]> gcc.gnu.org Git - gcc.git/blame - gcc/ada/exp_aggr.adb
ada: Fix bad finalization of limited aggregate in conditional expression
[gcc.git] / gcc / ada / exp_aggr.adb
CommitLineData
70482933
RK
1------------------------------------------------------------------------------
2-- --
3-- GNAT COMPILER COMPONENTS --
4-- --
5-- E X P _ A G G R --
6-- --
7-- B o d y --
8-- --
cccef051 9-- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
70482933
RK
10-- --
11-- GNAT is free software; you can redistribute it and/or modify it under --
12-- terms of the GNU General Public License as published by the Free Soft- --
b5c84c3c 13-- ware Foundation; either version 3, or (at your option) any later ver- --
70482933
RK
14-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17-- for more details. You should have received a copy of the GNU General --
b5c84c3c
RD
18-- Public License distributed with GNAT; see file COPYING3. If not, go to --
19-- http://www.gnu.org/licenses for a complete copy of the license. --
70482933
RK
20-- --
21-- GNAT was originally developed by the GNAT team at New York University. --
71ff80dc 22-- Extensive contributions were provided by Ada Core Technologies Inc. --
70482933
RK
23-- --
24------------------------------------------------------------------------------
25
104f58db
BD
26with Aspects; use Aspects;
27with Atree; use Atree;
28with Checks; use Checks;
29with Debug; use Debug;
30with Einfo; use Einfo;
76f9c7f4 31with Einfo.Entities; use Einfo.Entities;
104f58db
BD
32with Einfo.Utils; use Einfo.Utils;
33with Elists; use Elists;
34with Errout; use Errout;
35with Expander; use Expander;
36with Exp_Util; use Exp_Util;
37with Exp_Ch3; use Exp_Ch3;
38with Exp_Ch6; use Exp_Ch6;
39with Exp_Ch7; use Exp_Ch7;
40with Exp_Ch9; use Exp_Ch9;
41with Exp_Disp; use Exp_Disp;
42with Exp_Tss; use Exp_Tss;
43with Freeze; use Freeze;
44with Itypes; use Itypes;
45with Lib; use Lib;
46with Namet; use Namet;
47with Nmake; use Nmake;
48with Nlists; use Nlists;
49with Opt; use Opt;
50with Restrict; use Restrict;
51with Rident; use Rident;
52with Rtsfind; use Rtsfind;
53with Ttypes; use Ttypes;
54with Sem; use Sem;
55with Sem_Aggr; use Sem_Aggr;
56with Sem_Aux; use Sem_Aux;
e1dfbb03 57with Sem_Case; use Sem_Case;
104f58db
BD
58with Sem_Ch3; use Sem_Ch3;
59with Sem_Ch8; use Sem_Ch8;
60with Sem_Ch13; use Sem_Ch13;
61with Sem_Eval; use Sem_Eval;
62with Sem_Mech; use Sem_Mech;
63with Sem_Res; use Sem_Res;
ae250f9e 64with Sem_Type; use Sem_Type;
104f58db 65with Sem_Util; use Sem_Util;
ca4bff3a 66 use Sem_Util.Storage_Model_Support;
104f58db
BD
67with Sinfo; use Sinfo;
68with Sinfo.Nodes; use Sinfo.Nodes;
69with Sinfo.Utils; use Sinfo.Utils;
70with Snames; use Snames;
71with Stand; use Stand;
72with Stringt; use Stringt;
73with Tbuild; use Tbuild;
74with Uintp; use Uintp;
75with Urealp; use Urealp;
bc50ac71 76with Warnsw; use Warnsw;
70482933
RK
77
78package body Exp_Aggr is
79
742084ad
MP
80 function Build_Assignment_With_Temporary
81 (Target : Node_Id;
ca4bff3a 82 Typ : Entity_Id;
742084ad
MP
83 Source : Node_Id) return List_Id;
84 -- Returns a list of actions to assign Source to Target of type Typ using
ca4bff3a 85 -- an extra temporary, which can potentially be large.
742084ad 86
70482933
RK
87 type Case_Bounds is record
88 Choice_Lo : Node_Id;
89 Choice_Hi : Node_Id;
90 Choice_Node : Node_Id;
91 end record;
92
93 type Case_Table_Type is array (Nat range <>) of Case_Bounds;
94 -- Table type used by Check_Case_Choices procedure
95
9eb8d5b4
AC
96 procedure Expand_Delta_Array_Aggregate (N : Node_Id; Deltas : List_Id);
97 procedure Expand_Delta_Record_Aggregate (N : Node_Id; Deltas : List_Id);
745f5698 98 procedure Expand_Container_Aggregate (N : Node_Id);
9eb8d5b4 99
a80b1eb7
EB
100 function Get_Base_Object (N : Node_Id) return Entity_Id;
101 -- Return the base object, i.e. the outermost prefix object, that N refers
102 -- to statically, or Empty if it cannot be determined. The assumption is
103 -- that all dereferences are explicit in the tree rooted at N.
104
df3e68b1
HK
105 function Has_Default_Init_Comps (N : Node_Id) return Boolean;
106 -- N is an aggregate (record or array). Checks the presence of default
107 -- initialization (<>) in any component (Ada 2005: AI-287).
108
fc84947c 109 procedure Initialize_Component
fc84947c
EB
110 (N : Node_Id;
111 Comp : Node_Id;
112 Comp_Typ : Node_Id;
113 Init_Expr : Node_Id;
114 Stmts : List_Id);
c0ceba6c
EB
115 -- Perform the initialization of component Comp with expected type
116 -- Comp_Typ of aggregate N. Init_Expr denotes the initialization
fc84947c
EB
117 -- expression of the component. All generated code is added to Stmts.
118
9f51b855
JM
119 function Is_CCG_Supported_Aggregate (N : Node_Id) return Boolean;
120 -- Return True if aggregate N is located in a context supported by the
121 -- CCG backend; False otherwise.
6031f544 122
df3e68b1
HK
123 function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean;
124 -- Returns true if N is an aggregate used to initialize the components
b465ef6f 125 -- of a statically allocated dispatch table.
df3e68b1 126
937e9676
AC
127 function Late_Expansion
128 (N : Node_Id;
129 Typ : Entity_Id;
130 Target : Node_Id) return List_Id;
131 -- This routine implements top-down expansion of nested aggregates. In
132 -- doing so, it avoids the generation of temporaries at each level. N is
133 -- a nested record or array aggregate with the Expansion_Delayed flag.
134 -- Typ is the expected type of the aggregate. Target is a (duplicatable)
135 -- expression that will hold the result of the aggregate expansion.
136
137 function Make_OK_Assignment_Statement
138 (Sloc : Source_Ptr;
139 Name : Node_Id;
140 Expression : Node_Id) return Node_Id;
141 -- This is like Make_Assignment_Statement, except that Assignment_OK
142 -- is set in the left operand. All assignments built by this unit use
143 -- this routine. This is needed to deal with assignments to initialized
144 -- constants that are done in place.
145
3cf3e5c6 146 function Must_Slide
6732c403
ES
147 (Aggr : Node_Id;
148 Obj_Type : Entity_Id;
3cf3e5c6
AC
149 Typ : Entity_Id) return Boolean;
150 -- A static array aggregate in an object declaration can in most cases be
151 -- expanded in place. The one exception is when the aggregate is given
152 -- with component associations that specify different bounds from those of
153 -- the type definition in the object declaration. In this pathological
154 -- case the aggregate must slide, and we must introduce an intermediate
155 -- temporary to hold it.
156 --
157 -- The same holds in an assignment to one-dimensional array of arrays,
158 -- when a component may be given with bounds that differ from those of the
159 -- component type.
160
937e9676
AC
161 function Number_Of_Choices (N : Node_Id) return Nat;
162 -- Returns the number of discrete choices (not including the others choice
163 -- if present) contained in (sub-)aggregate N.
164
70482933
RK
165 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
166 -- Sort the Case Table using the Lower Bound of each Choice as the key.
167 -- A simple insertion sort is used since the number of choices in a case
168 -- statement of variant part will usually be small and probably in near
169 -- sorted order.
170
171 ------------------------------------------------------
172 -- Local subprograms for Record Aggregate Expansion --
173 ------------------------------------------------------
174
d4dfb005 175 function Is_Build_In_Place_Aggregate_Return (N : Node_Id) return Boolean;
e05e5d6b
EB
176 -- True if N is an aggregate (possibly qualified or a dependent expression
177 -- of a conditional expression, and possibly recursively so) that is being
178 -- returned from a build-in-place function. Such qualified and conditional
179 -- expressions are transparent for this purpose because an enclosing return
180 -- is propagated resp. distributed into these expressions by the expander.
d4dfb005 181
df3e68b1 182 function Build_Record_Aggr_Code
f7e6fc47
RD
183 (N : Node_Id;
184 Typ : Entity_Id;
185 Lhs : Node_Id) return List_Id;
df3e68b1
HK
186 -- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
187 -- aggregate. Target is an expression containing the location on which the
188 -- component by component assignments will take place. Returns the list of
189 -- assignments plus all other adjustments needed for tagged and controlled
203ddcea 190 -- types.
df3e68b1
HK
191
192 procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id);
d4dfb005 193 -- Transform a record aggregate into a sequence of assignments performed
64ac53f4 194 -- component by component. N is an N_Aggregate or N_Extension_Aggregate.
d4dfb005 195 -- Typ is the type of the record aggregate.
df3e68b1 196
70482933
RK
197 procedure Expand_Record_Aggregate
198 (N : Node_Id;
199 Orig_Tag : Node_Id := Empty;
200 Parent_Expr : Node_Id := Empty);
201 -- This is the top level procedure for record aggregate expansion.
202 -- Expansion for record aggregates needs expand aggregates for tagged
203 -- record types. Specifically Expand_Record_Aggregate adds the Tag
204 -- field in front of the Component_Association list that was created
205 -- during resolution by Resolve_Record_Aggregate.
206 --
207 -- N is the record aggregate node.
208 -- Orig_Tag is the value of the Tag that has to be provided for this
209 -- specific aggregate. It carries the tag corresponding to the type
210 -- of the outermost aggregate during the recursive expansion
211 -- Parent_Expr is the ancestor part of the original extension
212 -- aggregate
213
fbf5a39b 214 function Has_Mutable_Components (Typ : Entity_Id) return Boolean;
b465ef6f 215 -- Return true if one of the components is of a discriminated type with
fbf5a39b
AC
216 -- defaults. An aggregate for a type with mutable components must be
217 -- expanded into individual assignments.
218
a80b1eb7
EB
219 function In_Place_Assign_OK
220 (N : Node_Id;
221 Target_Object : Entity_Id := Empty) return Boolean;
4ff5aa0c
AC
222 -- Predicate to determine whether an aggregate assignment can be done in
223 -- place, because none of the new values can depend on the components of
224 -- the target of the assignment.
225
07fc65c4
GB
226 procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id);
227 -- If the type of the aggregate is a type extension with renamed discrimi-
228 -- nants, we must initialize the hidden discriminants of the parent.
229 -- Otherwise, the target object must not be initialized. The discriminants
230 -- are initialized by calling the initialization procedure for the type.
231 -- This is incorrect if the initialization of other components has any
232 -- side effects. We restrict this call to the case where the parent type
233 -- has a variant part, because this is the only case where the hidden
234 -- discriminants are accessed, namely when calling discriminant checking
235 -- functions of the parent type, and when applying a stream attribute to
236 -- an object of the derived type.
237
70482933 238 -----------------------------------------------------
07fc65c4 239 -- Local Subprograms for Array Aggregate Expansion --
70482933
RK
240 -----------------------------------------------------
241
2fedcc18
EB
242 function Aggr_Assignment_OK_For_Backend (N : Node_Id) return Boolean;
243 -- Returns true if an aggregate assignment can be done by the back end
244
eaf6e63a 245 function Aggr_Size_OK (N : Node_Id) return Boolean;
841dd0f5
AC
246 -- Very large static aggregates present problems to the back-end, and are
247 -- transformed into assignments and loops. This function verifies that the
248 -- total number of components of an aggregate is acceptable for rewriting
74e7891f
RD
249 -- into a purely positional static form. Aggr_Size_OK must be called before
250 -- calling Flatten.
251 --
841dd0f5 252 -- This function also detects and warns about one-component aggregates that
d940c627 253 -- appear in a nonstatic context. Even if the component value is static,
841dd0f5 254 -- such an aggregate must be expanded into an assignment.
643a0839 255
df3e68b1
HK
256 function Backend_Processing_Possible (N : Node_Id) return Boolean;
257 -- This function checks if array aggregate N can be processed directly
b465ef6f 258 -- by the backend. If this is the case, True is returned.
df3e68b1
HK
259
260 function Build_Array_Aggr_Code
261 (N : Node_Id;
262 Ctype : Entity_Id;
263 Index : Node_Id;
264 Into : Node_Id;
265 Scalar_Comp : Boolean;
266 Indexes : List_Id := No_List) return List_Id;
267 -- This recursive routine returns a list of statements containing the
268 -- loops and assignments that are needed for the expansion of the array
269 -- aggregate N.
270 --
271 -- N is the (sub-)aggregate node to be expanded into code. This node has
272 -- been fully analyzed, and its Etype is properly set.
273 --
d74716b3 274 -- Index is the index node corresponding to the array subaggregate N
df3e68b1
HK
275 --
276 -- Into is the target expression into which we are copying the aggregate.
277 -- Note that this node may not have been analyzed yet, and so the Etype
278 -- field may not be set.
279 --
280 -- Scalar_Comp is True if the component type of the aggregate is scalar
281 --
282 -- Indexes is the current list of expressions used to index the object we
283 -- are writing into.
284
6f639c98
ES
285 procedure Convert_Array_Aggr_In_Allocator
286 (Decl : Node_Id;
287 Aggr : Node_Id;
288 Target : Node_Id);
289 -- If the aggregate appears within an allocator and can be expanded in
290 -- place, this routine generates the individual assignments to components
291 -- of the designated object. This is an optimization over the general
292 -- case, where a temporary is first created on the stack and then used to
293 -- construct the allocated object on the heap.
294
07fc65c4 295 procedure Convert_To_Positional
c42006e9
AC
296 (N : Node_Id;
297 Handle_Bit_Packed : Boolean := False);
07fc65c4 298 -- If possible, convert named notation to positional notation. This
3cf3e5c6
AC
299 -- conversion is possible only in some static cases. If the conversion is
300 -- possible, then N is rewritten with the analyzed converted aggregate.
c42006e9 301 -- The parameter Handle_Bit_Packed is usually set False (since we do
3cf3e5c6
AC
302 -- not expect the back end to handle bit packed arrays, so the normal case
303 -- of conversion is pointless), but in the special case of a call from
304 -- Packed_Array_Aggregate_Handled, we set this parameter to True, since
305 -- these are cases we handle in there.
07fc65c4 306
70482933
RK
307 procedure Expand_Array_Aggregate (N : Node_Id);
308 -- This is the top-level routine to perform array aggregate expansion.
309 -- N is the N_Aggregate node to be expanded.
310
dc3af7e2 311 function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean;
42fcc750 312 -- For 2D packed array aggregates with constant bounds and constant scalar
dc3af7e2
AC
313 -- components, it is preferable to pack the inner aggregates because the
314 -- whole matrix can then be presented to the back-end as a one-dimensional
315 -- list of literals. This is much more efficient than expanding into single
2791be24
AC
316 -- component assignments. This function determines if the type Typ is for
317 -- an array that is suitable for this optimization: it returns True if Typ
318 -- is a two dimensional bit packed array with component size 1, 2, or 4.
dc3af7e2 319
c42006e9 320 function Max_Aggregate_Size
eaf6e63a 321 (N : Node_Id;
c42006e9 322 Default_Size : Nat := 5000) return Nat;
eaf6e63a
BD
323 -- Return the max size for a static aggregate N. Return Default_Size if no
324 -- other special criteria trigger.
c42006e9 325
07fc65c4
GB
326 function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean;
327 -- Given an array aggregate, this function handles the case of a packed
328 -- array aggregate with all constant values, where the aggregate can be
329 -- evaluated at compile time. If this is possible, then N is rewritten
330 -- to be its proper compile time value with all the components properly
50decc81
RD
331 -- assembled. The expression is analyzed and resolved and True is returned.
332 -- If this transformation is not possible, N is unchanged and False is
333 -- returned.
07fc65c4 334
5eeeed5e
AC
335 function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean;
336 -- If the type of the aggregate is a two-dimensional bit_packed array
337 -- it may be transformed into an array of bytes with constant values,
338 -- and presented to the back-end as a static value. The function returns
339 -- false if this transformation cannot be performed. THis is similar to,
340 -- and reuses part of the machinery in Packed_Array_Aggregate_Handled.
341
2fedcc18
EB
342 ------------------------------------
343 -- Aggr_Assignment_OK_For_Backend --
344 ------------------------------------
345
346 -- Back-end processing by Gigi/gcc is possible only if all the following
347 -- conditions are met:
348
349 -- 1. N consists of a single OTHERS choice, possibly recursively, or
350 -- of a single choice, possibly recursively, if it is surrounded by
351 -- a qualified expression whose subtype mark is unconstrained.
352
353 -- 2. The array type has no null ranges (the purpose of this is to
354 -- avoid a bogus warning for an out-of-range value).
355
356 -- 3. The array type has no atomic components
357
358 -- 4. The component type is elementary
359
360 -- 5. The component size is a multiple of Storage_Unit
361
362 -- 6. The component size is Storage_Unit or the value is of the form
363 -- M * (1 + A**1 + A**2 + .. A**(K-1)) where A = 2**(Storage_Unit)
364 -- and M in 0 .. A-1. This can also be viewed as K occurrences of
365 -- the Storage_Unit value M, concatenated together.
366
367 -- The ultimate goal is to generate a call to a fast memset routine
368 -- specifically optimized for the target.
369
370 function Aggr_Assignment_OK_For_Backend (N : Node_Id) return Boolean is
2fedcc18
EB
371
372 function Is_OK_Aggregate (Aggr : Node_Id) return Boolean;
373 -- Return true if Aggr is suitable for back-end assignment
374
375 ---------------------
376 -- Is_OK_Aggregate --
377 ---------------------
378
379 function Is_OK_Aggregate (Aggr : Node_Id) return Boolean is
380 Assoc : constant List_Id := Component_Associations (Aggr);
381
382 begin
383 -- An "others" aggregate is most likely OK, but see below
384
385 if Is_Others_Aggregate (Aggr) then
386 null;
387
388 -- An aggregate with a single choice requires a qualified expression
389 -- whose subtype mark is an unconstrained type because we need it to
390 -- have the semantics of an "others" aggregate.
391
392 elsif Nkind (Parent (N)) = N_Qualified_Expression
393 and then not Is_Constrained (Entity (Subtype_Mark (Parent (N))))
394 and then Is_Single_Aggregate (Aggr)
395 then
396 null;
397
398 -- The other cases are not OK
399
400 else
401 return False;
402 end if;
403
404 -- In any case we do not support an iterated association
405
406 return Nkind (First (Assoc)) /= N_Iterated_Component_Association;
407 end Is_OK_Aggregate;
408
7c4f3267
BD
409 Bounds : Range_Nodes;
410 Csiz : Uint := No_Uint;
411 Ctyp : Entity_Id;
412 Expr : Node_Id;
413 Index : Entity_Id;
414 Nunits : Int;
415 Remainder : Uint;
416 Value : Uint;
417
b120ca61
EB
418 -- Start of processing for Aggr_Assignment_OK_For_Backend
419
2fedcc18
EB
420 begin
421 -- Back end doesn't know about <>
422
423 if Has_Default_Init_Comps (N) then
424 return False;
425 end if;
426
427 -- Recurse as far as possible to find the innermost component type
428
429 Ctyp := Etype (N);
430 Expr := N;
431 while Is_Array_Type (Ctyp) loop
432 if Nkind (Expr) /= N_Aggregate
433 or else not Is_OK_Aggregate (Expr)
434 then
435 return False;
436 end if;
437
438 Index := First_Index (Ctyp);
439 while Present (Index) loop
7c4f3267 440 Bounds := Get_Index_Bounds (Index);
2fedcc18 441
7c4f3267 442 if Is_Null_Range (Bounds.First, Bounds.Last) then
2fedcc18
EB
443 return False;
444 end if;
445
446 Next_Index (Index);
447 end loop;
448
449 Expr := Expression (First (Component_Associations (Expr)));
450
451 for J in 1 .. Number_Dimensions (Ctyp) - 1 loop
452 if Nkind (Expr) /= N_Aggregate
453 or else not Is_OK_Aggregate (Expr)
454 then
455 return False;
456 end if;
457
458 Expr := Expression (First (Component_Associations (Expr)));
459 end loop;
460
461 if Has_Atomic_Components (Ctyp) then
462 return False;
463 end if;
464
465 Csiz := Component_Size (Ctyp);
466 Ctyp := Component_Type (Ctyp);
467
b120ca61 468 if Is_Full_Access (Ctyp) then
2fedcc18
EB
469 return False;
470 end if;
471 end loop;
472
473 -- Access types need to be dealt with specially
474
475 if Is_Access_Type (Ctyp) then
476
477 -- Component_Size is not set by Layout_Type if the component
478 -- type is an access type ???
479
480 Csiz := Esize (Ctyp);
481
482 -- Fat pointers are rejected as they are not really elementary
483 -- for the backend.
484
36e38022 485 if No (Csiz) or else Csiz /= System_Address_Size then
2fedcc18
EB
486 return False;
487 end if;
488
489 -- The supported expressions are NULL and constants, others are
490 -- rejected upfront to avoid being analyzed below, which can be
491 -- problematic for some of them, for example allocators.
492
493 if Nkind (Expr) /= N_Null and then not Is_Entity_Name (Expr) then
494 return False;
495 end if;
496
497 -- Scalar types are OK if their size is a multiple of Storage_Unit
498
36e38022 499 elsif Is_Scalar_Type (Ctyp) and then Present (Csiz) then
2fedcc18
EB
500
501 if Csiz mod System_Storage_Unit /= 0 then
502 return False;
503 end if;
504
505 -- Composite types are rejected
506
507 else
508 return False;
509 end if;
510
511 -- If the expression has side effects (e.g. contains calls with
512 -- potential side effects) reject as well. We only preanalyze the
513 -- expression to prevent the removal of intended side effects.
514
515 Preanalyze_And_Resolve (Expr, Ctyp);
516
517 if not Side_Effect_Free (Expr) then
518 return False;
519 end if;
520
521 -- The expression needs to be analyzed if True is returned
522
523 Analyze_And_Resolve (Expr, Ctyp);
524
525 -- Strip away any conversions from the expression as they simply
526 -- qualify the real expression.
527
4a08c95c 528 while Nkind (Expr) in N_Unchecked_Type_Conversion | N_Type_Conversion
2fedcc18
EB
529 loop
530 Expr := Expression (Expr);
531 end loop;
532
533 Nunits := UI_To_Int (Csiz) / System_Storage_Unit;
534
535 if Nunits = 1 then
536 return True;
537 end if;
538
539 if not Compile_Time_Known_Value (Expr) then
540 return False;
541 end if;
542
543 -- The only supported value for floating point is 0.0
544
545 if Is_Floating_Point_Type (Ctyp) then
546 return Expr_Value_R (Expr) = Ureal_0;
547 end if;
548
549 -- For other types, we can look into the value as an integer, which
550 -- means the representation value for enumeration literals.
551
552 Value := Expr_Rep_Value (Expr);
553
554 if Has_Biased_Representation (Ctyp) then
555 Value := Value - Expr_Value (Type_Low_Bound (Ctyp));
556 end if;
557
558 -- Values 0 and -1 immediately satisfy the last check
559
560 if Value = Uint_0 or else Value = Uint_Minus_1 then
561 return True;
562 end if;
563
564 -- We need to work with an unsigned value
565
566 if Value < 0 then
567 Value := Value + 2**(System_Storage_Unit * Nunits);
568 end if;
569
570 Remainder := Value rem 2**System_Storage_Unit;
571
572 for J in 1 .. Nunits - 1 loop
573 Value := Value / 2**System_Storage_Unit;
574
575 if Value rem 2**System_Storage_Unit /= Remainder then
576 return False;
577 end if;
578 end loop;
579
580 return True;
581 end Aggr_Assignment_OK_For_Backend;
582
643a0839
ES
583 ------------------
584 -- Aggr_Size_OK --
585 ------------------
586
eaf6e63a
BD
587 function Aggr_Size_OK (N : Node_Id) return Boolean is
588 Typ : constant Entity_Id := Etype (N);
643a0839
ES
589 Lo : Node_Id;
590 Hi : Node_Id;
591 Indx : Node_Id;
4167b075 592 Size : Uint;
643a0839
ES
593 Lov : Uint;
594 Hiv : Uint;
595
303fbb20
AC
596 Max_Aggr_Size : Nat;
597 -- Determines the maximum size of an array aggregate produced by
598 -- converting named to positional notation (e.g. from others clauses).
599 -- This avoids running away with attempts to convert huge aggregates,
600 -- which hit memory limits in the backend.
643a0839 601
16e764a7 602 function Component_Count (T : Entity_Id) return Nat;
457cee0b 603 -- The limit is applied to the total number of subcomponents that the
643a0839
ES
604 -- aggregate will have, which is the number of static expressions
605 -- that will appear in the flattened array. This requires a recursive
16b05213 606 -- computation of the number of scalar components of the structure.
643a0839
ES
607
608 ---------------------
609 -- Component_Count --
610 ---------------------
611
16e764a7
AC
612 function Component_Count (T : Entity_Id) return Nat is
613 Res : Nat := 0;
643a0839
ES
614 Comp : Entity_Id;
615
616 begin
617 if Is_Scalar_Type (T) then
618 return 1;
619
620 elsif Is_Record_Type (T) then
621 Comp := First_Component (T);
622 while Present (Comp) loop
623 Res := Res + Component_Count (Etype (Comp));
624 Next_Component (Comp);
625 end loop;
626
627 return Res;
628
629 elsif Is_Array_Type (T) then
630 declare
631 Lo : constant Node_Id :=
15f0f591 632 Type_Low_Bound (Etype (First_Index (T)));
643a0839 633 Hi : constant Node_Id :=
15f0f591 634 Type_High_Bound (Etype (First_Index (T)));
643a0839 635
16e764a7 636 Siz : constant Nat := Component_Count (Component_Type (T));
643a0839
ES
637
638 begin
b4213ffd
AC
639 -- Check for superflat arrays, i.e. arrays with such bounds
640 -- as 4 .. 2, to insure that this function never returns a
641 -- meaningless negative value.
642
643a0839
ES
643 if not Compile_Time_Known_Value (Lo)
644 or else not Compile_Time_Known_Value (Hi)
b4213ffd 645 or else Expr_Value (Hi) < Expr_Value (Lo)
643a0839
ES
646 then
647 return 0;
b4213ffd 648
643a0839 649 else
457cee0b
AC
650 -- If the number of components is greater than Int'Last,
651 -- then return Int'Last, so caller will return False (Aggr
652 -- size is not OK). Otherwise, UI_To_Int will crash.
653
654 declare
655 UI : constant Uint :=
16b8ba10 656 (Expr_Value (Hi) - Expr_Value (Lo) + 1) * Siz;
457cee0b
AC
657 begin
658 if UI_Is_In_Int_Range (UI) then
16b8ba10 659 return UI_To_Int (UI);
457cee0b
AC
660 else
661 return Int'Last;
662 end if;
663 end;
643a0839
ES
664 end if;
665 end;
666
667 else
668 -- Can only be a null for an access type
669
670 return 1;
671 end if;
672 end Component_Count;
673
674 -- Start of processing for Aggr_Size_OK
675
676 begin
c42006e9 677 -- We bump the maximum size unless the aggregate has a single component
b9ec8463 678 -- association, which will be more efficient if implemented with a loop.
73b670e3 679 -- The -gnatd_g switch disables this bumping.
b9ec8463 680
73b670e3
BD
681 if (No (Expressions (N))
682 and then No (Next (First (Component_Associations (N)))))
683 or else Debug_Flag_Underscore_G
b9ec8463 684 then
eaf6e63a 685 Max_Aggr_Size := Max_Aggregate_Size (N);
c42006e9 686 else
eaf6e63a 687 Max_Aggr_Size := Max_Aggregate_Size (N, 500_000);
303fbb20
AC
688 end if;
689
4167b075 690 Size := UI_From_Int (Component_Count (Component_Type (Typ)));
643a0839 691
5277cab6 692 Indx := First_Index (Typ);
643a0839
ES
693 while Present (Indx) loop
694 Lo := Type_Low_Bound (Etype (Indx));
695 Hi := Type_High_Bound (Etype (Indx));
696
697 -- Bounds need to be known at compile time
698
699 if not Compile_Time_Known_Value (Lo)
700 or else not Compile_Time_Known_Value (Hi)
701 then
702 return False;
703 end if;
704
705 Lov := Expr_Value (Lo);
706 Hiv := Expr_Value (Hi);
707
708 -- A flat array is always safe
709
710 if Hiv < Lov then
711 return True;
712 end if;
713
86038a88 714 -- One-component aggregates are suspicious, and if the context type
d940c627 715 -- is an object declaration with nonstatic bounds it will trip gcc;
86038a88 716 -- such an aggregate must be expanded into a single assignment.
58fda84d 717
36a66365 718 if Hiv = Lov and then Nkind (Parent (N)) = N_Object_Declaration then
58fda84d
ES
719 declare
720 Index_Type : constant Entity_Id :=
15f0f591
AC
721 Etype
722 (First_Index (Etype (Defining_Identifier (Parent (N)))));
86038a88
RD
723 Indx : Node_Id;
724
58fda84d
ES
725 begin
726 if not Compile_Time_Known_Value (Type_Low_Bound (Index_Type))
36a66365
AC
727 or else not Compile_Time_Known_Value
728 (Type_High_Bound (Index_Type))
58fda84d
ES
729 then
730 if Present (Component_Associations (N)) then
731 Indx :=
00f45f30
AC
732 First
733 (Choice_List (First (Component_Associations (N))));
324ac540 734
58fda84d
ES
735 if Is_Entity_Name (Indx)
736 and then not Is_Type (Entity (Indx))
737 then
738 Error_Msg_N
324ac540
AC
739 ("single component aggregate in "
740 & "non-static context??", Indx);
741 Error_Msg_N ("\maybe subtype name was meant??", Indx);
58fda84d
ES
742 end if;
743 end if;
744
745 return False;
746 end if;
747 end;
748 end if;
749
643a0839
ES
750 declare
751 Rng : constant Uint := Hiv - Lov + 1;
752
753 begin
754 -- Check if size is too large
755
756 if not UI_Is_In_Int_Range (Rng) then
757 return False;
758 end if;
759
4167b075
GD
760 -- Compute the size using universal arithmetic to avoid the
761 -- possibility of overflow on very large aggregates.
643a0839 762
4167b075
GD
763 Size := Size * Rng;
764
765 if Size <= 0
766 or else Size > Max_Aggr_Size
767 then
768 return False;
769 end if;
770 end;
643a0839
ES
771
772 -- Bounds must be in integer range, for later array construction
773
774 if not UI_Is_In_Int_Range (Lov)
775 or else
776 not UI_Is_In_Int_Range (Hiv)
777 then
778 return False;
779 end if;
780
781 Next_Index (Indx);
782 end loop;
783
784 return True;
785 end Aggr_Size_OK;
786
70482933
RK
787 ---------------------------------
788 -- Backend_Processing_Possible --
789 ---------------------------------
790
791 -- Backend processing by Gigi/gcc is possible only if all the following
792 -- conditions are met:
793
794 -- 1. N is fully positional
795
796 -- 2. N is not a bit-packed array aggregate;
797
798 -- 3. The size of N's array type must be known at compile time. Note
799 -- that this implies that the component size is also known
800
801 -- 4. The array type of N does not follow the Fortran layout convention
802 -- or if it does it must be 1 dimensional.
803
0f95b178
JM
804 -- 5. The array component type may not be tagged (which could necessitate
805 -- reassignment of proper tags).
70482933 806
0f95b178
JM
807 -- 6. The array component type must not have unaligned bit components
808
809 -- 7. None of the components of the aggregate may be bit unaligned
810 -- components.
811
812 -- 8. There cannot be delayed components, since we do not know enough
813 -- at this stage to know if back end processing is possible.
814
815 -- 9. There cannot be any discriminated record components, since the
816 -- back end cannot handle this complex case.
91b1417d 817
7f4c1903 818 -- 10. No controlled actions need to be generated for components
a8f59a33 819
7e22a38c
AC
820 -- 11. When generating C code, N must be part of a N_Object_Declaration
821
2d6aa715
AC
822 -- 12. When generating C code, N must not include function calls
823
70482933
RK
824 function Backend_Processing_Possible (N : Node_Id) return Boolean is
825 Typ : constant Entity_Id := Etype (N);
3cf3e5c6 826 -- Typ is the correct constrained array subtype of the aggregate
70482933 827
0f95b178
JM
828 function Component_Check (N : Node_Id; Index : Node_Id) return Boolean;
829 -- This routine checks components of aggregate N, enforcing checks
d74716b3 830 -- 1, 7, 8, 9, 11, and 12. In the multidimensional case, these checks
2d6aa715 831 -- are performed on subaggregates. The Index value is the current index
d74716b3 832 -- being checked in the multidimensional case.
70482933 833
0f95b178
JM
834 ---------------------
835 -- Component_Check --
836 ---------------------
70482933 837
0f95b178 838 function Component_Check (N : Node_Id; Index : Node_Id) return Boolean is
35f4f238
JM
839 function Ultimate_Original_Expression (N : Node_Id) return Node_Id;
840 -- Given a type conversion or an unchecked type conversion N, return
841 -- its innermost original expression.
842
843 ----------------------------------
844 -- Ultimate_Original_Expression --
845 ----------------------------------
846
847 function Ultimate_Original_Expression (N : Node_Id) return Node_Id is
848 Expr : Node_Id := Original_Node (N);
849
850 begin
4a08c95c
AC
851 while Nkind (Expr) in
852 N_Type_Conversion | N_Unchecked_Type_Conversion
35f4f238
JM
853 loop
854 Expr := Original_Node (Expression (Expr));
855 end loop;
856
857 return Expr;
858 end Ultimate_Original_Expression;
859
860 -- Local variables
861
70482933
RK
862 Expr : Node_Id;
863
bbe008b6
HK
864 -- Start of processing for Component_Check
865
70482933 866 begin
0f95b178 867 -- Checks 1: (no component associations)
70482933
RK
868
869 if Present (Component_Associations (N)) then
870 return False;
871 end if;
872
7ec25b2b
AC
873 -- Checks 11: The C code generator cannot handle aggregates that are
874 -- not part of an object declaration.
7e22a38c 875
4ff5aa0c
AC
876 if Modify_Tree_For_C and then not Is_CCG_Supported_Aggregate (N) then
877 return False;
7e22a38c
AC
878 end if;
879
0f95b178
JM
880 -- Checks on components
881
70482933
RK
882 -- Recurse to check subaggregates, which may appear in qualified
883 -- expressions. If delayed, the front-end will have to expand.
d940c627 884 -- If the component is a discriminated record, treat as nonstatic,
5277cab6 885 -- as the back-end cannot handle this properly.
70482933
RK
886
887 Expr := First (Expressions (N));
70482933 888 while Present (Expr) loop
0f95b178
JM
889
890 -- Checks 8: (no delayed components)
891
70482933
RK
892 if Is_Delayed_Aggregate (Expr) then
893 return False;
894 end if;
895
0f95b178
JM
896 -- Checks 9: (no discriminated records)
897
5277cab6
ES
898 if Present (Etype (Expr))
899 and then Is_Record_Type (Etype (Expr))
900 and then Has_Discriminants (Etype (Expr))
901 then
902 return False;
903 end if;
904
0f95b178
JM
905 -- Checks 7. Component must not be bit aligned component
906
907 if Possible_Bit_Aligned_Component (Expr) then
908 return False;
909 end if;
910
2d6aa715
AC
911 -- Checks 12: (no function call)
912
35f4f238
JM
913 if Modify_Tree_For_C
914 and then
915 Nkind (Ultimate_Original_Expression (Expr)) = N_Function_Call
916 then
2d6aa715
AC
917 return False;
918 end if;
919
0f95b178
JM
920 -- Recursion to following indexes for multiple dimension case
921
70482933 922 if Present (Next_Index (Index))
36a66365 923 and then not Component_Check (Expr, Next_Index (Index))
70482933
RK
924 then
925 return False;
926 end if;
927
0f95b178
JM
928 -- All checks for that component finished, on to next
929
70482933
RK
930 Next (Expr);
931 end loop;
932
933 return True;
0f95b178 934 end Component_Check;
70482933
RK
935
936 -- Start of processing for Backend_Processing_Possible
937
938 begin
a8f59a33 939 -- Checks 2 (array not bit packed) and 10 (no controlled actions)
70482933 940
a8f59a33 941 if Is_Bit_Packed_Array (Typ) or else Needs_Finalization (Typ) then
70482933
RK
942 return False;
943 end if;
944
a38ff9b1
ES
945 -- If component is limited, aggregate must be expanded because each
946 -- component assignment must be built in place.
947
51245e2d 948 if Is_Limited_View (Component_Type (Typ)) then
a38ff9b1
ES
949 return False;
950 end if;
951
d74716b3 952 -- Checks 4 (array must not be multidimensional Fortran case)
70482933
RK
953
954 if Convention (Typ) = Convention_Fortran
955 and then Number_Dimensions (Typ) > 1
956 then
957 return False;
958 end if;
959
960 -- Checks 3 (size of array must be known at compile time)
961
962 if not Size_Known_At_Compile_Time (Typ) then
963 return False;
964 end if;
965
0f95b178 966 -- Checks on components
70482933 967
0f95b178 968 if not Component_Check (N, First_Index (Typ)) then
70482933
RK
969 return False;
970 end if;
971
0f95b178 972 -- Checks 5 (if the component type is tagged, then we may need to do
36a66365
AC
973 -- tag adjustments. Perhaps this should be refined to check for any
974 -- component associations that actually need tag adjustment, similar
d4dfb005
BD
975 -- to the test in Component_OK_For_Backend for record aggregates with
976 -- tagged components, but not clear whether it's worthwhile ???; in the
977 -- case of virtual machines (no Tagged_Type_Expansion), object tags are
978 -- handled implicitly).
70482933 979
1f110335
AC
980 if Is_Tagged_Type (Component_Type (Typ))
981 and then Tagged_Type_Expansion
982 then
70482933
RK
983 return False;
984 end if;
985
91b1417d
AC
986 -- Checks 6 (component type must not have bit aligned components)
987
988 if Type_May_Have_Bit_Aligned_Components (Component_Type (Typ)) then
989 return False;
990 end if;
991
70482933
RK
992 -- Backend processing is possible
993
70482933
RK
994 return True;
995 end Backend_Processing_Possible;
996
997 ---------------------------
998 -- Build_Array_Aggr_Code --
999 ---------------------------
1000
1001 -- The code that we generate from a one dimensional aggregate is
1002
d74716b3 1003 -- 1. If the subaggregate contains discrete choices we
70482933
RK
1004
1005 -- (a) Sort the discrete choices
1006
1007 -- (b) Otherwise for each discrete choice that specifies a range we
1008 -- emit a loop. If a range specifies a maximum of three values, or
1009 -- we are dealing with an expression we emit a sequence of
1010 -- assignments instead of a loop.
1011
3cf3e5c6 1012 -- (c) Generate the remaining loops to cover the others choice if any
70482933
RK
1013
1014 -- 2. If the aggregate contains positional elements we
1015
8313d0ee 1016 -- (a) Translate the positional elements in a series of assignments
70482933
RK
1017
1018 -- (b) Generate a final loop to cover the others choice if any.
1019 -- Note that this final loop has to be a while loop since the case
1020
1021 -- L : Integer := Integer'Last;
1022 -- H : Integer := Integer'Last;
1023 -- A : array (L .. H) := (1, others =>0);
1024
1025 -- cannot be handled by a for loop. Thus for the following
1026
8313d0ee 1027 -- array (L .. H) := (.. positional elements.., others => E);
70482933
RK
1028
1029 -- we always generate something like:
1030
07fc65c4
GB
1031 -- J : Index_Type := Index_Of_Last_Positional_Element;
1032 -- while J < H loop
1033 -- J := Index_Base'Succ (J)
1034 -- Tmp (J) := E;
70482933
RK
1035 -- end loop;
1036
1037 function Build_Array_Aggr_Code
1038 (N : Node_Id;
c45b6ae0 1039 Ctype : Entity_Id;
70482933
RK
1040 Index : Node_Id;
1041 Into : Node_Id;
1042 Scalar_Comp : Boolean;
df3e68b1 1043 Indexes : List_Id := No_List) return List_Id
70482933
RK
1044 is
1045 Loc : constant Source_Ptr := Sloc (N);
4f061cf2 1046 Typ : constant Entity_Id := Etype (N);
70482933
RK
1047 Index_Base : constant Entity_Id := Base_Type (Etype (Index));
1048 Index_Base_L : constant Node_Id := Type_Low_Bound (Index_Base);
1049 Index_Base_H : constant Node_Id := Type_High_Bound (Index_Base);
1050
1051 function Add (Val : Int; To : Node_Id) return Node_Id;
3cf3e5c6
AC
1052 -- Returns an expression where Val is added to expression To, unless
1053 -- To+Val is provably out of To's base type range. To must be an
1054 -- already analyzed expression.
70482933
RK
1055
1056 function Empty_Range (L, H : Node_Id) return Boolean;
3cf3e5c6 1057 -- Returns True if the range defined by L .. H is certainly empty
70482933
RK
1058
1059 function Equal (L, H : Node_Id) return Boolean;
3cf3e5c6 1060 -- Returns True if L = H for sure
70482933
RK
1061
1062 function Index_Base_Name return Node_Id;
3cf3e5c6 1063 -- Returns a new reference to the index type name
70482933 1064
937e9676
AC
1065 function Gen_Assign
1066 (Ind : Node_Id;
fc84947c 1067 Expr : Node_Id) return List_Id;
d74716b3
AC
1068 -- Ind must be a side-effect-free expression. If the input aggregate N
1069 -- to Build_Loop contains no subaggregates, then this function returns
1070 -- the assignment statement:
70482933 1071 --
deeb1604 1072 -- Into (Indexes, Ind) := Expr;
70482933 1073 --
fc84947c 1074 -- Otherwise we call Build_Code recursively.
c45b6ae0 1075 --
0ab80019
AC
1076 -- Ada 2005 (AI-287): In case of default initialized component, Expr
1077 -- is empty and we generate a call to the corresponding IP subprogram.
70482933
RK
1078
1079 function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id;
d74716b3
AC
1080 -- Nodes L and H must be side-effect-free expressions. If the input
1081 -- aggregate N to Build_Loop contains no subaggregates, this routine
1082 -- returns the for loop statement:
70482933
RK
1083 --
1084 -- for J in Index_Base'(L) .. Index_Base'(H) loop
deeb1604 1085 -- Into (Indexes, J) := Expr;
70482933
RK
1086 -- end loop;
1087 --
937e9676
AC
1088 -- Otherwise we call Build_Code recursively. As an optimization if the
1089 -- loop covers 3 or fewer scalar elements we generate a sequence of
1090 -- assignments.
00f45f30
AC
1091 -- If the component association that generates the loop comes from an
1092 -- Iterated_Component_Association, the loop parameter has the name of
1093 -- the corresponding parameter in the original construct.
70482933
RK
1094
1095 function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id;
d74716b3
AC
1096 -- Nodes L and H must be side-effect-free expressions. If the input
1097 -- aggregate N to Build_Loop contains no subaggregates, this routine
1098 -- returns the while loop statement:
70482933 1099 --
07fc65c4
GB
1100 -- J : Index_Base := L;
1101 -- while J < H loop
1102 -- J := Index_Base'Succ (J);
deeb1604 1103 -- Into (Indexes, J) := Expr;
70482933
RK
1104 -- end loop;
1105 --
fbf5a39b 1106 -- Otherwise we call Build_Code recursively
70482933 1107
59e9bc0b 1108 function Get_Assoc_Expr (Assoc : Node_Id) return Node_Id;
e9999161
AC
1109 -- For an association with a box, use value given by aspect
1110 -- Default_Component_Value of array type if specified, else use
1111 -- value given by aspect Default_Value for component type itself
1112 -- if specified, else return Empty.
59e9bc0b 1113
70482933
RK
1114 function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean;
1115 function Local_Expr_Value (E : Node_Id) return Uint;
1116 -- These two Local routines are used to replace the corresponding ones
1117 -- in sem_eval because while processing the bounds of an aggregate with
1118 -- discrete choices whose index type is an enumeration, we build static
1119 -- expressions not recognized by Compile_Time_Known_Value as such since
1120 -- they have not yet been analyzed and resolved. All the expressions in
1121 -- question are things like Index_Base_Name'Val (Const) which we can
1122 -- easily recognize as being constant.
1123
1124 ---------
1125 -- Add --
1126 ---------
1127
1128 function Add (Val : Int; To : Node_Id) return Node_Id is
1129 Expr_Pos : Node_Id;
1130 Expr : Node_Id;
1131 To_Pos : Node_Id;
fbf5a39b
AC
1132 U_To : Uint;
1133 U_Val : constant Uint := UI_From_Int (Val);
70482933
RK
1134
1135 begin
1136 -- Note: do not try to optimize the case of Val = 0, because
1137 -- we need to build a new node with the proper Sloc value anyway.
1138
1139 -- First test if we can do constant folding
1140
1141 if Local_Compile_Time_Known_Value (To) then
1142 U_To := Local_Expr_Value (To) + Val;
1143
1144 -- Determine if our constant is outside the range of the index.
1145 -- If so return an Empty node. This empty node will be caught
1146 -- by Empty_Range below.
1147
1148 if Compile_Time_Known_Value (Index_Base_L)
1149 and then U_To < Expr_Value (Index_Base_L)
1150 then
1151 return Empty;
1152
1153 elsif Compile_Time_Known_Value (Index_Base_H)
1154 and then U_To > Expr_Value (Index_Base_H)
1155 then
1156 return Empty;
1157 end if;
1158
1159 Expr_Pos := Make_Integer_Literal (Loc, U_To);
1160 Set_Is_Static_Expression (Expr_Pos);
1161
1162 if not Is_Enumeration_Type (Index_Base) then
1163 Expr := Expr_Pos;
1164
1165 -- If we are dealing with enumeration return
1166 -- Index_Base'Val (Expr_Pos)
1167
1168 else
1169 Expr :=
1170 Make_Attribute_Reference
1171 (Loc,
1172 Prefix => Index_Base_Name,
1173 Attribute_Name => Name_Val,
1174 Expressions => New_List (Expr_Pos));
1175 end if;
1176
1177 return Expr;
1178 end if;
1179
1180 -- If we are here no constant folding possible
1181
1182 if not Is_Enumeration_Type (Index_Base) then
1183 Expr :=
1184 Make_Op_Add (Loc,
47c14114
AC
1185 Left_Opnd => Duplicate_Subexpr (To),
1186 Right_Opnd => Make_Integer_Literal (Loc, U_Val));
70482933
RK
1187
1188 -- If we are dealing with enumeration return
1189 -- Index_Base'Val (Index_Base'Pos (To) + Val)
1190
1191 else
1192 To_Pos :=
1193 Make_Attribute_Reference
1194 (Loc,
1195 Prefix => Index_Base_Name,
1196 Attribute_Name => Name_Pos,
1197 Expressions => New_List (Duplicate_Subexpr (To)));
1198
1199 Expr_Pos :=
1200 Make_Op_Add (Loc,
47c14114
AC
1201 Left_Opnd => To_Pos,
1202 Right_Opnd => Make_Integer_Literal (Loc, U_Val));
70482933
RK
1203
1204 Expr :=
1205 Make_Attribute_Reference
1206 (Loc,
1207 Prefix => Index_Base_Name,
1208 Attribute_Name => Name_Val,
1209 Expressions => New_List (Expr_Pos));
1210 end if;
1211
1212 return Expr;
1213 end Add;
1214
1215 -----------------
1216 -- Empty_Range --
1217 -----------------
1218
1219 function Empty_Range (L, H : Node_Id) return Boolean is
1220 Is_Empty : Boolean := False;
1221 Low : Node_Id;
1222 High : Node_Id;
1223
1224 begin
1225 -- First check if L or H were already detected as overflowing the
1226 -- index base range type by function Add above. If this is so Add
1227 -- returns the empty node.
1228
1229 if No (L) or else No (H) then
1230 return True;
1231 end if;
1232
1233 for J in 1 .. 3 loop
1234 case J is
1235
1236 -- L > H range is empty
1237
1238 when 1 =>
1239 Low := L;
1240 High := H;
1241
1242 -- B_L > H range must be empty
1243
1244 when 2 =>
1245 Low := Index_Base_L;
1246 High := H;
1247
1248 -- L > B_H range must be empty
1249
1250 when 3 =>
1251 Low := L;
1252 High := Index_Base_H;
1253 end case;
1254
1255 if Local_Compile_Time_Known_Value (Low)
36a66365
AC
1256 and then
1257 Local_Compile_Time_Known_Value (High)
70482933
RK
1258 then
1259 Is_Empty :=
1260 UI_Gt (Local_Expr_Value (Low), Local_Expr_Value (High));
1261 end if;
1262
1263 exit when Is_Empty;
1264 end loop;
1265
1266 return Is_Empty;
1267 end Empty_Range;
1268
1269 -----------
1270 -- Equal --
1271 -----------
1272
1273 function Equal (L, H : Node_Id) return Boolean is
1274 begin
1275 if L = H then
1276 return True;
1277
1278 elsif Local_Compile_Time_Known_Value (L)
36a66365
AC
1279 and then
1280 Local_Compile_Time_Known_Value (H)
70482933
RK
1281 then
1282 return UI_Eq (Local_Expr_Value (L), Local_Expr_Value (H));
1283 end if;
1284
1285 return False;
1286 end Equal;
1287
1288 ----------------
1289 -- Gen_Assign --
1290 ----------------
1291
937e9676
AC
1292 function Gen_Assign
1293 (Ind : Node_Id;
fc84947c 1294 Expr : Node_Id) return List_Id
937e9676 1295 is
70482933 1296 function Add_Loop_Actions (Lis : List_Id) return List_Id;
937e9676
AC
1297 -- Collect insert_actions generated in the construction of a loop,
1298 -- and prepend them to the sequence of assignments to complete the
1299 -- eventual body of the loop.
1300
70482933
RK
1301 ----------------------
1302 -- Add_Loop_Actions --
1303 ----------------------
1304
1305 function Add_Loop_Actions (Lis : List_Id) return List_Id is
1306 Res : List_Id;
1307
1308 begin
0ab80019 1309 -- Ada 2005 (AI-287): Do nothing else in case of default
6e937c1c 1310 -- initialized component.
c45b6ae0 1311
d8f7b976 1312 if No (Expr) then
c45b6ae0
AC
1313 return Lis;
1314
1315 elsif Nkind (Parent (Expr)) = N_Component_Association
70482933
RK
1316 and then Present (Loop_Actions (Parent (Expr)))
1317 then
1318 Append_List (Lis, Loop_Actions (Parent (Expr)));
1319 Res := Loop_Actions (Parent (Expr));
1320 Set_Loop_Actions (Parent (Expr), No_List);
1321 return Res;
1322
1323 else
1324 return Lis;
1325 end if;
1326 end Add_Loop_Actions;
1327
10edebe7
AC
1328 -- Local variables
1329
1330 Stmts : constant List_Id := New_List;
1331
1332 Comp_Typ : Entity_Id := Empty;
1333 Expr_Q : Node_Id;
1334 Indexed_Comp : Node_Id;
2168d7cc 1335 Init_Call : Node_Id;
10edebe7 1336 New_Indexes : List_Id;
10edebe7 1337
70482933
RK
1338 -- Start of processing for Gen_Assign
1339
1340 begin
deeb1604
AC
1341 if No (Indexes) then
1342 New_Indexes := New_List;
70482933 1343 else
deeb1604 1344 New_Indexes := New_Copy_List_Tree (Indexes);
70482933
RK
1345 end if;
1346
deeb1604 1347 Append_To (New_Indexes, Ind);
70482933 1348
70482933
RK
1349 if Present (Next_Index (Index)) then
1350 return
1351 Add_Loop_Actions (
1352 Build_Array_Aggr_Code
c45b6ae0
AC
1353 (N => Expr,
1354 Ctype => Ctype,
1355 Index => Next_Index (Index),
1356 Into => Into,
1357 Scalar_Comp => Scalar_Comp,
df3e68b1 1358 Indexes => New_Indexes));
70482933
RK
1359 end if;
1360
1361 -- If we get here then we are at a bottom-level (sub-)aggregate
1362
fbf5a39b
AC
1363 Indexed_Comp :=
1364 Checks_Off
1365 (Make_Indexed_Component (Loc,
1366 Prefix => New_Copy_Tree (Into),
deeb1604 1367 Expressions => New_Indexes));
70482933
RK
1368
1369 Set_Assignment_OK (Indexed_Comp);
1370
0ab80019 1371 -- Ada 2005 (AI-287): In case of default initialized component, Expr
6e937c1c 1372 -- is not present (and therefore we also initialize Expr_Q to empty).
c45b6ae0 1373
4f061cf2 1374 Expr_Q := Unqualify (Expr);
70482933 1375
36a66365 1376 if Present (Etype (N)) and then Etype (N) /= Any_Composite then
10edebe7
AC
1377 Comp_Typ := Component_Type (Etype (N));
1378 pragma Assert (Comp_Typ = Ctype); -- AI-287
70482933 1379
deeb1604 1380 elsif Present (Next (First (New_Indexes))) then
70482933 1381
0ab80019 1382 -- Ada 2005 (AI-287): Do nothing in case of default initialized
c45b6ae0
AC
1383 -- component because we have received the component type in
1384 -- the formal parameter Ctype.
6e937c1c
AC
1385
1386 -- ??? Some assert pragmas have been added to check if this new
36a66365 1387 -- formal can be used to replace this code in all cases.
70482933 1388
c45b6ae0 1389 if Present (Expr) then
70482933 1390
36a66365
AC
1391 -- This is a multidimensional array. Recover the component type
1392 -- from the outermost aggregate, because subaggregates do not
1393 -- have an assigned type.
70482933 1394
c45b6ae0 1395 declare
5277cab6 1396 P : Node_Id;
70482933 1397
c45b6ae0 1398 begin
5277cab6 1399 P := Parent (Expr);
c45b6ae0 1400 while Present (P) loop
c45b6ae0
AC
1401 if Nkind (P) = N_Aggregate
1402 and then Present (Etype (P))
1403 then
10edebe7 1404 Comp_Typ := Component_Type (Etype (P));
c45b6ae0
AC
1405 exit;
1406
1407 else
1408 P := Parent (P);
1409 end if;
1410 end loop;
6e937c1c 1411
10edebe7 1412 pragma Assert (Comp_Typ = Ctype); -- AI-287
c45b6ae0
AC
1413 end;
1414 end if;
70482933
RK
1415 end if;
1416
0ab80019 1417 -- Ada 2005 (AI-287): We only analyze the expression in case of non-
6e937c1c 1418 -- default initialized components (otherwise Expr_Q is not present).
c45b6ae0
AC
1419
1420 if Present (Expr_Q)
4a08c95c 1421 and then Nkind (Expr_Q) in N_Aggregate | N_Extension_Aggregate
70482933 1422 then
d7f94401
AC
1423 -- At this stage the Expression may not have been analyzed yet
1424 -- because the array aggregate code has not been updated to use
1425 -- the Expansion_Delayed flag and avoid analysis altogether to
1426 -- solve the same problem (see Resolve_Aggr_Expr). So let us do
1427 -- the analysis of non-array aggregates now in order to get the
1428 -- value of Expansion_Delayed flag for the inner aggregate ???
70482933 1429
6cbd45e4
PMR
1430 -- In the case of an iterated component association, the analysis
1431 -- of the generated loop will analyze the expression in the
1432 -- proper context, in which the loop parameter is visible.
1433
d940c627 1434 if Present (Comp_Typ) and then not Is_Array_Type (Comp_Typ) then
10fdda1c
HK
1435 if Nkind (Parent (Expr_Q)) = N_Iterated_Component_Association
1436 or else Nkind (Parent (Parent ((Expr_Q)))) =
1437 N_Iterated_Component_Association
d940c627
ES
1438 then
1439 null;
1440 else
1441 Analyze_And_Resolve (Expr_Q, Comp_Typ);
1442 end if;
70482933
RK
1443 end if;
1444
1445 if Is_Delayed_Aggregate (Expr_Q) then
3cf3e5c6 1446
308e6f3a 1447 -- This is either a subaggregate of a multidimensional array,
3cf3e5c6
AC
1448 -- or a component of an array type whose component type is
1449 -- also an array. In the latter case, the expression may have
1450 -- component associations that provide different bounds from
1451 -- those of the component type, and sliding must occur. Instead
1452 -- of decomposing the current aggregate assignment, force the
937e9676 1453 -- reanalysis of the assignment, so that a temporary will be
3cf3e5c6
AC
1454 -- generated in the usual fashion, and sliding will take place.
1455
1456 if Nkind (Parent (N)) = N_Assignment_Statement
10edebe7 1457 and then Is_Array_Type (Comp_Typ)
3cf3e5c6 1458 and then Present (Component_Associations (Expr_Q))
6732c403 1459 and then Must_Slide (N, Comp_Typ, Etype (Expr_Q))
3cf3e5c6
AC
1460 then
1461 Set_Expansion_Delayed (Expr_Q, False);
1462 Set_Analyzed (Expr_Q, False);
1463
1464 else
1465 return
1466 Add_Loop_Actions (
df3e68b1 1467 Late_Expansion (Expr_Q, Etype (Expr_Q), Indexed_Comp));
3cf3e5c6 1468 end if;
70482933
RK
1469 end if;
1470 end if;
1471
937e9676 1472 if Present (Expr) then
fc84947c
EB
1473 Initialize_Component
1474 (N => N,
1475 Comp => Indexed_Comp,
1476 Comp_Typ => Comp_Typ,
1477 Init_Expr => Expr,
1478 Stmts => Stmts);
937e9676 1479
0ab80019 1480 -- Ada 2005 (AI-287): In case of default initialized component, call
6e937c1c 1481 -- the initialization subprogram associated with the component type.
3b9fa2df
ES
1482 -- If the component type is an access type, add an explicit null
1483 -- assignment, because for the back-end there is an initialization
1484 -- present for the whole aggregate, and no default initialization
1485 -- will take place.
1486
1487 -- In addition, if the component type is controlled, we must call
1488 -- its Initialize procedure explicitly, because there is no explicit
1489 -- object creation that will invoke it otherwise.
70482933 1490
937e9676 1491 else
3b9fa2df 1492 if Present (Base_Init_Proc (Base_Type (Ctype)))
615cbd95
AC
1493 or else Has_Task (Base_Type (Ctype))
1494 then
10edebe7 1495 Append_List_To (Stmts,
c45b6ae0
AC
1496 Build_Initialization_Call (Loc,
1497 Id_Ref => Indexed_Comp,
1498 Typ => Ctype,
1499 With_Default_Init => True));
3b9fa2df 1500
ffcfb997
ES
1501 -- If the component type has invariants, add an invariant
1502 -- check after the component is default-initialized. It will
1503 -- be analyzed and resolved before the code for initialization
1504 -- of other components.
1505
1506 if Has_Invariants (Ctype) then
1507 Set_Etype (Indexed_Comp, Ctype);
10edebe7 1508 Append_To (Stmts, Make_Invariant_Call (Indexed_Comp));
ffcfb997 1509 end if;
3b9fa2df
ES
1510 end if;
1511
048e5cef 1512 if Needs_Finalization (Ctype) then
2168d7cc 1513 Init_Call :=
37368818
RD
1514 Make_Init_Call
1515 (Obj_Ref => New_Copy_Tree (Indexed_Comp),
2168d7cc
AC
1516 Typ => Ctype);
1517
1518 -- Guard against a missing [Deep_]Initialize when the component
1519 -- type was not properly frozen.
1520
1521 if Present (Init_Call) then
1522 Append_To (Stmts, Init_Call);
1523 end if;
615cbd95 1524 end if;
097826df
GD
1525
1526 -- If Default_Initial_Condition applies to the component type,
1527 -- add a DIC check after the component is default-initialized,
1528 -- as well as after an Initialize procedure is called, in the
1529 -- case of components of a controlled type. It will be analyzed
1530 -- and resolved before the code for initialization of other
1531 -- components.
1532
1533 -- Theoretically this might also be needed for cases where Expr
1534 -- is not empty, but a default init still applies, such as for
1535 -- Default_Value cases, in which case we won't get here. ???
1536
1537 if Has_DIC (Ctype) and then Present (DIC_Procedure (Ctype)) then
1538 Append_To (Stmts,
1539 Build_DIC_Call (Loc, New_Copy_Tree (Indexed_Comp), Ctype));
1540 end if;
70482933
RK
1541 end if;
1542
10edebe7 1543 return Add_Loop_Actions (Stmts);
70482933
RK
1544 end Gen_Assign;
1545
1546 --------------
1547 -- Gen_Loop --
1548 --------------
1549
1550 function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id is
00f45f30 1551 Is_Iterated_Component : constant Boolean :=
898edf75 1552 Parent_Kind (Expr) = N_Iterated_Component_Association;
00f45f30 1553
e3584606
MP
1554 Ent : Entity_Id;
1555
07fc65c4 1556 L_J : Node_Id;
70482933 1557
240fe2a4
AC
1558 L_L : Node_Id;
1559 -- Index_Base'(L)
1560
1561 L_H : Node_Id;
1562 -- Index_Base'(H)
1563
70482933
RK
1564 L_Range : Node_Id;
1565 -- Index_Base'(L) .. Index_Base'(H)
1566
1567 L_Iteration_Scheme : Node_Id;
07fc65c4 1568 -- L_J in Index_Base'(L) .. Index_Base'(H)
70482933
RK
1569
1570 L_Body : List_Id;
1571 -- The statements to execute in the loop
1572
fbf5a39b
AC
1573 S : constant List_Id := New_List;
1574 -- List of statements
70482933
RK
1575
1576 Tcopy : Node_Id;
1577 -- Copy of expression tree, used for checking purposes
1578
1579 begin
1580 -- If loop bounds define an empty range return the null statement
1581
1582 if Empty_Range (L, H) then
1583 Append_To (S, Make_Null_Statement (Loc));
1584
0ab80019 1585 -- Ada 2005 (AI-287): Nothing else need to be done in case of
6e937c1c 1586 -- default initialized component.
70482933 1587
d8f7b976 1588 if No (Expr) then
c45b6ae0
AC
1589 null;
1590
1591 else
1592 -- The expression must be type-checked even though no component
1593 -- of the aggregate will have this value. This is done only for
1594 -- actual components of the array, not for subaggregates. Do
1595 -- the check on a copy, because the expression may be shared
1596 -- among several choices, some of which might be non-null.
1597
1598 if Present (Etype (N))
1599 and then Is_Array_Type (Etype (N))
1600 and then No (Next_Index (Index))
1601 then
1602 Expander_Mode_Save_And_Set (False);
1603 Tcopy := New_Copy_Tree (Expr);
1604 Set_Parent (Tcopy, N);
4270e945
PT
1605
1606 -- For iterated_component_association analyze and resolve
1607 -- the expression with name of the index parameter visible.
1608 -- To manipulate scopes, we use entity of the implicit loop.
1609
1610 if Is_Iterated_Component then
1611 declare
1612 Index_Parameter : constant Entity_Id :=
1613 Defining_Identifier (Parent (Expr));
1614 begin
1615 Push_Scope (Scope (Index_Parameter));
1616 Enter_Name (Index_Parameter);
1617 Analyze_And_Resolve
1618 (Tcopy, Component_Type (Etype (N)));
1619 End_Scope;
1620 end;
1621
1622 -- For ordinary component association, just analyze and
1623 -- resolve the expression.
1624
1625 else
1626 Analyze_And_Resolve (Tcopy, Component_Type (Etype (N)));
1627 end if;
1628
c45b6ae0
AC
1629 Expander_Mode_Restore;
1630 end if;
70482933
RK
1631 end if;
1632
1633 return S;
1634
00f45f30
AC
1635 -- If loop bounds are the same then generate an assignment, unless
1636 -- the parent construct is an Iterated_Component_Association.
70482933 1637
00f45f30 1638 elsif Equal (L, H) and then not Is_Iterated_Component then
70482933
RK
1639 return Gen_Assign (New_Copy_Tree (L), Expr);
1640
3b9fa2df
ES
1641 -- If H - L <= 2 then generate a sequence of assignments when we are
1642 -- processing the bottom most aggregate and it contains scalar
1643 -- components.
70482933
RK
1644
1645 elsif No (Next_Index (Index))
1646 and then Scalar_Comp
1647 and then Local_Compile_Time_Known_Value (L)
1648 and then Local_Compile_Time_Known_Value (H)
1649 and then Local_Expr_Value (H) - Local_Expr_Value (L) <= 2
00f45f30 1650 and then not Is_Iterated_Component
70482933
RK
1651 then
1652 Append_List_To (S, Gen_Assign (New_Copy_Tree (L), Expr));
1653 Append_List_To (S, Gen_Assign (Add (1, To => L), Expr));
1654
1655 if Local_Expr_Value (H) - Local_Expr_Value (L) = 2 then
1656 Append_List_To (S, Gen_Assign (Add (2, To => L), Expr));
1657 end if;
1658
1659 return S;
1660 end if;
1661
07fc65c4 1662 -- Otherwise construct the loop, starting with the loop index L_J
70482933 1663
00f45f30 1664 if Is_Iterated_Component then
e3584606
MP
1665
1666 -- Create a new scope for the loop variable so that the
1667 -- following Gen_Assign (that ends up calling
1668 -- Preanalyze_And_Resolve) can correctly find it.
1669
1670 Ent := New_Internal_Entity (E_Loop,
1671 Current_Scope, Loc, 'L');
1672 Set_Etype (Ent, Standard_Void_Type);
1673 Set_Parent (Ent, Parent (Parent (Expr)));
1674 Push_Scope (Ent);
1675
72cdccfa
HK
1676 L_J :=
1677 Make_Defining_Identifier (Loc,
1678 Chars => (Chars (Defining_Identifier (Parent (Expr)))));
00f45f30 1679
e3584606
MP
1680 Enter_Name (L_J);
1681
1682 -- The Etype will be set by a later Analyze call.
1683 Set_Etype (L_J, Any_Type);
1684
1685 Mutate_Ekind (L_J, E_Variable);
25e4024c 1686 Set_Is_Not_Self_Hidden (L_J);
e3584606 1687 Set_Scope (L_J, Ent);
00f45f30
AC
1688 else
1689 L_J := Make_Temporary (Loc, 'J', L);
1690 end if;
70482933 1691
240fe2a4
AC
1692 -- Construct "L .. H" in Index_Base. We use a qualified expression
1693 -- for the bound to convert to the index base, but we don't need
1694 -- to do that if we already have the base type at hand.
1695
1696 if Etype (L) = Index_Base then
4eac8834 1697 L_L := New_Copy_Tree (L);
240fe2a4
AC
1698 else
1699 L_L :=
1700 Make_Qualified_Expression (Loc,
1701 Subtype_Mark => Index_Base_Name,
00f45f30 1702 Expression => New_Copy_Tree (L));
240fe2a4
AC
1703 end if;
1704
1705 if Etype (H) = Index_Base then
4eac8834 1706 L_H := New_Copy_Tree (H);
240fe2a4
AC
1707 else
1708 L_H :=
1709 Make_Qualified_Expression (Loc,
1710 Subtype_Mark => Index_Base_Name,
00f45f30 1711 Expression => New_Copy_Tree (H));
240fe2a4 1712 end if;
70482933
RK
1713
1714 L_Range :=
240fe2a4 1715 Make_Range (Loc,
ffcfb997 1716 Low_Bound => L_L,
240fe2a4 1717 High_Bound => L_H);
70482933 1718
07fc65c4 1719 -- Construct "for L_J in Index_Base range L .. H"
70482933
RK
1720
1721 L_Iteration_Scheme :=
8313d0ee 1722 Make_Iteration_Scheme (Loc,
70482933 1723 Loop_Parameter_Specification =>
8313d0ee 1724 Make_Loop_Parameter_Specification (Loc,
07fc65c4 1725 Defining_Identifier => L_J,
70482933
RK
1726 Discrete_Subtype_Definition => L_Range));
1727
1728 -- Construct the statements to execute in the loop body
1729
fc84947c 1730 L_Body := Gen_Assign (New_Occurrence_Of (L_J, Loc), Expr);
70482933
RK
1731
1732 -- Construct the final loop
1733
37368818
RD
1734 Append_To (S,
1735 Make_Implicit_Loop_Statement
1736 (Node => N,
1737 Identifier => Empty,
1738 Iteration_Scheme => L_Iteration_Scheme,
1739 Statements => L_Body));
70482933 1740
e3584606
MP
1741 if Is_Iterated_Component then
1742 End_Scope;
1743 end if;
1744
3b9fa2df
ES
1745 -- A small optimization: if the aggregate is initialized with a box
1746 -- and the component type has no initialization procedure, remove the
1747 -- useless empty loop.
0f95b178
JM
1748
1749 if Nkind (First (S)) = N_Loop_Statement
1750 and then Is_Empty_List (Statements (First (S)))
1751 then
1752 return New_List (Make_Null_Statement (Loc));
1753 else
1754 return S;
1755 end if;
70482933
RK
1756 end Gen_Loop;
1757
1758 ---------------
1759 -- Gen_While --
1760 ---------------
1761
1762 -- The code built is
1763
07fc65c4
GB
1764 -- W_J : Index_Base := L;
1765 -- while W_J < H loop
1766 -- W_J := Index_Base'Succ (W);
70482933
RK
1767 -- L_Body;
1768 -- end loop;
1769
1770 function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id is
07fc65c4 1771 W_J : Node_Id;
70482933
RK
1772
1773 W_Decl : Node_Id;
07fc65c4 1774 -- W_J : Base_Type := L;
70482933
RK
1775
1776 W_Iteration_Scheme : Node_Id;
07fc65c4 1777 -- while W_J < H
70482933
RK
1778
1779 W_Index_Succ : Node_Id;
07fc65c4 1780 -- Index_Base'Succ (J)
70482933 1781
fbf5a39b 1782 W_Increment : Node_Id;
07fc65c4 1783 -- W_J := Index_Base'Succ (W)
70482933 1784
fbf5a39b 1785 W_Body : constant List_Id := New_List;
70482933
RK
1786 -- The statements to execute in the loop
1787
fbf5a39b 1788 S : constant List_Id := New_List;
70482933
RK
1789 -- list of statement
1790
1791 begin
1792 -- If loop bounds define an empty range or are equal return null
1793
1794 if Empty_Range (L, H) or else Equal (L, H) then
1795 Append_To (S, Make_Null_Statement (Loc));
1796 return S;
1797 end if;
1798
07fc65c4 1799 -- Build the decl of W_J
70482933 1800
191fcb3a 1801 W_J := Make_Temporary (Loc, 'J', L);
70482933
RK
1802 W_Decl :=
1803 Make_Object_Declaration
1804 (Loc,
07fc65c4 1805 Defining_Identifier => W_J,
70482933
RK
1806 Object_Definition => Index_Base_Name,
1807 Expression => L);
1808
1809 -- Theoretically we should do a New_Copy_Tree (L) here, but we know
1810 -- that in this particular case L is a fresh Expr generated by
1811 -- Add which we are the only ones to use.
1812
1813 Append_To (S, W_Decl);
1814
fbf5a39b 1815 -- Construct " while W_J < H"
70482933
RK
1816
1817 W_Iteration_Scheme :=
1818 Make_Iteration_Scheme
1819 (Loc,
1820 Condition => Make_Op_Lt
1821 (Loc,
e4494292 1822 Left_Opnd => New_Occurrence_Of (W_J, Loc),
70482933
RK
1823 Right_Opnd => New_Copy_Tree (H)));
1824
1825 -- Construct the statements to execute in the loop body
1826
1827 W_Index_Succ :=
1828 Make_Attribute_Reference
1829 (Loc,
1830 Prefix => Index_Base_Name,
1831 Attribute_Name => Name_Succ,
e4494292 1832 Expressions => New_List (New_Occurrence_Of (W_J, Loc)));
70482933
RK
1833
1834 W_Increment :=
1835 Make_OK_Assignment_Statement
1836 (Loc,
e4494292 1837 Name => New_Occurrence_Of (W_J, Loc),
70482933
RK
1838 Expression => W_Index_Succ);
1839
1840 Append_To (W_Body, W_Increment);
937e9676 1841
70482933 1842 Append_List_To (W_Body,
fc84947c 1843 Gen_Assign (New_Occurrence_Of (W_J, Loc), Expr));
70482933
RK
1844
1845 -- Construct the final loop
1846
37368818
RD
1847 Append_To (S,
1848 Make_Implicit_Loop_Statement
1849 (Node => N,
1850 Identifier => Empty,
1851 Iteration_Scheme => W_Iteration_Scheme,
1852 Statements => W_Body));
70482933
RK
1853
1854 return S;
1855 end Gen_While;
1856
59e9bc0b
AC
1857 --------------------
1858 -- Get_Assoc_Expr --
1859 --------------------
1860
c8df2335
EB
1861 -- Duplicate the expression in case we will be generating several loops.
1862 -- As a result the expression is no longer shared between the loops and
1863 -- is reevaluated for each such loop.
1864
59e9bc0b 1865 function Get_Assoc_Expr (Assoc : Node_Id) return Node_Id is
e9999161
AC
1866 Typ : constant Entity_Id := Base_Type (Etype (N));
1867
59e9bc0b
AC
1868 begin
1869 if Box_Present (Assoc) then
d7b2fad2 1870 if Present (Default_Aspect_Component_Value (Typ)) then
c8df2335 1871 return New_Copy_Tree (Default_Aspect_Component_Value (Typ));
d7b2fad2 1872 elsif Needs_Simple_Initialization (Ctype) then
c8df2335 1873 return New_Copy_Tree (Get_Simple_Init_Val (Ctype, N));
59e9bc0b
AC
1874 else
1875 return Empty;
1876 end if;
1877
1878 else
c8df2335
EB
1879 -- The expression will be passed to Gen_Loop, which immediately
1880 -- calls Parent_Kind on it, so we set Parent when it matters.
1881
1882 return
1883 Expr : constant Node_Id := New_Copy_Tree (Expression (Assoc))
1884 do
1885 Copy_Parent (To => Expr, From => Expression (Assoc));
1886 end return;
59e9bc0b
AC
1887 end if;
1888 end Get_Assoc_Expr;
1889
70482933
RK
1890 ---------------------
1891 -- Index_Base_Name --
1892 ---------------------
1893
1894 function Index_Base_Name return Node_Id is
1895 begin
e4494292 1896 return New_Occurrence_Of (Index_Base, Sloc (N));
70482933
RK
1897 end Index_Base_Name;
1898
1899 ------------------------------------
1900 -- Local_Compile_Time_Known_Value --
1901 ------------------------------------
1902
1903 function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean is
1904 begin
1905 return Compile_Time_Known_Value (E)
1906 or else
1907 (Nkind (E) = N_Attribute_Reference
fbf5a39b
AC
1908 and then Attribute_Name (E) = Name_Val
1909 and then Compile_Time_Known_Value (First (Expressions (E))));
70482933
RK
1910 end Local_Compile_Time_Known_Value;
1911
1912 ----------------------
1913 -- Local_Expr_Value --
1914 ----------------------
1915
1916 function Local_Expr_Value (E : Node_Id) return Uint is
1917 begin
1918 if Compile_Time_Known_Value (E) then
1919 return Expr_Value (E);
1920 else
1921 return Expr_Value (First (Expressions (E)));
1922 end if;
1923 end Local_Expr_Value;
1924
937e9676 1925 -- Local variables
70482933 1926
937e9676 1927 New_Code : constant List_Id := New_List;
70482933 1928
10c257af
ES
1929 Aggr_Bounds : constant Range_Nodes :=
1930 Get_Index_Bounds (Aggregate_Bounds (N));
1931 Aggr_L : Node_Id renames Aggr_Bounds.First;
1932 Aggr_H : Node_Id renames Aggr_Bounds.Last;
d74716b3
AC
1933 -- The aggregate bounds of this specific subaggregate. Note that if the
1934 -- code generated by Build_Array_Aggr_Code is executed then these bounds
1935 -- are OK. Otherwise a Constraint_Error would have been raised.
70482933 1936
fbf5a39b
AC
1937 Aggr_Low : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_L);
1938 Aggr_High : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_H);
7324bf49 1939 -- After Duplicate_Subexpr these are side-effect free
70482933 1940
937e9676
AC
1941 Assoc : Node_Id;
1942 Choice : Node_Id;
1943 Expr : Node_Id;
70482933 1944
7c4f3267
BD
1945 Bounds : Range_Nodes;
1946 Low : Node_Id renames Bounds.First;
1947 High : Node_Id renames Bounds.Last;
1948
70482933
RK
1949 Nb_Choices : Nat := 0;
1950 Table : Case_Table_Type (1 .. Number_Of_Choices (N));
1951 -- Used to sort all the different choice values
1952
1953 Nb_Elements : Int;
1954 -- Number of elements in the positional aggregate
1955
937e9676 1956 Others_Assoc : Node_Id := Empty;
70482933
RK
1957
1958 -- Start of processing for Build_Array_Aggr_Code
1959
1960 begin
8ba0b4cf 1961 -- First before we start, a special case. If we have a bit packed
fbf5a39b
AC
1962 -- array represented as a modular type, then clear the value to
1963 -- zero first, to ensure that unused bits are properly cleared.
1964
fbf5a39b
AC
1965 if Present (Typ)
1966 and then Is_Bit_Packed_Array (Typ)
8ca597af 1967 and then Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ))
fbf5a39b 1968 then
445514c0
EB
1969 declare
1970 Zero : constant Node_Id := Make_Integer_Literal (Loc, Uint_0);
1971 begin
1972 Analyze_And_Resolve (Zero, Packed_Array_Impl_Type (Typ));
1973 Append_To (New_Code,
1974 Make_Assignment_Statement (Loc,
1975 Name => New_Copy_Tree (Into),
1976 Expression => Unchecked_Convert_To (Typ, Zero)));
1977 end;
fbf5a39b
AC
1978 end if;
1979
0e08f7ab
ES
1980 -- If the component type contains tasks, we need to build a Master
1981 -- entity in the current scope, because it will be needed if build-
1982 -- in-place functions are called in the expanded code.
1983
36a66365 1984 if Nkind (Parent (N)) = N_Object_Declaration and then Has_Task (Typ) then
0e08f7ab
ES
1985 Build_Master_Entity (Defining_Identifier (Parent (N)));
1986 end if;
1987
70482933 1988 -- STEP 1: Process component associations
3b9fa2df 1989
fbf5a39b
AC
1990 -- For those associations that may generate a loop, initialize
1991 -- Loop_Actions to collect inserted actions that may be crated.
70482933 1992
3b9fa2df
ES
1993 -- Skip this if no component associations
1994
d9275e87
PT
1995 if Is_Null_Aggregate (N) then
1996 null;
1997
1998 elsif No (Expressions (N)) then
70482933
RK
1999
2000 -- STEP 1 (a): Sort the discrete choices
2001
2002 Assoc := First (Component_Associations (N));
2003 while Present (Assoc) loop
00f45f30 2004 Choice := First (Choice_List (Assoc));
70482933 2005 while Present (Choice) loop
70482933 2006 if Nkind (Choice) = N_Others_Choice then
59e9bc0b 2007 Others_Assoc := Assoc;
70482933
RK
2008 exit;
2009 end if;
2010
7c4f3267 2011 Bounds := Get_Index_Bounds (Choice);
70482933 2012
fbf5a39b
AC
2013 if Low /= High then
2014 Set_Loop_Actions (Assoc, New_List);
2015 end if;
2016
70482933 2017 Nb_Choices := Nb_Choices + 1;
59e9bc0b
AC
2018
2019 Table (Nb_Choices) :=
2020 (Choice_Lo => Low,
2021 Choice_Hi => High,
2022 Choice_Node => Get_Assoc_Expr (Assoc));
2023
70482933
RK
2024 Next (Choice);
2025 end loop;
2026
2027 Next (Assoc);
2028 end loop;
2029
2030 -- If there is more than one set of choices these must be static
2031 -- and we can therefore sort them. Remember that Nb_Choices does not
2032 -- account for an others choice.
2033
2034 if Nb_Choices > 1 then
2035 Sort_Case_Table (Table);
2036 end if;
2037
74580e1b 2038 -- STEP 1 (b): take care of the whole set of discrete choices
70482933
RK
2039
2040 for J in 1 .. Nb_Choices loop
2041 Low := Table (J).Choice_Lo;
2042 High := Table (J).Choice_Hi;
2043 Expr := Table (J).Choice_Node;
70482933
RK
2044 Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
2045 end loop;
2046
2047 -- STEP 1 (c): generate the remaining loops to cover others choice
2048 -- We don't need to generate loops over empty gaps, but if there is
2049 -- a single empty range we must analyze the expression for semantics
2050
59e9bc0b 2051 if Present (Others_Assoc) then
70482933 2052 declare
c8df2335 2053 First : Boolean := True;
70482933
RK
2054
2055 begin
2056 for J in 0 .. Nb_Choices loop
70482933
RK
2057 if J = 0 then
2058 Low := Aggr_Low;
2059 else
2060 Low := Add (1, To => Table (J).Choice_Hi);
2061 end if;
2062
2063 if J = Nb_Choices then
2064 High := Aggr_High;
2065 else
2066 High := Add (-1, To => Table (J + 1).Choice_Lo);
2067 end if;
2068
fbf5a39b 2069 -- If this is an expansion within an init proc, make
c84700e7
ES
2070 -- sure that discriminant references are replaced by
2071 -- the corresponding discriminal.
2072
2073 if Inside_Init_Proc then
2074 if Is_Entity_Name (Low)
2075 and then Ekind (Entity (Low)) = E_Discriminant
2076 then
2077 Set_Entity (Low, Discriminal (Entity (Low)));
2078 end if;
2079
2080 if Is_Entity_Name (High)
2081 and then Ekind (Entity (High)) = E_Discriminant
2082 then
2083 Set_Entity (High, Discriminal (Entity (High)));
2084 end if;
2085 end if;
2086
c8df2335 2087 if First or else not Empty_Range (Low, High) then
70482933 2088 First := False;
6951cbc9 2089 Set_Loop_Actions (Others_Assoc, New_List);
c8df2335
EB
2090 Expr := Get_Assoc_Expr (Others_Assoc);
2091 Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
70482933
RK
2092 end if;
2093 end loop;
2094 end;
2095 end if;
2096
2097 -- STEP 2: Process positional components
2098
2099 else
2100 -- STEP 2 (a): Generate the assignments for each positional element
2101 -- Note that here we have to use Aggr_L rather than Aggr_Low because
2102 -- Aggr_L is analyzed and Add wants an analyzed expression.
2103
2104 Expr := First (Expressions (N));
2105 Nb_Elements := -1;
70482933
RK
2106 while Present (Expr) loop
2107 Nb_Elements := Nb_Elements + 1;
2108 Append_List (Gen_Assign (Add (Nb_Elements, To => Aggr_L), Expr),
2109 To => New_Code);
2110 Next (Expr);
2111 end loop;
2112
02a82539 2113 -- STEP 2 (b): Generate final loop if an others choice is present.
70482933
RK
2114 -- Here Nb_Elements gives the offset of the last positional element.
2115
2116 if Present (Component_Associations (N)) then
2117 Assoc := Last (Component_Associations (N));
70482933 2118
02a82539 2119 if Nkind (Assoc) = N_Iterated_Component_Association then
81e68a19 2120 -- Ada 2022: generate a loop to have a proper scope for
02a82539
ES
2121 -- the identifier that typically appears in the expression.
2122 -- The lower bound of the loop is the position after all
2123 -- previous positional components.
6e937c1c 2124
02a82539
ES
2125 Append_List (Gen_Loop (Add (Nb_Elements + 1, To => Aggr_L),
2126 Aggr_High,
2127 Expression (Assoc)),
2128 To => New_Code);
2129 else
2130 -- Ada 2005 (AI-287)
2131
2132 Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
2133 Aggr_High,
2134 Get_Assoc_Expr (Assoc)),
2135 To => New_Code);
2136 end if;
70482933
RK
2137 end if;
2138 end if;
2139
2140 return New_Code;
2141 end Build_Array_Aggr_Code;
2142
742084ad
MP
2143 -------------------------------------
2144 -- Build_Assignment_With_Temporary --
2145 -------------------------------------
2146
2147 function Build_Assignment_With_Temporary
2148 (Target : Node_Id;
ca4bff3a 2149 Typ : Entity_Id;
742084ad
MP
2150 Source : Node_Id) return List_Id
2151 is
2152 Loc : constant Source_Ptr := Sloc (Source);
2153
2154 Aggr_Code : List_Id;
2155 Tmp : Entity_Id;
742084ad
MP
2156
2157 begin
ca4bff3a
EB
2158 Aggr_Code := New_List;
2159
2160 Tmp := Build_Temporary_On_Secondary_Stack (Loc, Typ, Aggr_Code);
2161
742084ad
MP
2162 Append_To (Aggr_Code,
2163 Make_OK_Assignment_Statement (Loc,
ca4bff3a
EB
2164 Name =>
2165 Make_Explicit_Dereference (Loc,
2166 Prefix => New_Occurrence_Of (Tmp, Loc)),
742084ad
MP
2167 Expression => Source));
2168
2169 Append_To (Aggr_Code,
2170 Make_OK_Assignment_Statement (Loc,
2171 Name => Target,
ca4bff3a
EB
2172 Expression =>
2173 Make_Explicit_Dereference (Loc,
2174 Prefix => New_Occurrence_Of (Tmp, Loc))));
2175
742084ad
MP
2176 return Aggr_Code;
2177 end Build_Assignment_With_Temporary;
2178
70482933
RK
2179 ----------------------------
2180 -- Build_Record_Aggr_Code --
2181 ----------------------------
2182
2183 function Build_Record_Aggr_Code
f7e6fc47
RD
2184 (N : Node_Id;
2185 Typ : Entity_Id;
2186 Lhs : Node_Id) return List_Id
70482933
RK
2187 is
2188 Loc : constant Source_Ptr := Sloc (N);
2189 L : constant List_Id := New_List;
70482933
RK
2190 N_Typ : constant Entity_Id := Etype (N);
2191
2192 Comp : Node_Id;
2193 Instr : Node_Id;
2194 Ref : Node_Id;
0f95b178 2195 Target : Entity_Id;
70482933
RK
2196 Comp_Type : Entity_Id;
2197 Selector : Entity_Id;
2198 Comp_Expr : Node_Id;
70482933
RK
2199 Expr_Q : Node_Id;
2200
70482933
RK
2201 Ancestor_Is_Subtype_Mark : Boolean := False;
2202
2203 Init_Typ : Entity_Id := Empty;
5277cab6 2204
df3e68b1
HK
2205 Finalization_Done : Boolean := False;
2206 -- True if Generate_Finalization_Actions has already been called; calls
0f95b178 2207 -- after the first do nothing.
70482933 2208
70482933 2209 function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id;
3b9fa2df
ES
2210 -- Returns the value that the given discriminant of an ancestor type
2211 -- should receive (in the absence of a conflict with the value provided
2212 -- by an ancestor part of an extension aggregate).
70482933
RK
2213
2214 procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id);
3b9fa2df
ES
2215 -- Check that each of the discriminant values defined by the ancestor
2216 -- part of an extension aggregate match the corresponding values
2217 -- provided by either an association of the aggregate or by the
2218 -- constraint imposed by a parent type (RM95-4.3.2(8)).
70482933 2219
d8f7b976
ES
2220 function Compatible_Int_Bounds
2221 (Agg_Bounds : Node_Id;
2222 Typ_Bounds : Node_Id) return Boolean;
2223 -- Return true if Agg_Bounds are equal or within Typ_Bounds. It is
2224 -- assumed that both bounds are integer ranges.
2225
df3e68b1 2226 procedure Generate_Finalization_Actions;
0f95b178
JM
2227 -- Deal with the various controlled type data structure initializations
2228 -- (but only if it hasn't been done already).
d8f7b976
ES
2229
2230 function Get_Constraint_Association (T : Entity_Id) return Node_Id;
2231 -- Returns the first discriminant association in the constraint
2232 -- associated with T, if any, otherwise returns Empty.
2233
71129dde
AC
2234 function Get_Explicit_Discriminant_Value (D : Entity_Id) return Node_Id;
2235 -- If the ancestor part is an unconstrained type and further ancestors
2236 -- do not provide discriminants for it, check aggregate components for
2237 -- values of the discriminants.
2238
3e582869
AC
2239 procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id);
2240 -- If Typ is derived, and constrains discriminants of the parent type,
2241 -- these discriminants are not components of the aggregate, and must be
2feb1f84 2242 -- initialized. The assignments are appended to List. The same is done
10c257af 2243 -- if Typ derives from an already constrained subtype of a discriminated
2feb1f84 2244 -- parent type.
3e582869 2245
71129dde
AC
2246 procedure Init_Stored_Discriminants;
2247 -- If the type is derived and has inherited discriminants, generate
2248 -- explicit assignments for each, using the store constraint of the
2249 -- type. Note that both visible and stored discriminants must be
2250 -- initialized in case the derived type has some renamed and some
2251 -- constrained discriminants.
2252
2253 procedure Init_Visible_Discriminants;
2254 -- If type has discriminants, retrieve their values from aggregate,
2255 -- and generate explicit assignments for each. This does not include
2256 -- discriminants inherited from ancestor, which are handled above.
2257 -- The type of the aggregate is a subtype created ealier using the
2258 -- given values of the discriminant components of the aggregate.
aab45d22 2259
d8f7b976
ES
2260 function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean;
2261 -- Check whether Bounds is a range node and its lower and higher bounds
2262 -- are integers literals.
7b9d0d69 2263
937e9676
AC
2264 function Replace_Type (Expr : Node_Id) return Traverse_Result;
2265 -- If the aggregate contains a self-reference, traverse each expression
2266 -- to replace a possible self-reference with a reference to the proper
2267 -- component of the target of the assignment.
2268
2269 function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result;
2270 -- If default expression of a component mentions a discriminant of the
2271 -- type, it must be rewritten as the discriminant of the target object.
2272
2273 ---------------------------------
2274 -- Ancestor_Discriminant_Value --
2275 ---------------------------------
70482933
RK
2276
2277 function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id is
2278 Assoc : Node_Id;
2279 Assoc_Elmt : Elmt_Id;
2280 Aggr_Comp : Entity_Id;
2281 Corresp_Disc : Entity_Id;
2282 Current_Typ : Entity_Id := Base_Type (Typ);
2283 Parent_Typ : Entity_Id;
2284 Parent_Disc : Entity_Id;
2285 Save_Assoc : Node_Id := Empty;
2286
2287 begin
3b9fa2df
ES
2288 -- First check any discriminant associations to see if any of them
2289 -- provide a value for the discriminant.
70482933
RK
2290
2291 if Present (Discriminant_Specifications (Parent (Current_Typ))) then
2292 Assoc := First (Component_Associations (N));
2293 while Present (Assoc) loop
2294 Aggr_Comp := Entity (First (Choices (Assoc)));
2295
2296 if Ekind (Aggr_Comp) = E_Discriminant then
2297 Save_Assoc := Expression (Assoc);
2298
2299 Corresp_Disc := Corresponding_Discriminant (Aggr_Comp);
2300 while Present (Corresp_Disc) loop
3b9fa2df
ES
2301
2302 -- If found a corresponding discriminant then return the
2303 -- value given in the aggregate. (Note: this is not
2304 -- correct in the presence of side effects. ???)
70482933
RK
2305
2306 if Disc = Corresp_Disc then
2307 return Duplicate_Subexpr (Expression (Assoc));
2308 end if;
fbf5a39b 2309
ffcfb997 2310 Corresp_Disc := Corresponding_Discriminant (Corresp_Disc);
70482933
RK
2311 end loop;
2312 end if;
2313
2314 Next (Assoc);
2315 end loop;
2316 end if;
2317
2318 -- No match found in aggregate, so chain up parent types to find
2319 -- a constraint that defines the value of the discriminant.
2320
2321 Parent_Typ := Etype (Current_Typ);
2322 while Current_Typ /= Parent_Typ loop
9013065b
AC
2323 if Has_Discriminants (Parent_Typ)
2324 and then not Has_Unknown_Discriminants (Parent_Typ)
2325 then
70482933
RK
2326 Parent_Disc := First_Discriminant (Parent_Typ);
2327
2328 -- We either get the association from the subtype indication
2329 -- of the type definition itself, or from the discriminant
2330 -- constraint associated with the type entity (which is
2331 -- preferable, but it's not always present ???)
2332
aff557c7 2333 if Is_Empty_Elmt_List (Discriminant_Constraint (Current_Typ))
70482933
RK
2334 then
2335 Assoc := Get_Constraint_Association (Current_Typ);
2336 Assoc_Elmt := No_Elmt;
2337 else
2338 Assoc_Elmt :=
2339 First_Elmt (Discriminant_Constraint (Current_Typ));
2340 Assoc := Node (Assoc_Elmt);
2341 end if;
2342
2343 -- Traverse the discriminants of the parent type looking
2344 -- for one that corresponds.
2345
2346 while Present (Parent_Disc) and then Present (Assoc) loop
2347 Corresp_Disc := Parent_Disc;
2348 while Present (Corresp_Disc)
2349 and then Disc /= Corresp_Disc
2350 loop
ffcfb997 2351 Corresp_Disc := Corresponding_Discriminant (Corresp_Disc);
70482933
RK
2352 end loop;
2353
2354 if Disc = Corresp_Disc then
2355 if Nkind (Assoc) = N_Discriminant_Association then
2356 Assoc := Expression (Assoc);
2357 end if;
2358
e80f0cb0
RD
2359 -- If the located association directly denotes
2360 -- a discriminant, then use the value of a saved
2361 -- association of the aggregate. This is an approach
2362 -- used to handle certain cases involving multiple
2363 -- discriminants mapped to a single discriminant of
2364 -- a descendant. It's not clear how to locate the
2365 -- appropriate discriminant value for such cases. ???
70482933
RK
2366
2367 if Is_Entity_Name (Assoc)
2368 and then Ekind (Entity (Assoc)) = E_Discriminant
2369 then
2370 Assoc := Save_Assoc;
2371 end if;
2372
2373 return Duplicate_Subexpr (Assoc);
2374 end if;
2375
2376 Next_Discriminant (Parent_Disc);
2377
2378 if No (Assoc_Elmt) then
2379 Next (Assoc);
ffcfb997 2380
70482933
RK
2381 else
2382 Next_Elmt (Assoc_Elmt);
ffcfb997 2383
70482933
RK
2384 if Present (Assoc_Elmt) then
2385 Assoc := Node (Assoc_Elmt);
2386 else
2387 Assoc := Empty;
2388 end if;
2389 end if;
2390 end loop;
2391 end if;
2392
2393 Current_Typ := Parent_Typ;
2394 Parent_Typ := Etype (Current_Typ);
2395 end loop;
2396
2397 -- In some cases there's no ancestor value to locate (such as
2398 -- when an ancestor part given by an expression defines the
2399 -- discriminant value).
2400
2401 return Empty;
2402 end Ancestor_Discriminant_Value;
2403
2404 ----------------------------------
2405 -- Check_Ancestor_Discriminants --
2406 ----------------------------------
2407
2408 procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id) is
5277cab6 2409 Discr : Entity_Id;
70482933
RK
2410 Disc_Value : Node_Id;
2411 Cond : Node_Id;
2412
2413 begin
5277cab6 2414 Discr := First_Discriminant (Base_Type (Anc_Typ));
70482933
RK
2415 while Present (Discr) loop
2416 Disc_Value := Ancestor_Discriminant_Value (Discr);
2417
2418 if Present (Disc_Value) then
2419 Cond := Make_Op_Ne (Loc,
ffcfb997 2420 Left_Opnd =>
70482933
RK
2421 Make_Selected_Component (Loc,
2422 Prefix => New_Copy_Tree (Target),
2423 Selector_Name => New_Occurrence_Of (Discr, Loc)),
2424 Right_Opnd => Disc_Value);
2425
07fc65c4
GB
2426 Append_To (L,
2427 Make_Raise_Constraint_Error (Loc,
2428 Condition => Cond,
2429 Reason => CE_Discriminant_Check_Failed));
70482933
RK
2430 end if;
2431
2432 Next_Discriminant (Discr);
2433 end loop;
2434 end Check_Ancestor_Discriminants;
2435
d8f7b976
ES
2436 ---------------------------
2437 -- Compatible_Int_Bounds --
2438 ---------------------------
2439
2440 function Compatible_Int_Bounds
2441 (Agg_Bounds : Node_Id;
2442 Typ_Bounds : Node_Id) return Boolean
2443 is
2444 Agg_Lo : constant Uint := Intval (Low_Bound (Agg_Bounds));
2445 Agg_Hi : constant Uint := Intval (High_Bound (Agg_Bounds));
2446 Typ_Lo : constant Uint := Intval (Low_Bound (Typ_Bounds));
2447 Typ_Hi : constant Uint := Intval (High_Bound (Typ_Bounds));
2448 begin
2449 return Typ_Lo <= Agg_Lo and then Agg_Hi <= Typ_Hi;
2450 end Compatible_Int_Bounds;
2451
937e9676
AC
2452 -----------------------------------
2453 -- Generate_Finalization_Actions --
2454 -----------------------------------
2455
2456 procedure Generate_Finalization_Actions is
2457 begin
2458 -- Do the work only the first time this is called
2459
2460 if Finalization_Done then
2461 return;
2462 end if;
2463
2464 Finalization_Done := True;
2465
2466 -- Determine the external finalization list. It is either the
2467 -- finalization list of the outer scope or the one coming from an
2468 -- outer aggregate. When the target is not a temporary, the proper
2469 -- scope is the scope of the target rather than the potentially
2470 -- transient current scope.
2471
2472 if Is_Controlled (Typ) and then Ancestor_Is_Subtype_Mark then
2473 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2474 Set_Assignment_OK (Ref);
2475
2476 Append_To (L,
2477 Make_Procedure_Call_Statement (Loc,
2478 Name =>
2479 New_Occurrence_Of
2480 (Find_Prim_Op (Init_Typ, Name_Initialize), Loc),
2481 Parameter_Associations => New_List (New_Copy_Tree (Ref))));
2482 end if;
2483 end Generate_Finalization_Actions;
2484
70482933
RK
2485 --------------------------------
2486 -- Get_Constraint_Association --
2487 --------------------------------
2488
2489 function Get_Constraint_Association (T : Entity_Id) return Node_Id is
2c17ca0a
AC
2490 Indic : Node_Id;
2491 Typ : Entity_Id;
70482933
RK
2492
2493 begin
2c17ca0a
AC
2494 Typ := T;
2495
598a56c0
ES
2496 -- If type is private, get constraint from full view. This was
2497 -- previously done in an instance context, but is needed whenever
2498 -- the ancestor part has a discriminant, possibly inherited through
2499 -- multiple derivations.
2c17ca0a 2500
598a56c0 2501 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
2c17ca0a
AC
2502 Typ := Full_View (Typ);
2503 end if;
2504
2505 Indic := Subtype_Indication (Type_Definition (Parent (Typ)));
2506
598a56c0 2507 -- Verify that the subtype indication carries a constraint
70482933
RK
2508
2509 if Nkind (Indic) = N_Subtype_Indication
2510 and then Present (Constraint (Indic))
2511 then
2512 return First (Constraints (Constraint (Indic)));
2513 end if;
2514
2515 return Empty;
2516 end Get_Constraint_Association;
2517
aab45d22
AC
2518 -------------------------------------
2519 -- Get_Explicit_Discriminant_Value --
2520 -------------------------------------
2521
7893514c
RD
2522 function Get_Explicit_Discriminant_Value
2523 (D : Entity_Id) return Node_Id
aab45d22
AC
2524 is
2525 Assoc : Node_Id;
2526 Choice : Node_Id;
2527 Val : Node_Id;
2528
2529 begin
2530 -- The aggregate has been normalized and all associations have a
2531 -- single choice.
2532
2533 Assoc := First (Component_Associations (N));
2534 while Present (Assoc) loop
2535 Choice := First (Choices (Assoc));
7893514c 2536
aab45d22
AC
2537 if Chars (Choice) = Chars (D) then
2538 Val := Expression (Assoc);
2539 Remove (Assoc);
2540 return Val;
2541 end if;
2542
2543 Next (Assoc);
2544 end loop;
2545
2546 return Empty;
2547 end Get_Explicit_Discriminant_Value;
2548
3e582869
AC
2549 -------------------------------
2550 -- Init_Hidden_Discriminants --
2551 -------------------------------
2552
2553 procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id) is
a25e72b5
AC
2554 function Is_Completely_Hidden_Discriminant
2555 (Discr : Entity_Id) return Boolean;
2556 -- Determine whether Discr is a completely hidden discriminant of
2557 -- type Typ.
2558
2559 ---------------------------------------
2560 -- Is_Completely_Hidden_Discriminant --
2561 ---------------------------------------
2562
2563 function Is_Completely_Hidden_Discriminant
2564 (Discr : Entity_Id) return Boolean
2565 is
2566 Item : Entity_Id;
2567
2568 begin
2569 -- Use First/Next_Entity as First/Next_Discriminant do not yield
2570 -- completely hidden discriminants.
2571
2572 Item := First_Entity (Typ);
2573 while Present (Item) loop
2574 if Ekind (Item) = E_Discriminant
2575 and then Is_Completely_Hidden (Item)
2576 and then Chars (Original_Record_Component (Item)) =
2577 Chars (Discr)
2578 then
2579 return True;
2580 end if;
2581
2582 Next_Entity (Item);
2583 end loop;
2584
2585 return False;
2586 end Is_Completely_Hidden_Discriminant;
2587
2588 -- Local variables
2589
2590 Base_Typ : Entity_Id;
2591 Discr : Entity_Id;
2592 Discr_Constr : Elmt_Id;
2593 Discr_Init : Node_Id;
2594 Discr_Val : Node_Id;
ddce04b8 2595 In_Aggr_Type : Boolean;
a25e72b5
AC
2596 Par_Typ : Entity_Id;
2597
2598 -- Start of processing for Init_Hidden_Discriminants
3e582869
AC
2599
2600 begin
7b536495
AC
2601 -- The constraints on the hidden discriminants, if present, are kept
2602 -- in the Stored_Constraint list of the type itself, or in that of
ddce04b8
AC
2603 -- the base type. If not in the constraints of the aggregate itself,
2604 -- we examine ancestors to find discriminants that are not renamed
2605 -- by other discriminants but constrained explicitly.
2606
2607 In_Aggr_Type := True;
2feb1f84 2608
a25e72b5
AC
2609 Base_Typ := Base_Type (Typ);
2610 while Is_Derived_Type (Base_Typ)
596f7139 2611 and then
a25e72b5 2612 (Present (Stored_Constraint (Base_Typ))
596f7139
AC
2613 or else
2614 (In_Aggr_Type and then Present (Stored_Constraint (Typ))))
3e582869 2615 loop
a25e72b5 2616 Par_Typ := Etype (Base_Typ);
7b536495 2617
a25e72b5 2618 if not Has_Discriminants (Par_Typ) then
2feb1f84
AC
2619 return;
2620 end if;
3e582869 2621
a25e72b5 2622 Discr := First_Discriminant (Par_Typ);
2feb1f84 2623
bdc193ba 2624 -- We know that one of the stored-constraint lists is present
2feb1f84 2625
a25e72b5
AC
2626 if Present (Stored_Constraint (Base_Typ)) then
2627 Discr_Constr := First_Elmt (Stored_Constraint (Base_Typ));
bdc193ba
AC
2628
2629 -- For private extension, stored constraint may be on full view
2630
a25e72b5
AC
2631 elsif Is_Private_Type (Base_Typ)
2632 and then Present (Full_View (Base_Typ))
2633 and then Present (Stored_Constraint (Full_View (Base_Typ)))
bdc193ba 2634 then
a25e72b5
AC
2635 Discr_Constr :=
2636 First_Elmt (Stored_Constraint (Full_View (Base_Typ)));
bdc193ba 2637
f056076f
BD
2638 -- Otherwise, no discriminant to process
2639
2feb1f84 2640 else
f056076f 2641 Discr_Constr := No_Elmt;
2feb1f84
AC
2642 end if;
2643
a25e72b5
AC
2644 while Present (Discr) and then Present (Discr_Constr) loop
2645 Discr_Val := Node (Discr_Constr);
2646
2647 -- The parent discriminant is renamed in the derived type,
2648 -- nothing to initialize.
3e582869 2649
a25e72b5
AC
2650 -- type Deriv_Typ (Discr : ...)
2651 -- is new Parent_Typ (Discr => Discr);
3e582869 2652
a25e72b5
AC
2653 if Is_Entity_Name (Discr_Val)
2654 and then Ekind (Entity (Discr_Val)) = E_Discriminant
3e582869 2655 then
a25e72b5
AC
2656 null;
2657
2658 -- When the parent discriminant is constrained at the type
2659 -- extension level, it does not appear in the derived type.
2660
2661 -- type Deriv_Typ (Discr : ...)
2662 -- is new Parent_Typ (Discr => Discr,
2663 -- Hidden_Discr => Expression);
3e582869 2664
a25e72b5
AC
2665 elsif Is_Completely_Hidden_Discriminant (Discr) then
2666 null;
2667
2668 -- Otherwise initialize the discriminant
2669
2670 else
2671 Discr_Init :=
3e582869 2672 Make_OK_Assignment_Statement (Loc,
a25e72b5
AC
2673 Name =>
2674 Make_Selected_Component (Loc,
2675 Prefix => New_Copy_Tree (Target),
2676 Selector_Name => New_Occurrence_Of (Discr, Loc)),
2677 Expression => New_Copy_Tree (Discr_Val));
3e582869 2678
a25e72b5 2679 Append_To (List, Discr_Init);
3e582869
AC
2680 end if;
2681
a25e72b5
AC
2682 Next_Elmt (Discr_Constr);
2683 Next_Discriminant (Discr);
3e582869
AC
2684 end loop;
2685
ddce04b8 2686 In_Aggr_Type := False;
a25e72b5 2687 Base_Typ := Base_Type (Par_Typ);
3e582869
AC
2688 end loop;
2689 end Init_Hidden_Discriminants;
2690
71129dde
AC
2691 --------------------------------
2692 -- Init_Visible_Discriminants --
2693 --------------------------------
2694
2695 procedure Init_Visible_Discriminants is
2696 Discriminant : Entity_Id;
2697 Discriminant_Value : Node_Id;
2698
2699 begin
2700 Discriminant := First_Discriminant (Typ);
2701 while Present (Discriminant) loop
2702 Comp_Expr :=
2703 Make_Selected_Component (Loc,
2704 Prefix => New_Copy_Tree (Target),
2705 Selector_Name => New_Occurrence_Of (Discriminant, Loc));
2706
2707 Discriminant_Value :=
2708 Get_Discriminant_Value
2709 (Discriminant, Typ, Discriminant_Constraint (N_Typ));
2710
2711 Instr :=
2712 Make_OK_Assignment_Statement (Loc,
2713 Name => Comp_Expr,
2714 Expression => New_Copy_Tree (Discriminant_Value));
2715
71129dde
AC
2716 Append_To (L, Instr);
2717
2718 Next_Discriminant (Discriminant);
2719 end loop;
2720 end Init_Visible_Discriminants;
2721
2722 -------------------------------
2723 -- Init_Stored_Discriminants --
2724 -------------------------------
2725
2726 procedure Init_Stored_Discriminants is
2727 Discriminant : Entity_Id;
2728 Discriminant_Value : Node_Id;
2729
2730 begin
2731 Discriminant := First_Stored_Discriminant (Typ);
2732 while Present (Discriminant) loop
2733 Comp_Expr :=
2734 Make_Selected_Component (Loc,
2735 Prefix => New_Copy_Tree (Target),
2736 Selector_Name => New_Occurrence_Of (Discriminant, Loc));
2737
2738 Discriminant_Value :=
2739 Get_Discriminant_Value
2740 (Discriminant, N_Typ, Discriminant_Constraint (N_Typ));
2741
2742 Instr :=
2743 Make_OK_Assignment_Statement (Loc,
2744 Name => Comp_Expr,
2745 Expression => New_Copy_Tree (Discriminant_Value));
2746
71129dde
AC
2747 Append_To (L, Instr);
2748
2749 Next_Stored_Discriminant (Discriminant);
2750 end loop;
2751 end Init_Stored_Discriminants;
2752
937e9676
AC
2753 -------------------------
2754 -- Is_Int_Range_Bounds --
2755 -------------------------
2756
2757 function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean is
2758 begin
2759 return Nkind (Bounds) = N_Range
2760 and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
2761 and then Nkind (High_Bound (Bounds)) = N_Integer_Literal;
2762 end Is_Int_Range_Bounds;
f2abc637 2763
0f95b178
JM
2764 ------------------
2765 -- Replace_Type --
2766 ------------------
2767
2768 function Replace_Type (Expr : Node_Id) return Traverse_Result is
2769 begin
ae250f9e 2770 -- Note about the Is_Ancestor test below: aggregate components for
acf63f8c 2771 -- self-referential types include attribute references to the current
ae250f9e 2772 -- instance, of the form: Typ'access, etc. These references are
acf63f8c
ES
2773 -- rewritten as references to the target of the aggregate: the
2774 -- left-hand side of an assignment, the entity in a declaration,
ae250f9e
EB
2775 -- or a temporary. Without this test, we would improperly extend
2776 -- this rewriting to attribute references whose prefix is not the
acf63f8c
ES
2777 -- type of the aggregate.
2778
0f95b178 2779 if Nkind (Expr) = N_Attribute_Reference
acf63f8c 2780 and then Is_Entity_Name (Prefix (Expr))
0f95b178 2781 and then Is_Type (Entity (Prefix (Expr)))
ae250f9e
EB
2782 and then
2783 Is_Ancestor
2784 (Entity (Prefix (Expr)), Etype (N), Use_Full_View => True)
0f95b178
JM
2785 then
2786 if Is_Entity_Name (Lhs) then
304757d2 2787 Rewrite (Prefix (Expr), New_Occurrence_Of (Entity (Lhs), Loc));
0f95b178
JM
2788
2789 else
2790 Rewrite (Expr,
2791 Make_Attribute_Reference (Loc,
2792 Attribute_Name => Name_Unrestricted_Access,
2793 Prefix => New_Copy_Tree (Lhs)));
2794 Set_Analyzed (Parent (Expr), False);
2795 end if;
2796 end if;
2797
2798 return OK;
2799 end Replace_Type;
2800
937e9676
AC
2801 --------------------------
2802 -- Rewrite_Discriminant --
2803 --------------------------
2804
2805 function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result is
2806 begin
2807 if Is_Entity_Name (Expr)
2808 and then Present (Entity (Expr))
2809 and then Ekind (Entity (Expr)) = E_In_Parameter
2810 and then Present (Discriminal_Link (Entity (Expr)))
2811 and then Scope (Discriminal_Link (Entity (Expr))) =
2812 Base_Type (Etype (N))
2813 then
2814 Rewrite (Expr,
2815 Make_Selected_Component (Loc,
2816 Prefix => New_Copy_Tree (Lhs),
2817 Selector_Name => Make_Identifier (Loc, Chars (Expr))));
b8411279
ES
2818
2819 -- The generated code will be reanalyzed, but if the reference
2820 -- to the discriminant appears within an already analyzed
2821 -- expression (e.g. a conditional) we must set its proper entity
2822 -- now. Context is an initialization procedure.
2823
2824 Analyze (Expr);
937e9676
AC
2825 end if;
2826
2827 return OK;
2828 end Rewrite_Discriminant;
0f95b178 2829
f2abc637
AC
2830 procedure Replace_Discriminants is
2831 new Traverse_Proc (Rewrite_Discriminant);
2832
937e9676
AC
2833 procedure Replace_Self_Reference is
2834 new Traverse_Proc (Replace_Type);
2835
70482933
RK
2836 -- Start of processing for Build_Record_Aggr_Code
2837
2838 begin
0f95b178
JM
2839 if Has_Self_Reference (N) then
2840 Replace_Self_Reference (N);
2841 end if;
2842
2843 -- If the target of the aggregate is class-wide, we must convert it
2844 -- to the actual type of the aggregate, so that the proper components
2845 -- are visible. We know already that the types are compatible.
2846
c0ceba6c 2847 if Present (Etype (Lhs)) and then Is_Class_Wide_Type (Etype (Lhs)) then
0f95b178
JM
2848 Target := Unchecked_Convert_To (Typ, Lhs);
2849 else
2850 Target := Lhs;
2851 end if;
2852
3b9fa2df
ES
2853 -- Deal with the ancestor part of extension aggregates or with the
2854 -- discriminants of the root type.
70482933
RK
2855
2856 if Nkind (N) = N_Extension_Aggregate then
2857 declare
d18dd43c
EB
2858 Ancestor : constant Node_Id := Ancestor_Part (N);
2859 Ancestor_Q : constant Node_Id := Unqualify (Ancestor);
2860
df3e68b1 2861 Assign : List_Id;
70482933
RK
2862
2863 begin
d18dd43c 2864 -- If the ancestor part is a subtype mark T, we generate
fbf5a39b 2865
df3e68b1
HK
2866 -- init-proc (T (tmp)); if T is constrained and
2867 -- init-proc (S (tmp)); where S applies an appropriate
2868 -- constraint if T is unconstrained
70482933 2869
df3e68b1
HK
2870 if Is_Entity_Name (Ancestor)
2871 and then Is_Type (Entity (Ancestor))
2872 then
70482933
RK
2873 Ancestor_Is_Subtype_Mark := True;
2874
df3e68b1
HK
2875 if Is_Constrained (Entity (Ancestor)) then
2876 Init_Typ := Entity (Ancestor);
70482933 2877
3b9fa2df
ES
2878 -- For an ancestor part given by an unconstrained type mark,
2879 -- create a subtype constrained by appropriate corresponding
2880 -- discriminant values coming from either associations of the
2881 -- aggregate or a constraint on a parent type. The subtype will
2882 -- be used to generate the correct default value for the
2883 -- ancestor part.
70482933 2884
df3e68b1 2885 elsif Has_Discriminants (Entity (Ancestor)) then
70482933 2886 declare
df3e68b1 2887 Anc_Typ : constant Entity_Id := Entity (Ancestor);
fbf5a39b
AC
2888 Anc_Constr : constant List_Id := New_List;
2889 Discrim : Entity_Id;
70482933
RK
2890 Disc_Value : Node_Id;
2891 New_Indic : Node_Id;
2892 Subt_Decl : Node_Id;
fbf5a39b 2893
70482933 2894 begin
fbf5a39b 2895 Discrim := First_Discriminant (Anc_Typ);
70482933
RK
2896 while Present (Discrim) loop
2897 Disc_Value := Ancestor_Discriminant_Value (Discrim);
aab45d22
AC
2898
2899 -- If no usable discriminant in ancestors, check
2900 -- whether aggregate has an explicit value for it.
2901
2902 if No (Disc_Value) then
2903 Disc_Value :=
2904 Get_Explicit_Discriminant_Value (Discrim);
2905 end if;
2906
70482933
RK
2907 Append_To (Anc_Constr, Disc_Value);
2908 Next_Discriminant (Discrim);
2909 end loop;
2910
2911 New_Indic :=
2912 Make_Subtype_Indication (Loc,
2913 Subtype_Mark => New_Occurrence_Of (Anc_Typ, Loc),
2914 Constraint =>
2915 Make_Index_Or_Discriminant_Constraint (Loc,
2916 Constraints => Anc_Constr));
2917
2918 Init_Typ := Create_Itype (Ekind (Anc_Typ), N);
2919
2920 Subt_Decl :=
2921 Make_Subtype_Declaration (Loc,
2922 Defining_Identifier => Init_Typ,
2923 Subtype_Indication => New_Indic);
2924
3b9fa2df
ES
2925 -- Itypes must be analyzed with checks off Declaration
2926 -- must have a parent for proper handling of subsidiary
2927 -- actions.
70482933 2928
07fc65c4 2929 Set_Parent (Subt_Decl, N);
70482933
RK
2930 Analyze (Subt_Decl, Suppress => All_Checks);
2931 end;
2932 end if;
2933
2934 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2935 Set_Assignment_OK (Ref);
2936
64425dff 2937 if not Is_Interface (Init_Typ) then
3bb3f6d6
AC
2938 Append_List_To (L,
2939 Build_Initialization_Call (Loc,
2940 Id_Ref => Ref,
2941 Typ => Init_Typ,
2942 In_Init_Proc => Within_Init_Proc,
2943 With_Default_Init => Has_Default_Init_Comps (N)
2944 or else
2945 Has_Task (Base_Type (Init_Typ))));
2946
df3e68b1
HK
2947 if Is_Constrained (Entity (Ancestor))
2948 and then Has_Discriminants (Entity (Ancestor))
3bb3f6d6 2949 then
df3e68b1 2950 Check_Ancestor_Discriminants (Entity (Ancestor));
3bb3f6d6 2951 end if;
f7937111
GD
2952
2953 -- If ancestor type has Default_Initialization_Condition,
2954 -- add a DIC check after the ancestor object is initialized
2955 -- by default.
2956
2957 if Has_DIC (Entity (Ancestor))
2958 and then Present (DIC_Procedure (Entity (Ancestor)))
2959 then
2960 Append_To (L,
2961 Build_DIC_Call
2962 (Loc, New_Copy_Tree (Ref), Entity (Ancestor)));
2963 end if;
70482933
RK
2964 end if;
2965
11795185
JM
2966 -- Handle calls to C++ constructors
2967
df3e68b1
HK
2968 elsif Is_CPP_Constructor_Call (Ancestor) then
2969 Init_Typ := Etype (Ancestor);
11795185
JM
2970 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
2971 Set_Assignment_OK (Ref);
2972
2973 Append_List_To (L,
2974 Build_Initialization_Call (Loc,
2975 Id_Ref => Ref,
2976 Typ => Init_Typ,
2977 In_Init_Proc => Within_Init_Proc,
2978 With_Default_Init => Has_Default_Init_Comps (N),
df3e68b1 2979 Constructor_Ref => Ancestor));
11795185 2980
c5ee5ad2
BD
2981 -- Ada 2005 (AI-287): If the ancestor part is an aggregate of
2982 -- limited type, a recursive call expands the ancestor. Note that
2983 -- in the limited case, the ancestor part must be either a
d4dfb005
BD
2984 -- function call (possibly qualified) or aggregate (definitely
2985 -- qualified).
65356e64 2986
df3e68b1 2987 elsif Is_Limited_Type (Etype (Ancestor))
d18dd43c
EB
2988 and then Nkind (Ancestor_Q) in N_Aggregate
2989 | N_Extension_Aggregate
c5ee5ad2 2990 then
7b9d0d69 2991 Append_List_To (L,
f7e6fc47 2992 Build_Record_Aggr_Code
d18dd43c
EB
2993 (N => Ancestor_Q,
2994 Typ => Etype (Ancestor_Q),
f7e6fc47 2995 Lhs => Target));
65356e64 2996
d18dd43c 2997 -- If the ancestor part is an expression E of type T, we generate
3b9fa2df 2998
df3e68b1 2999 -- T (tmp) := E;
3b9fa2df 3000
c5ee5ad2 3001 -- In Ada 2005, this includes the case of a (possibly qualified)
d18dd43c
EB
3002 -- limited function call. The assignment will later be turned into
3003 -- a build-in-place function call (for further details, see
c5ee5ad2 3004 -- Make_Build_In_Place_Call_In_Assignment).
70482933
RK
3005
3006 else
df3e68b1 3007 Init_Typ := Etype (Ancestor);
70482933 3008
7b9d0d69
ES
3009 -- If the ancestor part is an aggregate, force its full
3010 -- expansion, which was delayed.
3011
d18dd43c 3012 if Nkind (Ancestor_Q) in N_Aggregate | N_Extension_Aggregate
7b9d0d69 3013 then
df3e68b1
HK
3014 Set_Analyzed (Ancestor, False);
3015 Set_Analyzed (Expression (Ancestor), False);
7b9d0d69
ES
3016 end if;
3017
3018 Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
7b9d0d69 3019
7b9d0d69
ES
3020 Assign := New_List (
3021 Make_OK_Assignment_Statement (Loc,
3022 Name => Ref,
df3e68b1 3023 Expression => Ancestor));
70482933 3024
c0ceba6c
EB
3025 -- Arrange for the component to be adjusted if need be (the
3026 -- call will be generated by Make_Tag_Ctrl_Assignment).
70482933 3027
d18dd43c 3028 if Needs_Finalization (Init_Typ)
c0ceba6c 3029 and then not Is_Limited_View (Init_Typ)
3b9fa2df 3030 then
c0ceba6c
EB
3031 Set_No_Finalize_Actions (First (Assign));
3032 else
3033 Set_No_Ctrl_Actions (First (Assign));
70482933
RK
3034 end if;
3035
70482933 3036 Append_To (L,
c0ceba6c 3037 Make_Suppress_Block (Loc, Name_Discriminant_Check, Assign));
70482933
RK
3038
3039 if Has_Discriminants (Init_Typ) then
3040 Check_Ancestor_Discriminants (Init_Typ);
3041 end if;
3042 end if;
3043 end;
3044
376e7d14
AC
3045 -- Generate assignments of hidden discriminants. If the base type is
3046 -- an unchecked union, the discriminants are unknown to the back-end
3047 -- and absent from a value of the type, so assignments for them are
3048 -- not emitted.
3e582869
AC
3049
3050 if Has_Discriminants (Typ)
3051 and then not Is_Unchecked_Union (Base_Type (Typ))
3052 then
3053 Init_Hidden_Discriminants (Typ, L);
3054 end if;
3055
fbf5a39b
AC
3056 -- Normal case (not an extension aggregate)
3057
70482933
RK
3058 else
3059 -- Generate the discriminant expressions, component by component.
3060 -- If the base type is an unchecked union, the discriminants are
3061 -- unknown to the back-end and absent from a value of the type, so
3062 -- assignments for them are not emitted.
3063
3064 if Has_Discriminants (Typ)
3065 and then not Is_Unchecked_Union (Base_Type (Typ))
3066 then
3e582869 3067 Init_Hidden_Discriminants (Typ, L);
d8f7b976
ES
3068
3069 -- Generate discriminant init values for the visible discriminants
70482933 3070
71129dde 3071 Init_Visible_Discriminants;
70482933 3072
71129dde
AC
3073 if Is_Derived_Type (N_Typ) then
3074 Init_Stored_Discriminants;
3075 end if;
70482933
RK
3076 end if;
3077 end if;
3078
28541488
JM
3079 -- For CPP types we generate an implicit call to the C++ default
3080 -- constructor to ensure the proper initialization of the _Tag
3081 -- component.
3082
36a66365 3083 if Is_CPP_Class (Root_Type (Typ)) and then CPP_Num_Prims (Typ) > 0 then
cefce34c 3084 Invoke_Constructor : declare
15f0f591 3085 CPP_Parent : constant Entity_Id := Enclosing_CPP_Parent (Typ);
cefce34c
JM
3086
3087 procedure Invoke_IC_Proc (T : Entity_Id);
3088 -- Recursive routine used to climb to parents. Required because
3089 -- parents must be initialized before descendants to ensure
3090 -- propagation of inherited C++ slots.
3091
3092 --------------------
3093 -- Invoke_IC_Proc --
3094 --------------------
3095
3096 procedure Invoke_IC_Proc (T : Entity_Id) is
3097 begin
3098 -- Avoid generating extra calls. Initialization required
3099 -- only for types defined from the level of derivation of
3100 -- type of the constructor and the type of the aggregate.
3101
3102 if T = CPP_Parent then
3103 return;
3104 end if;
3105
3106 Invoke_IC_Proc (Etype (T));
3107
3108 -- Generate call to the IC routine
3109
3110 if Present (CPP_Init_Proc (T)) then
3111 Append_To (L,
3112 Make_Procedure_Call_Statement (Loc,
ffcfb997 3113 Name => New_Occurrence_Of (CPP_Init_Proc (T), Loc)));
cefce34c
JM
3114 end if;
3115 end Invoke_IC_Proc;
3116
3117 -- Start of processing for Invoke_Constructor
3118
3119 begin
3120 -- Implicit invocation of the C++ constructor
3121
3122 if Nkind (N) = N_Aggregate then
3123 Append_To (L,
3124 Make_Procedure_Call_Statement (Loc,
37368818
RD
3125 Name =>
3126 New_Occurrence_Of (Base_Init_Proc (CPP_Parent), Loc),
cefce34c
JM
3127 Parameter_Associations => New_List (
3128 Unchecked_Convert_To (CPP_Parent,
3129 New_Copy_Tree (Lhs)))));
3130 end if;
3131
3132 Invoke_IC_Proc (Typ);
3133 end Invoke_Constructor;
28541488
JM
3134 end if;
3135
70482933
RK
3136 -- Generate the assignments, component by component
3137
3138 -- tmp.comp1 := Expr1_From_Aggr;
3139 -- tmp.comp2 := Expr2_From_Aggr;
3140 -- ....
3141
3142 Comp := First (Component_Associations (N));
3143 while Present (Comp) loop
b7e429ab 3144 Selector := Entity (First (Choices (Comp)));
df0ac6e1 3145 pragma Assert (Present (Selector));
70482933 3146
236fecbf
JM
3147 -- C++ constructors
3148
3149 if Is_CPP_Constructor_Call (Expression (Comp)) then
3150 Append_List_To (L,
3151 Build_Initialization_Call (Loc,
37368818
RD
3152 Id_Ref =>
3153 Make_Selected_Component (Loc,
3154 Prefix => New_Copy_Tree (Target),
3155 Selector_Name => New_Occurrence_Of (Selector, Loc)),
1c612f29
RD
3156 Typ => Etype (Selector),
3157 Enclos_Type => Typ,
236fecbf 3158 With_Default_Init => True,
1c612f29 3159 Constructor_Ref => Expression (Comp)));
236fecbf 3160
736f9bed
PT
3161 elsif Box_Present (Comp)
3162 and then Needs_Simple_Initialization (Etype (Selector))
3163 then
3164 Comp_Expr :=
3165 Make_Selected_Component (Loc,
3166 Prefix => New_Copy_Tree (Target),
3167 Selector_Name => New_Occurrence_Of (Selector, Loc));
3168
c0ceba6c 3169 Initialize_Component
fc84947c
EB
3170 (N => N,
3171 Comp => Comp_Expr,
736f9bed
PT
3172 Comp_Typ => Etype (Selector),
3173 Init_Expr => Get_Simple_Init_Val
3174 (Typ => Etype (Selector),
3175 N => Comp,
3176 Size =>
3177 (if Known_Esize (Selector)
3178 then Esize (Selector)
3179 else Uint_0)),
3180 Stmts => L);
3181
3b9fa2df 3182 -- Ada 2005 (AI-287): For each default-initialized component generate
52739835 3183 -- a call to the corresponding IP subprogram if available.
65356e64 3184
236fecbf 3185 elsif Box_Present (Comp)
52739835 3186 and then Has_Non_Null_Base_Init_Proc (Etype (Selector))
65356e64 3187 then
5277cab6 3188 if Ekind (Selector) /= E_Discriminant then
df3e68b1 3189 Generate_Finalization_Actions;
5277cab6
ES
3190 end if;
3191
0ab80019
AC
3192 -- Ada 2005 (AI-287): If the component type has tasks then
3193 -- generate the activation chain and master entities (except
3194 -- in case of an allocator because in that case these entities
3195 -- are generated by Build_Task_Allocate_Block_With_Init_Stmts).
c45b6ae0
AC
3196
3197 declare
91b1417d 3198 Ctype : constant Entity_Id := Etype (Selector);
1c612f29
RD
3199 Inside_Allocator : Boolean := False;
3200 P : Node_Id := Parent (N);
c45b6ae0
AC
3201
3202 begin
3203 if Is_Task_Type (Ctype) or else Has_Task (Ctype) then
3204 while Present (P) loop
3205 if Nkind (P) = N_Allocator then
3206 Inside_Allocator := True;
3207 exit;
3208 end if;
3209
3210 P := Parent (P);
3211 end loop;
3212
3213 if not Inside_Init_Proc and not Inside_Allocator then
3214 Build_Activation_Chain_Entity (N);
c45b6ae0
AC
3215 end if;
3216 end if;
3217 end;
3218
65356e64
AC
3219 Append_List_To (L,
3220 Build_Initialization_Call (Loc,
1c612f29
RD
3221 Id_Ref => Make_Selected_Component (Loc,
3222 Prefix => New_Copy_Tree (Target),
3223 Selector_Name =>
3224 New_Occurrence_Of (Selector, Loc)),
3225 Typ => Etype (Selector),
3226 Enclos_Type => Typ,
c45b6ae0 3227 With_Default_Init => True));
65356e64 3228
7b9d0d69 3229 -- Prepare for component assignment
fbf5a39b 3230
236fecbf 3231 elsif Ekind (Selector) /= E_Discriminant
70482933
RK
3232 or else Nkind (N) = N_Extension_Aggregate
3233 then
7b9d0d69 3234 -- All the discriminants have now been assigned
3b9fa2df 3235
7b9d0d69
ES
3236 -- This is now a good moment to initialize and attach all the
3237 -- controllers. Their position may depend on the discriminants.
3238
5277cab6 3239 if Ekind (Selector) /= E_Discriminant then
df3e68b1 3240 Generate_Finalization_Actions;
7b9d0d69
ES
3241 end if;
3242
38171f43 3243 Comp_Type := Underlying_Type (Etype (Selector));
70482933
RK
3244 Comp_Expr :=
3245 Make_Selected_Component (Loc,
3246 Prefix => New_Copy_Tree (Target),
3247 Selector_Name => New_Occurrence_Of (Selector, Loc));
3248
4f061cf2 3249 Expr_Q := Unqualify (Expression (Comp));
70482933 3250
7b9d0d69
ES
3251 -- Now either create the assignment or generate the code for the
3252 -- inner aggregate top-down.
fbf5a39b 3253
70482933 3254 if Is_Delayed_Aggregate (Expr_Q) then
d8f7b976
ES
3255
3256 -- We have the following case of aggregate nesting inside
3257 -- an object declaration:
3258
3259 -- type Arr_Typ is array (Integer range <>) of ...;
3b9fa2df 3260
d8f7b976
ES
3261 -- type Rec_Typ (...) is record
3262 -- Obj_Arr_Typ : Arr_Typ (A .. B);
3263 -- end record;
3b9fa2df 3264
d8f7b976
ES
3265 -- Obj_Rec_Typ : Rec_Typ := (...,
3266 -- Obj_Arr_Typ => (X => (...), Y => (...)));
3267
3268 -- The length of the ranges of the aggregate and Obj_Add_Typ
3269 -- are equal (B - A = Y - X), but they do not coincide (X /=
3270 -- A and B /= Y). This case requires array sliding which is
3271 -- performed in the following manner:
3272
3273 -- subtype Arr_Sub is Arr_Typ (X .. Y);
3274 -- Temp : Arr_Sub;
3275 -- Temp (X) := (...);
3276 -- ...
3277 -- Temp (Y) := (...);
3278 -- Obj_Rec_Typ.Obj_Arr_Typ := Temp;
3279
5277cab6 3280 if Ekind (Comp_Type) = E_Array_Subtype
d8f7b976
ES
3281 and then Is_Int_Range_Bounds (Aggregate_Bounds (Expr_Q))
3282 and then Is_Int_Range_Bounds (First_Index (Comp_Type))
3283 and then not
5277cab6
ES
3284 Compatible_Int_Bounds
3285 (Agg_Bounds => Aggregate_Bounds (Expr_Q),
3286 Typ_Bounds => First_Index (Comp_Type))
d8f7b976 3287 then
5277cab6
ES
3288 -- Create the array subtype with bounds equal to those of
3289 -- the corresponding aggregate.
d8f7b976 3290
5277cab6 3291 declare
191fcb3a 3292 SubE : constant Entity_Id := Make_Temporary (Loc, 'T');
d8f7b976
ES
3293
3294 SubD : constant Node_Id :=
15f0f591
AC
3295 Make_Subtype_Declaration (Loc,
3296 Defining_Identifier => SubE,
3297 Subtype_Indication =>
3298 Make_Subtype_Indication (Loc,
3299 Subtype_Mark =>
e4494292 3300 New_Occurrence_Of (Etype (Comp_Type), Loc),
15f0f591
AC
3301 Constraint =>
3302 Make_Index_Or_Discriminant_Constraint
3303 (Loc,
3304 Constraints => New_List (
3305 New_Copy_Tree
3306 (Aggregate_Bounds (Expr_Q))))));
d8f7b976
ES
3307
3308 -- Create a temporary array of the above subtype which
3309 -- will be used to capture the aggregate assignments.
3310
faf387e1 3311 TmpE : constant Entity_Id := Make_Temporary (Loc, 'A', N);
d8f7b976
ES
3312
3313 TmpD : constant Node_Id :=
15f0f591
AC
3314 Make_Object_Declaration (Loc,
3315 Defining_Identifier => TmpE,
e4494292 3316 Object_Definition => New_Occurrence_Of (SubE, Loc));
d8f7b976
ES
3317
3318 begin
3319 Set_No_Initialization (TmpD);
3320 Append_To (L, SubD);
3321 Append_To (L, TmpD);
3322
5277cab6 3323 -- Expand aggregate into assignments to the temp array
d8f7b976
ES
3324
3325 Append_List_To (L,
3326 Late_Expansion (Expr_Q, Comp_Type,
e4494292 3327 New_Occurrence_Of (TmpE, Loc)));
d8f7b976
ES
3328
3329 -- Slide
3330
3331 Append_To (L,
3332 Make_Assignment_Statement (Loc,
3333 Name => New_Copy_Tree (Comp_Expr),
e4494292 3334 Expression => New_Occurrence_Of (TmpE, Loc)));
d8f7b976
ES
3335 end;
3336
3337 -- Normal case (sliding not required)
3338
3339 else
3340 Append_List_To (L,
df3e68b1 3341 Late_Expansion (Expr_Q, Comp_Type, Comp_Expr));
d8f7b976 3342 end if;
fbf5a39b 3343
5277cab6
ES
3344 -- Expr_Q is not delayed aggregate
3345
70482933 3346 else
f2abc637
AC
3347 if Has_Discriminants (Typ) then
3348 Replace_Discriminants (Expr_Q);
b3f5eef0
AC
3349
3350 -- If the component is an array type that depends on
3351 -- discriminants, and the expression is a single Others
3352 -- clause, create an explicit subtype for it because the
3353 -- backend has troubles recovering the actual bounds.
3354
3355 if Nkind (Expr_Q) = N_Aggregate
3356 and then Is_Array_Type (Comp_Type)
3357 and then Present (Component_Associations (Expr_Q))
3358 then
3359 declare
3360 Assoc : constant Node_Id :=
45ec05e1 3361 First (Component_Associations (Expr_Q));
b3f5eef0
AC
3362 Decl : Node_Id;
3363
3364 begin
f7f8e290
JM
3365 if Present (Assoc)
3366 and then
3367 Nkind (First (Choices (Assoc))) = N_Others_Choice
b3f5eef0
AC
3368 then
3369 Decl :=
3370 Build_Actual_Subtype_Of_Component
3371 (Comp_Type, Comp_Expr);
3372
3373 -- If the component type does not in fact depend on
3374 -- discriminants, the subtype declaration is empty.
3375
3376 if Present (Decl) then
3377 Append_To (L, Decl);
3378 Set_Etype (Comp_Expr, Defining_Entity (Decl));
3379 end if;
3380 end if;
3381 end;
3382 end if;
f2abc637
AC
3383 end if;
3384
c63a2ad6 3385 if Modify_Tree_For_C
a1e1820b
AC
3386 and then Nkind (Expr_Q) = N_Aggregate
3387 and then Is_Array_Type (Etype (Expr_Q))
3388 and then Present (First_Index (Etype (Expr_Q)))
3389 then
3390 declare
0c5c46a9 3391 Expr_Q_Type : constant Entity_Id := Etype (Expr_Q);
a1e1820b
AC
3392 begin
3393 Append_List_To (L,
3394 Build_Array_Aggr_Code
3395 (N => Expr_Q,
3396 Ctype => Component_Type (Expr_Q_Type),
3397 Index => First_Index (Expr_Q_Type),
3398 Into => Comp_Expr,
937e9676
AC
3399 Scalar_Comp =>
3400 Is_Scalar_Type (Component_Type (Expr_Q_Type))));
a1e1820b
AC
3401 end;
3402
3403 else
fc84947c
EB
3404 Initialize_Component
3405 (N => N,
3406 Comp => Comp_Expr,
3407 Comp_Typ => Etype (Selector),
3408 Init_Expr => Expr_Q,
3409 Stmts => L);
70482933
RK
3410 end if;
3411 end if;
fbf5a39b 3412
37368818 3413 -- comment would be good here ???
fbf5a39b
AC
3414
3415 elsif Ekind (Selector) = E_Discriminant
3416 and then Nkind (N) /= N_Extension_Aggregate
3417 and then Nkind (Parent (N)) = N_Component_Association
3418 and then Is_Constrained (Typ)
3419 then
3420 -- We must check that the discriminant value imposed by the
3421 -- context is the same as the value given in the subaggregate,
3422 -- because after the expansion into assignments there is no
3423 -- record on which to perform a regular discriminant check.
3424
3425 declare
3426 D_Val : Elmt_Id;
3427 Disc : Entity_Id;
3428
3429 begin
3430 D_Val := First_Elmt (Discriminant_Constraint (Typ));
3431 Disc := First_Discriminant (Typ);
fbf5a39b
AC
3432 while Chars (Disc) /= Chars (Selector) loop
3433 Next_Discriminant (Disc);
3434 Next_Elmt (D_Val);
3435 end loop;
3436
3437 pragma Assert (Present (D_Val));
3438
0f95b178
JM
3439 -- This check cannot performed for components that are
3440 -- constrained by a current instance, because this is not a
3441 -- value that can be compared with the actual constraint.
3442
3443 if Nkind (Node (D_Val)) /= N_Attribute_Reference
3444 or else not Is_Entity_Name (Prefix (Node (D_Val)))
3445 or else not Is_Type (Entity (Prefix (Node (D_Val))))
3446 then
3447 Append_To (L,
3448 Make_Raise_Constraint_Error (Loc,
3449 Condition =>
3450 Make_Op_Ne (Loc,
37368818 3451 Left_Opnd => New_Copy_Tree (Node (D_Val)),
0f95b178 3452 Right_Opnd => Expression (Comp)),
37368818 3453 Reason => CE_Discriminant_Check_Failed));
0f95b178
JM
3454
3455 else
3b9fa2df
ES
3456 -- Find self-reference in previous discriminant assignment,
3457 -- and replace with proper expression.
0f95b178
JM
3458
3459 declare
3460 Ass : Node_Id;
3461
3462 begin
3463 Ass := First (L);
3464 while Present (Ass) loop
3465 if Nkind (Ass) = N_Assignment_Statement
3466 and then Nkind (Name (Ass)) = N_Selected_Component
3467 and then Chars (Selector_Name (Name (Ass))) =
36a66365 3468 Chars (Disc)
0f95b178
JM
3469 then
3470 Set_Expression
3471 (Ass, New_Copy_Tree (Expression (Comp)));
3472 exit;
3473 end if;
3474 Next (Ass);
3475 end loop;
3476 end;
3477 end if;
fbf5a39b 3478 end;
70482933
RK
3479 end if;
3480
f7937111
GD
3481 -- If the component association was specified with a box and the
3482 -- component type has a Default_Initial_Condition, then generate
3483 -- a call to the DIC procedure.
3484
3485 if Has_DIC (Etype (Selector))
3486 and then Was_Default_Init_Box_Association (Comp)
3487 and then Present (DIC_Procedure (Etype (Selector)))
3488 then
3489 Append_To (L,
3490 Build_DIC_Call (Loc,
3491 Make_Selected_Component (Loc,
3492 Prefix => New_Copy_Tree (Target),
3493 Selector_Name => New_Occurrence_Of (Selector, Loc)),
3494 Etype (Selector)));
3495 end if;
3496
70482933
RK
3497 Next (Comp);
3498 end loop;
3499
28541488
JM
3500 -- For CPP types we generated a call to the C++ default constructor
3501 -- before the components have been initialized to ensure the proper
3502 -- initialization of the _Tag component (see above).
3503
c0ceba6c 3504 if Is_CPP_Class (Typ) then
28541488
JM
3505 null;
3506
c0ceba6c
EB
3507 -- If the type is tagged, the tag needs to be initialized (unless we
3508 -- are in VM-mode where tags are implicit). It is done late in the
3509 -- initialization process because in some cases, we call the init
3510 -- proc of an ancestor which will not leave out the right tag.
3511
1f110335 3512 elsif Is_Tagged_Type (Typ) and then Tagged_Type_Expansion then
70482933 3513 Instr :=
af10c962
EB
3514 Make_Tag_Assignment_From_Type
3515 (Loc, New_Copy_Tree (Target), Base_Type (Typ));
70482933
RK
3516
3517 Append_To (L, Instr);
c5ee5ad2 3518
bdc193ba 3519 -- Ada 2005 (AI-251): If the tagged type has been derived from an
c5ee5ad2
BD
3520 -- abstract interfaces we must also initialize the tags of the
3521 -- secondary dispatch tables.
3522
ce2b6ba5 3523 if Has_Interfaces (Base_Type (Typ)) then
c5ee5ad2 3524 Init_Secondary_Tags
ed323421
AC
3525 (Typ => Base_Type (Typ),
3526 Target => Target,
3527 Stmts_List => L,
fe683ef6 3528 Init_Tags_List => L);
c5ee5ad2 3529 end if;
70482933
RK
3530 end if;
3531
7b9d0d69
ES
3532 -- If the controllers have not been initialized yet (by lack of non-
3533 -- discriminant components), let's do it now.
70482933 3534
df3e68b1 3535 Generate_Finalization_Actions;
70482933 3536
7b9d0d69 3537 return L;
70482933
RK
3538 end Build_Record_Aggr_Code;
3539
3540 -------------------------------
3541 -- Convert_Aggr_In_Allocator --
3542 -------------------------------
3543
fa57ac97
ES
3544 procedure Convert_Aggr_In_Allocator
3545 (Alloc : Node_Id;
3546 Decl : Node_Id;
3547 Aggr : Node_Id)
3548 is
70482933
RK
3549 Loc : constant Source_Ptr := Sloc (Aggr);
3550 Typ : constant Entity_Id := Etype (Aggr);
3551 Temp : constant Entity_Id := Defining_Identifier (Decl);
fbf5a39b
AC
3552
3553 Occ : constant Node_Id :=
15f0f591 3554 Unchecked_Convert_To (Typ,
e4494292 3555 Make_Explicit_Dereference (Loc, New_Occurrence_Of (Temp, Loc)));
70482933 3556
70482933 3557 begin
6f639c98
ES
3558 if Is_Array_Type (Typ) then
3559 Convert_Array_Aggr_In_Allocator (Decl, Aggr, Occ);
3560
3561 elsif Has_Default_Init_Comps (Aggr) then
c45b6ae0
AC
3562 declare
3563 L : constant List_Id := New_List;
3564 Init_Stmts : List_Id;
3565
3566 begin
df3e68b1 3567 Init_Stmts := Late_Expansion (Aggr, Typ, Occ);
c45b6ae0 3568
0f95b178
JM
3569 if Has_Task (Typ) then
3570 Build_Task_Allocate_Block_With_Init_Stmts (L, Aggr, Init_Stmts);
fa57ac97 3571 Insert_Actions (Alloc, L);
0f95b178 3572 else
fa57ac97 3573 Insert_Actions (Alloc, Init_Stmts);
0f95b178 3574 end if;
c45b6ae0
AC
3575 end;
3576
3577 else
df3e68b1 3578 Insert_Actions (Alloc, Late_Expansion (Aggr, Typ, Occ));
c45b6ae0 3579 end if;
70482933
RK
3580 end Convert_Aggr_In_Allocator;
3581
3582 --------------------------------
3583 -- Convert_Aggr_In_Assignment --
3584 --------------------------------
3585
3586 procedure Convert_Aggr_In_Assignment (N : Node_Id) is
4f061cf2 3587 Aggr : constant Node_Id := Unqualify (Expression (N));
3b9fa2df
ES
3588 Typ : constant Entity_Id := Etype (Aggr);
3589 Occ : constant Node_Id := New_Copy_Tree (Name (N));
70482933
RK
3590
3591 begin
df3e68b1 3592 Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
70482933
RK
3593 end Convert_Aggr_In_Assignment;
3594
3595 ---------------------------------
3596 -- Convert_Aggr_In_Object_Decl --
3597 ---------------------------------
3598
3599 procedure Convert_Aggr_In_Object_Decl (N : Node_Id) is
3600 Obj : constant Entity_Id := Defining_Identifier (N);
4f061cf2 3601 Aggr : constant Node_Id := Unqualify (Expression (N));
70482933
RK
3602 Loc : constant Source_Ptr := Sloc (Aggr);
3603 Typ : constant Entity_Id := Etype (Aggr);
3604 Occ : constant Node_Id := New_Occurrence_Of (Obj, Loc);
3605
fff7a6d9
AC
3606 Has_Transient_Scope : Boolean := False;
3607
fbf5a39b
AC
3608 function Discriminants_Ok return Boolean;
3609 -- If the object type is constrained, the discriminants in the
3610 -- aggregate must be checked against the discriminants of the subtype.
3611 -- This cannot be done using Apply_Discriminant_Checks because after
3612 -- expansion there is no aggregate left to check.
3613
3614 ----------------------
3615 -- Discriminants_Ok --
3616 ----------------------
3617
3618 function Discriminants_Ok return Boolean is
3619 Cond : Node_Id := Empty;
3620 Check : Node_Id;
3621 D : Entity_Id;
3622 Disc1 : Elmt_Id;
3623 Disc2 : Elmt_Id;
3624 Val1 : Node_Id;
3625 Val2 : Node_Id;
3626
3627 begin
3628 D := First_Discriminant (Typ);
3629 Disc1 := First_Elmt (Discriminant_Constraint (Typ));
3630 Disc2 := First_Elmt (Discriminant_Constraint (Etype (Obj)));
fbf5a39b
AC
3631 while Present (Disc1) and then Present (Disc2) loop
3632 Val1 := Node (Disc1);
3633 Val2 := Node (Disc2);
3634
3635 if not Is_OK_Static_Expression (Val1)
3636 or else not Is_OK_Static_Expression (Val2)
3637 then
3638 Check := Make_Op_Ne (Loc,
3639 Left_Opnd => Duplicate_Subexpr (Val1),
3640 Right_Opnd => Duplicate_Subexpr (Val2));
3641
3642 if No (Cond) then
3643 Cond := Check;
3644
3645 else
3646 Cond := Make_Or_Else (Loc,
3647 Left_Opnd => Cond,
3648 Right_Opnd => Check);
3649 end if;
3650
3651 elsif Expr_Value (Val1) /= Expr_Value (Val2) then
3652 Apply_Compile_Time_Constraint_Error (Aggr,
324ac540 3653 Msg => "incorrect value for discriminant&??",
fbf5a39b
AC
3654 Reason => CE_Discriminant_Check_Failed,
3655 Ent => D);
3656 return False;
3657 end if;
3658
3659 Next_Discriminant (D);
3660 Next_Elmt (Disc1);
3661 Next_Elmt (Disc2);
3662 end loop;
3663
d940c627 3664 -- If any discriminant constraint is nonstatic, emit a check
fbf5a39b
AC
3665
3666 if Present (Cond) then
3667 Insert_Action (N,
3668 Make_Raise_Constraint_Error (Loc,
3669 Condition => Cond,
ef1c0511 3670 Reason => CE_Discriminant_Check_Failed));
fbf5a39b
AC
3671 end if;
3672
3673 return True;
3674 end Discriminants_Ok;
3675
3676 -- Start of processing for Convert_Aggr_In_Object_Decl
3677
70482933
RK
3678 begin
3679 Set_Assignment_OK (Occ);
3680
fbf5a39b
AC
3681 if Has_Discriminants (Typ)
3682 and then Typ /= Etype (Obj)
3683 and then Is_Constrained (Etype (Obj))
3684 and then not Discriminants_Ok
3685 then
3686 return;
3687 end if;
3688
0f95b178
JM
3689 -- If the context is an extended return statement, it has its own
3690 -- finalization machinery (i.e. works like a transient scope) and
3691 -- we do not want to create an additional one, because objects on
3692 -- the finalization list of the return must be moved to the caller's
3693 -- finalization list to complete the return.
3694
fff7a6d9 3695 -- Similarly if the aggregate is limited, it is built in place, and the
3b9fa2df
ES
3696 -- controlled components are not assigned to intermediate temporaries
3697 -- so there is no need for a transient scope in this case either.
3698
0f95b178
JM
3699 if Requires_Transient_Scope (Typ)
3700 and then Ekind (Current_Scope) /= E_Return_Statement
3b9fa2df 3701 and then not Is_Limited_Type (Typ)
0f95b178 3702 then
6560f851 3703 Establish_Transient_Scope (Aggr, Manage_Sec_Stack => False);
fff7a6d9 3704 Has_Transient_Scope := True;
6f5c2c4b 3705 end if;
02217452 3706
6f5c2c4b 3707 declare
fff7a6d9
AC
3708 Stmts : constant List_Id := Late_Expansion (Aggr, Typ, Occ);
3709 Stmt : Node_Id;
3710 Param : Node_Id;
3711
6f5c2c4b 3712 begin
fff7a6d9
AC
3713 -- If Obj is already frozen or if N is wrapped in a transient scope,
3714 -- Stmts do not need to be saved in Initialization_Statements since
3715 -- there is no freezing issue.
3716
3717 if Is_Frozen (Obj) or else Has_Transient_Scope then
3718 Insert_Actions_After (N, Stmts);
3719 else
3720 Stmt := Make_Compound_Statement (Sloc (N), Actions => Stmts);
3721 Insert_Action_After (N, Stmt);
3722
3723 -- Insert_Action_After may freeze Obj in which case we should
3724 -- remove the compound statement just created and simply insert
3725 -- Stmts after N.
3726
3727 if Is_Frozen (Obj) then
3728 Remove (Stmt);
3729 Insert_Actions_After (N, Stmts);
3730 else
3731 Set_Initialization_Statements (Obj, Stmt);
3732 end if;
3733 end if;
3734
3735 -- If Typ has controlled components and a call to a Slice_Assign
3736 -- procedure is part of the initialization statements, then we
3737 -- need to initialize the array component since Slice_Assign will
3738 -- need to adjust it.
3739
3740 if Has_Controlled_Component (Typ) then
3741 Stmt := First (Stmts);
3742
3743 while Present (Stmt) loop
3744 if Nkind (Stmt) = N_Procedure_Call_Statement
f82fb002 3745 and then Is_TSS (Entity (Name (Stmt)), TSS_Slice_Assign)
fff7a6d9
AC
3746 then
3747 Param := First (Parameter_Associations (Stmt));
3748 Insert_Actions
3749 (Stmt,
3750 Build_Initialization_Call
3751 (Sloc (N), New_Copy_Tree (Param), Etype (Param)));
3752 end if;
3753
3754 Next (Stmt);
3755 end loop;
3756 end if;
6f5c2c4b 3757 end;
6560f851 3758
70482933 3759 Set_No_Initialization (N);
a671959b
ES
3760
3761 -- After expansion the expression can be removed from the declaration
3762 -- except if the object is class-wide, in which case the aggregate
3763 -- provides the actual type.
3764
3765 if not Is_Class_Wide_Type (Etype (Obj)) then
3766 Set_Expression (N, Empty);
3767 end if;
3768
07fc65c4 3769 Initialize_Discriminants (N, Typ);
70482933
RK
3770 end Convert_Aggr_In_Object_Decl;
3771
6f639c98 3772 -------------------------------------
3b9fa2df 3773 -- Convert_Array_Aggr_In_Allocator --
6f639c98
ES
3774 -------------------------------------
3775
3776 procedure Convert_Array_Aggr_In_Allocator
3777 (Decl : Node_Id;
3778 Aggr : Node_Id;
3779 Target : Node_Id)
3780 is
6f639c98
ES
3781 Typ : constant Entity_Id := Etype (Aggr);
3782 Ctyp : constant Entity_Id := Component_Type (Typ);
2fedcc18
EB
3783 Aggr_Code : List_Id;
3784 New_Aggr : Node_Id;
6f639c98
ES
3785
3786 begin
2fedcc18
EB
3787 -- The target is an explicit dereference of the allocated object
3788
3789 -- If the assignment can be done directly by the back end, then
3790 -- reset Set_Expansion_Delayed and do not expand further.
3791
3792 if not CodePeer_Mode
3793 and then not Modify_Tree_For_C
3794 and then Aggr_Assignment_OK_For_Backend (Aggr)
3795 then
3796 New_Aggr := New_Copy_Tree (Aggr);
3797 Set_Expansion_Delayed (New_Aggr, False);
3798
742084ad
MP
3799 -- In the case of Target's type using the Designated_Storage_Model
3800 -- aspect with a Copy_To procedure, insert a temporary and have the
3801 -- back end handle the assignment to it. Copy the result to the
3802 -- original target.
3803
3804 if Has_Designated_Storage_Model_Aspect
3805 (Etype (Prefix (Expression (Target))))
3806 and then Present (Storage_Model_Copy_To
3807 (Storage_Model_Object
3808 (Etype (Prefix (Expression (Target))))))
3809 then
ca4bff3a
EB
3810 Aggr_Code :=
3811 Build_Assignment_With_Temporary (Target, Typ, New_Aggr);
3812
742084ad
MP
3813 else
3814 Aggr_Code :=
3815 New_List (
3816 Make_OK_Assignment_Statement (Sloc (New_Aggr),
3817 Name => Target,
3818 Expression => New_Aggr));
3819 end if;
6f639c98 3820
2fedcc18
EB
3821 -- Or else, generate component assignments to it, as for an aggregate
3822 -- that appears on the right-hand side of an assignment statement.
2fedcc18
EB
3823 else
3824 Aggr_Code :=
3825 Build_Array_Aggr_Code (Aggr,
3826 Ctype => Ctyp,
3827 Index => First_Index (Typ),
3828 Into => Target,
3829 Scalar_Comp => Is_Scalar_Type (Ctyp));
3830 end if;
6f639c98
ES
3831
3832 Insert_Actions_After (Decl, Aggr_Code);
3833 end Convert_Array_Aggr_In_Allocator;
3834
4ff5aa0c
AC
3835 ------------------------
3836 -- In_Place_Assign_OK --
3837 ------------------------
3838
a80b1eb7
EB
3839 function In_Place_Assign_OK
3840 (N : Node_Id;
3841 Target_Object : Entity_Id := Empty) return Boolean
3842 is
4ff5aa0c
AC
3843 Is_Array : constant Boolean := Is_Array_Type (Etype (N));
3844
a80b1eb7 3845 Aggr_In : Node_Id;
7c4f3267 3846 Aggr_Bounds : Range_Nodes;
a80b1eb7 3847 Obj_In : Node_Id;
7c4f3267 3848 Obj_Bounds : Range_Nodes;
a80b1eb7
EB
3849 Parent_Kind : Node_Kind;
3850 Parent_Node : Node_Id;
4ff5aa0c
AC
3851
3852 function Safe_Aggregate (Aggr : Node_Id) return Boolean;
3853 -- Check recursively that each component of a (sub)aggregate does not
3854 -- depend on the variable being assigned to.
3855
3856 function Safe_Component (Expr : Node_Id) return Boolean;
a80b1eb7
EB
3857 -- Verify that an expression cannot depend on the target being assigned
3858 -- to. Return true for compile-time known values, stand-alone objects,
3859 -- parameters passed by copy, calls to functions that return by copy,
3860 -- selected components thereof only if the aggregate's type is an array,
3861 -- indexed components and slices thereof only if the aggregate's type is
3862 -- a record, and simple expressions involving only these as operands.
3863 -- This is OK whatever the target because, for a component to overlap
3864 -- with the target, it must be either a direct reference to a component
3865 -- of the target, in which case there must be a matching selection or
3866 -- indexation or slicing, or an indirect reference to such a component,
3867 -- which is excluded by the above condition. Additionally, if the target
3868 -- is statically known, return true for arbitrarily nested selections,
3869 -- indexations or slicings, provided that their ultimate prefix is not
3870 -- the target itself.
4ff5aa0c
AC
3871
3872 --------------------
3873 -- Safe_Aggregate --
3874 --------------------
3875
3876 function Safe_Aggregate (Aggr : Node_Id) return Boolean is
3877 Expr : Node_Id;
3878
3879 begin
3880 if Nkind (Parent (Aggr)) = N_Iterated_Component_Association then
3881 return False;
3882 end if;
3883
3884 if Present (Expressions (Aggr)) then
3885 Expr := First (Expressions (Aggr));
3886 while Present (Expr) loop
3887 if Nkind (Expr) = N_Aggregate then
3888 if not Safe_Aggregate (Expr) then
3889 return False;
3890 end if;
3891
3892 elsif not Safe_Component (Expr) then
3893 return False;
3894 end if;
3895
3896 Next (Expr);
3897 end loop;
3898 end if;
3899
3900 if Present (Component_Associations (Aggr)) then
3901 Expr := First (Component_Associations (Aggr));
3902 while Present (Expr) loop
3903 if Nkind (Expression (Expr)) = N_Aggregate then
3904 if not Safe_Aggregate (Expression (Expr)) then
3905 return False;
3906 end if;
3907
bc1146e5
HK
3908 -- If association has a box, no way to determine yet whether
3909 -- default can be assigned in place.
4ff5aa0c
AC
3910
3911 elsif Box_Present (Expr) then
3912 return False;
3913
3914 elsif not Safe_Component (Expression (Expr)) then
3915 return False;
3916 end if;
3917
3918 Next (Expr);
3919 end loop;
3920 end if;
3921
3922 return True;
3923 end Safe_Aggregate;
3924
3925 --------------------
3926 -- Safe_Component --
3927 --------------------
3928
3929 function Safe_Component (Expr : Node_Id) return Boolean is
3930 Comp : Node_Id := Expr;
3931
a80b1eb7
EB
3932 function Check_Component (C : Node_Id; T_OK : Boolean) return Boolean;
3933 -- Do the recursive traversal, after copy. If T_OK is True, return
3934 -- True for a stand-alone object only if the target is statically
3935 -- known and distinct from the object. At the top level, we start
3936 -- with T_OK set to False and set it to True at a deeper level only
3937 -- if we cannot disambiguate the component here without statically
3938 -- knowing the target. Note that this is not optimal, we should do
3939 -- something along the lines of Denotes_Same_Prefix for that.
4ff5aa0c
AC
3940
3941 ---------------------
3942 -- Check_Component --
3943 ---------------------
3944
a80b1eb7
EB
3945 function Check_Component (C : Node_Id; T_OK : Boolean) return Boolean
3946 is
3947
3948 function SDO (E : Entity_Id) return Uint;
3949 -- Return the Scope Depth Of the enclosing dynamic scope of E
3950
3951 ---------
3952 -- SDO --
3953 ---------
3954
3955 function SDO (E : Entity_Id) return Uint is
3956 begin
3957 return Scope_Depth (Enclosing_Dynamic_Scope (E));
3958 end SDO;
3959
3960 -- Start of processing for Check_Component
3961
4ff5aa0c 3962 begin
a80b1eb7 3963 if Is_Overloaded (C) then
4ff5aa0c 3964 return False;
a80b1eb7
EB
3965
3966 elsif Compile_Time_Known_Value (C) then
3967 return True;
4ff5aa0c
AC
3968 end if;
3969
a80b1eb7
EB
3970 case Nkind (C) is
3971 when N_Attribute_Reference =>
3972 return Check_Component (Prefix (C), T_OK);
3973
3974 when N_Function_Call =>
3975 if Nkind (Name (C)) = N_Explicit_Dereference then
3976 return not Returns_By_Ref (Etype (Name (C)));
3977 else
3978 return not Returns_By_Ref (Entity (Name (C)));
3979 end if;
3980
3981 when N_Indexed_Component | N_Slice =>
3982 -- In a target record, these operations cannot determine
3983 -- alone a component so we can recurse whatever the target.
3984 return Check_Component (Prefix (C), T_OK or else Is_Array);
3985
3986 when N_Selected_Component =>
3987 -- In a target array, this operation cannot determine alone
3988 -- a component so we can recurse whatever the target.
3989 return
3990 Check_Component (Prefix (C), T_OK or else not Is_Array);
3991
3992 when N_Type_Conversion | N_Unchecked_Type_Conversion =>
3993 return Check_Component (Expression (C), T_OK);
4ff5aa0c 3994
a80b1eb7
EB
3995 when N_Binary_Op =>
3996 return Check_Component (Left_Opnd (C), T_OK)
3997 and then Check_Component (Right_Opnd (C), T_OK);
4ff5aa0c 3998
a80b1eb7
EB
3999 when N_Unary_Op =>
4000 return Check_Component (Right_Opnd (C), T_OK);
4ff5aa0c 4001
a80b1eb7
EB
4002 when others =>
4003 if Is_Entity_Name (C) and then Is_Object (Entity (C)) then
4004 -- Case of a formal parameter component. It's either
4005 -- trivial if passed by copy or very annoying if not,
4006 -- because in the latter case it's almost equivalent
4007 -- to a dereference, so the path-based disambiguation
4008 -- logic is totally off and we always need the target.
4ff5aa0c 4009
a80b1eb7
EB
4010 if Is_Formal (Entity (C)) then
4011
4012 -- If it is passed by copy, then this is safe
4013
4014 if Mechanism (Entity (C)) = By_Copy then
4015 return True;
4016
4017 -- Otherwise, this is safe if the target is present
4018 -- and is at least as deeply nested as the component.
4019
4020 else
4021 return Present (Target_Object)
4022 and then not Is_Formal (Target_Object)
4023 and then SDO (Target_Object) >= SDO (Entity (C));
4024 end if;
4025
4026 -- For a renamed object, recurse
4027
4028 elsif Present (Renamed_Object (Entity (C))) then
4029 return
4030 Check_Component (Renamed_Object (Entity (C)), T_OK);
4031
4032 -- If this is safe whatever the target, we are done
4033
4034 elsif not T_OK then
4035 return True;
4036
4037 -- If there is no target or the component is the target,
4038 -- this is not safe.
4039
4040 elsif No (Target_Object)
4041 or else Entity (C) = Target_Object
4042 then
4043 return False;
4044
4045 -- Case of a formal parameter target. This is safe if it
4046 -- is at most as deeply nested as the component.
4047
4048 elsif Is_Formal (Target_Object) then
4049 return SDO (Target_Object) <= SDO (Entity (C));
4050
4051 -- For distinct stand-alone objects, this is safe
4052
4053 else
4054 return True;
4055 end if;
4ff5aa0c 4056
a80b1eb7 4057 -- For anything else than an object, this is not safe
4ff5aa0c 4058
a80b1eb7
EB
4059 else
4060 return False;
4061 end if;
4062 end case;
4ff5aa0c
AC
4063 end Check_Component;
4064
4065 -- Start of processing for Safe_Component
4066
4067 begin
4068 -- If the component appears in an association that may correspond
4069 -- to more than one element, it is not analyzed before expansion
4070 -- into assignments, to avoid side effects. We analyze, but do not
4071 -- resolve the copy, to obtain sufficient entity information for
4072 -- the checks that follow. If component is overloaded we assume
4073 -- an unsafe function call.
4074
4075 if not Analyzed (Comp) then
4076 if Is_Overloaded (Expr) then
4077 return False;
4ff5aa0c
AC
4078
4079 elsif Nkind (Expr) = N_Allocator then
4080
4081 -- For now, too complex to analyze
4082
4083 return False;
4084
bc1146e5
HK
4085 elsif Nkind (Parent (Expr)) = N_Iterated_Component_Association then
4086
4087 -- Ditto for iterated component associations, which in general
4088 -- require an enclosing loop and involve nonstatic expressions.
4ff5aa0c
AC
4089
4090 return False;
4091 end if;
4092
4093 Comp := New_Copy_Tree (Expr);
4094 Set_Parent (Comp, Parent (Expr));
4095 Analyze (Comp);
4096 end if;
4097
4098 if Nkind (Comp) = N_Aggregate then
4099 return Safe_Aggregate (Comp);
4100 else
a80b1eb7 4101 return Check_Component (Comp, False);
4ff5aa0c
AC
4102 end if;
4103 end Safe_Component;
4104
4105 -- Start of processing for In_Place_Assign_OK
4106
4107 begin
e67df677 4108 -- By-copy semantic cannot be guaranteed for controlled objects
4ff5aa0c 4109
e67df677 4110 if Needs_Finalization (Etype (N)) then
4ff5aa0c 4111 return False;
a80b1eb7 4112 end if;
4ff5aa0c 4113
a80b1eb7
EB
4114 Parent_Node := Parent (N);
4115 Parent_Kind := Nkind (Parent_Node);
4ff5aa0c 4116
a80b1eb7
EB
4117 if Parent_Kind = N_Qualified_Expression then
4118 Parent_Node := Parent (Parent_Node);
4119 Parent_Kind := Nkind (Parent_Node);
4120 end if;
4ff5aa0c 4121
a80b1eb7
EB
4122 -- On assignment, sliding can take place, so we cannot do the
4123 -- assignment in place unless the bounds of the aggregate are
4124 -- statically equal to those of the target.
4ff5aa0c 4125
a80b1eb7
EB
4126 -- If the aggregate is given by an others choice, the bounds are
4127 -- derived from the left-hand side, and the assignment is safe if
4128 -- the expression is.
4ff5aa0c 4129
a80b1eb7
EB
4130 if Is_Array
4131 and then Present (Component_Associations (N))
4132 and then not Is_Others_Aggregate (N)
4133 then
4ff5aa0c
AC
4134 Aggr_In := First_Index (Etype (N));
4135
d0e9248d
EB
4136 -- Context is an assignment
4137
a80b1eb7
EB
4138 if Parent_Kind = N_Assignment_Statement then
4139 Obj_In := First_Index (Etype (Name (Parent_Node)));
4ff5aa0c 4140
d0e9248d
EB
4141 -- Context is an allocator. Check the bounds of the aggregate against
4142 -- those of the designated type, except in the case where the type is
4143 -- unconstrained (and then we can directly return true, see below).
4144
4145 else pragma Assert (Parent_Kind = N_Allocator);
4146 declare
4147 Desig_Typ : constant Entity_Id :=
4148 Designated_Type (Etype (Parent_Node));
4149 begin
4150 if not Is_Constrained (Desig_Typ) then
4151 return True;
4152 end if;
4ff5aa0c 4153
d0e9248d
EB
4154 Obj_In := First_Index (Desig_Typ);
4155 end;
4ff5aa0c
AC
4156 end if;
4157
4158 while Present (Aggr_In) loop
7c4f3267
BD
4159 Aggr_Bounds := Get_Index_Bounds (Aggr_In);
4160 Obj_Bounds := Get_Index_Bounds (Obj_In);
4ff5aa0c 4161
a80b1eb7
EB
4162 -- We require static bounds for the target and a static matching
4163 -- of low bound for the aggregate.
4164
7c4f3267
BD
4165 if not Compile_Time_Known_Value (Obj_Bounds.First)
4166 or else not Compile_Time_Known_Value (Obj_Bounds.Last)
4167 or else not Compile_Time_Known_Value (Aggr_Bounds.First)
4168 or else Expr_Value (Aggr_Bounds.First) /=
4169 Expr_Value (Obj_Bounds.First)
4ff5aa0c
AC
4170 then
4171 return False;
4172
4173 -- For an assignment statement we require static matching of
4174 -- bounds. Ditto for an allocator whose qualified expression
4175 -- is a constrained type. If the expression in the allocator
4176 -- is an unconstrained array, we accept an upper bound that
4177 -- is not static, to allow for nonstatic expressions of the
4178 -- base type. Clearly there are further possibilities (with
4179 -- diminishing returns) for safely building arrays in place
4180 -- here.
4181
a80b1eb7
EB
4182 elsif Parent_Kind = N_Assignment_Statement
4183 or else Is_Constrained (Etype (Parent_Node))
4ff5aa0c 4184 then
7c4f3267
BD
4185 if not Compile_Time_Known_Value (Aggr_Bounds.Last)
4186 or else Expr_Value (Aggr_Bounds.Last) /=
4187 Expr_Value (Obj_Bounds.Last)
4ff5aa0c
AC
4188 then
4189 return False;
4190 end if;
4191 end if;
4192
4193 Next_Index (Aggr_In);
4194 Next_Index (Obj_In);
4195 end loop;
4196 end if;
4197
a80b1eb7
EB
4198 -- Now check the component values themselves, except for an allocator
4199 -- for which the target is newly allocated memory.
4ff5aa0c 4200
a80b1eb7
EB
4201 if Parent_Kind = N_Allocator then
4202 return True;
4203 else
4204 return Safe_Aggregate (N);
4205 end if;
4ff5aa0c
AC
4206 end In_Place_Assign_OK;
4207
70482933
RK
4208 ----------------------------
4209 -- Convert_To_Assignments --
4210 ----------------------------
4211
4212 procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id) is
4213 Loc : constant Source_Ptr := Sloc (N);
39f346aa 4214 T : Entity_Id;
70482933
RK
4215 Temp : Entity_Id;
4216
f29afe5f 4217 Aggr_Code : List_Id;
fbf5a39b
AC
4218 Instr : Node_Id;
4219 Target_Expr : Node_Id;
4220 Parent_Kind : Node_Kind;
4221 Unc_Decl : Boolean := False;
4222 Parent_Node : Node_Id;
70482933
RK
4223
4224 begin
4a08c95c 4225 pragma Assert (Nkind (N) in N_Aggregate | N_Extension_Aggregate);
fa57ac97
ES
4226 pragma Assert (not Is_Static_Dispatch_Table_Aggregate (N));
4227 pragma Assert (Is_Record_Type (Typ));
4228
70482933
RK
4229 Parent_Node := Parent (N);
4230 Parent_Kind := Nkind (Parent_Node);
4231
4232 if Parent_Kind = N_Qualified_Expression then
d4dfb005 4233 -- Check if we are in an unconstrained declaration because in this
70482933 4234 -- case the current delayed expansion mechanism doesn't work when
d4dfb005 4235 -- the declared object size depends on the initializing expr.
70482933 4236
937e9676
AC
4237 Parent_Node := Parent (Parent_Node);
4238 Parent_Kind := Nkind (Parent_Node);
fbf5a39b 4239
937e9676
AC
4240 if Parent_Kind = N_Object_Declaration then
4241 Unc_Decl :=
4242 not Is_Entity_Name (Object_Definition (Parent_Node))
d4dfb005 4243 or else (Nkind (N) = N_Aggregate
3fc40cd7
PMR
4244 and then
4245 Has_Discriminants
4246 (Entity (Object_Definition (Parent_Node))))
937e9676
AC
4247 or else Is_Class_Wide_Type
4248 (Entity (Object_Definition (Parent_Node)));
4249 end if;
70482933
RK
4250 end if;
4251
3b9fa2df
ES
4252 -- Just set the Delay flag in the cases where the transformation will be
4253 -- done top down from above.
fbf5a39b 4254
f037632e 4255 if
d22792bc
EB
4256 -- Internal aggregates (transformed when expanding the parent),
4257 -- excluding container aggregates as these are transformed into
4258 -- subprogram calls later.
0f95b178 4259
ab246c16
EB
4260 (Parent_Kind = N_Component_Association
4261 and then not Is_Container_Aggregate (Parent (Parent_Node)))
4262
4263 or else (Parent_Kind in N_Aggregate | N_Extension_Aggregate
4264 and then not Is_Container_Aggregate (Parent_Node))
0f95b178 4265
fa57ac97 4266 -- Allocator (see Convert_Aggr_In_Allocator)
70482933 4267
fa57ac97 4268 or else Parent_Kind = N_Allocator
0f95b178 4269
fa57ac97
ES
4270 -- Object declaration (see Convert_Aggr_In_Object_Decl)
4271
4272 or else (Parent_Kind = N_Object_Declaration and then not Unc_Decl)
4273
4274 -- Safe assignment (see Convert_Aggr_Assignments). So far only the
4275 -- assignments in init procs are taken into account.
4276
4277 or else (Parent_Kind = N_Assignment_Statement
4278 and then Inside_Init_Proc)
4279
bdc193ba
AC
4280 -- (Ada 2005) An inherently limited type in a return statement, which
4281 -- will be handled in a build-in-place fashion, and may be rewritten
4282 -- as an extended return and have its own finalization machinery.
4283 -- In the case of a simple return, the aggregate needs to be delayed
4284 -- until the scope for the return statement has been created, so
4285 -- that any finalization chain will be associated with that scope.
4286 -- For extended returns, we delay expansion to avoid the creation
4287 -- of an unwanted transient scope that could result in premature
a9bbfbd0 4288 -- finalization of the return object (which is built in place
bdc193ba 4289 -- within the caller's scope).
fa57ac97 4290
d4dfb005 4291 or else Is_Build_In_Place_Aggregate_Return (N)
70482933
RK
4292 then
4293 Set_Expansion_Delayed (N);
4294 return;
4295 end if;
4296
a9bbfbd0
AC
4297 -- Otherwise, if a transient scope is required, create it now. If we
4298 -- are within an initialization procedure do not create such, because
4299 -- the target of the assignment must not be declared within a local
4300 -- block, and because cleanup will take place on return from the
4301 -- initialization procedure.
937e9676 4302
a9bbfbd0
AC
4303 -- Should the condition be more restrictive ???
4304
4305 if Requires_Transient_Scope (Typ) and then not Inside_Init_Proc then
6560f851 4306 Establish_Transient_Scope (N, Manage_Sec_Stack => False);
70482933
RK
4307 end if;
4308
bc1146e5
HK
4309 -- If the aggregate is nonlimited, create a temporary, since aggregates
4310 -- have "by copy" semantics. If it is limited and context is an
4ff5aa0c
AC
4311 -- assignment, this is a subaggregate for an enclosing aggregate being
4312 -- expanded. It must be built in place, so use target of the current
4313 -- assignment.
70482933 4314
3b9fa2df 4315 if Is_Limited_Type (Typ)
e67df677 4316 and then Parent_Kind = N_Assignment_Statement
3b9fa2df 4317 then
e67df677
EB
4318 Target_Expr := New_Copy_Tree (Name (Parent_Node));
4319 Insert_Actions (Parent_Node,
df3e68b1 4320 Build_Record_Aggr_Code (N, Typ, Target_Expr));
e67df677 4321 Rewrite (Parent_Node, Make_Null_Statement (Loc));
70482933 4322
a80b1eb7
EB
4323 -- Do not declare a temporary to initialize an aggregate assigned to
4324 -- a target when in-place assignment is possible, i.e. preserving the
4ff5aa0c
AC
4325 -- by-copy semantic of aggregates. This avoids large stack usage and
4326 -- generates more efficient code.
e64ac631 4327
e67df677 4328 elsif Parent_Kind = N_Assignment_Statement
a80b1eb7 4329 and then In_Place_Assign_OK (N, Get_Base_Object (Name (Parent_Node)))
e64ac631 4330 then
e67df677
EB
4331 declare
4332 Lhs : constant Node_Id := Name (Parent_Node);
4333 begin
4334 -- Apply discriminant check if required
4335
4336 if Has_Discriminants (Etype (N)) then
4337 Apply_Discriminant_Check (N, Etype (Lhs), Lhs);
4338 end if;
4339
4340 -- The check just above may have replaced the aggregate with a CE
4341
4a08c95c 4342 if Nkind (N) in N_Aggregate | N_Extension_Aggregate then
e67df677
EB
4343 Target_Expr := New_Copy_Tree (Lhs);
4344 Insert_Actions (Parent_Node,
4345 Build_Record_Aggr_Code (N, Typ, Target_Expr));
4346 Rewrite (Parent_Node, Make_Null_Statement (Loc));
4347 end if;
4348 end;
e64ac631 4349
3b9fa2df 4350 else
faf387e1 4351 Temp := Make_Temporary (Loc, 'A', N);
70482933 4352
39f346aa
ES
4353 -- If the type inherits unknown discriminants, use the view with
4354 -- known discriminants if available.
4355
4356 if Has_Unknown_Discriminants (Typ)
36a66365 4357 and then Present (Underlying_Record_View (Typ))
39f346aa
ES
4358 then
4359 T := Underlying_Record_View (Typ);
4360 else
4361 T := Typ;
4362 end if;
4363
3b9fa2df
ES
4364 Instr :=
4365 Make_Object_Declaration (Loc,
4366 Defining_Identifier => Temp,
39f346aa 4367 Object_Definition => New_Occurrence_Of (T, Loc));
3b9fa2df
ES
4368
4369 Set_No_Initialization (Instr);
4370 Insert_Action (N, Instr);
39f346aa 4371 Initialize_Discriminants (Instr, T);
f29afe5f 4372
3b9fa2df 4373 Target_Expr := New_Occurrence_Of (Temp, Loc);
f29afe5f
AC
4374 Aggr_Code := Build_Record_Aggr_Code (N, T, Target_Expr);
4375
4376 -- Save the last assignment statement associated with the aggregate
4377 -- when building a controlled object. This reference is utilized by
4378 -- the finalization machinery when marking an object as successfully
4379 -- initialized.
4380
4381 if Needs_Finalization (T) then
4382 Set_Last_Aggregate_Assignment (Temp, Last (Aggr_Code));
4383 end if;
4384
4385 Insert_Actions (N, Aggr_Code);
3b9fa2df 4386 Rewrite (N, New_Occurrence_Of (Temp, Loc));
39f346aa 4387 Analyze_And_Resolve (N, T);
3b9fa2df 4388 end if;
70482933
RK
4389 end Convert_To_Assignments;
4390
07fc65c4
GB
4391 ---------------------------
4392 -- Convert_To_Positional --
4393 ---------------------------
4394
4395 procedure Convert_To_Positional
c42006e9
AC
4396 (N : Node_Id;
4397 Handle_Bit_Packed : Boolean := False)
07fc65c4 4398 is
c42006e9 4399 Typ : constant Entity_Id := Etype (N);
b748c3d1 4400 Dims : constant Nat := Number_Dimensions (Typ);
eaf6e63a 4401 Max_Others_Replicate : constant Nat := Max_Aggregate_Size (N);
07fc65c4 4402
0f95b178
JM
4403 Static_Components : Boolean := True;
4404
4405 procedure Check_Static_Components;
3b9fa2df
ES
4406 -- Check whether all components of the aggregate are compile-time known
4407 -- values, and can be passed as is to the back-end without further
4408 -- expansion.
0f95b178 4409
fbf5a39b 4410 function Flatten
b748c3d1
EB
4411 (N : Node_Id;
4412 Dims : Nat;
4413 Ix : Node_Id;
4414 Ixb : Node_Id) return Boolean;
c2ba82ad
EB
4415 -- Convert the aggregate into a purely positional form if possible after
4416 -- checking that the bounds of all dimensions are known to be static.
fbf5a39b 4417
b748c3d1
EB
4418 function Is_Flat (N : Node_Id; Dims : Nat) return Boolean;
4419 -- Return True if the aggregate N is flat (which is not trivial in the
4420 -- case of multidimensional aggregates).
fbf5a39b 4421
b748c3d1 4422 function Is_Static_Element (N : Node_Id; Dims : Nat) return Boolean;
f1e2bf65
EB
4423 -- Return True if N, an element of a component association list, i.e.
4424 -- N_Component_Association or N_Iterated_Component_Association, has a
4425 -- compile-time known value and can be passed as is to the back-end
4426 -- without further expansion.
4427 -- An Iterated_Component_Association is treated as nonstatic in most
4428 -- cases for now, so there are possibilities for optimization.
4429
0f95b178
JM
4430 -----------------------------
4431 -- Check_Static_Components --
4432 -----------------------------
4433
bdc193ba
AC
4434 -- Could use some comments in this body ???
4435
0f95b178 4436 procedure Check_Static_Components is
f1e2bf65
EB
4437 Assoc : Node_Id;
4438 Expr : Node_Id;
0f95b178
JM
4439
4440 begin
4441 Static_Components := True;
4442
4443 if Nkind (N) = N_String_Literal then
4444 null;
4445
4446 elsif Present (Expressions (N)) then
4447 Expr := First (Expressions (N));
4448 while Present (Expr) loop
4449 if Nkind (Expr) /= N_Aggregate
4450 or else not Compile_Time_Known_Aggregate (Expr)
4451 or else Expansion_Delayed (Expr)
4452 then
4453 Static_Components := False;
4454 exit;
4455 end if;
4456
4457 Next (Expr);
4458 end loop;
4459 end if;
4460
4461 if Nkind (N) = N_Aggregate
21d7ef70 4462 and then Present (Component_Associations (N))
0f95b178 4463 then
f1e2bf65
EB
4464 Assoc := First (Component_Associations (N));
4465 while Present (Assoc) loop
b748c3d1 4466 if not Is_Static_Element (Assoc, Dims) then
0f95b178
JM
4467 Static_Components := False;
4468 exit;
4469 end if;
4470
f1e2bf65 4471 Next (Assoc);
0f95b178
JM
4472 end loop;
4473 end if;
4474 end Check_Static_Components;
4475
fbf5a39b
AC
4476 -------------
4477 -- Flatten --
4478 -------------
4479
4480 function Flatten
b748c3d1
EB
4481 (N : Node_Id;
4482 Dims : Nat;
4483 Ix : Node_Id;
4484 Ixb : Node_Id) return Boolean
fbf5a39b
AC
4485 is
4486 Loc : constant Source_Ptr := Sloc (N);
4487 Blo : constant Node_Id := Type_Low_Bound (Etype (Ixb));
4488 Lo : constant Node_Id := Type_Low_Bound (Etype (Ix));
4489 Hi : constant Node_Id := Type_High_Bound (Etype (Ix));
fbf5a39b 4490
b748c3d1
EB
4491 function Cannot_Flatten_Next_Aggr (Expr : Node_Id) return Boolean;
4492 -- Return true if Expr is an aggregate for the next dimension that
4493 -- cannot be recursively flattened.
4494
4495 ------------------------------
4496 -- Cannot_Flatten_Next_Aggr --
4497 ------------------------------
4498
4499 function Cannot_Flatten_Next_Aggr (Expr : Node_Id) return Boolean is
4500 begin
4501 return Nkind (Expr) = N_Aggregate
4502 and then Present (Next_Index (Ix))
4503 and then not
4504 Flatten (Expr, Dims - 1, Next_Index (Ix), Next_Index (Ixb));
4505 end Cannot_Flatten_Next_Aggr;
4506
4507 -- Local variables
4508
4509 Lov : Uint;
4510 Hiv : Uint;
4511 Others_Present : Boolean;
4512
4513 -- Start of processing for Flatten
3f5a8fee 4514
6e937c1c 4515 begin
fbf5a39b
AC
4516 if Nkind (Original_Node (N)) = N_String_Literal then
4517 return True;
4518 end if;
07fc65c4 4519
0f95b178
JM
4520 if not Compile_Time_Known_Value (Lo)
4521 or else not Compile_Time_Known_Value (Hi)
4522 then
4523 return False;
4524 end if;
07fc65c4 4525
fbf5a39b
AC
4526 Lov := Expr_Value (Lo);
4527 Hiv := Expr_Value (Hi);
07fc65c4 4528
3f5a8fee
AC
4529 -- Check if there is an others choice
4530
b748c3d1
EB
4531 Others_Present := False;
4532
3f5a8fee 4533 if Present (Component_Associations (N)) then
10c257af
ES
4534 if Is_Empty_List (Component_Associations (N)) then
4535 -- an expanded null array aggregate
4536 return False;
4537 end if;
4538
3f5a8fee
AC
4539 declare
4540 Assoc : Node_Id;
4541 Choice : Node_Id;
4542
4543 begin
4544 Assoc := First (Component_Associations (N));
4545 while Present (Assoc) loop
9f8d1e5c
AC
4546
4547 -- If this is a box association, flattening is in general
4548 -- not possible because at this point we cannot tell if the
4549 -- default is static or even exists.
4550
4551 if Box_Present (Assoc) then
4552 return False;
00f45f30
AC
4553
4554 elsif Nkind (Assoc) = N_Iterated_Component_Association then
4555 return False;
9f8d1e5c
AC
4556 end if;
4557
00f45f30 4558 Choice := First (Choice_List (Assoc));
3f5a8fee
AC
4559
4560 while Present (Choice) loop
4561 if Nkind (Choice) = N_Others_Choice then
4562 Others_Present := True;
4563 end if;
4564
4565 Next (Choice);
4566 end loop;
4567
4568 Next (Assoc);
4569 end loop;
4570 end;
4571 end if;
4572
4573 -- If the low bound is not known at compile time and others is not
4574 -- present we can proceed since the bounds can be obtained from the
4575 -- aggregate.
4576
fbf5a39b 4577 if Hiv < Lov
36a66365 4578 or else (not Compile_Time_Known_Value (Blo) and then Others_Present)
fbf5a39b
AC
4579 then
4580 return False;
4581 end if;
07fc65c4 4582
3b9fa2df
ES
4583 -- Determine if set of alternatives is suitable for conversion and
4584 -- build an array containing the values in sequence.
07fc65c4 4585
fbf5a39b
AC
4586 declare
4587 Vals : array (UI_To_Int (Lov) .. UI_To_Int (Hiv))
4588 of Node_Id := (others => Empty);
4589 -- The values in the aggregate sorted appropriately
07fc65c4 4590
fbf5a39b
AC
4591 Vlist : List_Id;
4592 -- Same data as Vals in list form
07fc65c4 4593
fbf5a39b
AC
4594 Rep_Count : Nat;
4595 -- Used to validate Max_Others_Replicate limit
07fc65c4 4596
841dd0f5 4597 Elmt : Node_Id;
b748c3d1 4598 Expr : Node_Id;
841dd0f5
AC
4599 Num : Int := UI_To_Int (Lov);
4600 Choice_Index : Int;
4601 Choice : Node_Id;
4602 Lo, Hi : Node_Id;
07fc65c4 4603
fbf5a39b
AC
4604 begin
4605 if Present (Expressions (N)) then
4606 Elmt := First (Expressions (N));
fbf5a39b 4607 while Present (Elmt) loop
b748c3d1
EB
4608 -- In the case of a multidimensional array, check that the
4609 -- aggregate can be recursively flattened.
4610
4611 if Cannot_Flatten_Next_Aggr (Elmt) then
fbf5a39b
AC
4612 return False;
4613 end if;
07fc65c4 4614
f537fc00 4615 -- Duplicate expression for each index it covers
1541ede1
ES
4616
4617 Vals (Num) := New_Copy_Tree (Elmt);
fbf5a39b 4618 Num := Num + 1;
07fc65c4 4619
fbf5a39b
AC
4620 Next (Elmt);
4621 end loop;
4622 end if;
07fc65c4 4623
fbf5a39b
AC
4624 if No (Component_Associations (N)) then
4625 return True;
4626 end if;
07fc65c4 4627
fbf5a39b 4628 Elmt := First (Component_Associations (N));
07fc65c4 4629
b748c3d1
EB
4630 Component_Loop : while Present (Elmt) loop
4631 Expr := Expression (Elmt);
4632
4633 -- In the case of a multidimensional array, check that the
4634 -- aggregate can be recursively flattened.
4635
4636 if Cannot_Flatten_Next_Aggr (Expr) then
fbf5a39b
AC
4637 return False;
4638 end if;
07fc65c4 4639
00f45f30 4640 Choice := First (Choice_List (Elmt));
fbf5a39b
AC
4641 Choice_Loop : while Present (Choice) loop
4642
4643 -- If we have an others choice, fill in the missing elements
4644 -- subject to the limit established by Max_Others_Replicate.
4645
4646 if Nkind (Choice) = N_Others_Choice then
4647 Rep_Count := 0;
4648
64a87aa5
EB
4649 -- If the expression involves a construct that generates
4650 -- a loop, we must generate individual assignments and
4651 -- no flattening is possible.
4652
b748c3d1 4653 if Nkind (Expr) = N_Quantified_Expression then
1f6237e3
ES
4654 return False;
4655 end if;
4656
fbf5a39b
AC
4657 for J in Vals'Range loop
4658 if No (Vals (J)) then
b748c3d1 4659 Vals (J) := New_Copy_Tree (Expr);
fbf5a39b
AC
4660 Rep_Count := Rep_Count + 1;
4661
4662 -- Check for maximum others replication. Note that
4663 -- we skip this test if either of the restrictions
b748c3d1 4664 -- No_Implicit_Loops or No_Elaboration_Code is
8926d369
AC
4665 -- active, if this is a preelaborable unit or
4666 -- a predefined unit, or if the unit must be
4667 -- placed in data memory. This also ensures that
d9819bbd
AC
4668 -- predefined units get the same level of constant
4669 -- folding in Ada 95 and Ada 2005, where their
4670 -- categorization has changed.
fbf5a39b
AC
4671
4672 declare
4673 P : constant Entity_Id :=
89beb653 4674 Cunit_Entity (Current_Sem_Unit);
fbf5a39b
AC
4675
4676 begin
f1e2bf65
EB
4677 -- Check if duplication is always OK and, if so,
4678 -- continue processing.
7f4c1903 4679
b748c3d1
EB
4680 if Restriction_Active (No_Implicit_Loops) then
4681 null;
4682
4683 -- If duplication is not always OK, continue
4684 -- only if either the element is static or is
4685 -- an aggregate (we already know it is OK).
4686
4687 elsif not Is_Static_Element (Elmt, Dims)
4688 and then Nkind (Expr) /= N_Aggregate
4689 then
4690 return False;
4691
4692 -- Check if duplication is OK for elaboration
4693 -- purposes and, if so, continue processing.
4694
4695 elsif Restriction_Active (No_Elaboration_Code)
d9819bbd
AC
4696 or else
4697 (Ekind (Current_Scope) = E_Package
b748c3d1
EB
4698 and then
4699 Static_Elaboration_Desired (Current_Scope))
fbf5a39b
AC
4700 or else Is_Preelaborated (P)
4701 or else (Ekind (P) = E_Package_Body
4702 and then
b748c3d1 4703 Is_Preelaborated (Spec_Entity (P)))
7f4c1903 4704 or else
8ab31c0c 4705 Is_Predefined_Unit (Get_Source_Unit (P))
fbf5a39b
AC
4706 then
4707 null;
6e937c1c 4708
b748c3d1
EB
4709 -- Otherwise, check that the replication count
4710 -- is not too high.
7f4c1903 4711
b748c3d1 4712 elsif Rep_Count > Max_Others_Replicate then
f1e2bf65 4713 return False;
fbf5a39b
AC
4714 end if;
4715 end;
4716 end if;
4717 end loop;
07fc65c4 4718
861e589e
ES
4719 if Rep_Count = 0
4720 and then Warn_On_Redundant_Constructs
4721 then
4722 Error_Msg_N ("there are no others?r?", Elmt);
4723 end if;
4724
fbf5a39b 4725 exit Component_Loop;
07fc65c4 4726
deeb1604 4727 -- Case of a subtype mark, identifier or expanded name
07fc65c4 4728
deeb1604 4729 elsif Is_Entity_Name (Choice)
fbf5a39b
AC
4730 and then Is_Type (Entity (Choice))
4731 then
4732 Lo := Type_Low_Bound (Etype (Choice));
4733 Hi := Type_High_Bound (Etype (Choice));
07fc65c4 4734
fbf5a39b 4735 -- Case of subtype indication
07fc65c4 4736
fbf5a39b
AC
4737 elsif Nkind (Choice) = N_Subtype_Indication then
4738 Lo := Low_Bound (Range_Expression (Constraint (Choice)));
4739 Hi := High_Bound (Range_Expression (Constraint (Choice)));
4740
4741 -- Case of a range
4742
4743 elsif Nkind (Choice) = N_Range then
4744 Lo := Low_Bound (Choice);
4745 Hi := High_Bound (Choice);
4746
4747 -- Normal subexpression case
4748
4749 else pragma Assert (Nkind (Choice) in N_Subexpr);
4750 if not Compile_Time_Known_Value (Choice) then
4751 return False;
4752
4753 else
841dd0f5 4754 Choice_Index := UI_To_Int (Expr_Value (Choice));
bdc193ba 4755
841dd0f5 4756 if Choice_Index in Vals'Range then
b748c3d1 4757 Vals (Choice_Index) := New_Copy_Tree (Expr);
841dd0f5
AC
4758 goto Continue;
4759
bdc193ba
AC
4760 -- Choice is statically out-of-range, will be
4761 -- rewritten to raise Constraint_Error.
841dd0f5 4762
bdc193ba 4763 else
841dd0f5
AC
4764 return False;
4765 end if;
07fc65c4 4766 end if;
fbf5a39b
AC
4767 end if;
4768
64425dff 4769 -- Range cases merge with Lo,Hi set
fbf5a39b
AC
4770
4771 if not Compile_Time_Known_Value (Lo)
4772 or else
4773 not Compile_Time_Known_Value (Hi)
4774 then
4775 return False;
bdc193ba 4776
fbf5a39b
AC
4777 else
4778 for J in UI_To_Int (Expr_Value (Lo)) ..
4779 UI_To_Int (Expr_Value (Hi))
4780 loop
b748c3d1 4781 Vals (J) := New_Copy_Tree (Expr);
fbf5a39b
AC
4782 end loop;
4783 end if;
07fc65c4 4784
fbf5a39b
AC
4785 <<Continue>>
4786 Next (Choice);
4787 end loop Choice_Loop;
07fc65c4 4788
fbf5a39b
AC
4789 Next (Elmt);
4790 end loop Component_Loop;
07fc65c4 4791
fbf5a39b 4792 -- If we get here the conversion is possible
07fc65c4 4793
fbf5a39b
AC
4794 Vlist := New_List;
4795 for J in Vals'Range loop
4796 Append (Vals (J), Vlist);
4797 end loop;
07fc65c4 4798
fbf5a39b
AC
4799 Rewrite (N, Make_Aggregate (Loc, Expressions => Vlist));
4800 Set_Aggregate_Bounds (N, Aggregate_Bounds (Original_Node (N)));
4801 return True;
4802 end;
4803 end Flatten;
07fc65c4 4804
fbf5a39b
AC
4805 -------------
4806 -- Is_Flat --
4807 -------------
07fc65c4 4808
b748c3d1 4809 function Is_Flat (N : Node_Id; Dims : Nat) return Boolean is
fbf5a39b 4810 Elmt : Node_Id;
07fc65c4 4811
fbf5a39b
AC
4812 begin
4813 if Dims = 0 then
4814 return True;
07fc65c4 4815
fbf5a39b
AC
4816 elsif Nkind (N) = N_Aggregate then
4817 if Present (Component_Associations (N)) then
4818 return False;
07fc65c4 4819
fbf5a39b
AC
4820 else
4821 Elmt := First (Expressions (N));
fbf5a39b
AC
4822 while Present (Elmt) loop
4823 if not Is_Flat (Elmt, Dims - 1) then
4824 return False;
07fc65c4 4825 end if;
07fc65c4 4826
fbf5a39b
AC
4827 Next (Elmt);
4828 end loop;
07fc65c4 4829
fbf5a39b
AC
4830 return True;
4831 end if;
4832 else
4833 return True;
4834 end if;
4835 end Is_Flat;
07fc65c4 4836
f1e2bf65
EB
4837 -------------------------
4838 -- Is_Static_Element --
4839 -------------------------
4840
b748c3d1 4841 function Is_Static_Element (N : Node_Id; Dims : Nat) return Boolean is
f1e2bf65
EB
4842 Expr : constant Node_Id := Expression (N);
4843
4844 begin
b748c3d1 4845 -- In most cases the interesting expressions are unambiguously static
f1e2bf65 4846
b748c3d1 4847 if Compile_Time_Known_Value (Expr) then
f1e2bf65
EB
4848 return True;
4849
4850 elsif Nkind (N) = N_Iterated_Component_Association then
4851 return False;
4852
4853 elsif Nkind (Expr) = N_Aggregate
4854 and then Compile_Time_Known_Aggregate (Expr)
4855 and then not Expansion_Delayed (Expr)
4856 then
4857 return True;
4858
b748c3d1
EB
4859 -- However, one may write static expressions that are syntactically
4860 -- ambiguous, so preanalyze the expression before checking it again,
4861 -- but only at the innermost level for a multidimensional array.
4862
4863 elsif Dims = 1 then
4864 Preanalyze_And_Resolve (Expr, Component_Type (Typ));
4865 return Compile_Time_Known_Value (Expr);
4866
f1e2bf65
EB
4867 else
4868 return False;
4869 end if;
4870 end Is_Static_Element;
4871
fbf5a39b 4872 -- Start of processing for Convert_To_Positional
07fc65c4 4873
fbf5a39b 4874 begin
6031f544
AC
4875 -- Only convert to positional when generating C in case of an
4876 -- object declaration, this is the only case where aggregates are
4877 -- supported in C.
4878
9f51b855 4879 if Modify_Tree_For_C and then not Is_CCG_Supported_Aggregate (N) then
6031f544
AC
4880 return;
4881 end if;
4882
0ab80019 4883 -- Ada 2005 (AI-287): Do not convert in case of default initialized
c45b6ae0
AC
4884 -- components because in this case will need to call the corresponding
4885 -- IP procedure.
4886
4887 if Has_Default_Init_Comps (N) then
4888 return;
4889 end if;
4890
d7db3f4f
ES
4891 -- A subaggregate may have been flattened but is not known to be
4892 -- Compile_Time_Known. Set that flag in cases that cannot require
4893 -- elaboration code, so that the aggregate can be used as the
4894 -- initial value of a thread-local variable.
4895
b748c3d1 4896 if Is_Flat (N, Dims) then
2a1838cd
EB
4897 if Static_Array_Aggregate (N) then
4898 Set_Compile_Time_Known_Aggregate (N);
d7db3f4f
ES
4899 end if;
4900
fbf5a39b
AC
4901 return;
4902 end if;
4903
36a66365 4904 if Is_Bit_Packed_Array (Typ) and then not Handle_Bit_Packed then
fbf5a39b
AC
4905 return;
4906 end if;
07fc65c4 4907
3b9fa2df
ES
4908 -- Do not convert to positional if controlled components are involved
4909 -- since these require special processing
07fc65c4 4910
fbf5a39b
AC
4911 if Has_Controlled_Component (Typ) then
4912 return;
4913 end if;
07fc65c4 4914
0f95b178
JM
4915 Check_Static_Components;
4916
4917 -- If the size is known, or all the components are static, try to
4918 -- build a fully positional aggregate.
4919
21d7ef70 4920 -- The size of the type may not be known for an aggregate with
0f95b178
JM
4921 -- discriminated array components, but if the components are static
4922 -- it is still possible to verify statically that the length is
4923 -- compatible with the upper bound of the type, and therefore it is
4924 -- worth flattening such aggregates as well.
4925
eaf6e63a 4926 if Aggr_Size_OK (N)
b748c3d1
EB
4927 and then
4928 Flatten (N, Dims, First_Index (Typ), First_Index (Base_Type (Typ)))
643a0839 4929 then
0f95b178
JM
4930 if Static_Components then
4931 Set_Compile_Time_Known_Aggregate (N);
4932 Set_Expansion_Delayed (N, False);
4933 end if;
4934
07fc65c4 4935 Analyze_And_Resolve (N, Typ);
fbf5a39b 4936 end if;
d9819bbd 4937
d74716b3 4938 -- If Static_Elaboration_Desired has been specified, diagnose aggregates
e6807723
AC
4939 -- that will still require initialization code.
4940
d9819bbd
AC
4941 if (Ekind (Current_Scope) = E_Package
4942 and then Static_Elaboration_Desired (Current_Scope))
4943 and then Nkind (Parent (N)) = N_Object_Declaration
4944 then
4945 declare
4946 Expr : Node_Id;
4947
4948 begin
e6807723 4949 if Nkind (N) = N_Aggregate and then Present (Expressions (N)) then
d9819bbd
AC
4950 Expr := First (Expressions (N));
4951 while Present (Expr) loop
c2ba82ad 4952 if not Compile_Time_Known_Value (Expr) then
8926d369 4953 Error_Msg_N
21d7ef70 4954 ("non-static object requires elaboration code??", N);
d9819bbd
AC
4955 exit;
4956 end if;
8926d369 4957
d9819bbd
AC
4958 Next (Expr);
4959 end loop;
4960
4961 if Present (Component_Associations (N)) then
324ac540 4962 Error_Msg_N ("object requires elaboration code??", N);
d9819bbd
AC
4963 end if;
4964 end if;
4965 end;
4966 end if;
07fc65c4
GB
4967 end Convert_To_Positional;
4968
70482933
RK
4969 ----------------------------
4970 -- Expand_Array_Aggregate --
4971 ----------------------------
4972
4973 -- Array aggregate expansion proceeds as follows:
4974
4975 -- 1. If requested we generate code to perform all the array aggregate
4976 -- bound checks, specifically
4977
4978 -- (a) Check that the index range defined by aggregate bounds is
4979 -- compatible with corresponding index subtype.
4980
4981 -- (b) If an others choice is present check that no aggregate
4982 -- index is outside the bounds of the index constraint.
4983
4984 -- (c) For multidimensional arrays make sure that all subaggregates
4985 -- corresponding to the same dimension have the same bounds.
4986
fbf5a39b 4987 -- 2. Check for packed array aggregate which can be converted to a
b465ef6f 4988 -- constant so that the aggregate disappears completely.
fbf5a39b
AC
4989
4990 -- 3. Check case of nested aggregate. Generally nested aggregates are
4991 -- handled during the processing of the parent aggregate.
4992
4993 -- 4. Check if the aggregate can be statically processed. If this is the
70482933
RK
4994 -- case pass it as is to Gigi. Note that a necessary condition for
4995 -- static processing is that the aggregate be fully positional.
4996
bc1146e5 4997 -- 5. If in-place aggregate expansion is possible (i.e. no need to create
70482933
RK
4998 -- a temporary) then mark the aggregate as such and return. Otherwise
4999 -- create a new temporary and generate the appropriate initialization
5000 -- code.
5001
5002 procedure Expand_Array_Aggregate (N : Node_Id) is
5003 Loc : constant Source_Ptr := Sloc (N);
5004
5005 Typ : constant Entity_Id := Etype (N);
5006 Ctyp : constant Entity_Id := Component_Type (Typ);
07fc65c4 5007 -- Typ is the correct constrained array subtype of the aggregate
70482933
RK
5008 -- Ctyp is the corresponding component type.
5009
5010 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
3cf3e5c6 5011 -- Number of aggregate index dimensions
70482933
RK
5012
5013 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id;
5014 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id;
3cf3e5c6 5015 -- Low and High bounds of the constraint for each aggregate index
70482933
RK
5016
5017 Aggr_Index_Typ : array (1 .. Aggr_Dimension) of Entity_Id;
3cf3e5c6 5018 -- The type of each index
70482933 5019
ac43e11e 5020 In_Place_Assign_OK_For_Declaration : Boolean := False;
bc1146e5 5021 -- True if we are to generate an in-place assignment for a declaration
ac43e11e 5022
70482933
RK
5023 Maybe_In_Place_OK : Boolean;
5024 -- If the type is neither controlled nor packed and the aggregate
5025 -- is the expression in an assignment, assignment in place may be
5026 -- possible, provided other conditions are met on the LHS.
5027
07fc65c4 5028 Others_Present : array (1 .. Aggr_Dimension) of Boolean :=
15f0f591 5029 (others => False);
d74716b3
AC
5030 -- If Others_Present (J) is True, then there is an others choice in one
5031 -- of the subaggregates of N at dimension J.
70482933
RK
5032
5033 procedure Build_Constrained_Type (Positional : Boolean);
5034 -- If the subtype is not static or unconstrained, build a constrained
5035 -- type using the computable sizes of the aggregate and its sub-
5036 -- aggregates.
5037
7c4f3267 5038 procedure Check_Bounds (Aggr_Bounds_Node, Index_Bounds_Node : Node_Id);
70482933 5039 -- Checks that the bounds of Aggr_Bounds are within the bounds defined
3424f4c3
PT
5040 -- by Index_Bounds. For null array aggregate (Ada 2022) check that the
5041 -- aggregate bounds define a null range.
70482933
RK
5042
5043 procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos);
d74716b3
AC
5044 -- Checks that in a multidimensional array aggregate all subaggregates
5045 -- corresponding to the same dimension have the same bounds. Sub_Aggr is
5046 -- an array subaggregate. Dim is the dimension corresponding to the
5047 -- subaggregate.
70482933
RK
5048
5049 procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos);
d74716b3
AC
5050 -- Computes the values of array Others_Present. Sub_Aggr is the array
5051 -- subaggregate we start the computation from. Dim is the dimension
5052 -- corresponding to the subaggregate.
70482933 5053
70482933 5054 procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos);
d74716b3 5055 -- Checks that if an others choice is present in any subaggregate, no
70482933 5056 -- aggregate index is outside the bounds of the index constraint.
d74716b3
AC
5057 -- Sub_Aggr is an array subaggregate. Dim is the dimension corresponding
5058 -- to the subaggregate.
70482933 5059
8da337c5
AC
5060 function Safe_Left_Hand_Side (N : Node_Id) return Boolean;
5061 -- In addition to Maybe_In_Place_OK, in order for an aggregate to be
5062 -- built directly into the target of the assignment it must be free
6537318f 5063 -- of side effects. N is the LHS of an assignment.
8da337c5 5064
fe43084c
ES
5065 procedure Two_Pass_Aggregate_Expansion (N : Node_Id);
5066 -- If the aggregate consists only of iterated associations then the
5067 -- aggregate is constructed in two steps:
5068 -- a) Build an expression to compute the number of elements
5069 -- generated by each iterator, and use the expression to allocate
5070 -- the destination aggregate.
5071 -- b) Generate the loops corresponding to each iterator to insert
5072 -- the elements in their proper positions.
5073
70482933
RK
5074 ----------------------------
5075 -- Build_Constrained_Type --
5076 ----------------------------
5077
5078 procedure Build_Constrained_Type (Positional : Boolean) is
c8def50f 5079 Agg_Type : constant Entity_Id := Make_Temporary (Loc, 'A');
fbf5a39b 5080 Decl : Node_Id;
c8def50f 5081 Indexes : constant List_Id := New_List;
b3143037 5082 Num : Nat;
fbf5a39b 5083 Sub_Agg : Node_Id;
70482933
RK
5084
5085 begin
70482933
RK
5086 -- If the aggregate is purely positional, all its subaggregates
5087 -- have the same size. We collect the dimensions from the first
5088 -- subaggregate at each level.
5089
5090 if Positional then
5091 Sub_Agg := N;
5092
c8def50f 5093 for D in 1 .. Aggr_Dimension loop
c8c37d2b 5094 Num := List_Length (Expressions (Sub_Agg));
70482933 5095
deeb1604 5096 Append_To (Indexes,
70482933 5097 Make_Range (Loc,
c8def50f 5098 Low_Bound => Make_Integer_Literal (Loc, Uint_1),
191fcb3a 5099 High_Bound => Make_Integer_Literal (Loc, Num)));
c8c37d2b
PT
5100
5101 Sub_Agg := First (Expressions (Sub_Agg));
70482933
RK
5102 end loop;
5103
5104 else
3b9fa2df
ES
5105 -- We know the aggregate type is unconstrained and the aggregate
5106 -- is not processable by the back end, therefore not necessarily
5107 -- positional. Retrieve each dimension bounds (computed earlier).
70482933 5108
c8def50f 5109 for D in 1 .. Aggr_Dimension loop
37368818 5110 Append_To (Indexes,
70482933 5111 Make_Range (Loc,
37368818
RD
5112 Low_Bound => Aggr_Low (D),
5113 High_Bound => Aggr_High (D)));
70482933
RK
5114 end loop;
5115 end if;
5116
5117 Decl :=
5118 Make_Full_Type_Declaration (Loc,
5119 Defining_Identifier => Agg_Type,
bdc193ba 5120 Type_Definition =>
70482933 5121 Make_Constrained_Array_Definition (Loc,
deeb1604
AC
5122 Discrete_Subtype_Definitions => Indexes,
5123 Component_Definition =>
a397db96 5124 Make_Component_Definition (Loc,
a397db96
AC
5125 Subtype_Indication =>
5126 New_Occurrence_Of (Component_Type (Typ), Loc))));
70482933
RK
5127
5128 Insert_Action (N, Decl);
5129 Analyze (Decl);
5130 Set_Etype (N, Agg_Type);
5131 Set_Is_Itype (Agg_Type);
5132 Freeze_Itype (Agg_Type, N);
5133 end Build_Constrained_Type;
5134
5135 ------------------
5136 -- Check_Bounds --
5137 ------------------
5138
7c4f3267
BD
5139 procedure Check_Bounds (Aggr_Bounds_Node, Index_Bounds_Node : Node_Id) is
5140 Aggr_Bounds : constant Range_Nodes :=
5141 Get_Index_Bounds (Aggr_Bounds_Node);
5142 Ind_Bounds : constant Range_Nodes :=
5143 Get_Index_Bounds (Index_Bounds_Node);
70482933 5144
c8def50f 5145 Cond : Node_Id;
70482933
RK
5146
5147 begin
3424f4c3
PT
5148 -- For a null array aggregate check that high bound (i.e., low
5149 -- bound predecessor) exists. Fail if low bound is low bound of
5150 -- base subtype (in all cases, including modular).
5151
5152 if Is_Null_Aggregate (N) then
5153 Insert_Action (N,
5154 Make_Raise_Constraint_Error (Loc,
5155 Condition =>
5156 Make_Op_Eq (Loc,
5157 New_Copy_Tree (Aggr_Bounds.First),
5158 New_Copy_Tree
5159 (Type_Low_Bound (Base_Type (Etype (Ind_Bounds.First))))),
5160 Reason => CE_Range_Check_Failed));
5161 return;
5162 end if;
5163
70482933 5164 -- Generate the following test:
bdc193ba 5165
70482933 5166 -- [constraint_error when
7c4f3267
BD
5167 -- Aggr_Bounds.First <= Aggr_Bounds.Last and then
5168 -- (Aggr_Bounds.First < Ind_Bounds.First
5169 -- or else Aggr_Bounds.Last > Ind_Bounds.Last)]
3b9fa2df 5170
641d3093 5171 -- As an optimization try to see if some tests are trivially vacuous
70482933
RK
5172 -- because we are comparing an expression against itself.
5173
7c4f3267
BD
5174 if Aggr_Bounds.First = Ind_Bounds.First
5175 and then Aggr_Bounds.Last = Ind_Bounds.Last
5176 then
70482933
RK
5177 Cond := Empty;
5178
7c4f3267 5179 elsif Aggr_Bounds.Last = Ind_Bounds.Last then
70482933
RK
5180 Cond :=
5181 Make_Op_Lt (Loc,
7c4f3267
BD
5182 Left_Opnd =>
5183 Duplicate_Subexpr_Move_Checks (Aggr_Bounds.First),
5184 Right_Opnd =>
5185 Duplicate_Subexpr_Move_Checks (Ind_Bounds.First));
70482933 5186
7c4f3267 5187 elsif Aggr_Bounds.First = Ind_Bounds.First then
70482933
RK
5188 Cond :=
5189 Make_Op_Gt (Loc,
7c4f3267
BD
5190 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Bounds.Last),
5191 Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Bounds.Last));
70482933
RK
5192
5193 else
5194 Cond :=
5195 Make_Or_Else (Loc,
5196 Left_Opnd =>
5197 Make_Op_Lt (Loc,
7c4f3267
BD
5198 Left_Opnd =>
5199 Duplicate_Subexpr_Move_Checks (Aggr_Bounds.First),
5200 Right_Opnd =>
5201 Duplicate_Subexpr_Move_Checks (Ind_Bounds.First)),
70482933
RK
5202
5203 Right_Opnd =>
5204 Make_Op_Gt (Loc,
7c4f3267
BD
5205 Left_Opnd => Duplicate_Subexpr (Aggr_Bounds.Last),
5206 Right_Opnd => Duplicate_Subexpr (Ind_Bounds.Last)));
70482933
RK
5207 end if;
5208
5209 if Present (Cond) then
5210 Cond :=
5211 Make_And_Then (Loc,
5212 Left_Opnd =>
5213 Make_Op_Le (Loc,
7c4f3267
BD
5214 Left_Opnd =>
5215 Duplicate_Subexpr_Move_Checks (Aggr_Bounds.First),
5216 Right_Opnd =>
5217 Duplicate_Subexpr_Move_Checks (Aggr_Bounds.Last)),
70482933
RK
5218
5219 Right_Opnd => Cond);
5220
5221 Set_Analyzed (Left_Opnd (Left_Opnd (Cond)), False);
5222 Set_Analyzed (Right_Opnd (Left_Opnd (Cond)), False);
5223 Insert_Action (N,
07fc65c4
GB
5224 Make_Raise_Constraint_Error (Loc,
5225 Condition => Cond,
8fdafe44 5226 Reason => CE_Range_Check_Failed));
70482933
RK
5227 end if;
5228 end Check_Bounds;
5229
5230 ----------------------------
5231 -- Check_Same_Aggr_Bounds --
5232 ----------------------------
5233
5234 procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos) is
8ba0b4cf
PT
5235 Sub_Bounds : constant Range_Nodes :=
5236 Get_Index_Bounds (Aggregate_Bounds (Sub_Aggr));
10c257af
ES
5237 Sub_Lo : Node_Id renames Sub_Bounds.First;
5238 Sub_Hi : Node_Id renames Sub_Bounds.Last;
d74716b3 5239 -- The bounds of this specific subaggregate
70482933
RK
5240
5241 Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
5242 Aggr_Hi : constant Node_Id := Aggr_High (Dim);
5243 -- The bounds of the aggregate for this dimension
5244
5245 Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
3cf3e5c6 5246 -- The index type for this dimension.xxx
70482933 5247
8ba0b4cf 5248 Cond : Node_Id;
fbf5a39b
AC
5249 Assoc : Node_Id;
5250 Expr : Node_Id;
70482933
RK
5251
5252 begin
5253 -- If index checks are on generate the test
3b9fa2df 5254
70482933
RK
5255 -- [constraint_error when
5256 -- Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi]
3b9fa2df 5257
70482933
RK
5258 -- As an optimization try to see if some tests are trivially vacuos
5259 -- because we are comparing an expression against itself. Also for
5260 -- the first dimension the test is trivially vacuous because there
5261 -- is just one aggregate for dimension 1.
5262
5263 if Index_Checks_Suppressed (Ind_Typ) then
5264 Cond := Empty;
5265
bdc193ba 5266 elsif Dim = 1 or else (Aggr_Lo = Sub_Lo and then Aggr_Hi = Sub_Hi)
70482933
RK
5267 then
5268 Cond := Empty;
5269
5270 elsif Aggr_Hi = Sub_Hi then
5271 Cond :=
5272 Make_Op_Ne (Loc,
fbf5a39b
AC
5273 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
5274 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo));
70482933
RK
5275
5276 elsif Aggr_Lo = Sub_Lo then
5277 Cond :=
5278 Make_Op_Ne (Loc,
fbf5a39b
AC
5279 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
5280 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Hi));
70482933
RK
5281
5282 else
5283 Cond :=
5284 Make_Or_Else (Loc,
5285 Left_Opnd =>
5286 Make_Op_Ne (Loc,
fbf5a39b
AC
5287 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
5288 Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo)),
70482933
RK
5289
5290 Right_Opnd =>
5291 Make_Op_Ne (Loc,
5292 Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
5293 Right_Opnd => Duplicate_Subexpr (Sub_Hi)));
5294 end if;
5295
5296 if Present (Cond) then
5297 Insert_Action (N,
07fc65c4
GB
5298 Make_Raise_Constraint_Error (Loc,
5299 Condition => Cond,
5300 Reason => CE_Length_Check_Failed));
70482933
RK
5301 end if;
5302
d74716b3 5303 -- Now look inside the subaggregate to see if there is more work
70482933
RK
5304
5305 if Dim < Aggr_Dimension then
5306
5307 -- Process positional components
5308
5309 if Present (Expressions (Sub_Aggr)) then
5310 Expr := First (Expressions (Sub_Aggr));
5311 while Present (Expr) loop
5312 Check_Same_Aggr_Bounds (Expr, Dim + 1);
5313 Next (Expr);
5314 end loop;
5315 end if;
5316
5317 -- Process component associations
5318
5319 if Present (Component_Associations (Sub_Aggr)) then
5320 Assoc := First (Component_Associations (Sub_Aggr));
5321 while Present (Assoc) loop
5322 Expr := Expression (Assoc);
5323 Check_Same_Aggr_Bounds (Expr, Dim + 1);
5324 Next (Assoc);
5325 end loop;
5326 end if;
5327 end if;
5328 end Check_Same_Aggr_Bounds;
5329
5330 ----------------------------
5331 -- Compute_Others_Present --
5332 ----------------------------
5333
5334 procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos) is
fbf5a39b
AC
5335 Assoc : Node_Id;
5336 Expr : Node_Id;
70482933
RK
5337
5338 begin
5339 if Present (Component_Associations (Sub_Aggr)) then
5340 Assoc := Last (Component_Associations (Sub_Aggr));
07fc65c4 5341
10c257af
ES
5342 if Present (Assoc)
5343 and then Nkind (First (Choice_List (Assoc))) = N_Others_Choice
5344 then
70482933 5345 Others_Present (Dim) := True;
e84d25c9
ES
5346
5347 -- An others_clause may be superfluous if previous components
5348 -- cover the full given range of a constrained array. In such
5349 -- a case an others_clause does not contribute any additional
5350 -- components and has not been analyzed. We analyze it now to
5351 -- detect type errors in the expression, even though no code
5352 -- will be generated for it.
5353
5354 if Dim = Aggr_Dimension
5355 and then Nkind (Assoc) /= N_Iterated_Component_Association
5356 and then not Analyzed (Expression (Assoc))
5357 and then not Box_Present (Assoc)
5358 then
5359 Preanalyze_And_Resolve (Expression (Assoc), Ctyp);
5360 end if;
70482933
RK
5361 end if;
5362 end if;
5363
d74716b3 5364 -- Now look inside the subaggregate to see if there is more work
70482933
RK
5365
5366 if Dim < Aggr_Dimension then
5367
5368 -- Process positional components
5369
5370 if Present (Expressions (Sub_Aggr)) then
5371 Expr := First (Expressions (Sub_Aggr));
5372 while Present (Expr) loop
5373 Compute_Others_Present (Expr, Dim + 1);
5374 Next (Expr);
5375 end loop;
5376 end if;
5377
5378 -- Process component associations
5379
5380 if Present (Component_Associations (Sub_Aggr)) then
5381 Assoc := First (Component_Associations (Sub_Aggr));
5382 while Present (Assoc) loop
5383 Expr := Expression (Assoc);
5384 Compute_Others_Present (Expr, Dim + 1);
5385 Next (Assoc);
5386 end loop;
5387 end if;
5388 end if;
5389 end Compute_Others_Present;
5390
70482933
RK
5391 ------------------
5392 -- Others_Check --
5393 ------------------
5394
5395 procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos) is
5396 Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
5397 Aggr_Hi : constant Node_Id := Aggr_High (Dim);
3cf3e5c6 5398 -- The bounds of the aggregate for this dimension
70482933
RK
5399
5400 Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
3cf3e5c6 5401 -- The index type for this dimension
70482933
RK
5402
5403 Need_To_Check : Boolean := False;
5404
5405 Choices_Lo : Node_Id := Empty;
5406 Choices_Hi : Node_Id := Empty;
d74716b3 5407 -- The lowest and highest discrete choices for a named subaggregate
70482933
RK
5408
5409 Nb_Choices : Int := -1;
d74716b3 5410 -- The number of discrete non-others choices in this subaggregate
70482933
RK
5411
5412 Nb_Elements : Uint := Uint_0;
5413 -- The number of elements in a positional aggregate
5414
5415 Cond : Node_Id := Empty;
5416
5417 Assoc : Node_Id;
5418 Choice : Node_Id;
5419 Expr : Node_Id;
5420
5421 begin
5422 -- Check if we have an others choice. If we do make sure that this
d74716b3 5423 -- subaggregate contains at least one element in addition to the
70482933
RK
5424 -- others choice.
5425
5426 if Range_Checks_Suppressed (Ind_Typ) then
5427 Need_To_Check := False;
5428
5429 elsif Present (Expressions (Sub_Aggr))
5430 and then Present (Component_Associations (Sub_Aggr))
5431 then
10c257af
ES
5432 Need_To_Check :=
5433 not (Is_Empty_List (Expressions (Sub_Aggr))
5434 and then Is_Empty_List
5435 (Component_Associations (Sub_Aggr)));
70482933
RK
5436
5437 elsif Present (Component_Associations (Sub_Aggr)) then
5438 Assoc := Last (Component_Associations (Sub_Aggr));
5439
00f45f30 5440 if Nkind (First (Choice_List (Assoc))) /= N_Others_Choice then
70482933
RK
5441 Need_To_Check := False;
5442
5443 else
3b9fa2df
ES
5444 -- Count the number of discrete choices. Start with -1 because
5445 -- the others choice does not count.
70482933 5446
bdc193ba
AC
5447 -- Is there some reason we do not use List_Length here ???
5448
70482933
RK
5449 Nb_Choices := -1;
5450 Assoc := First (Component_Associations (Sub_Aggr));
5451 while Present (Assoc) loop
00f45f30 5452 Choice := First (Choice_List (Assoc));
70482933
RK
5453 while Present (Choice) loop
5454 Nb_Choices := Nb_Choices + 1;
5455 Next (Choice);
5456 end loop;
5457
5458 Next (Assoc);
5459 end loop;
5460
5461 -- If there is only an others choice nothing to do
5462
5463 Need_To_Check := (Nb_Choices > 0);
5464 end if;
5465
5466 else
5467 Need_To_Check := False;
5468 end if;
5469
d74716b3 5470 -- If we are dealing with a positional subaggregate with an others
3b9fa2df 5471 -- choice then compute the number or positional elements.
70482933
RK
5472
5473 if Need_To_Check and then Present (Expressions (Sub_Aggr)) then
5474 Expr := First (Expressions (Sub_Aggr));
5475 Nb_Elements := Uint_0;
5476 while Present (Expr) loop
5477 Nb_Elements := Nb_Elements + 1;
5478 Next (Expr);
5479 end loop;
5480
5481 -- If the aggregate contains discrete choices and an others choice
5482 -- compute the smallest and largest discrete choice values.
5483
5484 elsif Need_To_Check then
5485 Compute_Choices_Lo_And_Choices_Hi : declare
07fc65c4 5486
70482933
RK
5487 Table : Case_Table_Type (1 .. Nb_Choices);
5488 -- Used to sort all the different choice values
5489
07fc65c4 5490 J : Pos := 1;
70482933
RK
5491
5492 begin
5493 Assoc := First (Component_Associations (Sub_Aggr));
5494 while Present (Assoc) loop
00f45f30 5495 Choice := First (Choice_List (Assoc));
70482933
RK
5496 while Present (Choice) loop
5497 if Nkind (Choice) = N_Others_Choice then
5498 exit;
5499 end if;
5500
7c4f3267
BD
5501 declare
5502 Bounds : constant Range_Nodes :=
5503 Get_Index_Bounds (Choice);
5504 begin
5505 Table (J).Choice_Lo := Bounds.First;
5506 Table (J).Choice_Hi := Bounds.Last;
5507 end;
70482933 5508
07fc65c4 5509 J := J + 1;
70482933
RK
5510 Next (Choice);
5511 end loop;
5512
5513 Next (Assoc);
5514 end loop;
5515
5516 -- Sort the discrete choices
5517
5518 Sort_Case_Table (Table);
5519
5520 Choices_Lo := Table (1).Choice_Lo;
5521 Choices_Hi := Table (Nb_Choices).Choice_Hi;
5522 end Compute_Choices_Lo_And_Choices_Hi;
5523 end if;
5524
d74716b3 5525 -- If no others choice in this subaggregate, or the aggregate
70482933
RK
5526 -- comprises only an others choice, nothing to do.
5527
5528 if not Need_To_Check then
5529 Cond := Empty;
5530
3b9fa2df
ES
5531 -- If we are dealing with an aggregate containing an others choice
5532 -- and positional components, we generate the following test:
5533
70482933
RK
5534 -- if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) >
5535 -- Ind_Typ'Pos (Aggr_Hi)
5536 -- then
5537 -- raise Constraint_Error;
5538 -- end if;
5539
6a987d78
EB
5540 -- in the general case, but the following simpler test:
5541
5542 -- [constraint_error when
5543 -- Aggr_Lo + (Nb_Elements - 1) > Aggr_Hi];
5544
5545 -- instead if the index type is a signed integer.
5546
70482933 5547 elsif Nb_Elements > Uint_0 then
6a987d78
EB
5548 if Nb_Elements = Uint_1 then
5549 Cond :=
5550 Make_Op_Gt (Loc,
5551 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
5552 Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi));
5553
5554 elsif Is_Signed_Integer_Type (Ind_Typ) then
5555 Cond :=
5556 Make_Op_Gt (Loc,
5557 Left_Opnd =>
5558 Make_Op_Add (Loc,
5559 Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
5560 Right_Opnd =>
5561 Make_Integer_Literal (Loc, Nb_Elements - 1)),
5562 Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi));
70482933 5563
6a987d78
EB
5564 else
5565 Cond :=
5566 Make_Op_Gt (Loc,
5567 Left_Opnd =>
5568 Make_Op_Add (Loc,
5569 Left_Opnd =>
5570 Make_Attribute_Reference (Loc,
5571 Prefix => New_Occurrence_Of (Ind_Typ, Loc),
5572 Attribute_Name => Name_Pos,
5573 Expressions =>
5574 New_List
5575 (Duplicate_Subexpr_Move_Checks (Aggr_Lo))),
5576 Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)),
5577
5578 Right_Opnd =>
5579 Make_Attribute_Reference (Loc,
5580 Prefix => New_Occurrence_Of (Ind_Typ, Loc),
5581 Attribute_Name => Name_Pos,
5582 Expressions => New_List (
5583 Duplicate_Subexpr_Move_Checks (Aggr_Hi))));
5584 end if;
70482933 5585
3b9fa2df
ES
5586 -- If we are dealing with an aggregate containing an others choice
5587 -- and discrete choices we generate the following test:
5588
70482933
RK
5589 -- [constraint_error when
5590 -- Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi];
5591
5592 else
5593 Cond :=
5594 Make_Or_Else (Loc,
5595 Left_Opnd =>
5596 Make_Op_Lt (Loc,
bdc193ba
AC
5597 Left_Opnd => Duplicate_Subexpr_Move_Checks (Choices_Lo),
5598 Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo)),
70482933
RK
5599
5600 Right_Opnd =>
5601 Make_Op_Gt (Loc,
bdc193ba
AC
5602 Left_Opnd => Duplicate_Subexpr (Choices_Hi),
5603 Right_Opnd => Duplicate_Subexpr (Aggr_Hi)));
70482933
RK
5604 end if;
5605
5606 if Present (Cond) then
5607 Insert_Action (N,
07fc65c4
GB
5608 Make_Raise_Constraint_Error (Loc,
5609 Condition => Cond,
5610 Reason => CE_Length_Check_Failed));
641d3093
TQ
5611 -- Questionable reason code, shouldn't that be a
5612 -- CE_Range_Check_Failed ???
70482933
RK
5613 end if;
5614
d74716b3 5615 -- Now look inside the subaggregate to see if there is more work
70482933
RK
5616
5617 if Dim < Aggr_Dimension then
5618
5619 -- Process positional components
5620
5621 if Present (Expressions (Sub_Aggr)) then
5622 Expr := First (Expressions (Sub_Aggr));
5623 while Present (Expr) loop
5624 Others_Check (Expr, Dim + 1);
5625 Next (Expr);
5626 end loop;
5627 end if;
5628
5629 -- Process component associations
5630
5631 if Present (Component_Associations (Sub_Aggr)) then
5632 Assoc := First (Component_Associations (Sub_Aggr));
5633 while Present (Assoc) loop
5634 Expr := Expression (Assoc);
5635 Others_Check (Expr, Dim + 1);
5636 Next (Assoc);
5637 end loop;
5638 end if;
5639 end if;
5640 end Others_Check;
5641
8da337c5
AC
5642 -------------------------
5643 -- Safe_Left_Hand_Side --
5644 -------------------------
5645
5646 function Safe_Left_Hand_Side (N : Node_Id) return Boolean is
deeb1604
AC
5647 function Is_Safe_Index (Indx : Node_Id) return Boolean;
5648 -- If the left-hand side includes an indexed component, check that
d74716b3 5649 -- the indexes are free of side effects.
deeb1604
AC
5650
5651 -------------------
5652 -- Is_Safe_Index --
5653 -------------------
5654
5655 function Is_Safe_Index (Indx : Node_Id) return Boolean is
5656 begin
5657 if Is_Entity_Name (Indx) then
5658 return True;
5659
5660 elsif Nkind (Indx) = N_Integer_Literal then
5661 return True;
5662
5663 elsif Nkind (Indx) = N_Function_Call
5664 and then Is_Entity_Name (Name (Indx))
36a66365 5665 and then Has_Pragma_Pure_Function (Entity (Name (Indx)))
deeb1604
AC
5666 then
5667 return True;
5668
5669 elsif Nkind (Indx) = N_Type_Conversion
5670 and then Is_Safe_Index (Expression (Indx))
5671 then
5672 return True;
5673
5674 else
5675 return False;
5676 end if;
5677 end Is_Safe_Index;
5678
5679 -- Start of processing for Safe_Left_Hand_Side
5680
8da337c5
AC
5681 begin
5682 if Is_Entity_Name (N) then
5683 return True;
5684
4a08c95c 5685 elsif Nkind (N) in N_Explicit_Dereference | N_Selected_Component
8da337c5
AC
5686 and then Safe_Left_Hand_Side (Prefix (N))
5687 then
5688 return True;
5689
5690 elsif Nkind (N) = N_Indexed_Component
5691 and then Safe_Left_Hand_Side (Prefix (N))
36a66365 5692 and then Is_Safe_Index (First (Expressions (N)))
8da337c5
AC
5693 then
5694 return True;
deeb1604
AC
5695
5696 elsif Nkind (N) = N_Unchecked_Type_Conversion then
5697 return Safe_Left_Hand_Side (Expression (N));
5698
8da337c5
AC
5699 else
5700 return False;
5701 end if;
5702 end Safe_Left_Hand_Side;
5703
fe43084c
ES
5704 ----------------------------------
5705 -- Two_Pass_Aggregate_Expansion --
5706 ----------------------------------
5707
5708 procedure Two_Pass_Aggregate_Expansion (N : Node_Id) is
5709 Loc : constant Source_Ptr := Sloc (N);
5710 Comp_Type : constant Entity_Id := Etype (N);
5711 Index_Id : constant Entity_Id := Make_Temporary (Loc, 'I', N);
5712 Index_Type : constant Entity_Id := Etype (First_Index (Etype (N)));
5713 Size_Id : constant Entity_Id := Make_Temporary (Loc, 'I', N);
5714 TmpE : constant Entity_Id := Make_Temporary (Loc, 'A', N);
5715
5716 Assoc : Node_Id := First (Component_Associations (N));
5717 Incr : Node_Id;
5718 Iter : Node_Id;
5719 New_Comp : Node_Id;
5720 One_Loop : Node_Id;
5721
5722 Size_Expr_Code : List_Id;
5723 Insertion_Code : List_Id := New_List;
5724
5725 begin
5726 Size_Expr_Code := New_List (
5727 Make_Object_Declaration (Loc,
5728 Defining_Identifier => Size_Id,
5729 Object_Definition => New_Occurrence_Of (Standard_Integer, Loc),
5730 Expression => Make_Integer_Literal (Loc, 0)));
5731
5732 -- First pass: execute the iterators to count the number of elements
5733 -- that will be generated.
5734
5735 while Present (Assoc) loop
5736 Iter := Iterator_Specification (Assoc);
5737 Incr := Make_Assignment_Statement (Loc,
5738 Name => New_Occurrence_Of (Size_Id, Loc),
5739 Expression =>
5740 Make_Op_Add (Loc,
5741 Left_Opnd => New_Occurrence_Of (Size_Id, Loc),
5742 Right_Opnd => Make_Integer_Literal (Loc, 1)));
5743
f3561c06 5744 One_Loop := Make_Implicit_Loop_Statement (N,
fe43084c
ES
5745 Iteration_Scheme =>
5746 Make_Iteration_Scheme (Loc,
08613129 5747 Iterator_Specification => New_Copy_Tree (Iter)),
fe43084c
ES
5748 Statements => New_List (Incr));
5749
5750 Append (One_Loop, Size_Expr_Code);
5751 Next (Assoc);
5752 end loop;
5753
5754 Insert_Actions (N, Size_Expr_Code);
5755
5756 -- Build a constrained subtype with the calculated length
5757 -- and declare the proper bounded aggregate object.
5758 -- The index type is some discrete type, so the bounds of the
5759 -- constructed array are computed as T'Val (T'Pos (ineger bound));
5760
5761 declare
5762 Pos_Lo : constant Node_Id :=
5763 Make_Attribute_Reference (Loc,
5764 Prefix => New_Occurrence_Of (Index_Type, Loc),
5765 Attribute_Name => Name_Pos,
5766 Expressions => New_List (
5767 Make_Attribute_Reference (Loc,
5768 Prefix => New_Occurrence_Of (Index_Type, Loc),
5769 Attribute_Name => Name_First)));
5770
5771 Aggr_Lo : constant Node_Id :=
5772 Make_Attribute_Reference (Loc,
5773 Prefix => New_Occurrence_Of (Index_Type, Loc),
5774 Attribute_Name => Name_Val,
5775 Expressions => New_List (New_Copy_Tree (Pos_Lo)));
5776
5777 -- Hi = Index_type'Pos (Lo + Size -1).
5778
5779 Pos_Hi : constant Node_Id :=
5780 Make_Op_Add (Loc,
5781 Left_Opnd => New_Copy_Tree (Pos_Lo),
5782 Right_Opnd =>
5783 Make_Op_Subtract (Loc,
5784 Left_Opnd => New_Occurrence_Of (Size_Id, Loc),
5785 Right_Opnd => Make_Integer_Literal (Loc, 1)));
5786
5787 -- Corresponding index value
5788
5789 Aggr_Hi : constant Node_Id :=
5790 Make_Attribute_Reference (Loc,
5791 Prefix => New_Occurrence_Of (Index_Type, Loc),
5792 Attribute_Name => Name_Val,
5793 Expressions => New_List (New_Copy_Tree (Pos_Hi)));
5794
5795 SubE : constant Entity_Id := Make_Temporary (Loc, 'T');
5796 SubD : constant Node_Id :=
5797 Make_Subtype_Declaration (Loc,
5798 Defining_Identifier => SubE,
5799 Subtype_Indication =>
5800 Make_Subtype_Indication (Loc,
5801 Subtype_Mark =>
5802 New_Occurrence_Of (Etype (Comp_Type), Loc),
5803 Constraint =>
5804 Make_Index_Or_Discriminant_Constraint
5805 (Loc,
5806 Constraints =>
5807 New_List (Make_Range (Loc, Aggr_Lo, Aggr_Hi)))));
5808
5809 -- Create a temporary array of the above subtype which
5810 -- will be used to capture the aggregate assignments.
5811
5812 TmpD : constant Node_Id :=
5813 Make_Object_Declaration (Loc,
5814 Defining_Identifier => TmpE,
5815 Object_Definition => New_Occurrence_Of (SubE, Loc));
5816 begin
5817 Insert_Actions (N, New_List (SubD, TmpD));
5818 end;
5819
5820 -- Second pass: use the iterators to generate the elements of the
5821 -- aggregate. Insertion index starts at Index_Type'First. We
5822 -- assume that the second evaluation of each iterator generates
5823 -- the same number of elements as the first pass, and consider
5824 -- that the execution is erroneous (even if the RM does not state
5825 -- this explicitly) if the number of elements generated differs
5826 -- between first and second pass.
5827
5828 Assoc := First (Component_Associations (N));
5829
5830 -- Initialize insertion position to first array component.
5831
5832 Insertion_Code := New_List (
5833 Make_Object_Declaration (Loc,
5834 Defining_Identifier => Index_Id,
5835 Object_Definition =>
5836 New_Occurrence_Of (Index_Type, Loc),
5837 Expression =>
5838 Make_Attribute_Reference (Loc,
5839 Prefix => New_Occurrence_Of (Index_Type, Loc),
5840 Attribute_Name => Name_First)));
5841
5842 while Present (Assoc) loop
5843 Iter := Iterator_Specification (Assoc);
5844 New_Comp := Make_Assignment_Statement (Loc,
5845 Name =>
5846 Make_Indexed_Component (Loc,
5847 Prefix => New_Occurrence_Of (TmpE, Loc),
5848 Expressions =>
5849 New_List (New_Occurrence_Of (Index_Id, Loc))),
d983abeb 5850 Expression => Copy_Separate_Tree (Expression (Assoc)));
fe43084c
ES
5851
5852 -- Advance index position for insertion.
5853
5854 Incr := Make_Assignment_Statement (Loc,
5855 Name => New_Occurrence_Of (Index_Id, Loc),
5856 Expression =>
5857 Make_Attribute_Reference (Loc,
5858 Prefix =>
5859 New_Occurrence_Of (Index_Type, Loc),
5860 Attribute_Name => Name_Succ,
5861 Expressions =>
5862 New_List (New_Occurrence_Of (Index_Id, Loc))));
5863
8b1a5da3
ES
5864 -- Add guard to skip last increment when upper bound is reached.
5865
5866 Incr := Make_If_Statement (Loc,
5867 Condition =>
5868 Make_Op_Ne (Loc,
5869 Left_Opnd => New_Occurrence_Of (Index_Id, Loc),
5870 Right_Opnd =>
5871 Make_Attribute_Reference (Loc,
5872 Prefix => New_Occurrence_Of (Index_Type, Loc),
5873 Attribute_Name => Name_Last)),
5874 Then_Statements => New_List (Incr));
5875
f3561c06 5876 One_Loop := Make_Implicit_Loop_Statement (N,
fe43084c
ES
5877 Iteration_Scheme =>
5878 Make_Iteration_Scheme (Loc,
08613129 5879 Iterator_Specification => Copy_Separate_Tree (Iter)),
fe43084c
ES
5880 Statements => New_List (New_Comp, Incr));
5881
5882 Append (One_Loop, Insertion_Code);
5883 Next (Assoc);
5884 end loop;
5885
5886 Insert_Actions (N, Insertion_Code);
5887
5888 -- Depending on context this may not work for build-in-place
5889 -- arrays ???
5890
5891 Rewrite (N, New_Occurrence_Of (TmpE, Loc));
5892
5893 end Two_Pass_Aggregate_Expansion;
5894
8da337c5 5895 -- Local variables
70482933
RK
5896
5897 Tmp : Entity_Id;
fbf5a39b 5898 -- Holds the temporary aggregate value
70482933
RK
5899
5900 Tmp_Decl : Node_Id;
fbf5a39b 5901 -- Holds the declaration of Tmp
70482933
RK
5902
5903 Aggr_Code : List_Id;
5904 Parent_Node : Node_Id;
5905 Parent_Kind : Node_Kind;
5906
5907 -- Start of processing for Expand_Array_Aggregate
5908
5909 begin
5910 -- Do not touch the special aggregates of attributes used for Asm calls
5911
5912 if Is_RTE (Ctyp, RE_Asm_Input_Operand)
5913 or else Is_RTE (Ctyp, RE_Asm_Output_Operand)
5914 then
5915 return;
4a1bfefb 5916
fe43084c 5917 elsif Present (Component_Associations (N))
8b1a5da3
ES
5918 and then Nkind (First (Component_Associations (N))) =
5919 N_Iterated_Component_Association
5920 and then
5921 Present (Iterator_Specification (First (Component_Associations (N))))
fe43084c
ES
5922 then
5923 Two_Pass_Aggregate_Expansion (N);
5924 return;
5925
f5655e4a
AC
5926 -- Do not attempt expansion if error already detected. We may reach this
5927 -- point in spite of previous errors when compiling with -gnatq, to
5928 -- force all possible errors (this is the usual ACATS mode).
5929
5930 elsif Error_Posted (N) then
5931 return;
70482933
RK
5932 end if;
5933
07fc65c4 5934 -- If the semantic analyzer has determined that aggregate N will raise
e7c0dd39 5935 -- Constraint_Error at run time, then the aggregate node has been
07fc65c4
GB
5936 -- replaced with an N_Raise_Constraint_Error node and we should
5937 -- never get here.
70482933
RK
5938
5939 pragma Assert (not Raises_Constraint_Error (N));
5940
3cf3e5c6 5941 -- STEP 1a
fbf5a39b
AC
5942
5943 -- Check that the index range defined by aggregate bounds is
5944 -- compatible with corresponding index subtype.
70482933
RK
5945
5946 Index_Compatibility_Check : declare
5947 Aggr_Index_Range : Node_Id := First_Index (Typ);
5948 -- The current aggregate index range
5949
5950 Index_Constraint : Node_Id := First_Index (Etype (Typ));
5951 -- The corresponding index constraint against which we have to
5952 -- check the above aggregate index range.
5953
5954 begin
5955 Compute_Others_Present (N, 1);
5956
5957 for J in 1 .. Aggr_Dimension loop
bdc193ba
AC
5958 -- There is no need to emit a check if an others choice is present
5959 -- for this array aggregate dimension since in this case one of
d74716b3 5960 -- N's subaggregates has taken its bounds from the context and
bdc193ba 5961 -- these bounds must have been checked already. In addition all
d74716b3
AC
5962 -- subaggregates corresponding to the same dimension must all have
5963 -- the same bounds (checked in (c) below).
70482933
RK
5964
5965 if not Range_Checks_Suppressed (Etype (Index_Constraint))
5966 and then not Others_Present (J)
5967 then
3b9fa2df
ES
5968 -- We don't use Checks.Apply_Range_Check here because it emits
5969 -- a spurious check. Namely it checks that the range defined by
d74716b3 5970 -- the aggregate bounds is nonempty. But we know this already
3b9fa2df 5971 -- if we get here.
70482933
RK
5972
5973 Check_Bounds (Aggr_Index_Range, Index_Constraint);
5974 end if;
5975
3b9fa2df
ES
5976 -- Save the low and high bounds of the aggregate index as well as
5977 -- the index type for later use in checks (b) and (c) below.
70482933 5978
10c257af
ES
5979 Get_Index_Bounds
5980 (Aggr_Index_Range, L => Aggr_Low (J), H => Aggr_High (J));
70482933
RK
5981
5982 Aggr_Index_Typ (J) := Etype (Index_Constraint);
5983
5984 Next_Index (Aggr_Index_Range);
5985 Next_Index (Index_Constraint);
5986 end loop;
5987 end Index_Compatibility_Check;
5988
3cf3e5c6 5989 -- STEP 1b
fbf5a39b 5990
3b9fa2df
ES
5991 -- If an others choice is present check that no aggregate index is
5992 -- outside the bounds of the index constraint.
70482933
RK
5993
5994 Others_Check (N, 1);
5995
3cf3e5c6 5996 -- STEP 1c
fbf5a39b
AC
5997
5998 -- For multidimensional arrays make sure that all subaggregates
5999 -- corresponding to the same dimension have the same bounds.
70482933
RK
6000
6001 if Aggr_Dimension > 1 then
6002 Check_Same_Aggr_Bounds (N, 1);
6003 end if;
6004
688a9b51
RD
6005 -- STEP 1d
6006
6007 -- If we have a default component value, or simple initialization is
6008 -- required for the component type, then we replace <> in component
6009 -- associations by the required default value.
6010
6011 declare
6012 Default_Val : Node_Id;
6013 Assoc : Node_Id;
6014
6015 begin
6016 if (Present (Default_Aspect_Component_Value (Typ))
6017 or else Needs_Simple_Initialization (Ctyp))
6018 and then Present (Component_Associations (N))
6019 then
6020 Assoc := First (Component_Associations (N));
6021 while Present (Assoc) loop
6022 if Nkind (Assoc) = N_Component_Association
6023 and then Box_Present (Assoc)
6024 then
6025 Set_Box_Present (Assoc, False);
6026
6027 if Present (Default_Aspect_Component_Value (Typ)) then
6028 Default_Val := Default_Aspect_Component_Value (Typ);
6029 else
6030 Default_Val := Get_Simple_Init_Val (Ctyp, N);
6031 end if;
6032
6033 Set_Expression (Assoc, New_Copy_Tree (Default_Val));
6034 Analyze_And_Resolve (Expression (Assoc), Ctyp);
6035 end if;
6036
6037 Next (Assoc);
6038 end loop;
6039 end if;
6040 end;
6041
3cf3e5c6 6042 -- STEP 2
70482933 6043
3b9fa2df
ES
6044 -- Here we test for is packed array aggregate that we can handle at
6045 -- compile time. If so, return with transformation done. Note that we do
6046 -- this even if the aggregate is nested, because once we have done this
a90bd866 6047 -- processing, there is no more nested aggregate.
fbf5a39b
AC
6048
6049 if Packed_Array_Aggregate_Handled (N) then
6050 return;
6051 end if;
6052
6053 -- At this point we try to convert to positional form
70482933 6054
c42006e9 6055 Convert_To_Positional (N);
70482933 6056
23a9215f 6057 -- If the result is no longer an aggregate (e.g. it may be a string
fbf5a39b
AC
6058 -- literal, or a temporary which has the needed value), then we are
6059 -- done, since there is no longer a nested aggregate.
6060
70482933
RK
6061 if Nkind (N) /= N_Aggregate then
6062 return;
6063
5eeeed5e
AC
6064 -- We are also done if the result is an analyzed aggregate, indicating
6065 -- that Convert_To_Positional succeeded and reanalyzed the rewritten
6066 -- aggregate.
fbf5a39b 6067
dc67cfea 6068 elsif Analyzed (N) and then Is_Rewrite_Substitution (N) then
70482933
RK
6069 return;
6070 end if;
6071
fa57ac97
ES
6072 -- If all aggregate components are compile-time known and the aggregate
6073 -- has been flattened, nothing left to do. The same occurs if the
b465ef6f 6074 -- aggregate is used to initialize the components of a statically
fa57ac97 6075 -- allocated dispatch table.
0f95b178 6076
fa57ac97
ES
6077 if Compile_Time_Known_Aggregate (N)
6078 or else Is_Static_Dispatch_Table_Aggregate (N)
6079 then
0f95b178
JM
6080 Set_Expansion_Delayed (N, False);
6081 return;
6082 end if;
6083
fbf5a39b
AC
6084 -- Now see if back end processing is possible
6085
70482933
RK
6086 if Backend_Processing_Possible (N) then
6087
6088 -- If the aggregate is static but the constraints are not, build
6089 -- a static subtype for the aggregate, so that Gigi can place it
6090 -- in static memory. Perform an unchecked_conversion to the non-
6091 -- static type imposed by the context.
6092
6093 declare
6094 Itype : constant Entity_Id := Etype (N);
6095 Index : Node_Id;
6096 Needs_Type : Boolean := False;
6097
6098 begin
6099 Index := First_Index (Itype);
70482933 6100 while Present (Index) loop
edab6088 6101 if not Is_OK_Static_Subtype (Etype (Index)) then
70482933
RK
6102 Needs_Type := True;
6103 exit;
6104 else
6105 Next_Index (Index);
6106 end if;
6107 end loop;
6108
6109 if Needs_Type then
6110 Build_Constrained_Type (Positional => True);
6111 Rewrite (N, Unchecked_Convert_To (Itype, N));
6112 Analyze (N);
6113 end if;
6114 end;
6115
6116 return;
6117 end if;
6118
3cf3e5c6 6119 -- STEP 3
fbf5a39b 6120
5ed4ba15 6121 -- Delay expansion for nested aggregates: it will be taken care of when
d22792bc
EB
6122 -- the parent aggregate is expanded, excluding container aggregates as
6123 -- these are transformed into subprogram calls later.
70482933
RK
6124
6125 Parent_Node := Parent (N);
6126 Parent_Kind := Nkind (Parent_Node);
6127
6128 if Parent_Kind = N_Qualified_Expression then
6129 Parent_Node := Parent (Parent_Node);
6130 Parent_Kind := Nkind (Parent_Node);
6131 end if;
6132
ab246c16
EB
6133 if (Parent_Kind = N_Component_Association
6134 and then not Is_Container_Aggregate (Parent (Parent_Node)))
6135 or else (Parent_Kind in N_Aggregate | N_Extension_Aggregate
6136 and then not Is_Container_Aggregate (Parent_Node))
70482933 6137 or else (Parent_Kind = N_Object_Declaration
4844a259 6138 and then (Needs_Finalization (Typ)
ea588d41 6139 or else Is_Special_Return_Object
4844a259 6140 (Defining_Identifier (Parent_Node))))
70482933
RK
6141 or else (Parent_Kind = N_Assignment_Statement
6142 and then Inside_Init_Proc)
6143 then
2a1838cd
EB
6144 Set_Expansion_Delayed (N, not Static_Array_Aggregate (N));
6145 return;
70482933
RK
6146 end if;
6147
3cf3e5c6 6148 -- STEP 4
70482933 6149
bc1146e5 6150 -- Check whether in-place aggregate expansion is possible
70482933
RK
6151
6152 -- For object declarations we build the aggregate in place, unless
d2a60e59 6153 -- the array is bit-packed.
70482933
RK
6154
6155 -- For assignments we do the assignment in place if all the component
d2a60e59
ES
6156 -- associations have compile-time known values, or are default-
6157 -- initialized limited components, e.g. tasks. For other cases we
f037632e
BD
6158 -- create a temporary. A full analysis for safety of in-place assignment
6159 -- is delicate.
70482933 6160
6f639c98
ES
6161 -- For allocators we assign to the designated object in place if the
6162 -- aggregate meets the same conditions as other in-place assignments.
6163 -- In this case the aggregate may not come from source but was created
6164 -- for default initialization, e.g. with Initialize_Scalars.
6165
70482933 6166 if Requires_Transient_Scope (Typ) then
6560f851 6167 Establish_Transient_Scope (N, Manage_Sec_Stack => False);
70482933
RK
6168 end if;
6169
92a68a04 6170 -- An array of limited components is built in place
d2a60e59
ES
6171
6172 if Is_Limited_Type (Typ) then
6173 Maybe_In_Place_OK := True;
6174
6175 elsif Has_Default_Init_Comps (N) then
c45b6ae0 6176 Maybe_In_Place_OK := False;
6f639c98
ES
6177
6178 elsif Is_Bit_Packed_Array (Typ)
6179 or else Has_Controlled_Component (Typ)
6180 then
6181 Maybe_In_Place_OK := False;
6182
a80b1eb7 6183 elsif Parent_Kind = N_Assignment_Statement then
c45b6ae0 6184 Maybe_In_Place_OK :=
a80b1eb7 6185 In_Place_Assign_OK (N, Get_Base_Object (Name (Parent_Node)));
6f639c98 6186
a80b1eb7
EB
6187 elsif Parent_Kind = N_Allocator then
6188 Maybe_In_Place_OK := In_Place_Assign_OK (N);
6189
6190 else
6191 Maybe_In_Place_OK := False;
c45b6ae0 6192 end if;
70482933 6193
36c73552
AC
6194 -- If this is an array of tasks, it will be expanded into build-in-place
6195 -- assignments. Build an activation chain for the tasks now.
a38ff9b1 6196
c8def50f 6197 if Has_Task (Typ) then
a38ff9b1
ES
6198 Build_Activation_Chain_Entity (N);
6199 end if;
6200
cf6956bb 6201 -- Perform in-place expansion of aggregate in an object declaration.
f3d42000
AC
6202 -- Note: actions generated for the aggregate will be captured in an
6203 -- expression-with-actions statement so that they can be transferred
6204 -- to freeze actions later if there is an address clause for the
6205 -- object. (Note: we don't use a block statement because this would
6206 -- cause generated freeze nodes to be elaborated in the wrong scope).
cf6956bb 6207
d2a60e59
ES
6208 -- Arrays of limited components must be built in place. The code
6209 -- previously excluded controlled components but this is an old
6210 -- oversight: the rules in 7.6 (17) are clear.
5ed4ba15 6211
d4e4e88a 6212 if Comes_From_Source (Parent_Node)
3386e3ae
AC
6213 and then Parent_Kind = N_Object_Declaration
6214 and then Present (Expression (Parent_Node))
6215 and then not
6732c403 6216 Must_Slide (N, Etype (Defining_Identifier (Parent_Node)), Typ)
3386e3ae 6217 and then not Is_Bit_Packed_Array (Typ)
70482933 6218 then
ac43e11e 6219 In_Place_Assign_OK_For_Declaration := True;
5ed4ba15
AC
6220 Tmp := Defining_Identifier (Parent_Node);
6221 Set_No_Initialization (Parent_Node);
6222 Set_Expression (Parent_Node, Empty);
70482933 6223
ac43e11e
AC
6224 -- Set kind and type of the entity, for use in the analysis
6225 -- of the subsequent assignments. If the nominal type is not
70482933
RK
6226 -- constrained, build a subtype from the known bounds of the
6227 -- aggregate. If the declaration has a subtype mark, use it,
6228 -- otherwise use the itype of the aggregate.
6229
2e02ab86 6230 Mutate_Ekind (Tmp, E_Variable);
ac43e11e 6231
70482933
RK
6232 if not Is_Constrained (Typ) then
6233 Build_Constrained_Type (Positional => False);
ac43e11e 6234
5ed4ba15
AC
6235 elsif Is_Entity_Name (Object_Definition (Parent_Node))
6236 and then Is_Constrained (Entity (Object_Definition (Parent_Node)))
70482933 6237 then
5ed4ba15 6238 Set_Etype (Tmp, Entity (Object_Definition (Parent_Node)));
ac43e11e 6239
70482933
RK
6240 else
6241 Set_Size_Known_At_Compile_Time (Typ, False);
6242 Set_Etype (Tmp, Typ);
6243 end if;
6244
a80b1eb7 6245 elsif Maybe_In_Place_OK and then Parent_Kind = N_Allocator then
6f639c98
ES
6246 Set_Expansion_Delayed (N);
6247 return;
6248
d2a60e59
ES
6249 -- Limited arrays in return statements are expanded when
6250 -- enclosing construct is expanded.
6251
6252 elsif Maybe_In_Place_OK
a80b1eb7 6253 and then Parent_Kind = N_Simple_Return_Statement
d2a60e59
ES
6254 then
6255 Set_Expansion_Delayed (N);
6256 return;
6257
6537318f
ES
6258 -- In the remaining cases the aggregate appears in the RHS of an
6259 -- assignment, which may be part of the expansion of an object
41a7b948 6260 -- declaration. If the aggregate is an actual in a call, itself
6537318f 6261 -- possibly in a RHS, building it in the target is not possible.
6f639c98 6262
70482933 6263 elsif Maybe_In_Place_OK
6537318f 6264 and then Nkind (Parent_Node) not in N_Subprogram_Call
a80b1eb7 6265 and then Safe_Left_Hand_Side (Name (Parent_Node))
70482933 6266 then
a80b1eb7 6267 Tmp := Name (Parent_Node);
70482933
RK
6268
6269 if Etype (Tmp) /= Etype (N) then
6270 Apply_Length_Check (N, Etype (Tmp));
fbf5a39b
AC
6271
6272 if Nkind (N) = N_Raise_Constraint_Error then
6273
6274 -- Static error, nothing further to expand
6275
6276 return;
6277 end if;
70482933
RK
6278 end if;
6279
36a66365
AC
6280 -- If a slice assignment has an aggregate with a single others_choice,
6281 -- the assignment can be done in place even if bounds are not static,
6282 -- by converting it into a loop over the discrete range of the slice.
6283
70482933 6284 elsif Maybe_In_Place_OK
a80b1eb7 6285 and then Nkind (Name (Parent_Node)) = N_Slice
36a66365 6286 and then Is_Others_Aggregate (N)
70482933 6287 then
a80b1eb7 6288 Tmp := Name (Parent_Node);
70482933 6289
36a66365
AC
6290 -- Set type of aggregate to be type of lhs in assignment, in order
6291 -- to suppress redundant length checks.
6292
6293 Set_Etype (N, Etype (Tmp));
70482933 6294
fbf5a39b
AC
6295 -- Step 5
6296
bc1146e5 6297 -- In-place aggregate expansion is not possible
fbf5a39b 6298
70482933 6299 else
07fc65c4 6300 Maybe_In_Place_OK := False;
faf387e1 6301 Tmp := Make_Temporary (Loc, 'A', N);
70482933 6302 Tmp_Decl :=
bdc193ba
AC
6303 Make_Object_Declaration (Loc,
6304 Defining_Identifier => Tmp,
6305 Object_Definition => New_Occurrence_Of (Typ, Loc));
70482933
RK
6306 Set_No_Initialization (Tmp_Decl, True);
6307
6308 -- If we are within a loop, the temporary will be pushed on the
6560f851
HK
6309 -- stack at each iteration. If the aggregate is the expression
6310 -- for an allocator, it will be immediately copied to the heap
6311 -- and can be reclaimed at once. We create a transient scope
6312 -- around the aggregate for this purpose.
70482933
RK
6313
6314 if Ekind (Current_Scope) = E_Loop
a80b1eb7 6315 and then Parent_Kind = N_Allocator
70482933 6316 then
6560f851 6317 Establish_Transient_Scope (N, Manage_Sec_Stack => False);
9f6cee82
EB
6318
6319 -- If the parent is an assignment for which no controlled actions
6320 -- should take place, prevent the temporary from being finalized.
6321
6322 elsif Parent_Kind = N_Assignment_Statement
6323 and then No_Ctrl_Actions (Parent_Node)
6324 then
6325 Mutate_Ekind (Tmp, E_Variable);
6326 Set_Is_Ignored_Transient (Tmp);
70482933
RK
6327 end if;
6328
6329 Insert_Action (N, Tmp_Decl);
6330 end if;
6331
36c73552
AC
6332 -- Construct and insert the aggregate code. We can safely suppress index
6333 -- checks because this code is guaranteed not to raise CE on index
6334 -- checks. However we should *not* suppress all checks.
70482933 6335
07fc65c4
GB
6336 declare
6337 Target : Node_Id;
6338
6339 begin
6340 if Nkind (Tmp) = N_Defining_Identifier then
e4494292 6341 Target := New_Occurrence_Of (Tmp, Loc);
07fc65c4
GB
6342
6343 else
d2a60e59
ES
6344 if Has_Default_Init_Comps (N)
6345 and then not Maybe_In_Place_OK
6346 then
0ab80019 6347 -- Ada 2005 (AI-287): This case has not been analyzed???
c45b6ae0 6348
9bc856dd 6349 raise Program_Error;
c45b6ae0
AC
6350 end if;
6351
0da2c8ac 6352 -- Name in assignment is explicit dereference
07fc65c4
GB
6353
6354 Target := New_Copy (Tmp);
6355 end if;
6356
bc1146e5 6357 -- If we are to generate an in-place assignment for a declaration or
ac43e11e
AC
6358 -- an assignment statement, and the assignment can be done directly
6359 -- by the back end, then do not expand further.
6360
bc1146e5 6361 -- ??? We can also do that if in-place expansion is not possible but
ac43e11e
AC
6362 -- then we could go into an infinite recursion.
6363
6364 if (In_Place_Assign_OK_For_Declaration or else Maybe_In_Place_OK)
a1e1820b 6365 and then not CodePeer_Mode
c63a2ad6 6366 and then not Modify_Tree_For_C
ac43e11e 6367 and then not Possible_Bit_Aligned_Component (Target)
6b6bce61 6368 and then not Is_Possibly_Unaligned_Slice (Target)
ac43e11e
AC
6369 and then Aggr_Assignment_OK_For_Backend (N)
6370 then
ac43e11e 6371
742084ad
MP
6372 -- In the case of an assignment using an access with the
6373 -- Designated_Storage_Model aspect with a Copy_To procedure,
6374 -- insert a temporary and have the back end handle the assignment
6375 -- to it. Copy the result to the original target.
6376
6377 if Parent_Kind = N_Assignment_Statement
6378 and then Nkind (Name (Parent_Node)) = N_Explicit_Dereference
6379 and then Has_Designated_Storage_Model_Aspect
6380 (Etype (Prefix (Name (Parent_Node))))
6381 and then Present (Storage_Model_Copy_To
6382 (Storage_Model_Object
6383 (Etype (Prefix (Name (Parent_Node))))))
6384 then
ca4bff3a
EB
6385 Aggr_Code := Build_Assignment_With_Temporary
6386 (Target, Typ, New_Copy_Tree (N));
6387
742084ad
MP
6388 else
6389 if Maybe_In_Place_OK then
6390 return;
6391 end if;
6392
ca4bff3a
EB
6393 Aggr_Code := New_List (
6394 Make_Assignment_Statement (Loc,
6395 Name => Target,
6396 Expression => New_Copy_Tree (N)));
742084ad 6397 end if;
ca4bff3a 6398
d6e8719d 6399 else
ac43e11e
AC
6400 Aggr_Code :=
6401 Build_Array_Aggr_Code (N,
6402 Ctype => Ctyp,
6403 Index => First_Index (Typ),
6404 Into => Target,
6405 Scalar_Comp => Is_Scalar_Type (Ctyp));
6406 end if;
4ac2bbbd
AC
6407
6408 -- Save the last assignment statement associated with the aggregate
6409 -- when building a controlled object. This reference is utilized by
6410 -- the finalization machinery when marking an object as successfully
6411 -- initialized.
6412
6413 if Needs_Finalization (Typ)
6414 and then Is_Entity_Name (Target)
6415 and then Present (Entity (Target))
4a08c95c 6416 and then Ekind (Entity (Target)) in E_Constant | E_Variable
4ac2bbbd
AC
6417 then
6418 Set_Last_Aggregate_Assignment (Entity (Target), Last (Aggr_Code));
6419 end if;
07fc65c4 6420 end;
70482933 6421
6782b1ef
AC
6422 -- If the aggregate is the expression in a declaration, the expanded
6423 -- code must be inserted after it. The defining entity might not come
6424 -- from source if this is part of an inlined body, but the declaration
6425 -- itself will.
fff7a6d9 6426 -- The test below looks very specialized and kludgy???
6782b1ef
AC
6427
6428 if Comes_From_Source (Tmp)
6429 or else
6430 (Nkind (Parent (N)) = N_Object_Declaration
6431 and then Comes_From_Source (Parent (N))
6432 and then Tmp = Defining_Entity (Parent (N)))
6433 then
fff7a6d9 6434 if Parent_Kind /= N_Object_Declaration or else Is_Frozen (Tmp) then
cf6956bb 6435 Insert_Actions_After (Parent_Node, Aggr_Code);
fff7a6d9
AC
6436 else
6437 declare
6438 Comp_Stmt : constant Node_Id :=
6439 Make_Compound_Statement
6440 (Sloc (Parent_Node), Actions => Aggr_Code);
6441 begin
6442 Insert_Action_After (Parent_Node, Comp_Stmt);
6443 Set_Initialization_Statements (Tmp, Comp_Stmt);
6444 end;
6445 end if;
70482933
RK
6446 else
6447 Insert_Actions (N, Aggr_Code);
6448 end if;
6449
07fc65c4
GB
6450 -- If the aggregate has been assigned in place, remove the original
6451 -- assignment.
6452
a80b1eb7
EB
6453 if Parent_Kind = N_Assignment_Statement and then Maybe_In_Place_OK then
6454 Rewrite (Parent_Node, Make_Null_Statement (Loc));
70482933 6455
a80b1eb7
EB
6456 -- Or else, if a temporary was created, replace the aggregate with it
6457
6458 elsif Parent_Kind /= N_Object_Declaration
6459 or else Tmp /= Defining_Identifier (Parent_Node)
70482933
RK
6460 then
6461 Rewrite (N, New_Occurrence_Of (Tmp, Loc));
6462 Analyze_And_Resolve (N, Typ);
6463 end if;
6464 end Expand_Array_Aggregate;
6465
6466 ------------------------
6467 -- Expand_N_Aggregate --
6468 ------------------------
6469
6470 procedure Expand_N_Aggregate (N : Node_Id) is
74580e1b 6471 T : constant Entity_Id := Etype (N);
70482933 6472 begin
354c3840
AC
6473 -- Record aggregate case
6474
74580e1b
PT
6475 if Is_Record_Type (T)
6476 and then not Is_Private_Type (T)
765fc22c 6477 and then not Is_Homogeneous_Aggregate (N)
fe3463cc 6478 then
70482933 6479 Expand_Record_Aggregate (N);
354c3840 6480
74580e1b 6481 elsif Has_Aspect (T, Aspect_Aggregate) then
745f5698
ES
6482 Expand_Container_Aggregate (N);
6483
354c3840
AC
6484 -- Array aggregate case
6485
70482933 6486 else
354c3840
AC
6487 -- A special case, if we have a string subtype with bounds 1 .. N,
6488 -- where N is known at compile time, and the aggregate is of the
49eef89f
AC
6489 -- form (others => 'x'), with a single choice and no expressions,
6490 -- and N is less than 80 (an arbitrary limit for now), then replace
6491 -- the aggregate by the equivalent string literal (but do not mark
a90bd866 6492 -- it as static since it is not).
354c3840
AC
6493
6494 -- Note: this entire circuit is redundant with respect to code in
6495 -- Expand_Array_Aggregate that collapses others choices to positional
6496 -- form, but there are two problems with that circuit:
6497
6498 -- a) It is limited to very small cases due to ill-understood
b465ef6f 6499 -- interactions with bootstrapping. That limit is removed by
354c3840
AC
6500 -- use of the No_Implicit_Loops restriction.
6501
77a40ec1 6502 -- b) It incorrectly ends up with the resulting expressions being
354c3840
AC
6503 -- considered static when they are not. For example, the
6504 -- following test should fail:
6505
6506 -- pragma Restrictions (No_Implicit_Loops);
6507 -- package NonSOthers4 is
6508 -- B : constant String (1 .. 6) := (others => 'A');
6509 -- DH : constant String (1 .. 8) := B & "BB";
6510 -- X : Integer;
6511 -- pragma Export (C, X, Link_Name => DH);
6512 -- end;
6513
6514 -- But it succeeds (DH looks static to pragma Export)
6515
a90bd866 6516 -- To be sorted out ???
354c3840
AC
6517
6518 if Present (Component_Associations (N)) then
6519 declare
6520 CA : constant Node_Id := First (Component_Associations (N));
6521 MX : constant := 80;
6522
6523 begin
10c257af
ES
6524 if Present (CA)
6525 and then Nkind (First (Choice_List (CA))) = N_Others_Choice
354c3840 6526 and then Nkind (Expression (CA)) = N_Character_Literal
49eef89f 6527 and then No (Expressions (N))
354c3840
AC
6528 then
6529 declare
53f2aaf0
PT
6530 X : constant Node_Id := First_Index (T);
6531 EC : constant Node_Id := Expression (CA);
6532 CV : constant Uint := Char_Literal_Value (EC);
6533 CC : constant Char_Code := UI_To_CC (CV);
354c3840
AC
6534
6535 begin
6536 if Nkind (X) = N_Range
6537 and then Compile_Time_Known_Value (Low_Bound (X))
6538 and then Expr_Value (Low_Bound (X)) = 1
6539 and then Compile_Time_Known_Value (High_Bound (X))
6540 then
6541 declare
6542 Hi : constant Uint := Expr_Value (High_Bound (X));
6543
6544 begin
6545 if Hi <= MX then
6546 Start_String;
6547
6548 for J in 1 .. UI_To_Int (Hi) loop
53f2aaf0 6549 Store_String_Char (CC);
354c3840
AC
6550 end loop;
6551
6552 Rewrite (N,
6553 Make_String_Literal (Sloc (N),
6554 Strval => End_String));
6555
53f2aaf0
PT
6556 if In_Character_Range (CC) then
6557 null;
6558 elsif In_Wide_Character_Range (CC) then
354c3840 6559 Set_Has_Wide_Character (N);
53f2aaf0
PT
6560 else
6561 Set_Has_Wide_Wide_Character (N);
354c3840
AC
6562 end if;
6563
6564 Analyze_And_Resolve (N, T);
6565 Set_Is_Static_Expression (N, False);
6566 return;
6567 end if;
6568 end;
6569 end if;
6570 end;
6571 end if;
6572 end;
6573 end if;
6574
6575 -- Not that special case, so normal expansion of array aggregate
6576
70482933
RK
6577 Expand_Array_Aggregate (N);
6578 end if;
bdc193ba 6579
fbf5a39b
AC
6580 exception
6581 when RE_Not_Available =>
6582 return;
70482933
RK
6583 end Expand_N_Aggregate;
6584
745f5698
ES
6585 --------------------------------
6586 -- Expand_Container_Aggregate --
6587 --------------------------------
6588
6589 procedure Expand_Container_Aggregate (N : Node_Id) is
ce59f39f
GD
6590 Loc : constant Source_Ptr := Sloc (N);
6591 Typ : constant Entity_Id := Etype (N);
6592 Asp : constant Node_Id := Find_Value_Of_Aspect (Typ, Aspect_Aggregate);
745f5698
ES
6593
6594 Empty_Subp : Node_Id := Empty;
6595 Add_Named_Subp : Node_Id := Empty;
6596 Add_Unnamed_Subp : Node_Id := Empty;
6597 New_Indexed_Subp : Node_Id := Empty;
6598 Assign_Indexed_Subp : Node_Id := Empty;
6599
ce59f39f
GD
6600 Aggr_Code : constant List_Id := New_List;
6601 Temp : constant Entity_Id := Make_Temporary (Loc, 'C', N);
745f5698 6602
4f6ebe2a 6603 Comp : Node_Id;
745f5698 6604 Decl : Node_Id;
08c8883f 6605 Default : Node_Id;
ce59f39f 6606 Init_Stat : Node_Id;
08c8883f
ES
6607 Siz : Int;
6608
13112239
ES
6609 -- The following are used when the size of the aggregate is not
6610 -- static and requires a dynamic evaluation.
6611 Siz_Decl : Node_Id;
6612 Siz_Exp : Node_Id := Empty;
6613 Count_Type : Entity_Id;
6614
08c8883f
ES
6615 function Aggregate_Size return Int;
6616 -- Compute number of entries in aggregate, including choices
13112239 6617 -- that cover a range or subtype, as well as iterated constructs.
08c8883f 6618 -- Return -1 if the size is not known statically, in which case
13112239
ES
6619 -- allocate a default size for the aggregate, or build an expression
6620 -- to estimate the size dynamically.
6621
6622 function Build_Siz_Exp (Comp : Node_Id) return Int;
6623 -- When the aggregate contains a single Iterated_Component_Association
6624 -- or Element_Association with non-static bounds, build an expression
6625 -- to be used as the allocated size of the container. This may be an
6626 -- overestimate if a filter is present, but is a safe approximation.
fe43084c
ES
6627 -- If bounds are dynamic the aggregate is created in two passes, and
6628 -- the first generates a loop for the sole purpose of computing the
41a7b948 6629 -- number of elements that will be generated on the second pass.
ce59f39f 6630
7a21651f
ES
6631 procedure Expand_Iterated_Component (Comp : Node_Id);
6632 -- Handle iterated_component_association and iterated_Element
6633 -- association by generating a loop over the specified range,
6634 -- given either by a loop parameter specification or an iterator
6635 -- specification.
6636
08c8883f
ES
6637 --------------------
6638 -- Aggregate_Size --
6639 --------------------
6640
6641 function Aggregate_Size return Int is
6642 Comp : Node_Id;
6643 Choice : Node_Id;
6644 Lo, Hi : Node_Id;
ef7a3876 6645 Siz : Int;
08c8883f
ES
6646
6647 procedure Add_Range_Size;
13112239
ES
6648 -- Compute number of components specified by a component association
6649 -- given by a range or subtype name.
6650
6651 --------------------
6652 -- Add_Range_Size --
6653 --------------------
08c8883f
ES
6654
6655 procedure Add_Range_Size is
6656 begin
13112239
ES
6657 -- The bounds of the discrete range are integers or enumeration
6658 -- literals
6659
08c8883f
ES
6660 if Nkind (Lo) = N_Integer_Literal then
6661 Siz := Siz + UI_To_Int (Intval (Hi))
13112239
ES
6662 - UI_To_Int (Intval (Lo)) + 1;
6663 else
6664 Siz := Siz + UI_To_Int (Enumeration_Pos (Hi))
6665 - UI_To_Int (Enumeration_Pos (Lo)) + 1;
08c8883f
ES
6666 end if;
6667 end Add_Range_Size;
6668
6669 begin
ef7a3876 6670 -- Aggregate is either all positional or all named
13112239 6671
ef7a3876 6672 Siz := List_Length (Expressions (N));
08c8883f
ES
6673
6674 if Present (Component_Associations (N)) then
6675 Comp := First (Component_Associations (N));
13112239
ES
6676 -- If there is a single component association it can be
6677 -- an iterated component with dynamic bounds or an element
6678 -- iterator over an iterable object. If it is an array
6679 -- we can use the attribute Length to get its size;
6680 -- for a predefined container the function Length plays
6681 -- the same role. There is no available mechanism for
6682 -- user-defined containers. For now we treat all of these
6683 -- as dynamic.
6684
6685 if List_Length (Component_Associations (N)) = 1
6686 and then Nkind (Comp) in N_Iterated_Component_Association |
6687 N_Iterated_Element_Association
6688 then
6689 return Build_Siz_Exp (Comp);
daaf0179
ES
6690 end if;
6691
13112239
ES
6692 -- Otherwise all associations must specify static sizes.
6693
08c8883f
ES
6694 while Present (Comp) loop
6695 Choice := First (Choice_List (Comp));
6696
6697 while Present (Choice) loop
6698 Analyze (Choice);
6699
6700 if Nkind (Choice) = N_Range then
6701 Lo := Low_Bound (Choice);
6702 Hi := High_Bound (Choice);
13112239 6703 Add_Range_Size;
08c8883f
ES
6704
6705 elsif Is_Entity_Name (Choice)
6706 and then Is_Type (Entity (Choice))
6707 then
6708 Lo := Type_Low_Bound (Entity (Choice));
6709 Hi := Type_High_Bound (Entity (Choice));
13112239 6710 Add_Range_Size;
08c8883f
ES
6711
6712 Rewrite (Choice,
6713 Make_Range (Loc,
6714 New_Copy_Tree (Lo),
6715 New_Copy_Tree (Hi)));
6716
6717 else
6718 -- Single choice (syntax excludes a subtype
6719 -- indication).
6720
6721 Siz := Siz + 1;
6722 end if;
6723
6724 Next (Choice);
6725 end loop;
6726 Next (Comp);
6727 end loop;
6728 end if;
6729
6730 return Siz;
6731 end Aggregate_Size;
6732
13112239
ES
6733 -------------------
6734 -- Build_Siz_Exp --
6735 -------------------
6736
6737 function Build_Siz_Exp (Comp : Node_Id) return Int is
6738 Lo, Hi : Node_Id;
6739 begin
6740 if Nkind (Comp) = N_Range then
6741 Lo := Low_Bound (Comp);
6742 Hi := High_Bound (Comp);
6743 Analyze (Lo);
6744 Analyze (Hi);
6745
6746 -- Compute static size when possible.
6747
6748 if Is_Static_Expression (Lo)
6749 and then Is_Static_Expression (Hi)
6750 then
6751 if Nkind (Lo) = N_Integer_Literal then
6752 Siz := UI_To_Int (Intval (Hi)) - UI_To_Int (Intval (Lo)) + 1;
6753 else
6754 Siz := UI_To_Int (Enumeration_Pos (Hi))
6755 - UI_To_Int (Enumeration_Pos (Lo)) + 1;
6756 end if;
6757 return Siz;
6758
6759 else
6760 Siz_Exp :=
6761 Make_Op_Add (Sloc (Comp),
6762 Left_Opnd =>
6763 Make_Op_Subtract (Sloc (Comp),
6764 Left_Opnd => New_Copy_Tree (Hi),
6765 Right_Opnd => New_Copy_Tree (Lo)),
6766 Right_Opnd =>
6767 Make_Integer_Literal (Loc, 1));
6768 return -1;
6769 end if;
6770
6771 elsif Nkind (Comp) = N_Iterated_Component_Association then
6772 return Build_Siz_Exp (First (Discrete_Choices (Comp)));
6773
6774 elsif Nkind (Comp) = N_Iterated_Element_Association then
fe43084c
ES
6775 return -1;
6776
8b1a5da3 6777 -- ??? Need to create code for a loop and add to generated code,
fe43084c
ES
6778 -- as is done for array aggregates with iterated element
6779 -- associations, instead of using Append operations.
13112239
ES
6780
6781 else
6782 return -1;
6783 end if;
6784 end Build_Siz_Exp;
6785
4f6ebe2a
ES
6786 -------------------------------
6787 -- Expand_Iterated_Component --
6788 -------------------------------
6789
6790 procedure Expand_Iterated_Component (Comp : Node_Id) is
6791 Expr : constant Node_Id := Expression (Comp);
4f6ebe2a 6792
c0bab60b
ES
6793 Key_Expr : Node_Id := Empty;
6794 Loop_Id : Entity_Id;
4f6ebe2a
ES
6795 L_Range : Node_Id;
6796 L_Iteration_Scheme : Node_Id;
6797 Loop_Stat : Node_Id;
f3f1debe 6798 Params : List_Id;
4f6ebe2a
ES
6799 Stats : List_Id;
6800
6801 begin
c0bab60b
ES
6802 if Nkind (Comp) = N_Iterated_Element_Association then
6803 Key_Expr := Key_Expression (Comp);
6804
6805 -- We create a new entity as loop identifier in all cases,
6806 -- as is done for generated loops elsewhere, as the loop
6807 -- structure has been previously analyzed.
6808
6809 if Present (Iterator_Specification (Comp)) then
6810
fe43084c 6811 -- Either an Iterator_Specification or a Loop_Parameter_
c0bab60b
ES
6812 -- Specification is present.
6813
6814 L_Iteration_Scheme :=
6815 Make_Iteration_Scheme (Loc,
6816 Iterator_Specification => Iterator_Specification (Comp));
6817 Loop_Id :=
6818 Make_Defining_Identifier (Loc,
6819 Chars => Chars (Defining_Identifier
6820 (Iterator_Specification (Comp))));
6821 Set_Defining_Identifier
6822 (Iterator_Specification (L_Iteration_Scheme), Loop_Id);
6823
6824 else
6825 L_Iteration_Scheme :=
6826 Make_Iteration_Scheme (Loc,
6827 Loop_Parameter_Specification =>
6828 Loop_Parameter_Specification (Comp));
6829 Loop_Id :=
f3f1debe
ES
6830 Make_Defining_Identifier (Loc,
6831 Chars => Chars (Defining_Identifier
6832 (Loop_Parameter_Specification (Comp))));
c0bab60b 6833 Set_Defining_Identifier
f3f1debe
ES
6834 (Loop_Parameter_Specification
6835 (L_Iteration_Scheme), Loop_Id);
c0bab60b 6836 end if;
f3f1debe 6837 else
c0bab60b 6838
f3f1debe 6839 -- Iterated_Component_Association.
8092c199 6840
f3f1debe 6841 if Present (Iterator_Specification (Comp)) then
d983abeb
PT
6842 Loop_Id :=
6843 Make_Defining_Identifier (Loc,
6844 Chars => Chars (Defining_Identifier
6845 (Iterator_Specification (Comp))));
f3f1debe
ES
6846 L_Iteration_Scheme :=
6847 Make_Iteration_Scheme (Loc,
6848 Iterator_Specification => Iterator_Specification (Comp));
6849
6850 else
41a7b948 6851 -- Loop_Parameter_Specification is parsed with a choice list.
f3f1debe
ES
6852 -- where the range is the first (and only) choice.
6853
d983abeb
PT
6854 Loop_Id :=
6855 Make_Defining_Identifier (Loc,
6856 Chars => Chars (Defining_Identifier (Comp)));
f3f1debe
ES
6857 L_Range := Relocate_Node (First (Discrete_Choices (Comp)));
6858
6859 L_Iteration_Scheme :=
6860 Make_Iteration_Scheme (Loc,
6861 Loop_Parameter_Specification =>
6862 Make_Loop_Parameter_Specification (Loc,
6863 Defining_Identifier => Loop_Id,
6864 Discrete_Subtype_Definition => L_Range));
6865 end if;
8092c199 6866 end if;
4f6ebe2a 6867
0b4034c0
GD
6868 -- Build insertion statement. For a positional aggregate, only the
6869 -- expression is needed. For a named aggregate, the loop variable,
6870 -- whose type is that of the key, is an additional parameter for
6871 -- the insertion operation.
c0bab60b
ES
6872 -- If a Key_Expression is present, it serves as the additional
6873 -- parameter. Otherwise the key is given by the loop parameter
6874 -- itself.
4f6ebe2a 6875
13112239
ES
6876 if Present (Add_Unnamed_Subp)
6877 and then No (Add_Named_Subp)
6878 then
4f6ebe2a
ES
6879 Stats := New_List
6880 (Make_Procedure_Call_Statement (Loc,
0b4034c0
GD
6881 Name => New_Occurrence_Of (Entity (Add_Unnamed_Subp), Loc),
6882 Parameter_Associations =>
6883 New_List (New_Occurrence_Of (Temp, Loc),
4f6ebe2a
ES
6884 New_Copy_Tree (Expr))));
6885 else
c0bab60b
ES
6886 -- Named or indexed aggregate, for which a key is present,
6887 -- possibly with a specified key_expression.
6888
6889 if Present (Key_Expr) then
f3f1debe
ES
6890 Params := New_List (New_Occurrence_Of (Temp, Loc),
6891 New_Copy_Tree (Key_Expr),
6892 New_Copy_Tree (Expr));
c0bab60b 6893 else
f3f1debe
ES
6894 Params := New_List (New_Occurrence_Of (Temp, Loc),
6895 New_Occurrence_Of (Loop_Id, Loc),
6896 New_Copy_Tree (Expr));
c0bab60b 6897 end if;
f3f1debe
ES
6898
6899 Stats := New_List
6900 (Make_Procedure_Call_Statement (Loc,
6901 Name => New_Occurrence_Of (Entity (Add_Named_Subp), Loc),
6902 Parameter_Associations => Params));
4f6ebe2a
ES
6903 end if;
6904
d43fbe01
PT
6905 Loop_Stat := Make_Implicit_Loop_Statement
6906 (Node => N,
6907 Identifier => Empty,
6908 Iteration_Scheme => L_Iteration_Scheme,
6909 Statements => Stats);
4f6ebe2a 6910 Append (Loop_Stat, Aggr_Code);
7a21651f 6911
4f6ebe2a
ES
6912 end Expand_Iterated_Component;
6913
00b21aa9 6914 -- Start of processing for Expand_Container_Aggregate
08c8883f 6915
745f5698
ES
6916 begin
6917 Parse_Aspect_Aggregate (Asp,
6918 Empty_Subp, Add_Named_Subp, Add_Unnamed_Subp,
6919 New_Indexed_Subp, Assign_Indexed_Subp);
08c8883f
ES
6920
6921 -- The constructor for bounded containers is a function with
6922 -- a parameter that sets the size of the container. If the
13112239
ES
6923 -- size cannot be determined statically we use a default value
6924 -- or a dynamic expression.
08c8883f
ES
6925
6926 Siz := Aggregate_Size;
7a21651f 6927
67138e09
JM
6928 ---------------------
6929 -- Empty function --
6930 ---------------------
6931
08c8883f
ES
6932 if Ekind (Entity (Empty_Subp)) = E_Function
6933 and then Present (First_Formal (Entity (Empty_Subp)))
6934 then
6935 Default := Default_Value (First_Formal (Entity (Empty_Subp)));
13112239
ES
6936
6937 -- If aggregate size is not static, we can use default value
6938 -- of formal parameter for allocation. We assume that this
08c8883f 6939 -- (implementation-dependent) value is static, even though
13112239
ES
6940 -- the AI does not require it.
6941
6942 -- Create declaration for size: a constant literal in the simple
6943 -- case, an expression if iterated component associations may be
6944 -- involved, the default otherwise.
08c8883f 6945
13112239
ES
6946 Count_Type := Etype (First_Formal (Entity (Empty_Subp)));
6947 if Siz = -1 then
6948 if No (Siz_Exp) then
6949 Siz := UI_To_Int (Intval (Default));
6950 Siz_Exp := Make_Integer_Literal (Loc, Siz);
6951
6952 else
6953 Siz_Exp := Make_Type_Conversion (Loc,
6954 Subtype_Mark =>
6955 New_Occurrence_Of (Count_Type, Loc),
6956 Expression => Siz_Exp);
6957 end if;
6958
6959 else
6960 Siz_Exp := Make_Integer_Literal (Loc, Siz);
08c8883f
ES
6961 end if;
6962
13112239
ES
6963 Siz_Decl := Make_Object_Declaration (Loc,
6964 Defining_Identifier => Make_Temporary (Loc, 'S', N),
6965 Object_Definition =>
6966 New_Occurrence_Of (Count_Type, Loc),
6967 Expression => Siz_Exp);
6968 Append (Siz_Decl, Aggr_Code);
6969
6970 if Nkind (Siz_Exp) = N_Integer_Literal then
6971 Init_Stat :=
6972 Make_Object_Declaration (Loc,
6973 Defining_Identifier => Temp,
6974 Object_Definition => New_Occurrence_Of (Typ, Loc),
6975 Expression => Make_Function_Call (Loc,
6976 Name => New_Occurrence_Of (Entity (Empty_Subp), Loc),
6977 Parameter_Associations =>
6978 New_List
6979 (New_Occurrence_Of
6980 (Defining_Identifier (Siz_Decl), Loc))));
6981
6982 else
6983 Init_Stat :=
6984 Make_Object_Declaration (Loc,
6985 Defining_Identifier => Temp,
6986 Object_Definition => New_Occurrence_Of (Typ, Loc),
6987 Expression => Make_Function_Call (Loc,
6988 Name =>
6989 New_Occurrence_Of (Entity (New_Indexed_Subp), Loc),
6990 Parameter_Associations =>
6991 New_List (
6992 Make_Integer_Literal (Loc, 1),
6993 New_Occurrence_Of
6994 (Defining_Identifier (Siz_Decl), Loc))));
6995 end if;
08c8883f
ES
6996
6997 Append (Init_Stat, Aggr_Code);
6998
67138e09 6999 -- Size is dynamic: Create declaration for object, and initialize
13112239 7000 -- with a call to the null container, or an assignment to it.
08c8883f
ES
7001
7002 else
7003 Decl :=
7004 Make_Object_Declaration (Loc,
7005 Defining_Identifier => Temp,
7006 Object_Definition => New_Occurrence_Of (Typ, Loc));
7007
7008 Insert_Action (N, Decl);
13112239
ES
7009
7010 -- The Empty entity is either a parameterless function, or
7011 -- a constant.
7012
08c8883f
ES
7013 if Ekind (Entity (Empty_Subp)) = E_Function then
7014 Init_Stat := Make_Assignment_Statement (Loc,
7015 Name => New_Occurrence_Of (Temp, Loc),
7016 Expression => Make_Function_Call (Loc,
7017 Name => New_Occurrence_Of (Entity (Empty_Subp), Loc)));
13112239 7018
08c8883f
ES
7019 else
7020 Init_Stat := Make_Assignment_Statement (Loc,
7021 Name => New_Occurrence_Of (Temp, Loc),
7022 Expression => New_Occurrence_Of (Entity (Empty_Subp), Loc));
7023 end if;
7024
7025 Append (Init_Stat, Aggr_Code);
7026 end if;
745f5698 7027
67138e09
JM
7028 -- Report warning on infinite recursion if an empty container aggregate
7029 -- appears in the return statement of its Empty function.
7030
7031 if Ekind (Entity (Empty_Subp)) = E_Function
7032 and then Nkind (Parent (N)) = N_Simple_Return_Statement
7033 and then Is_Empty_List (Expressions (N))
7034 and then Is_Empty_List (Component_Associations (N))
7035 and then Entity (Empty_Subp) = Current_Scope
7036 then
7037 Error_Msg_Warn := SPARK_Mode /= On;
7038 Error_Msg_N
7039 ("!empty aggregate returned by the empty function of a container"
7040 & " aggregate<<<", Parent (N));
7041 Error_Msg_N
7042 ("\this will result in infinite recursion??", Parent (N));
7043 end if;
7044
7a21651f
ES
7045 ---------------------------
7046 -- Positional aggregate --
7047 ---------------------------
745f5698 7048
08c8883f
ES
7049 -- If the aggregate is positional the aspect must include
7050 -- an Add_Unnamed subprogram.
7051
13112239 7052 if Present (Add_Unnamed_Subp) then
4f6ebe2a
ES
7053 if Present (Expressions (N)) then
7054 declare
7055 Insert : constant Entity_Id := Entity (Add_Unnamed_Subp);
7056 Comp : Node_Id;
7057 Stat : Node_Id;
7058
7059 begin
7060 Comp := First (Expressions (N));
7061 while Present (Comp) loop
7062 Stat := Make_Procedure_Call_Statement (Loc,
7063 Name => New_Occurrence_Of (Insert, Loc),
7064 Parameter_Associations =>
7065 New_List (New_Occurrence_Of (Temp, Loc),
0b4034c0 7066 New_Copy_Tree (Comp)));
4f6ebe2a
ES
7067 Append (Stat, Aggr_Code);
7068 Next (Comp);
7069 end loop;
7070 end;
7071 end if;
7072
13112239
ES
7073 -- Indexed aggregates are handled below. Unnamed aggregates
7074 -- such as sets may include iterated component associations.
4f6ebe2a 7075
13112239
ES
7076 if No (New_Indexed_Subp) then
7077 Comp := First (Component_Associations (N));
7078 while Present (Comp) loop
7079 if Nkind (Comp) = N_Iterated_Component_Association then
7080 Expand_Iterated_Component (Comp);
7081 end if;
7082 Next (Comp);
7083 end loop;
7084 end if;
4f6ebe2a 7085
7a21651f
ES
7086 ---------------------
7087 -- Named_Aggregate --
7088 ---------------------
7089
4f6ebe2a 7090 elsif Present (Add_Named_Subp) then
ce59f39f 7091 declare
4f6ebe2a 7092 Insert : constant Entity_Id := Entity (Add_Named_Subp);
ce59f39f 7093 Stat : Node_Id;
4f6ebe2a 7094 Key : Node_Id;
ce59f39f 7095 begin
4f6ebe2a
ES
7096 Comp := First (Component_Associations (N));
7097
0b4034c0 7098 -- Each component association may contain several choices;
4f6ebe2a
ES
7099 -- generate an insertion statement for each.
7100
ce59f39f 7101 while Present (Comp) loop
c0bab60b
ES
7102 if Nkind (Comp) in N_Iterated_Component_Association
7103 | N_Iterated_Element_Association
7104 then
4f6ebe2a
ES
7105 Expand_Iterated_Component (Comp);
7106 else
7107 Key := First (Choices (Comp));
7108
7109 while Present (Key) loop
7110 Stat := Make_Procedure_Call_Statement (Loc,
7111 Name => New_Occurrence_Of (Insert, Loc),
7112 Parameter_Associations =>
7113 New_List (New_Occurrence_Of (Temp, Loc),
0b4034c0
GD
7114 New_Copy_Tree (Key),
7115 New_Copy_Tree (Expression (Comp))));
4f6ebe2a
ES
7116 Append (Stat, Aggr_Code);
7117
7118 Next (Key);
7119 end loop;
7120 end if;
7121
ce59f39f
GD
7122 Next (Comp);
7123 end loop;
7124 end;
08c8883f 7125 end if;
7a21651f
ES
7126
7127 -----------------------
7128 -- Indexed_Aggregate --
7129 -----------------------
7130
08c8883f
ES
7131 -- For an indexed aggregate there must be an Assigned_Indexeed
7132 -- subprogram. Note that unlike array aggregates, a container
7133 -- aggregate must be fully positional or fully indexed. In the
7134 -- first case the expansion has already taken place.
13112239
ES
7135 -- TBA: the keys for an indexed aggregate must provide a dense
7136 -- range with no repetitions.
08c8883f
ES
7137
7138 if Present (Assign_Indexed_Subp)
7139 and then Present (Component_Associations (N))
7140 then
7a21651f
ES
7141 declare
7142 Insert : constant Entity_Id := Entity (Assign_Indexed_Subp);
7143 Index_Type : constant Entity_Id :=
7144 Etype (Next_Formal (First_Formal (Insert)));
7145
7a21651f
ES
7146 function Expand_Range_Component
7147 (Rng : Node_Id;
7148 Expr : Node_Id) return Node_Id;
7149 -- Transform a component assoication with a range into an
7150 -- explicit loop. If the choice is a subtype name, it is
7151 -- rewritten as a range with the corresponding bounds, which
7152 -- are known to be static.
7153
7154 Comp : Node_Id;
7155 Index : Node_Id;
7156 Pos : Int := 0;
7157 Stat : Node_Id;
7158 Key : Node_Id;
7a21651f
ES
7159
7160 -----------------------------
7161 -- Expand_Raange_Component --
7162 -----------------------------
7163
7164 function Expand_Range_Component
7165 (Rng : Node_Id;
7166 Expr : Node_Id) return Node_Id
7167 is
7168 Loop_Id : constant Entity_Id :=
7169 Make_Temporary (Loc, 'T');
7170
7171 L_Iteration_Scheme : Node_Id;
7172 Stats : List_Id;
7173
7174 begin
7175 L_Iteration_Scheme :=
7176 Make_Iteration_Scheme (Loc,
7177 Loop_Parameter_Specification =>
7178 Make_Loop_Parameter_Specification (Loc,
7179 Defining_Identifier => Loop_Id,
7180 Discrete_Subtype_Definition => New_Copy_Tree (Rng)));
7181
7182 Stats := New_List
7183 (Make_Procedure_Call_Statement (Loc,
7184 Name =>
7185 New_Occurrence_Of (Entity (Assign_Indexed_Subp), Loc),
7186 Parameter_Associations =>
7187 New_List (New_Occurrence_Of (Temp, Loc),
7188 New_Occurrence_Of (Loop_Id, Loc),
7189 New_Copy_Tree (Expr))));
7190
7191 return Make_Implicit_Loop_Statement
7192 (Node => N,
7193 Identifier => Empty,
7194 Iteration_Scheme => L_Iteration_Scheme,
7195 Statements => Stats);
7196 end Expand_Range_Component;
7197
7a21651f 7198 begin
08c8883f 7199 if Siz > 0 then
7a21651f
ES
7200
7201 -- Modify the call to the constructor to allocate the
7202 -- required size for the aggregwte : call the provided
7203 -- constructor rather than the Empty aggregate.
7204
d43fbe01 7205 Index := Make_Op_Add (Loc,
7a21651f 7206 Left_Opnd => New_Copy_Tree (Type_Low_Bound (Index_Type)),
08c8883f 7207 Right_Opnd => Make_Integer_Literal (Loc, Siz - 1));
7a21651f
ES
7208
7209 Set_Expression (Init_Stat,
7210 Make_Function_Call (Loc,
7211 Name =>
7212 New_Occurrence_Of (Entity (New_Indexed_Subp), Loc),
7213 Parameter_Associations =>
7214 New_List (
7215 New_Copy_Tree (Type_Low_Bound (Index_Type)),
7216 Index)));
7217 end if;
7218
7219 if Present (Expressions (N)) then
7220 Comp := First (Expressions (N));
7221
7222 while Present (Comp) loop
7223
7224 -- Compute index position for successive components
7225 -- in the list of expressions, and use the indexed
7226 -- assignment procedure for each.
7227
7228 Index := Make_Op_Add (Loc,
7229 Left_Opnd => Type_Low_Bound (Index_Type),
7230 Right_Opnd => Make_Integer_Literal (Loc, Pos));
7231
7232 Stat := Make_Procedure_Call_Statement (Loc,
7233 Name => New_Occurrence_Of (Insert, Loc),
7234 Parameter_Associations =>
7235 New_List (New_Occurrence_Of (Temp, Loc),
7236 Index,
7237 New_Copy_Tree (Comp)));
7238
7239 Pos := Pos + 1;
7240
7241 Append (Stat, Aggr_Code);
7242 Next (Comp);
7243 end loop;
7244 end if;
7245
7246 if Present (Component_Associations (N)) then
7247 Comp := First (Component_Associations (N));
7248
7249 -- The choice may be a static value, or a range with
7250 -- static bounds.
7251
7252 while Present (Comp) loop
7253 if Nkind (Comp) = N_Component_Association then
7254 Key := First (Choices (Comp));
7255 while Present (Key) loop
7256
7257 -- If the expression is a box, the corresponding
7258 -- component (s) is left uninitialized.
7259
7260 if Box_Present (Comp) then
7261 goto Next_Key;
7262
7263 elsif Nkind (Key) = N_Range then
7264
7265 -- Create loop for tne specified range,
7266 -- with copies of the expression.
7267
7268 Stat :=
7269 Expand_Range_Component (Key, Expression (Comp));
7270
7271 else
7272 Stat := Make_Procedure_Call_Statement (Loc,
7273 Name => New_Occurrence_Of
7274 (Entity (Assign_Indexed_Subp), Loc),
7275 Parameter_Associations =>
7276 New_List (New_Occurrence_Of (Temp, Loc),
7277 New_Copy_Tree (Key),
7278 New_Copy_Tree (Expression (Comp))));
7279 end if;
7280
7281 Append (Stat, Aggr_Code);
7282
7283 <<Next_Key>>
7284 Next (Key);
7285 end loop;
08c8883f 7286
7a21651f 7287 else
08c8883f
ES
7288 -- Iterated component association. Discard
7289 -- positional insertion procedure.
7290
a6ca70c6
VI
7291 if not Present (Iterator_Specification (Comp)) then
7292 Add_Named_Subp := Assign_Indexed_Subp;
7293 Add_Unnamed_Subp := Empty;
7294 end if;
7295
08c8883f 7296 Expand_Iterated_Component (Comp);
7a21651f 7297 end if;
08c8883f 7298
7a21651f
ES
7299 Next (Comp);
7300 end loop;
7301 end if;
7302 end;
ce59f39f 7303 end if;
4f6ebe2a 7304
ce59f39f
GD
7305 Insert_Actions (N, Aggr_Code);
7306 Rewrite (N, New_Occurrence_Of (Temp, Loc));
7307 Analyze_And_Resolve (N, Typ);
745f5698
ES
7308 end Expand_Container_Aggregate;
7309
9eb8d5b4
AC
7310 ------------------------------
7311 -- Expand_N_Delta_Aggregate --
7312 ------------------------------
7313
7314 procedure Expand_N_Delta_Aggregate (N : Node_Id) is
9313a26a 7315 Loc : constant Source_Ptr := Sloc (N);
c78efe92 7316 Typ : constant Entity_Id := Etype (Expression (N));
9eb8d5b4
AC
7317 Decl : Node_Id;
7318
7319 begin
9313a26a
AC
7320 Decl :=
7321 Make_Object_Declaration (Loc,
7322 Defining_Identifier => Make_Temporary (Loc, 'T'),
7323 Object_Definition => New_Occurrence_Of (Typ, Loc),
7324 Expression => New_Copy_Tree (Expression (N)));
9eb8d5b4
AC
7325
7326 if Is_Array_Type (Etype (N)) then
7327 Expand_Delta_Array_Aggregate (N, New_List (Decl));
7328 else
7329 Expand_Delta_Record_Aggregate (N, New_List (Decl));
7330 end if;
7331 end Expand_N_Delta_Aggregate;
7332
7333 ----------------------------------
7334 -- Expand_Delta_Array_Aggregate --
7335 ----------------------------------
7336
7337 procedure Expand_Delta_Array_Aggregate (N : Node_Id; Deltas : List_Id) is
9313a26a
AC
7338 Loc : constant Source_Ptr := Sloc (N);
7339 Temp : constant Entity_Id := Defining_Identifier (First (Deltas));
7340 Assoc : Node_Id;
7341
9eb8d5b4
AC
7342 function Generate_Loop (C : Node_Id) return Node_Id;
7343 -- Generate a loop containing individual component assignments for
7344 -- choices that are ranges, subtype indications, subtype names, and
7345 -- iterated component associations.
7346
9313a26a
AC
7347 -------------------
7348 -- Generate_Loop --
7349 -------------------
7350
9eb8d5b4
AC
7351 function Generate_Loop (C : Node_Id) return Node_Id is
7352 Sl : constant Source_Ptr := Sloc (C);
7353 Ix : Entity_Id;
7354
7355 begin
7356 if Nkind (Parent (C)) = N_Iterated_Component_Association then
7357 Ix :=
7358 Make_Defining_Identifier (Loc,
7359 Chars => (Chars (Defining_Identifier (Parent (C)))));
7360 else
7361 Ix := Make_Temporary (Sl, 'I');
7362 end if;
7363
7364 return
f3561c06 7365 Make_Implicit_Loop_Statement (C,
9313a26a
AC
7366 Iteration_Scheme =>
7367 Make_Iteration_Scheme (Sl,
7368 Loop_Parameter_Specification =>
7369 Make_Loop_Parameter_Specification (Sl,
7370 Defining_Identifier => Ix,
7371 Discrete_Subtype_Definition => New_Copy_Tree (C))),
7372
7373 Statements => New_List (
7374 Make_Assignment_Statement (Sl,
7375 Name =>
7376 Make_Indexed_Component (Sl,
9eb8d5b4
AC
7377 Prefix => New_Occurrence_Of (Temp, Sl),
7378 Expressions => New_List (New_Occurrence_Of (Ix, Sl))),
9313a26a
AC
7379 Expression => New_Copy_Tree (Expression (Assoc)))),
7380 End_Label => Empty);
9eb8d5b4
AC
7381 end Generate_Loop;
7382
9313a26a
AC
7383 -- Local variables
7384
7385 Choice : Node_Id;
7386
7387 -- Start of processing for Expand_Delta_Array_Aggregate
7388
9eb8d5b4
AC
7389 begin
7390 Assoc := First (Component_Associations (N));
7391 while Present (Assoc) loop
7392 Choice := First (Choice_List (Assoc));
7393 if Nkind (Assoc) = N_Iterated_Component_Association then
7394 while Present (Choice) loop
7395 Append_To (Deltas, Generate_Loop (Choice));
7396 Next (Choice);
7397 end loop;
7398
7399 else
7400 while Present (Choice) loop
7401
7402 -- Choice can be given by a range, a subtype indication, a
7403 -- subtype name, a scalar value, or an entity.
7404
7405 if Nkind (Choice) = N_Range
7406 or else (Is_Entity_Name (Choice)
9313a26a 7407 and then Is_Type (Entity (Choice)))
9eb8d5b4
AC
7408 then
7409 Append_To (Deltas, Generate_Loop (Choice));
7410
7411 elsif Nkind (Choice) = N_Subtype_Indication then
7412 Append_To (Deltas,
7413 Generate_Loop (Range_Expression (Constraint (Choice))));
7414
7415 else
7416 Append_To (Deltas,
9313a26a
AC
7417 Make_Assignment_Statement (Sloc (Choice),
7418 Name =>
7419 Make_Indexed_Component (Sloc (Choice),
7420 Prefix => New_Occurrence_Of (Temp, Loc),
7421 Expressions => New_List (New_Copy_Tree (Choice))),
7422 Expression => New_Copy_Tree (Expression (Assoc))));
9eb8d5b4
AC
7423 end if;
7424
7425 Next (Choice);
7426 end loop;
7427 end if;
7428
7429 Next (Assoc);
7430 end loop;
7431
7432 Insert_Actions (N, Deltas);
7433 Rewrite (N, New_Occurrence_Of (Temp, Loc));
7434 end Expand_Delta_Array_Aggregate;
7435
7436 -----------------------------------
7437 -- Expand_Delta_Record_Aggregate --
7438 -----------------------------------
7439
7440 procedure Expand_Delta_Record_Aggregate (N : Node_Id; Deltas : List_Id) is
7441 Loc : constant Source_Ptr := Sloc (N);
7442 Temp : constant Entity_Id := Defining_Identifier (First (Deltas));
7443 Assoc : Node_Id;
7444 Choice : Node_Id;
7445
7446 begin
7447 Assoc := First (Component_Associations (N));
7448
7449 while Present (Assoc) loop
7450 Choice := First (Choice_List (Assoc));
7451 while Present (Choice) loop
7452 Append_To (Deltas,
9313a26a
AC
7453 Make_Assignment_Statement (Sloc (Choice),
7454 Name =>
7455 Make_Selected_Component (Sloc (Choice),
7456 Prefix => New_Occurrence_Of (Temp, Loc),
7457 Selector_Name => Make_Identifier (Loc, Chars (Choice))),
7458 Expression => New_Copy_Tree (Expression (Assoc))));
9eb8d5b4
AC
7459 Next (Choice);
7460 end loop;
7461
7462 Next (Assoc);
7463 end loop;
7464
7465 Insert_Actions (N, Deltas);
7466 Rewrite (N, New_Occurrence_Of (Temp, Loc));
7467 end Expand_Delta_Record_Aggregate;
7468
70482933
RK
7469 ----------------------------------
7470 -- Expand_N_Extension_Aggregate --
7471 ----------------------------------
7472
7473 -- If the ancestor part is an expression, add a component association for
7474 -- the parent field. If the type of the ancestor part is not the direct
d4dfb005
BD
7475 -- parent of the expected type, build recursively the needed ancestors.
7476 -- If the ancestor part is a subtype_mark, replace aggregate with a
7477 -- declaration for a temporary of the expected type, followed by
7478 -- individual assignments to the given components.
70482933
RK
7479
7480 procedure Expand_N_Extension_Aggregate (N : Node_Id) is
70482933 7481 A : constant Node_Id := Ancestor_Part (N);
3fc40cd7 7482 Loc : constant Source_Ptr := Sloc (N);
70482933
RK
7483 Typ : constant Entity_Id := Etype (N);
7484
7485 begin
fbf5a39b 7486 -- If the ancestor is a subtype mark, an init proc must be called
70482933
RK
7487 -- on the resulting object which thus has to be materialized in
7488 -- the front-end
7489
7490 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
7491 Convert_To_Assignments (N, Typ);
7492
7493 -- The extension aggregate is transformed into a record aggregate
7494 -- of the following form (c1 and c2 are inherited components)
7495
7496 -- (Exp with c3 => a, c4 => b)
0877856b 7497 -- ==> (c1 => Exp.c1, c2 => Exp.c2, c3 => a, c4 => b)
70482933
RK
7498
7499 else
7500 Set_Etype (N, Typ);
7501
1f110335 7502 if Tagged_Type_Expansion then
70482933 7503 Expand_Record_Aggregate (N,
a9d8907c
JM
7504 Orig_Tag =>
7505 New_Occurrence_Of
7506 (Node (First_Elmt (Access_Disp_Table (Typ))), Loc),
70482933 7507 Parent_Expr => A);
5c34e9cd
AC
7508
7509 -- No tag is needed in the case of a VM
7510
0f95b178 7511 else
5c34e9cd 7512 Expand_Record_Aggregate (N, Parent_Expr => A);
70482933
RK
7513 end if;
7514 end if;
fbf5a39b
AC
7515
7516 exception
7517 when RE_Not_Available =>
7518 return;
70482933
RK
7519 end Expand_N_Extension_Aggregate;
7520
7521 -----------------------------
7522 -- Expand_Record_Aggregate --
7523 -----------------------------
7524
7525 procedure Expand_Record_Aggregate
7526 (N : Node_Id;
7527 Orig_Tag : Node_Id := Empty;
7528 Parent_Expr : Node_Id := Empty)
7529 is
fbf5a39b
AC
7530 Loc : constant Source_Ptr := Sloc (N);
7531 Comps : constant List_Id := Component_Associations (N);
7532 Typ : constant Entity_Id := Etype (N);
7533 Base_Typ : constant Entity_Id := Base_Type (Typ);
70482933 7534
0f95b178
JM
7535 Static_Components : Boolean := True;
7536 -- Flag to indicate whether all components are compile-time known,
7537 -- and the aggregate can be constructed statically and handled by
d4dfb005 7538 -- the back-end. Set to False by Component_OK_For_Backend.
70482933 7539
54740d7d
AC
7540 procedure Build_Back_End_Aggregate;
7541 -- Build a proper aggregate to be handled by the back-end
7542
f6205414
AC
7543 function Compile_Time_Known_Composite_Value (N : Node_Id) return Boolean;
7544 -- Returns true if N is an expression of composite type which can be
7545 -- fully evaluated at compile time without raising constraint error.
7546 -- Such expressions can be passed as is to Gigi without any expansion.
7547 --
7548 -- This returns true for N_Aggregate with Compile_Time_Known_Aggregate
7549 -- set and constants whose expression is such an aggregate, recursively.
7550
d4dfb005 7551 function Component_OK_For_Backend return Boolean;
b465ef6f 7552 -- Check for presence of a component which makes it impossible for the
0f95b178
JM
7553 -- backend to process the aggregate, thus requiring the use of a series
7554 -- of assignment statements. Cases checked for are a nested aggregate
7555 -- needing Late_Expansion, the presence of a tagged component which may
7556 -- need tag adjustment, and a bit unaligned component reference.
4a76b687
ES
7557 --
7558 -- We also force expansion into assignments if a component is of a
7559 -- mutable type (including a private type with discriminants) because
7560 -- in that case the size of the component to be copied may be smaller
7561 -- than the side of the target, and there is no simple way for gigi
7562 -- to compute the size of the object to be copied.
7563 --
7564 -- NOTE: This is part of the ongoing work to define precisely the
7565 -- interface between front-end and back-end handling of aggregates.
7566 -- In general it is desirable to pass aggregates as they are to gigi,
7567 -- in order to minimize elaboration code. This is one case where the
7568 -- semantics of Ada complicate the analysis and lead to anomalies in
7569 -- the gcc back-end if the aggregate is not expanded into assignments.
d4dfb005
BD
7570 --
7571 -- NOTE: This sets the global Static_Components to False in most, but
7572 -- not all, cases when it returns False.
70482933 7573
9b7924dd
AC
7574 function Has_Per_Object_Constraint (L : List_Id) return Boolean;
7575 -- Return True if any element of L has Has_Per_Object_Constraint set.
7576 -- L should be the Choices component of an N_Component_Association.
7577
57a8057a
AC
7578 function Has_Visible_Private_Ancestor (Id : E) return Boolean;
7579 -- If any ancestor of the current type is private, the aggregate
b465ef6f 7580 -- cannot be built in place. We cannot rely on Has_Private_Ancestor,
57a8057a
AC
7581 -- because it will not be set when type and its parent are in the
7582 -- same scope, and the parent component needs expansion.
7583
7584 function Top_Level_Aggregate (N : Node_Id) return Node_Id;
7585 -- For nested aggregates return the ultimate enclosing aggregate; for
7586 -- non-nested aggregates return N.
7587
54740d7d
AC
7588 ------------------------------
7589 -- Build_Back_End_Aggregate --
7590 ------------------------------
f6205414 7591
54740d7d 7592 procedure Build_Back_End_Aggregate is
4f94fa11
AC
7593 Comp : Entity_Id;
7594 New_Comp : Node_Id;
7595 Tag_Value : Node_Id;
57a8057a
AC
7596
7597 begin
0f95b178
JM
7598 if Nkind (N) = N_Aggregate then
7599
3b9fa2df
ES
7600 -- If the aggregate is static and can be handled by the back-end,
7601 -- nothing left to do.
0f95b178
JM
7602
7603 if Static_Components then
7604 Set_Compile_Time_Known_Aggregate (N);
7605 Set_Expansion_Delayed (N, False);
7606 end if;
7607 end if;
7608
07fc65c4 7609 -- If no discriminants, nothing special to do
70482933 7610
07fc65c4 7611 if not Has_Discriminants (Typ) then
70482933
RK
7612 null;
7613
07fc65c4
GB
7614 -- Case of discriminants present
7615
70482933
RK
7616 elsif Is_Derived_Type (Typ) then
7617
138fc6f1
HK
7618 -- For untagged types, non-stored discriminants are replaced with
7619 -- stored discriminants, which are the ones that gigi uses to
7620 -- describe the type and its components.
70482933 7621
07fc65c4 7622 Generate_Aggregate_For_Derived_Type : declare
fbf5a39b 7623 procedure Prepend_Stored_Values (T : Entity_Id);
3b9fa2df
ES
7624 -- Scan the list of stored discriminants of the type, and add
7625 -- their values to the aggregate being built.
07fc65c4
GB
7626
7627 ---------------------------
fbf5a39b 7628 -- Prepend_Stored_Values --
07fc65c4
GB
7629 ---------------------------
7630
fbf5a39b 7631 procedure Prepend_Stored_Values (T : Entity_Id) is
54740d7d
AC
7632 Discr : Entity_Id;
7633 First_Comp : Node_Id := Empty;
7634
07fc65c4 7635 begin
54740d7d
AC
7636 Discr := First_Stored_Discriminant (T);
7637 while Present (Discr) loop
07fc65c4
GB
7638 New_Comp :=
7639 Make_Component_Association (Loc,
138fc6f1 7640 Choices => New_List (
54740d7d 7641 New_Occurrence_Of (Discr, Loc)),
07fc65c4 7642 Expression =>
bdc193ba
AC
7643 New_Copy_Tree
7644 (Get_Discriminant_Value
54740d7d 7645 (Discr,
07fc65c4
GB
7646 Typ,
7647 Discriminant_Constraint (Typ))));
7648
7649 if No (First_Comp) then
7650 Prepend_To (Component_Associations (N), New_Comp);
7651 else
7652 Insert_After (First_Comp, New_Comp);
7653 end if;
7654
7655 First_Comp := New_Comp;
54740d7d 7656 Next_Stored_Discriminant (Discr);
07fc65c4 7657 end loop;
fbf5a39b 7658 end Prepend_Stored_Values;
07fc65c4 7659
54740d7d
AC
7660 -- Local variables
7661
7662 Constraints : constant List_Id := New_List;
7663
7664 Discr : Entity_Id;
7665 Decl : Node_Id;
7666 Num_Disc : Nat := 0;
81a0f4a3 7667 Num_Stor : Nat := 0;
54740d7d 7668
07fc65c4 7669 -- Start of processing for Generate_Aggregate_For_Derived_Type
70482933
RK
7670
7671 begin
3b9fa2df 7672 -- Remove the associations for the discriminant of derived type
70482933 7673
54740d7d
AC
7674 declare
7675 First_Comp : Node_Id;
70482933 7676
54740d7d
AC
7677 begin
7678 First_Comp := First (Component_Associations (N));
7679 while Present (First_Comp) loop
7680 Comp := First_Comp;
7681 Next (First_Comp);
7682
7683 if Ekind (Entity (First (Choices (Comp)))) =
7684 E_Discriminant
7685 then
7686 Remove (Comp);
7687 Num_Disc := Num_Disc + 1;
7688 end if;
7689 end loop;
7690 end;
70482933 7691
fbf5a39b
AC
7692 -- Insert stored discriminant associations in the correct
7693 -- order. If there are more stored discriminants than new
3b9fa2df
ES
7694 -- discriminants, there is at least one new discriminant that
7695 -- constrains more than one of the stored discriminants. In
7696 -- this case we need to construct a proper subtype of the
7697 -- parent type, in order to supply values to all the
fbf5a39b
AC
7698 -- components. Otherwise there is one-one correspondence
7699 -- between the constraints and the stored discriminants.
70482933 7700
54740d7d
AC
7701 Discr := First_Stored_Discriminant (Base_Type (Typ));
7702 while Present (Discr) loop
81a0f4a3 7703 Num_Stor := Num_Stor + 1;
54740d7d 7704 Next_Stored_Discriminant (Discr);
70482933 7705 end loop;
07fc65c4 7706
fbf5a39b 7707 -- Case of more stored discriminants than new discriminants
07fc65c4 7708
81a0f4a3 7709 if Num_Stor > Num_Disc then
07fc65c4 7710
3b9fa2df
ES
7711 -- Create a proper subtype of the parent type, which is the
7712 -- proper implementation type for the aggregate, and convert
7713 -- it to the intended target type.
07fc65c4 7714
54740d7d
AC
7715 Discr := First_Stored_Discriminant (Base_Type (Typ));
7716 while Present (Discr) loop
07fc65c4 7717 New_Comp :=
37368818
RD
7718 New_Copy_Tree
7719 (Get_Discriminant_Value
54740d7d 7720 (Discr,
bdc193ba
AC
7721 Typ,
7722 Discriminant_Constraint (Typ)));
138fc6f1 7723
07fc65c4 7724 Append (New_Comp, Constraints);
54740d7d 7725 Next_Stored_Discriminant (Discr);
07fc65c4
GB
7726 end loop;
7727
7728 Decl :=
7729 Make_Subtype_Declaration (Loc,
191fcb3a 7730 Defining_Identifier => Make_Temporary (Loc, 'T'),
bdc193ba 7731 Subtype_Indication =>
07fc65c4
GB
7732 Make_Subtype_Indication (Loc,
7733 Subtype_Mark =>
7734 New_Occurrence_Of (Etype (Base_Type (Typ)), Loc),
bdc193ba 7735 Constraint =>
07fc65c4
GB
7736 Make_Index_Or_Discriminant_Constraint
7737 (Loc, Constraints)));
7738
7739 Insert_Action (N, Decl);
fbf5a39b 7740 Prepend_Stored_Values (Base_Type (Typ));
07fc65c4
GB
7741
7742 Set_Etype (N, Defining_Identifier (Decl));
7743 Set_Analyzed (N);
7744
7745 Rewrite (N, Unchecked_Convert_To (Typ, N));
7746 Analyze (N);
7747
7748 -- Case where we do not have fewer new discriminants than
3b9fa2df
ES
7749 -- stored discriminants, so in this case we can simply use the
7750 -- stored discriminants of the subtype.
07fc65c4
GB
7751
7752 else
fbf5a39b 7753 Prepend_Stored_Values (Typ);
07fc65c4
GB
7754 end if;
7755 end Generate_Aggregate_For_Derived_Type;
70482933
RK
7756 end if;
7757
7758 if Is_Tagged_Type (Typ) then
7759
22243c12 7760 -- In the tagged case, _parent and _tag component must be created
70482933 7761
22243c12
RD
7762 -- Reset Null_Present unconditionally. Tagged records always have
7763 -- at least one field (the tag or the parent).
70482933
RK
7764
7765 Set_Null_Record_Present (N, False);
7766
7767 -- When the current aggregate comes from the expansion of an
7768 -- extension aggregate, the parent expr is replaced by an
22243c12 7769 -- aggregate formed by selected components of this expr.
70482933 7770
36a66365 7771 if Present (Parent_Expr) and then Is_Empty_List (Comps) then
5277cab6 7772 Comp := First_Component_Or_Discriminant (Typ);
70482933
RK
7773 while Present (Comp) loop
7774
70482933
RK
7775 -- Skip all expander-generated components
7776
bdc193ba 7777 if not Comes_From_Source (Original_Record_Component (Comp))
70482933
RK
7778 then
7779 null;
7780
7781 else
7782 New_Comp :=
7783 Make_Selected_Component (Loc,
bdc193ba 7784 Prefix =>
70482933
RK
7785 Unchecked_Convert_To (Typ,
7786 Duplicate_Subexpr (Parent_Expr, True)),
70482933
RK
7787 Selector_Name => New_Occurrence_Of (Comp, Loc));
7788
7789 Append_To (Comps,
7790 Make_Component_Association (Loc,
54740d7d
AC
7791 Choices => New_List (
7792 New_Occurrence_Of (Comp, Loc)),
37368818 7793 Expression => New_Comp));
70482933
RK
7794
7795 Analyze_And_Resolve (New_Comp, Etype (Comp));
7796 end if;
7797
5277cab6 7798 Next_Component_Or_Discriminant (Comp);
70482933
RK
7799 end loop;
7800 end if;
7801
7802 -- Compute the value for the Tag now, if the type is a root it
7803 -- will be included in the aggregate right away, otherwise it will
22243c12 7804 -- be propagated to the parent aggregate.
70482933
RK
7805
7806 if Present (Orig_Tag) then
7807 Tag_Value := Orig_Tag;
54740d7d 7808
1f110335 7809 elsif not Tagged_Type_Expansion then
70482933 7810 Tag_Value := Empty;
54740d7d 7811
70482933 7812 else
a9d8907c
JM
7813 Tag_Value :=
7814 New_Occurrence_Of
7815 (Node (First_Elmt (Access_Disp_Table (Typ))), Loc);
70482933
RK
7816 end if;
7817
7818 -- For a derived type, an aggregate for the parent is formed with
7819 -- all the inherited components.
7820
7821 if Is_Derived_Type (Typ) then
70482933
RK
7822 declare
7823 First_Comp : Node_Id;
7824 Parent_Comps : List_Id;
7825 Parent_Aggr : Node_Id;
7826 Parent_Name : Node_Id;
7827
7828 begin
54740d7d 7829 First_Comp := First (Component_Associations (N));
70482933 7830 Parent_Comps := New_List;
567bf449
EB
7831
7832 -- First skip the discriminants
7833
7834 while Present (First_Comp)
7835 and then Ekind (Entity (First (Choices (First_Comp))))
7836 = E_Discriminant
7837 loop
7838 Next (First_Comp);
7839 end loop;
7840
7841 -- Then remove the inherited component association from the
7842 -- aggregate and store them in the parent aggregate
7843
70482933 7844 while Present (First_Comp)
36a66365
AC
7845 and then
7846 Scope (Original_Record_Component
7847 (Entity (First (Choices (First_Comp))))) /=
7848 Base_Typ
70482933
RK
7849 loop
7850 Comp := First_Comp;
7851 Next (First_Comp);
7852 Remove (Comp);
7853 Append (Comp, Parent_Comps);
7854 end loop;
7855
36a66365
AC
7856 Parent_Aggr :=
7857 Make_Aggregate (Loc,
7858 Component_Associations => Parent_Comps);
70482933
RK
7859 Set_Etype (Parent_Aggr, Etype (Base_Type (Typ)));
7860
7861 -- Find the _parent component
7862
7863 Comp := First_Component (Typ);
7864 while Chars (Comp) /= Name_uParent loop
99859ea7 7865 Next_Component (Comp);
70482933
RK
7866 end loop;
7867
7868 Parent_Name := New_Occurrence_Of (Comp, Loc);
7869
7870 -- Insert the parent aggregate
7871
7872 Prepend_To (Component_Associations (N),
7873 Make_Component_Association (Loc,
7874 Choices => New_List (Parent_Name),
7875 Expression => Parent_Aggr));
7876
7877 -- Expand recursively the parent propagating the right Tag
7878
22243c12
RD
7879 Expand_Record_Aggregate
7880 (Parent_Aggr, Tag_Value, Parent_Expr);
1b6897ce
AC
7881
7882 -- The ancestor part may be a nested aggregate that has
7883 -- delayed expansion: recheck now.
7884
d4dfb005 7885 if not Component_OK_For_Backend then
1b6897ce
AC
7886 Convert_To_Assignments (N, Typ);
7887 end if;
70482933
RK
7888 end;
7889
7890 -- For a root type, the tag component is added (unless compiling
0f95b178 7891 -- for the VMs, where tags are implicit).
70482933 7892
1f110335 7893 elsif Tagged_Type_Expansion then
70482933
RK
7894 declare
7895 Tag_Name : constant Node_Id :=
138fc6f1
HK
7896 New_Occurrence_Of
7897 (First_Tag_Component (Typ), Loc);
70482933
RK
7898 Typ_Tag : constant Entity_Id := RTE (RE_Tag);
7899 Conv_Node : constant Node_Id :=
138fc6f1 7900 Unchecked_Convert_To (Typ_Tag, Tag_Value);
70482933
RK
7901
7902 begin
7903 Set_Etype (Conv_Node, Typ_Tag);
7904 Prepend_To (Component_Associations (N),
7905 Make_Component_Association (Loc,
7906 Choices => New_List (Tag_Name),
7907 Expression => Conv_Node));
7908 end;
7909 end if;
7910 end if;
54740d7d
AC
7911 end Build_Back_End_Aggregate;
7912
7913 ----------------------------------------
7914 -- Compile_Time_Known_Composite_Value --
7915 ----------------------------------------
7916
7917 function Compile_Time_Known_Composite_Value
7918 (N : Node_Id) return Boolean
7919 is
7920 begin
7921 -- If we have an entity name, then see if it is the name of a
7922 -- constant and if so, test the corresponding constant value.
7923
7924 if Is_Entity_Name (N) then
7925 declare
7926 E : constant Entity_Id := Entity (N);
7927 V : Node_Id;
7928 begin
7929 if Ekind (E) /= E_Constant then
7930 return False;
7931 else
7932 V := Constant_Value (E);
7933 return Present (V)
7934 and then Compile_Time_Known_Composite_Value (V);
7935 end if;
7936 end;
7937
7938 -- We have a value, see if it is compile time known
7939
7940 else
7941 if Nkind (N) = N_Aggregate then
7942 return Compile_Time_Known_Aggregate (N);
7943 end if;
7944
7945 -- All other types of values are not known at compile time
7946
7947 return False;
7948 end if;
7949
7950 end Compile_Time_Known_Composite_Value;
7951
d4dfb005
BD
7952 ------------------------------
7953 -- Component_OK_For_Backend --
7954 ------------------------------
54740d7d 7955
d4dfb005 7956 function Component_OK_For_Backend return Boolean is
54740d7d
AC
7957 C : Node_Id;
7958 Expr_Q : Node_Id;
7959
7960 begin
54740d7d
AC
7961 C := First (Comps);
7962 while Present (C) loop
7963
7964 -- If the component has box initialization, expansion is needed
7965 -- and component is not ready for backend.
7966
7967 if Box_Present (C) then
d4dfb005 7968 return False;
54740d7d
AC
7969 end if;
7970
4f061cf2 7971 Expr_Q := Unqualify (Expression (C));
54740d7d 7972
f4c26077
ES
7973 -- Return False for array components whose bounds raise
7974 -- constraint error.
7975
7976 declare
61770974 7977 Comp : constant Entity_Id := First (Choices (C));
f4c26077
ES
7978 Indx : Node_Id;
7979
7980 begin
f4c26077
ES
7981 if Present (Etype (Comp))
7982 and then Is_Array_Type (Etype (Comp))
7983 then
7984 Indx := First_Index (Etype (Comp));
f4c26077 7985 while Present (Indx) loop
61770974
HK
7986 if Nkind (Type_Low_Bound (Etype (Indx))) =
7987 N_Raise_Constraint_Error
7988 or else Nkind (Type_High_Bound (Etype (Indx))) =
7989 N_Raise_Constraint_Error
f4c26077
ES
7990 then
7991 return False;
7992 end if;
7993
99859ea7 7994 Next_Index (Indx);
f4c26077
ES
7995 end loop;
7996 end if;
7997 end;
7998
d4dfb005 7999 -- Return False if the aggregate has any associations for tagged
54740d7d
AC
8000 -- components that may require tag adjustment.
8001
8002 -- These are cases where the source expression may have a tag that
8003 -- could differ from the component tag (e.g., can occur for type
8004 -- conversions and formal parameters). (Tag adjustment not needed
8005 -- if Tagged_Type_Expansion because object tags are implicit in
8006 -- the machine.)
8007
8008 if Is_Tagged_Type (Etype (Expr_Q))
61770974
HK
8009 and then
8010 (Nkind (Expr_Q) = N_Type_Conversion
8011 or else
8012 (Is_Entity_Name (Expr_Q)
bb6a856b 8013 and then Is_Formal (Entity (Expr_Q))))
54740d7d
AC
8014 and then Tagged_Type_Expansion
8015 then
8016 Static_Components := False;
d4dfb005 8017 return False;
54740d7d
AC
8018
8019 elsif Is_Delayed_Aggregate (Expr_Q) then
8020 Static_Components := False;
d4dfb005 8021 return False;
54740d7d 8022
1f6237e3
ES
8023 elsif Nkind (Expr_Q) = N_Quantified_Expression then
8024 Static_Components := False;
8025 return False;
8026
54740d7d
AC
8027 elsif Possible_Bit_Aligned_Component (Expr_Q) then
8028 Static_Components := False;
d4dfb005 8029 return False;
54740d7d
AC
8030
8031 elsif Modify_Tree_For_C
8032 and then Nkind (C) = N_Component_Association
8033 and then Has_Per_Object_Constraint (Choices (C))
8034 then
8035 Static_Components := False;
d4dfb005 8036 return False;
54740d7d
AC
8037
8038 elsif Modify_Tree_For_C
8039 and then Nkind (Expr_Q) = N_Identifier
8040 and then Is_Array_Type (Etype (Expr_Q))
8041 then
8042 Static_Components := False;
d4dfb005 8043 return False;
b276ab7a
AC
8044
8045 elsif Modify_Tree_For_C
8046 and then Nkind (Expr_Q) = N_Type_Conversion
8047 and then Is_Array_Type (Etype (Expr_Q))
8048 then
8049 Static_Components := False;
d4dfb005 8050 return False;
54740d7d
AC
8051 end if;
8052
8053 if Is_Elementary_Type (Etype (Expr_Q)) then
8054 if not Compile_Time_Known_Value (Expr_Q) then
8055 Static_Components := False;
8056 end if;
8057
8058 elsif not Compile_Time_Known_Composite_Value (Expr_Q) then
8059 Static_Components := False;
8060
8061 if Is_Private_Type (Etype (Expr_Q))
8062 and then Has_Discriminants (Etype (Expr_Q))
8063 then
d4dfb005 8064 return False;
54740d7d
AC
8065 end if;
8066 end if;
8067
8068 Next (C);
8069 end loop;
8070
d4dfb005
BD
8071 return True;
8072 end Component_OK_For_Backend;
54740d7d
AC
8073
8074 -------------------------------
8075 -- Has_Per_Object_Constraint --
8076 -------------------------------
8077
8078 function Has_Per_Object_Constraint (L : List_Id) return Boolean is
8079 N : Node_Id := First (L);
8080 begin
8081 while Present (N) loop
8082 if Is_Entity_Name (N)
8083 and then Present (Entity (N))
8084 and then Has_Per_Object_Constraint (Entity (N))
8085 then
8086 return True;
8087 end if;
8088
8089 Next (N);
8090 end loop;
8091
8092 return False;
8093 end Has_Per_Object_Constraint;
8094
8095 -----------------------------------
8096 -- Has_Visible_Private_Ancestor --
8097 -----------------------------------
8098
8099 function Has_Visible_Private_Ancestor (Id : E) return Boolean is
8100 R : constant Entity_Id := Root_Type (Id);
8101 T1 : Entity_Id := Id;
8102
8103 begin
8104 loop
8105 if Is_Private_Type (T1) then
8106 return True;
8107
8108 elsif T1 = R then
8109 return False;
8110
8111 else
8112 T1 := Etype (T1);
8113 end if;
8114 end loop;
8115 end Has_Visible_Private_Ancestor;
4f94fa11
AC
8116
8117 -------------------------
8118 -- Top_Level_Aggregate --
8119 -------------------------
8120
8121 function Top_Level_Aggregate (N : Node_Id) return Node_Id is
8122 Aggr : Node_Id;
8123
8124 begin
8125 Aggr := N;
8126 while Present (Parent (Aggr))
4a08c95c
AC
8127 and then Nkind (Parent (Aggr)) in
8128 N_Aggregate | N_Component_Association
4f94fa11
AC
8129 loop
8130 Aggr := Parent (Aggr);
8131 end loop;
8132
8133 return Aggr;
8134 end Top_Level_Aggregate;
8135
8136 -- Local variables
8137
8138 Top_Level_Aggr : constant Node_Id := Top_Level_Aggregate (N);
8139
8140 -- Start of processing for Expand_Record_Aggregate
8141
8142 begin
4f94fa11
AC
8143 -- No special management required for aggregates used to initialize
8144 -- statically allocated dispatch tables
8145
c061e99b 8146 if Is_Static_Dispatch_Table_Aggregate (N) then
4f94fa11 8147 return;
e1dfbb03
SB
8148
8149 -- Case pattern aggregates need to remain as aggregates
8150
8151 elsif Is_Case_Choice_Pattern (N) then
8152 return;
70482933 8153 end if;
0f95b178 8154
8973b987 8155 -- If the pragma Aggregate_Individually_Assign is set, always convert to
efc00a88
PB
8156 -- assignments.
8157
8158 if Aggregate_Individually_Assign then
8159 Convert_To_Assignments (N, Typ);
8160
4f94fa11
AC
8161 -- Ada 2005 (AI-318-2): We need to convert to assignments if components
8162 -- are build-in-place function calls. The assignments will each turn
8163 -- into a build-in-place function call. If components are all static,
d4dfb005 8164 -- we can pass the aggregate to the back end regardless of limitedness.
4f94fa11
AC
8165
8166 -- Extension aggregates, aggregates in extended return statements, and
8167 -- aggregates for C++ imported types must be expanded.
8168
efc00a88 8169 elsif Ada_Version >= Ada_2005 and then Is_Limited_View (Typ) then
4a08c95c
AC
8170 if Nkind (Parent (N)) not in
8171 N_Component_Association | N_Object_Declaration
4f94fa11
AC
8172 then
8173 Convert_To_Assignments (N, Typ);
8174
8175 elsif Nkind (N) = N_Extension_Aggregate
8176 or else Convention (Typ) = Convention_CPP
8177 then
8178 Convert_To_Assignments (N, Typ);
8179
8180 elsif not Size_Known_At_Compile_Time (Typ)
d4dfb005 8181 or else not Component_OK_For_Backend
4f94fa11
AC
8182 or else not Static_Components
8183 then
8184 Convert_To_Assignments (N, Typ);
8185
8186 -- In all other cases, build a proper aggregate to be handled by
23a9215f 8187 -- the back-end.
4f94fa11
AC
8188
8189 else
54740d7d 8190 Build_Back_End_Aggregate;
4f94fa11
AC
8191 end if;
8192
8193 -- Gigi doesn't properly handle temporaries of variable size so we
8194 -- generate it in the front-end
8195
8196 elsif not Size_Known_At_Compile_Time (Typ)
8197 and then Tagged_Type_Expansion
8198 then
8199 Convert_To_Assignments (N, Typ);
8200
8201 -- An aggregate used to initialize a controlled object must be turned
8202 -- into component assignments as the components themselves may require
8203 -- finalization actions such as adjustment.
8204
8205 elsif Needs_Finalization (Typ) then
8206 Convert_To_Assignments (N, Typ);
8207
8208 -- Ada 2005 (AI-287): In case of default initialized components we
8209 -- convert the aggregate into assignments.
8210
8211 elsif Has_Default_Init_Comps (N) then
8212 Convert_To_Assignments (N, Typ);
8213
8214 -- Check components
8215
d4dfb005 8216 elsif not Component_OK_For_Backend then
4f94fa11
AC
8217 Convert_To_Assignments (N, Typ);
8218
8219 -- If an ancestor is private, some components are not inherited and we
8220 -- cannot expand into a record aggregate.
8221
8222 elsif Has_Visible_Private_Ancestor (Typ) then
8223 Convert_To_Assignments (N, Typ);
8224
8225 -- ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi
8226 -- is not able to handle the aggregate for Late_Request.
8227
8228 elsif Is_Tagged_Type (Typ) and then Has_Discriminants (Typ) then
8229 Convert_To_Assignments (N, Typ);
8230
8231 -- If the tagged types covers interface types we need to initialize all
8232 -- hidden components containing pointers to secondary dispatch tables.
8233
8234 elsif Is_Tagged_Type (Typ) and then Has_Interfaces (Typ) then
8235 Convert_To_Assignments (N, Typ);
8236
8237 -- If some components are mutable, the size of the aggregate component
8238 -- may be distinct from the default size of the type component, so
8239 -- we need to expand to insure that the back-end copies the proper
8240 -- size of the data. However, if the aggregate is the initial value of
8241 -- a constant, the target is immutable and might be built statically
8242 -- if components are appropriate.
8243
8244 elsif Has_Mutable_Components (Typ)
8245 and then
8246 (Nkind (Parent (Top_Level_Aggr)) /= N_Object_Declaration
8247 or else not Constant_Present (Parent (Top_Level_Aggr))
8248 or else not Static_Components)
8249 then
8250 Convert_To_Assignments (N, Typ);
8251
8252 -- If the type involved has bit aligned components, then we are not sure
8253 -- that the back end can handle this case correctly.
8254
8255 elsif Type_May_Have_Bit_Aligned_Components (Typ) then
8256 Convert_To_Assignments (N, Typ);
8257
8258 -- When generating C, only generate an aggregate when declaring objects
8259 -- since C does not support aggregates in e.g. assignment statements.
8260
9f51b855 8261 elsif Modify_Tree_For_C and then not Is_CCG_Supported_Aggregate (N) then
4f94fa11
AC
8262 Convert_To_Assignments (N, Typ);
8263
8264 -- In all other cases, build a proper aggregate to be handled by gigi
8265
8266 else
54740d7d 8267 Build_Back_End_Aggregate;
4f94fa11 8268 end if;
70482933
RK
8269 end Expand_Record_Aggregate;
8270
a80b1eb7
EB
8271 ---------------------
8272 -- Get_Base_Object --
8273 ---------------------
8274
8275 function Get_Base_Object (N : Node_Id) return Entity_Id is
8276 R : Node_Id;
8277
8278 begin
8279 R := Get_Referenced_Object (N);
8280
4a08c95c 8281 while Nkind (R) in N_Indexed_Component | N_Selected_Component | N_Slice
a80b1eb7
EB
8282 loop
8283 R := Get_Referenced_Object (Prefix (R));
8284 end loop;
8285
8286 if Is_Entity_Name (R) and then Is_Object (Entity (R)) then
8287 return Entity (R);
8288 else
8289 return Empty;
8290 end if;
8291 end Get_Base_Object;
8292
65356e64
AC
8293 ----------------------------
8294 -- Has_Default_Init_Comps --
8295 ----------------------------
8296
8297 function Has_Default_Init_Comps (N : Node_Id) return Boolean is
b52e1520 8298 Assoc : Node_Id;
c45b6ae0 8299 Expr : Node_Id;
b52e1520 8300 -- Component association and expression, respectively
bdc193ba 8301
65356e64 8302 begin
4a08c95c 8303 pragma Assert (Nkind (N) in N_Aggregate | N_Extension_Aggregate);
c45b6ae0 8304
c5ee5ad2
BD
8305 if Has_Self_Reference (N) then
8306 return True;
8307 end if;
8308
b52e1520
PT
8309 Assoc := First (Component_Associations (N));
8310 while Present (Assoc) loop
8311 -- Each component association has either a box or an expression
c45b6ae0 8312
b52e1520 8313 pragma Assert (Box_Present (Assoc) xor Present (Expression (Assoc)));
65356e64 8314
b52e1520 8315 -- Check if any direct component has default initialized components
c45b6ae0 8316
b52e1520
PT
8317 if Box_Present (Assoc) then
8318 return True;
c45b6ae0 8319
b52e1520 8320 -- Recursive call in case of aggregate expression
c45b6ae0 8321
b52e1520
PT
8322 else
8323 Expr := Expression (Assoc);
8324
8325 if Nkind (Expr) in N_Aggregate | N_Extension_Aggregate
8326 and then Has_Default_Init_Comps (Expr)
8327 then
8328 return True;
8329 end if;
c45b6ae0
AC
8330 end if;
8331
b52e1520 8332 Next (Assoc);
c45b6ae0
AC
8333 end loop;
8334
65356e64
AC
8335 return False;
8336 end Has_Default_Init_Comps;
8337
fc84947c
EB
8338 --------------------------
8339 -- Initialize_Component --
8340 --------------------------
8341
8342 procedure Initialize_Component
fc84947c
EB
8343 (N : Node_Id;
8344 Comp : Node_Id;
8345 Comp_Typ : Node_Id;
8346 Init_Expr : Node_Id;
8347 Stmts : List_Id)
8348 is
8349 Exceptions_OK : constant Boolean :=
8350 not Restriction_Active (No_Exception_Propagation);
8351 Finalization_OK : constant Boolean :=
8352 Present (Comp_Typ)
8353 and then Needs_Finalization (Comp_Typ);
fc84947c
EB
8354 Loc : constant Source_Ptr := Sloc (N);
8355
fc84947c
EB
8356 Blk_Stmts : List_Id;
8357 Init_Stmt : Node_Id;
8358
8359 begin
8360 pragma Assert (Nkind (Init_Expr) in N_Subexpr);
8361
8362 -- Protect the initialization statements from aborts. Generate:
8363
8364 -- Abort_Defer;
8365
8366 if Finalization_OK and Abort_Allowed then
8367 if Exceptions_OK then
8368 Blk_Stmts := New_List;
8369 else
8370 Blk_Stmts := Stmts;
8371 end if;
8372
8373 Append_To (Blk_Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
8374
8375 -- Otherwise aborts are not allowed. All generated code is added
8376 -- directly to the input list.
8377
8378 else
8379 Blk_Stmts := Stmts;
8380 end if;
8381
8382 -- Initialize the component. Generate:
8383
8384 -- Comp := Init_Expr;
8385
8386 -- Note that the initialization expression is not duplicated because
8387 -- either only a single component may be initialized by it (record)
8388 -- or it has already been duplicated if need be (array).
8389
8390 Init_Stmt :=
8391 Make_OK_Assignment_Statement (Loc,
8392 Name => New_Copy_Tree (Comp),
8393 Expression => Relocate_Node (Init_Expr));
fc84947c
EB
8394
8395 Append_To (Blk_Stmts, Init_Stmt);
8396
c0ceba6c
EB
8397 -- Arrange for the component to be adjusted if need be (the call will be
8398 -- generated by Make_Tag_Ctrl_Assignment). But, in the case of an array
8399 -- aggregate, controlled subaggregates are not considered because each
8400 -- of their individual elements will receive an adjustment of its own.
fc84947c
EB
8401
8402 if Finalization_OK
c0ceba6c 8403 and then not Is_Limited_View (Comp_Typ)
fc84947c
EB
8404 and then not
8405 (Is_Array_Type (Etype (N))
8406 and then Is_Array_Type (Comp_Typ)
8407 and then Needs_Finalization (Component_Type (Comp_Typ))
8408 and then Nkind (Unqualify (Init_Expr)) = N_Aggregate)
8409 then
c0ceba6c 8410 Set_No_Finalize_Actions (Init_Stmt);
fc84947c 8411
c0ceba6c
EB
8412 -- Or else, only adjust the tag due to a possible view conversion
8413
8414 else
8415 Set_No_Ctrl_Actions (Init_Stmt);
fc84947c 8416
c0ceba6c
EB
8417 if Tagged_Type_Expansion and then Is_Tagged_Type (Comp_Typ) then
8418 Append_To (Blk_Stmts,
8419 Make_Tag_Assignment_From_Type
8420 (Loc, New_Copy_Tree (Comp), Underlying_Type (Comp_Typ)));
fc84947c
EB
8421 end if;
8422 end if;
8423
8424 -- Complete the protection of the initialization statements
8425
8426 if Finalization_OK and Abort_Allowed then
8427
8428 -- Wrap the initialization statements in a block to catch a
8429 -- potential exception. Generate:
8430
8431 -- begin
8432 -- Abort_Defer;
8433 -- Comp := Init_Expr;
8434 -- Comp._tag := Full_TypP;
8435 -- [Deep_]Adjust (Comp);
8436 -- at end
8437 -- Abort_Undefer_Direct;
8438 -- end;
8439
8440 if Exceptions_OK then
8441 Append_To (Stmts,
8442 Build_Abort_Undefer_Block (Loc,
8443 Stmts => Blk_Stmts,
8444 Context => N));
8445
8446 -- Otherwise exceptions are not propagated. Generate:
8447
8448 -- Abort_Defer;
8449 -- Comp := Init_Expr;
8450 -- Comp._tag := Full_TypP;
8451 -- [Deep_]Adjust (Comp);
8452 -- Abort_Undefer;
8453
8454 else
8455 Append_To (Blk_Stmts,
8456 Build_Runtime_Call (Loc, RE_Abort_Undefer));
8457 end if;
8458 end if;
c0ceba6c 8459 end Initialize_Component;
fc84947c 8460
3fc40cd7
PMR
8461 ----------------------------------------
8462 -- Is_Build_In_Place_Aggregate_Return --
8463 ----------------------------------------
8464
8465 function Is_Build_In_Place_Aggregate_Return (N : Node_Id) return Boolean is
8466 P : Node_Id := Parent (N);
8467
8468 begin
e05e5d6b
EB
8469 while Nkind (P) in N_Case_Expression
8470 | N_Case_Expression_Alternative
8471 | N_If_Expression
8472 | N_Qualified_Expression
8473 loop
3fc40cd7
PMR
8474 P := Parent (P);
8475 end loop;
8476
8477 if Nkind (P) = N_Simple_Return_Statement then
8478 null;
8479
8480 elsif Nkind (Parent (P)) = N_Extended_Return_Statement then
8481 P := Parent (P);
8482
8483 else
8484 return False;
8485 end if;
8486
8487 return
8488 Is_Build_In_Place_Function
8489 (Return_Applies_To (Return_Statement_Entity (P)));
8490 end Is_Build_In_Place_Aggregate_Return;
8491
70482933
RK
8492 --------------------------
8493 -- Is_Delayed_Aggregate --
8494 --------------------------
8495
8496 function Is_Delayed_Aggregate (N : Node_Id) return Boolean is
4f061cf2 8497 Unqual_N : constant Node_Id := Unqualify (N);
fbf5a39b 8498
70482933 8499 begin
4f061cf2
EB
8500 return Nkind (Unqual_N) in N_Aggregate | N_Extension_Aggregate
8501 and then Expansion_Delayed (Unqual_N);
70482933
RK
8502 end Is_Delayed_Aggregate;
8503
9f51b855
JM
8504 --------------------------------
8505 -- Is_CCG_Supported_Aggregate --
8506 --------------------------------
6031f544 8507
9f51b855
JM
8508 function Is_CCG_Supported_Aggregate
8509 (N : Node_Id) return Boolean
8510 is
4ff5aa0c 8511 P : Node_Id := Parent (N);
2401c98f 8512
6031f544 8513 begin
bc1146e5
HK
8514 -- Aggregates are not supported for nonstandard rep clauses, since they
8515 -- may lead to extra padding fields in CCG.
4ff5aa0c 8516
3bcf8298 8517 if Is_Record_Type (Etype (N))
4ff5aa0c
AC
8518 and then Has_Non_Standard_Rep (Etype (N))
8519 then
8520 return False;
8521 end if;
6031f544 8522
4ff5aa0c 8523 while Present (P) and then Nkind (P) = N_Aggregate loop
6031f544
AC
8524 P := Parent (P);
8525 end loop;
8526
d2d56bba 8527 -- Check cases where aggregates are supported by the CCG backend
9f51b855 8528
4ff5aa0c 8529 if Nkind (P) = N_Object_Declaration then
d2d56bba
JM
8530 declare
8531 P_Typ : constant Entity_Id := Etype (Defining_Identifier (P));
9f51b855 8532
d2d56bba
JM
8533 begin
8534 if Is_Record_Type (P_Typ) then
8535 return True;
8536 else
8537 return Compile_Time_Known_Bounds (P_Typ);
8538 end if;
8539 end;
8540
8541 elsif Nkind (P) = N_Qualified_Expression then
8542 if Nkind (Parent (P)) = N_Object_Declaration then
8543 declare
8544 P_Typ : constant Entity_Id :=
8545 Etype (Defining_Identifier (Parent (P)));
8546 begin
8547 if Is_Record_Type (P_Typ) then
8548 return True;
8549 else
8550 return Compile_Time_Known_Bounds (P_Typ);
8551 end if;
8552 end;
8553
8554 elsif Nkind (Parent (P)) = N_Allocator then
8555 return True;
8556 end if;
9f51b855
JM
8557 end if;
8558
6031f544 8559 return False;
9f51b855 8560 end Is_CCG_Supported_Aggregate;
6031f544 8561
fa57ac97
ES
8562 ----------------------------------------
8563 -- Is_Static_Dispatch_Table_Aggregate --
8564 ----------------------------------------
8565
8566 function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean is
8567 Typ : constant Entity_Id := Base_Type (Etype (N));
8568
8569 begin
6214b83b 8570 return Building_Static_Dispatch_Tables
1f110335 8571 and then Tagged_Type_Expansion
fa57ac97
ES
8572
8573 -- Avoid circularity when rebuilding the compiler
8574
3477e0b2
PT
8575 and then not Is_RTU (Cunit_Entity (Get_Source_Unit (N)), Ada_Tags)
8576 and then (Is_RTE (Typ, RE_Dispatch_Table_Wrapper)
fa57ac97 8577 or else
3477e0b2 8578 Is_RTE (Typ, RE_Address_Array)
fa57ac97 8579 or else
3477e0b2 8580 Is_RTE (Typ, RE_Type_Specific_Data)
fa57ac97 8581 or else
3477e0b2 8582 Is_RTE (Typ, RE_Tag_Table)
fa57ac97 8583 or else
3477e0b2 8584 Is_RTE (Typ, RE_Object_Specific_Data)
c7cb99f8 8585 or else
3477e0b2 8586 Is_RTE (Typ, RE_Interface_Data)
fa57ac97 8587 or else
3477e0b2 8588 Is_RTE (Typ, RE_Interfaces_Array)
fa57ac97 8589 or else
3477e0b2 8590 Is_RTE (Typ, RE_Interface_Data_Element));
fa57ac97
ES
8591 end Is_Static_Dispatch_Table_Aggregate;
8592
dc3af7e2
AC
8593 -----------------------------
8594 -- Is_Two_Dim_Packed_Array --
8595 -----------------------------
8596
8597 function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean is
36e38022 8598 C : constant Uint := Component_Size (Typ);
42fcc750 8599
dc3af7e2
AC
8600 begin
8601 return Number_Dimensions (Typ) = 2
8602 and then Is_Bit_Packed_Array (Typ)
42fcc750 8603 and then Is_Scalar_Type (Component_Type (Typ))
36e38022 8604 and then C in Uint_1 | Uint_2 | Uint_4; -- False if No_Uint
dc3af7e2
AC
8605 end Is_Two_Dim_Packed_Array;
8606
70482933
RK
8607 --------------------
8608 -- Late_Expansion --
8609 --------------------
8610
8611 function Late_Expansion
8612 (N : Node_Id;
8613 Typ : Entity_Id;
df3e68b1 8614 Target : Node_Id) return List_Id
9bc856dd 8615 is
f29afe5f 8616 Aggr_Code : List_Id;
b748c3d1 8617 New_Aggr : Node_Id;
f29afe5f 8618
70482933 8619 begin
b748c3d1
EB
8620 if Is_Array_Type (Typ) then
8621 -- If the assignment can be done directly by the back end, then
8622 -- reset Set_Expansion_Delayed and do not expand further.
8623
8624 if not CodePeer_Mode
8625 and then not Modify_Tree_For_C
8626 and then not Possible_Bit_Aligned_Component (Target)
8627 and then not Is_Possibly_Unaligned_Slice (Target)
8628 and then Aggr_Assignment_OK_For_Backend (N)
8629 then
8630 New_Aggr := New_Copy_Tree (N);
8631 Set_Expansion_Delayed (New_Aggr, False);
8632
8633 Aggr_Code :=
8634 New_List (
8635 Make_OK_Assignment_Statement (Sloc (New_Aggr),
8636 Name => Target,
8637 Expression => New_Aggr));
8638
8639 -- Or else, generate component assignments to it
8640
8641 else
8642 Aggr_Code :=
8643 Build_Array_Aggr_Code
8644 (N => N,
8645 Ctype => Component_Type (Typ),
8646 Index => First_Index (Typ),
8647 Into => Target,
8648 Scalar_Comp => Is_Scalar_Type (Component_Type (Typ)),
8649 Indexes => No_List);
8650 end if;
6031f544 8651
f3bf0d9a
HK
8652 -- Directly or indirectly (e.g. access protected procedure) a record
8653
8654 else
6031f544 8655 Aggr_Code := Build_Record_Aggr_Code (N, Typ, Target);
70482933 8656 end if;
4ac2bbbd
AC
8657
8658 -- Save the last assignment statement associated with the aggregate
8659 -- when building a controlled object. This reference is utilized by
8660 -- the finalization machinery when marking an object as successfully
8661 -- initialized.
8662
8663 if Needs_Finalization (Typ)
8664 and then Is_Entity_Name (Target)
8665 and then Present (Entity (Target))
4a08c95c 8666 and then Ekind (Entity (Target)) in E_Constant | E_Variable
4ac2bbbd
AC
8667 then
8668 Set_Last_Aggregate_Assignment (Entity (Target), Last (Aggr_Code));
8669 end if;
8670
8671 return Aggr_Code;
70482933
RK
8672 end Late_Expansion;
8673
8674 ----------------------------------
8675 -- Make_OK_Assignment_Statement --
8676 ----------------------------------
8677
8678 function Make_OK_Assignment_Statement
8679 (Sloc : Source_Ptr;
8680 Name : Node_Id;
0f95b178 8681 Expression : Node_Id) return Node_Id
70482933
RK
8682 is
8683 begin
8684 Set_Assignment_OK (Name);
8685 return Make_Assignment_Statement (Sloc, Name, Expression);
8686 end Make_OK_Assignment_Statement;
8687
c42006e9
AC
8688 ------------------------
8689 -- Max_Aggregate_Size --
8690 ------------------------
8691
8692 function Max_Aggregate_Size
eaf6e63a
BD
8693 (N : Node_Id;
8694 Default_Size : Nat := 5000) return Nat
8695 is
eaf6e63a
BD
8696 function Use_Small_Size (N : Node_Id) return Boolean;
8697 -- True if we should return a very small size, which means large
8698 -- aggregates will be implemented as a loop when possible (potentially
8699 -- transformed to memset calls).
8700
8701 function Aggr_Context (N : Node_Id) return Node_Id;
8702 -- Return the context in which the aggregate appears, not counting
8703 -- qualified expressions and similar.
8704
bcc15039
PT
8705 ------------------
8706 -- Aggr_Context --
8707 ------------------
8708
eaf6e63a
BD
8709 function Aggr_Context (N : Node_Id) return Node_Id is
8710 Result : Node_Id := Parent (N);
8711 begin
4a08c95c
AC
8712 if Nkind (Result) in N_Qualified_Expression
8713 | N_Type_Conversion
8714 | N_Unchecked_Type_Conversion
8715 | N_If_Expression
8716 | N_Case_Expression
8717 | N_Component_Association
8718 | N_Aggregate
eaf6e63a
BD
8719 then
8720 Result := Aggr_Context (Result);
8721 end if;
8722
8723 return Result;
8724 end Aggr_Context;
8725
bcc15039
PT
8726 --------------------
8727 -- Use_Small_Size --
8728 --------------------
8729
eaf6e63a
BD
8730 function Use_Small_Size (N : Node_Id) return Boolean is
8731 C : constant Node_Id := Aggr_Context (N);
8732 -- The decision depends on the context in which the aggregate occurs,
8733 -- and for variable declarations, whether we are nested inside a
8734 -- subprogram.
8735 begin
8736 case Nkind (C) is
8737 -- True for assignment statements and similar
8738
8739 when N_Assignment_Statement
8740 | N_Simple_Return_Statement
8741 | N_Allocator
8742 | N_Attribute_Reference
8743 =>
8744 return True;
8745
8746 -- True for nested variable declarations. False for library level
8747 -- variables, and for constants (whether or not nested).
8748
8749 when N_Object_Declaration =>
8750 return not Constant_Present (C)
0f3dfe41 8751 and then Is_Subprogram (Current_Scope);
eaf6e63a
BD
8752
8753 -- False for all other contexts
8754
8755 when others =>
8756 return False;
8757 end case;
8758 end Use_Small_Size;
8759
bcc15039
PT
8760 -- Local variables
8761
8762 Typ : constant Entity_Id := Etype (N);
8763
eaf6e63a
BD
8764 -- Start of processing for Max_Aggregate_Size
8765
c42006e9 8766 begin
bcc15039
PT
8767 -- We use a small limit in CodePeer mode where we favor loops instead of
8768 -- thousands of single assignments (from large aggregates).
c42006e9
AC
8769
8770 -- We also increase the limit to 2**24 (about 16 million) if
8771 -- Restrictions (No_Elaboration_Code) or Restrictions
8772 -- (No_Implicit_Loops) is specified, since in either case we are at risk
8773 -- of declaring the program illegal because of this limit. We also
8774 -- increase the limit when Static_Elaboration_Desired, given that this
8775 -- means that objects are intended to be placed in data memory.
8776
8777 -- Same if the aggregate is for a packed two-dimensional array, because
8778 -- if components are static it is much more efficient to construct a
8779 -- one-dimensional equivalent array with static components.
8780
8781 if CodePeer_Mode then
8782 return 100;
8783 elsif Restriction_Active (No_Elaboration_Code)
8784 or else Restriction_Active (No_Implicit_Loops)
8785 or else Is_Two_Dim_Packed_Array (Typ)
8786 or else (Ekind (Current_Scope) = E_Package
8787 and then Static_Elaboration_Desired (Current_Scope))
8788 then
8789 return 2 ** 24;
eaf6e63a 8790 elsif Use_Small_Size (N) then
152f64c2 8791 return 64;
c42006e9 8792 end if;
eaf6e63a
BD
8793
8794 return Default_Size;
c42006e9
AC
8795 end Max_Aggregate_Size;
8796
70482933
RK
8797 -----------------------
8798 -- Number_Of_Choices --
8799 -----------------------
8800
8801 function Number_Of_Choices (N : Node_Id) return Nat is
8802 Assoc : Node_Id;
8803 Choice : Node_Id;
8804
8805 Nb_Choices : Nat := 0;
8806
8807 begin
8808 if Present (Expressions (N)) then
8809 return 0;
8810 end if;
8811
8812 Assoc := First (Component_Associations (N));
8813 while Present (Assoc) loop
00f45f30 8814 Choice := First (Choice_List (Assoc));
70482933 8815 while Present (Choice) loop
70482933
RK
8816 if Nkind (Choice) /= N_Others_Choice then
8817 Nb_Choices := Nb_Choices + 1;
8818 end if;
8819
8820 Next (Choice);
8821 end loop;
8822
8823 Next (Assoc);
8824 end loop;
8825
8826 return Nb_Choices;
8827 end Number_Of_Choices;
8828
07fc65c4
GB
8829 ------------------------------------
8830 -- Packed_Array_Aggregate_Handled --
8831 ------------------------------------
8832
8833 -- The current version of this procedure will handle at compile time
8834 -- any array aggregate that meets these conditions:
8835
5eeeed5e 8836 -- One and two dimensional, bit packed
07fc65c4
GB
8837 -- Underlying packed type is modular type
8838 -- Bounds are within 32-bit Int range
8839 -- All bounds and values are static
8840
a39a553e
AC
8841 -- Note: for now, in the 2-D case, we only handle component sizes of
8842 -- 1, 2, 4 (cases where an integral number of elements occupies a byte).
8843
07fc65c4
GB
8844 function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean is
8845 Loc : constant Source_Ptr := Sloc (N);
8846 Typ : constant Entity_Id := Etype (N);
8847 Ctyp : constant Entity_Id := Component_Type (Typ);
8848
8849 Not_Handled : exception;
8850 -- Exception raised if this aggregate cannot be handled
8851
8852 begin
5eeeed5e 8853 -- Handle one- or two dimensional bit packed array
07fc65c4
GB
8854
8855 if not Is_Bit_Packed_Array (Typ)
5eeeed5e 8856 or else Number_Dimensions (Typ) > 2
07fc65c4
GB
8857 then
8858 return False;
8859 end if;
8860
5eeeed5e 8861 -- If two-dimensional, check whether it can be folded, and transformed
8ca597af
RD
8862 -- into a one-dimensional aggregate for the Packed_Array_Impl_Type of
8863 -- the original type.
5eeeed5e
AC
8864
8865 if Number_Dimensions (Typ) = 2 then
8866 return Two_Dim_Packed_Array_Handled (N);
8867 end if;
8868
8ca597af 8869 if not Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ)) then
5eeeed5e
AC
8870 return False;
8871 end if;
8872
78326189 8873 if not Is_Scalar_Type (Ctyp) then
0f95b178
JM
8874 return False;
8875 end if;
8876
07fc65c4
GB
8877 declare
8878 Csiz : constant Nat := UI_To_Int (Component_Size (Typ));
8879
07fc65c4 8880 function Get_Component_Val (N : Node_Id) return Uint;
3b9fa2df
ES
8881 -- Given a expression value N of the component type Ctyp, returns a
8882 -- value of Csiz (component size) bits representing this value. If
d940c627 8883 -- the value is nonstatic or any other reason exists why the value
3b9fa2df 8884 -- cannot be returned, then Not_Handled is raised.
07fc65c4
GB
8885
8886 -----------------------
8887 -- Get_Component_Val --
8888 -----------------------
8889
8890 function Get_Component_Val (N : Node_Id) return Uint is
fb8e3581 8891 Val : Uint;
07fc65c4
GB
8892
8893 begin
8894 -- We have to analyze the expression here before doing any further
8895 -- processing here. The analysis of such expressions is deferred
8896 -- till expansion to prevent some problems of premature analysis.
8897
8898 Analyze_And_Resolve (N, Ctyp);
8899
3b9fa2df
ES
8900 -- Must have a compile time value. String literals have to be
8901 -- converted into temporaries as well, because they cannot easily
8902 -- be converted into their bit representation.
07fc65c4 8903
6b6fcd3e
AC
8904 if not Compile_Time_Known_Value (N)
8905 or else Nkind (N) = N_String_Literal
8906 then
07fc65c4
GB
8907 raise Not_Handled;
8908 end if;
8909
8910 Val := Expr_Rep_Value (N);
8911
8912 -- Adjust for bias, and strip proper number of bits
8913
8914 if Has_Biased_Representation (Ctyp) then
8915 Val := Val - Expr_Value (Type_Low_Bound (Ctyp));
8916 end if;
8917
8918 return Val mod Uint_2 ** Csiz;
8919 end Get_Component_Val;
8920
7c4f3267
BD
8921 Bounds : constant Range_Nodes := Get_Index_Bounds (First_Index (Typ));
8922
07fc65c4
GB
8923 -- Here we know we have a one dimensional bit packed array
8924
8925 begin
07fc65c4
GB
8926 -- Cannot do anything if bounds are dynamic
8927
7c4f3267
BD
8928 if not (Compile_Time_Known_Value (Bounds.First)
8929 and then
8930 Compile_Time_Known_Value (Bounds.Last))
07fc65c4
GB
8931 then
8932 return False;
8933 end if;
8934
7c4f3267
BD
8935 declare
8936 Bounds_Vals : Range_Values;
8937 -- Compile-time known values of bounds
8938 begin
8939 -- Or are silly out of range of int bounds
07fc65c4 8940
7c4f3267
BD
8941 Bounds_Vals.First := Expr_Value (Bounds.First);
8942 Bounds_Vals.Last := Expr_Value (Bounds.Last);
07fc65c4 8943
7c4f3267
BD
8944 if not UI_Is_In_Int_Range (Bounds_Vals.First)
8945 or else
8946 not UI_Is_In_Int_Range (Bounds_Vals.Last)
8947 then
8948 return False;
8949 end if;
07fc65c4 8950
7c4f3267
BD
8951 -- At this stage we have a suitable aggregate for handling at
8952 -- compile time. The only remaining checks are that the values of
8953 -- expressions in the aggregate are compile-time known (checks are
8954 -- performed by Get_Component_Val), and that any subtypes or
8955 -- ranges are statically known.
07fc65c4 8956
7c4f3267
BD
8957 -- If the aggregate is not fully positional at this stage, then
8958 -- convert it to positional form. Either this will fail, in which
8959 -- case we can do nothing, or it will succeed, in which case we
8960 -- have succeeded in handling the aggregate and transforming it
8961 -- into a modular value, or it will stay an aggregate, in which
8962 -- case we have failed to create a packed value for it.
07fc65c4 8963
7c4f3267
BD
8964 if Present (Component_Associations (N)) then
8965 Convert_To_Positional (N, Handle_Bit_Packed => True);
8966 return Nkind (N) /= N_Aggregate;
8967 end if;
07fc65c4 8968
7c4f3267 8969 -- Otherwise we are all positional, so convert to proper value
07fc65c4 8970
7c4f3267
BD
8971 declare
8972 Len : constant Nat :=
8973 Int'Max (0, UI_To_Int (Bounds_Vals.Last) -
8974 UI_To_Int (Bounds_Vals.First) + 1);
8975 -- The length of the array (number of elements)
07fc65c4 8976
7c4f3267
BD
8977 Aggregate_Val : Uint;
8978 -- Value of aggregate. The value is set in the low order bits
8979 -- of this value. For the little-endian case, the values are
8980 -- stored from low-order to high-order and for the big-endian
8981 -- case the values are stored from high order to low order.
8982 -- Note that gigi will take care of the conversions to left
8983 -- justify the value in the big endian case (because of left
8984 -- justified modular type processing), so we do not have to
8985 -- worry about that here.
07fc65c4 8986
7c4f3267
BD
8987 Lit : Node_Id;
8988 -- Integer literal for resulting constructed value
07fc65c4 8989
7c4f3267
BD
8990 Shift : Nat;
8991 -- Shift count from low order for next value
07fc65c4 8992
7c4f3267
BD
8993 Incr : Int;
8994 -- Shift increment for loop
07fc65c4 8995
7c4f3267
BD
8996 Expr : Node_Id;
8997 -- Next expression from positional parameters of aggregate
c9a6b38f 8998
7c4f3267
BD
8999 Left_Justified : Boolean;
9000 -- Set True if we are filling the high order bits of the target
9001 -- value (i.e. the value is left justified).
07fc65c4 9002
7c4f3267
BD
9003 begin
9004 -- For little endian, we fill up the low order bits of the
9005 -- target value. For big endian we fill up the high order bits
9006 -- of the target value (which is a left justified modular
9007 -- value).
68f640f2 9008
7c4f3267 9009 Left_Justified := Bytes_Big_Endian;
c9a6b38f 9010
7c4f3267 9011 -- Switch justification if using -gnatd8
c9a6b38f 9012
7c4f3267
BD
9013 if Debug_Flag_8 then
9014 Left_Justified := not Left_Justified;
9015 end if;
c9a6b38f 9016
7c4f3267 9017 -- Switch justfification if reverse storage order
c9a6b38f 9018
7c4f3267
BD
9019 if Reverse_Storage_Order (Base_Type (Typ)) then
9020 Left_Justified := not Left_Justified;
9021 end if;
07fc65c4 9022
7c4f3267
BD
9023 if Left_Justified then
9024 Shift := Csiz * (Len - 1);
9025 Incr := -Csiz;
9026 else
9027 Shift := 0;
9028 Incr := +Csiz;
9029 end if;
07fc65c4 9030
7c4f3267 9031 -- Loop to set the values
fbf5a39b 9032
7c4f3267
BD
9033 if Len = 0 then
9034 Aggregate_Val := Uint_0;
9035 else
9036 Expr := First (Expressions (N));
9037 Aggregate_Val := Get_Component_Val (Expr) * Uint_2 ** Shift;
9038
9039 for J in 2 .. Len loop
9040 Shift := Shift + Incr;
9041 Next (Expr);
9042 Aggregate_Val :=
9043 Aggregate_Val +
9044 Get_Component_Val (Expr) * Uint_2 ** Shift;
9045 end loop;
9046 end if;
07fc65c4 9047
7c4f3267 9048 -- Now we can rewrite with the proper value
07fc65c4 9049
7c4f3267
BD
9050 Lit := Make_Integer_Literal (Loc, Intval => Aggregate_Val);
9051 Set_Print_In_Hex (Lit);
07fc65c4 9052
7c4f3267
BD
9053 -- Construct the expression using this literal. Note that it
9054 -- is important to qualify the literal with its proper modular
9055 -- type since universal integer does not have the required
9056 -- range and also this is a left justified modular type,
9057 -- which is important in the big-endian case.
07fc65c4 9058
7c4f3267
BD
9059 Rewrite (N,
9060 Unchecked_Convert_To (Typ,
9061 Make_Qualified_Expression (Loc,
9062 Subtype_Mark =>
9063 New_Occurrence_Of (Packed_Array_Impl_Type (Typ), Loc),
9064 Expression => Lit)));
07fc65c4 9065
7c4f3267
BD
9066 Analyze_And_Resolve (N, Typ);
9067 return True;
9068 end;
07fc65c4
GB
9069 end;
9070 end;
9071
9072 exception
9073 when Not_Handled =>
9074 return False;
9075 end Packed_Array_Aggregate_Handled;
9076
fbf5a39b
AC
9077 ----------------------------
9078 -- Has_Mutable_Components --
9079 ----------------------------
9080
9081 function Has_Mutable_Components (Typ : Entity_Id) return Boolean is
9082 Comp : Entity_Id;
bee475e2 9083 Ctyp : Entity_Id;
fbf5a39b
AC
9084
9085 begin
9086 Comp := First_Component (Typ);
fbf5a39b 9087 while Present (Comp) loop
bee475e2
EB
9088 Ctyp := Underlying_Type (Etype (Comp));
9089 if Is_Record_Type (Ctyp)
9090 and then Has_Discriminants (Ctyp)
9091 and then not Is_Constrained (Ctyp)
fbf5a39b
AC
9092 then
9093 return True;
9094 end if;
9095
9096 Next_Component (Comp);
9097 end loop;
9098
9099 return False;
9100 end Has_Mutable_Components;
9101
07fc65c4
GB
9102 ------------------------------
9103 -- Initialize_Discriminants --
9104 ------------------------------
9105
9106 procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id) is
9107 Loc : constant Source_Ptr := Sloc (N);
9108 Bas : constant Entity_Id := Base_Type (Typ);
9109 Par : constant Entity_Id := Etype (Bas);
9110 Decl : constant Node_Id := Parent (Par);
9111 Ref : Node_Id;
9112
9113 begin
9114 if Is_Tagged_Type (Bas)
9115 and then Is_Derived_Type (Bas)
9116 and then Has_Discriminants (Par)
9117 and then Has_Discriminants (Bas)
9118 and then Number_Discriminants (Bas) /= Number_Discriminants (Par)
9119 and then Nkind (Decl) = N_Full_Type_Declaration
9120 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
36a66365
AC
9121 and then
9122 Present (Variant_Part (Component_List (Type_Definition (Decl))))
07fc65c4
GB
9123 and then Nkind (N) /= N_Extension_Aggregate
9124 then
9125
fbf5a39b 9126 -- Call init proc to set discriminants.
07fc65c4
GB
9127 -- There should eventually be a special procedure for this ???
9128
e4494292 9129 Ref := New_Occurrence_Of (Defining_Identifier (N), Loc);
07fc65c4
GB
9130 Insert_Actions_After (N,
9131 Build_Initialization_Call (Sloc (N), Ref, Typ));
9132 end if;
9133 end Initialize_Discriminants;
9134
3cf3e5c6
AC
9135 ----------------
9136 -- Must_Slide --
9137 ----------------
9138
9139 function Must_Slide
6732c403
ES
9140 (Aggr : Node_Id;
9141 Obj_Type : Entity_Id;
3cf3e5c6
AC
9142 Typ : Entity_Id) return Boolean
9143 is
3cf3e5c6 9144 begin
3b9fa2df
ES
9145 -- No sliding if the type of the object is not established yet, if it is
9146 -- an unconstrained type whose actual subtype comes from the aggregate,
6732c403
ES
9147 -- or if the two types are identical. If the aggregate contains only
9148 -- an Others_Clause it gets its type from the context and no sliding
9149 -- is involved either.
3cf3e5c6
AC
9150
9151 if not Is_Array_Type (Obj_Type) then
9152 return False;
9153
9154 elsif not Is_Constrained (Obj_Type) then
9155 return False;
9156
9157 elsif Typ = Obj_Type then
9158 return False;
9159
6732c403
ES
9160 elsif Is_Others_Aggregate (Aggr) then
9161 return False;
9162
3cf3e5c6
AC
9163 else
9164 -- Sliding can only occur along the first dimension
6732c403
ES
9165 -- If any the bounds of non-static sliding is required
9166 -- to force potential range checks.
3cf3e5c6 9167
7c4f3267
BD
9168 declare
9169 Bounds1 : constant Range_Nodes :=
9170 Get_Index_Bounds (First_Index (Typ));
9171 Bounds2 : constant Range_Nodes :=
9172 Get_Index_Bounds (First_Index (Obj_Type));
3cf3e5c6 9173
7c4f3267
BD
9174 begin
9175 if not Is_OK_Static_Expression (Bounds1.First) or else
9176 not Is_OK_Static_Expression (Bounds2.First) or else
9177 not Is_OK_Static_Expression (Bounds1.Last) or else
9178 not Is_OK_Static_Expression (Bounds2.Last)
9179 then
6732c403
ES
9180 return True;
9181
7c4f3267
BD
9182 else
9183 return Expr_Value (Bounds1.First) /= Expr_Value (Bounds2.First)
9184 or else
9185 Expr_Value (Bounds1.Last) /= Expr_Value (Bounds2.Last);
9186 end if;
9187 end;
3cf3e5c6
AC
9188 end if;
9189 end Must_Slide;
9190
70482933
RK
9191 ---------------------
9192 -- Sort_Case_Table --
9193 ---------------------
9194
9195 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
fbf5a39b
AC
9196 L : constant Int := Case_Table'First;
9197 U : constant Int := Case_Table'Last;
70482933
RK
9198 K : Int;
9199 J : Int;
9200 T : Case_Bounds;
9201
9202 begin
9203 K := L;
70482933
RK
9204 while K /= U loop
9205 T := Case_Table (K + 1);
70482933 9206
5277cab6 9207 J := K + 1;
70482933
RK
9208 while J /= L
9209 and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
9210 Expr_Value (T.Choice_Lo)
9211 loop
9212 Case_Table (J) := Case_Table (J - 1);
9213 J := J - 1;
9214 end loop;
9215
9216 Case_Table (J) := T;
9217 K := K + 1;
9218 end loop;
9219 end Sort_Case_Table;
9220
0f95b178
JM
9221 ----------------------------
9222 -- Static_Array_Aggregate --
9223 ----------------------------
9224
9225 function Static_Array_Aggregate (N : Node_Id) return Boolean is
2401c98f
HK
9226 function Is_Static_Component (Nod : Node_Id) return Boolean;
9227 -- Return True if Nod has a compile-time known value and can be passed
9228 -- as is to the back-end without further expansion.
2a1838cd
EB
9229
9230 ---------------------------
9231 -- Is_Static_Component --
9232 ---------------------------
9233
2401c98f 9234 function Is_Static_Component (Nod : Node_Id) return Boolean is
2a1838cd 9235 begin
4a08c95c 9236 if Nkind (Nod) in N_Integer_Literal | N_Real_Literal then
2a1838cd
EB
9237 return True;
9238
2401c98f
HK
9239 elsif Is_Entity_Name (Nod)
9240 and then Present (Entity (Nod))
9241 and then Ekind (Entity (Nod)) = E_Enumeration_Literal
2a1838cd
EB
9242 then
9243 return True;
9244
2401c98f
HK
9245 elsif Nkind (Nod) = N_Aggregate
9246 and then Compile_Time_Known_Aggregate (Nod)
2a1838cd
EB
9247 then
9248 return True;
9249
9250 else
9251 return False;
9252 end if;
9253 end Is_Static_Component;
9254
2401c98f
HK
9255 -- Local variables
9256
9257 Bounds : constant Node_Id := Aggregate_Bounds (N);
9258 Typ : constant Entity_Id := Etype (N);
0f95b178 9259
2401c98f
HK
9260 Agg : Node_Id;
9261 Expr : Node_Id;
9262 Lo : Node_Id;
9263 Hi : Node_Id;
0f95b178 9264
2a1838cd
EB
9265 -- Start of processing for Static_Array_Aggregate
9266
0f95b178 9267 begin
2a1838cd 9268 if Is_Packed (Typ) or else Has_Discriminants (Component_Type (Typ)) then
0f95b178
JM
9269 return False;
9270 end if;
9271
9272 if Present (Bounds)
9273 and then Nkind (Bounds) = N_Range
9274 and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
9275 and then Nkind (High_Bound (Bounds)) = N_Integer_Literal
9276 then
9277 Lo := Low_Bound (Bounds);
9278 Hi := High_Bound (Bounds);
9279
9280 if No (Component_Associations (N)) then
9281
2a1838cd 9282 -- Verify that all components are static
0f95b178
JM
9283
9284 Expr := First (Expressions (N));
9285 while Present (Expr) loop
2a1838cd 9286 if not Is_Static_Component (Expr) then
0f95b178
JM
9287 return False;
9288 end if;
9289
9290 Next (Expr);
9291 end loop;
9292
9293 return True;
9294
9295 else
9296 -- We allow only a single named association, either a static
9297 -- range or an others_clause, with a static expression.
9298
9299 Expr := First (Component_Associations (N));
9300
9301 if Present (Expressions (N)) then
9302 return False;
9303
9304 elsif Present (Next (Expr)) then
9305 return False;
9306
00f45f30 9307 elsif Present (Next (First (Choice_List (Expr)))) then
0f95b178
JM
9308 return False;
9309
9310 else
d7f94401
AC
9311 -- The aggregate is static if all components are literals,
9312 -- or else all its components are static aggregates for the
fc534c1c
ES
9313 -- component type. We also limit the size of a static aggregate
9314 -- to prevent runaway static expressions.
0f95b178 9315
2a1838cd 9316 if not Is_Static_Component (Expression (Expr)) then
0f95b178 9317 return False;
6a2e4f0b 9318 end if;
fc534c1c 9319
eaf6e63a 9320 if not Aggr_Size_OK (N) then
fc534c1c 9321 return False;
0f95b178
JM
9322 end if;
9323
9324 -- Create a positional aggregate with the right number of
9325 -- copies of the expression.
9326
9327 Agg := Make_Aggregate (Sloc (N), New_List, No_List);
9328
9329 for I in UI_To_Int (Intval (Lo)) .. UI_To_Int (Intval (Hi))
9330 loop
37368818 9331 Append_To (Expressions (Agg), New_Copy (Expression (Expr)));
597d7158 9332
9b4b0a1a
GD
9333 -- The copied expression must be analyzed and resolved.
9334 -- Besides setting the type, this ensures that static
9335 -- expressions are appropriately marked as such.
597d7158 9336
9b4b0a1a
GD
9337 Analyze_And_Resolve
9338 (Last (Expressions (Agg)), Component_Type (Typ));
0f95b178
JM
9339 end loop;
9340
9341 Set_Aggregate_Bounds (Agg, Bounds);
9342 Set_Etype (Agg, Typ);
9343 Set_Analyzed (Agg);
9344 Rewrite (N, Agg);
9345 Set_Compile_Time_Known_Aggregate (N);
9346
9347 return True;
9348 end if;
9349 end if;
9350
9351 else
9352 return False;
9353 end if;
9354 end Static_Array_Aggregate;
9b4b0a1a 9355
937e9676
AC
9356 ----------------------------------
9357 -- Two_Dim_Packed_Array_Handled --
9358 ----------------------------------
9359
9360 function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean is
9361 Loc : constant Source_Ptr := Sloc (N);
9362 Typ : constant Entity_Id := Etype (N);
9363 Ctyp : constant Entity_Id := Component_Type (Typ);
9364 Comp_Size : constant Int := UI_To_Int (Component_Size (Typ));
9365 Packed_Array : constant Entity_Id :=
9366 Packed_Array_Impl_Type (Base_Type (Typ));
9367
9368 One_Comp : Node_Id;
9369 -- Expression in original aggregate
9370
9371 One_Dim : Node_Id;
9372 -- One-dimensional subaggregate
9373
9374 begin
9375
9376 -- For now, only deal with cases where an integral number of elements
9377 -- fit in a single byte. This includes the most common boolean case.
9378
9379 if not (Comp_Size = 1 or else
9380 Comp_Size = 2 or else
9381 Comp_Size = 4)
9382 then
9383 return False;
9384 end if;
9385
c42006e9 9386 Convert_To_Positional (N, Handle_Bit_Packed => True);
937e9676
AC
9387
9388 -- Verify that all components are static
9389
9390 if Nkind (N) = N_Aggregate
9391 and then Compile_Time_Known_Aggregate (N)
9392 then
9393 null;
9394
9395 -- The aggregate may have been reanalyzed and converted already
9396
9397 elsif Nkind (N) /= N_Aggregate then
9398 return True;
9399
9400 -- If component associations remain, the aggregate is not static
9401
9402 elsif Present (Component_Associations (N)) then
9403 return False;
9404
9405 else
9406 One_Dim := First (Expressions (N));
9407 while Present (One_Dim) loop
9408 if Present (Component_Associations (One_Dim)) then
9409 return False;
9410 end if;
9411
9412 One_Comp := First (Expressions (One_Dim));
9413 while Present (One_Comp) loop
9414 if not Is_OK_Static_Expression (One_Comp) then
9415 return False;
9416 end if;
9417
9418 Next (One_Comp);
9419 end loop;
9420
9421 Next (One_Dim);
9422 end loop;
9423 end if;
9424
9425 -- Two-dimensional aggregate is now fully positional so pack one
9426 -- dimension to create a static one-dimensional array, and rewrite
9427 -- as an unchecked conversion to the original type.
9428
9429 declare
9430 Byte_Size : constant Int := UI_To_Int (Component_Size (Packed_Array));
9431 -- The packed array type is a byte array
9432
9433 Packed_Num : Nat;
9434 -- Number of components accumulated in current byte
9435
9436 Comps : List_Id;
9437 -- Assembled list of packed values for equivalent aggregate
9438
9439 Comp_Val : Uint;
9440 -- Integer value of component
9441
9442 Incr : Int;
9443 -- Step size for packing
9444
9445 Init_Shift : Int;
9446 -- Endian-dependent start position for packing
9447
9448 Shift : Int;
9449 -- Current insertion position
9450
9451 Val : Int;
9452 -- Component of packed array being assembled
9453
9454 begin
9455 Comps := New_List;
9456 Val := 0;
9457 Packed_Num := 0;
9458
64ac53f4 9459 -- Account for endianness. See corresponding comment in
937e9676
AC
9460 -- Packed_Array_Aggregate_Handled concerning the following.
9461
9462 if Bytes_Big_Endian
9463 xor Debug_Flag_8
9464 xor Reverse_Storage_Order (Base_Type (Typ))
9465 then
9466 Init_Shift := Byte_Size - Comp_Size;
9467 Incr := -Comp_Size;
9468 else
9469 Init_Shift := 0;
9470 Incr := +Comp_Size;
9471 end if;
9472
9473 -- Iterate over each subaggregate
9474
9475 Shift := Init_Shift;
9476 One_Dim := First (Expressions (N));
9477 while Present (One_Dim) loop
9478 One_Comp := First (Expressions (One_Dim));
9479 while Present (One_Comp) loop
9480 if Packed_Num = Byte_Size / Comp_Size then
9481
9482 -- Byte is complete, add to list of expressions
9483
9484 Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps);
9485 Val := 0;
9486 Shift := Init_Shift;
9487 Packed_Num := 0;
9488
9489 else
9490 Comp_Val := Expr_Rep_Value (One_Comp);
9491
9492 -- Adjust for bias, and strip proper number of bits
9493
9494 if Has_Biased_Representation (Ctyp) then
9495 Comp_Val := Comp_Val - Expr_Value (Type_Low_Bound (Ctyp));
9496 end if;
9497
9498 Comp_Val := Comp_Val mod Uint_2 ** Comp_Size;
9499 Val := UI_To_Int (Val + Comp_Val * Uint_2 ** Shift);
9500 Shift := Shift + Incr;
99859ea7 9501 Next (One_Comp);
937e9676
AC
9502 Packed_Num := Packed_Num + 1;
9503 end if;
9504 end loop;
9505
99859ea7 9506 Next (One_Dim);
937e9676
AC
9507 end loop;
9508
9509 if Packed_Num > 0 then
9510
9511 -- Add final incomplete byte if present
9512
9513 Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps);
9514 end if;
9515
9516 Rewrite (N,
9517 Unchecked_Convert_To (Typ,
9518 Make_Qualified_Expression (Loc,
9519 Subtype_Mark => New_Occurrence_Of (Packed_Array, Loc),
9520 Expression => Make_Aggregate (Loc, Expressions => Comps))));
9521 Analyze_And_Resolve (N);
9522 return True;
9523 end;
9524 end Two_Dim_Packed_Array_Handled;
9525
70482933 9526end Exp_Aggr;
This page took 8.729206 seconds and 5 git commands to generate.