]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/libgnat/a-cbhase.ads
[Ada] Wrong use of Scope_Depth_Value
[gcc.git] / gcc / ada / libgnat / a-cbhase.ads
CommitLineData
f2acf80c
AC
1------------------------------------------------------------------------------
2-- --
3-- GNAT LIBRARY COMPONENTS --
4-- --
5-- A D A . C O N T A I N E R S . B O U N D E D _ H A S H E D _ S E T S --
6-- --
7-- S p e c --
8-- --
4b490c1e 9-- Copyright (C) 2004-2020, Free Software Foundation, Inc. --
f2acf80c
AC
10-- --
11-- This specification is derived from the Ada Reference Manual for use with --
12-- GNAT. The copyright notice above, and the license provisions that follow --
13-- apply solely to the contents of the part following the private keyword. --
14-- --
15-- GNAT is free software; you can redistribute it and/or modify it under --
16-- terms of the GNU General Public License as published by the Free Soft- --
17-- ware Foundation; either version 3, or (at your option) any later ver- --
18-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
19-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
20-- or FITNESS FOR A PARTICULAR PURPOSE. --
21-- --
22-- As a special exception under Section 7 of GPL version 3, you are granted --
23-- additional permissions described in the GCC Runtime Library Exception, --
24-- version 3.1, as published by the Free Software Foundation. --
25-- --
26-- You should have received a copy of the GNU General Public License and --
27-- a copy of the GCC Runtime Library Exception along with this program; --
28-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
29-- <http://www.gnu.org/licenses/>. --
30-- --
31-- This unit was originally developed by Matthew J Heaney. --
32------------------------------------------------------------------------------
33
ffb35bbf 34with Ada.Iterator_Interfaces;
3c24c853 35
f2acf80c 36private with Ada.Containers.Hash_Tables;
1f8f3e6e 37with Ada.Containers.Helpers;
f2acf80c 38private with Ada.Streams;
e2441021 39private with Ada.Finalization; use Ada.Finalization;
f2acf80c
AC
40
41generic
42 type Element_Type is private;
43
44 with function Hash (Element : Element_Type) return Hash_Type;
45
46 with function Equivalent_Elements
47 (Left, Right : Element_Type) return Boolean;
48
49 with function "=" (Left, Right : Element_Type) return Boolean is <>;
50
3221be14
YM
51package Ada.Containers.Bounded_Hashed_Sets with
52 SPARK_Mode => Off
53is
6031f544 54 pragma Annotate (CodePeer, Skip_Analysis);
f2acf80c
AC
55 pragma Pure;
56 pragma Remote_Types;
57
ffb35bbf
ES
58 type Set (Capacity : Count_Type; Modulus : Hash_Type) is tagged private
59 with Constant_Indexing => Constant_Reference,
60 Default_Iterator => Iterate,
fe3463cc
ES
61 Iterator_Element => Element_Type,
62 Aggregate => (Empty => Empty_Set,
63 Add_Unnamed => Include);
ffb35bbf 64
f2acf80c
AC
65 pragma Preelaborable_Initialization (Set);
66
67 type Cursor is private;
68 pragma Preelaborable_Initialization (Cursor);
69
70 Empty_Set : constant Set;
71 -- Set objects declared without an initialization expression are
72 -- initialized to the value Empty_Set.
73
74 No_Element : constant Cursor;
75 -- Cursor objects declared without an initialization expression are
76 -- initialized to the value No_Element.
77
ffb35bbf
ES
78 function Has_Element (Position : Cursor) return Boolean;
79 -- Equivalent to Position /= No_Element
80
81 package Set_Iterator_Interfaces is new
82 Ada.Iterator_Interfaces (Cursor, Has_Element);
83
f2acf80c
AC
84 function "=" (Left, Right : Set) return Boolean;
85 -- For each element in Left, set equality attempts to find the equal
86 -- element in Right; if a search fails, then set equality immediately
87 -- returns False. The search works by calling Hash to find the bucket in
88 -- the Right set that corresponds to the Left element. If the bucket is
89 -- non-empty, the search calls the generic formal element equality operator
90 -- to compare the element (in Left) to the element of each node in the
91 -- bucket (in Right); the search terminates when a matching node in the
92 -- bucket is found, or the nodes in the bucket are exhausted. (Note that
93 -- element equality is called here, not Equivalent_Elements. Set equality
94 -- is the only operation in which element equality is used. Compare set
95 -- equality to Equivalent_Sets, which does call Equivalent_Elements.)
96
97 function Equivalent_Sets (Left, Right : Set) return Boolean;
98 -- Similar to set equality, with the difference that the element in Left is
99 -- compared to the elements in Right using the generic formal
100 -- Equivalent_Elements operation instead of element equality.
101
102 function To_Set (New_Item : Element_Type) return Set;
103 -- Constructs a singleton set comprising New_Element. To_Set calls Hash to
104 -- determine the bucket for New_Item.
105
106 function Capacity (Container : Set) return Count_Type;
107 -- Returns the current capacity of the set. Capacity is the maximum length
108 -- before which rehashing in guaranteed not to occur.
109
110 procedure Reserve_Capacity (Container : in out Set; Capacity : Count_Type);
111 -- If the value of the Capacity actual parameter is less or equal to
112 -- Container.Capacity, then the operation has no effect. Otherwise it
113 -- raises Capacity_Error (as no expansion of capacity is possible for a
114 -- bounded form).
115
116 function Default_Modulus (Capacity : Count_Type) return Hash_Type;
117 -- Returns a modulus value (hash table size) which is optimal for the
118 -- specified capacity (which corresponds to the maximum number of items).
119
120 function Length (Container : Set) return Count_Type;
121 -- Returns the number of items in the set
122
123 function Is_Empty (Container : Set) return Boolean;
124 -- Equivalent to Length (Container) = 0
125
126 procedure Clear (Container : in out Set);
3aacb9ed
RA
127 -- Removes all of the items from the set. This will deallocate all memory
128 -- associated with this set.
f2acf80c
AC
129
130 function Element (Position : Cursor) return Element_Type;
131 -- Returns the element of the node designated by the cursor
132
133 procedure Replace_Element
134 (Container : in out Set;
135 Position : Cursor;
136 New_Item : Element_Type);
137 -- If New_Item is equivalent (as determined by calling Equivalent_Elements)
138 -- to the element of the node designated by Position, then New_Element is
139 -- assigned to that element. Otherwise, it calls Hash to determine the
140 -- bucket for New_Item. If the bucket is not empty, then it calls
141 -- Equivalent_Elements for each node in that bucket to determine whether
142 -- New_Item is equivalent to an element in that bucket. If
143 -- Equivalent_Elements returns True then Program_Error is raised (because
144 -- an element may appear only once in the set); otherwise, New_Item is
145 -- assigned to the node designated by Position, and the node is moved to
146 -- its new bucket.
147
148 procedure Query_Element
149 (Position : Cursor;
150 Process : not null access procedure (Element : Element_Type));
151 -- Calls Process with the element (having only a constant view) of the node
ffb35bbf
ES
152 -- designated by the cursor.
153
154 type Constant_Reference_Type
155 (Element : not null access constant Element_Type) is private
156 with Implicit_Dereference => Element;
157
158 function Constant_Reference
159 (Container : aliased Set;
ce72a9a3 160 Position : Cursor) return Constant_Reference_Type;
f2acf80c
AC
161
162 procedure Assign (Target : in out Set; Source : Set);
163 -- If Target denotes the same object as Source, then the operation has no
d99ff0f4 164 -- effect. If the Target capacity is less than the Source length, then
f2acf80c
AC
165 -- Assign raises Capacity_Error. Otherwise, Assign clears Target and then
166 -- copies the (active) elements from Source to Target.
167
168 function Copy
169 (Source : Set;
170 Capacity : Count_Type := 0;
171 Modulus : Hash_Type := 0) return Set;
172 -- Constructs a new set object whose elements correspond to Source. If the
173 -- Capacity parameter is 0, then the capacity of the result is the same as
174 -- the length of Source. If the Capacity parameter is equal or greater than
175 -- the length of Source, then the capacity of the result is the specified
176 -- value. Otherwise, Copy raises Capacity_Error. If the Modulus parameter
177 -- is 0, then the modulus of the result is the value returned by a call to
178 -- Default_Modulus with the capacity parameter determined as above;
179 -- otherwise the modulus of the result is the specified value.
180
181 procedure Move (Target : in out Set; Source : in out Set);
182 -- Clears Target (if it's not empty), and then moves (not copies) the
183 -- buckets array and nodes from Source to Target.
184
185 procedure Insert
186 (Container : in out Set;
187 New_Item : Element_Type;
188 Position : out Cursor;
189 Inserted : out Boolean);
190 -- Conditionally inserts New_Item into the set. If New_Item is already in
191 -- the set, then Inserted returns False and Position designates the node
192 -- containing the existing element (which is not modified). If New_Item is
193 -- not already in the set, then Inserted returns True and Position
194 -- designates the newly-inserted node containing New_Item. The search for
195 -- an existing element works as follows. Hash is called to determine
196 -- New_Item's bucket; if the bucket is non-empty, then Equivalent_Elements
197 -- is called to compare New_Item to the element of each node in that
198 -- bucket. If the bucket is empty, or there were no equivalent elements in
199 -- the bucket, the search "fails" and the New_Item is inserted in the set
200 -- (and Inserted returns True); otherwise, the search "succeeds" (and
201 -- Inserted returns False).
202
203 procedure Insert (Container : in out Set; New_Item : Element_Type);
204 -- Attempts to insert New_Item into the set, performing the usual insertion
205 -- search (which involves calling both Hash and Equivalent_Elements); if
206 -- the search succeeds (New_Item is equivalent to an element already in the
207 -- set, and so was not inserted), then this operation raises
208 -- Constraint_Error. (This version of Insert is similar to Replace, but
209 -- having the opposite exception behavior. It is intended for use when you
210 -- want to assert that the item is not already in the set.)
211
212 procedure Include (Container : in out Set; New_Item : Element_Type);
213 -- Attempts to insert New_Item into the set. If an element equivalent to
214 -- New_Item is already in the set (the insertion search succeeded, and
215 -- hence New_Item was not inserted), then the value of New_Item is assigned
216 -- to the existing element. (This insertion operation only raises an
217 -- exception if cursor tampering occurs. It is intended for use when you
218 -- want to insert the item in the set, and you don't care whether an
219 -- equivalent element is already present.)
220
221 procedure Replace (Container : in out Set; New_Item : Element_Type);
222 -- Searches for New_Item in the set; if the search fails (because an
223 -- equivalent element was not in the set), then it raises
224 -- Constraint_Error. Otherwise, the existing element is assigned the value
225 -- New_Item. (This is similar to Insert, but with the opposite exception
226 -- behavior. It is intended for use when you want to assert that the item
227 -- is already in the set.)
228
229 procedure Exclude (Container : in out Set; Item : Element_Type);
230 -- Searches for Item in the set, and if found, removes its node from the
231 -- set and then deallocates it. The search works as follows. The operation
232 -- calls Hash to determine the item's bucket; if the bucket is not empty,
233 -- it calls Equivalent_Elements to compare Item to the element of each node
234 -- in the bucket. (This is the deletion analog of Include. It is intended
235 -- for use when you want to remove the item from the set, but don't care
236 -- whether the item is already in the set.)
237
238 procedure Delete (Container : in out Set; Item : Element_Type);
239 -- Searches for Item in the set (which involves calling both Hash and
240 -- Equivalent_Elements). If the search fails, then the operation raises
241 -- Constraint_Error. Otherwise it removes the node from the set and then
242 -- deallocates it. (This is the deletion analog of non-conditional
243 -- Insert. It is intended for use when you want to assert that the item is
244 -- already in the set.)
245
246 procedure Delete (Container : in out Set; Position : in out Cursor);
247 -- Removes the node designated by Position from the set, and then
248 -- deallocates the node. The operation calls Hash to determine the bucket,
249 -- and then compares Position to each node in the bucket until there's a
250 -- match (it does not call Equivalent_Elements).
251
252 procedure Union (Target : in out Set; Source : Set);
253 -- Iterates over the Source set, and conditionally inserts each element
254 -- into Target.
255
256 function Union (Left, Right : Set) return Set;
257 -- The operation first copies the Left set to the result, and then iterates
258 -- over the Right set to conditionally insert each element into the result.
259
260 function "or" (Left, Right : Set) return Set renames Union;
261
262 procedure Intersection (Target : in out Set; Source : Set);
263 -- Iterates over the Target set (calling First and Next), calling Find to
264 -- determine whether the element is in Source. If an equivalent element is
265 -- not found in Source, the element is deleted from Target.
266
267 function Intersection (Left, Right : Set) return Set;
268 -- Iterates over the Left set, calling Find to determine whether the
269 -- element is in Right. If an equivalent element is found, it is inserted
270 -- into the result set.
271
272 function "and" (Left, Right : Set) return Set renames Intersection;
273
274 procedure Difference (Target : in out Set; Source : Set);
275 -- Iterates over the Source (calling First and Next), calling Find to
276 -- determine whether the element is in Target. If an equivalent element is
277 -- found, it is deleted from Target.
278
279 function Difference (Left, Right : Set) return Set;
280 -- Iterates over the Left set, calling Find to determine whether the
281 -- element is in the Right set. If an equivalent element is not found, the
282 -- element is inserted into the result set.
283
284 function "-" (Left, Right : Set) return Set renames Difference;
285
286 procedure Symmetric_Difference (Target : in out Set; Source : Set);
287 -- The operation iterates over the Source set, searching for the element
288 -- in Target (calling Hash and Equivalent_Elements). If an equivalent
308e6f3a 289 -- element is found, it is removed from Target; otherwise it is inserted
f2acf80c
AC
290 -- into Target.
291
292 function Symmetric_Difference (Left, Right : Set) return Set;
293 -- The operation first iterates over the Left set. It calls Find to
294 -- determine whether the element is in the Right set. If no equivalent
295 -- element is found, the element from Left is inserted into the result. The
296 -- operation then iterates over the Right set, to determine whether the
297 -- element is in the Left set. If no equivalent element is found, the Right
298 -- element is inserted into the result.
299
300 function "xor" (Left, Right : Set) return Set
301 renames Symmetric_Difference;
302
303 function Overlap (Left, Right : Set) return Boolean;
304 -- Iterates over the Left set (calling First and Next), calling Find to
305 -- determine whether the element is in the Right set. If an equivalent
306 -- element is found, the operation immediately returns True. The operation
307 -- returns False if the iteration over Left terminates without finding any
308 -- equivalent element in Right.
309
310 function Is_Subset (Subset : Set; Of_Set : Set) return Boolean;
311 -- Iterates over Subset (calling First and Next), calling Find to determine
312 -- whether the element is in Of_Set. If no equivalent element is found in
313 -- Of_Set, the operation immediately returns False. The operation returns
314 -- True if the iteration over Subset terminates without finding an element
315 -- not in Of_Set (that is, every element in Subset is equivalent to an
316 -- element in Of_Set).
317
318 function First (Container : Set) return Cursor;
319 -- Returns a cursor that designates the first non-empty bucket, by
320 -- searching from the beginning of the buckets array.
321
322 function Next (Position : Cursor) return Cursor;
323 -- Returns a cursor that designates the node that follows the current one
324 -- designated by Position. If Position designates the last node in its
325 -- bucket, the operation calls Hash to compute the index of this bucket,
326 -- and searches the buckets array for the first non-empty bucket, starting
327 -- from that index; otherwise, it simply follows the link to the next node
328 -- in the same bucket.
329
330 procedure Next (Position : in out Cursor);
331 -- Equivalent to Position := Next (Position)
332
333 function Find
334 (Container : Set;
335 Item : Element_Type) return Cursor;
336 -- Searches for Item in the set. Find calls Hash to determine the item's
337 -- bucket; if the bucket is not empty, it calls Equivalent_Elements to
338 -- compare Item to each element in the bucket. If the search succeeds, Find
339 -- returns a cursor designating the node containing the equivalent element;
340 -- otherwise, it returns No_Element.
341
342 function Contains (Container : Set; Item : Element_Type) return Boolean;
343 -- Equivalent to Find (Container, Item) /= No_Element
344
f2acf80c
AC
345 function Equivalent_Elements (Left, Right : Cursor) return Boolean;
346 -- Returns the result of calling Equivalent_Elements with the elements of
347 -- the nodes designated by cursors Left and Right.
348
349 function Equivalent_Elements
350 (Left : Cursor;
351 Right : Element_Type) return Boolean;
352 -- Returns the result of calling Equivalent_Elements with element of the
353 -- node designated by Left and element Right.
354
355 function Equivalent_Elements
356 (Left : Element_Type;
357 Right : Cursor) return Boolean;
358 -- Returns the result of calling Equivalent_Elements with element Left and
359 -- the element of the node designated by Right.
360
361 procedure Iterate
362 (Container : Set;
363 Process : not null access procedure (Position : Cursor));
364 -- Calls Process for each node in the set
365
ce72a9a3
AC
366 function Iterate
367 (Container : Set)
368 return Set_Iterator_Interfaces.Forward_Iterator'Class;
ffb35bbf 369
f2acf80c
AC
370 generic
371 type Key_Type (<>) is private;
372
373 with function Key (Element : Element_Type) return Key_Type;
374
375 with function Hash (Key : Key_Type) return Hash_Type;
376
377 with function Equivalent_Keys (Left, Right : Key_Type) return Boolean;
378
379 package Generic_Keys is
380
381 function Key (Position : Cursor) return Key_Type;
382 -- Applies generic formal operation Key to the element of the node
383 -- designated by Position.
384
385 function Element (Container : Set; Key : Key_Type) return Element_Type;
386 -- Searches (as per the key-based Find) for the node containing Key, and
387 -- returns the associated element.
388
389 procedure Replace
390 (Container : in out Set;
391 Key : Key_Type;
392 New_Item : Element_Type);
393 -- Searches (as per the key-based Find) for the node containing Key, and
394 -- then replaces the element of that node (as per the element-based
395 -- Replace_Element).
396
397 procedure Exclude (Container : in out Set; Key : Key_Type);
398 -- Searches for Key in the set, and if found, removes its node from the
399 -- set and then deallocates it. The search works by first calling Hash
400 -- (on Key) to determine the bucket; if the bucket is not empty, it
401 -- calls Equivalent_Keys to compare parameter Key to the value of
402 -- generic formal operation Key applied to element of each node in the
403 -- bucket.
404
405 procedure Delete (Container : in out Set; Key : Key_Type);
406 -- Deletes the node containing Key as per Exclude, with the difference
407 -- that Constraint_Error is raised if Key is not found.
408
409 function Find (Container : Set; Key : Key_Type) return Cursor;
410 -- Searches for the node containing Key, and returns a cursor
411 -- designating the node. The search works by first calling Hash (on Key)
412 -- to determine the bucket. If the bucket is not empty, the search
413 -- compares Key to the element of each node in the bucket, and returns
414 -- the matching node. The comparison itself works by applying the
415 -- generic formal Key operation to the element of the node, and then
416 -- calling generic formal operation Equivalent_Keys.
417
418 function Contains (Container : Set; Key : Key_Type) return Boolean;
419 -- Equivalent to Find (Container, Key) /= No_Element
420
421 procedure Update_Element_Preserving_Key
422 (Container : in out Set;
423 Position : Cursor;
424 Process : not null access
425 procedure (Element : in out Element_Type));
426 -- Calls Process with the element of the node designated by Position,
427 -- but with the restriction that the key-value of the element is not
428 -- modified. The operation first makes a copy of the value returned by
429 -- applying generic formal operation Key on the element of the node, and
430 -- then calls Process with the element. The operation verifies that the
431 -- key-part has not been modified by calling generic formal operation
432 -- Equivalent_Keys to compare the saved key-value to the value returned
433 -- by applying generic formal operation Key to the post-Process value of
434 -- element. If the key values compare equal then the operation
435 -- completes. Otherwise, the node is removed from the map and
436 -- Program_Error is raised.
437
ffb35bbf
ES
438 type Reference_Type (Element : not null access Element_Type) is private
439 with Implicit_Dereference => Element;
440
441 function Reference_Preserving_Key
442 (Container : aliased in out Set;
ce72a9a3 443 Position : Cursor) return Reference_Type;
ffb35bbf 444
c9423ca3
AC
445 function Constant_Reference
446 (Container : aliased Set;
447 Key : Key_Type) return Constant_Reference_Type;
448
ffb35bbf
ES
449 function Reference_Preserving_Key
450 (Container : aliased in out Set;
ce72a9a3 451 Key : Key_Type) return Reference_Type;
ffb35bbf
ES
452
453 private
2b4c962d
AC
454 type Set_Access is access all Set;
455 for Set_Access'Storage_Size use 0;
456
14f73211
BD
457 package Impl is new Helpers.Generic_Implementation;
458
2b4c962d 459 type Reference_Control_Type is
14f73211 460 new Impl.Reference_Control_Type with
2b4c962d
AC
461 record
462 Container : Set_Access;
463 Index : Hash_Type;
464 Old_Pos : Cursor;
465 Old_Hash : Hash_Type;
466 end record;
467
41a58113 468 overriding procedure Finalize (Control : in out Reference_Control_Type);
2b4c962d
AC
469 pragma Inline (Finalize);
470
471 type Reference_Type (Element : not null access Element_Type) is record
472 Control : Reference_Control_Type;
473 end record;
ffb35bbf 474
c9423ca3
AC
475 use Ada.Streams;
476
477 procedure Read
478 (Stream : not null access Root_Stream_Type'Class;
479 Item : out Reference_Type);
480
481 for Reference_Type'Read use Read;
482
483 procedure Write
484 (Stream : not null access Root_Stream_Type'Class;
485 Item : Reference_Type);
486
487 for Reference_Type'Write use Write;
488
f2acf80c
AC
489 end Generic_Keys;
490
491private
f2acf80c
AC
492 pragma Inline (Next);
493
494 type Node_Type is record
c9423ca3 495 Element : aliased Element_Type;
f2acf80c
AC
496 Next : Count_Type;
497 end record;
498
499 package HT_Types is
500 new Hash_Tables.Generic_Bounded_Hash_Table_Types (Node_Type);
501
502 type Set (Capacity : Count_Type; Modulus : Hash_Type) is
3bd783ec 503 new HT_Types.Hash_Table_Type (Capacity, Modulus) with null record;
f2acf80c 504
14f73211 505 use HT_Types, HT_Types.Implementation;
f2acf80c
AC
506 use Ada.Streams;
507
3c24c853
MH
508 procedure Write
509 (Stream : not null access Root_Stream_Type'Class;
510 Container : Set);
511
512 for Set'Write use Write;
513
514 procedure Read
515 (Stream : not null access Root_Stream_Type'Class;
516 Container : out Set);
517
518 for Set'Read use Read;
519
f2acf80c
AC
520 type Set_Access is access all Set;
521 for Set_Access'Storage_Size use 0;
522
d85fd922
AC
523 -- Note: If a Cursor object has no explicit initialization expression,
524 -- it must default initialize to the same value as constant No_Element.
525 -- The Node component of type Cursor has scalar type Count_Type, so it
526 -- requires an explicit initialization expression of its own declaration,
527 -- in order for objects of record type Cursor to properly initialize.
528
f2acf80c
AC
529 type Cursor is record
530 Container : Set_Access;
c54796e0 531 Node : Count_Type := 0;
f2acf80c
AC
532 end record;
533
534 procedure Write
535 (Stream : not null access Root_Stream_Type'Class;
536 Item : Cursor);
537
538 for Cursor'Write use Write;
539
540 procedure Read
541 (Stream : not null access Root_Stream_Type'Class;
542 Item : out Cursor);
543
544 for Cursor'Read use Read;
545
14f73211
BD
546 subtype Reference_Control_Type is Implementation.Reference_Control_Type;
547 -- It is necessary to rename this here, so that the compiler can find it
3bd783ec 548
ffb35bbf 549 type Constant_Reference_Type
3bd783ec 550 (Element : not null access constant Element_Type) is
db222ead
AC
551 record
552 Control : Reference_Control_Type :=
553 raise Program_Error with "uninitialized reference";
554 -- The RM says, "The default initialization of an object of
555 -- type Constant_Reference_Type or Reference_Type propagates
556 -- Program_Error."
557 end record;
ffb35bbf
ES
558
559 procedure Read
560 (Stream : not null access Root_Stream_Type'Class;
561 Item : out Constant_Reference_Type);
562
563 for Constant_Reference_Type'Read use Read;
564
565 procedure Write
566 (Stream : not null access Root_Stream_Type'Class;
567 Item : Constant_Reference_Type);
568
569 for Constant_Reference_Type'Write use Write;
570
14f73211
BD
571 -- Three operations are used to optimize in the expansion of "for ... of"
572 -- loops: the Next(Cursor) procedure in the visible part, and the following
573 -- Pseudo_Reference and Get_Element_Access functions. See Sem_Ch5 for
574 -- details.
575
576 function Pseudo_Reference
577 (Container : aliased Set'Class) return Reference_Control_Type;
578 pragma Inline (Pseudo_Reference);
579 -- Creates an object of type Reference_Control_Type pointing to the
580 -- container, and increments the Lock. Finalization of this object will
581 -- decrement the Lock.
582
583 type Element_Access is access all Element_Type with
584 Storage_Size => 0;
585
586 function Get_Element_Access
587 (Position : Cursor) return not null Element_Access;
588 -- Returns a pointer to the element designated by Position.
589
f2acf80c 590 Empty_Set : constant Set :=
ce72a9a3 591 (Hash_Table_Type with Capacity => 0, Modulus => 0);
f2acf80c 592
3c24c853
MH
593 No_Element : constant Cursor := (Container => null, Node => 0);
594
e2441021
AC
595 type Iterator is new Limited_Controlled and
596 Set_Iterator_Interfaces.Forward_Iterator with
597 record
598 Container : Set_Access;
14f73211
BD
599 end record
600 with Disable_Controlled => not T_Check;
e2441021
AC
601
602 overriding procedure Finalize (Object : in out Iterator);
603
604 overriding function First (Object : Iterator) return Cursor;
605
606 overriding function Next
607 (Object : Iterator;
608 Position : Cursor) return Cursor;
609
f2acf80c 610end Ada.Containers.Bounded_Hashed_Sets;
This page took 2.671702 seconds and 5 git commands to generate.