
3484 Comp : Node_Id;
3485 Choice : Node_Id;
3486 Num_Choices : Nat := 0;
7a21651f 3487
d4780139
ES
3488 Hi_Val : Uint;
3489 Lo_Val : Uint;
7a21651f
ES
3490 begin
3491 if Present (Expressions (N)) then
3492 Comp := First (Expressions (N));
3493 while Present (Comp) loop
3494 Analyze_And_Resolve (Comp, Comp_Type);
3495 Next (Comp);
3496 end loop;
3497 end if;
3498
10c257af
ES
3499 if Present (Component_Associations (N))
3500 and then not Is_Empty_List (Component_Associations (N))
3501 then
3502 if Present (Expressions (N))
3503 and then not Is_Empty_List (Expressions (N))
3504 then
9ed2b86d 3505 Error_Msg_N ("container aggregate cannot be "
08c8883f
ES
3506 & "both positional and named", N);
3507 return;
3508 end if;
3509
d4780139 3510 Comp := First (Component_Associations (N));
7a21651f
ES
3511
3512 while Present (Comp) loop
3513 if Nkind (Comp) = N_Component_Association then
3514 Choice := First (Choices (Comp));
3515
3516 while Present (Choice) loop
3517 Analyze_And_Resolve (Choice, Index_Type);
d4780139 3518 Num_Choices := Num_Choices + 1;
7a21651f
ES
3519 Next (Choice);
3520 end loop;
3521
3522 Analyze_And_Resolve (Expression (Comp), Comp_Type);
3523
c0bab60b
ES
3524 elsif Nkind (Comp) in
3525 N_Iterated_Component_Association |
3526 N_Iterated_Element_Association
3527 then
3528 Resolve_Iterated_Association
7a21651f 3529 (Comp, Index_Type, Comp_Type);
d4780139 3530 Num_Choices := Num_Choices + 1;
7a21651f
ES
3531 end if;
3532
3533 Next (Comp);
3534 end loop;
d4780139
ES
3535
3536 -- The component associations in an indexed aggregate
3537 -- must denote a contiguous set of static values. We
3538 -- build a table of values/ranges and sort it, as is done
3539 -- elsewhere for case statements and array aggregates.
3540 -- If the aggregate has a single iterated association it
3541 -- is allowed to be nonstatic and there is nothing to check.
3542
3543 if Num_Choices > 1 then
3544 declare
3545 Table : Case_Table_Type (1 .. Num_Choices);
3546 No_Choice : Pos := 1;
3547 Lo, Hi : Node_Id;
3548
3549 -- Traverse aggregate to determine size of needed table.
3550 -- Verify that bounds are static and that loops have no
3551 -- filters or key expressions.
3552
3553 begin
3554 Comp := First (Component_Associations (N));
3555 while Present (Comp) loop
3556 if Nkind (Comp) = N_Iterated_Element_Association then
3557 if Present
3558 (Loop_Parameter_Specification (Comp))
3559 then
3560 if Present (Iterator_Filter
3561 (Loop_Parameter_Specification (Comp)))
3562 then
3563 Error_Msg_N
3564 ("iterator filter not allowed " &
3565 "in indexed aggregate", Comp);
3566 return;
3567
3568 elsif Present (Key_Expression
3569 (Loop_Parameter_Specification (Comp)))
3570 then
3571 Error_Msg_N
3572 ("key expression not allowed " &
3573 "in indexed aggregate", Comp);
3574 return;
3575 end if;
3576 end if;
3577 else
3578 Choice := First (Choices (Comp));
3579
3580 while Present (Choice) loop
3581 Get_Index_Bounds (Choice, Lo, Hi);
3582 Table (No_Choice).Choice := Choice;
3583 Table (No_Choice).Lo := Lo;
3584 Table (No_Choice).Hi := Hi;
3585
3586 -- Verify staticness of value or range
3587
3588 if not Is_Static_Expression (Lo)
3589 or else not Is_Static_Expression (Hi)
3590 then
3591 Error_Msg_N
3592 ("nonstatic expression for index " &
3593 "for indexed aggregate", Choice);
3594 return;
3595 end if;
3596
3597 No_Choice := No_Choice + 1;
3598 Next (Choice);
3599 end loop;
3600 end if;
3601
3602 Next (Comp);
3603 end loop;
3604
3605 Sort_Case_Table (Table);
3606
3607 for J in 1 .. Num_Choices - 1 loop
3608 Hi_Val := Expr_Value (Table (J).Hi);
3609 Lo_Val := Expr_Value (Table (J + 1).Lo);
3610
3611 if Lo_Val = Hi_Val then
3612 Error_Msg_N
3613 ("duplicate index in indexed aggregate",
3614 Table (J + 1).Choice);
3615 exit;
3616
3617 elsif Lo_Val < Hi_Val then
3618 Error_Msg_N
3619 ("overlapping indices in indexed aggregate",
3620 Table (J + 1).Choice);
3621 exit;
3622
3623 elsif Lo_Val > Hi_Val + 1 then
3624 Error_Msg_N
3625 ("missing index values", Table (J + 1).Choice);
3626 exit;
3627 end if;
3628 end loop;
3629 end;
3630 end if;
7a21651f
ES
3631 end if;
3632 end;
745f5698
ES
3633 end if;
3634 end Resolve_Container_Aggregate;
3635
9eb8d5b4
AC
3636 -----------------------------
3637 -- Resolve_Delta_Aggregate --
3638 -----------------------------
3639
3640 procedure Resolve_Delta_Aggregate (N : Node_Id; Typ : Entity_Id) is
d63199d8 3641 Base : constant Node_Id := Expression (N);
8d9a1ba7
PMR
3642
3643 begin
81e68a19 3644 Error_Msg_Ada_2022_Feature ("delta aggregate", Sloc (N));
32501d71 3645
8d9a1ba7
PMR
3646 if not Is_Composite_Type (Typ) then
3647 Error_Msg_N ("not a composite type", N);
3648 end if;
3649
3650 Analyze_And_Resolve (Base, Typ);
3651
3652 if Is_Array_Type (Typ) then
79e02673
PT
3653 -- For an array_delta_aggregate, the base_expression and each
3654 -- expression in every array_component_association shall be of a
3655 -- nonlimited type; RM 4.3.4(13/5). However, to prevent repeated
3656 -- errors we only check the base expression and not array component
3657 -- associations.
3658
3659 if Is_Limited_Type (Etype (Base)) then
3660 Error_Msg_N
3661 ("array delta aggregate shall be of a nonlimited type", Base);
3662 Explain_Limited_Type (Etype (Base), Base);
3663 end if;
3664
8d9a1ba7
PMR
3665 Resolve_Delta_Array_Aggregate (N, Typ);
3666 else
9af8c27f
MP
3667
3668 -- Delta aggregates for record types must use parentheses,
3669 -- not square brackets.
3670
3671 if Is_Homogeneous_Aggregate (N) then
3672 Error_Msg_N
3673 ("delta aggregates for record types must use (), not '[']", N);
3674 end if;
3675
79e02673
PT
3676 -- The base_expression of a record_delta_aggregate can be of a
3677 -- limited type only if it is newly constructed; RM 7.5(2.1/5).
3678
3679 Check_Expr_OK_In_Limited_Aggregate (Base);
3680
8d9a1ba7
PMR
3681 Resolve_Delta_Record_Aggregate (N, Typ);
3682 end if;
3683
3684 Set_Etype (N, Typ);
3685 end Resolve_Delta_Aggregate;
3686
3687 -----------------------------------
3688 -- Resolve_Delta_Array_Aggregate --
3689 -----------------------------------
3690
3691 procedure Resolve_Delta_Array_Aggregate (N : Node_Id; Typ : Entity_Id) is
845c4936
PT
3692 Deltas : constant List_Id := Component_Associations (N);
3693 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
d63199d8 3694
845c4936
PT
3695 Assoc : Node_Id;
3696 Choice : Node_Id;
cfc3a1db 3697 Expr : Node_Id;
9eb8d5b4 3698
8d9a1ba7 3699 begin
8d9a1ba7
PMR
3700 Assoc := First (Deltas);
3701 while Present (Assoc) loop
3702 if Nkind (Assoc) = N_Iterated_Component_Association then
3703 Choice := First (Choice_List (Assoc));
3704 while Present (Choice) loop
3705 if Nkind (Choice) = N_Others_Choice then
3706 Error_Msg_N
9ed2b86d 3707 ("OTHERS not allowed in delta aggregate", Choice);
9eb8d5b4 3708
3e65b68d
PT
3709 elsif Nkind (Choice) = N_Subtype_Indication then
3710 Resolve_Discrete_Subtype_Indication
3711 (Choice, Base_Type (Index_Type));
3712
8d9a1ba7
PMR
3713 else
3714 Analyze_And_Resolve (Choice, Index_Type);
3715 end if;
9eb8d5b4 3716
8d9a1ba7
PMR
3717 Next (Choice);
3718 end loop;
9eb8d5b4 3719
8d9a1ba7
PMR
3720 declare
3721 Id : constant Entity_Id := Defining_Identifier (Assoc);
3722 Ent : constant Entity_Id :=
3723 New_Internal_Entity
3724 (E_Loop, Current_Scope, Sloc (Assoc), 'L');
9eb8d5b4 3725
8d9a1ba7
PMR
3726 begin
3727 Set_Etype (Ent, Standard_Void_Type);
3728 Set_Parent (Ent, Assoc);
70b590e2 3729 Push_Scope (Ent);
8d9a1ba7
PMR
3730
3731 if No (Scope (Id)) then
8d9a1ba7 3732 Set_Etype (Id, Index_Type);
2e02ab86 3733 Mutate_Ekind (Id, E_Variable);
25e4024c 3734 Set_Is_Not_Self_Hidden (Id);
8d9a1ba7 3735 Set_Scope (Id, Ent);
9eb8d5b4 3736 end if;
70b590e2 3737 Enter_Name (Id);
9eb8d5b4 3738
cfc3a1db
ES
3739 -- Resolve a copy of the expression, after setting
3740 -- its parent properly to preserve its context.
3741
3742 Expr := New_Copy_Tree (Expression (Assoc));
3743 Set_Parent (Expr, Assoc);
3744 Analyze_And_Resolve (Expr, Component_Type (Typ));
8d9a1ba7
PMR
3745 End_Scope;
3746 end;
9eb8d5b4 3747
8d9a1ba7
PMR
3748 else
3749 Choice := First (Choice_List (Assoc));
3750 while Present (Choice) loop
0191a24e
SB
3751 if Is_Deep_Choice (Choice, Typ) then
3752 pragma Assert (All_Extensions_Allowed);
3e65b68d 3753
0191a24e
SB
3754 -- a deep delta aggregate
3755 Resolve_Deep_Delta_Assoc (Assoc, Typ);
3756 else
3757 Analyze (Choice);
9eb8d5b4 3758
0191a24e
SB
3759 if Nkind (Choice) = N_Others_Choice then
3760 Error_Msg_N
3761 ("OTHERS not allowed in delta aggregate", Choice);
d63199d8 3762
0191a24e
SB
3763 elsif Is_Entity_Name (Choice)
3764 and then Is_Type (Entity (Choice))
8d9a1ba7 3765 then
0191a24e 3766 -- Choice covers a range of values
3e65b68d 3767
0191a24e
SB
3768 if Base_Type (Entity (Choice)) /=
3769 Base_Type (Index_Type)
3770 then
3771 Error_Msg_NE
3772 ("choice does not match index type of &",
3773 Choice, Typ);
3774 end if;
3e65b68d 3775
0191a24e
SB
3776 elsif Nkind (Choice) = N_Subtype_Indication then
3777 Resolve_Discrete_Subtype_Indication
3778 (Choice, Base_Type (Index_Type));
3779
3780 else
3781 Resolve (Choice, Index_Type);
3782 end if;
8d9a1ba7 3783 end if;
9eb8d5b4 3784
8d9a1ba7
PMR
3785 Next (Choice);
3786 end loop;
3787
2caaa4bf
PT
3788 -- For an array_delta_aggregate, the array_component_association
3789 -- shall not use the box symbol <>; RM 4.3.4(11/5).
3790
3791 pragma Assert
3792 (Box_Present (Assoc) xor Present (Expression (Assoc)));
3793
3794 if Box_Present (Assoc) then
3795 Error_Msg_N
3796 ("'<'> in array delta aggregate is not allowed", Assoc);
3797 else
3798 Analyze_And_Resolve (Expression (Assoc), Component_Type (Typ));
3799 end if;
8d9a1ba7 3800 end if;
9313a26a 3801
8d9a1ba7
PMR
3802 Next (Assoc);
3803 end loop;
3804 end Resolve_Delta_Array_Aggregate;
3805
3806 ------------------------------------
3807 -- Resolve_Delta_Record_Aggregate --
3808 ------------------------------------
3809
3ec54569
PMR
3810 procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
3811
3812 -- Variables used to verify that discriminant-dependent components
3813 -- appear in the same variant.
3814
5612989e 3815 Comp_Ref : Entity_Id := Empty; -- init to avoid warning
3ec54569
PMR
3816 Variant : Node_Id;
3817
0191a24e 3818 procedure Check_Variant (Id : Node_Id);
8d9a1ba7
PMR
3819 -- If a given component of the delta aggregate appears in a variant
3820 -- part, verify that it is within the same variant as that of previous
3821 -- specified variant components of the delta.
9313a26a 3822
0191a24e
SB
3823 function Get_Component_Type
3824 (Selector : Node_Id; Enclosing_Type : Entity_Id) return Entity_Id;
3825 -- Locate component with a given name and return its type.
3826 -- If none found then report error and return Empty.
d63199d8
PMR
3827
3828 function Nested_In (V1 : Node_Id; V2 : Node_Id) return Boolean;
3829 -- Determine whether variant V1 is within variant V2
9eb8d5b4 3830
2aa814cb
PT
3831 function Variant_Depth (N : Node_Id) return Natural;
3832 -- Determine the distance of a variant to the enclosing type declaration
8d9a1ba7
PMR
3833
3834 --------------------
3835 -- Check_Variant --
3836 --------------------
3837
0191a24e 3838 procedure Check_Variant (Id : Node_Id) is
8d9a1ba7
PMR
3839 Comp : Entity_Id;
3840 Comp_Variant : Node_Id;
3841
3842 begin
3843 if not Has_Discriminants (Typ) then
3844 return;
3845 end if;
9eb8d5b4 3846
8d9a1ba7
PMR
3847 Comp := First_Entity (Typ);
3848 while Present (Comp) loop
3849 exit when Chars (Comp) = Chars (Id);
3850 Next_Component (Comp);
3851 end loop;
3852
3853 -- Find the variant, if any, whose component list includes the
3854 -- component declaration.
3855
3856 Comp_Variant := Parent (Parent (List_Containing (Parent (Comp))));
3857 if Nkind (Comp_Variant) = N_Variant then
3858 if No (Variant) then
3859 Variant := Comp_Variant;
3860 Comp_Ref := Comp;
3861
3862 elsif Variant /= Comp_Variant then
9eb8d5b4 3863 declare
8d9a1ba7
PMR
3864 D1 : constant Integer := Variant_Depth (Variant);
3865 D2 : constant Integer := Variant_Depth (Comp_Variant);
9eb8d5b4
AC
3866
3867 begin
8d9a1ba7
PMR
3868 if D1 = D2
3869 or else
d63199d8 3870 (D1 > D2 and then not Nested_In (Variant, Comp_Variant))
8d9a1ba7 3871 or else
d63199d8 3872 (D2 > D1 and then not Nested_In (Comp_Variant, Variant))
8d9a1ba7 3873 then
5612989e 3874 pragma Assert (Present (Comp_Ref));
8d9a1ba7
PMR
3875 Error_Msg_Node_2 := Comp_Ref;
3876 Error_Msg_NE
3877 ("& and & appear in different variants", Id, Comp);
3878
3879 -- Otherwise retain the deeper variant for subsequent tests
9eb8d5b4 3880
8d9a1ba7
PMR
3881 elsif D2 > D1 then
3882 Variant := Comp_Variant;
3883 end if;
9eb8d5b4 3884 end;
8d9a1ba7
PMR
3885 end if;
3886 end if;
3887 end Check_Variant;
9eb8d5b4 3888
0191a24e
SB
3889 ------------------------
3890 -- Get_Component_Type --
3891 ------------------------
d63199d8 3892
0191a24e
SB
3893 function Get_Component_Type
3894 (Selector : Node_Id; Enclosing_Type : Entity_Id) return Entity_Id
3895 is
d63199d8 3896 Comp : Entity_Id;
d63199d8 3897 begin
0191a24e
SB
3898 case Nkind (Selector) is
3899 when N_Selected_Component | N_Indexed_Component =>
3900 -- a deep delta aggregate choice
3901
3902 declare
3903 Prefix_Type : constant Entity_Id :=
3904 Get_Component_Type (Prefix (Selector), Enclosing_Type);
3905 begin
d75ca8a6 3906 if No (Prefix_Type) then
0191a24e
SB
3907 pragma Assert (Serious_Errors_Detected > 0);
3908 return Empty;
3909 end if;
3910
3911 -- Set the type of the prefix for GNATprove
3912
3913 Set_Etype (Prefix (Selector), Prefix_Type);
3914
3915 if Nkind (Selector) = N_Selected_Component then
3916 return Get_Component_Type
3917 (Selector_Name (Selector),
3918 Enclosing_Type => Prefix_Type);
3919 elsif not Is_Array_Type (Prefix_Type) then
3920 Error_Msg_NE
3921 ("type& is not an array type",
3922 Selector, Prefix_Type);
3923 elsif Number_Dimensions (Prefix_Type) /= 1 then
3924 Error_Msg_NE
3925 ("array type& not one-dimensional",
3926 Selector, Prefix_Type);
3927 elsif List_Length (Expressions (Selector)) /= 1 then
3928 Error_Msg_NE
3929 ("wrong number of indices for array type&",
3930 Selector, Prefix_Type);
3931 else
3932 Analyze_And_Resolve
3933 (First (Expressions (Selector)),
3934 Etype (First_Index (Prefix_Type)));
3935 return Component_Type (Prefix_Type);
3936 end if;
3937 end;
3938
3939 when others =>
3940 null;
3941 end case;
3942
3943 Comp := First_Entity (Enclosing_Type);
d63199d8 3944 while Present (Comp) loop
0191a24e 3945 if Chars (Comp) = Chars (Selector) then
d63199d8 3946 if Ekind (Comp) = E_Discriminant then
0191a24e 3947 Error_Msg_N ("delta cannot apply to discriminant", Selector);
d63199d8
PMR
3948 end if;
3949
0191a24e
SB
3950 Set_Entity (Selector, Comp);
3951 Set_Etype (Selector, Etype (Comp));
3952
3953 return Etype (Comp);
d63199d8
PMR
3954 end if;
3955
99859ea7 3956 Next_Entity (Comp);
d63199d8
PMR
3957 end loop;
3958
0191a24e
SB
3959 Error_Msg_NE
3960 ("type& has no component with this name", Selector, Enclosing_Type);
484d58c5 3961 return Empty;
0191a24e 3962 end Get_Component_Type;
d63199d8 3963
8d9a1ba7
PMR
3964 ---------------
3965 -- Nested_In --
3966 ---------------
9eb8d5b4 3967
8d9a1ba7
PMR
3968 function Nested_In (V1, V2 : Node_Id) return Boolean is
3969 Par : Node_Id;
d63199d8 3970
8d9a1ba7
PMR
3971 begin
3972 Par := Parent (V1);
3973 while Nkind (Par) /= N_Full_Type_Declaration loop
3974 if Par = V2 then
3975 return True;
3976 end if;
d63199d8 3977
8d9a1ba7
PMR
3978 Par := Parent (Par);
3979 end loop;
9eb8d5b4 3980
8d9a1ba7
PMR
3981 return False;
3982 end Nested_In;
3983
3984 -------------------
3985 -- Variant_Depth --
3986 -------------------
9eb8d5b4 3987
2aa814cb
PT
3988 function Variant_Depth (N : Node_Id) return Natural is
3989 Depth : Natural;
8d9a1ba7 3990 Par : Node_Id;
d63199d8 3991
8d9a1ba7
PMR
3992 begin
3993 Depth := 0;
3994 Par := Parent (N);
3995 while Nkind (Par) /= N_Full_Type_Declaration loop
3996 Depth := Depth + 1;
d63199d8 3997 Par := Parent (Par);
8d9a1ba7
PMR
3998 end loop;
3999
4000 return Depth;
4001 end Variant_Depth;
4002
d63199d8 4003 -- Local variables
9eb8d5b4 4004
d63199d8 4005 Deltas : constant List_Id := Component_Associations (N);
9eb8d5b4 4006
0191a24e
SB
4007 Assoc : Node_Id;
4008 Choice : Node_Id;
4009 Comp_Type : Entity_Id := Empty; -- init to avoid warning
4010 Deep_Choice : Boolean;
9eb8d5b4 4011
8d9a1ba7
PMR
4012 -- Start of processing for Resolve_Delta_Record_Aggregate
4013
4014 begin
3ec54569
PMR
4015 Variant := Empty;
4016
8d9a1ba7 4017 Assoc := First (Deltas);
8d9a1ba7
PMR
4018 while Present (Assoc) loop
4019 Choice := First (Choice_List (Assoc));
4020 while Present (Choice) loop
0191a24e
SB
4021 Deep_Choice := Nkind (Choice) /= N_Identifier;
4022 if Deep_Choice then
4023 Error_Msg_GNAT_Extension
4024 ("deep delta aggregate", Sloc (Choice));
4025 end if;
d63199d8 4026
0191a24e
SB
4027 Comp_Type := Get_Component_Type
4028 (Selector => Choice, Enclosing_Type => Typ);
484d58c5 4029
0191a24e 4030 -- Set the type of the choice for GNATprove
484d58c5 4031
0191a24e
SB
4032 if Deep_Choice then
4033 Set_Etype (Choice, Comp_Type);
4034 end if;
484d58c5 4035
0191a24e
SB
4036 if Present (Comp_Type) then
4037 if not Deep_Choice then
4038 -- ??? Not clear yet how RM 4.3.1(17.7) applies to a
4039 -- deep delta aggregate.
4040 Check_Variant (Choice);
4041 end if;
484d58c5
PT
4042 else
4043 Comp_Type := Any_Type;
8d9a1ba7
PMR
4044 end if;
4045
4046 Next (Choice);
9eb8d5b4 4047 end loop;
9eb8d5b4 4048
5612989e 4049 pragma Assert (Present (Comp_Type));
6cf01c92
PT
4050
4051 -- A record_component_association in record_delta_aggregate shall not
4052 -- use the box compound delimiter <> rather than an expression; see
4053 -- RM 4.3.1(17.3/5).
4054
4055 pragma Assert (Present (Expression (Assoc)) xor Box_Present (Assoc));
4056
4057 if Box_Present (Assoc) then
4058 Error_Msg_N
4059 ("'<'> in record delta aggregate is not allowed", Assoc);
4060 else
4061 Analyze_And_Resolve (Expression (Assoc), Comp_Type);
4a22fdac
PT
4062
4063 -- The expression must not be of a limited type; RM 4.3.1(17.4/5)
4064
4065 if Is_Limited_Type (Etype (Expression (Assoc))) then
4066 Error_Msg_N
4067 ("expression of a limited type in record delta aggregate " &
4068 "is not allowed",
4069 Expression (Assoc));
4070 end if;
6cf01c92 4071 end if;
4a22fdac 4072
8d9a1ba7
PMR
4073 Next (Assoc);
4074 end loop;
4075 end Resolve_Delta_Record_Aggregate;
9eb8d5b4 4076
0191a24e
SB
4077 ------------------------------
4078 -- Resolve_Deep_Delta_Assoc --
4079 ------------------------------
4080
4081 procedure Resolve_Deep_Delta_Assoc (N : Node_Id; Typ : Entity_Id) is
4082 Choice : constant Node_Id := First (Choice_List (N));
4083 Enclosing_Type : Entity_Id := Typ;
4084
4085 procedure Resolve_Choice_Prefix
4086 (Choice_Prefix : Node_Id; Enclosing_Type : in out Entity_Id);
4087 -- Recursively analyze selectors. Enclosing_Type is set to
4088 -- type of the last component.
4089
4090 ---------------------------
4091 -- Resolve_Choice_Prefix --
4092 ---------------------------
4093
4094 procedure Resolve_Choice_Prefix
4095 (Choice_Prefix : Node_Id; Enclosing_Type : in out Entity_Id)
4096 is
4097 Selector : Node_Id := Choice_Prefix;
4098 begin
4099 if not Is_Root_Prefix_Of_Deep_Choice (Choice_Prefix) then
4100 Resolve_Choice_Prefix (Prefix (Choice_Prefix), Enclosing_Type);
4101
4102 if Nkind (Choice_Prefix) = N_Selected_Component then
4103 Selector := Selector_Name (Choice_Prefix);
4104 else
4105 pragma Assert (Nkind (Choice_Prefix) = N_Indexed_Component);
4106 Selector := First (Expressions (Choice_Prefix));
4107 end if;
4108 end if;
4109
4110 if Is_Array_Type (Enclosing_Type) then
4111 Analyze_And_Resolve (Selector,
4112 Etype (First_Index (Enclosing_Type)));
4113 Enclosing_Type := Component_Type (Enclosing_Type);
4114 else
4115 declare
4116 Comp : Entity_Id := First_Entity (Enclosing_Type);
4117 Found : Boolean := False;
4118 begin
4119 while Present (Comp) and not Found loop
4120 if Chars (Comp) = Chars (Selector) then
4121 if Ekind (Comp) = E_Discriminant then
4122 Error_Msg_N ("delta cannot apply to discriminant",
4123 Selector);
4124 end if;
4125 Found := True;
4126 Set_Entity (Selector, Comp);
4127 Set_Etype (Selector, Etype (Comp));
4128 Set_Analyzed (Selector);
4129 Enclosing_Type := Etype (Comp);
4130 else
4131 Next_Entity (Comp);
4132 end if;
4133 end loop;
4134 if not Found then
4135 Error_Msg_NE
4136 ("type& has no component with this name",
4137 Selector, Enclosing_Type);
4138 end if;
4139 end;
4140 end if;
4141
4142 -- Set the type of the prefix for GNATprove, except for the root
4143 -- prefix, whose type is already the expected one for a record
4144 -- delta aggregate, or the type of the array index for an
4145 -- array delta aggregate (the only case here really since
4146 -- Resolve_Deep_Delta_Assoc is only called for array delta
4147 -- aggregates).
4148
4149 if Selector /= Choice_Prefix then
4150 Set_Etype (Choice_Prefix, Enclosing_Type);
4151 end if;
4152 end Resolve_Choice_Prefix;
4153 begin
4154 declare
4155 Unimplemented : exception; -- TEMPORARY
4156 begin
4157 if Present (Next (Choice)) then
4158 raise Unimplemented;
4159 end if;
4160 end;
4161
4162 Resolve_Choice_Prefix (Choice, Enclosing_Type);
4163 Analyze_And_Resolve (Expression (N), Enclosing_Type);
4164 end Resolve_Deep_Delta_Assoc;
4165
996ae0b0
RK
4166 ---------------------------------
4167 -- Resolve_Extension_Aggregate --
4168 ---------------------------------
4169
4170 -- There are two cases to consider:
4171
ebd34478
AC
4172 -- a) If the ancestor part is a type mark, the components needed are the
4173 -- difference between the components of the expected type and the
996ae0b0
RK
4174 -- components of the given type mark.
4175
ebd34478 4176 -- b) If the ancestor part is an expression, it must be unambiguous, and
12f0c50c 4177 -- once we have its type we can also compute the needed components as in
ebd34478
AC
4178 -- the previous case. In both cases, if the ancestor type is not the
4179 -- immediate ancestor, we have to build this ancestor recursively.
996ae0b0 4180
12f0c50c 4181 -- In both cases, discriminants of the ancestor type do not play a role in
ebd34478
AC
4182 -- the resolution of the needed components, because inherited discriminants
4183 -- cannot be used in a type extension. As a result we can compute
4184 -- independently the list of components of the ancestor type and of the
4185 -- expected type.
996ae0b0
RK
4186
4187 procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
fbf5a39b
AC
4188 A : constant Node_Id := Ancestor_Part (N);
4189 A_Type : Entity_Id;
4190 I : Interp_Index;
4191 It : Interp;
996ae0b0 4192
ca44152f
ES
4193 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean;
4194 -- If the type is limited, verify that the ancestor part is a legal
ebd34478
AC
4195 -- expression (aggregate or function call, including 'Input)) that does
4196 -- not require a copy, as specified in 7.5(2).
ca44152f 4197
996ae0b0
RK
4198 function Valid_Ancestor_Type return Boolean;
4199 -- Verify that the type of the ancestor part is a non-private ancestor
1543e3ab 4200 -- of the expected type, which must be a type extension.
996ae0b0 4201
5168a9b3
PMR
4202 procedure Transform_BIP_Assignment (Typ : Entity_Id);
4203 -- For an extension aggregate whose ancestor part is a build-in-place
4204 -- call returning a nonlimited type, this is used to transform the
4205 -- assignment to the ancestor part to use a temp.
4206
ca44152f
ES
4207 ----------------------------
4208 -- Valid_Limited_Ancestor --
4209 ----------------------------
4210
4211 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean is
4212 begin
d8d7e809
AC
4213 if Is_Entity_Name (Anc) and then Is_Type (Entity (Anc)) then
4214 return True;
4215
4216 -- The ancestor must be a call or an aggregate, but a call may
4217 -- have been expanded into a temporary, so check original node.
4218
4a08c95c
AC
4219 elsif Nkind (Anc) in N_Aggregate
4220 | N_Extension_Aggregate
4221 | N_Function_Call
ca44152f
ES
4222 then
4223 return True;
4224
d8d7e809 4225 elsif Nkind (Original_Node (Anc)) = N_Function_Call then
ca44152f
ES
4226 return True;
4227
4228 elsif Nkind (Anc) = N_Attribute_Reference
4229 and then Attribute_Name (Anc) = Name_Input
4230 then
4231 return True;
4232
ebd34478 4233 elsif Nkind (Anc) = N_Qualified_Expression then
ca44152f
ES
4234 return Valid_Limited_Ancestor (Expression (Anc));
4235
32794080
JM
4236 elsif Nkind (Anc) = N_Raise_Expression then
4237 return True;
4238
ca44152f
ES
4239 else
4240 return False;
4241 end if;
4242 end Valid_Limited_Ancestor;
4243
fbf5a39b
AC
4244 -------------------------
4245 -- Valid_Ancestor_Type --
4246 -------------------------
4247
996ae0b0
RK
4248 function Valid_Ancestor_Type return Boolean is
4249 Imm_Type : Entity_Id;
4250
4251 begin
4252 Imm_Type := Base_Type (Typ);
2af92e28
ES
4253 while Is_Derived_Type (Imm_Type) loop
4254 if Etype (Imm_Type) = Base_Type (A_Type) then
4255 return True;
4256
21d7ef70 4257 -- The base type of the parent type may appear as a private
ebd34478
AC
4258 -- extension if it is declared as such in a parent unit of the
4259 -- current one. For consistency of the subsequent analysis use
4260 -- the partial view for the ancestor part.
2af92e28
ES
4261
4262 elsif Is_Private_Type (Etype (Imm_Type))
4263 and then Present (Full_View (Etype (Imm_Type)))
4264 and then Base_Type (A_Type) = Full_View (Etype (Imm_Type))
4265 then
4266 A_Type := Etype (Imm_Type);
4267 return True;
4519314c
AC
4268
4269 -- The parent type may be a private extension. The aggregate is
4270 -- legal if the type of the aggregate is an extension of it that
4271 -- is not a private extension.
4272
4273 elsif Is_Private_Type (A_Type)
4274 and then not Is_Private_Type (Imm_Type)
4275 and then Present (Full_View (A_Type))
4276 and then Base_Type (Full_View (A_Type)) = Etype (Imm_Type)
4277 then
4278 return True;
4279
32794080
JM
4280 -- The parent type may be a raise expression (which is legal in
4281 -- any expression context).
4282
4283 elsif A_Type = Raise_Type then
4284 A_Type := Etype (Imm_Type);
4285 return True;
4286
2af92e28
ES
4287 else
4288 Imm_Type := Etype (Base_Type (Imm_Type));
4289 end if;
996ae0b0
RK
4290 end loop;
4291
6d2a1120 4292 -- If previous loop did not find a proper ancestor, report error
2af92e28
ES
4293
4294 Error_Msg_NE ("expect ancestor type of &", A, Typ);
4295 return False;
996ae0b0
RK
4296 end Valid_Ancestor_Type;
4297
3fc40cd7
PMR
4298 ------------------------------
4299 -- Transform_BIP_Assignment --
4300 ------------------------------
4301
5168a9b3 4302 procedure Transform_BIP_Assignment (Typ : Entity_Id) is
3fc40cd7
PMR
4303 Loc : constant Source_Ptr := Sloc (N);
4304 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'Y', A);
4305 Obj_Decl : constant Node_Id :=
4306 Make_Object_Declaration (Loc,
4307 Defining_Identifier => Def_Id,
4308 Constant_Present => True,
4309 Object_Definition => New_Occurrence_Of (Typ, Loc),
4310 Expression => A,
4311 Has_Init_Expression => True);
5168a9b3
PMR
4312 begin
4313 Set_Etype (Def_Id, Typ);
4314 Set_Ancestor_Part (N, New_Occurrence_Of (Def_Id, Loc));
4315 Insert_Action (N, Obj_Decl);
4316 end Transform_BIP_Assignment;
4317
996ae0b0
RK
4318 -- Start of processing for Resolve_Extension_Aggregate
4319
4320 begin
ebd34478
AC
4321 -- Analyze the ancestor part and account for the case where it is a
4322 -- parameterless function call.
70b70ce8 4323
996ae0b0 4324 Analyze (A);
70b70ce8 4325 Check_Parameterless_Call (A);
996ae0b0 4326
58009744 4327 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
87729e5a 4328
5c6430d6
GD
4329 -- AI05-0115: If the ancestor part is a subtype mark, the ancestor
4330 -- must not have unknown discriminants. To catch cases where the
4331 -- aggregate occurs at a place where the full view of the ancestor
4332 -- type is visible and doesn't have unknown discriminants, but the
4333 -- aggregate type was derived from a partial view that has unknown
4334 -- discriminants, we check whether the aggregate type has unknown
4335 -- discriminants (unknown discriminants were inherited), along
4336 -- with checking that the partial view of the ancestor has unknown
4337 -- discriminants. (It might be sufficient to replace the entire
4338 -- condition with Has_Unknown_Discriminants (Typ), but that might
4339 -- miss some cases, not clear, and causes error changes in some tests
4340 -- such as class-wide cases, that aren't clearly improvements. ???)
4341
4342 if Has_Unknown_Discriminants (Entity (A))
4343 or else (Has_Unknown_Discriminants (Typ)
4344 and then Partial_View_Has_Unknown_Discr (Entity (A)))
4345 then
87729e5a
AC
4346 Error_Msg_NE
4347 ("aggregate not available for type& whose ancestor "
4348 & "has unknown discriminants", N, Typ);
4349 end if;
9f90d123
AC
4350 end if;
4351
996ae0b0
RK
4352 if not Is_Tagged_Type (Typ) then
4353 Error_Msg_N ("type of extension aggregate must be tagged", N);
4354 return;
4355
19f0526a
AC
4356 elsif Is_Limited_Type (Typ) then
4357
0ab80019 4358 -- Ada 2005 (AI-287): Limited aggregates are allowed
19f0526a 4359
0791fbe9 4360 if Ada_Version < Ada_2005 then
19f0526a
AC
4361 Error_Msg_N ("aggregate type cannot be limited", N);
4362 Explain_Limited_Type (Typ, N);
4363 return;
ca44152f
ES
4364
4365 elsif Valid_Limited_Ancestor (A) then
4366 null;
4367
4368 else
4369 Error_Msg_N
4370 ("limited ancestor part must be aggregate or function call", A);
19f0526a 4371 end if;
996ae0b0
RK
4372
4373 elsif Is_Class_Wide_Type (Typ) then
4374 Error_Msg_N ("aggregate cannot be of a class-wide type", N);
4375 return;
4376 end if;
4377
58009744 4378 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
fbf5a39b 4379 A_Type := Get_Full_View (Entity (A));
996ae0b0
RK
4380
4381 if Valid_Ancestor_Type then
4382 Set_Entity (A, A_Type);
4383 Set_Etype (A, A_Type);
4384
4385 Validate_Ancestor_Part (N);
4386 Resolve_Record_Aggregate (N, Typ);
4387 end if;
4388
4389 elsif Nkind (A) /= N_Aggregate then
4390 if Is_Overloaded (A) then
4391 A_Type := Any_Type;
996ae0b0 4392
7f9747c6 4393 Get_First_Interp (A, I, It);
996ae0b0 4394 while Present (It.Typ) loop
58009744 4395
5168a9b3 4396 -- Consider limited interpretations if Ada 2005 or higher
70b70ce8 4397
996ae0b0 4398 if Is_Tagged_Type (It.Typ)
0791fbe9 4399 and then (Ada_Version >= Ada_2005
70b70ce8 4400 or else not Is_Limited_Type (It.Typ))
996ae0b0
RK
4401 then
4402 if A_Type /= Any_Type then
4403 Error_Msg_N ("cannot resolve expression", A);
4404 return;
4405 else
4406 A_Type := It.Typ;
4407 end if;
4408 end if;
4409
4410 Get_Next_Interp (I, It);
4411 end loop;
4412
4413 if A_Type = Any_Type then
0791fbe9 4414 if Ada_Version >= Ada_2005 then
58009744
AC
4415 Error_Msg_N
4416 ("ancestor part must be of a tagged type", A);
70b70ce8
AC
4417 else
4418 Error_Msg_N
4419 ("ancestor part must be of a nonlimited tagged type", A);
4420 end if;
4421
996ae0b0
RK
4422 return;
4423 end if;
4424
4425 else
4426 A_Type := Etype (A);
4427 end if;
4428
4429 if Valid_Ancestor_Type then
4430 Resolve (A, A_Type);
fbf5a39b 4431 Check_Unset_Reference (A);
996ae0b0 4432 Check_Non_Static_Context (A);
fbf5a39b 4433
1646c947
GD
4434 -- The aggregate is illegal if the ancestor expression is a call
4435 -- to a function with a limited unconstrained result, unless the
4436 -- type of the aggregate is a null extension. This restriction
4437 -- was added in AI05-67 to simplify implementation.
4438
4439 if Nkind (A) = N_Function_Call
4440 and then Is_Limited_Type (A_Type)
4441 and then not Is_Null_Extension (Typ)
4442 and then not Is_Constrained (A_Type)
4443 then
4444 Error_Msg_N
4445 ("type of limited ancestor part must be constrained", A);
4446
cefce34c
JM
4447 -- Reject the use of CPP constructors that leave objects partially
4448 -- initialized. For example:
4449
4450 -- type CPP_Root is tagged limited record ...
4451 -- pragma Import (CPP, CPP_Root);
4452
4453 -- type CPP_DT is new CPP_Root and Iface ...
4454 -- pragma Import (CPP, CPP_DT);
4455
4456 -- type Ada_DT is new CPP_DT with ...
4457
4458 -- Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
4459
4460 -- Using the constructor of CPP_Root the slots of the dispatch
4461 -- table of CPP_DT cannot be set, and the secondary tag of
4462 -- CPP_DT is unknown.
4463
4464 elsif Nkind (A) = N_Function_Call
4465 and then Is_CPP_Constructor_Call (A)
4466 and then Enclosing_CPP_Parent (Typ) /= A_Type
4467 then
4468 Error_Msg_NE
324ac540 4469 ("??must use 'C'P'P constructor for type &", A,
cefce34c
JM
4470 Enclosing_CPP_Parent (Typ));
4471
4472 -- The following call is not needed if the previous warning
4473 -- is promoted to an error.
4474
4475 Resolve_Record_Aggregate (N, Typ);
4476
1646c947 4477 elsif Is_Class_Wide_Type (Etype (A))
fbf5a39b
AC
4478 and then Nkind (Original_Node (A)) = N_Function_Call
4479 then
4480 -- If the ancestor part is a dispatching call, it appears
ebd34478
AC
4481 -- statically to be a legal ancestor, but it yields any member
4482 -- of the class, and it is not possible to determine whether
4483 -- it is an ancestor of the extension aggregate (much less
4484 -- which ancestor). It is not possible to determine the
4485 -- components of the extension part.
fbf5a39b 4486
ebd34478
AC
4487 -- This check implements AI-306, which in fact was motivated by
4488 -- an AdaCore query to the ARG after this test was added.
82c80734 4489
fbf5a39b
AC
4490 Error_Msg_N ("ancestor part must be statically tagged", A);
4491 else
5168a9b3
PMR
4492 -- We are using the build-in-place protocol, but we can't build
4493 -- in place, because we need to call the function before
4494 -- allocating the aggregate. Could do better for null
4495 -- extensions, and maybe for nondiscriminated types.
4496 -- This is wrong for limited, but those were wrong already.
4497
36fcb4b9 4498 if not Is_Inherently_Limited_Type (A_Type)
5168a9b3
PMR
4499 and then Is_Build_In_Place_Function_Call (A)
4500 then
4501 Transform_BIP_Assignment (A_Type);
4502 end if;
4503
fbf5a39b
AC
4504 Resolve_Record_Aggregate (N, Typ);
4505 end if;
996ae0b0
RK
4506 end if;
4507
4508 else
937e9676 4509 Error_Msg_N ("no unique type for this aggregate", A);
996ae0b0 4510 end if;
d3820795 4511
22e89283 4512 Check_Function_Writable_Actuals (N);
996ae0b0
RK
4513 end Resolve_Extension_Aggregate;
4514
10c257af
ES
4515 ----------------------------------
4516 -- Resolve_Null_Array_Aggregate --
4517 ----------------------------------
4518
4519 function Resolve_Null_Array_Aggregate (N : Node_Id) return Boolean is
4520 -- Never returns False, but declared as a function to match
4521 -- other Resolve_Mumble functions.
4522
4523 Loc : constant Source_Ptr := Sloc (N);
4524 Typ : constant Entity_Id := Etype (N);
4525
10c257af
ES
4526 Index : Node_Id;
4527 Lo, Hi : Node_Id;
4528 Constr : constant List_Id := New_List;
10c257af
ES
4529
4530 begin
59a23beb
PT
4531 -- Attach the list of constraints at the location of the aggregate, so
4532 -- the individual constraints can be analyzed.
4533
4534 Set_Parent (Constr, N);
4535
10c257af
ES
4536 -- Create a constrained subtype with null dimensions
4537
4538 Index := First_Index (Typ);
4539 while Present (Index) loop
4540 Get_Index_Bounds (Index, L => Lo, H => Hi);
4541
4542 -- The upper bound is the predecessor of the lower bound
4543
4544 Hi := Make_Attribute_Reference
4545 (Loc,
4546 Prefix => New_Occurrence_Of (Etype (Index), Loc),
4547 Attribute_Name => Name_Pred,
4548 Expressions => New_List (New_Copy_Tree (Lo)));
4549
59a23beb
PT
4550 Append (Make_Range (Loc, New_Copy_Tree (Lo), Hi), Constr);
4551 Analyze_And_Resolve (Last (Constr), Etype (Index));
10c257af 4552
93d0457e 4553 Next_Index (Index);
10c257af
ES
4554 end loop;
4555
10c257af 4556 Set_Compile_Time_Known_Aggregate (N);
59a23beb 4557 Set_Aggregate_Bounds (N, First (Constr));
10c257af
ES
4558
4559 return True;
4560 end Resolve_Null_Array_Aggregate;
4561
996ae0b0
RK
4562 ------------------------------
4563 -- Resolve_Record_Aggregate --
4564 ------------------------------
4565
4566 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
fbf5a39b 4567 New_Assoc_List : constant List_Id := New_List;
996ae0b0 4568 -- New_Assoc_List is the newly built list of N_Component_Association
937e9676 4569 -- nodes.
996ae0b0
RK
4570
4571 Others_Etype : Entity_Id := Empty;
4572 -- This variable is used to save the Etype of the last record component
4573 -- that takes its value from the others choice. Its purpose is:
4574 --
4575 -- (a) make sure the others choice is useful
4576 --
4577 -- (b) make sure the type of all the components whose value is
4578 -- subsumed by the others choice are the same.
4579 --
ebd34478 4580 -- This variable is updated as a side effect of function Get_Value.
996ae0b0 4581
f7937111
GD
4582 Box_Node : Node_Id := Empty;
4583 Is_Box_Present : Boolean := False;
4584 Is_Box_Init_By_Default : Boolean := False;
4585 Others_Box : Natural := 0;
0ab80019 4586 -- Ada 2005 (AI-287): Variables used in case of default initialization
9b96e234 4587 -- to provide a functionality similar to Others_Etype. Box_Present
19f0526a 4588 -- indicates that the component takes its default initialization;
ec3c7387
AC
4589 -- Others_Box counts the number of components of the current aggregate
4590 -- (which may be a sub-aggregate of a larger one) that are default-
4591 -- initialized. A value of One indicates that an others_box is present.
4592 -- Any larger value indicates that the others_box is not redundant.
937e9676
AC
4593 -- These variables, similar to Others_Etype, are also updated as a side
4594 -- effect of function Get_Value. Box_Node is used to place a warning on
4595 -- a redundant others_box.
65356e64
AC
4596
4597 procedure Add_Association
9b96e234
JM
4598 (Component : Entity_Id;
4599 Expr : Node_Id;
107b023c 4600 Assoc_List : List_Id;
9b96e234 4601 Is_Box_Present : Boolean := False);
ebd34478
AC
4602 -- Builds a new N_Component_Association node which associates Component
4603 -- to expression Expr and adds it to the association list being built,
4604 -- either New_Assoc_List, or the association being built for an inner
4605 -- aggregate.
996ae0b0 4606
937e9676
AC
4607 procedure Add_Discriminant_Values
4608 (New_Aggr : Node_Id;
4609 Assoc_List : List_Id);
4610 -- The constraint to a component may be given by a discriminant of the
4611 -- enclosing type, in which case we have to retrieve its value, which is
4612 -- part of the enclosing aggregate. Assoc_List provides the discriminant
4613 -- associations of the current type or of some enclosing record.
4614
4615 function Discriminant_Present (Input_Discr : Entity_Id) return Boolean;
996ae0b0 4616 -- If aggregate N is a regular aggregate this routine will return True.
937e9676
AC
4617 -- Otherwise, if N is an extension aggregate, then Input_Discr denotes
4618 -- a discriminant whose value may already have been specified by N's
4619 -- ancestor part. This routine checks whether this is indeed the case
4620 -- and if so returns False, signaling that no value for Input_Discr
4621 -- should appear in N's aggregate part. Also, in this case, the routine
4622 -- appends to New_Assoc_List the discriminant value specified in the
4623 -- ancestor part.
2383acbd 4624 --
f104fca1 4625 -- If the aggregate is in a context with expansion delayed, it will be
22cb89b5
AC
4626 -- reanalyzed. The inherited discriminant values must not be reinserted
4627 -- in the component list to prevent spurious errors, but they must be
f104fca1
AC
4628 -- present on first analysis to build the proper subtype indications.
4629 -- The flag Inherited_Discriminant is used to prevent the re-insertion.
996ae0b0 4630
937e9676
AC
4631 function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id;
4632 -- AI05-0115: Find earlier ancestor in the derivation chain that is
4633 -- derived from private view Typ. Whether the aggregate is legal depends
4634 -- on the current visibility of the type as well as that of the parent
4635 -- of the ancestor.
4636
996ae0b0 4637 function Get_Value
0bfa32f9 4638 (Compon : Entity_Id;
996ae0b0 4639 From : List_Id;
937e9676 4640 Consider_Others_Choice : Boolean := False) return Node_Id;
4519314c
AC
4641 -- Given a record component stored in parameter Compon, this function
4642 -- returns its value as it appears in the list From, which is a list
4643 -- of N_Component_Association nodes.
2383acbd 4644 --
ebd34478
AC
4645 -- If no component association has a choice for the searched component,
4646 -- the value provided by the others choice is returned, if there is one,
4647 -- and Consider_Others_Choice is set to true. Otherwise Empty is
4648 -- returned. If there is more than one component association giving a
4649 -- value for the searched record component, an error message is emitted
4650 -- and the first found value is returned.
996ae0b0
RK
4651 --
4652 -- If Consider_Others_Choice is set and the returned expression comes
4653 -- from the others choice, then Others_Etype is set as a side effect.
ebd34478
AC
4654 -- An error message is emitted if the components taking their value from
4655 -- the others choice do not have same type.
996ae0b0 4656
937e9676
AC
4657 procedure Propagate_Discriminants
4658 (Aggr : Node_Id;
4659 Assoc_List : List_Id);
4660 -- Nested components may themselves be discriminated types constrained
4661 -- by outer discriminants, whose values must be captured before the
4662 -- aggregate is expanded into assignments.
4663
4664 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id);
996ae0b0 4665 -- Analyzes and resolves expression Expr against the Etype of the
638e383e 4666 -- Component. This routine also applies all appropriate checks to Expr.
996ae0b0
RK
4667 -- It finally saves a Expr in the newly created association list that
4668 -- will be attached to the final record aggregate. Note that if the
4669 -- Parent pointer of Expr is not set then Expr was produced with a
fbf5a39b 4670 -- New_Copy_Tree or some such.
996ae0b0 4671
333e4f86
AC
4672 procedure Rewrite_Range (Root_Type : Entity_Id; Rge : Node_Id);
4673 -- Rewrite a range node Rge when its bounds refer to non-stored
4674 -- discriminants from Root_Type, to replace them with the stored
4675 -- discriminant values. This is required in GNATprove mode, and is
4676 -- adopted in all modes to avoid special-casing GNATprove mode.
4677
996ae0b0
RK
4678 ---------------------
4679 -- Add_Association --
4680 ---------------------
4681
65356e64 4682 procedure Add_Association
9b96e234
JM
4683 (Component : Entity_Id;
4684 Expr : Node_Id;
107b023c 4685 Assoc_List : List_Id;
9b96e234 4686 Is_Box_Present : Boolean := False)
65356e64 4687 is
fbf5a39b 4688 Choice_List : constant List_Id := New_List;
937e9676 4689 Loc : Source_Ptr;
996ae0b0
RK
4690
4691 begin
937e9676
AC
4692 -- If this is a box association the expression is missing, so use the
4693 -- Sloc of the aggregate itself for the new association.
f5afb270 4694
0c25b783
PT
4695 pragma Assert (Present (Expr) xor Is_Box_Present);
4696
f5afb270
AC
4697 if Present (Expr) then
4698 Loc := Sloc (Expr);
4699 else
4700 Loc := Sloc (N);
4701 end if;
4702
937e9676
AC
4703 Append_To (Choice_List, New_Occurrence_Of (Component, Loc));
4704
4705 Append_To (Assoc_List,
f5afb270 4706 Make_Component_Association (Loc,
65356e64
AC
4707 Choices => Choice_List,
4708 Expression => Expr,
937e9676 4709 Box_Present => Is_Box_Present));
f7937111
GD
4710
4711 -- If this association has a box for a component that is initialized
4712 -- by default, then set flag on the new association to indicate that
4713 -- the original association was for such a box-initialized component.
4714
097826df 4715 if Is_Box_Init_By_Default then
f7937111
GD
4716 Set_Was_Default_Init_Box_Association (Last (Assoc_List));
4717 end if;
996ae0b0
RK
4718 end Add_Association;
4719
937e9676
AC
4720 -----------------------------
4721 -- Add_Discriminant_Values --
4722 -----------------------------
4723
4724 procedure Add_Discriminant_Values
4725 (New_Aggr : Node_Id;
4726 Assoc_List : List_Id)
4727 is
4728 Assoc : Node_Id;
4729 Discr : Entity_Id;
4730 Discr_Elmt : Elmt_Id;
4731 Discr_Val : Node_Id;
4732 Val : Entity_Id;
4733
4734 begin
4735 Discr := First_Discriminant (Etype (New_Aggr));
4736 Discr_Elmt := First_Elmt (Discriminant_Constraint (Etype (New_Aggr)));
4737 while Present (Discr_Elmt) loop
4738 Discr_Val := Node (Discr_Elmt);
4739
4740 -- If the constraint is given by a discriminant then it is a
4741 -- discriminant of an enclosing record, and its value has already
4742 -- been placed in the association list.
996ae0b0 4743
937e9676
AC
4744 if Is_Entity_Name (Discr_Val)
4745 and then Ekind (Entity (Discr_Val)) = E_Discriminant
4746 then
4747 Val := Entity (Discr_Val);
4748
4749 Assoc := First (Assoc_List);
4750 while Present (Assoc) loop
4751 if Present (Entity (First (Choices (Assoc))))
4752 and then Entity (First (Choices (Assoc))) = Val
4753 then
4754 Discr_Val := Expression (Assoc);
4755 exit;
4756 end if;
4757
4758 Next (Assoc);
4759 end loop;
4760 end if;
4761
4762 Add_Association
4763 (Discr, New_Copy_Tree (Discr_Val),
4764 Component_Associations (New_Aggr));
4765
4766 -- If the discriminant constraint is a current instance, mark the
ae250f9e
EB
4767 -- current aggregate so that the self-reference can be expanded by
4768 -- Build_Record_Aggr_Code.Replace_Type later.
937e9676
AC
4769
4770 if Nkind (Discr_Val) = N_Attribute_Reference
4771 and then Is_Entity_Name (Prefix (Discr_Val))
4772 and then Is_Type (Entity (Prefix (Discr_Val)))
ae250f9e
EB
4773 and then
4774 Is_Ancestor
4775 (Entity (Prefix (Discr_Val)),
4776 Etype (N),
4777 Use_Full_View => True)
937e9676
AC
4778 then
4779 Set_Has_Self_Reference (N);
4780 end if;
4781
4782 Next_Elmt (Discr_Elmt);
4783 Next_Discriminant (Discr);
4784 end loop;
4785 end Add_Discriminant_Values;
4786
4787 --------------------------
4788 -- Discriminant_Present --
4789 --------------------------
4790
4791 function Discriminant_Present (Input_Discr : Entity_Id) return Boolean is
fbf5a39b
AC
4792 Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
4793
937e9676
AC
4794 Ancestor_Is_Subtyp : Boolean;
4795
996ae0b0
RK
4796 Loc : Source_Ptr;
4797
4798 Ancestor : Node_Id;
937e9676 4799 Ancestor_Typ : Entity_Id;
f104fca1 4800 Comp_Assoc : Node_Id;
937e9676 4801 Discr : Entity_Id;
996ae0b0 4802 Discr_Expr : Node_Id;
937e9676 4803 Discr_Val : Elmt_Id := No_Elmt;
996ae0b0 4804 Orig_Discr : Entity_Id;
996ae0b0
RK
4805
4806 begin
4807 if Regular_Aggr then
4808 return True;
4809 end if;
4810
f104fca1
AC
4811 -- Check whether inherited discriminant values have already been
4812 -- inserted in the aggregate. This will be the case if we are
4813 -- re-analyzing an aggregate whose expansion was delayed.
4814
4815 if Present (Component_Associations (N)) then
4816 Comp_Assoc := First (Component_Associations (N));
4817 while Present (Comp_Assoc) loop
4818 if Inherited_Discriminant (Comp_Assoc) then
4819 return True;
4820 end if;
2383acbd 4821
f104fca1
AC
4822 Next (Comp_Assoc);
4823 end loop;
4824 end if;
4825
996ae0b0
RK
4826 Ancestor := Ancestor_Part (N);
4827 Ancestor_Typ := Etype (Ancestor);
4828 Loc := Sloc (Ancestor);
4829
5987e59c
AC
4830 -- For a private type with unknown discriminants, use the underlying
4831 -- record view if it is available.
9013065b
AC
4832
4833 if Has_Unknown_Discriminants (Ancestor_Typ)
4834 and then Present (Full_View (Ancestor_Typ))
4835 and then Present (Underlying_Record_View (Full_View (Ancestor_Typ)))
4836 then
4837 Ancestor_Typ := Underlying_Record_View (Full_View (Ancestor_Typ));
4838 end if;
4839
996ae0b0
RK
4840 Ancestor_Is_Subtyp :=
4841 Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
4842
4843 -- If the ancestor part has no discriminants clearly N's aggregate
4844 -- part must provide a value for Discr.
4845
4846 if not Has_Discriminants (Ancestor_Typ) then
4847 return True;
4848
4849 -- If the ancestor part is an unconstrained subtype mark then the
4850 -- Discr must be present in N's aggregate part.
4851
4852 elsif Ancestor_Is_Subtyp
4853 and then not Is_Constrained (Entity (Ancestor))
4854 then
4855 return True;
4856 end if;
4857
ec53a6da 4858 -- Now look to see if Discr was specified in the ancestor part
996ae0b0
RK
4859
4860 if Ancestor_Is_Subtyp then
937e9676
AC
4861 Discr_Val :=
4862 First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
996ae0b0
RK
4863 end if;
4864
937e9676 4865 Orig_Discr := Original_Record_Component (Input_Discr);
ec53a6da 4866
937e9676
AC
4867 Discr := First_Discriminant (Ancestor_Typ);
4868 while Present (Discr) loop
ec53a6da 4869
ebd34478 4870 -- If Ancestor has already specified Disc value then insert its
ec53a6da 4871 -- value in the final aggregate.
996ae0b0 4872
937e9676 4873 if Original_Record_Component (Discr) = Orig_Discr then
996ae0b0 4874 if Ancestor_Is_Subtyp then
937e9676 4875 Discr_Expr := New_Copy_Tree (Node (Discr_Val));
996ae0b0
RK
4876 else
4877 Discr_Expr :=
4878 Make_Selected_Component (Loc,
4879 Prefix => Duplicate_Subexpr (Ancestor),
937e9676 4880 Selector_Name => New_Occurrence_Of (Input_Discr, Loc));
996ae0b0
RK
4881 end if;
4882
937e9676 4883 Resolve_Aggr_Expr (Discr_Expr, Input_Discr);
f104fca1 4884 Set_Inherited_Discriminant (Last (New_Assoc_List));
996ae0b0
RK
4885 return False;
4886 end if;
4887
937e9676 4888 Next_Discriminant (Discr);
996ae0b0
RK
4889
4890 if Ancestor_Is_Subtyp then
937e9676 4891 Next_Elmt (Discr_Val);
996ae0b0
RK
4892 end if;
4893 end loop;
4894
4895 return True;
937e9676
AC
4896 end Discriminant_Present;
4897
4898 ---------------------------
4899 -- Find_Private_Ancestor --
4900 ---------------------------
4901
4902 function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id is
4903 Par : Entity_Id;
4904
4905 begin
4906 Par := Typ;
4907 loop
4908 if Has_Private_Ancestor (Par)
4909 and then not Has_Private_Ancestor (Etype (Base_Type (Par)))
4910 then
4911 return Par;
4912
4913 elsif not Is_Derived_Type (Par) then
4914 return Empty;
4915
4916 else
4917 Par := Etype (Base_Type (Par));
4918 end if;
4919 end loop;
4920 end Find_Private_Ancestor;
996ae0b0
RK
4921
4922 ---------------
4923 -- Get_Value --
4924 ---------------
4925
4926 function Get_Value
0bfa32f9 4927 (Compon : Entity_Id;
996ae0b0 4928 From : List_Id;
937e9676 4929 Consider_Others_Choice : Boolean := False) return Node_Id
996ae0b0 4930 is
d10bb9d5 4931 Typ : constant Entity_Id := Etype (Compon);
996ae0b0
RK
4932 Assoc : Node_Id;
4933 Expr : Node_Id := Empty;
4934 Selector_Name : Node_Id;
4935
4936 begin
9b96e234 4937 Is_Box_Present := False;
f7937111 4938 Is_Box_Init_By_Default := False;
65356e64 4939
58009744 4940 if No (From) then
996ae0b0
RK
4941 return Empty;
4942 end if;
4943
58009744 4944 Assoc := First (From);
996ae0b0
RK
4945 while Present (Assoc) loop
4946 Selector_Name := First (Choices (Assoc));
4947 while Present (Selector_Name) loop
4948 if Nkind (Selector_Name) = N_Others_Choice then
4949 if Consider_Others_Choice and then No (Expr) then
996ae0b0
RK
4950
4951 -- We need to duplicate the expression for each
4952 -- successive component covered by the others choice.
fbf5a39b
AC
4953 -- This is redundant if the others_choice covers only
4954 -- one component (small optimization possible???), but
4955 -- indispensable otherwise, because each one must be
92b751fd 4956 -- expanded individually to preserve side effects.
996ae0b0 4957
0ab80019
AC
4958 -- Ada 2005 (AI-287): In case of default initialization
4959 -- of components, we duplicate the corresponding default
88b32fc3
BD
4960 -- expression (from the record type declaration). The
4961 -- copy must carry the sloc of the association (not the
4962 -- original expression) to prevent spurious elaboration
4963 -- checks when the default includes function calls.
19f0526a 4964
65356e64 4965 if Box_Present (Assoc) then
ec3c7387 4966 Others_Box := Others_Box + 1;
9b96e234 4967 Is_Box_Present := True;
65356e64
AC
4968
4969 if Expander_Active then
88b32fc3 4970 return
ba914484 4971 New_Copy_Tree_And_Copy_Dimensions
88b32fc3
BD
4972 (Expression (Parent (Compon)),
4973 New_Sloc => Sloc (Assoc));
65356e64
AC
4974 else
4975 return Expression (Parent (Compon));
4976 end if;
65356e64 4977
d05ef0ab 4978 else
d10bb9d5
AC
4979 if Present (Others_Etype)
4980 and then Base_Type (Others_Etype) /= Base_Type (Typ)
65356e64 4981 then
a921e83c
AC
4982 -- If the components are of an anonymous access
4983 -- type they are distinct, but this is legal in
4984 -- Ada 2012 as long as designated types match.
4985
4986 if (Ekind (Typ) = E_Anonymous_Access_Type
4987 or else Ekind (Typ) =
4988 E_Anonymous_Access_Subprogram_Type)
4989 and then Designated_Type (Typ) =
4990 Designated_Type (Others_Etype)
4991 then
4992 null;
4993 else
4994 Error_Msg_N
937e9676
AC
4995 ("components in OTHERS choice must have same "
4996 & "type", Selector_Name);
a921e83c 4997 end if;
65356e64
AC
4998 end if;
4999
d10bb9d5 5000 Others_Etype := Typ;
65356e64 5001
937e9676 5002 -- Copy the expression so that it is resolved
a921e83c 5003 -- independently for each component, This is needed
23a9215f 5004 -- for accessibility checks on components of anonymous
a921e83c
AC
5005 -- access types, even in compile_only mode.
5006
5007 if not Inside_A_Generic then
ba914484
VP
5008 return
5009 New_Copy_Tree_And_Copy_Dimensions
5010 (Expression (Assoc));
65356e64
AC
5011 else
5012 return Expression (Assoc);
5013 end if;
996ae0b0
RK
5014 end if;
5015 end if;
5016
5017 elsif Chars (Compon) = Chars (Selector_Name) then
5018 if No (Expr) then
fbf5a39b 5019
0ab80019 5020 -- Ada 2005 (AI-231)
2820d220 5021
0791fbe9 5022 if Ada_Version >= Ada_2005
8133b9d1 5023 and then Known_Null (Expression (Assoc))
2820d220 5024 then
82c80734 5025 Check_Can_Never_Be_Null (Compon, Expression (Assoc));
2820d220
AC
5026 end if;
5027
996ae0b0
RK
5028 -- We need to duplicate the expression when several
5029 -- components are grouped together with a "|" choice.
5030 -- For instance "filed1 | filed2 => Expr"
5031
0ab80019 5032 -- Ada 2005 (AI-287)
2820d220 5033
65356e64 5034 if Box_Present (Assoc) then
9b96e234 5035 Is_Box_Present := True;
65356e64
AC
5036
5037 -- Duplicate the default expression of the component
c7ce71c2
ES
5038 -- from the record type declaration, so a new copy
5039 -- can be attached to the association.
65356e64 5040
c7ce71c2
ES
5041 -- Note that we always copy the default expression,
5042 -- even when the association has a single choice, in
5043 -- order to create a proper association for the
5044 -- expanded aggregate.
5045
8097203f
AC
5046 -- Component may have no default, in which case the
5047 -- expression is empty and the component is default-
5048 -- initialized, but an association for the component
5049 -- exists, and it is not covered by an others clause.
5050
d10bb9d5
AC
5051 -- Scalar and private types have no initialization
5052 -- procedure, so they remain uninitialized. If the
5053 -- target of the aggregate is a constant this
5054 -- deserves a warning.
5055
5056 if No (Expression (Parent (Compon)))
5057 and then not Has_Non_Null_Base_Init_Proc (Typ)
5058 and then not Has_Aspect (Typ, Aspect_Default_Value)
5059 and then not Is_Concurrent_Type (Typ)
5060 and then Nkind (Parent (N)) = N_Object_Declaration
5061 and then Constant_Present (Parent (N))
5062 then
5063 Error_Msg_Node_2 := Typ;
5064 Error_Msg_NE
d516e77b 5065 ("??component& of type& is uninitialized",
d10bb9d5
AC
5066 Assoc, Selector_Name);
5067
5068 -- An additional reminder if the component type
5069 -- is a generic formal.
5070
5071 if Is_Generic_Type (Base_Type (Typ)) then
5072 Error_Msg_NE
58009744
AC
5073 ("\instance should provide actual type with "
5074 & "initialization for&", Assoc, Typ);
d10bb9d5
AC
5075 end if;
5076 end if;
5077
ba914484
VP
5078 return
5079 New_Copy_Tree_And_Copy_Dimensions
5080 (Expression (Parent (Compon)));
8097203f 5081
d05ef0ab 5082 else
65356e64 5083 if Present (Next (Selector_Name)) then
d10bb9d5
AC
5084 Expr := New_Copy_Tree_And_Copy_Dimensions
5085 (Expression (Assoc));
65356e64
AC
5086 else
5087 Expr := Expression (Assoc);
5088 end if;
996ae0b0
RK
5089 end if;
5090
55603e5e 5091 Generate_Reference (Compon, Selector_Name, 'm');
fbf5a39b 5092
996ae0b0
RK
5093 else
5094 Error_Msg_NE
5095 ("more than one value supplied for &",
5096 Selector_Name, Compon);
5097
5098 end if;
5099 end if;
5100
5101 Next (Selector_Name);
5102 end loop;
5103
5104 Next (Assoc);
5105 end loop;
5106
5107 return Expr;
5108 end Get_Value;
5109
937e9676
AC
5110 -----------------------------
5111 -- Propagate_Discriminants --
5112 -----------------------------
5113
5114 procedure Propagate_Discriminants
5115 (Aggr : Node_Id;
5116 Assoc_List : List_Id)
5117 is
5118 Loc : constant Source_Ptr := Sloc (N);
5119
937e9676
AC
5120 procedure Process_Component (Comp : Entity_Id);
5121 -- Add one component with a box association to the inner aggregate,
5122 -- and recurse if component is itself composite.
5123
5124 -----------------------
5125 -- Process_Component --
5126 -----------------------
5127
5128 procedure Process_Component (Comp : Entity_Id) is
5129 T : constant Entity_Id := Etype (Comp);
5130 New_Aggr : Node_Id;
5131
5132 begin
5133 if Is_Record_Type (T) and then Has_Discriminants (T) then
0ad46f04 5134 New_Aggr := Make_Aggregate (Loc, No_List, New_List);
937e9676
AC
5135 Set_Etype (New_Aggr, T);
5136
5137 Add_Association
5138 (Comp, New_Aggr, Component_Associations (Aggr));
5139
5140 -- Collect discriminant values and recurse
5141
5142 Add_Discriminant_Values (New_Aggr, Assoc_List);
5143 Propagate_Discriminants (New_Aggr, Assoc_List);
5144
fc4c7348
PT
5145 Build_Constrained_Itype
5146 (New_Aggr, T, Component_Associations (New_Aggr));
937e9676 5147 else
0c25b783
PT
5148 Add_Association
5149 (Comp, Empty, Component_Associations (Aggr),
5150 Is_Box_Present => True);
937e9676
AC
5151 end if;
5152 end Process_Component;
5153
5154 -- Local variables
5155
5156 Aggr_Type : constant Entity_Id := Base_Type (Etype (Aggr));
5157 Components : constant Elist_Id := New_Elmt_List;
5158 Def_Node : constant Node_Id :=
5159 Type_Definition (Declaration_Node (Aggr_Type));
5160
5161 Comp : Node_Id;
5162 Comp_Elmt : Elmt_Id;
5163 Errors : Boolean;
5164
5165 -- Start of processing for Propagate_Discriminants
5166
5167 begin
5168 -- The component type may be a variant type. Collect the components
5169 -- that are ruled by the known values of the discriminants. Their
5170 -- values have already been inserted into the component list of the
5171 -- current aggregate.
5172
5173 if Nkind (Def_Node) = N_Record_Definition
5174 and then Present (Component_List (Def_Node))
5175 and then Present (Variant_Part (Component_List (Def_Node)))
5176 then
5177 Gather_Components (Aggr_Type,
5178 Component_List (Def_Node),
5179 Governed_By => Component_Associations (Aggr),
5180 Into => Components,
5181 Report_Errors => Errors);
5182
5183 Comp_Elmt := First_Elmt (Components);
5184 while Present (Comp_Elmt) loop
5185 if Ekind (Node (Comp_Elmt)) /= E_Discriminant then
5186 Process_Component (Node (Comp_Elmt));
5187 end if;
5188
5189 Next_Elmt (Comp_Elmt);
5190 end loop;
5191
5192 -- No variant part, iterate over all components
5193
5194 else
5195 Comp := First_Component (Etype (Aggr));
5196 while Present (Comp) loop
5197 Process_Component (Comp);
5198 Next_Component (Comp);
5199 end loop;
5200 end if;
937e9676
AC
5201 end Propagate_Discriminants;
5202
996ae0b0
RK
5203 -----------------------
5204 -- Resolve_Aggr_Expr --
5205 -----------------------
5206
937e9676 5207 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id) is
996ae0b0
RK
5208 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
5209 -- If the expression is an aggregate (possibly qualified) then its
5210 -- expansion is delayed until the enclosing aggregate is expanded
5211 -- into assignments. In that case, do not generate checks on the
5212 -- expression, because they will be generated later, and will other-
92b751fd 5213 -- wise force a copy (to remove side effects) that would leave a
996ae0b0
RK
5214 -- dynamic-sized aggregate in the code, something that gigi cannot
5215 -- handle.
5216
22243c12
RD
5217 ---------------------------
5218 -- Has_Expansion_Delayed --
5219 ---------------------------
996ae0b0
RK
5220
5221 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
996ae0b0 5222 begin
937e9676 5223 return
4a08c95c 5224 (Nkind (Expr) in N_Aggregate | N_Extension_Aggregate
937e9676
AC
5225 and then Present (Etype (Expr))
5226 and then Is_Record_Type (Etype (Expr))
5227 and then Expansion_Delayed (Expr))
5228 or else
5229 (Nkind (Expr) = N_Qualified_Expression
5230 and then Has_Expansion_Delayed (Expression (Expr)));
996ae0b0
RK
5231 end Has_Expansion_Delayed;
5232
10edebe7
AC
5233 -- Local variables
5234
5235 Expr_Type : Entity_Id := Empty;
5236 New_C : Entity_Id := Component;
5237 New_Expr : Node_Id;
5238
5239 Relocate : Boolean;
5240 -- Set to True if the resolved Expr node needs to be relocated when
5241 -- attached to the newly created association list. This node need not
5242 -- be relocated if its parent pointer is not set. In fact in this
5243 -- case Expr is the output of a New_Copy_Tree call. If Relocate is
5244 -- True then we have analyzed the expression node in the original
5245 -- aggregate and hence it needs to be relocated when moved over to
5246 -- the new association list.
5247
22243c12 5248 -- Start of processing for Resolve_Aggr_Expr
996ae0b0
RK
5249
5250 begin
5251 -- If the type of the component is elementary or the type of the
5252 -- aggregate does not contain discriminants, use the type of the
5253 -- component to resolve Expr.
5254
5255 if Is_Elementary_Type (Etype (Component))
5256 or else not Has_Discriminants (Etype (N))
5257 then
5258 Expr_Type := Etype (Component);
5259
5260 -- Otherwise we have to pick up the new type of the component from
12a13f01 5261 -- the new constrained subtype of the aggregate. In fact components
996ae0b0
RK
5262 -- which are of a composite type might be constrained by a
5263 -- discriminant, and we want to resolve Expr against the subtype were
5264 -- all discriminant occurrences are replaced with their actual value.
5265
5266 else
5267 New_C := First_Component (Etype (N));
5268 while Present (New_C) loop
5269 if Chars (New_C) = Chars (Component) then
5270 Expr_Type := Etype (New_C);
5271 exit;
5272 end if;
5273
5274 Next_Component (New_C);
5275 end loop;
5276
5277 pragma Assert (Present (Expr_Type));
5278
5279 -- For each range in an array type where a discriminant has been
5280 -- replaced with the constraint, check that this range is within
ec53a6da
JM
5281 -- the range of the base type. This checks is done in the init
5282 -- proc for regular objects, but has to be done here for
fbf5a39b 5283 -- aggregates since no init proc is called for them.
996ae0b0
RK
5284
5285 if Is_Array_Type (Expr_Type) then
5286 declare
7f9747c6 5287 Index : Node_Id;
ec53a6da 5288 -- Range of the current constrained index in the array
996ae0b0 5289
ec53a6da 5290 Orig_Index : Node_Id := First_Index (Etype (Component));
996ae0b0
RK
5291 -- Range corresponding to the range Index above in the
5292 -- original unconstrained record type. The bounds of this
5293 -- range may be governed by discriminants.
5294
5295 Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
5296 -- Range corresponding to the range Index above for the
5297 -- unconstrained array type. This range is needed to apply
5298 -- range checks.
5299
5300 begin
7f9747c6 5301 Index := First_Index (Expr_Type);
996ae0b0
RK
5302 while Present (Index) loop
5303 if Depends_On_Discriminant (Orig_Index) then
5304 Apply_Range_Check (Index, Etype (Unconstr_Index));
5305 end if;
5306
5307 Next_Index (Index);
5308 Next_Index (Orig_Index);
5309 Next_Index (Unconstr_Index);
5310 end loop;
5311 end;
5312 end if;
5313 end if;
5314
5315 -- If the Parent pointer of Expr is not set, Expr is an expression
5316 -- duplicated by New_Tree_Copy (this happens for record aggregates
5317 -- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
5318 -- Such a duplicated expression must be attached to the tree
5319 -- before analysis and resolution to enforce the rule that a tree
5320 -- fragment should never be analyzed or resolved unless it is
5321 -- attached to the current compilation unit.
5322
5323 if No (Parent (Expr)) then
5324 Set_Parent (Expr, N);
5325 Relocate := False;
5326 else
5327 Relocate := True;
5328 end if;
5329
5330 Analyze_And_Resolve (Expr, Expr_Type);
ca44152f 5331 Check_Expr_OK_In_Limited_Aggregate (Expr);
996ae0b0 5332 Check_Non_Static_Context (Expr);
fbf5a39b 5333 Check_Unset_Reference (Expr);
996ae0b0 5334
0c020dde
AC
5335 -- Check wrong use of class-wide types
5336
7b4db06c 5337 if Is_Class_Wide_Type (Etype (Expr)) then
0c020dde
AC
5338 Error_Msg_N ("dynamically tagged expression not allowed", Expr);
5339 end if;
5340
996ae0b0
RK
5341 if not Has_Expansion_Delayed (Expr) then
5342 Aggregate_Constraint_Checks (Expr, Expr_Type);
887d102a
AC
5343 end if;
5344
dec6faf1
AC
5345 -- If an aggregate component has a type with predicates, an explicit
5346 -- predicate check must be applied, as for an assignment statement,
152f64c2 5347 -- because the aggregate might not be expanded into individual
dec6faf1
AC
5348 -- component assignments.
5349
619bfd9f 5350 if Has_Predicates (Expr_Type)
07eb872e
AC
5351 and then Analyzed (Expr)
5352 then
887d102a 5353 Apply_Predicate_Check (Expr, Expr_Type);
996ae0b0
RK
5354 end if;
5355
5356 if Raises_Constraint_Error (Expr) then
5357 Set_Raises_Constraint_Error (N);
5358 end if;
5359
22243c12 5360 -- If the expression has been marked as requiring a range check, then
edab6088
RD
5361 -- generate it here. It's a bit odd to be generating such checks in
5362 -- the analyzer, but harmless since Generate_Range_Check does nothing
5363 -- (other than making sure Do_Range_Check is set) if the expander is
5364 -- not active.
d79e621a
GD
5365
5366 if Do_Range_Check (Expr) then
d79e621a
GD
5367 Generate_Range_Check (Expr, Expr_Type, CE_Range_Check_Failed);
5368 end if;
5369
937e9676
AC
5370 -- Add association Component => Expr if the caller requests it
5371
996ae0b0 5372 if Relocate then
0929eaeb
AC
5373 New_Expr := Relocate_Node (Expr);
5374
5375 -- Since New_Expr is not gonna be analyzed later on, we need to
5376 -- propagate here the dimensions form Expr to New_Expr.
5377
ba914484 5378 Copy_Dimensions (Expr, New_Expr);
d976bf74 5379
996ae0b0 5380 else
0929eaeb 5381 New_Expr := Expr;
996ae0b0 5382 end if;
0929eaeb
AC
5383
5384 Add_Association (New_C, New_Expr, New_Assoc_List);
996ae0b0
RK
5385 end Resolve_Aggr_Expr;
5386
333e4f86
AC
5387 -------------------
5388 -- Rewrite_Range --
5389 -------------------
5390
5391 procedure Rewrite_Range (Root_Type : Entity_Id; Rge : Node_Id) is
333e4f86
AC
5392 procedure Rewrite_Bound
5393 (Bound : Node_Id;
5394 Disc : Entity_Id;
5395 Expr_Disc : Node_Id);
5396 -- Rewrite a bound of the range Bound, when it is equal to the
5397 -- non-stored discriminant Disc, into the stored discriminant
5398 -- value Expr_Disc.
5399
5400 -------------------
5401 -- Rewrite_Bound --
5402 -------------------
5403
5404 procedure Rewrite_Bound
5405 (Bound : Node_Id;
5406 Disc : Entity_Id;
5407 Expr_Disc : Node_Id)
5408 is
5409 begin
2c26d262
EB
5410 if Nkind (Bound) /= N_Identifier then
5411 return;
5412 end if;
5413
5414 -- We expect either the discriminant or the discriminal
5415
5416 if Entity (Bound) = Disc
5417 or else (Ekind (Entity (Bound)) = E_In_Parameter
5418 and then Discriminal_Link (Entity (Bound)) = Disc)
333e4f86
AC
5419 then
5420 Rewrite (Bound, New_Copy_Tree (Expr_Disc));
5421 end if;
5422 end Rewrite_Bound;
5423
9c5719f6 5424 -- Local variables
333e4f86
AC
5425
5426 Low, High : Node_Id;
5427 Disc : Entity_Id;
5428 Expr_Disc : Elmt_Id;
5429
5430 -- Start of processing for Rewrite_Range
5431
5432 begin
2c26d262 5433 if Has_Discriminants (Root_Type) and then Nkind (Rge) = N_Range then
333e4f86
AC
5434 Low := Low_Bound (Rge);
5435 High := High_Bound (Rge);
5436
13126368
YM
5437 Disc := First_Discriminant (Root_Type);
5438 Expr_Disc := First_Elmt (Stored_Constraint (Etype (N)));
333e4f86
AC
5439 while Present (Disc) loop
5440 Rewrite_Bound (Low, Disc, Node (Expr_Disc));
5441 Rewrite_Bound (High, Disc, Node (Expr_Disc));
5442 Next_Discriminant (Disc);
5443 Next_Elmt (Expr_Disc);
5444 end loop;
5445 end if;
5446 end Rewrite_Range;
5447
937e9676
AC
5448 -- Local variables
5449
5450 Components : constant Elist_Id := New_Elmt_List;
5451 -- Components is the list of the record components whose value must be
5452 -- provided in the aggregate. This list does include discriminants.
5453
937e9676
AC
5454 Component : Entity_Id;
5455 Component_Elmt : Elmt_Id;
13126368 5456 Expr : Node_Id;
937e9676
AC
5457 Positional_Expr : Node_Id;
5458
996ae0b0
RK
5459 -- Start of processing for Resolve_Record_Aggregate
5460
5461 begin
2ba431e5 5462 -- A record aggregate is restricted in SPARK:
15918371 5463
bd65a2d7
AC
5464 -- Each named association can have only a single choice.
5465 -- OTHERS cannot be used.
5466 -- Positional and named associations cannot be mixed.
9f90d123 5467
e35ecc88 5468 if Present (Component_Associations (N)) then
9f90d123
AC
5469 declare
5470 Assoc : Node_Id;
bd65a2d7 5471
9f90d123
AC
5472 begin
5473 Assoc := First (Component_Associations (N));
5474 while Present (Assoc) loop
ccd0ed95 5475 if Nkind (Assoc) = N_Iterated_Component_Association then
7f5e671b
PMR
5476 Error_Msg_N
5477 ("iterated component association can only appear in an "
5478 & "array aggregate", N);
ccd0ed95 5479 raise Unrecoverable_Error;
9f90d123 5480 end if;
bd65a2d7 5481
cbbe41d1 5482 Next (Assoc);
9f90d123
AC
5483 end loop;
5484 end;
5485 end if;
5486
996ae0b0
RK
5487 -- We may end up calling Duplicate_Subexpr on expressions that are
5488 -- attached to New_Assoc_List. For this reason we need to attach it
5489 -- to the tree by setting its parent pointer to N. This parent point
5490 -- will change in STEP 8 below.
5491
5492 Set_Parent (New_Assoc_List, N);
5493
5494 -- STEP 1: abstract type and null record verification
5495
aad93b55 5496 if Is_Abstract_Type (Typ) then
996ae0b0
RK
5497 Error_Msg_N ("type of aggregate cannot be abstract", N);
5498 end if;
5499
5500 if No (First_Entity (Typ)) and then Null_Record_Present (N) then
5501 Set_Etype (N, Typ);
5502 return;
5503
5504 elsif Present (First_Entity (Typ))
5505 and then Null_Record_Present (N)
5506 and then not Is_Tagged_Type (Typ)
5507 then
5508 Error_Msg_N ("record aggregate cannot be null", N);
5509 return;
5510
eff332d9
GD
5511 -- If the type has no components, then the aggregate should either
5512 -- have "null record", or in Ada 2005 it could instead have a single
22243c12
RD
5513 -- component association given by "others => <>". For Ada 95 we flag an
5514 -- error at this point, but for Ada 2005 we proceed with checking the
5515 -- associations below, which will catch the case where it's not an
5516 -- aggregate with "others => <>". Note that the legality of a <>
eff332d9
GD
5517 -- aggregate for a null record type was established by AI05-016.
5518
5519 elsif No (First_Entity (Typ))
0791fbe9 5520 and then Ada_Version < Ada_2005
eff332d9 5521 then
996ae0b0
RK
5522 Error_Msg_N ("record aggregate must be null", N);
5523 return;
5524 end if;
5525
fe664d36
MP
5526 -- A record aggregate can only use parentheses
5527
5528 if Nkind (N) = N_Aggregate
5529 and then Is_Homogeneous_Aggregate (N)
5530 then
9af8c27f 5531 Error_Msg_N ("record aggregate must use (), not '[']", N);
fe664d36
MP
5532 return;
5533 end if;
5534
996ae0b0
RK
5535 -- STEP 2: Verify aggregate structure
5536
5537 Step_2 : declare
937e9676 5538 Assoc : Node_Id;
996ae0b0 5539 Bad_Aggregate : Boolean := False;
937e9676 5540 Selector_Name : Node_Id;
996ae0b0
RK
5541
5542 begin
5543 if Present (Component_Associations (N)) then
5544 Assoc := First (Component_Associations (N));
5545 else
5546 Assoc := Empty;
5547 end if;
5548
5549 while Present (Assoc) loop
5550 Selector_Name := First (Choices (Assoc));
5551 while Present (Selector_Name) loop
5552 if Nkind (Selector_Name) = N_Identifier then
5553 null;
5554
5555 elsif Nkind (Selector_Name) = N_Others_Choice then
5556 if Selector_Name /= First (Choices (Assoc))
5557 or else Present (Next (Selector_Name))
5558 then
ed2233dc 5559 Error_Msg_N
22cb89b5
AC
5560 ("OTHERS must appear alone in a choice list",
5561 Selector_Name);
996ae0b0
RK
5562 return;
5563
5564 elsif Present (Next (Assoc)) then
ed2233dc 5565 Error_Msg_N
22cb89b5
AC
5566 ("OTHERS must appear last in an aggregate",
5567 Selector_Name);
996ae0b0 5568 return;
1ab9541b 5569
885c4871 5570 -- (Ada 2005): If this is an association with a box,
1ab9541b
ES
5571 -- indicate that the association need not represent
5572 -- any component.
5573
5574 elsif Box_Present (Assoc) then
ec3c7387
AC
5575 Others_Box := 1;
5576 Box_Node := Assoc;
996ae0b0
RK
5577 end if;
5578
5579 else
5580 Error_Msg_N
5581 ("selector name should be identifier or OTHERS",
5582 Selector_Name);
5583 Bad_Aggregate := True;
5584 end if;
5585
5586 Next (Selector_Name);
5587 end loop;
5588
5589 Next (Assoc);
5590 end loop;
5591
5592 if Bad_Aggregate then
5593 return;
5594 end if;
5595 end Step_2;
5596
5597 -- STEP 3: Find discriminant Values
5598
5599 Step_3 : declare
5600 Discrim : Entity_Id;
5601 Missing_Discriminants : Boolean := False;
5602
5603 begin
5604 if Present (Expressions (N)) then
5605 Positional_Expr := First (Expressions (N));
5606 else
5607 Positional_Expr := Empty;
5608 end if;
5609
87729e5a 5610 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
33bd17e7 5611 -- must not have unknown discriminants.
51e2de47
AC
5612 -- ??? We are not checking any subtype mark here and this code is not
5613 -- exercised by any test, so it's likely wrong (in particular
5614 -- we should not use Root_Type here but the subtype mark, if any),
5615 -- and possibly not needed.
87729e5a
AC
5616
5617 if Is_Derived_Type (Typ)
5618 and then Has_Unknown_Discriminants (Root_Type (Typ))
5619 and then Nkind (N) /= N_Extension_Aggregate
5620 then
5621 Error_Msg_NE
5622 ("aggregate not available for type& whose ancestor "
0bfa2f3c 5623 & "has unknown discriminants", N, Typ);
87729e5a
AC
5624 end if;
5625
9013065b
AC
5626 if Has_Unknown_Discriminants (Typ)
5627 and then Present (Underlying_Record_View (Typ))
5628 then
5629 Discrim := First_Discriminant (Underlying_Record_View (Typ));
5630 elsif Has_Discriminants (Typ) then
996ae0b0
RK
5631 Discrim := First_Discriminant (Typ);
5632 else
5633 Discrim := Empty;
5634 end if;
5635
5636 -- First find the discriminant values in the positional components
5637
5638 while Present (Discrim) and then Present (Positional_Expr) loop
937e9676 5639 if Discriminant_Present (Discrim) then
996ae0b0 5640 Resolve_Aggr_Expr (Positional_Expr, Discrim);
2820d220 5641
0ab80019 5642 -- Ada 2005 (AI-231)
2820d220 5643
0791fbe9 5644 if Ada_Version >= Ada_2005
8133b9d1 5645 and then Known_Null (Positional_Expr)
ec53a6da 5646 then
82c80734 5647 Check_Can_Never_Be_Null (Discrim, Positional_Expr);
2820d220
AC
5648 end if;
5649
996ae0b0
RK
5650 Next (Positional_Expr);
5651 end if;
5652
5653 if Present (Get_Value (Discrim, Component_Associations (N))) then
5654 Error_Msg_NE
5655 ("more than one value supplied for discriminant&",
5656 N, Discrim);
5657 end if;
5658
5659 Next_Discriminant (Discrim);
5660 end loop;
5661
50decc81 5662 -- Find remaining discriminant values if any among named components
996ae0b0
RK
5663
5664 while Present (Discrim) loop
5665 Expr := Get_Value (Discrim, Component_Associations (N), True);
5666
937e9676 5667 if not Discriminant_Present (Discrim) then
996ae0b0
RK
5668 if Present (Expr) then
5669 Error_Msg_NE
58009744 5670 ("more than one value supplied for discriminant &",
996ae0b0
RK
5671 N, Discrim);
5672 end if;
5673
5674 elsif No (Expr) then
5675 Error_Msg_NE
5676 ("no value supplied for discriminant &", N, Discrim);
5677 Missing_Discriminants := True;
5678
5679 else
5680 Resolve_Aggr_Expr (Expr, Discrim);
5681 end if;
5682
5683 Next_Discriminant (Discrim);
5684 end loop;
5685
5686 if Missing_Discriminants then
5687 return;
5688 end if;
5689
5690 -- At this point and until the beginning of STEP 6, New_Assoc_List
5691 -- contains only the discriminants and their values.
5692
5693 end Step_3;
5694
5695 -- STEP 4: Set the Etype of the record aggregate
5696
9013065b
AC
5697 if Has_Discriminants (Typ)
5698 or else (Has_Unknown_Discriminants (Typ)
58009744 5699 and then Present (Underlying_Record_View (Typ)))
9013065b 5700 then
fc4c7348 5701 Build_Constrained_Itype (N, Typ, New_Assoc_List);
996ae0b0
RK
5702 else
5703 Set_Etype (N, Typ);
5704 end if;
5705
5706 -- STEP 5: Get remaining components according to discriminant values
5707
5708 Step_5 : declare
937e9676
AC
5709 Dnode : Node_Id;
5710 Errors_Found : Boolean := False;
996ae0b0
RK
5711 Record_Def : Node_Id;
5712 Parent_Typ : Entity_Id;
996ae0b0
RK
5713 Parent_Typ_List : Elist_Id;
5714 Parent_Elmt : Elmt_Id;
937e9676 5715 Root_Typ : Entity_Id;
15918371 5716
996ae0b0
RK
5717 begin
5718 if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
5719 Parent_Typ_List := New_Elmt_List;
5720
5721 -- If this is an extension aggregate, the component list must
965dbd5c
AC
5722 -- include all components that are not in the given ancestor type.
5723 -- Otherwise, the component list must include components of all
5724 -- ancestors, starting with the root.
996ae0b0
RK
5725
5726 if Nkind (N) = N_Extension_Aggregate then
7b4db06c 5727 Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
69a0c174 5728
996ae0b0 5729 else
937e9676
AC
5730 -- AI05-0115: check legality of aggregate for type with a
5731 -- private ancestor.
87729e5a 5732
996ae0b0 5733 Root_Typ := Root_Type (Typ);
87729e5a
AC
5734 if Has_Private_Ancestor (Typ) then
5735 declare
5736 Ancestor : constant Entity_Id :=
937e9676 5737 Find_Private_Ancestor (Typ);
87729e5a 5738 Ancestor_Unit : constant Entity_Id :=
937e9676
AC
5739 Cunit_Entity
5740 (Get_Source_Unit (Ancestor));
87729e5a 5741 Parent_Unit : constant Entity_Id :=
937e9676
AC
5742 Cunit_Entity (Get_Source_Unit
5743 (Base_Type (Etype (Ancestor))));
87729e5a 5744 begin
58009744 5745 -- Check whether we are in a scope that has full view
87729e5a
AC
5746 -- over the private ancestor and its parent. This can
5747 -- only happen if the derivation takes place in a child
5748 -- unit of the unit that declares the parent, and we are
5749 -- in the private part or body of that child unit, else
5750 -- the aggregate is illegal.
5751
5752 if Is_Child_Unit (Ancestor_Unit)
5753 and then Scope (Ancestor_Unit) = Parent_Unit
5754 and then In_Open_Scopes (Scope (Ancestor))
5755 and then
5756 (In_Private_Part (Scope (Ancestor))
58009744 5757 or else In_Package_Body (Scope (Ancestor)))
87729e5a
AC
5758 then
5759 null;
5760
5761 else
5762 Error_Msg_NE
5763 ("type of aggregate has private ancestor&!",
58009744 5764 N, Root_Typ);
87729e5a
AC
5765 Error_Msg_N ("must use extension aggregate!", N);
5766 return;
5767 end if;
5768 end;
996ae0b0
RK
5769 end if;
5770
5771 Dnode := Declaration_Node (Base_Type (Root_Typ));
5772
4519314c
AC
5773 -- If we don't get a full declaration, then we have some error
5774 -- which will get signalled later so skip this part. Otherwise
5775 -- gather components of root that apply to the aggregate type.
5776 -- We use the base type in case there is an applicable stored
5777 -- constraint that renames the discriminants of the root.
996ae0b0
RK
5778
5779 if Nkind (Dnode) = N_Full_Type_Declaration then
5780 Record_Def := Type_Definition (Dnode);
15918371
AC
5781 Gather_Components
5782 (Base_Type (Typ),
5783 Component_List (Record_Def),
5784 Governed_By => New_Assoc_List,
5785 Into => Components,
5786 Report_Errors => Errors_Found);
4ffafd86
AC
5787
5788 if Errors_Found then
5789 Error_Msg_N
5790 ("discriminant controlling variant part is not static",
5791 N);
5792 return;
5793 end if;
996ae0b0
RK
5794 end if;
5795 end if;
5796
9013065b 5797 Parent_Typ := Base_Type (Typ);
996ae0b0 5798 while Parent_Typ /= Root_Typ loop
996ae0b0
RK
5799 Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
5800 Parent_Typ := Etype (Parent_Typ);
5801
0b888042
ES
5802 -- Check whether a private parent requires the use of
5803 -- an extension aggregate. This test does not apply in
5804 -- an instantiation: if the generic unit is legal so is
5805 -- the instance.
5806
fbf5a39b 5807 if Nkind (Parent (Base_Type (Parent_Typ))) =
996ae0b0 5808 N_Private_Type_Declaration
fbf5a39b
AC
5809 or else Nkind (Parent (Base_Type (Parent_Typ))) =
5810 N_Private_Extension_Declaration
996ae0b0 5811 then
0b888042
ES
5812 if Nkind (N) /= N_Extension_Aggregate
5813 and then not In_Instance
5814 then
ed2233dc 5815 Error_Msg_NE
996ae0b0
RK
5816 ("type of aggregate has private ancestor&!",
5817 N, Parent_Typ);
ed2233dc 5818 Error_Msg_N ("must use extension aggregate!", N);
996ae0b0
RK
5819 return;
5820
5821 elsif Parent_Typ /= Root_Typ then
5822 Error_Msg_NE
5823 ("ancestor part of aggregate must be private type&",
5824 Ancestor_Part (N), Parent_Typ);
5825 return;
5826 end if;
4519314c
AC
5827
5828 -- The current view of ancestor part may be a private type,
5829 -- while the context type is always non-private.
5830
5831 elsif Is_Private_Type (Root_Typ)
5832 and then Present (Full_View (Root_Typ))
5833 and then Nkind (N) = N_Extension_Aggregate
5834 then
5835 exit when Base_Type (Full_View (Root_Typ)) = Parent_Typ;
996ae0b0
RK
5836 end if;
5837 end loop;
5838
bf06d37f
AC
5839 -- Now collect components from all other ancestors, beginning
5840 -- with the current type. If the type has unknown discriminants
349ff68f 5841 -- use the component list of the Underlying_Record_View, which
bf06d37f
AC
5842 -- needs to be used for the subsequent expansion of the aggregate
5843 -- into assignments.
996ae0b0
RK
5844
5845 Parent_Elmt := First_Elmt (Parent_Typ_List);
5846 while Present (Parent_Elmt) loop
5847 Parent_Typ := Node (Parent_Elmt);
bf06d37f
AC
5848
5849 if Has_Unknown_Discriminants (Parent_Typ)
5850 and then Present (Underlying_Record_View (Typ))
5851 then
5852 Parent_Typ := Underlying_Record_View (Parent_Typ);
5853 end if;
5854
996ae0b0 5855 Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
265c571d 5856 Gather_Components (Parent_Typ,
996ae0b0
RK
5857 Component_List (Record_Extension_Part (Record_Def)),
5858 Governed_By => New_Assoc_List,
5859 Into => Components,
5860 Report_Errors => Errors_Found);
5861
5862 Next_Elmt (Parent_Elmt);
5863 end loop;
5864
33bd17e7
ES
5865 -- Typ is not a derived tagged type
5866
996ae0b0 5867 else
6bde3eb5 5868 Record_Def := Type_Definition (Parent (Base_Type (Typ)));
996ae0b0
RK
5869
5870 if Null_Present (Record_Def) then
5871 null;
bf06d37f
AC
5872
5873 elsif not Has_Unknown_Discriminants (Typ) then
15918371
AC
5874 Gather_Components
5875 (Base_Type (Typ),
5876 Component_List (Record_Def),
5877 Governed_By => New_Assoc_List,
5878 Into => Components,
5879 Report_Errors => Errors_Found);
bf06d37f
AC
5880
5881 else
5882 Gather_Components
5883 (Base_Type (Underlying_Record_View (Typ)),
15918371
AC
5884 Component_List (Record_Def),
5885 Governed_By => New_Assoc_List,
5886 Into => Components,
5887 Report_Errors => Errors_Found);
996ae0b0
RK
5888 end if;
5889 end if;
5890
5891 if Errors_Found then
5892 return;
5893 end if;
5894 end Step_5;
5895
5896 -- STEP 6: Find component Values
5897
996ae0b0
RK
5898 Component_Elmt := First_Elmt (Components);
5899
5900 -- First scan the remaining positional associations in the aggregate.
5901 -- Remember that at this point Positional_Expr contains the current
5902 -- positional association if any is left after looking for discriminant
5903 -- values in step 3.
5904
5905 while Present (Positional_Expr) and then Present (Component_Elmt) loop
5906 Component := Node (Component_Elmt);
5907 Resolve_Aggr_Expr (Positional_Expr, Component);
5908
0ab80019
AC
5909 -- Ada 2005 (AI-231)
5910
58009744 5911 if Ada_Version >= Ada_2005 and then Known_Null (Positional_Expr) then
82c80734 5912 Check_Can_Never_Be_Null (Component, Positional_Expr);
2820d220
AC
5913 end if;
5914
996ae0b0
RK
5915 if Present (Get_Value (Component, Component_Associations (N))) then
5916 Error_Msg_NE
add27f7a 5917 ("more than one value supplied for component &", N, Component);
996ae0b0
RK
5918 end if;
5919
5920 Next (Positional_Expr);
5921 Next_Elmt (Component_Elmt);
5922 end loop;
5923
5924 if Present (Positional_Expr) then
5925 Error_Msg_N
5926 ("too many components for record aggregate", Positional_Expr);
5927 end if;
5928
5929 -- Now scan for the named arguments of the aggregate
5930
5931 while Present (Component_Elmt) loop
5932 Component := Node (Component_Elmt);
5933 Expr := Get_Value (Component, Component_Associations (N), True);
5934
9b96e234 5935 -- Note: The previous call to Get_Value sets the value of the
f91e8020 5936 -- variable Is_Box_Present.
65356e64 5937
9b96e234
JM
5938 -- Ada 2005 (AI-287): Handle components with default initialization.
5939 -- Note: This feature was originally added to Ada 2005 for limited
5940 -- but it was finally allowed with any type.
65356e64 5941
9b96e234 5942 if Is_Box_Present then
f91e8020
GD
5943 Check_Box_Component : declare
5944 Ctyp : constant Entity_Id := Etype (Component);
9b96e234
JM
5945
5946 begin
f7937111
GD
5947 -- Initially assume that the box is for a default-initialized
5948 -- component and reset to False in cases where that's not true.
5949
5950 Is_Box_Init_By_Default := True;
5951
c7ce71c2 5952 -- If there is a default expression for the aggregate, copy
0df7e2d0
AC
5953 -- it into a new association. This copy must modify the scopes
5954 -- of internal types that may be attached to the expression
5955 -- (e.g. index subtypes of arrays) because in general the type
5956 -- declaration and the aggregate appear in different scopes,
5957 -- and the backend requires the scope of the type to match the
5958 -- point at which it is elaborated.
c7ce71c2 5959
9b96e234
JM
5960 -- If the component has an initialization procedure (IP) we
5961 -- pass the component to the expander, which will generate
5962 -- the call to such IP.
5963
c7ce71c2
ES
5964 -- If the component has discriminants, their values must
5965 -- be taken from their subtype. This is indispensable for
5966 -- constraints that are given by the current instance of an
50decc81
RD
5967 -- enclosing type, to allow the expansion of the aggregate to
5968 -- replace the reference to the current instance by the target
5969 -- object of the aggregate.
c7ce71c2 5970
e1dfbb03
SB
5971 if Is_Case_Choice_Pattern (N) then
5972
5973 -- Do not transform box component values in a case-choice
5974 -- aggregate.
5975
5976 Add_Association
5977 (Component => Component,
07118f48
PT
5978 Expr => Empty,
5979 Assoc_List => New_Assoc_List,
e1dfbb03
SB
5980 Is_Box_Present => True);
5981
5982 elsif Present (Parent (Component))
937e9676 5983 and then Nkind (Parent (Component)) = N_Component_Declaration
c7ce71c2 5984 and then Present (Expression (Parent (Component)))
aad93b55 5985 then
f7937111
GD
5986 -- If component declaration has an initialization expression
5987 -- then this is not a case of default initialization.
5988
5989 Is_Box_Init_By_Default := False;
5990
c7ce71c2 5991 Expr :=
ba914484 5992 New_Copy_Tree_And_Copy_Dimensions
2293611f
AC
5993 (Expression (Parent (Component)),
5994 New_Scope => Current_Scope,
5995 New_Sloc => Sloc (N));
c7ce71c2 5996
333e4f86
AC
5997 -- As the type of the copied default expression may refer
5998 -- to discriminants of the record type declaration, these
5999 -- non-stored discriminants need to be rewritten into stored
6000 -- discriminant values for the aggregate. This is required
6001 -- in GNATprove mode, and is adopted in all modes to avoid
6002 -- special-casing GNATprove mode.
6003
6004 if Is_Array_Type (Etype (Expr)) then
6005 declare
13126368
YM
6006 Rec_Typ : constant Entity_Id := Scope (Component);
6007 -- Root record type whose discriminants may be used as
6008 -- bounds in range nodes.
6009
2c26d262
EB
6010 Assoc : Node_Id;
6011 Choice : Node_Id;
6012 Index : Node_Id;
333e4f86
AC
6013
6014 begin
6015 -- Rewrite the range nodes occurring in the indexes
6016 -- and their types.
6017
6018 Index := First_Index (Etype (Expr));
6019 while Present (Index) loop
13126368 6020 Rewrite_Range (Rec_Typ, Index);
333e4f86 6021 Rewrite_Range
13126368
YM
6022 (Rec_Typ, Scalar_Range (Etype (Index)));
6023
333e4f86
AC
6024 Next_Index (Index);
6025 end loop;
6026
6027 -- Rewrite the range nodes occurring as aggregate
2c26d262 6028 -- bounds and component associations.
333e4f86 6029
2c26d262
EB
6030 if Nkind (Expr) = N_Aggregate then
6031 if Present (Aggregate_Bounds (Expr)) then
6032 Rewrite_Range (Rec_Typ, Aggregate_Bounds (Expr));
6033 end if;
6034
6035 if Present (Component_Associations (Expr)) then
6036 Assoc := First (Component_Associations (Expr));
6037 while Present (Assoc) loop
6038 Choice := First (Choices (Assoc));
6039 while Present (Choice) loop
6040 Rewrite_Range (Rec_Typ, Choice);
6041
6042 Next (Choice);
6043 end loop;
6044
6045 Next (Assoc);
6046 end loop;
6047 end if;
333e4f86
AC
6048 end if;
6049 end;
6050 end if;
6051
9b96e234 6052 Add_Association
107b023c
AC
6053 (Component => Component,
6054 Expr => Expr,
6055 Assoc_List => New_Assoc_List);
c7ce71c2
ES
6056 Set_Has_Self_Reference (N);
6057
736f9bed
PT
6058 elsif Needs_Simple_Initialization (Ctyp) then
6059 Add_Association
6060 (Component => Component,
6061 Expr => Empty,
6062 Assoc_List => New_Assoc_List,
6063 Is_Box_Present => True);
7610fee8 6064
c7ce71c2
ES
6065 elsif Has_Non_Null_Base_Init_Proc (Ctyp)
6066 or else not Expander_Active
6067 then
6068 if Is_Record_Type (Ctyp)
6069 and then Has_Discriminants (Ctyp)
6bde3eb5 6070 and then not Is_Private_Type (Ctyp)
c7ce71c2
ES
6071 then
6072 -- We build a partially initialized aggregate with the
6073 -- values of the discriminants and box initialization
8133b9d1 6074 -- for the rest, if other components are present.
c7e152b5 6075
51ec70b8 6076 -- The type of the aggregate is the known subtype of
937e9676
AC
6077 -- the component. The capture of discriminants must be
6078 -- recursive because subcomponents may be constrained
107b023c 6079 -- (transitively) by discriminants of enclosing types.
6bde3eb5
AC
6080 -- For a private type with discriminants, a call to the
6081 -- initialization procedure will be generated, and no
6082 -- subaggregate is needed.
c7ce71c2 6083
107b023c 6084 Capture_Discriminants : declare
719aaf4d
AC
6085 Loc : constant Source_Ptr := Sloc (N);
6086 Expr : Node_Id;
c7ce71c2 6087
107b023c 6088 begin
0ad46f04 6089 Expr := Make_Aggregate (Loc, No_List, New_List);
107b023c
AC
6090 Set_Etype (Expr, Ctyp);
6091
3786bbd1
RD
6092 -- If the enclosing type has discriminants, they have
6093 -- been collected in the aggregate earlier, and they
6094 -- may appear as constraints of subcomponents.
6095
107b023c 6096 -- Similarly if this component has discriminants, they
2be0bff8 6097 -- might in turn be propagated to their components.
107b023c
AC
6098
6099 if Has_Discriminants (Typ) then
6100 Add_Discriminant_Values (Expr, New_Assoc_List);
105b5e65 6101 Propagate_Discriminants (Expr, New_Assoc_List);
107b023c
AC
6102
6103 elsif Has_Discriminants (Ctyp) then
6104 Add_Discriminant_Values
937e9676 6105 (Expr, Component_Associations (Expr));
107b023c 6106 Propagate_Discriminants
937e9676 6107 (Expr, Component_Associations (Expr));
107b023c 6108
fc4c7348
PT
6109 Build_Constrained_Itype
6110 (Expr, Ctyp, Component_Associations (Expr));
6111
107b023c
AC
6112 else
6113 declare
719aaf4d 6114 Comp : Entity_Id;
107b023c
AC
6115
6116 begin
6117 -- If the type has additional components, create
2be0bff8 6118 -- an OTHERS box association for them.
107b023c
AC
6119
6120 Comp := First_Component (Ctyp);
6121 while Present (Comp) loop
6122 if Ekind (Comp) = E_Component then
6123 if not Is_Record_Type (Etype (Comp)) then
37368818
RD
6124 Append_To
6125 (Component_Associations (Expr),
6126 Make_Component_Association (Loc,
107b023c 6127 Choices =>
58009744
AC
6128 New_List (
6129 Make_Others_Choice (Loc)),
107b023c 6130 Expression => Empty,
58009744 6131 Box_Present => True));
107b023c 6132 end if;
937e9676 6133
107b023c
AC
6134 exit;
6135 end if;
6136
6137 Next_Component (Comp);
6138 end loop;
6139 end;
6140 end if;
c7ce71c2
ES
6141
6142 Add_Association
107b023c
AC
6143 (Component => Component,
6144 Expr => Expr,
6145 Assoc_List => New_Assoc_List);
6146 end Capture_Discriminants;
c7ce71c2 6147
937e9676
AC
6148 -- Otherwise the component type is not a record, or it has
6149 -- not discriminants, or it is private.
6150
c7ce71c2
ES
6151 else
6152 Add_Association
6153 (Component => Component,
6154 Expr => Empty,
107b023c 6155 Assoc_List => New_Assoc_List,
c7ce71c2
ES
6156 Is_Box_Present => True);
6157 end if;
9b96e234
JM
6158
6159 -- Otherwise we only need to resolve the expression if the
6160 -- component has partially initialized values (required to
6161 -- expand the corresponding assignments and run-time checks).
6162
6163 elsif Present (Expr)
f91e8020 6164 and then Is_Partially_Initialized_Type (Ctyp)
9b96e234
JM
6165 then
6166 Resolve_Aggr_Expr (Expr, Component);
6167 end if;
f91e8020 6168 end Check_Box_Component;
615cbd95 6169
65356e64 6170 elsif No (Expr) then
c7ce71c2
ES
6171
6172 -- Ignore hidden components associated with the position of the
6173 -- interface tags: these are initialized dynamically.
6174
7d0d27d9 6175 if No (Related_Type (Component)) then
c7ce71c2
ES
6176 Error_Msg_NE
6177 ("no value supplied for component &!", N, Component);
6178 end if;
615cbd95 6179
996ae0b0
RK
6180 else
6181 Resolve_Aggr_Expr (Expr, Component);
6182 end if;
6183
6184 Next_Elmt (Component_Elmt);
6185 end loop;
6186
6187 -- STEP 7: check for invalid components + check type in choice list
6188
6189 Step_7 : declare
937e9676
AC
6190 Assoc : Node_Id;
6191 New_Assoc : Node_Id;
6192
996ae0b0
RK
6193 Selectr : Node_Id;
6194 -- Selector name
6195
9b96e234 6196 Typech : Entity_Id;
996ae0b0
RK
6197 -- Type of first component in choice list
6198
6199 begin
6200 if Present (Component_Associations (N)) then
6201 Assoc := First (Component_Associations (N));
6202 else
6203 Assoc := Empty;
6204 end if;
6205
6206 Verification : while Present (Assoc) loop
6207 Selectr := First (Choices (Assoc));
6208 Typech := Empty;
6209
6210 if Nkind (Selectr) = N_Others_Choice then
19f0526a 6211
9b96e234 6212 -- Ada 2005 (AI-287): others choice may have expression or box
19f0526a 6213
ec3c7387 6214 if No (Others_Etype) and then Others_Box = 0 then
ed2233dc 6215 Error_Msg_N
996ae0b0 6216 ("OTHERS must represent at least one component", Selectr);
ec3c7387
AC
6217
6218 elsif Others_Box = 1 and then Warn_On_Redundant_Constructs then
e77a66ee 6219 Error_Msg_N ("OTHERS choice is redundant?r?", Box_Node);
bd717ec9 6220 Error_Msg_N
e77a66ee 6221 ("\previous choices cover all components?r?", Box_Node);
996ae0b0
RK
6222 end if;
6223
6224 exit Verification;
6225 end if;
6226
6227 while Present (Selectr) loop
54783e61 6228 Component := Empty;
996ae0b0
RK
6229 New_Assoc := First (New_Assoc_List);
6230 while Present (New_Assoc) loop
6231 Component := First (Choices (New_Assoc));
6989bc1f
AC
6232
6233 if Chars (Selectr) = Chars (Component) then
6234 if Style_Check then
6235 Check_Identifier (Selectr, Entity (Component));
6236 end if;
6237
6238 exit;
6239 end if;
6240
996ae0b0
RK
6241 Next (New_Assoc);
6242 end loop;
6243
54783e61
YM
6244 -- If we found an association, then this is a legal component
6245 -- of the type in question.
6246
6247 pragma Assert (if Present (New_Assoc) then Present (Component));
6248
c7e152b5
AC
6249 -- If no association, this is not a legal component of the type
6250 -- in question, unless its association is provided with a box.
996ae0b0
RK
6251
6252 if No (New_Assoc) then
65356e64 6253 if Box_Present (Parent (Selectr)) then
aad93b55
ES
6254
6255 -- This may still be a bogus component with a box. Scan
6256 -- list of components to verify that a component with
6257 -- that name exists.
6258
6259 declare
6260 C : Entity_Id;
6261
6262 begin
6263 C := First_Component (Typ);
6264 while Present (C) loop
6265 if Chars (C) = Chars (Selectr) then
ca44152f
ES
6266
6267 -- If the context is an extension aggregate,
6268 -- the component must not be inherited from
6269 -- the ancestor part of the aggregate.
6270
6271 if Nkind (N) /= N_Extension_Aggregate
6272 or else
6273 Scope (Original_Record_Component (C)) /=
937e9676 6274 Etype (Ancestor_Part (N))
ca44152f
ES
6275 then
6276 exit;
6277 end if;
aad93b55
ES
6278 end if;
6279
6280 Next_Component (C);
6281 end loop;
6282
6283 if No (C) then
6284 Error_Msg_Node_2 := Typ;
6285 Error_Msg_N ("& is not a component of}", Selectr);
6286 end if;
6287 end;
996ae0b0 6288
65356e64 6289 elsif Chars (Selectr) /= Name_uTag
996ae0b0 6290 and then Chars (Selectr) /= Name_uParent
996ae0b0
RK
6291 then
6292 if not Has_Discriminants (Typ) then
6293 Error_Msg_Node_2 := Typ;
aad93b55 6294 Error_Msg_N ("& is not a component of}", Selectr);
996ae0b0
RK
6295 else
6296 Error_Msg_N
6297 ("& is not a component of the aggregate subtype",
6298 Selectr);
6299 end if;
6300
6301 Check_Misspelled_Component (Components, Selectr);
6302 end if;
6303
6304 elsif No (Typech) then
6305 Typech := Base_Type (Etype (Component));
6306
feab3549 6307 -- AI05-0199: In Ada 2012, several components of anonymous
8da337c5
AC
6308 -- access types can appear in a choice list, as long as the
6309 -- designated types match.
6310
996ae0b0 6311 elsif Typech /= Base_Type (Etype (Component)) then
dbe945f1 6312 if Ada_Version >= Ada_2012
8da337c5
AC
6313 and then Ekind (Typech) = E_Anonymous_Access_Type
6314 and then
6315 Ekind (Etype (Component)) = E_Anonymous_Access_Type
6316 and then Base_Type (Designated_Type (Typech)) =
6317 Base_Type (Designated_Type (Etype (Component)))
6318 and then
6319 Subtypes_Statically_Match (Typech, (Etype (Component)))
6320 then
6321 null;
6322
6323 elsif not Box_Present (Parent (Selectr)) then
65356e64
AC
6324 Error_Msg_N
6325 ("components in choice list must have same type",
6326 Selectr);
6327 end if;
996ae0b0
RK
6328 end if;
6329
6330 Next (Selectr);
6331 end loop;
6332
6333 Next (Assoc);
6334 end loop Verification;
6335 end Step_7;
6336
6337 -- STEP 8: replace the original aggregate
6338
6339 Step_8 : declare
fbf5a39b 6340 New_Aggregate : constant Node_Id := New_Copy (N);
996ae0b0
RK
6341
6342 begin
6343 Set_Expressions (New_Aggregate, No_List);
6344 Set_Etype (New_Aggregate, Etype (N));
6345 Set_Component_Associations (New_Aggregate, New_Assoc_List);
288cbbbd 6346 Set_Check_Actuals (New_Aggregate, Check_Actuals (N));
996ae0b0
RK
6347
6348 Rewrite (N, New_Aggregate);
6349 end Step_8;
0929eaeb 6350
d976bf74 6351 -- Check the dimensions of the components in the record aggregate
0929eaeb
AC
6352
6353 Analyze_Dimension_Extension_Or_Record_Aggregate (N);
996ae0b0
RK
6354 end Resolve_Record_Aggregate;
6355
2820d220
AC
6356 -----------------------------
6357 -- Check_Can_Never_Be_Null --
6358 -----------------------------
6359
9b96e234 6360 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
ec53a6da
JM
6361 Comp_Typ : Entity_Id;
6362
2820d220 6363 begin
9b96e234 6364 pragma Assert
0791fbe9 6365 (Ada_Version >= Ada_2005
9b96e234 6366 and then Present (Expr)
8133b9d1 6367 and then Known_Null (Expr));
82c80734 6368
ec53a6da
JM
6369 case Ekind (Typ) is
6370 when E_Array_Type =>
6371 Comp_Typ := Component_Type (Typ);
6372
d8f43ee6
HK
6373 when E_Component
6374 | E_Discriminant
6375 =>
ec53a6da
JM
6376 Comp_Typ := Etype (Typ);
6377
6378 when others =>
6379 return;
6380 end case;
6381
9b96e234
JM
6382 if Can_Never_Be_Null (Comp_Typ) then
6383
6384 -- Here we know we have a constraint error. Note that we do not use
6385 -- Apply_Compile_Time_Constraint_Error here to the Expr, which might
6386 -- seem the more natural approach. That's because in some cases the
6387 -- components are rewritten, and the replacement would be missed.
5a521b8a
AC
6388 -- We do not mark the whole aggregate as raising a constraint error,
6389 -- because the association may be a null array range.
9b96e234 6390
5a521b8a 6391 Error_Msg_N
9ed2b86d 6392 ("(Ada 2005) NULL not allowed in null-excluding component??", Expr);
5a521b8a 6393 Error_Msg_N
b785e0b8 6394 ("\Constraint_Error will be raised at run time??", Expr);
9b96e234 6395
5a521b8a
AC
6396 Rewrite (Expr,
6397 Make_Raise_Constraint_Error
6398 (Sloc (Expr), Reason => CE_Access_Check_Failed));
9b96e234
JM
6399 Set_Etype (Expr, Comp_Typ);
6400 Set_Analyzed (Expr);
2820d220
AC
6401 end if;
6402 end Check_Can_Never_Be_Null;
6403
996ae0b0
RK
6404 ---------------------
6405 -- Sort_Case_Table --
6406 ---------------------
6407
6408 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
fbf5a39b 6409 U : constant Int := Case_Table'Last;
996ae0b0
RK
6410 K : Int;
6411 J : Int;
6412 T : Case_Bounds;
6413
6414 begin
82893775
AC
6415 K := 1;
6416 while K < U loop
996ae0b0 6417 T := Case_Table (K + 1);
996ae0b0 6418
7f9747c6 6419 J := K + 1;
82893775
AC
6420 while J > 1
6421 and then Expr_Value (Case_Table (J - 1).Lo) > Expr_Value (T.Lo)
996ae0b0
RK
6422 loop
6423 Case_Table (J) := Case_Table (J - 1);
6424 J := J - 1;
6425 end loop;
6426
6427 Case_Table (J) := T;
6428 K := K + 1;
6429 end loop;
6430 end Sort_Case_Table;
6431
6432end Sem_Aggr;
This page took 9.129935 seconds and 5 git commands to generate.