/* Reload pseudo regs into hard regs for insns that require hard regs. Copyright (C) 1987, 88, 89, 92-97, 1998 Free Software Foundation, Inc. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "rtl.h" #include "obstack.h" #include "insn-config.h" #include "insn-flags.h" #include "insn-codes.h" #include "flags.h" #include "expr.h" #include "regs.h" #include "hard-reg-set.h" #include "reload.h" #include "recog.h" #include "basic-block.h" #include "output.h" #include "real.h" #include "toplev.h" /* This file contains the reload pass of the compiler, which is run after register allocation has been done. It checks that each insn is valid (operands required to be in registers really are in registers of the proper class) and fixes up invalid ones by copying values temporarily into registers for the insns that need them. The results of register allocation are described by the vector reg_renumber; the insns still contain pseudo regs, but reg_renumber can be used to find which hard reg, if any, a pseudo reg is in. The technique we always use is to free up a few hard regs that are called ``reload regs'', and for each place where a pseudo reg must be in a hard reg, copy it temporarily into one of the reload regs. All the pseudos that were formerly allocated to the hard regs that are now in use as reload regs must be ``spilled''. This means that they go to other hard regs, or to stack slots if no other available hard regs can be found. Spilling can invalidate more insns, requiring additional need for reloads, so we must keep checking until the process stabilizes. For machines with different classes of registers, we must keep track of the register class needed for each reload, and make sure that we allocate enough reload registers of each class. The file reload.c contains the code that checks one insn for validity and reports the reloads that it needs. This file is in charge of scanning the entire rtl code, accumulating the reload needs, spilling, assigning reload registers to use for fixing up each insn, and generating the new insns to copy values into the reload registers. */ #ifndef REGISTER_MOVE_COST #define REGISTER_MOVE_COST(x, y) 2 #endif /* During reload_as_needed, element N contains a REG rtx for the hard reg into which reg N has been reloaded (perhaps for a previous insn). */ static rtx *reg_last_reload_reg; /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn for an output reload that stores into reg N. */ static char *reg_has_output_reload; /* Indicates which hard regs are reload-registers for an output reload in the current insn. */ static HARD_REG_SET reg_is_output_reload; /* Element N is the constant value to which pseudo reg N is equivalent, or zero if pseudo reg N is not equivalent to a constant. find_reloads looks at this in order to replace pseudo reg N with the constant it stands for. */ rtx *reg_equiv_constant; /* Element N is a memory location to which pseudo reg N is equivalent, prior to any register elimination (such as frame pointer to stack pointer). Depending on whether or not it is a valid address, this value is transferred to either reg_equiv_address or reg_equiv_mem. */ rtx *reg_equiv_memory_loc; /* Element N is the address of stack slot to which pseudo reg N is equivalent. This is used when the address is not valid as a memory address (because its displacement is too big for the machine.) */ rtx *reg_equiv_address; /* Element N is the memory slot to which pseudo reg N is equivalent, or zero if pseudo reg N is not equivalent to a memory slot. */ rtx *reg_equiv_mem; /* Widest width in which each pseudo reg is referred to (via subreg). */ static int *reg_max_ref_width; /* Element N is the insn that initialized reg N from its equivalent constant or memory slot. */ static rtx *reg_equiv_init; /* During reload_as_needed, element N contains the last pseudo regno reloaded into hard register N. If that pseudo reg occupied more than one register, reg_reloaded_contents points to that pseudo for each spill register in use; all of these must remain set for an inheritance to occur. */ static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER]; /* During reload_as_needed, element N contains the insn for which hard register N was last used. Its contents are significant only when reg_reloaded_valid is set for this register. */ static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER]; /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */ static HARD_REG_SET reg_reloaded_valid; /* Indicate if the register was dead at the end of the reload. This is only valid if reg_reloaded_contents is set and valid. */ static HARD_REG_SET reg_reloaded_dead; /* Number of spill-regs so far; number of valid elements of spill_regs. */ static int n_spills; /* In parallel with spill_regs, contains REG rtx's for those regs. Holds the last rtx used for any given reg, or 0 if it has never been used for spilling yet. This rtx is reused, provided it has the proper mode. */ static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER]; /* In parallel with spill_regs, contains nonzero for a spill reg that was stored after the last time it was used. The precise value is the insn generated to do the store. */ static rtx spill_reg_store[FIRST_PSEUDO_REGISTER]; /* This table is the inverse mapping of spill_regs: indexed by hard reg number, it contains the position of that reg in spill_regs, or -1 for something that is not in spill_regs. */ static short spill_reg_order[FIRST_PSEUDO_REGISTER]; /* This reg set indicates registers that may not be used for retrying global allocation. The registers that may not be used include all spill registers and the frame pointer (if we are using one). */ HARD_REG_SET forbidden_regs; /* This reg set indicates registers that are not good for spill registers. They will not be used to complete groups of spill registers. This includes all fixed registers, registers that may be eliminated, and, if SMALL_REGISTER_CLASSES is zero, registers explicitly used in the rtl. (spill_reg_order prevents these registers from being used to start a group.) */ static HARD_REG_SET bad_spill_regs; /* Describes order of use of registers for reloading of spilled pseudo-registers. `spills' is the number of elements that are actually valid; new ones are added at the end. */ static short spill_regs[FIRST_PSEUDO_REGISTER]; /* This reg set indicates those registers that have been used a spill registers. This information is used in reorg.c, to help figure out what registers are live at any point. It is assumed that all spill_regs are dead at every CODE_LABEL. */ HARD_REG_SET used_spill_regs; /* Index of last register assigned as a spill register. We allocate in a round-robin fashion. */ static int last_spill_reg; /* Describes order of preference for putting regs into spill_regs. Contains the numbers of all the hard regs, in order most preferred first. This order is different for each function. It is set up by order_regs_for_reload. Empty elements at the end contain -1. */ static short potential_reload_regs[FIRST_PSEUDO_REGISTER]; /* 1 for a hard register that appears explicitly in the rtl (for example, function value registers, special registers used by insns, structure value pointer registers). */ static char regs_explicitly_used[FIRST_PSEUDO_REGISTER]; /* Indicates if a register was counted against the need for groups. 0 means it can count against max_nongroup instead. */ static HARD_REG_SET counted_for_groups; /* Indicates if a register was counted against the need for non-groups. 0 means it can become part of a new group. During choose_reload_regs, 1 here means don't use this reg as part of a group, even if it seems to be otherwise ok. */ static HARD_REG_SET counted_for_nongroups; /* Nonzero if indirect addressing is supported on the machine; this means that spilling (REG n) does not require reloading it into a register in order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The value indicates the level of indirect addressing supported, e.g., two means that (MEM (MEM (REG n))) is also valid if (REG n) does not get a hard register. */ static char spill_indirect_levels; /* Nonzero if indirect addressing is supported when the innermost MEM is of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to which these are valid is the same as spill_indirect_levels, above. */ char indirect_symref_ok; /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */ char double_reg_address_ok; /* Record the stack slot for each spilled hard register. */ static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER]; /* Width allocated so far for that stack slot. */ static int spill_stack_slot_width[FIRST_PSEUDO_REGISTER]; /* Indexed by register class and basic block number, nonzero if there is any need for a spill register of that class in that basic block. The pointer is 0 if we did stupid allocation and don't know the structure of basic blocks. */ char *basic_block_needs[N_REG_CLASSES]; /* First uid used by insns created by reload in this function. Used in find_equiv_reg. */ int reload_first_uid; /* Flag set by local-alloc or global-alloc if anything is live in a call-clobbered reg across calls. */ int caller_save_needed; /* The register class to use for a base register when reloading an address. This is normally BASE_REG_CLASS, but it may be different when using SMALL_REGISTER_CLASSES and passing parameters in registers. */ enum reg_class reload_address_base_reg_class; /* The register class to use for an index register when reloading an address. This is normally INDEX_REG_CLASS, but it may be different when using SMALL_REGISTER_CLASSES and passing parameters in registers. */ enum reg_class reload_address_index_reg_class; /* Set to 1 while reload_as_needed is operating. Required by some machines to handle any generated moves differently. */ int reload_in_progress = 0; /* These arrays record the insn_code of insns that may be needed to perform input and output reloads of special objects. They provide a place to pass a scratch register. */ enum insn_code reload_in_optab[NUM_MACHINE_MODES]; enum insn_code reload_out_optab[NUM_MACHINE_MODES]; /* This obstack is used for allocation of rtl during register elimination. The allocated storage can be freed once find_reloads has processed the insn. */ struct obstack reload_obstack; char *reload_firstobj; #define obstack_chunk_alloc xmalloc #define obstack_chunk_free free /* List of labels that must never be deleted. */ extern rtx forced_labels; /* Allocation number table from global register allocation. */ extern int *reg_allocno; /* This structure is used to record information about register eliminations. Each array entry describes one possible way of eliminating a register in favor of another. If there is more than one way of eliminating a particular register, the most preferred should be specified first. */ static struct elim_table { int from; /* Register number to be eliminated. */ int to; /* Register number used as replacement. */ int initial_offset; /* Initial difference between values. */ int can_eliminate; /* Non-zero if this elimination can be done. */ int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over insns made by reload. */ int offset; /* Current offset between the two regs. */ int max_offset; /* Maximum offset between the two regs. */ int previous_offset; /* Offset at end of previous insn. */ int ref_outside_mem; /* "to" has been referenced outside a MEM. */ rtx from_rtx; /* REG rtx for the register to be eliminated. We cannot simply compare the number since we might then spuriously replace a hard register corresponding to a pseudo assigned to the reg to be eliminated. */ rtx to_rtx; /* REG rtx for the replacement. */ } reg_eliminate[] = /* If a set of eliminable registers was specified, define the table from it. Otherwise, default to the normal case of the frame pointer being replaced by the stack pointer. */ #ifdef ELIMINABLE_REGS ELIMINABLE_REGS; #else {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}; #endif #define NUM_ELIMINABLE_REGS (sizeof reg_eliminate / sizeof reg_eliminate[0]) /* Record the number of pending eliminations that have an offset not equal to their initial offset. If non-zero, we use a new copy of each replacement result in any insns encountered. */ static int num_not_at_initial_offset; /* Count the number of registers that we may be able to eliminate. */ static int num_eliminable; /* For each label, we record the offset of each elimination. If we reach a label by more than one path and an offset differs, we cannot do the elimination. This information is indexed by the number of the label. The first table is an array of flags that records whether we have yet encountered a label and the second table is an array of arrays, one entry in the latter array for each elimination. */ static char *offsets_known_at; static int (*offsets_at)[NUM_ELIMINABLE_REGS]; /* Number of labels in the current function. */ static int num_labels; struct hard_reg_n_uses { int regno; int uses; }; static int possible_group_p PROTO((int, int *)); static void count_possible_groups PROTO((int *, enum machine_mode *, int *, int)); static int modes_equiv_for_class_p PROTO((enum machine_mode, enum machine_mode, enum reg_class)); static void spill_failure PROTO((rtx)); static int new_spill_reg PROTO((int, int, int *, int *, int, FILE *)); static void delete_dead_insn PROTO((rtx)); static void alter_reg PROTO((int, int)); static void mark_scratch_live PROTO((rtx)); static void set_label_offsets PROTO((rtx, rtx, int)); static int eliminate_regs_in_insn PROTO((rtx, int)); static void mark_not_eliminable PROTO((rtx, rtx)); static int spill_hard_reg PROTO((int, int, FILE *, int)); static void scan_paradoxical_subregs PROTO((rtx)); static int hard_reg_use_compare PROTO((const GENERIC_PTR, const GENERIC_PTR)); static void order_regs_for_reload PROTO((int)); static int compare_spill_regs PROTO((const GENERIC_PTR, const GENERIC_PTR)); static void reload_as_needed PROTO((rtx, int)); static void forget_old_reloads_1 PROTO((rtx, rtx)); static int reload_reg_class_lower PROTO((const GENERIC_PTR, const GENERIC_PTR)); static void mark_reload_reg_in_use PROTO((int, int, enum reload_type, enum machine_mode)); static void clear_reload_reg_in_use PROTO((int, int, enum reload_type, enum machine_mode)); static int reload_reg_free_p PROTO((int, int, enum reload_type)); static int reload_reg_free_before_p PROTO((int, int, enum reload_type)); static int reload_reg_free_for_value_p PROTO((int, int, enum reload_type, rtx)); static int reload_reg_reaches_end_p PROTO((int, int, enum reload_type)); static int allocate_reload_reg PROTO((int, rtx, int, int)); static void choose_reload_regs PROTO((rtx, rtx)); static void merge_assigned_reloads PROTO((rtx)); static void emit_reload_insns PROTO((rtx)); static void delete_output_reload PROTO((rtx, int, rtx)); static void inc_for_reload PROTO((rtx, rtx, int)); static int constraint_accepts_reg_p PROTO((char *, rtx)); static void reload_cse_invalidate_regno PROTO((int, enum machine_mode, int)); static int reload_cse_mem_conflict_p PROTO((rtx, rtx)); static void reload_cse_invalidate_mem PROTO((rtx)); static void reload_cse_invalidate_rtx PROTO((rtx, rtx)); static int reload_cse_regno_equal_p PROTO((int, rtx, enum machine_mode)); static int reload_cse_noop_set_p PROTO((rtx, rtx)); static int reload_cse_simplify_set PROTO((rtx, rtx)); static int reload_cse_simplify_operands PROTO((rtx)); static void reload_cse_check_clobber PROTO((rtx, rtx)); static void reload_cse_record_set PROTO((rtx, rtx)); static void reload_cse_delete_death_notes PROTO((rtx)); static void reload_cse_no_longer_dead PROTO((int, enum machine_mode)); /* Initialize the reload pass once per compilation. */ void init_reload () { register int i; /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack. Set spill_indirect_levels to the number of levels such addressing is permitted, zero if it is not permitted at all. */ register rtx tem = gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, LAST_VIRTUAL_REGISTER + 1), GEN_INT (4))); spill_indirect_levels = 0; while (memory_address_p (QImode, tem)) { spill_indirect_levels++; tem = gen_rtx_MEM (Pmode, tem); } /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */ tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo")); indirect_symref_ok = memory_address_p (QImode, tem); /* See if reg+reg is a valid (and offsettable) address. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { tem = gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM), gen_rtx_REG (Pmode, i)); /* This way, we make sure that reg+reg is an offsettable address. */ tem = plus_constant (tem, 4); if (memory_address_p (QImode, tem)) { double_reg_address_ok = 1; break; } } /* Initialize obstack for our rtl allocation. */ gcc_obstack_init (&reload_obstack); reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0); /* Decide which register class should be used when reloading addresses. If we are using SMALL_REGISTER_CLASSES, and any parameters are passed in registers, then we do not want to use those registers when reloading an address. Otherwise, if a function argument needs a reload, we may wind up clobbering another argument to the function which was already computed. If we find a subset class which simply avoids those registers, we use it instead. ??? It would be better to only use the restricted class when we actually are loading function arguments, but that is hard to determine. */ reload_address_base_reg_class = BASE_REG_CLASS; reload_address_index_reg_class = INDEX_REG_CLASS; if (SMALL_REGISTER_CLASSES) { int regno; HARD_REG_SET base, index; enum reg_class *p; COPY_HARD_REG_SET (base, reg_class_contents[BASE_REG_CLASS]); COPY_HARD_REG_SET (index, reg_class_contents[INDEX_REG_CLASS]); for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) { if (FUNCTION_ARG_REGNO_P (regno)) { CLEAR_HARD_REG_BIT (base, regno); CLEAR_HARD_REG_BIT (index, regno); } } GO_IF_HARD_REG_EQUAL (base, reg_class_contents[BASE_REG_CLASS], baseok); for (p = reg_class_subclasses[BASE_REG_CLASS]; *p != LIM_REG_CLASSES; p++) { GO_IF_HARD_REG_EQUAL (base, reg_class_contents[*p], usebase); continue; usebase: reload_address_base_reg_class = *p; break; } baseok:; GO_IF_HARD_REG_EQUAL (index, reg_class_contents[INDEX_REG_CLASS], indexok); for (p = reg_class_subclasses[INDEX_REG_CLASS]; *p != LIM_REG_CLASSES; p++) { GO_IF_HARD_REG_EQUAL (index, reg_class_contents[*p], useindex); continue; useindex: reload_address_index_reg_class = *p; break; } indexok:; } } /* Main entry point for the reload pass. FIRST is the first insn of the function being compiled. GLOBAL nonzero means we were called from global_alloc and should attempt to reallocate any pseudoregs that we displace from hard regs we will use for reloads. If GLOBAL is zero, we do not have enough information to do that, so any pseudo reg that is spilled must go to the stack. DUMPFILE is the global-reg debugging dump file stream, or 0. If it is nonzero, messages are written to it to describe which registers are seized as reload regs, which pseudo regs are spilled from them, and where the pseudo regs are reallocated to. Return value is nonzero if reload failed and we must not do any more for this function. */ int reload (first, global, dumpfile) rtx first; int global; FILE *dumpfile; { register int class; register int i, j, k; register rtx insn; register struct elim_table *ep; /* The two pointers used to track the true location of the memory used for label offsets. */ char *real_known_ptr = NULL_PTR; int (*real_at_ptr)[NUM_ELIMINABLE_REGS]; int something_changed; int something_needs_reloads; int something_needs_elimination; int new_basic_block_needs; enum reg_class caller_save_spill_class = NO_REGS; int caller_save_group_size = 1; /* Nonzero means we couldn't get enough spill regs. */ int failure = 0; /* The basic block number currently being processed for INSN. */ int this_block; /* Make sure even insns with volatile mem refs are recognizable. */ init_recog (); /* Enable find_equiv_reg to distinguish insns made by reload. */ reload_first_uid = get_max_uid (); for (i = 0; i < N_REG_CLASSES; i++) basic_block_needs[i] = 0; #ifdef SECONDARY_MEMORY_NEEDED /* Initialize the secondary memory table. */ clear_secondary_mem (); #endif /* Remember which hard regs appear explicitly before we merge into `regs_ever_live' the ones in which pseudo regs have been allocated. */ bcopy (regs_ever_live, regs_explicitly_used, sizeof regs_ever_live); /* We don't have a stack slot for any spill reg yet. */ bzero ((char *) spill_stack_slot, sizeof spill_stack_slot); bzero ((char *) spill_stack_slot_width, sizeof spill_stack_slot_width); /* Initialize the save area information for caller-save, in case some are needed. */ init_save_areas (); /* Compute which hard registers are now in use as homes for pseudo registers. This is done here rather than (eg) in global_alloc because this point is reached even if not optimizing. */ for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) mark_home_live (i); /* A function that receives a nonlocal goto must save all call-saved registers. */ if (current_function_has_nonlocal_label) for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { if (! call_used_regs[i] && ! fixed_regs[i]) regs_ever_live[i] = 1; } for (i = 0; i < scratch_list_length; i++) if (scratch_list[i]) mark_scratch_live (scratch_list[i]); /* Make sure that the last insn in the chain is not something that needs reloading. */ emit_note (NULL_PTR, NOTE_INSN_DELETED); /* Find all the pseudo registers that didn't get hard regs but do have known equivalent constants or memory slots. These include parameters (known equivalent to parameter slots) and cse'd or loop-moved constant memory addresses. Record constant equivalents in reg_equiv_constant so they will be substituted by find_reloads. Record memory equivalents in reg_mem_equiv so they can be substituted eventually by altering the REG-rtx's. */ reg_equiv_constant = (rtx *) alloca (max_regno * sizeof (rtx)); bzero ((char *) reg_equiv_constant, max_regno * sizeof (rtx)); reg_equiv_memory_loc = (rtx *) alloca (max_regno * sizeof (rtx)); bzero ((char *) reg_equiv_memory_loc, max_regno * sizeof (rtx)); reg_equiv_mem = (rtx *) alloca (max_regno * sizeof (rtx)); bzero ((char *) reg_equiv_mem, max_regno * sizeof (rtx)); reg_equiv_init = (rtx *) alloca (max_regno * sizeof (rtx)); bzero ((char *) reg_equiv_init, max_regno * sizeof (rtx)); reg_equiv_address = (rtx *) alloca (max_regno * sizeof (rtx)); bzero ((char *) reg_equiv_address, max_regno * sizeof (rtx)); reg_max_ref_width = (int *) alloca (max_regno * sizeof (int)); bzero ((char *) reg_max_ref_width, max_regno * sizeof (int)); if (SMALL_REGISTER_CLASSES) CLEAR_HARD_REG_SET (forbidden_regs); /* Look for REG_EQUIV notes; record what each pseudo is equivalent to. Also find all paradoxical subregs and find largest such for each pseudo. On machines with small register classes, record hard registers that are used for user variables. These can never be used for spills. Also look for a "constant" NOTE_INSN_SETJMP. This means that all caller-saved registers must be marked live. */ for (insn = first; insn; insn = NEXT_INSN (insn)) { rtx set = single_set (insn); if (GET_CODE (insn) == NOTE && CONST_CALL_P (insn) && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP) for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (! call_used_regs[i]) regs_ever_live[i] = 1; if (set != 0 && GET_CODE (SET_DEST (set)) == REG) { rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX); if (note #ifdef LEGITIMATE_PIC_OPERAND_P && (! CONSTANT_P (XEXP (note, 0)) || ! flag_pic || LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0))) #endif ) { rtx x = XEXP (note, 0); i = REGNO (SET_DEST (set)); if (i > LAST_VIRTUAL_REGISTER) { if (GET_CODE (x) == MEM) { /* If the operand is a PLUS, the MEM may be shared, so make sure we have an unshared copy here. */ if (GET_CODE (XEXP (x, 0)) == PLUS) x = copy_rtx (x); reg_equiv_memory_loc[i] = x; } else if (CONSTANT_P (x)) { if (LEGITIMATE_CONSTANT_P (x)) reg_equiv_constant[i] = x; else reg_equiv_memory_loc[i] = force_const_mem (GET_MODE (SET_DEST (set)), x); } else continue; /* If this register is being made equivalent to a MEM and the MEM is not SET_SRC, the equivalencing insn is one with the MEM as a SET_DEST and it occurs later. So don't mark this insn now. */ if (GET_CODE (x) != MEM || rtx_equal_p (SET_SRC (set), x)) reg_equiv_init[i] = insn; } } } /* If this insn is setting a MEM from a register equivalent to it, this is the equivalencing insn. */ else if (set && GET_CODE (SET_DEST (set)) == MEM && GET_CODE (SET_SRC (set)) == REG && reg_equiv_memory_loc[REGNO (SET_SRC (set))] && rtx_equal_p (SET_DEST (set), reg_equiv_memory_loc[REGNO (SET_SRC (set))])) reg_equiv_init[REGNO (SET_SRC (set))] = insn; if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') scan_paradoxical_subregs (PATTERN (insn)); } /* Does this function require a frame pointer? */ frame_pointer_needed = (! flag_omit_frame_pointer #ifdef EXIT_IGNORE_STACK /* ?? If EXIT_IGNORE_STACK is set, we will not save and restore sp for alloca. So we can't eliminate the frame pointer in that case. At some point, we should improve this by emitting the sp-adjusting insns for this case. */ || (current_function_calls_alloca && EXIT_IGNORE_STACK) #endif || FRAME_POINTER_REQUIRED); num_eliminable = 0; /* Initialize the table of registers to eliminate. The way we do this depends on how the eliminable registers were defined. */ #ifdef ELIMINABLE_REGS for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) { ep->can_eliminate = ep->can_eliminate_previous = (CAN_ELIMINATE (ep->from, ep->to) && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed)); } #else reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous = ! frame_pointer_needed; #endif /* Count the number of eliminable registers and build the FROM and TO REG rtx's. Note that code in gen_rtx will cause, e.g., gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx. We depend on this. */ for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) { num_eliminable += ep->can_eliminate; ep->from_rtx = gen_rtx_REG (Pmode, ep->from); ep->to_rtx = gen_rtx_REG (Pmode, ep->to); } num_labels = max_label_num () - get_first_label_num (); /* Allocate the tables used to store offset information at labels. */ /* We used to use alloca here, but the size of what it would try to allocate would occasionally cause it to exceed the stack limit and cause a core dump. */ real_known_ptr = xmalloc (num_labels); real_at_ptr = (int (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int)); offsets_known_at = real_known_ptr - get_first_label_num (); offsets_at = (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ()); /* Alter each pseudo-reg rtx to contain its hard reg number. Assign stack slots to the pseudos that lack hard regs or equivalents. Do not touch virtual registers. */ for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++) alter_reg (i, -1); /* If we have some registers we think can be eliminated, scan all insns to see if there is an insn that sets one of these registers to something other than itself plus a constant. If so, the register cannot be eliminated. Doing this scan here eliminates an extra pass through the main reload loop in the most common case where register elimination cannot be done. */ for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn)) if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN) note_stores (PATTERN (insn), mark_not_eliminable); #ifndef REGISTER_CONSTRAINTS /* If all the pseudo regs have hard regs, except for those that are never referenced, we know that no reloads are needed. */ /* But that is not true if there are register constraints, since in that case some pseudos might be in the wrong kind of hard reg. */ for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) if (reg_renumber[i] == -1 && REG_N_REFS (i) != 0) break; if (i == max_regno && num_eliminable == 0 && ! caller_save_needed) { free (real_known_ptr); free (real_at_ptr); return; } #endif /* Compute the order of preference for hard registers to spill. Store them by decreasing preference in potential_reload_regs. */ order_regs_for_reload (global); /* So far, no hard regs have been spilled. */ n_spills = 0; for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) spill_reg_order[i] = -1; /* Initialize to -1, which means take the first spill register. */ last_spill_reg = -1; /* On most machines, we can't use any register explicitly used in the rtl as a spill register. But on some, we have to. Those will have taken care to keep the life of hard regs as short as possible. */ if (! SMALL_REGISTER_CLASSES) COPY_HARD_REG_SET (forbidden_regs, bad_spill_regs); /* Spill any hard regs that we know we can't eliminate. */ for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) if (! ep->can_eliminate) spill_hard_reg (ep->from, global, dumpfile, 1); #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM if (frame_pointer_needed) spill_hard_reg (HARD_FRAME_POINTER_REGNUM, global, dumpfile, 1); #endif if (global) for (i = 0; i < N_REG_CLASSES; i++) { basic_block_needs[i] = (char *) alloca (n_basic_blocks); bzero (basic_block_needs[i], n_basic_blocks); } /* From now on, we need to emit any moves without making new pseudos. */ reload_in_progress = 1; /* This loop scans the entire function each go-round and repeats until one repetition spills no additional hard regs. */ /* This flag is set when a pseudo reg is spilled, to require another pass. Note that getting an additional reload reg does not necessarily imply any pseudo reg was spilled; sometimes we find a reload reg that no pseudo reg was allocated in. */ something_changed = 1; /* This flag is set if there are any insns that require reloading. */ something_needs_reloads = 0; /* This flag is set if there are any insns that require register eliminations. */ something_needs_elimination = 0; while (something_changed) { rtx after_call = 0; /* For each class, number of reload regs needed in that class. This is the maximum over all insns of the needs in that class of the individual insn. */ int max_needs[N_REG_CLASSES]; /* For each class, size of group of consecutive regs that is needed for the reloads of this class. */ int group_size[N_REG_CLASSES]; /* For each class, max number of consecutive groups needed. (Each group contains group_size[CLASS] consecutive registers.) */ int max_groups[N_REG_CLASSES]; /* For each class, max number needed of regs that don't belong to any of the groups. */ int max_nongroups[N_REG_CLASSES]; /* For each class, the machine mode which requires consecutive groups of regs of that class. If two different modes ever require groups of one class, they must be the same size and equally restrictive for that class, otherwise we can't handle the complexity. */ enum machine_mode group_mode[N_REG_CLASSES]; /* Record the insn where each maximum need is first found. */ rtx max_needs_insn[N_REG_CLASSES]; rtx max_groups_insn[N_REG_CLASSES]; rtx max_nongroups_insn[N_REG_CLASSES]; rtx x; HOST_WIDE_INT starting_frame_size; #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM int previous_frame_pointer_needed = frame_pointer_needed; #endif static char *reg_class_names[] = REG_CLASS_NAMES; something_changed = 0; bzero ((char *) max_needs, sizeof max_needs); bzero ((char *) max_groups, sizeof max_groups); bzero ((char *) max_nongroups, sizeof max_nongroups); bzero ((char *) max_needs_insn, sizeof max_needs_insn); bzero ((char *) max_groups_insn, sizeof max_groups_insn); bzero ((char *) max_nongroups_insn, sizeof max_nongroups_insn); bzero ((char *) group_size, sizeof group_size); for (i = 0; i < N_REG_CLASSES; i++) group_mode[i] = VOIDmode; /* Keep track of which basic blocks are needing the reloads. */ this_block = 0; /* Remember whether any element of basic_block_needs changes from 0 to 1 in this pass. */ new_basic_block_needs = 0; /* Round size of stack frame to BIGGEST_ALIGNMENT. This must be done here because the stack size may be a part of the offset computation for register elimination, and there might have been new stack slots created in the last iteration of this loop. */ assign_stack_local (BLKmode, 0, 0); starting_frame_size = get_frame_size (); /* Reset all offsets on eliminable registers to their initial values. */ #ifdef ELIMINABLE_REGS for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) { INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset); ep->previous_offset = ep->offset = ep->max_offset = ep->initial_offset; } #else #ifdef INITIAL_FRAME_POINTER_OFFSET INITIAL_FRAME_POINTER_OFFSET (reg_eliminate[0].initial_offset); #else if (!FRAME_POINTER_REQUIRED) abort (); reg_eliminate[0].initial_offset = 0; #endif reg_eliminate[0].previous_offset = reg_eliminate[0].max_offset = reg_eliminate[0].offset = reg_eliminate[0].initial_offset; #endif num_not_at_initial_offset = 0; bzero ((char *) &offsets_known_at[get_first_label_num ()], num_labels); /* Set a known offset for each forced label to be at the initial offset of each elimination. We do this because we assume that all computed jumps occur from a location where each elimination is at its initial offset. */ for (x = forced_labels; x; x = XEXP (x, 1)) if (XEXP (x, 0)) set_label_offsets (XEXP (x, 0), NULL_RTX, 1); /* For each pseudo register that has an equivalent location defined, try to eliminate any eliminable registers (such as the frame pointer) assuming initial offsets for the replacement register, which is the normal case. If the resulting location is directly addressable, substitute the MEM we just got directly for the old REG. If it is not addressable but is a constant or the sum of a hard reg and constant, it is probably not addressable because the constant is out of range, in that case record the address; we will generate hairy code to compute the address in a register each time it is needed. Similarly if it is a hard register, but one that is not valid as an address register. If the location is not addressable, but does not have one of the above forms, assign a stack slot. We have to do this to avoid the potential of producing lots of reloads if, e.g., a location involves a pseudo that didn't get a hard register and has an equivalent memory location that also involves a pseudo that didn't get a hard register. Perhaps at some point we will improve reload_when_needed handling so this problem goes away. But that's very hairy. */ for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i]) { rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX); if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0))) reg_equiv_mem[i] = x, reg_equiv_address[i] = 0; else if (CONSTANT_P (XEXP (x, 0)) || (GET_CODE (XEXP (x, 0)) == REG && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER) || (GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG && (REGNO (XEXP (XEXP (x, 0), 0)) < FIRST_PSEUDO_REGISTER) && CONSTANT_P (XEXP (XEXP (x, 0), 1)))) reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0; else { /* Make a new stack slot. Then indicate that something changed so we go back and recompute offsets for eliminable registers because the allocation of memory below might change some offset. reg_equiv_{mem,address} will be set up for this pseudo on the next pass around the loop. */ reg_equiv_memory_loc[i] = 0; reg_equiv_init[i] = 0; alter_reg (i, -1); something_changed = 1; } } /* If we allocated another pseudo to the stack, redo elimination bookkeeping. */ if (something_changed) continue; /* If caller-saves needs a group, initialize the group to include the size and mode required for caller-saves. */ if (caller_save_group_size > 1) { group_mode[(int) caller_save_spill_class] = Pmode; group_size[(int) caller_save_spill_class] = caller_save_group_size; } /* Compute the most additional registers needed by any instruction. Collect information separately for each class of regs. */ for (insn = first; insn; insn = NEXT_INSN (insn)) { if (global && this_block + 1 < n_basic_blocks && insn == basic_block_head[this_block+1]) ++this_block; /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might include REG_LABEL), we need to see what effects this has on the known offsets at labels. */ if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN || (GET_RTX_CLASS (GET_CODE (insn)) == 'i' && REG_NOTES (insn) != 0)) set_label_offsets (insn, insn, 0); if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') { /* Nonzero means don't use a reload reg that overlaps the place where a function value can be returned. */ rtx avoid_return_reg = 0; rtx old_body = PATTERN (insn); int old_code = INSN_CODE (insn); rtx old_notes = REG_NOTES (insn); int did_elimination = 0; /* To compute the number of reload registers of each class needed for an insn, we must simulate what choose_reload_regs can do. We do this by splitting an insn into an "input" and an "output" part. RELOAD_OTHER reloads are used in both. The input part uses those reloads, RELOAD_FOR_INPUT reloads, which must be live over the entire input section of reloads, and the maximum of all the RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OPERAND_ADDRESS reloads, which conflict with the inputs. The registers needed for output are RELOAD_OTHER and RELOAD_FOR_OUTPUT, which are live for the entire output portion, and the maximum of all the RELOAD_FOR_OUTPUT_ADDRESS reloads for each operand. The total number of registers needed is the maximum of the inputs and outputs. */ struct needs { /* [0] is normal, [1] is nongroup. */ int regs[2][N_REG_CLASSES]; int groups[N_REG_CLASSES]; }; /* Each `struct needs' corresponds to one RELOAD_... type. */ struct { struct needs other; struct needs input; struct needs output; struct needs insn; struct needs other_addr; struct needs op_addr; struct needs op_addr_reload; struct needs in_addr[MAX_RECOG_OPERANDS]; struct needs in_addr_addr[MAX_RECOG_OPERANDS]; struct needs out_addr[MAX_RECOG_OPERANDS]; struct needs out_addr_addr[MAX_RECOG_OPERANDS]; } insn_needs; /* If needed, eliminate any eliminable registers. */ if (num_eliminable) did_elimination = eliminate_regs_in_insn (insn, 0); /* Set avoid_return_reg if this is an insn that might use the value of a function call. */ if (SMALL_REGISTER_CLASSES && GET_CODE (insn) == CALL_INSN) { if (GET_CODE (PATTERN (insn)) == SET) after_call = SET_DEST (PATTERN (insn)); else if (GET_CODE (PATTERN (insn)) == PARALLEL && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET) after_call = SET_DEST (XVECEXP (PATTERN (insn), 0, 0)); else after_call = 0; } else if (SMALL_REGISTER_CLASSES && after_call != 0 && !(GET_CODE (PATTERN (insn)) == SET && SET_DEST (PATTERN (insn)) == stack_pointer_rtx) && GET_CODE (PATTERN (insn)) != USE) { if (reg_referenced_p (after_call, PATTERN (insn))) avoid_return_reg = after_call; after_call = 0; } /* Analyze the instruction. */ find_reloads (insn, 0, spill_indirect_levels, global, spill_reg_order); /* Remember for later shortcuts which insns had any reloads or register eliminations. One might think that it would be worthwhile to mark insns that need register replacements but not reloads, but this is not safe because find_reloads may do some manipulation of the insn (such as swapping commutative operands), which would be lost when we restore the old pattern after register replacement. So the actions of find_reloads must be redone in subsequent passes or in reload_as_needed. However, it is safe to mark insns that need reloads but not register replacement. */ PUT_MODE (insn, (did_elimination ? QImode : n_reloads ? HImode : GET_MODE (insn) == DImode ? DImode : VOIDmode)); /* Discard any register replacements done. */ if (did_elimination) { obstack_free (&reload_obstack, reload_firstobj); PATTERN (insn) = old_body; INSN_CODE (insn) = old_code; REG_NOTES (insn) = old_notes; something_needs_elimination = 1; } /* If this insn has no reloads, we need not do anything except in the case of a CALL_INSN when we have caller-saves and caller-save needs reloads. */ if (n_reloads == 0 && ! (GET_CODE (insn) == CALL_INSN && caller_save_spill_class != NO_REGS)) continue; something_needs_reloads = 1; bzero ((char *) &insn_needs, sizeof insn_needs); /* Count each reload once in every class containing the reload's own class. */ for (i = 0; i < n_reloads; i++) { register enum reg_class *p; enum reg_class class = reload_reg_class[i]; int size; enum machine_mode mode; struct needs *this_needs; /* Don't count the dummy reloads, for which one of the regs mentioned in the insn can be used for reloading. Don't count optional reloads. Don't count reloads that got combined with others. */ if (reload_reg_rtx[i] != 0 || reload_optional[i] != 0 || (reload_out[i] == 0 && reload_in[i] == 0 && ! reload_secondary_p[i])) continue; /* Show that a reload register of this class is needed in this basic block. We do not use insn_needs and insn_groups because they are overly conservative for this purpose. */ if (global && ! basic_block_needs[(int) class][this_block]) { basic_block_needs[(int) class][this_block] = 1; new_basic_block_needs = 1; } mode = reload_inmode[i]; if (GET_MODE_SIZE (reload_outmode[i]) > GET_MODE_SIZE (mode)) mode = reload_outmode[i]; size = CLASS_MAX_NREGS (class, mode); /* Decide which time-of-use to count this reload for. */ switch (reload_when_needed[i]) { case RELOAD_OTHER: this_needs = &insn_needs.other; break; case RELOAD_FOR_INPUT: this_needs = &insn_needs.input; break; case RELOAD_FOR_OUTPUT: this_needs = &insn_needs.output; break; case RELOAD_FOR_INSN: this_needs = &insn_needs.insn; break; case RELOAD_FOR_OTHER_ADDRESS: this_needs = &insn_needs.other_addr; break; case RELOAD_FOR_INPUT_ADDRESS: this_needs = &insn_needs.in_addr[reload_opnum[i]]; break; case RELOAD_FOR_INPADDR_ADDRESS: this_needs = &insn_needs.in_addr_addr[reload_opnum[i]]; break; case RELOAD_FOR_OUTPUT_ADDRESS: this_needs = &insn_needs.out_addr[reload_opnum[i]]; break; case RELOAD_FOR_OUTADDR_ADDRESS: this_needs = &insn_needs.out_addr_addr[reload_opnum[i]]; break; case RELOAD_FOR_OPERAND_ADDRESS: this_needs = &insn_needs.op_addr; break; case RELOAD_FOR_OPADDR_ADDR: this_needs = &insn_needs.op_addr_reload; break; } if (size > 1) { enum machine_mode other_mode, allocate_mode; /* Count number of groups needed separately from number of individual regs needed. */ this_needs->groups[(int) class]++; p = reg_class_superclasses[(int) class]; while (*p != LIM_REG_CLASSES) this_needs->groups[(int) *p++]++; /* Record size and mode of a group of this class. */ /* If more than one size group is needed, make all groups the largest needed size. */ if (group_size[(int) class] < size) { other_mode = group_mode[(int) class]; allocate_mode = mode; group_size[(int) class] = size; group_mode[(int) class] = mode; } else { other_mode = mode; allocate_mode = group_mode[(int) class]; } /* Crash if two dissimilar machine modes both need groups of consecutive regs of the same class. */ if (other_mode != VOIDmode && other_mode != allocate_mode && ! modes_equiv_for_class_p (allocate_mode, other_mode, class)) fatal_insn ("Two dissimilar machine modes both need groups of consecutive regs of the same class", insn); } else if (size == 1) { this_needs->regs[reload_nongroup[i]][(int) class] += 1; p = reg_class_superclasses[(int) class]; while (*p != LIM_REG_CLASSES) this_needs->regs[reload_nongroup[i]][(int) *p++] += 1; } else abort (); } /* All reloads have been counted for this insn; now merge the various times of use. This sets insn_needs, etc., to the maximum total number of registers needed at any point in this insn. */ for (i = 0; i < N_REG_CLASSES; i++) { int in_max, out_max; /* Compute normal and nongroup needs. */ for (j = 0; j <= 1; j++) { for (in_max = 0, out_max = 0, k = 0; k < reload_n_operands; k++) { in_max = MAX (in_max, (insn_needs.in_addr[k].regs[j][i] + insn_needs.in_addr_addr[k].regs[j][i])); out_max = MAX (out_max, insn_needs.out_addr[k].regs[j][i]); out_max = MAX (out_max, insn_needs.out_addr_addr[k].regs[j][i]); } /* RELOAD_FOR_INSN reloads conflict with inputs, outputs, and operand addresses but not things used to reload them. Similarly, RELOAD_FOR_OPERAND_ADDRESS reloads don't conflict with things needed to reload inputs or outputs. */ in_max = MAX (MAX (insn_needs.op_addr.regs[j][i], insn_needs.op_addr_reload.regs[j][i]), in_max); out_max = MAX (out_max, insn_needs.insn.regs[j][i]); insn_needs.input.regs[j][i] = MAX (insn_needs.input.regs[j][i] + insn_needs.op_addr.regs[j][i] + insn_needs.insn.regs[j][i], in_max + insn_needs.input.regs[j][i]); insn_needs.output.regs[j][i] += out_max; insn_needs.other.regs[j][i] += MAX (MAX (insn_needs.input.regs[j][i], insn_needs.output.regs[j][i]), insn_needs.other_addr.regs[j][i]); } /* Now compute group needs. */ for (in_max = 0, out_max = 0, j = 0; j < reload_n_operands; j++) { in_max = MAX (in_max, insn_needs.in_addr[j].groups[i]); in_max = MAX (in_max, insn_needs.in_addr_addr[j].groups[i]); out_max = MAX (out_max, insn_needs.out_addr[j].groups[i]); out_max = MAX (out_max, insn_needs.out_addr_addr[j].groups[i]); } in_max = MAX (MAX (insn_needs.op_addr.groups[i], insn_needs.op_addr_reload.groups[i]), in_max); out_max = MAX (out_max, insn_needs.insn.groups[i]); insn_needs.input.groups[i] = MAX (insn_needs.input.groups[i] + insn_needs.op_addr.groups[i] + insn_needs.insn.groups[i], in_max + insn_needs.input.groups[i]); insn_needs.output.groups[i] += out_max; insn_needs.other.groups[i] += MAX (MAX (insn_needs.input.groups[i], insn_needs.output.groups[i]), insn_needs.other_addr.groups[i]); } /* If this is a CALL_INSN and caller-saves will need a spill register, act as if the spill register is needed for this insn. However, the spill register can be used by any reload of this insn, so we only need do something if no need for that class has been recorded. The assumption that every CALL_INSN will trigger a caller-save is highly conservative, however, the number of cases where caller-saves will need a spill register but a block containing a CALL_INSN won't need a spill register of that class should be quite rare. If a group is needed, the size and mode of the group will have been set up at the beginning of this loop. */ if (GET_CODE (insn) == CALL_INSN && caller_save_spill_class != NO_REGS) { /* See if this register would conflict with any reload that needs a group or any reload that needs a nongroup. */ int nongroup_need = 0; int *caller_save_needs; for (j = 0; j < n_reloads; j++) if (reg_classes_intersect_p (caller_save_spill_class, reload_reg_class[j]) && ((CLASS_MAX_NREGS (reload_reg_class[j], (GET_MODE_SIZE (reload_outmode[j]) > GET_MODE_SIZE (reload_inmode[j])) ? reload_outmode[j] : reload_inmode[j]) > 1) || reload_nongroup[j])) { nongroup_need = 1; break; } caller_save_needs = (caller_save_group_size > 1 ? insn_needs.other.groups : insn_needs.other.regs[nongroup_need]); if (caller_save_needs[(int) caller_save_spill_class] == 0) { register enum reg_class *p = reg_class_superclasses[(int) caller_save_spill_class]; caller_save_needs[(int) caller_save_spill_class]++; while (*p != LIM_REG_CLASSES) caller_save_needs[(int) *p++] += 1; } /* Show that this basic block will need a register of this class. */ if (global && ! (basic_block_needs[(int) caller_save_spill_class] [this_block])) { basic_block_needs[(int) caller_save_spill_class] [this_block] = 1; new_basic_block_needs = 1; } } /* If this insn stores the value of a function call, and that value is in a register that has been spilled, and if the insn needs a reload in a class that might use that register as the reload register, then add an extra need in that class. This makes sure we have a register available that does not overlap the return value. */ if (SMALL_REGISTER_CLASSES && avoid_return_reg) { int regno = REGNO (avoid_return_reg); int nregs = HARD_REGNO_NREGS (regno, GET_MODE (avoid_return_reg)); int r; int basic_needs[N_REG_CLASSES], basic_groups[N_REG_CLASSES]; /* First compute the "basic needs", which counts a need only in the smallest class in which it is required. */ bcopy ((char *) insn_needs.other.regs[0], (char *) basic_needs, sizeof basic_needs); bcopy ((char *) insn_needs.other.groups, (char *) basic_groups, sizeof basic_groups); for (i = 0; i < N_REG_CLASSES; i++) { enum reg_class *p; if (basic_needs[i] >= 0) for (p = reg_class_superclasses[i]; *p != LIM_REG_CLASSES; p++) basic_needs[(int) *p] -= basic_needs[i]; if (basic_groups[i] >= 0) for (p = reg_class_superclasses[i]; *p != LIM_REG_CLASSES; p++) basic_groups[(int) *p] -= basic_groups[i]; } /* Now count extra regs if there might be a conflict with the return value register. */ for (r = regno; r < regno + nregs; r++) if (spill_reg_order[r] >= 0) for (i = 0; i < N_REG_CLASSES; i++) if (TEST_HARD_REG_BIT (reg_class_contents[i], r)) { if (basic_needs[i] > 0) { enum reg_class *p; insn_needs.other.regs[0][i]++; p = reg_class_superclasses[i]; while (*p != LIM_REG_CLASSES) insn_needs.other.regs[0][(int) *p++]++; } if (basic_groups[i] > 0) { enum reg_class *p; insn_needs.other.groups[i]++; p = reg_class_superclasses[i]; while (*p != LIM_REG_CLASSES) insn_needs.other.groups[(int) *p++]++; } } } /* For each class, collect maximum need of any insn. */ for (i = 0; i < N_REG_CLASSES; i++) { if (max_needs[i] < insn_needs.other.regs[0][i]) { max_needs[i] = insn_needs.other.regs[0][i]; max_needs_insn[i] = insn; } if (max_groups[i] < insn_needs.other.groups[i]) { max_groups[i] = insn_needs.other.groups[i]; max_groups_insn[i] = insn; } if (max_nongroups[i] < insn_needs.other.regs[1][i]) { max_nongroups[i] = insn_needs.other.regs[1][i]; max_nongroups_insn[i] = insn; } } } /* Note that there is a continue statement above. */ } /* If we allocated any new memory locations, make another pass since it might have changed elimination offsets. */ if (starting_frame_size != get_frame_size ()) something_changed = 1; if (dumpfile) for (i = 0; i < N_REG_CLASSES; i++) { if (max_needs[i] > 0) fprintf (dumpfile, ";; Need %d reg%s of class %s (for insn %d).\n", max_needs[i], max_needs[i] == 1 ? "" : "s", reg_class_names[i], INSN_UID (max_needs_insn[i])); if (max_nongroups[i] > 0) fprintf (dumpfile, ";; Need %d nongroup reg%s of class %s (for insn %d).\n", max_nongroups[i], max_nongroups[i] == 1 ? "" : "s", reg_class_names[i], INSN_UID (max_nongroups_insn[i])); if (max_groups[i] > 0) fprintf (dumpfile, ";; Need %d group%s (%smode) of class %s (for insn %d).\n", max_groups[i], max_groups[i] == 1 ? "" : "s", mode_name[(int) group_mode[i]], reg_class_names[i], INSN_UID (max_groups_insn[i])); } /* If we have caller-saves, set up the save areas and see if caller-save will need a spill register. */ if (caller_save_needed) { /* Set the offsets for setup_save_areas. */ for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) ep->previous_offset = ep->max_offset; if ( ! setup_save_areas (&something_changed) && caller_save_spill_class == NO_REGS) { /* The class we will need depends on whether the machine supports the sum of two registers for an address; see find_address_reloads for details. */ caller_save_spill_class = double_reg_address_ok ? INDEX_REG_CLASS : BASE_REG_CLASS; caller_save_group_size = CLASS_MAX_NREGS (caller_save_spill_class, Pmode); something_changed = 1; } } /* See if anything that happened changes which eliminations are valid. For example, on the Sparc, whether or not the frame pointer can be eliminated can depend on what registers have been used. We need not check some conditions again (such as flag_omit_frame_pointer) since they can't have changed. */ for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED) #ifdef ELIMINABLE_REGS || ! CAN_ELIMINATE (ep->from, ep->to) #endif ) ep->can_eliminate = 0; /* Look for the case where we have discovered that we can't replace register A with register B and that means that we will now be trying to replace register A with register C. This means we can no longer replace register C with register B and we need to disable such an elimination, if it exists. This occurs often with A == ap, B == sp, and C == fp. */ for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) { struct elim_table *op; register int new_to = -1; if (! ep->can_eliminate && ep->can_eliminate_previous) { /* Find the current elimination for ep->from, if there is a new one. */ for (op = reg_eliminate; op < ®_eliminate[NUM_ELIMINABLE_REGS]; op++) if (op->from == ep->from && op->can_eliminate) { new_to = op->to; break; } /* See if there is an elimination of NEW_TO -> EP->TO. If so, disable it. */ for (op = reg_eliminate; op < ®_eliminate[NUM_ELIMINABLE_REGS]; op++) if (op->from == new_to && op->to == ep->to) op->can_eliminate = 0; } } /* See if any registers that we thought we could eliminate the previous time are no longer eliminable. If so, something has changed and we must spill the register. Also, recompute the number of eliminable registers and see if the frame pointer is needed; it is if there is no elimination of the frame pointer that we can perform. */ frame_pointer_needed = 1; for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) { if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM && ep->to != HARD_FRAME_POINTER_REGNUM) frame_pointer_needed = 0; if (! ep->can_eliminate && ep->can_eliminate_previous) { ep->can_eliminate_previous = 0; spill_hard_reg (ep->from, global, dumpfile, 1); something_changed = 1; num_eliminable--; } } #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM /* If we didn't need a frame pointer last time, but we do now, spill the hard frame pointer. */ if (frame_pointer_needed && ! previous_frame_pointer_needed) { spill_hard_reg (HARD_FRAME_POINTER_REGNUM, global, dumpfile, 1); something_changed = 1; } #endif /* If all needs are met, we win. */ for (i = 0; i < N_REG_CLASSES; i++) if (max_needs[i] > 0 || max_groups[i] > 0 || max_nongroups[i] > 0) break; if (i == N_REG_CLASSES && !new_basic_block_needs && ! something_changed) break; /* Not all needs are met; must spill some hard regs. */ /* Put all registers spilled so far back in potential_reload_regs, but put them at the front, since we've already spilled most of the pseudos in them (we might have left some pseudos unspilled if they were in a block that didn't need any spill registers of a conflicting class. We used to try to mark off the need for those registers, but doing so properly is very complex and reallocating them is the simpler approach. First, "pack" potential_reload_regs by pushing any nonnegative entries towards the end. That will leave room for the registers we already spilled. Also, undo the marking of the spill registers from the last time around in FORBIDDEN_REGS since we will be probably be allocating them again below. ??? It is theoretically possible that we might end up not using one of our previously-spilled registers in this allocation, even though they are at the head of the list. It's not clear what to do about this, but it was no better before, when we marked off the needs met by the previously-spilled registers. With the current code, globals can be allocated into these registers, but locals cannot. */ if (n_spills) { for (i = j = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--) if (potential_reload_regs[i] != -1) potential_reload_regs[j--] = potential_reload_regs[i]; for (i = 0; i < n_spills; i++) { potential_reload_regs[i] = spill_regs[i]; spill_reg_order[spill_regs[i]] = -1; CLEAR_HARD_REG_BIT (forbidden_regs, spill_regs[i]); } n_spills = 0; } /* Now find more reload regs to satisfy the remaining need Do it by ascending class number, since otherwise a reg might be spilled for a big class and might fail to count for a smaller class even though it belongs to that class. Count spilled regs in `spills', and add entries to `spill_regs' and `spill_reg_order'. ??? Note there is a problem here. When there is a need for a group in a high-numbered class, and also need for non-group regs that come from a lower class, the non-group regs are chosen first. If there aren't many regs, they might leave no room for a group. This was happening on the 386. To fix it, we added the code that calls possible_group_p, so that the lower class won't break up the last possible group. Really fixing the problem would require changes above in counting the regs already spilled, and in choose_reload_regs. It might be hard to avoid introducing bugs there. */ CLEAR_HARD_REG_SET (counted_for_groups); CLEAR_HARD_REG_SET (counted_for_nongroups); for (class = 0; class < N_REG_CLASSES; class++) { /* First get the groups of registers. If we got single registers first, we might fragment possible groups. */ while (max_groups[class] > 0) { /* If any single spilled regs happen to form groups, count them now. Maybe we don't really need to spill another group. */ count_possible_groups (group_size, group_mode, max_groups, class); if (max_groups[class] <= 0) break; /* Groups of size 2 (the only groups used on most machines) are treated specially. */ if (group_size[class] == 2) { /* First, look for a register that will complete a group. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { int other; j = potential_reload_regs[i]; if (j >= 0 && ! TEST_HARD_REG_BIT (bad_spill_regs, j) && ((j > 0 && (other = j - 1, spill_reg_order[other] >= 0) && TEST_HARD_REG_BIT (reg_class_contents[class], j) && TEST_HARD_REG_BIT (reg_class_contents[class], other) && HARD_REGNO_MODE_OK (other, group_mode[class]) && ! TEST_HARD_REG_BIT (counted_for_nongroups, other) /* We don't want one part of another group. We could get "two groups" that overlap! */ && ! TEST_HARD_REG_BIT (counted_for_groups, other)) || (j < FIRST_PSEUDO_REGISTER - 1 && (other = j + 1, spill_reg_order[other] >= 0) && TEST_HARD_REG_BIT (reg_class_contents[class], j) && TEST_HARD_REG_BIT (reg_class_contents[class], other) && HARD_REGNO_MODE_OK (j, group_mode[class]) && ! TEST_HARD_REG_BIT (counted_for_nongroups, other) && ! TEST_HARD_REG_BIT (counted_for_groups, other)))) { register enum reg_class *p; /* We have found one that will complete a group, so count off one group as provided. */ max_groups[class]--; p = reg_class_superclasses[class]; while (*p != LIM_REG_CLASSES) { if (group_size [(int) *p] <= group_size [class]) max_groups[(int) *p]--; p++; } /* Indicate both these regs are part of a group. */ SET_HARD_REG_BIT (counted_for_groups, j); SET_HARD_REG_BIT (counted_for_groups, other); break; } } /* We can't complete a group, so start one. */ /* Look for a pair neither of which is explicitly used. */ if (SMALL_REGISTER_CLASSES && i == FIRST_PSEUDO_REGISTER) for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { int k; j = potential_reload_regs[i]; /* Verify that J+1 is a potential reload reg. */ for (k = 0; k < FIRST_PSEUDO_REGISTER; k++) if (potential_reload_regs[k] == j + 1) break; if (j >= 0 && j + 1 < FIRST_PSEUDO_REGISTER && k < FIRST_PSEUDO_REGISTER && spill_reg_order[j] < 0 && spill_reg_order[j + 1] < 0 && TEST_HARD_REG_BIT (reg_class_contents[class], j) && TEST_HARD_REG_BIT (reg_class_contents[class], j + 1) && HARD_REGNO_MODE_OK (j, group_mode[class]) && ! TEST_HARD_REG_BIT (counted_for_nongroups, j + 1) && ! TEST_HARD_REG_BIT (bad_spill_regs, j + 1) /* Reject J at this stage if J+1 was explicitly used. */ && ! regs_explicitly_used[j + 1]) break; } /* Now try any group at all whose registers are not in bad_spill_regs. */ if (i == FIRST_PSEUDO_REGISTER) for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { int k; j = potential_reload_regs[i]; /* Verify that J+1 is a potential reload reg. */ for (k = 0; k < FIRST_PSEUDO_REGISTER; k++) if (potential_reload_regs[k] == j + 1) break; if (j >= 0 && j + 1 < FIRST_PSEUDO_REGISTER && k < FIRST_PSEUDO_REGISTER && spill_reg_order[j] < 0 && spill_reg_order[j + 1] < 0 && TEST_HARD_REG_BIT (reg_class_contents[class], j) && TEST_HARD_REG_BIT (reg_class_contents[class], j + 1) && HARD_REGNO_MODE_OK (j, group_mode[class]) && ! TEST_HARD_REG_BIT (counted_for_nongroups, j + 1) && ! TEST_HARD_REG_BIT (bad_spill_regs, j + 1)) break; } /* I should be the index in potential_reload_regs of the new reload reg we have found. */ if (i >= FIRST_PSEUDO_REGISTER) { /* There are no groups left to spill. */ spill_failure (max_groups_insn[class]); failure = 1; goto failed; } else something_changed |= new_spill_reg (i, class, max_needs, NULL_PTR, global, dumpfile); } else { /* For groups of more than 2 registers, look for a sufficient sequence of unspilled registers, and spill them all at once. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { int k; j = potential_reload_regs[i]; if (j >= 0 && j + group_size[class] <= FIRST_PSEUDO_REGISTER && HARD_REGNO_MODE_OK (j, group_mode[class])) { /* Check each reg in the sequence. */ for (k = 0; k < group_size[class]; k++) if (! (spill_reg_order[j + k] < 0 && ! TEST_HARD_REG_BIT (bad_spill_regs, j + k) && TEST_HARD_REG_BIT (reg_class_contents[class], j + k))) break; /* We got a full sequence, so spill them all. */ if (k == group_size[class]) { register enum reg_class *p; for (k = 0; k < group_size[class]; k++) { int idx; SET_HARD_REG_BIT (counted_for_groups, j + k); for (idx = 0; idx < FIRST_PSEUDO_REGISTER; idx++) if (potential_reload_regs[idx] == j + k) break; something_changed |= new_spill_reg (idx, class, max_needs, NULL_PTR, global, dumpfile); } /* We have found one that will complete a group, so count off one group as provided. */ max_groups[class]--; p = reg_class_superclasses[class]; while (*p != LIM_REG_CLASSES) { if (group_size [(int) *p] <= group_size [class]) max_groups[(int) *p]--; p++; } break; } } } /* We couldn't find any registers for this reload. Avoid going into an infinite loop. */ if (i >= FIRST_PSEUDO_REGISTER) { /* There are no groups left. */ spill_failure (max_groups_insn[class]); failure = 1; goto failed; } } } /* Now similarly satisfy all need for single registers. */ while (max_needs[class] > 0 || max_nongroups[class] > 0) { /* If we spilled enough regs, but they weren't counted against the non-group need, see if we can count them now. If so, we can avoid some actual spilling. */ if (max_needs[class] <= 0 && max_nongroups[class] > 0) for (i = 0; i < n_spills; i++) if (TEST_HARD_REG_BIT (reg_class_contents[class], spill_regs[i]) && !TEST_HARD_REG_BIT (counted_for_groups, spill_regs[i]) && !TEST_HARD_REG_BIT (counted_for_nongroups, spill_regs[i]) && max_nongroups[class] > 0) { register enum reg_class *p; SET_HARD_REG_BIT (counted_for_nongroups, spill_regs[i]); max_nongroups[class]--; p = reg_class_superclasses[class]; while (*p != LIM_REG_CLASSES) max_nongroups[(int) *p++]--; } if (max_needs[class] <= 0 && max_nongroups[class] <= 0) break; /* Consider the potential reload regs that aren't yet in use as reload regs, in order of preference. Find the most preferred one that's in this class. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (potential_reload_regs[i] >= 0 && TEST_HARD_REG_BIT (reg_class_contents[class], potential_reload_regs[i]) /* If this reg will not be available for groups, pick one that does not foreclose possible groups. This is a kludge, and not very general, but it should be sufficient to make the 386 work, and the problem should not occur on machines with more registers. */ && (max_nongroups[class] == 0 || possible_group_p (potential_reload_regs[i], max_groups))) break; /* If we couldn't get a register, try to get one even if we might foreclose possible groups. This may cause problems later, but that's better than aborting now, since it is possible that we will, in fact, be able to form the needed group even with this allocation. */ if (i >= FIRST_PSEUDO_REGISTER && (asm_noperands (max_needs[class] > 0 ? max_needs_insn[class] : max_nongroups_insn[class]) < 0)) for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (potential_reload_regs[i] >= 0 && TEST_HARD_REG_BIT (reg_class_contents[class], potential_reload_regs[i])) break; /* I should be the index in potential_reload_regs of the new reload reg we have found. */ if (i >= FIRST_PSEUDO_REGISTER) { /* There are no possible registers left to spill. */ spill_failure (max_needs[class] > 0 ? max_needs_insn[class] : max_nongroups_insn[class]); failure = 1; goto failed; } else something_changed |= new_spill_reg (i, class, max_needs, max_nongroups, global, dumpfile); } } } /* If global-alloc was run, notify it of any register eliminations we have done. */ if (global) for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) if (ep->can_eliminate) mark_elimination (ep->from, ep->to); /* Insert code to save and restore call-clobbered hard regs around calls. Tell if what mode to use so that we will process those insns in reload_as_needed if we have to. */ if (caller_save_needed) save_call_clobbered_regs (num_eliminable ? QImode : caller_save_spill_class != NO_REGS ? HImode : VOIDmode); /* If a pseudo has no hard reg, delete the insns that made the equivalence. If that insn didn't set the register (i.e., it copied the register to memory), just delete that insn instead of the equivalencing insn plus anything now dead. If we call delete_dead_insn on that insn, we may delete the insn that actually sets the register if the register die there and that is incorrect. */ for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0 && GET_CODE (reg_equiv_init[i]) != NOTE) { if (reg_set_p (regno_reg_rtx[i], PATTERN (reg_equiv_init[i]))) delete_dead_insn (reg_equiv_init[i]); else { PUT_CODE (reg_equiv_init[i], NOTE); NOTE_SOURCE_FILE (reg_equiv_init[i]) = 0; NOTE_LINE_NUMBER (reg_equiv_init[i]) = NOTE_INSN_DELETED; } } /* Use the reload registers where necessary by generating move instructions to move the must-be-register values into or out of the reload registers. */ if (something_needs_reloads || something_needs_elimination || (caller_save_needed && num_eliminable) || caller_save_spill_class != NO_REGS) reload_as_needed (first, global); /* If we were able to eliminate the frame pointer, show that it is no longer live at the start of any basic block. If it ls live by virtue of being in a pseudo, that pseudo will be marked live and hence the frame pointer will be known to be live via that pseudo. */ if (! frame_pointer_needed) for (i = 0; i < n_basic_blocks; i++) CLEAR_REGNO_REG_SET (basic_block_live_at_start[i], HARD_FRAME_POINTER_REGNUM); /* Come here (with failure set nonzero) if we can't get enough spill regs and we decide not to abort about it. */ failed: reload_in_progress = 0; /* Now eliminate all pseudo regs by modifying them into their equivalent memory references. The REG-rtx's for the pseudos are modified in place, so all insns that used to refer to them now refer to memory. For a reg that has a reg_equiv_address, all those insns were changed by reloading so that no insns refer to it any longer; but the DECL_RTL of a variable decl may refer to it, and if so this causes the debugging info to mention the variable. */ for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) { rtx addr = 0; int in_struct = 0; if (reg_equiv_mem[i]) { addr = XEXP (reg_equiv_mem[i], 0); in_struct = MEM_IN_STRUCT_P (reg_equiv_mem[i]); } if (reg_equiv_address[i]) addr = reg_equiv_address[i]; if (addr) { if (reg_renumber[i] < 0) { rtx reg = regno_reg_rtx[i]; XEXP (reg, 0) = addr; REG_USERVAR_P (reg) = 0; MEM_IN_STRUCT_P (reg) = in_struct; PUT_CODE (reg, MEM); } else if (reg_equiv_mem[i]) XEXP (reg_equiv_mem[i], 0) = addr; } } /* Make a pass over all the insns and delete all USEs which we inserted only to tag a REG_EQUAL note on them; if PRESERVE_DEATH_INFO_REGNO_P is defined, also remove death notes for things that are no longer registers or no longer die in the insn (e.g., an input and output pseudo being tied). */ for (insn = first; insn; insn = NEXT_INSN (insn)) if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') { #ifdef PRESERVE_DEATH_INFO_REGNO_P rtx note, next; #endif if (GET_CODE (PATTERN (insn)) == USE && find_reg_note (insn, REG_EQUAL, NULL_RTX)) { PUT_CODE (insn, NOTE); NOTE_SOURCE_FILE (insn) = 0; NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; continue; } #ifdef PRESERVE_DEATH_INFO_REGNO_P for (note = REG_NOTES (insn); note; note = next) { next = XEXP (note, 1); if (REG_NOTE_KIND (note) == REG_DEAD && (GET_CODE (XEXP (note, 0)) != REG || reg_set_p (XEXP (note, 0), PATTERN (insn)))) remove_note (insn, note); } #endif } /* If we are doing stack checking, give a warning if this function's frame size is larger than we expect. */ if (flag_stack_check && ! STACK_CHECK_BUILTIN) { HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE; for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i]) size += UNITS_PER_WORD; if (size > STACK_CHECK_MAX_FRAME_SIZE) warning ("frame size too large for reliable stack checking"); } /* Indicate that we no longer have known memory locations or constants. */ reg_equiv_constant = 0; reg_equiv_memory_loc = 0; if (real_known_ptr) free (real_known_ptr); if (real_at_ptr) free (real_at_ptr); if (scratch_list) free (scratch_list); scratch_list = 0; if (scratch_block) free (scratch_block); scratch_block = 0; CLEAR_HARD_REG_SET (used_spill_regs); for (i = 0; i < n_spills; i++) SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]); return failure; } /* Nonzero if, after spilling reg REGNO for non-groups, it will still be possible to find a group if we still need one. */ static int possible_group_p (regno, max_groups) int regno; int *max_groups; { int i; int class = (int) NO_REGS; for (i = 0; i < (int) N_REG_CLASSES; i++) if (max_groups[i] > 0) { class = i; break; } if (class == (int) NO_REGS) return 1; /* Consider each pair of consecutive registers. */ for (i = 0; i < FIRST_PSEUDO_REGISTER - 1; i++) { /* Ignore pairs that include reg REGNO. */ if (i == regno || i + 1 == regno) continue; /* Ignore pairs that are outside the class that needs the group. ??? Here we fail to handle the case where two different classes independently need groups. But this never happens with our current machine descriptions. */ if (! (TEST_HARD_REG_BIT (reg_class_contents[class], i) && TEST_HARD_REG_BIT (reg_class_contents[class], i + 1))) continue; /* A pair of consecutive regs we can still spill does the trick. */ if (spill_reg_order[i] < 0 && spill_reg_order[i + 1] < 0 && ! TEST_HARD_REG_BIT (bad_spill_regs, i) && ! TEST_HARD_REG_BIT (bad_spill_regs, i + 1)) return 1; /* A pair of one already spilled and one we can spill does it provided the one already spilled is not otherwise reserved. */ if (spill_reg_order[i] < 0 && ! TEST_HARD_REG_BIT (bad_spill_regs, i) && spill_reg_order[i + 1] >= 0 && ! TEST_HARD_REG_BIT (counted_for_groups, i + 1) && ! TEST_HARD_REG_BIT (counted_for_nongroups, i + 1)) return 1; if (spill_reg_order[i + 1] < 0 && ! TEST_HARD_REG_BIT (bad_spill_regs, i + 1) && spill_reg_order[i] >= 0 && ! TEST_HARD_REG_BIT (counted_for_groups, i) && ! TEST_HARD_REG_BIT (counted_for_nongroups, i)) return 1; } return 0; } /* Count any groups of CLASS that can be formed from the registers recently spilled. */ static void count_possible_groups (group_size, group_mode, max_groups, class) int *group_size; enum machine_mode *group_mode; int *max_groups; int class; { HARD_REG_SET new; int i, j; /* Now find all consecutive groups of spilled registers and mark each group off against the need for such groups. But don't count them against ordinary need, yet. */ if (group_size[class] == 0) return; CLEAR_HARD_REG_SET (new); /* Make a mask of all the regs that are spill regs in class I. */ for (i = 0; i < n_spills; i++) if (TEST_HARD_REG_BIT (reg_class_contents[class], spill_regs[i]) && ! TEST_HARD_REG_BIT (counted_for_groups, spill_regs[i]) && ! TEST_HARD_REG_BIT (counted_for_nongroups, spill_regs[i])) SET_HARD_REG_BIT (new, spill_regs[i]); /* Find each consecutive group of them. */ for (i = 0; i < FIRST_PSEUDO_REGISTER && max_groups[class] > 0; i++) if (TEST_HARD_REG_BIT (new, i) && i + group_size[class] <= FIRST_PSEUDO_REGISTER && HARD_REGNO_MODE_OK (i, group_mode[class])) { for (j = 1; j < group_size[class]; j++) if (! TEST_HARD_REG_BIT (new, i + j)) break; if (j == group_size[class]) { /* We found a group. Mark it off against this class's need for groups, and against each superclass too. */ register enum reg_class *p; max_groups[class]--; p = reg_class_superclasses[class]; while (*p != LIM_REG_CLASSES) { if (group_size [(int) *p] <= group_size [class]) max_groups[(int) *p]--; p++; } /* Don't count these registers again. */ for (j = 0; j < group_size[class]; j++) SET_HARD_REG_BIT (counted_for_groups, i + j); } /* Skip to the last reg in this group. When i is incremented above, it will then point to the first reg of the next possible group. */ i += j - 1; } } /* ALLOCATE_MODE is a register mode that needs to be reloaded. OTHER_MODE is another mode that needs to be reloaded for the same register class CLASS. If any reg in CLASS allows ALLOCATE_MODE but not OTHER_MODE, fail. ALLOCATE_MODE will never be smaller than OTHER_MODE. This code used to also fail if any reg in CLASS allows OTHER_MODE but not ALLOCATE_MODE. This test is unnecessary, because we will never try to put something of mode ALLOCATE_MODE into an OTHER_MODE register. Testing this causes unnecessary failures on machines requiring alignment of register groups when the two modes are different sizes, because the larger mode has more strict alignment rules than the smaller mode. */ static int modes_equiv_for_class_p (allocate_mode, other_mode, class) enum machine_mode allocate_mode, other_mode; enum reg_class class; { register int regno; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) { if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno) && HARD_REGNO_MODE_OK (regno, allocate_mode) && ! HARD_REGNO_MODE_OK (regno, other_mode)) return 0; } return 1; } /* Handle the failure to find a register to spill. INSN should be one of the insns which needed this particular spill reg. */ static void spill_failure (insn) rtx insn; { if (asm_noperands (PATTERN (insn)) >= 0) error_for_asm (insn, "`asm' needs too many reloads"); else fatal_insn ("Unable to find a register to spill.", insn); } /* Add a new register to the tables of available spill-registers (as well as spilling all pseudos allocated to the register). I is the index of this register in potential_reload_regs. CLASS is the regclass whose need is being satisfied. MAX_NEEDS and MAX_NONGROUPS are the vectors of needs, so that this register can count off against them. MAX_NONGROUPS is 0 if this register is part of a group. GLOBAL and DUMPFILE are the same as the args that `reload' got. */ static int new_spill_reg (i, class, max_needs, max_nongroups, global, dumpfile) int i; int class; int *max_needs; int *max_nongroups; int global; FILE *dumpfile; { register enum reg_class *p; int val; int regno = potential_reload_regs[i]; if (i >= FIRST_PSEUDO_REGISTER) abort (); /* Caller failed to find any register. */ if (fixed_regs[regno] || TEST_HARD_REG_BIT (forbidden_regs, regno)) { static char *reg_class_names[] = REG_CLASS_NAMES; fatal ("fixed or forbidden register %d (%s) was spilled for class %s.\n\ This may be due to a compiler bug or to impossible asm\n\ statements or clauses.", regno, reg_names[regno], reg_class_names[class]); } /* Make reg REGNO an additional reload reg. */ potential_reload_regs[i] = -1; spill_regs[n_spills] = regno; spill_reg_order[regno] = n_spills; if (dumpfile) fprintf (dumpfile, "Spilling reg %d.\n", spill_regs[n_spills]); /* Clear off the needs we just satisfied. */ max_needs[class]--; p = reg_class_superclasses[class]; while (*p != LIM_REG_CLASSES) max_needs[(int) *p++]--; if (max_nongroups && max_nongroups[class] > 0) { SET_HARD_REG_BIT (counted_for_nongroups, regno); max_nongroups[class]--; p = reg_class_superclasses[class]; while (*p != LIM_REG_CLASSES) max_nongroups[(int) *p++]--; } /* Spill every pseudo reg that was allocated to this reg or to something that overlaps this reg. */ val = spill_hard_reg (spill_regs[n_spills], global, dumpfile, 0); /* If there are some registers still to eliminate and this register wasn't ever used before, additional stack space may have to be allocated to store this register. Thus, we may have changed the offset between the stack and frame pointers, so mark that something has changed. (If new pseudos were spilled, thus requiring more space, VAL would have been set non-zero by the call to spill_hard_reg above since additional reloads may be needed in that case. One might think that we need only set VAL to 1 if this is a call-used register. However, the set of registers that must be saved by the prologue is not identical to the call-used set. For example, the register used by the call insn for the return PC is a call-used register, but must be saved by the prologue. */ if (num_eliminable && ! regs_ever_live[spill_regs[n_spills]]) val = 1; regs_ever_live[spill_regs[n_spills]] = 1; n_spills++; return val; } /* Delete an unneeded INSN and any previous insns who sole purpose is loading data that is dead in INSN. */ static void delete_dead_insn (insn) rtx insn; { rtx prev = prev_real_insn (insn); rtx prev_dest; /* If the previous insn sets a register that dies in our insn, delete it too. */ if (prev && GET_CODE (PATTERN (prev)) == SET && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG) && reg_mentioned_p (prev_dest, PATTERN (insn)) && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))) delete_dead_insn (prev); PUT_CODE (insn, NOTE); NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (insn) = 0; } /* Modify the home of pseudo-reg I. The new home is present in reg_renumber[I]. FROM_REG may be the hard reg that the pseudo-reg is being spilled from; or it may be -1, meaning there is none or it is not relevant. This is used so that all pseudos spilled from a given hard reg can share one stack slot. */ static void alter_reg (i, from_reg) register int i; int from_reg; { /* When outputting an inline function, this can happen for a reg that isn't actually used. */ if (regno_reg_rtx[i] == 0) return; /* If the reg got changed to a MEM at rtl-generation time, ignore it. */ if (GET_CODE (regno_reg_rtx[i]) != REG) return; /* Modify the reg-rtx to contain the new hard reg number or else to contain its pseudo reg number. */ REGNO (regno_reg_rtx[i]) = reg_renumber[i] >= 0 ? reg_renumber[i] : i; /* If we have a pseudo that is needed but has no hard reg or equivalent, allocate a stack slot for it. */ if (reg_renumber[i] < 0 && REG_N_REFS (i) > 0 && reg_equiv_constant[i] == 0 && reg_equiv_memory_loc[i] == 0) { register rtx x; int inherent_size = PSEUDO_REGNO_BYTES (i); int total_size = MAX (inherent_size, reg_max_ref_width[i]); int adjust = 0; /* Each pseudo reg has an inherent size which comes from its own mode, and a total size which provides room for paradoxical subregs which refer to the pseudo reg in wider modes. We can use a slot already allocated if it provides both enough inherent space and enough total space. Otherwise, we allocate a new slot, making sure that it has no less inherent space, and no less total space, then the previous slot. */ if (from_reg == -1) { /* No known place to spill from => no slot to reuse. */ x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size, inherent_size == total_size ? 0 : -1); if (BYTES_BIG_ENDIAN) /* Cancel the big-endian correction done in assign_stack_local. Get the address of the beginning of the slot. This is so we can do a big-endian correction unconditionally below. */ adjust = inherent_size - total_size; RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]); } /* Reuse a stack slot if possible. */ else if (spill_stack_slot[from_reg] != 0 && spill_stack_slot_width[from_reg] >= total_size && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg])) >= inherent_size)) x = spill_stack_slot[from_reg]; /* Allocate a bigger slot. */ else { /* Compute maximum size needed, both for inherent size and for total size. */ enum machine_mode mode = GET_MODE (regno_reg_rtx[i]); rtx stack_slot; if (spill_stack_slot[from_reg]) { if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg])) > inherent_size) mode = GET_MODE (spill_stack_slot[from_reg]); if (spill_stack_slot_width[from_reg] > total_size) total_size = spill_stack_slot_width[from_reg]; } /* Make a slot with that size. */ x = assign_stack_local (mode, total_size, inherent_size == total_size ? 0 : -1); stack_slot = x; if (BYTES_BIG_ENDIAN) { /* Cancel the big-endian correction done in assign_stack_local. Get the address of the beginning of the slot. This is so we can do a big-endian correction unconditionally below. */ adjust = GET_MODE_SIZE (mode) - total_size; if (adjust) stack_slot = gen_rtx_MEM (mode_for_size (total_size * BITS_PER_UNIT, MODE_INT, 1), plus_constant (XEXP (x, 0), adjust)); } spill_stack_slot[from_reg] = stack_slot; spill_stack_slot_width[from_reg] = total_size; } /* On a big endian machine, the "address" of the slot is the address of the low part that fits its inherent mode. */ if (BYTES_BIG_ENDIAN && inherent_size < total_size) adjust += (total_size - inherent_size); /* If we have any adjustment to make, or if the stack slot is the wrong mode, make a new stack slot. */ if (adjust != 0 || GET_MODE (x) != GET_MODE (regno_reg_rtx[i])) { x = gen_rtx_MEM (GET_MODE (regno_reg_rtx[i]), plus_constant (XEXP (x, 0), adjust)); RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]); } /* Save the stack slot for later. */ reg_equiv_memory_loc[i] = x; } } /* Mark the slots in regs_ever_live for the hard regs used by pseudo-reg number REGNO. */ void mark_home_live (regno) int regno; { register int i, lim; i = reg_renumber[regno]; if (i < 0) return; lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno)); while (i < lim) regs_ever_live[i++] = 1; } /* Mark the registers used in SCRATCH as being live. */ static void mark_scratch_live (scratch) rtx scratch; { register int i; int regno = REGNO (scratch); int lim = regno + HARD_REGNO_NREGS (regno, GET_MODE (scratch)); for (i = regno; i < lim; i++) regs_ever_live[i] = 1; } /* This function handles the tracking of elimination offsets around branches. X is a piece of RTL being scanned. INSN is the insn that it came from, if any. INITIAL_P is non-zero if we are to set the offset to be the initial offset and zero if we are setting the offset of the label to be the current offset. */ static void set_label_offsets (x, insn, initial_p) rtx x; rtx insn; int initial_p; { enum rtx_code code = GET_CODE (x); rtx tem; int i; struct elim_table *p; switch (code) { case LABEL_REF: if (LABEL_REF_NONLOCAL_P (x)) return; x = XEXP (x, 0); /* ... fall through ... */ case CODE_LABEL: /* If we know nothing about this label, set the desired offsets. Note that this sets the offset at a label to be the offset before a label if we don't know anything about the label. This is not correct for the label after a BARRIER, but is the best guess we can make. If we guessed wrong, we will suppress an elimination that might have been possible had we been able to guess correctly. */ if (! offsets_known_at[CODE_LABEL_NUMBER (x)]) { for (i = 0; i < NUM_ELIMINABLE_REGS; i++) offsets_at[CODE_LABEL_NUMBER (x)][i] = (initial_p ? reg_eliminate[i].initial_offset : reg_eliminate[i].offset); offsets_known_at[CODE_LABEL_NUMBER (x)] = 1; } /* Otherwise, if this is the definition of a label and it is preceded by a BARRIER, set our offsets to the known offset of that label. */ else if (x == insn && (tem = prev_nonnote_insn (insn)) != 0 && GET_CODE (tem) == BARRIER) { num_not_at_initial_offset = 0; for (i = 0; i < NUM_ELIMINABLE_REGS; i++) { reg_eliminate[i].offset = reg_eliminate[i].previous_offset = offsets_at[CODE_LABEL_NUMBER (x)][i]; if (reg_eliminate[i].can_eliminate && (reg_eliminate[i].offset != reg_eliminate[i].initial_offset)) num_not_at_initial_offset++; } } else /* If neither of the above cases is true, compare each offset with those previously recorded and suppress any eliminations where the offsets disagree. */ for (i = 0; i < NUM_ELIMINABLE_REGS; i++) if (offsets_at[CODE_LABEL_NUMBER (x)][i] != (initial_p ? reg_eliminate[i].initial_offset : reg_eliminate[i].offset)) reg_eliminate[i].can_eliminate = 0; return; case JUMP_INSN: set_label_offsets (PATTERN (insn), insn, initial_p); /* ... fall through ... */ case INSN: case CALL_INSN: /* Any labels mentioned in REG_LABEL notes can be branched to indirectly and hence must have all eliminations at their initial offsets. */ for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1)) if (REG_NOTE_KIND (tem) == REG_LABEL) set_label_offsets (XEXP (tem, 0), insn, 1); return; case ADDR_VEC: case ADDR_DIFF_VEC: /* Each of the labels in the address vector must be at their initial offsets. We want the first field for ADDR_VEC and the second field for ADDR_DIFF_VEC. */ for (i = 0; i < XVECLEN (x, code == ADDR_DIFF_VEC); i++) set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i), insn, initial_p); return; case SET: /* We only care about setting PC. If the source is not RETURN, IF_THEN_ELSE, or a label, disable any eliminations not at their initial offsets. Similarly if any arm of the IF_THEN_ELSE isn't one of those possibilities. For branches to a label, call ourselves recursively. Note that this can disable elimination unnecessarily when we have a non-local goto since it will look like a non-constant jump to someplace in the current function. This isn't a significant problem since such jumps will normally be when all elimination pairs are back to their initial offsets. */ if (SET_DEST (x) != pc_rtx) return; switch (GET_CODE (SET_SRC (x))) { case PC: case RETURN: return; case LABEL_REF: set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p); return; case IF_THEN_ELSE: tem = XEXP (SET_SRC (x), 1); if (GET_CODE (tem) == LABEL_REF) set_label_offsets (XEXP (tem, 0), insn, initial_p); else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN) break; tem = XEXP (SET_SRC (x), 2); if (GET_CODE (tem) == LABEL_REF) set_label_offsets (XEXP (tem, 0), insn, initial_p); else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN) break; return; default: break; } /* If we reach here, all eliminations must be at their initial offset because we are doing a jump to a variable address. */ for (p = reg_eliminate; p < ®_eliminate[NUM_ELIMINABLE_REGS]; p++) if (p->offset != p->initial_offset) p->can_eliminate = 0; break; default: break; } } /* Used for communication between the next two function to properly share the vector for an ASM_OPERANDS. */ static struct rtvec_def *old_asm_operands_vec, *new_asm_operands_vec; /* Scan X and replace any eliminable registers (such as fp) with a replacement (such as sp), plus an offset. MEM_MODE is the mode of an enclosing MEM. We need this to know how much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a MEM, we are allowed to replace a sum of a register and the constant zero with the register, which we cannot do outside a MEM. In addition, we need to record the fact that a register is referenced outside a MEM. If INSN is an insn, it is the insn containing X. If we replace a REG in a SET_DEST with an equivalent MEM and INSN is non-zero, write a CLOBBER of the pseudo after INSN so find_equiv_regs will know that the REG is being modified. Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST). That's used when we eliminate in expressions stored in notes. This means, do not set ref_outside_mem even if the reference is outside of MEMs. If we see a modification to a register we know about, take the appropriate action (see case SET, below). REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had replacements done assuming all offsets are at their initial values. If they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we encounter, return the actual location so that find_reloads will do the proper thing. */ rtx eliminate_regs (x, mem_mode, insn) rtx x; enum machine_mode mem_mode; rtx insn; { enum rtx_code code = GET_CODE (x); struct elim_table *ep; int regno; rtx new; int i, j; char *fmt; int copied = 0; switch (code) { case CONST_INT: case CONST_DOUBLE: case CONST: case SYMBOL_REF: case CODE_LABEL: case PC: case CC0: case ASM_INPUT: case ADDR_VEC: case ADDR_DIFF_VEC: case RETURN: return x; case ADDRESSOF: /* This is only for the benefit of the debugging backends, which call eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are removed after CSE. */ new = eliminate_regs (XEXP (x, 0), 0, insn); if (GET_CODE (new) == MEM) return XEXP (new, 0); return x; case REG: regno = REGNO (x); /* First handle the case where we encounter a bare register that is eliminable. Replace it with a PLUS. */ if (regno < FIRST_PSEUDO_REGISTER) { for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) if (ep->from_rtx == x && ep->can_eliminate) { if (! mem_mode /* Refs inside notes don't count for this purpose. */ && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST || GET_CODE (insn) == INSN_LIST))) ep->ref_outside_mem = 1; return plus_constant (ep->to_rtx, ep->previous_offset); } } else if (reg_equiv_memory_loc && reg_equiv_memory_loc[regno] && (reg_equiv_address[regno] || num_not_at_initial_offset)) { /* In this case, find_reloads would attempt to either use an incorrect address (if something is not at its initial offset) or substitute an replaced address into an insn (which loses if the offset is changed by some later action). So we simply return the replaced stack slot (assuming it is changed by elimination) and ignore the fact that this is actually a reference to the pseudo. Ensure we make a copy of the address in case it is shared. */ new = eliminate_regs (reg_equiv_memory_loc[regno], mem_mode, insn); if (new != reg_equiv_memory_loc[regno]) { if (insn != 0 && GET_CODE (insn) != EXPR_LIST && GET_CODE (insn) != INSN_LIST) REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn)) = gen_rtx_EXPR_LIST (REG_EQUAL, new, NULL_RTX); return copy_rtx (new); } } return x; case PLUS: /* If this is the sum of an eliminable register and a constant, rework the sum. */ if (GET_CODE (XEXP (x, 0)) == REG && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER && CONSTANT_P (XEXP (x, 1))) { for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate) { if (! mem_mode /* Refs inside notes don't count for this purpose. */ && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST || GET_CODE (insn) == INSN_LIST))) ep->ref_outside_mem = 1; /* The only time we want to replace a PLUS with a REG (this occurs when the constant operand of the PLUS is the negative of the offset) is when we are inside a MEM. We won't want to do so at other times because that would change the structure of the insn in a way that reload can't handle. We special-case the commonest situation in eliminate_regs_in_insn, so just replace a PLUS with a PLUS here, unless inside a MEM. */ if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == - ep->previous_offset) return ep->to_rtx; else return gen_rtx_PLUS (Pmode, ep->to_rtx, plus_constant (XEXP (x, 1), ep->previous_offset)); } /* If the register is not eliminable, we are done since the other operand is a constant. */ return x; } /* If this is part of an address, we want to bring any constant to the outermost PLUS. We will do this by doing register replacement in our operands and seeing if a constant shows up in one of them. We assume here this is part of an address (or a "load address" insn) since an eliminable register is not likely to appear in any other context. If we have (plus (eliminable) (reg)), we want to produce (plus (plus (replacement) (reg) (const))). If this was part of a normal add insn, (plus (replacement) (reg)) will be pushed as a reload. This is the desired action. */ { rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn); rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn); if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)) { /* If one side is a PLUS and the other side is a pseudo that didn't get a hard register but has a reg_equiv_constant, we must replace the constant here since it may no longer be in the position of any operand. */ if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG && REGNO (new1) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (new1)] < 0 && reg_equiv_constant != 0 && reg_equiv_constant[REGNO (new1)] != 0) new1 = reg_equiv_constant[REGNO (new1)]; else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG && REGNO (new0) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (new0)] < 0 && reg_equiv_constant[REGNO (new0)] != 0) new0 = reg_equiv_constant[REGNO (new0)]; new = form_sum (new0, new1); /* As above, if we are not inside a MEM we do not want to turn a PLUS into something else. We might try to do so here for an addition of 0 if we aren't optimizing. */ if (! mem_mode && GET_CODE (new) != PLUS) return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx); else return new; } } return x; case MULT: /* If this is the product of an eliminable register and a constant, apply the distribute law and move the constant out so that we have (plus (mult ..) ..). This is needed in order to keep load-address insns valid. This case is pathological. We ignore the possibility of overflow here. */ if (GET_CODE (XEXP (x, 0)) == REG && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER && GET_CODE (XEXP (x, 1)) == CONST_INT) for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate) { if (! mem_mode /* Refs inside notes don't count for this purpose. */ && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST || GET_CODE (insn) == INSN_LIST))) ep->ref_outside_mem = 1; return plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)), ep->previous_offset * INTVAL (XEXP (x, 1))); } /* ... fall through ... */ case CALL: case COMPARE: case MINUS: case DIV: case UDIV: case MOD: case UMOD: case AND: case IOR: case XOR: case ROTATERT: case ROTATE: case ASHIFTRT: case LSHIFTRT: case ASHIFT: case NE: case EQ: case GE: case GT: case GEU: case GTU: case LE: case LT: case LEU: case LTU: { rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn); rtx new1 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0; if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)) return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1); } return x; case EXPR_LIST: /* If we have something in XEXP (x, 0), the usual case, eliminate it. */ if (XEXP (x, 0)) { new = eliminate_regs (XEXP (x, 0), mem_mode, insn); if (new != XEXP (x, 0)) x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1)); } /* ... fall through ... */ case INSN_LIST: /* Now do eliminations in the rest of the chain. If this was an EXPR_LIST, this might result in allocating more memory than is strictly needed, but it simplifies the code. */ if (XEXP (x, 1)) { new = eliminate_regs (XEXP (x, 1), mem_mode, insn); if (new != XEXP (x, 1)) return gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new); } return x; case PRE_INC: case POST_INC: case PRE_DEC: case POST_DEC: for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) if (ep->to_rtx == XEXP (x, 0)) { int size = GET_MODE_SIZE (mem_mode); /* If more bytes than MEM_MODE are pushed, account for them. */ #ifdef PUSH_ROUNDING if (ep->to_rtx == stack_pointer_rtx) size = PUSH_ROUNDING (size); #endif if (code == PRE_DEC || code == POST_DEC) ep->offset += size; else ep->offset -= size; } /* Fall through to generic unary operation case. */ case STRICT_LOW_PART: case NEG: case NOT: case SIGN_EXTEND: case ZERO_EXTEND: case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE: case FLOAT: case FIX: case UNSIGNED_FIX: case UNSIGNED_FLOAT: case ABS: case SQRT: case FFS: new = eliminate_regs (XEXP (x, 0), mem_mode, insn); if (new != XEXP (x, 0)) return gen_rtx_fmt_e (code, GET_MODE (x), new); return x; case SUBREG: /* Similar to above processing, but preserve SUBREG_WORD. Convert (subreg (mem)) to (mem) if not paradoxical. Also, if we have a non-paradoxical (subreg (pseudo)) and the pseudo didn't get a hard reg, we must replace this with the eliminated version of the memory location because push_reloads may do the replacement in certain circumstances. */ if (GET_CODE (SUBREG_REG (x)) == REG && (GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))) && reg_equiv_memory_loc != 0 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0) { new = eliminate_regs (reg_equiv_memory_loc[REGNO (SUBREG_REG (x))], mem_mode, insn); /* If we didn't change anything, we must retain the pseudo. */ if (new == reg_equiv_memory_loc[REGNO (SUBREG_REG (x))]) new = SUBREG_REG (x); else { /* In this case, we must show that the pseudo is used in this insn so that delete_output_reload will do the right thing. */ if (insn != 0 && GET_CODE (insn) != EXPR_LIST && GET_CODE (insn) != INSN_LIST) REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode, SUBREG_REG (x)), insn)) = gen_rtx_EXPR_LIST (REG_EQUAL, new, NULL_RTX); /* Ensure NEW isn't shared in case we have to reload it. */ new = copy_rtx (new); } } else new = eliminate_regs (SUBREG_REG (x), mem_mode, insn); if (new != XEXP (x, 0)) { int x_size = GET_MODE_SIZE (GET_MODE (x)); int new_size = GET_MODE_SIZE (GET_MODE (new)); if (GET_CODE (new) == MEM && ((x_size < new_size #ifdef WORD_REGISTER_OPERATIONS /* On these machines, combine can create rtl of the form (set (subreg:m1 (reg:m2 R) 0) ...) where m1 < m2, and expects something interesting to happen to the entire word. Moreover, it will use the (reg:m2 R) later, expecting all bits to be preserved. So if the number of words is the same, preserve the subreg so that push_reloads can see it. */ && ! ((x_size-1)/UNITS_PER_WORD == (new_size-1)/UNITS_PER_WORD) #endif ) || (x_size == new_size)) ) { int offset = SUBREG_WORD (x) * UNITS_PER_WORD; enum machine_mode mode = GET_MODE (x); if (BYTES_BIG_ENDIAN) offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (new))) - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))); PUT_MODE (new, mode); XEXP (new, 0) = plus_constant (XEXP (new, 0), offset); return new; } else return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_WORD (x)); } return x; case USE: /* If using a register that is the source of an eliminate we still think can be performed, note it cannot be performed since we don't know how this register is used. */ for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) if (ep->from_rtx == XEXP (x, 0)) ep->can_eliminate = 0; new = eliminate_regs (XEXP (x, 0), mem_mode, insn); if (new != XEXP (x, 0)) return gen_rtx_fmt_e (code, GET_MODE (x), new); return x; case CLOBBER: /* If clobbering a register that is the replacement register for an elimination we still think can be performed, note that it cannot be performed. Otherwise, we need not be concerned about it. */ for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) if (ep->to_rtx == XEXP (x, 0)) ep->can_eliminate = 0; new = eliminate_regs (XEXP (x, 0), mem_mode, insn); if (new != XEXP (x, 0)) return gen_rtx_fmt_e (code, GET_MODE (x), new); return x; case ASM_OPERANDS: { rtx *temp_vec; /* Properly handle sharing input and constraint vectors. */ if (ASM_OPERANDS_INPUT_VEC (x) != old_asm_operands_vec) { /* When we come to a new vector not seen before, scan all its elements; keep the old vector if none of them changes; otherwise, make a copy. */ old_asm_operands_vec = ASM_OPERANDS_INPUT_VEC (x); temp_vec = (rtx *) alloca (XVECLEN (x, 3) * sizeof (rtx)); for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++) temp_vec[i] = eliminate_regs (ASM_OPERANDS_INPUT (x, i), mem_mode, insn); for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++) if (temp_vec[i] != ASM_OPERANDS_INPUT (x, i)) break; if (i == ASM_OPERANDS_INPUT_LENGTH (x)) new_asm_operands_vec = old_asm_operands_vec; else new_asm_operands_vec = gen_rtvec_v (ASM_OPERANDS_INPUT_LENGTH (x), temp_vec); } /* If we had to copy the vector, copy the entire ASM_OPERANDS. */ if (new_asm_operands_vec == old_asm_operands_vec) return x; new = gen_rtx_ASM_OPERANDS (VOIDmode, ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_OUTPUT_CONSTRAINT (x), ASM_OPERANDS_OUTPUT_IDX (x), new_asm_operands_vec, ASM_OPERANDS_INPUT_CONSTRAINT_VEC (x), ASM_OPERANDS_SOURCE_FILE (x), ASM_OPERANDS_SOURCE_LINE (x)); new->volatil = x->volatil; return new; } case SET: /* Check for setting a register that we know about. */ if (GET_CODE (SET_DEST (x)) == REG) { /* See if this is setting the replacement register for an elimination. If DEST is the hard frame pointer, we do nothing because we assume that all assignments to the frame pointer are for non-local gotos and are being done at a time when they are valid and do not disturb anything else. Some machines want to eliminate a fake argument pointer (or even a fake frame pointer) with either the real frame or the stack pointer. Assignments to the hard frame pointer must not prevent this elimination. */ for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) if (ep->to_rtx == SET_DEST (x) && SET_DEST (x) != hard_frame_pointer_rtx) { /* If it is being incremented, adjust the offset. Otherwise, this elimination can't be done. */ rtx src = SET_SRC (x); if (GET_CODE (src) == PLUS && XEXP (src, 0) == SET_DEST (x) && GET_CODE (XEXP (src, 1)) == CONST_INT) ep->offset -= INTVAL (XEXP (src, 1)); else ep->can_eliminate = 0; } /* Now check to see we are assigning to a register that can be eliminated. If so, it must be as part of a PARALLEL, since we will not have been called if this is a single SET. So indicate that we can no longer eliminate this reg. */ for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) if (ep->from_rtx == SET_DEST (x) && ep->can_eliminate) ep->can_eliminate = 0; } /* Now avoid the loop below in this common case. */ { rtx new0 = eliminate_regs (SET_DEST (x), 0, insn); rtx new1 = eliminate_regs (SET_SRC (x), 0, insn); /* If SET_DEST changed from a REG to a MEM and INSN is an insn, write a CLOBBER insn. */ if (GET_CODE (SET_DEST (x)) == REG && GET_CODE (new0) == MEM && insn != 0 && GET_CODE (insn) != EXPR_LIST && GET_CODE (insn) != INSN_LIST) emit_insn_after (gen_rtx_CLOBBER (VOIDmode, SET_DEST (x)), insn); if (new0 != SET_DEST (x) || new1 != SET_SRC (x)) return gen_rtx_SET (VOIDmode, new0, new1); } return x; case MEM: /* This is only for the benefit of the debugging backends, which call eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are removed after CSE. */ if (GET_CODE (XEXP (x, 0)) == ADDRESSOF) return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn); /* Our only special processing is to pass the mode of the MEM to our recursive call and copy the flags. While we are here, handle this case more efficiently. */ new = eliminate_regs (XEXP (x, 0), GET_MODE (x), insn); if (new != XEXP (x, 0)) { new = gen_rtx_MEM (GET_MODE (x), new); new->volatil = x->volatil; new->unchanging = x->unchanging; new->in_struct = x->in_struct; return new; } else return x; default: break; } /* Process each of our operands recursively. If any have changed, make a copy of the rtx. */ fmt = GET_RTX_FORMAT (code); for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++) { if (*fmt == 'e') { new = eliminate_regs (XEXP (x, i), mem_mode, insn); if (new != XEXP (x, i) && ! copied) { rtx new_x = rtx_alloc (code); bcopy ((char *) x, (char *) new_x, (sizeof (*new_x) - sizeof (new_x->fld) + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code))); x = new_x; copied = 1; } XEXP (x, i) = new; } else if (*fmt == 'E') { int copied_vec = 0; for (j = 0; j < XVECLEN (x, i); j++) { new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn); if (new != XVECEXP (x, i, j) && ! copied_vec) { rtvec new_v = gen_rtvec_vv (XVECLEN (x, i), XVEC (x, i)->elem); if (! copied) { rtx new_x = rtx_alloc (code); bcopy ((char *) x, (char *) new_x, (sizeof (*new_x) - sizeof (new_x->fld) + (sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)))); x = new_x; copied = 1; } XVEC (x, i) = new_v; copied_vec = 1; } XVECEXP (x, i, j) = new; } } } return x; } /* Scan INSN and eliminate all eliminable registers in it. If REPLACE is nonzero, do the replacement destructively. Also delete the insn as dead it if it is setting an eliminable register. If REPLACE is zero, do all our allocations in reload_obstack. If no eliminations were done and this insn doesn't require any elimination processing (these are not identical conditions: it might be updating sp, but not referencing fp; this needs to be seen during reload_as_needed so that the offset between fp and sp can be taken into consideration), zero is returned. Otherwise, 1 is returned. */ static int eliminate_regs_in_insn (insn, replace) rtx insn; int replace; { rtx old_body = PATTERN (insn); rtx old_set = single_set (insn); rtx new_body; int val = 0; struct elim_table *ep; if (! replace) push_obstacks (&reload_obstack, &reload_obstack); if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER) { /* Check for setting an eliminable register. */ for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate) { #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM /* If this is setting the frame pointer register to the hardware frame pointer register and this is an elimination that will be done (tested above), this insn is really adjusting the frame pointer downward to compensate for the adjustment done before a nonlocal goto. */ if (ep->from == FRAME_POINTER_REGNUM && ep->to == HARD_FRAME_POINTER_REGNUM) { rtx src = SET_SRC (old_set); int offset, ok = 0; rtx prev_insn, prev_set; if (src == ep->to_rtx) offset = 0, ok = 1; else if (GET_CODE (src) == PLUS && GET_CODE (XEXP (src, 0)) == CONST_INT) offset = INTVAL (XEXP (src, 0)), ok = 1; else if ((prev_insn = prev_nonnote_insn (insn)) != 0 && (prev_set = single_set (prev_insn)) != 0 && rtx_equal_p (SET_DEST (prev_set), src)) { src = SET_SRC (prev_set); if (src == ep->to_rtx) offset = 0, ok = 1; else if (GET_CODE (src) == PLUS && GET_CODE (XEXP (src, 0)) == CONST_INT && XEXP (src, 1) == ep->to_rtx) offset = INTVAL (XEXP (src, 0)), ok = 1; else if (GET_CODE (src) == PLUS && GET_CODE (XEXP (src, 1)) == CONST_INT && XEXP (src, 0) == ep->to_rtx) offset = INTVAL (XEXP (src, 1)), ok = 1; } if (ok) { if (replace) { rtx src = plus_constant (ep->to_rtx, offset - ep->offset); /* First see if this insn remains valid when we make the change. If not, keep the INSN_CODE the same and let reload fit it up. */ validate_change (insn, &SET_SRC (old_set), src, 1); validate_change (insn, &SET_DEST (old_set), ep->to_rtx, 1); if (! apply_change_group ()) { SET_SRC (old_set) = src; SET_DEST (old_set) = ep->to_rtx; } } val = 1; goto done; } } #endif /* In this case this insn isn't serving a useful purpose. We will delete it in reload_as_needed once we know that this elimination is, in fact, being done. If REPLACE isn't set, we can't delete this insn, but needn't process it since it won't be used unless something changes. */ if (replace) delete_dead_insn (insn); val = 1; goto done; } /* Check for (set (reg) (plus (reg from) (offset))) where the offset in the insn is the negative of the offset in FROM. Substitute (set (reg) (reg to)) for the insn and change its code. We have to do this here, rather than in eliminate_regs, do that we can change the insn code. */ if (GET_CODE (SET_SRC (old_set)) == PLUS && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT) for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) if (ep->from_rtx == XEXP (SET_SRC (old_set), 0) && ep->can_eliminate) { /* We must stop at the first elimination that will be used. If this one would replace the PLUS with a REG, do it now. Otherwise, quit the loop and let eliminate_regs do its normal replacement. */ if (ep->offset == - INTVAL (XEXP (SET_SRC (old_set), 1))) { /* We assume here that we don't need a PARALLEL of any CLOBBERs for this assignment. There's not much we can do if we do need it. */ PATTERN (insn) = gen_rtx_SET (VOIDmode, SET_DEST (old_set), ep->to_rtx); INSN_CODE (insn) = -1; val = 1; goto done; } break; } } old_asm_operands_vec = 0; /* Replace the body of this insn with a substituted form. If we changed something, return non-zero. If we are replacing a body that was a (set X (plus Y Z)), try to re-recognize the insn. We do this in case we had a simple addition but now can do this as a load-address. This saves an insn in this common case. */ new_body = eliminate_regs (old_body, 0, replace ? insn : NULL_RTX); if (new_body != old_body) { /* If we aren't replacing things permanently and we changed something, make another copy to ensure that all the RTL is new. Otherwise things can go wrong if find_reload swaps commutative operands and one is inside RTL that has been copied while the other is not. */ /* Don't copy an asm_operands because (1) there's no need and (2) copy_rtx can't do it properly when there are multiple outputs. */ if (! replace && asm_noperands (old_body) < 0) new_body = copy_rtx (new_body); /* If we had a move insn but now we don't, rerecognize it. This will cause spurious re-recognition if the old move had a PARALLEL since the new one still will, but we can't call single_set without having put NEW_BODY into the insn and the re-recognition won't hurt in this rare case. */ if (old_set != 0 && ((GET_CODE (SET_SRC (old_set)) == REG && (GET_CODE (new_body) != SET || GET_CODE (SET_SRC (new_body)) != REG)) /* If this was a load from or store to memory, compare the MEM in recog_operand to the one in the insn. If they are not equal, then rerecognize the insn. */ || (old_set != 0 && ((GET_CODE (SET_SRC (old_set)) == MEM && SET_SRC (old_set) != recog_operand[1]) || (GET_CODE (SET_DEST (old_set)) == MEM && SET_DEST (old_set) != recog_operand[0]))) /* If this was an add insn before, rerecognize. */ || GET_CODE (SET_SRC (old_set)) == PLUS)) { if (! validate_change (insn, &PATTERN (insn), new_body, 0)) /* If recognition fails, store the new body anyway. It's normal to have recognition failures here due to bizarre memory addresses; reloading will fix them. */ PATTERN (insn) = new_body; } else PATTERN (insn) = new_body; val = 1; } /* Loop through all elimination pairs. See if any have changed and recalculate the number not at initial offset. Compute the maximum offset (minimum offset if the stack does not grow downward) for each elimination pair. We also detect a cases where register elimination cannot be done, namely, if a register would be both changed and referenced outside a MEM in the resulting insn since such an insn is often undefined and, even if not, we cannot know what meaning will be given to it. Note that it is valid to have a register used in an address in an insn that changes it (presumably with a pre- or post-increment or decrement). If anything changes, return nonzero. */ num_not_at_initial_offset = 0; for (ep = reg_eliminate; ep < ®_eliminate[NUM_ELIMINABLE_REGS]; ep++) { if (ep->previous_offset != ep->offset && ep->ref_outside_mem) ep->can_eliminate = 0; ep->ref_outside_mem = 0; if (ep->previous_offset != ep->offset) val = 1; ep->previous_offset = ep->offset; if (ep->can_eliminate && ep->offset != ep->initial_offset) num_not_at_initial_offset++; #ifdef STACK_GROWS_DOWNWARD ep->max_offset = MAX (ep->max_offset, ep->offset); #else ep->max_offset = MIN (ep->max_offset, ep->offset); #endif } done: /* If we changed something, perform elimination in REG_NOTES. This is needed even when REPLACE is zero because a REG_DEAD note might refer to a register that we eliminate and could cause a different number of spill registers to be needed in the final reload pass than in the pre-passes. */ if (val && REG_NOTES (insn) != 0) REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn)); if (! replace) pop_obstacks (); return val; } /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register replacement we currently believe is valid, mark it as not eliminable if X modifies DEST in any way other than by adding a constant integer to it. If DEST is the frame pointer, we do nothing because we assume that all assignments to the hard frame pointer are nonlocal gotos and are being done at a time when they are valid and do not disturb anything else. Some machines want to eliminate a fake argument pointer with either the frame or stack pointer. Assignments to the hard frame pointer must not prevent this elimination. Called via note_stores from reload before starting its passes to scan the insns of the function. */ static void mark_not_eliminable (dest, x) rtx dest; rtx x; { register int i; /* A SUBREG of a hard register here is just changing its mode. We should not see a SUBREG of an eliminable hard register, but check just in case. */ if (GET_CODE (dest) == SUBREG) dest = SUBREG_REG (dest); if (dest == hard_frame_pointer_rtx) return; for (i = 0; i < NUM_ELIMINABLE_REGS; i++) if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx && (GET_CODE (x) != SET || GET_CODE (SET_SRC (x)) != PLUS || XEXP (SET_SRC (x), 0) != dest || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT)) { reg_eliminate[i].can_eliminate_previous = reg_eliminate[i].can_eliminate = 0; num_eliminable--; } } /* Kick all pseudos out of hard register REGNO. If GLOBAL is nonzero, try to find someplace else to put them. If DUMPFILE is nonzero, log actions taken on that file. If CANT_ELIMINATE is nonzero, it means that we are doing this spill because we found we can't eliminate some register. In the case, no pseudos are allowed to be in the register, even if they are only in a block that doesn't require spill registers, unlike the case when we are spilling this hard reg to produce another spill register. Return nonzero if any pseudos needed to be kicked out. */ static int spill_hard_reg (regno, global, dumpfile, cant_eliminate) register int regno; int global; FILE *dumpfile; int cant_eliminate; { enum reg_class class = REGNO_REG_CLASS (regno); int something_changed = 0; register int i; SET_HARD_REG_BIT (forbidden_regs, regno); if (cant_eliminate) regs_ever_live[regno] = 1; /* Spill every pseudo reg that was allocated to this reg or to something that overlaps this reg. */ for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) if (reg_renumber[i] >= 0 && reg_renumber[i] <= regno && (reg_renumber[i] + HARD_REGNO_NREGS (reg_renumber[i], PSEUDO_REGNO_MODE (i)) > regno)) { /* If this register belongs solely to a basic block which needed no spilling of any class that this register is contained in, leave it be, unless we are spilling this register because it was a hard register that can't be eliminated. */ if (! cant_eliminate && basic_block_needs[0] && REG_BASIC_BLOCK (i) >= 0 && basic_block_needs[(int) class][REG_BASIC_BLOCK (i)] == 0) { enum reg_class *p; for (p = reg_class_superclasses[(int) class]; *p != LIM_REG_CLASSES; p++) if (basic_block_needs[(int) *p][REG_BASIC_BLOCK (i)] > 0) break; if (*p == LIM_REG_CLASSES) continue; } /* Mark it as no longer having a hard register home. */ reg_renumber[i] = -1; /* We will need to scan everything again. */ something_changed = 1; if (global) retry_global_alloc (i, forbidden_regs); alter_reg (i, regno); if (dumpfile) { if (reg_renumber[i] == -1) fprintf (dumpfile, " Register %d now on stack.\n\n", i); else fprintf (dumpfile, " Register %d now in %d.\n\n", i, reg_renumber[i]); } } for (i = 0; i < scratch_list_length; i++) { if (scratch_list[i] && REGNO (scratch_list[i]) == regno) { if (! cant_eliminate && basic_block_needs[0] && ! basic_block_needs[(int) class][scratch_block[i]]) { enum reg_class *p; for (p = reg_class_superclasses[(int) class]; *p != LIM_REG_CLASSES; p++) if (basic_block_needs[(int) *p][scratch_block[i]] > 0) break; if (*p == LIM_REG_CLASSES) continue; } PUT_CODE (scratch_list[i], SCRATCH); scratch_list[i] = 0; something_changed = 1; continue; } } return something_changed; } /* Find all paradoxical subregs within X and update reg_max_ref_width. Also mark any hard registers used to store user variables as forbidden from being used for spill registers. */ static void scan_paradoxical_subregs (x) register rtx x; { register int i; register char *fmt; register enum rtx_code code = GET_CODE (x); switch (code) { case REG: if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER && REG_USERVAR_P (x)) SET_HARD_REG_BIT (forbidden_regs, REGNO (x)); return; case CONST_INT: case CONST: case SYMBOL_REF: case LABEL_REF: case CONST_DOUBLE: case CC0: case PC: case USE: case CLOBBER: return; case SUBREG: if (GET_CODE (SUBREG_REG (x)) == REG && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))) reg_max_ref_width[REGNO (SUBREG_REG (x))] = GET_MODE_SIZE (GET_MODE (x)); return; default: break; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') scan_paradoxical_subregs (XEXP (x, i)); else if (fmt[i] == 'E') { register int j; for (j = XVECLEN (x, i) - 1; j >=0; j--) scan_paradoxical_subregs (XVECEXP (x, i, j)); } } } static int hard_reg_use_compare (p1p, p2p) const GENERIC_PTR p1p; const GENERIC_PTR p2p; { struct hard_reg_n_uses *p1 = (struct hard_reg_n_uses *)p1p, *p2 = (struct hard_reg_n_uses *)p2p; int tem = p1->uses - p2->uses; if (tem != 0) return tem; /* If regs are equally good, sort by regno, so that the results of qsort leave nothing to chance. */ return p1->regno - p2->regno; } /* Choose the order to consider regs for use as reload registers based on how much trouble would be caused by spilling one. Store them in order of decreasing preference in potential_reload_regs. */ static void order_regs_for_reload (global) int global; { register int i; register int o = 0; int large = 0; struct hard_reg_n_uses hard_reg_n_uses[FIRST_PSEUDO_REGISTER]; CLEAR_HARD_REG_SET (bad_spill_regs); for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) potential_reload_regs[i] = -1; /* Count number of uses of each hard reg by pseudo regs allocated to it and then order them by decreasing use. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { hard_reg_n_uses[i].uses = 0; hard_reg_n_uses[i].regno = i; } for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) { int regno = reg_renumber[i]; if (regno >= 0) { int lim = regno + HARD_REGNO_NREGS (regno, PSEUDO_REGNO_MODE (i)); while (regno < lim) { /* If allocated by local-alloc, show more uses since we're not going to be able to reallocate it, but we might if allocated by global alloc. */ if (global && reg_allocno[i] < 0) hard_reg_n_uses[regno].uses += (REG_N_REFS (i) + 1) / 2; hard_reg_n_uses[regno++].uses += REG_N_REFS (i); } } large += REG_N_REFS (i); } /* Now fixed registers (which cannot safely be used for reloading) get a very high use count so they will be considered least desirable. Registers used explicitly in the rtl code are almost as bad. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { if (fixed_regs[i]) { hard_reg_n_uses[i].uses += 2 * large + 2; SET_HARD_REG_BIT (bad_spill_regs, i); } else if (regs_explicitly_used[i]) { hard_reg_n_uses[i].uses += large + 1; if (! SMALL_REGISTER_CLASSES) /* ??? We are doing this here because of the potential that bad code may be generated if a register explicitly used in an insn was used as a spill register for that insn. But not using these are spill registers may lose on some machine. We'll have to see how this works out. */ SET_HARD_REG_BIT (bad_spill_regs, i); } } hard_reg_n_uses[HARD_FRAME_POINTER_REGNUM].uses += 2 * large + 2; SET_HARD_REG_BIT (bad_spill_regs, HARD_FRAME_POINTER_REGNUM); #ifdef ELIMINABLE_REGS /* If registers other than the frame pointer are eliminable, mark them as poor choices. */ for (i = 0; i < NUM_ELIMINABLE_REGS; i++) { hard_reg_n_uses[reg_eliminate[i].from].uses += 2 * large + 2; SET_HARD_REG_BIT (bad_spill_regs, reg_eliminate[i].from); } #endif /* Prefer registers not so far used, for use in temporary loading. Among them, if REG_ALLOC_ORDER is defined, use that order. Otherwise, prefer registers not preserved by calls. */ #ifdef REG_ALLOC_ORDER for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { int regno = reg_alloc_order[i]; if (hard_reg_n_uses[regno].uses == 0) potential_reload_regs[o++] = regno; } #else for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { if (hard_reg_n_uses[i].uses == 0 && call_used_regs[i]) potential_reload_regs[o++] = i; } for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { if (hard_reg_n_uses[i].uses == 0 && ! call_used_regs[i]) potential_reload_regs[o++] = i; } #endif qsort (hard_reg_n_uses, FIRST_PSEUDO_REGISTER, sizeof hard_reg_n_uses[0], hard_reg_use_compare); /* Now add the regs that are already used, preferring those used less often. The fixed and otherwise forbidden registers will be at the end of this list. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (hard_reg_n_uses[i].uses != 0) potential_reload_regs[o++] = hard_reg_n_uses[i].regno; } /* Used in reload_as_needed to sort the spilled regs. */ static int compare_spill_regs (r1p, r2p) const GENERIC_PTR r1p; const GENERIC_PTR r2p; { short r1 = *(short *)r1p, r2 = *(short *)r2p; return r1 - r2; } /* Reload pseudo-registers into hard regs around each insn as needed. Additional register load insns are output before the insn that needs it and perhaps store insns after insns that modify the reloaded pseudo reg. reg_last_reload_reg and reg_reloaded_contents keep track of which registers are already available in reload registers. We update these for the reloads that we perform, as the insns are scanned. */ static void reload_as_needed (first, live_known) rtx first; int live_known; { register rtx insn; register int i; int this_block = 0; rtx x; rtx after_call = 0; bzero ((char *) spill_reg_rtx, sizeof spill_reg_rtx); bzero ((char *) spill_reg_store, sizeof spill_reg_store); reg_last_reload_reg = (rtx *) alloca (max_regno * sizeof (rtx)); bzero ((char *) reg_last_reload_reg, max_regno * sizeof (rtx)); reg_has_output_reload = (char *) alloca (max_regno); CLEAR_HARD_REG_SET (reg_reloaded_valid); /* Reset all offsets on eliminable registers to their initial values. */ #ifdef ELIMINABLE_REGS for (i = 0; i < NUM_ELIMINABLE_REGS; i++) { INITIAL_ELIMINATION_OFFSET (reg_eliminate[i].from, reg_eliminate[i].to, reg_eliminate[i].initial_offset); reg_eliminate[i].previous_offset = reg_eliminate[i].offset = reg_eliminate[i].initial_offset; } #else INITIAL_FRAME_POINTER_OFFSET (reg_eliminate[0].initial_offset); reg_eliminate[0].previous_offset = reg_eliminate[0].offset = reg_eliminate[0].initial_offset; #endif num_not_at_initial_offset = 0; /* Order the spilled regs, so that allocate_reload_regs can guarantee to pack registers with group needs. */ if (n_spills > 1) { qsort (spill_regs, n_spills, sizeof (short), compare_spill_regs); for (i = 0; i < n_spills; i++) spill_reg_order[spill_regs[i]] = i; } for (insn = first; insn;) { register rtx next = NEXT_INSN (insn); /* Notice when we move to a new basic block. */ if (live_known && this_block + 1 < n_basic_blocks && insn == basic_block_head[this_block+1]) ++this_block; /* If we pass a label, copy the offsets from the label information into the current offsets of each elimination. */ if (GET_CODE (insn) == CODE_LABEL) { num_not_at_initial_offset = 0; for (i = 0; i < NUM_ELIMINABLE_REGS; i++) { reg_eliminate[i].offset = reg_eliminate[i].previous_offset = offsets_at[CODE_LABEL_NUMBER (insn)][i]; if (reg_eliminate[i].can_eliminate && (reg_eliminate[i].offset != reg_eliminate[i].initial_offset)) num_not_at_initial_offset++; } } else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') { rtx avoid_return_reg = 0; rtx oldpat = PATTERN (insn); /* Set avoid_return_reg if this is an insn that might use the value of a function call. */ if (SMALL_REGISTER_CLASSES && GET_CODE (insn) == CALL_INSN) { if (GET_CODE (PATTERN (insn)) == SET) after_call = SET_DEST (PATTERN (insn)); else if (GET_CODE (PATTERN (insn)) == PARALLEL && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET) after_call = SET_DEST (XVECEXP (PATTERN (insn), 0, 0)); else after_call = 0; } else if (SMALL_REGISTER_CLASSES && after_call != 0 && !(GET_CODE (PATTERN (insn)) == SET && SET_DEST (PATTERN (insn)) == stack_pointer_rtx) && GET_CODE (PATTERN (insn)) != USE) { if (reg_referenced_p (after_call, PATTERN (insn))) avoid_return_reg = after_call; after_call = 0; } /* If this is a USE and CLOBBER of a MEM, ensure that any references to eliminable registers have been removed. */ if ((GET_CODE (PATTERN (insn)) == USE || GET_CODE (PATTERN (insn)) == CLOBBER) && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM) XEXP (XEXP (PATTERN (insn), 0), 0) = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0), GET_MODE (XEXP (PATTERN (insn), 0)), NULL_RTX); /* If we need to do register elimination processing, do so. This might delete the insn, in which case we are done. */ if (num_eliminable && GET_MODE (insn) == QImode) { eliminate_regs_in_insn (insn, 1); if (GET_CODE (insn) == NOTE) { insn = next; continue; } } if (GET_MODE (insn) == VOIDmode) n_reloads = 0; /* First find the pseudo regs that must be reloaded for this insn. This info is returned in the tables reload_... (see reload.h). Also modify the body of INSN by substituting RELOAD rtx's for those pseudo regs. */ else { bzero (reg_has_output_reload, max_regno); CLEAR_HARD_REG_SET (reg_is_output_reload); find_reloads (insn, 1, spill_indirect_levels, live_known, spill_reg_order); } if (n_reloads > 0) { rtx prev = PREV_INSN (insn), next = NEXT_INSN (insn); rtx p; int class; /* If this block has not had spilling done for a particular clas and we have any non-optionals that need a spill reg in that class, abort. */ for (class = 0; class < N_REG_CLASSES; class++) if (basic_block_needs[class] != 0 && basic_block_needs[class][this_block] == 0) for (i = 0; i < n_reloads; i++) if (class == (int) reload_reg_class[i] && reload_reg_rtx[i] == 0 && ! reload_optional[i] && (reload_in[i] != 0 || reload_out[i] != 0 || reload_secondary_p[i] != 0)) fatal_insn ("Non-optional registers need a spill register", insn); /* Now compute which reload regs to reload them into. Perhaps reusing reload regs from previous insns, or else output load insns to reload them. Maybe output store insns too. Record the choices of reload reg in reload_reg_rtx. */ choose_reload_regs (insn, avoid_return_reg); /* Merge any reloads that we didn't combine for fear of increasing the number of spill registers needed but now discover can be safely merged. */ if (SMALL_REGISTER_CLASSES) merge_assigned_reloads (insn); /* Generate the insns to reload operands into or out of their reload regs. */ emit_reload_insns (insn); /* Substitute the chosen reload regs from reload_reg_rtx into the insn's body (or perhaps into the bodies of other load and store insn that we just made for reloading and that we moved the structure into). */ subst_reloads (); /* If this was an ASM, make sure that all the reload insns we have generated are valid. If not, give an error and delete them. */ if (asm_noperands (PATTERN (insn)) >= 0) for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p)) if (p != insn && GET_RTX_CLASS (GET_CODE (p)) == 'i' && (recog_memoized (p) < 0 || (insn_extract (p), ! constrain_operands (INSN_CODE (p), 1)))) { error_for_asm (insn, "`asm' operand requires impossible reload"); PUT_CODE (p, NOTE); NOTE_SOURCE_FILE (p) = 0; NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED; } } /* Any previously reloaded spilled pseudo reg, stored in this insn, is no longer validly lying around to save a future reload. Note that this does not detect pseudos that were reloaded for this insn in order to be stored in (obeying register constraints). That is correct; such reload registers ARE still valid. */ note_stores (oldpat, forget_old_reloads_1); /* There may have been CLOBBER insns placed after INSN. So scan between INSN and NEXT and use them to forget old reloads. */ for (x = NEXT_INSN (insn); x != next; x = NEXT_INSN (x)) if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER) note_stores (PATTERN (x), forget_old_reloads_1); #ifdef AUTO_INC_DEC /* Likewise for regs altered by auto-increment in this insn. But note that the reg-notes are not changed by reloading: they still contain the pseudo-regs, not the spill regs. */ for (x = REG_NOTES (insn); x; x = XEXP (x, 1)) if (REG_NOTE_KIND (x) == REG_INC) { /* See if this pseudo reg was reloaded in this insn. If so, its last-reload info is still valid because it is based on this insn's reload. */ for (i = 0; i < n_reloads; i++) if (reload_out[i] == XEXP (x, 0)) break; if (i == n_reloads) forget_old_reloads_1 (XEXP (x, 0), NULL_RTX); } #endif } /* A reload reg's contents are unknown after a label. */ if (GET_CODE (insn) == CODE_LABEL) CLEAR_HARD_REG_SET (reg_reloaded_valid); /* Don't assume a reload reg is still good after a call insn if it is a call-used reg. */ else if (GET_CODE (insn) == CALL_INSN) AND_COMPL_HARD_REG_SET(reg_reloaded_valid, call_used_reg_set); /* In case registers overlap, allow certain insns to invalidate particular hard registers. */ #ifdef INSN_CLOBBERS_REGNO_P for (i = 0 ; i < FIRST_PSEUDO_REGISTER; i++) if (TEST_HARD_REG_BIT (reg_reloaded_valid, i) && INSN_CLOBBERS_REGNO_P (insn, i)) CLEAR_HARD_REG_BIT (reg_reloaded_valid, i); #endif insn = next; #ifdef USE_C_ALLOCA alloca (0); #endif } } /* Discard all record of any value reloaded from X, or reloaded in X from someplace else; unless X is an output reload reg of the current insn. X may be a hard reg (the reload reg) or it may be a pseudo reg that was reloaded from. */ static void forget_old_reloads_1 (x, ignored) rtx x; rtx ignored ATTRIBUTE_UNUSED; { register int regno; int nr; int offset = 0; /* note_stores does give us subregs of hard regs. */ while (GET_CODE (x) == SUBREG) { offset += SUBREG_WORD (x); x = SUBREG_REG (x); } if (GET_CODE (x) != REG) return; regno = REGNO (x) + offset; if (regno >= FIRST_PSEUDO_REGISTER) nr = 1; else { int i; nr = HARD_REGNO_NREGS (regno, GET_MODE (x)); /* Storing into a spilled-reg invalidates its contents. This can happen if a block-local pseudo is allocated to that reg and it wasn't spilled because this block's total need is 0. Then some insn might have an optional reload and use this reg. */ for (i = 0; i < nr; i++) /* But don't do this if the reg actually serves as an output reload reg in the current instruction. */ if (n_reloads == 0 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i)) CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i); } /* Since value of X has changed, forget any value previously copied from it. */ while (nr-- > 0) /* But don't forget a copy if this is the output reload that establishes the copy's validity. */ if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0) reg_last_reload_reg[regno + nr] = 0; } /* For each reload, the mode of the reload register. */ static enum machine_mode reload_mode[MAX_RELOADS]; /* For each reload, the largest number of registers it will require. */ static int reload_nregs[MAX_RELOADS]; /* Comparison function for qsort to decide which of two reloads should be handled first. *P1 and *P2 are the reload numbers. */ static int reload_reg_class_lower (r1p, r2p) const GENERIC_PTR r1p; const GENERIC_PTR r2p; { register int r1 = *(short *)r1p, r2 = *(short *)r2p; register int t; /* Consider required reloads before optional ones. */ t = reload_optional[r1] - reload_optional[r2]; if (t != 0) return t; /* Count all solitary classes before non-solitary ones. */ t = ((reg_class_size[(int) reload_reg_class[r2]] == 1) - (reg_class_size[(int) reload_reg_class[r1]] == 1)); if (t != 0) return t; /* Aside from solitaires, consider all multi-reg groups first. */ t = reload_nregs[r2] - reload_nregs[r1]; if (t != 0) return t; /* Consider reloads in order of increasing reg-class number. */ t = (int) reload_reg_class[r1] - (int) reload_reg_class[r2]; if (t != 0) return t; /* If reloads are equally urgent, sort by reload number, so that the results of qsort leave nothing to chance. */ return r1 - r2; } /* The following HARD_REG_SETs indicate when each hard register is used for a reload of various parts of the current insn. */ /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */ static HARD_REG_SET reload_reg_used; /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */ static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS]; /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */ static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS]; /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */ static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS]; /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */ static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS]; /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */ static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS]; /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */ static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS]; /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */ static HARD_REG_SET reload_reg_used_in_op_addr; /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */ static HARD_REG_SET reload_reg_used_in_op_addr_reload; /* If reg is in use for a RELOAD_FOR_INSN reload. */ static HARD_REG_SET reload_reg_used_in_insn; /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */ static HARD_REG_SET reload_reg_used_in_other_addr; /* If reg is in use as a reload reg for any sort of reload. */ static HARD_REG_SET reload_reg_used_at_all; /* If reg is use as an inherited reload. We just mark the first register in the group. */ static HARD_REG_SET reload_reg_used_for_inherit; /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and TYPE. MODE is used to indicate how many consecutive regs are actually used. */ static void mark_reload_reg_in_use (regno, opnum, type, mode) int regno; int opnum; enum reload_type type; enum machine_mode mode; { int nregs = HARD_REGNO_NREGS (regno, mode); int i; for (i = regno; i < nregs + regno; i++) { switch (type) { case RELOAD_OTHER: SET_HARD_REG_BIT (reload_reg_used, i); break; case RELOAD_FOR_INPUT_ADDRESS: SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i); break; case RELOAD_FOR_INPADDR_ADDRESS: SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i); break; case RELOAD_FOR_OUTPUT_ADDRESS: SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i); break; case RELOAD_FOR_OUTADDR_ADDRESS: SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i); break; case RELOAD_FOR_OPERAND_ADDRESS: SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i); break; case RELOAD_FOR_OPADDR_ADDR: SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i); break; case RELOAD_FOR_OTHER_ADDRESS: SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i); break; case RELOAD_FOR_INPUT: SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i); break; case RELOAD_FOR_OUTPUT: SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i); break; case RELOAD_FOR_INSN: SET_HARD_REG_BIT (reload_reg_used_in_insn, i); break; } SET_HARD_REG_BIT (reload_reg_used_at_all, i); } } /* Similarly, but show REGNO is no longer in use for a reload. */ static void clear_reload_reg_in_use (regno, opnum, type, mode) int regno; int opnum; enum reload_type type; enum machine_mode mode; { int nregs = HARD_REGNO_NREGS (regno, mode); int i; for (i = regno; i < nregs + regno; i++) { switch (type) { case RELOAD_OTHER: CLEAR_HARD_REG_BIT (reload_reg_used, i); break; case RELOAD_FOR_INPUT_ADDRESS: CLEAR_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i); break; case RELOAD_FOR_INPADDR_ADDRESS: CLEAR_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i); break; case RELOAD_FOR_OUTPUT_ADDRESS: CLEAR_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i); break; case RELOAD_FOR_OUTADDR_ADDRESS: CLEAR_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i); break; case RELOAD_FOR_OPERAND_ADDRESS: CLEAR_HARD_REG_BIT (reload_reg_used_in_op_addr, i); break; case RELOAD_FOR_OPADDR_ADDR: CLEAR_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i); break; case RELOAD_FOR_OTHER_ADDRESS: CLEAR_HARD_REG_BIT (reload_reg_used_in_other_addr, i); break; case RELOAD_FOR_INPUT: CLEAR_HARD_REG_BIT (reload_reg_used_in_input[opnum], i); break; case RELOAD_FOR_OUTPUT: CLEAR_HARD_REG_BIT (reload_reg_used_in_output[opnum], i); break; case RELOAD_FOR_INSN: CLEAR_HARD_REG_BIT (reload_reg_used_in_insn, i); break; } } } /* 1 if reg REGNO is free as a reload reg for a reload of the sort specified by OPNUM and TYPE. */ static int reload_reg_free_p (regno, opnum, type) int regno; int opnum; enum reload_type type; { int i; /* In use for a RELOAD_OTHER means it's not available for anything. */ if (TEST_HARD_REG_BIT (reload_reg_used, regno)) return 0; switch (type) { case RELOAD_OTHER: /* In use for anything means we can't use it for RELOAD_OTHER. */ if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno) || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno) || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)) return 0; for (i = 0; i < reload_n_operands; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) return 0; return 1; case RELOAD_FOR_INPUT: if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno) || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)) return 0; if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)) return 0; /* If it is used for some other input, can't use it. */ for (i = 0; i < reload_n_operands; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) return 0; /* If it is used in a later operand's address, can't use it. */ for (i = opnum + 1; i < reload_n_operands; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)) return 0; return 1; case RELOAD_FOR_INPUT_ADDRESS: /* Can't use a register if it is used for an input address for this operand or used as an input in an earlier one. */ if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno)) return 0; for (i = 0; i < opnum; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) return 0; return 1; case RELOAD_FOR_INPADDR_ADDRESS: /* Can't use a register if it is used for an input address for this operand or used as an input in an earlier one. */ if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno)) return 0; for (i = 0; i < opnum; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) return 0; return 1; case RELOAD_FOR_OUTPUT_ADDRESS: /* Can't use a register if it is used for an output address for this operand or used as an output in this or a later operand. */ if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno)) return 0; for (i = opnum; i < reload_n_operands; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) return 0; return 1; case RELOAD_FOR_OUTADDR_ADDRESS: /* Can't use a register if it is used for an output address for this operand or used as an output in this or a later operand. */ if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno)) return 0; for (i = opnum; i < reload_n_operands; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) return 0; return 1; case RELOAD_FOR_OPERAND_ADDRESS: for (i = 0; i < reload_n_operands; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) return 0; return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno) && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)); case RELOAD_FOR_OPADDR_ADDR: for (i = 0; i < reload_n_operands; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) return 0; return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)); case RELOAD_FOR_OUTPUT: /* This cannot share a register with RELOAD_FOR_INSN reloads, other outputs, or an operand address for this or an earlier output. */ if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)) return 0; for (i = 0; i < reload_n_operands; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) return 0; for (i = 0; i <= opnum; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)) return 0; return 1; case RELOAD_FOR_INSN: for (i = 0; i < reload_n_operands; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) return 0; return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno) && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)); case RELOAD_FOR_OTHER_ADDRESS: return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno); } abort (); } /* Return 1 if the value in reload reg REGNO, as used by a reload needed for the part of the insn specified by OPNUM and TYPE, is not in use for a reload in any prior part of the insn. We can assume that the reload reg was already tested for availability at the time it is needed, and we should not check this again, in case the reg has already been marked in use. */ static int reload_reg_free_before_p (regno, opnum, type) int regno; int opnum; enum reload_type type; { int i; switch (type) { case RELOAD_FOR_OTHER_ADDRESS: /* These always come first. */ return 1; case RELOAD_OTHER: return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno); /* If this use is for part of the insn, check the reg is not in use for any prior part. It is tempting to try to do this by falling through from objecs that occur later in the insn to ones that occur earlier, but that will not correctly take into account the fact that here we MUST ignore things that would prevent the register from being allocated in the first place, since we know that it was allocated. */ case RELOAD_FOR_OUTPUT_ADDRESS: case RELOAD_FOR_OUTADDR_ADDRESS: /* Earlier reloads are for earlier outputs or their addresses, any RELOAD_FOR_INSN reloads, any inputs or their addresses, or any RELOAD_FOR_OTHER_ADDRESS reloads (we know it can't conflict with RELOAD_OTHER).. */ for (i = 0; i < opnum; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) return 0; if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)) return 0; for (i = 0; i < reload_n_operands; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) return 0; return (! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno) && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno) && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)); case RELOAD_FOR_OUTPUT: /* This can't be used in the output address for this operand and anything that can't be used for it, except that we've already tested for RELOAD_FOR_INSN objects. */ if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno)) return 0; for (i = 0; i < opnum; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) return 0; for (i = 0; i < reload_n_operands; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)) return 0; return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno); case RELOAD_FOR_OPERAND_ADDRESS: /* Earlier reloads include RELOAD_FOR_OPADDR_ADDR reloads. */ if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)) return 0; /* ... fall through ... */ case RELOAD_FOR_OPADDR_ADDR: case RELOAD_FOR_INSN: /* These can't conflict with inputs, or each other, so all we have to test is input addresses and the addresses of OTHER items. */ for (i = 0; i < reload_n_operands; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)) return 0; return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno); case RELOAD_FOR_INPUT: /* The only things earlier are the address for this and earlier inputs, other inputs (which we know we don't conflict with), and addresses of RELOAD_OTHER objects. */ for (i = 0; i <= opnum; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)) return 0; return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno); case RELOAD_FOR_INPUT_ADDRESS: case RELOAD_FOR_INPADDR_ADDRESS: /* Similarly, all we have to check is for use in earlier inputs' addresses. */ for (i = 0; i < opnum; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)) return 0; return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno); } abort (); } /* Return 1 if the value in reload reg REGNO, as used by a reload needed for the part of the insn specified by OPNUM and TYPE, is still available in REGNO at the end of the insn. We can assume that the reload reg was already tested for availability at the time it is needed, and we should not check this again, in case the reg has already been marked in use. */ static int reload_reg_reaches_end_p (regno, opnum, type) int regno; int opnum; enum reload_type type; { int i; switch (type) { case RELOAD_OTHER: /* Since a RELOAD_OTHER reload claims the reg for the entire insn, its value must reach the end. */ return 1; /* If this use is for part of the insn, its value reaches if no subsequent part uses the same register. Just like the above function, don't try to do this with lots of fallthroughs. */ case RELOAD_FOR_OTHER_ADDRESS: /* Here we check for everything else, since these don't conflict with anything else and everything comes later. */ for (i = 0; i < reload_n_operands; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) return 0; return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno) && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno) && ! TEST_HARD_REG_BIT (reload_reg_used, regno)); case RELOAD_FOR_INPUT_ADDRESS: case RELOAD_FOR_INPADDR_ADDRESS: /* Similar, except that we check only for this and subsequent inputs and the address of only subsequent inputs and we do not need to check for RELOAD_OTHER objects since they are known not to conflict. */ for (i = opnum; i < reload_n_operands; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) return 0; for (i = opnum + 1; i < reload_n_operands; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)) return 0; for (i = 0; i < reload_n_operands; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) return 0; if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)) return 0; return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno) && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)); case RELOAD_FOR_INPUT: /* Similar to input address, except we start at the next operand for both input and input address and we do not check for RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these would conflict. */ for (i = opnum + 1; i < reload_n_operands; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)) return 0; /* ... fall through ... */ case RELOAD_FOR_OPERAND_ADDRESS: /* Check outputs and their addresses. */ for (i = 0; i < reload_n_operands; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) return 0; return 1; case RELOAD_FOR_OPADDR_ADDR: for (i = 0; i < reload_n_operands; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)) return 0; return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno) && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)); case RELOAD_FOR_INSN: /* These conflict with other outputs with RELOAD_OTHER. So we need only check for output addresses. */ opnum = -1; /* ... fall through ... */ case RELOAD_FOR_OUTPUT: case RELOAD_FOR_OUTPUT_ADDRESS: case RELOAD_FOR_OUTADDR_ADDRESS: /* We already know these can't conflict with a later output. So the only thing to check are later output addresses. */ for (i = opnum + 1; i < reload_n_operands; i++) if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno) || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)) return 0; return 1; } abort (); } /* Return 1 if the reloads denoted by R1 and R2 cannot share a register. Return 0 otherwise. This function uses the same algorithm as reload_reg_free_p above. */ int reloads_conflict (r1, r2) int r1, r2; { enum reload_type r1_type = reload_when_needed[r1]; enum reload_type r2_type = reload_when_needed[r2]; int r1_opnum = reload_opnum[r1]; int r2_opnum = reload_opnum[r2]; /* RELOAD_OTHER conflicts with everything. */ if (r2_type == RELOAD_OTHER) return 1; /* Otherwise, check conflicts differently for each type. */ switch (r1_type) { case RELOAD_FOR_INPUT: return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OPERAND_ADDRESS || r2_type == RELOAD_FOR_OPADDR_ADDR || r2_type == RELOAD_FOR_INPUT || ((r2_type == RELOAD_FOR_INPUT_ADDRESS || r2_type == RELOAD_FOR_INPADDR_ADDRESS) && r2_opnum > r1_opnum)); case RELOAD_FOR_INPUT_ADDRESS: return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum) || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum)); case RELOAD_FOR_INPADDR_ADDRESS: return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum) || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum)); case RELOAD_FOR_OUTPUT_ADDRESS: return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum) || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum)); case RELOAD_FOR_OUTADDR_ADDRESS: return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum) || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum)); case RELOAD_FOR_OPERAND_ADDRESS: return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OPERAND_ADDRESS); case RELOAD_FOR_OPADDR_ADDR: return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OPADDR_ADDR); case RELOAD_FOR_OUTPUT: return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS || r2_type == RELOAD_FOR_OUTADDR_ADDRESS) && r2_opnum >= r1_opnum)); case RELOAD_FOR_INSN: return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT || r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OPERAND_ADDRESS); case RELOAD_FOR_OTHER_ADDRESS: return r2_type == RELOAD_FOR_OTHER_ADDRESS; case RELOAD_OTHER: return 1; default: abort (); } } /* Vector of reload-numbers showing the order in which the reloads should be processed. */ short reload_order[MAX_RELOADS]; /* Indexed by reload number, 1 if incoming value inherited from previous insns. */ char reload_inherited[MAX_RELOADS]; /* For an inherited reload, this is the insn the reload was inherited from, if we know it. Otherwise, this is 0. */ rtx reload_inheritance_insn[MAX_RELOADS]; /* If non-zero, this is a place to get the value of the reload, rather than using reload_in. */ rtx reload_override_in[MAX_RELOADS]; /* For each reload, the hard register number of the register used, or -1 if we did not need a register for this reload. */ int reload_spill_index[MAX_RELOADS]; /* Return 1 if the value in reload reg REGNO, as used by a reload needed for the part of the insn specified by OPNUM and TYPE, may be used to load VALUE into it. Other read-only reloads with the same value do not conflict. The caller has to make sure that there is no conflict with the return register. */ static int reload_reg_free_for_value_p (regno, opnum, type, value) int regno; int opnum; enum reload_type type; rtx value; { int time1; int i; /* We use some pseudo 'time' value to check if the lifetimes of the new register use would overlap with the one of a previous reload that is not read-only or uses a different value. The 'time' used doesn't have to be linear in any shape or form, just monotonic. Some reload types use different 'buckets' for each operand. So there are MAX_RECOG_OPERANDS different time values for each such reload type. We compute TIME1 as the time when the register for the prospective new reload ceases to be live, and TIME2 for each existing reload as the time when that the reload register of that reload becomes live. Where there is little to be gained by exact lifetime calculations, we just make conservative assumptions, i.e. a longer lifetime; this is done in the 'default:' cases. */ switch (type) { case RELOAD_FOR_OTHER_ADDRESS: time1 = 0; break; /* For each input, we might have a sequence of RELOAD_FOR_INPADDR_ADDRESS, RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 , respectively, to the time values for these, we get distinct time values. To get distinct time values for each operand, we have to multiply opnum by at least three. We round that up to four because multiply by four is often cheaper. */ case RELOAD_FOR_INPADDR_ADDRESS: time1 = opnum * 4 + 1; break; case RELOAD_FOR_INPUT_ADDRESS: time1 = opnum * 4 + 2; break; case RELOAD_FOR_INPUT: /* All RELOAD_FOR_INPUT reloads remain live till just before the instruction is executed. */ time1 = (MAX_RECOG_OPERANDS - 1) * 4 + 3; break; /* opnum * 4 + 3 < opnum * 4 + 4 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */ case RELOAD_FOR_OUTPUT_ADDRESS: time1 = MAX_RECOG_OPERANDS * 4 + opnum; break; default: time1 = MAX_RECOG_OPERANDS * 5; } for (i = 0; i < n_reloads; i++) { rtx reg = reload_reg_rtx[i]; if (reg && GET_CODE (reg) == REG && ((unsigned) regno - true_regnum (reg) <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - 1U) && (! reload_in[i] || ! rtx_equal_p (reload_in[i], value) || reload_out[i])) { int time2; switch (reload_when_needed[i]) { case RELOAD_FOR_OTHER_ADDRESS: time2 = 0; break; case RELOAD_FOR_INPADDR_ADDRESS: time2 = reload_opnum[i] * 4 + 1; break; case RELOAD_FOR_INPUT_ADDRESS: time2 = reload_opnum[i] * 4 + 2; break; case RELOAD_FOR_INPUT: time2 = reload_opnum[i] * 4 + 3; break; case RELOAD_FOR_OUTPUT: /* All RELOAD_FOR_OUTPUT reloads become live just after the instruction is executed. */ time2 = MAX_RECOG_OPERANDS * 4; break; /* The first RELOAD_FOR_OUTPUT_ADDRESS reload conflicts with the RELOAD_FOR_OUTPUT reloads, so assign it the same time value. */ case RELOAD_FOR_OUTPUT_ADDRESS: time2 = MAX_RECOG_OPERANDS * 4 + reload_opnum[i]; break; default: time2 = 0; } if (time1 >= time2) return 0; } } return 1; } /* Find a spill register to use as a reload register for reload R. LAST_RELOAD is non-zero if this is the last reload for the insn being processed. Set reload_reg_rtx[R] to the register allocated. If NOERROR is nonzero, we return 1 if successful, or 0 if we couldn't find a spill reg and we didn't change anything. */ static int allocate_reload_reg (r, insn, last_reload, noerror) int r; rtx insn; int last_reload; int noerror; { int i; int pass; int count; rtx new; int regno; /* If we put this reload ahead, thinking it is a group, then insist on finding a group. Otherwise we can grab a reg that some other reload needs. (That can happen when we have a 68000 DATA_OR_FP_REG which is a group of data regs or one fp reg.) We need not be so restrictive if there are no more reloads for this insn. ??? Really it would be nicer to have smarter handling for that kind of reg class, where a problem like this is normal. Perhaps those classes should be avoided for reloading by use of more alternatives. */ int force_group = reload_nregs[r] > 1 && ! last_reload; /* If we want a single register and haven't yet found one, take any reg in the right class and not in use. If we want a consecutive group, here is where we look for it. We use two passes so we can first look for reload regs to reuse, which are already in use for other reloads in this insn, and only then use additional registers. I think that maximizing reuse is needed to make sure we don't run out of reload regs. Suppose we have three reloads, and reloads A and B can share regs. These need two regs. Suppose A and B are given different regs. That leaves none for C. */ for (pass = 0; pass < 2; pass++) { /* I is the index in spill_regs. We advance it round-robin between insns to use all spill regs equally, so that inherited reloads have a chance of leapfrogging each other. Don't do this, however, when we have group needs and failure would be fatal; if we only have a relatively small number of spill registers, and more than one of them has group needs, then by starting in the middle, we may end up allocating the first one in such a way that we are not left with sufficient groups to handle the rest. */ if (noerror || ! force_group) i = last_spill_reg; else i = -1; for (count = 0; count < n_spills; count++) { int class = (int) reload_reg_class[r]; i = (i + 1) % n_spills; if ((reload_reg_free_p (spill_regs[i], reload_opnum[r], reload_when_needed[r]) || (reload_in[r] && ! reload_out[r] /* We check reload_reg_used to make sure we don't clobber the return register. */ && ! TEST_HARD_REG_BIT (reload_reg_used, spill_regs[i]) && reload_reg_free_for_value_p (spill_regs[i], reload_opnum[r], reload_when_needed[r], reload_in[r]))) && TEST_HARD_REG_BIT (reg_class_contents[class], spill_regs[i]) && HARD_REGNO_MODE_OK (spill_regs[i], reload_mode[r]) /* Look first for regs to share, then for unshared. But don't share regs used for inherited reloads; they are the ones we want to preserve. */ && (pass || (TEST_HARD_REG_BIT (reload_reg_used_at_all, spill_regs[i]) && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit, spill_regs[i])))) { int nr = HARD_REGNO_NREGS (spill_regs[i], reload_mode[r]); /* Avoid the problem where spilling a GENERAL_OR_FP_REG (on 68000) got us two FP regs. If NR is 1, we would reject both of them. */ if (force_group) nr = CLASS_MAX_NREGS (reload_reg_class[r], reload_mode[r]); /* If we need only one reg, we have already won. */ if (nr == 1) { /* But reject a single reg if we demand a group. */ if (force_group) continue; break; } /* Otherwise check that as many consecutive regs as we need are available here. Also, don't use for a group registers that are needed for nongroups. */ if (! TEST_HARD_REG_BIT (counted_for_nongroups, spill_regs[i])) while (nr > 1) { regno = spill_regs[i] + nr - 1; if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno) && spill_reg_order[regno] >= 0 && reload_reg_free_p (regno, reload_opnum[r], reload_when_needed[r]) && ! TEST_HARD_REG_BIT (counted_for_nongroups, regno))) break; nr--; } if (nr == 1) break; } } /* If we found something on pass 1, omit pass 2. */ if (count < n_spills) break; } /* We should have found a spill register by now. */ if (count == n_spills) { if (noerror) return 0; goto failure; } /* I is the index in SPILL_REG_RTX of the reload register we are to allocate. Get an rtx for it and find its register number. */ new = spill_reg_rtx[i]; if (new == 0 || GET_MODE (new) != reload_mode[r]) spill_reg_rtx[i] = new = gen_rtx_REG (reload_mode[r], spill_regs[i]); regno = true_regnum (new); /* Detect when the reload reg can't hold the reload mode. This used to be one `if', but Sequent compiler can't handle that. */ if (HARD_REGNO_MODE_OK (regno, reload_mode[r])) { enum machine_mode test_mode = VOIDmode; if (reload_in[r]) test_mode = GET_MODE (reload_in[r]); /* If reload_in[r] has VOIDmode, it means we will load it in whatever mode the reload reg has: to wit, reload_mode[r]. We have already tested that for validity. */ /* Aside from that, we need to test that the expressions to reload from or into have modes which are valid for this reload register. Otherwise the reload insns would be invalid. */ if (! (reload_in[r] != 0 && test_mode != VOIDmode && ! HARD_REGNO_MODE_OK (regno, test_mode))) if (! (reload_out[r] != 0 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (reload_out[r])))) { /* The reg is OK. */ last_spill_reg = i; /* Mark as in use for this insn the reload regs we use for this. */ mark_reload_reg_in_use (spill_regs[i], reload_opnum[r], reload_when_needed[r], reload_mode[r]); reload_reg_rtx[r] = new; reload_spill_index[r] = spill_regs[i]; return 1; } } /* The reg is not OK. */ if (noerror) return 0; failure: if (asm_noperands (PATTERN (insn)) < 0) /* It's the compiler's fault. */ fatal_insn ("Could not find a spill register", insn); /* It's the user's fault; the operand's mode and constraint don't match. Disable this reload so we don't crash in final. */ error_for_asm (insn, "`asm' operand constraint incompatible with operand size"); reload_in[r] = 0; reload_out[r] = 0; reload_reg_rtx[r] = 0; reload_optional[r] = 1; reload_secondary_p[r] = 1; return 1; } /* Assign hard reg targets for the pseudo-registers we must reload into hard regs for this insn. Also output the instructions to copy them in and out of the hard regs. For machines with register classes, we are responsible for finding a reload reg in the proper class. */ static void choose_reload_regs (insn, avoid_return_reg) rtx insn; rtx avoid_return_reg; { register int i, j; int max_group_size = 1; enum reg_class group_class = NO_REGS; int inheritance; rtx save_reload_reg_rtx[MAX_RELOADS]; char save_reload_inherited[MAX_RELOADS]; rtx save_reload_inheritance_insn[MAX_RELOADS]; rtx save_reload_override_in[MAX_RELOADS]; int save_reload_spill_index[MAX_RELOADS]; HARD_REG_SET save_reload_reg_used; HARD_REG_SET save_reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS]; HARD_REG_SET save_reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS]; HARD_REG_SET save_reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS]; HARD_REG_SET save_reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS]; HARD_REG_SET save_reload_reg_used_in_input[MAX_RECOG_OPERANDS]; HARD_REG_SET save_reload_reg_used_in_output[MAX_RECOG_OPERANDS]; HARD_REG_SET save_reload_reg_used_in_op_addr; HARD_REG_SET save_reload_reg_used_in_op_addr_reload; HARD_REG_SET save_reload_reg_used_in_insn; HARD_REG_SET save_reload_reg_used_in_other_addr; HARD_REG_SET save_reload_reg_used_at_all; bzero (reload_inherited, MAX_RELOADS); bzero ((char *) reload_inheritance_insn, MAX_RELOADS * sizeof (rtx)); bzero ((char *) reload_override_in, MAX_RELOADS * sizeof (rtx)); CLEAR_HARD_REG_SET (reload_reg_used); CLEAR_HARD_REG_SET (reload_reg_used_at_all); CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr); CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload); CLEAR_HARD_REG_SET (reload_reg_used_in_insn); CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr); for (i = 0; i < reload_n_operands; i++) { CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]); CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]); CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]); CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]); CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]); CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]); } /* Don't bother with avoiding the return reg if we have no mandatory reload that could use it. */ if (SMALL_REGISTER_CLASSES && avoid_return_reg) { int do_avoid = 0; int regno = REGNO (avoid_return_reg); int nregs = HARD_REGNO_NREGS (regno, GET_MODE (avoid_return_reg)); int r; for (r = regno; r < regno + nregs; r++) if (spill_reg_order[r] >= 0) for (j = 0; j < n_reloads; j++) if (!reload_optional[j] && reload_reg_rtx[j] == 0 && (reload_in[j] != 0 || reload_out[j] != 0 || reload_secondary_p[j]) && TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[j]], r)) do_avoid = 1; if (!do_avoid) avoid_return_reg = 0; } #if 0 /* Not needed, now that we can always retry without inheritance. */ /* See if we have more mandatory reloads than spill regs. If so, then we cannot risk optimizations that could prevent reloads from sharing one spill register. Since we will try finding a better register than reload_reg_rtx unless it is equal to reload_in or reload_out, count such reloads. */ { int tem = SMALL_REGISTER_CLASSES? (avoid_return_reg != 0): 0; for (j = 0; j < n_reloads; j++) if (! reload_optional[j] && (reload_in[j] != 0 || reload_out[j] != 0 || reload_secondary_p[j]) && (reload_reg_rtx[j] == 0 || (! rtx_equal_p (reload_reg_rtx[j], reload_in[j]) && ! rtx_equal_p (reload_reg_rtx[j], reload_out[j])))) tem++; if (tem > n_spills) must_reuse = 1; } #endif /* Don't use the subroutine call return reg for a reload if we are supposed to avoid it. */ if (SMALL_REGISTER_CLASSES && avoid_return_reg) { int regno = REGNO (avoid_return_reg); int nregs = HARD_REGNO_NREGS (regno, GET_MODE (avoid_return_reg)); int r; for (r = regno; r < regno + nregs; r++) if (spill_reg_order[r] >= 0) SET_HARD_REG_BIT (reload_reg_used, r); } /* In order to be certain of getting the registers we need, we must sort the reloads into order of increasing register class. Then our grabbing of reload registers will parallel the process that provided the reload registers. Also note whether any of the reloads wants a consecutive group of regs. If so, record the maximum size of the group desired and what register class contains all the groups needed by this insn. */ for (j = 0; j < n_reloads; j++) { reload_order[j] = j; reload_spill_index[j] = -1; reload_mode[j] = (reload_inmode[j] == VOIDmode || (GET_MODE_SIZE (reload_outmode[j]) > GET_MODE_SIZE (reload_inmode[j]))) ? reload_outmode[j] : reload_inmode[j]; reload_nregs[j] = CLASS_MAX_NREGS (reload_reg_class[j], reload_mode[j]); if (reload_nregs[j] > 1) { max_group_size = MAX (reload_nregs[j], max_group_size); group_class = reg_class_superunion[(int)reload_reg_class[j]][(int)group_class]; } /* If we have already decided to use a certain register, don't use it in another way. */ if (reload_reg_rtx[j]) mark_reload_reg_in_use (REGNO (reload_reg_rtx[j]), reload_opnum[j], reload_when_needed[j], reload_mode[j]); } if (n_reloads > 1) qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower); bcopy ((char *) reload_reg_rtx, (char *) save_reload_reg_rtx, sizeof reload_reg_rtx); bcopy (reload_inherited, save_reload_inherited, sizeof reload_inherited); bcopy ((char *) reload_inheritance_insn, (char *) save_reload_inheritance_insn, sizeof reload_inheritance_insn); bcopy ((char *) reload_override_in, (char *) save_reload_override_in, sizeof reload_override_in); bcopy ((char *) reload_spill_index, (char *) save_reload_spill_index, sizeof reload_spill_index); COPY_HARD_REG_SET (save_reload_reg_used, reload_reg_used); COPY_HARD_REG_SET (save_reload_reg_used_at_all, reload_reg_used_at_all); COPY_HARD_REG_SET (save_reload_reg_used_in_op_addr, reload_reg_used_in_op_addr); COPY_HARD_REG_SET (save_reload_reg_used_in_op_addr_reload, reload_reg_used_in_op_addr_reload); COPY_HARD_REG_SET (save_reload_reg_used_in_insn, reload_reg_used_in_insn); COPY_HARD_REG_SET (save_reload_reg_used_in_other_addr, reload_reg_used_in_other_addr); for (i = 0; i < reload_n_operands; i++) { COPY_HARD_REG_SET (save_reload_reg_used_in_output[i], reload_reg_used_in_output[i]); COPY_HARD_REG_SET (save_reload_reg_used_in_input[i], reload_reg_used_in_input[i]); COPY_HARD_REG_SET (save_reload_reg_used_in_input_addr[i], reload_reg_used_in_input_addr[i]); COPY_HARD_REG_SET (save_reload_reg_used_in_inpaddr_addr[i], reload_reg_used_in_inpaddr_addr[i]); COPY_HARD_REG_SET (save_reload_reg_used_in_output_addr[i], reload_reg_used_in_output_addr[i]); COPY_HARD_REG_SET (save_reload_reg_used_in_outaddr_addr[i], reload_reg_used_in_outaddr_addr[i]); } /* If -O, try first with inheritance, then turning it off. If not -O, don't do inheritance. Using inheritance when not optimizing leads to paradoxes with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves because one side of the comparison might be inherited. */ for (inheritance = optimize > 0; inheritance >= 0; inheritance--) { /* Process the reloads in order of preference just found. Beyond this point, subregs can be found in reload_reg_rtx. This used to look for an existing reloaded home for all of the reloads, and only then perform any new reloads. But that could lose if the reloads were done out of reg-class order because a later reload with a looser constraint might have an old home in a register needed by an earlier reload with a tighter constraint. To solve this, we make two passes over the reloads, in the order described above. In the first pass we try to inherit a reload from a previous insn. If there is a later reload that needs a class that is a proper subset of the class being processed, we must also allocate a spill register during the first pass. Then make a second pass over the reloads to allocate any reloads that haven't been given registers yet. */ CLEAR_HARD_REG_SET (reload_reg_used_for_inherit); for (j = 0; j < n_reloads; j++) { register int r = reload_order[j]; /* Ignore reloads that got marked inoperative. */ if (reload_out[r] == 0 && reload_in[r] == 0 && ! reload_secondary_p[r]) continue; /* If find_reloads chose a to use reload_in or reload_out as a reload register, we don't need to chose one. Otherwise, try even if it found one since we might save an insn if we find the value lying around. */ if (reload_in[r] != 0 && reload_reg_rtx[r] != 0 && (rtx_equal_p (reload_in[r], reload_reg_rtx[r]) || rtx_equal_p (reload_out[r], reload_reg_rtx[r]))) continue; #if 0 /* No longer needed for correct operation. It might give better code, or might not; worth an experiment? */ /* If this is an optional reload, we can't inherit from earlier insns until we are sure that any non-optional reloads have been allocated. The following code takes advantage of the fact that optional reloads are at the end of reload_order. */ if (reload_optional[r] != 0) for (i = 0; i < j; i++) if ((reload_out[reload_order[i]] != 0 || reload_in[reload_order[i]] != 0 || reload_secondary_p[reload_order[i]]) && ! reload_optional[reload_order[i]] && reload_reg_rtx[reload_order[i]] == 0) allocate_reload_reg (reload_order[i], insn, 0, inheritance); #endif /* First see if this pseudo is already available as reloaded for a previous insn. We cannot try to inherit for reloads that are smaller than the maximum number of registers needed for groups unless the register we would allocate cannot be used for the groups. We could check here to see if this is a secondary reload for an object that is already in a register of the desired class. This would avoid the need for the secondary reload register. But this is complex because we can't easily determine what objects might want to be loaded via this reload. So let a register be allocated here. In `emit_reload_insns' we suppress one of the loads in the case described above. */ if (inheritance) { register int regno = -1; enum machine_mode mode; if (reload_in[r] == 0) ; else if (GET_CODE (reload_in[r]) == REG) { regno = REGNO (reload_in[r]); mode = GET_MODE (reload_in[r]); } else if (GET_CODE (reload_in_reg[r]) == REG) { regno = REGNO (reload_in_reg[r]); mode = GET_MODE (reload_in_reg[r]); } else if (GET_CODE (reload_in[r]) == MEM) { rtx prev = prev_nonnote_insn (insn), note; if (prev && GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == USE && GET_CODE (XEXP (PATTERN (prev), 0)) == REG && (REGNO (XEXP (PATTERN (prev), 0)) >= FIRST_PSEUDO_REGISTER) && (note = find_reg_note (prev, REG_EQUAL, NULL_RTX)) && GET_CODE (XEXP (note, 0)) == MEM) { rtx addr = XEXP (XEXP (note, 0), 0); int size_diff = (GET_MODE_SIZE (GET_MODE (addr)) - GET_MODE_SIZE (GET_MODE (reload_in[r]))); if (size_diff >= 0 && rtx_equal_p ((BYTES_BIG_ENDIAN ? plus_constant (addr, size_diff) : addr), XEXP (reload_in[r], 0))) { regno = REGNO (XEXP (PATTERN (prev), 0)); mode = GET_MODE (reload_in[r]); } } } #if 0 /* This won't work, since REGNO can be a pseudo reg number. Also, it takes much more hair to keep track of all the things that can invalidate an inherited reload of part of a pseudoreg. */ else if (GET_CODE (reload_in[r]) == SUBREG && GET_CODE (SUBREG_REG (reload_in[r])) == REG) regno = REGNO (SUBREG_REG (reload_in[r])) + SUBREG_WORD (reload_in[r]); #endif if (regno >= 0 && reg_last_reload_reg[regno] != 0) { i = REGNO (reg_last_reload_reg[regno]); if (reg_reloaded_contents[i] == regno && TEST_HARD_REG_BIT (reg_reloaded_valid, i) && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno])) >= GET_MODE_SIZE (mode)) && HARD_REGNO_MODE_OK (i, reload_mode[r]) && TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[r]], i) && (reload_nregs[r] == max_group_size || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class], i)) && ((reload_reg_free_p (i, reload_opnum[r], reload_when_needed[r]) && reload_reg_free_before_p (i, reload_opnum[r], reload_when_needed[r])) || reload_reg_free_for_value_p (i, reload_opnum[r], reload_when_needed[r], reload_in[r]))) { /* If a group is needed, verify that all the subsequent registers still have their values intact. */ int nr = HARD_REGNO_NREGS (i, reload_mode[r]); int k; for (k = 1; k < nr; k++) if (reg_reloaded_contents[i + k] != regno || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k)) break; if (k == nr) { int i1; /* We found a register that contains the value we need. If this register is the same as an `earlyclobber' operand of the current insn, just mark it as a place to reload from since we can't use it as the reload register itself. */ for (i1 = 0; i1 < n_earlyclobbers; i1++) if (reg_overlap_mentioned_for_reload_p (reg_last_reload_reg[regno], reload_earlyclobbers[i1])) break; if (i1 != n_earlyclobbers /* Don't use it if we'd clobber a pseudo reg. */ || (spill_reg_order[i] < 0 && reload_out[r] && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i)) /* Don't really use the inherited spill reg if we need it wider than we've got it. */ || (GET_MODE_SIZE (reload_mode[r]) > GET_MODE_SIZE (mode))) reload_override_in[r] = reg_last_reload_reg[regno]; else { int k; /* We can use this as a reload reg. */ /* Mark the register as in use for this part of the insn. */ mark_reload_reg_in_use (i, reload_opnum[r], reload_when_needed[r], reload_mode[r]); reload_reg_rtx[r] = reg_last_reload_reg[regno]; reload_inherited[r] = 1; reload_inheritance_insn[r] = reg_reloaded_insn[i]; reload_spill_index[r] = i; for (k = 0; k < nr; k++) SET_HARD_REG_BIT (reload_reg_used_for_inherit, i + k); } } } } } /* Here's another way to see if the value is already lying around. */ if (inheritance && reload_in[r] != 0 && ! reload_inherited[r] && reload_out[r] == 0 && (CONSTANT_P (reload_in[r]) || GET_CODE (reload_in[r]) == PLUS || GET_CODE (reload_in[r]) == REG || GET_CODE (reload_in[r]) == MEM) && (reload_nregs[r] == max_group_size || ! reg_classes_intersect_p (reload_reg_class[r], group_class))) { register rtx equiv = find_equiv_reg (reload_in[r], insn, reload_reg_class[r], -1, NULL_PTR, 0, reload_mode[r]); int regno; if (equiv != 0) { if (GET_CODE (equiv) == REG) regno = REGNO (equiv); else if (GET_CODE (equiv) == SUBREG) { /* This must be a SUBREG of a hard register. Make a new REG since this might be used in an address and not all machines support SUBREGs there. */ regno = REGNO (SUBREG_REG (equiv)) + SUBREG_WORD (equiv); equiv = gen_rtx_REG (reload_mode[r], regno); } else abort (); } /* If we found a spill reg, reject it unless it is free and of the desired class. */ if (equiv != 0 && ((spill_reg_order[regno] >= 0 && ! (reload_reg_free_before_p (regno, reload_opnum[r], reload_when_needed[r]) || reload_reg_free_for_value_p (regno, reload_opnum[r], reload_when_needed[r], reload_in[r]))) || ! TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[r]], regno))) equiv = 0; if (equiv != 0 && TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)) equiv = 0; if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, reload_mode[r])) equiv = 0; /* We found a register that contains the value we need. If this register is the same as an `earlyclobber' operand of the current insn, just mark it as a place to reload from since we can't use it as the reload register itself. */ if (equiv != 0) for (i = 0; i < n_earlyclobbers; i++) if (reg_overlap_mentioned_for_reload_p (equiv, reload_earlyclobbers[i])) { reload_override_in[r] = equiv; equiv = 0; break; } /* JRV: If the equiv register we have found is explicitly clobbered in the current insn, mark but don't use, as above. */ if (equiv != 0 && regno_clobbered_p (regno, insn)) { reload_override_in[r] = equiv; equiv = 0; } /* If we found an equivalent reg, say no code need be generated to load it, and use it as our reload reg. */ if (equiv != 0 && regno != HARD_FRAME_POINTER_REGNUM) { int nr = HARD_REGNO_NREGS (regno, reload_mode[r]); int k; reload_reg_rtx[r] = equiv; reload_inherited[r] = 1; /* If any of the hard registers in EQUIV are spill registers, mark them as in use for this insn. */ for (k = 0; k < nr; k++) { i = spill_reg_order[regno + k]; if (i >= 0) { mark_reload_reg_in_use (regno, reload_opnum[r], reload_when_needed[r], reload_mode[r]); SET_HARD_REG_BIT (reload_reg_used_for_inherit, regno + k); } } } } /* If we found a register to use already, or if this is an optional reload, we are done. */ if (reload_reg_rtx[r] != 0 || reload_optional[r] != 0) continue; #if 0 /* No longer needed for correct operation. Might or might not give better code on the average. Want to experiment? */ /* See if there is a later reload that has a class different from our class that intersects our class or that requires less register than our reload. If so, we must allocate a register to this reload now, since that reload might inherit a previous reload and take the only available register in our class. Don't do this for optional reloads since they will force all previous reloads to be allocated. Also don't do this for reloads that have been turned off. */ for (i = j + 1; i < n_reloads; i++) { int s = reload_order[i]; if ((reload_in[s] == 0 && reload_out[s] == 0 && ! reload_secondary_p[s]) || reload_optional[s]) continue; if ((reload_reg_class[s] != reload_reg_class[r] && reg_classes_intersect_p (reload_reg_class[r], reload_reg_class[s])) || reload_nregs[s] < reload_nregs[r]) break; } if (i == n_reloads) continue; allocate_reload_reg (r, insn, j == n_reloads - 1, inheritance); #endif } /* Now allocate reload registers for anything non-optional that didn't get one yet. */ for (j = 0; j < n_reloads; j++) { register int r = reload_order[j]; /* Ignore reloads that got marked inoperative. */ if (reload_out[r] == 0 && reload_in[r] == 0 && ! reload_secondary_p[r]) continue; /* Skip reloads that already have a register allocated or are optional. */ if (reload_reg_rtx[r] != 0 || reload_optional[r]) continue; if (! allocate_reload_reg (r, insn, j == n_reloads - 1, inheritance)) break; } /* If that loop got all the way, we have won. */ if (j == n_reloads) break; fail: /* Loop around and try without any inheritance. */ /* First undo everything done by the failed attempt to allocate with inheritance. */ bcopy ((char *) save_reload_reg_rtx, (char *) reload_reg_rtx, sizeof reload_reg_rtx); bcopy ((char *) save_reload_inherited, (char *) reload_inherited, sizeof reload_inherited); bcopy ((char *) save_reload_inheritance_insn, (char *) reload_inheritance_insn, sizeof reload_inheritance_insn); bcopy ((char *) save_reload_override_in, (char *) reload_override_in, sizeof reload_override_in); bcopy ((char *) save_reload_spill_index, (char *) reload_spill_index, sizeof reload_spill_index); COPY_HARD_REG_SET (reload_reg_used, save_reload_reg_used); COPY_HARD_REG_SET (reload_reg_used_at_all, save_reload_reg_used_at_all); COPY_HARD_REG_SET (reload_reg_used_in_op_addr, save_reload_reg_used_in_op_addr); COPY_HARD_REG_SET (reload_reg_used_in_op_addr_reload, save_reload_reg_used_in_op_addr_reload); COPY_HARD_REG_SET (reload_reg_used_in_insn, save_reload_reg_used_in_insn); COPY_HARD_REG_SET (reload_reg_used_in_other_addr, save_reload_reg_used_in_other_addr); for (i = 0; i < reload_n_operands; i++) { COPY_HARD_REG_SET (reload_reg_used_in_input[i], save_reload_reg_used_in_input[i]); COPY_HARD_REG_SET (reload_reg_used_in_output[i], save_reload_reg_used_in_output[i]); COPY_HARD_REG_SET (reload_reg_used_in_input_addr[i], save_reload_reg_used_in_input_addr[i]); COPY_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i], save_reload_reg_used_in_inpaddr_addr[i]); COPY_HARD_REG_SET (reload_reg_used_in_output_addr[i], save_reload_reg_used_in_output_addr[i]); COPY_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i], save_reload_reg_used_in_outaddr_addr[i]); } } /* If we thought we could inherit a reload, because it seemed that nothing else wanted the same reload register earlier in the insn, verify that assumption, now that all reloads have been assigned. */ for (j = 0; j < n_reloads; j++) { register int r = reload_order[j]; if (reload_inherited[r] && reload_reg_rtx[r] != 0 && ! (reload_reg_free_before_p (true_regnum (reload_reg_rtx[r]), reload_opnum[r], reload_when_needed[r]) || reload_reg_free_for_value_p (true_regnum (reload_reg_rtx[r]), reload_opnum[r], reload_when_needed[r], reload_in[r]))) reload_inherited[r] = 0; /* If we can inherit a RELOAD_FOR_INPUT, then we do not need its related RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads. ??? This could be extended to other reload types, but these are more tricky to handle: RELOAD_FOR_OTHER_ADDRESS reloads might have been merged, so we can't eliminate them without a check that *all* references are now unused due to inheritance. While RELOAD_FOR_INPADDR_ADDRESS and RELOAD_FOR_OUTADDR_ADDRESS are not merged, we can't be sure that we have eliminated the use of that particular reload if we have seen just one RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_OUTPUT_ADDRESS being inherited, since there might be multiple of the latter two reloads for a single operand. RELOAD_FOR_OPADDR_ADDR reloads for different operands are not merged, but might share the same register by courtesy of reload_reg_free_for_value_p. reload_reg_used_in_op_addr_reload does not differentiate by opnum, thus calling clear_reload_reg_in_use for one of these reloads would mark the register as free even though another RELOAD_FOR_OPADDR_ADDR reload might still use it. */ else if (reload_inherited[r] && reload_when_needed[r] == RELOAD_FOR_INPUT) { for (i = 0; i < n_reloads; i++) { if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS) && reload_opnum[i] == reload_opnum[r] && reload_in[i] && reload_reg_rtx[i]) { int regno = true_regnum (reload_reg_rtx[i]); reload_in[i] = 0; if (spill_reg_order[regno] >= 0) clear_reload_reg_in_use (regno, reload_opnum[i], reload_when_needed[i], reload_mode[i]); reload_reg_rtx[i] = 0; reload_spill_index[i] = -1; remove_replacements (i); } } } /* If we found a better place to reload from, validate it in the same fashion, if it is a reload reg. */ if (reload_override_in[r] && (GET_CODE (reload_override_in[r]) == REG || GET_CODE (reload_override_in[r]) == SUBREG)) { int regno = true_regnum (reload_override_in[r]); if (spill_reg_order[regno] >= 0 && ! reload_reg_free_before_p (regno, reload_opnum[r], reload_when_needed[r])) reload_override_in[r] = 0; } } /* Now that reload_override_in is known valid, actually override reload_in. */ for (j = 0; j < n_reloads; j++) if (reload_override_in[j]) reload_in[j] = reload_override_in[j]; /* If this reload won't be done because it has been cancelled or is optional and not inherited, clear reload_reg_rtx so other routines (such as subst_reloads) don't get confused. */ for (j = 0; j < n_reloads; j++) if (reload_reg_rtx[j] != 0 && ((reload_optional[j] && ! reload_inherited[j]) || (reload_in[j] == 0 && reload_out[j] == 0 && ! reload_secondary_p[j]))) { int regno = true_regnum (reload_reg_rtx[j]); if (spill_reg_order[regno] >= 0) clear_reload_reg_in_use (regno, reload_opnum[j], reload_when_needed[j], reload_mode[j]); reload_reg_rtx[j] = 0; } /* Record which pseudos and which spill regs have output reloads. */ for (j = 0; j < n_reloads; j++) { register int r = reload_order[j]; i = reload_spill_index[r]; /* I is nonneg if this reload uses a register. If reload_reg_rtx[r] is 0, this is an optional reload that we opted to ignore. */ if (reload_out[r] != 0 && GET_CODE (reload_out[r]) == REG && reload_reg_rtx[r] != 0) { register int nregno = REGNO (reload_out[r]); int nr = 1; if (nregno < FIRST_PSEUDO_REGISTER) nr = HARD_REGNO_NREGS (nregno, reload_mode[r]); while (--nr >= 0) reg_has_output_reload[nregno + nr] = 1; if (i >= 0) { nr = HARD_REGNO_NREGS (i, reload_mode[r]); while (--nr >= 0) SET_HARD_REG_BIT (reg_is_output_reload, i + nr); } if (reload_when_needed[r] != RELOAD_OTHER && reload_when_needed[r] != RELOAD_FOR_OUTPUT && reload_when_needed[r] != RELOAD_FOR_INSN) abort (); } } } /* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two reloads of the same item for fear that we might not have enough reload registers. However, normally they will get the same reload register and hence actually need not be loaded twice. Here we check for the most common case of this phenomenon: when we have a number of reloads for the same object, each of which were allocated the same reload_reg_rtx, that reload_reg_rtx is not used for any other reload, and is not modified in the insn itself. If we find such, merge all the reloads and set the resulting reload to RELOAD_OTHER. This will not increase the number of spill registers needed and will prevent redundant code. */ static void merge_assigned_reloads (insn) rtx insn; { int i, j; /* Scan all the reloads looking for ones that only load values and are not already RELOAD_OTHER and ones whose reload_reg_rtx are assigned and not modified by INSN. */ for (i = 0; i < n_reloads; i++) { int conflicting_input = 0; int max_input_address_opnum = -1; int min_conflicting_input_opnum = MAX_RECOG_OPERANDS; if (reload_in[i] == 0 || reload_when_needed[i] == RELOAD_OTHER || reload_out[i] != 0 || reload_reg_rtx[i] == 0 || reg_set_p (reload_reg_rtx[i], insn)) continue; /* Look at all other reloads. Ensure that the only use of this reload_reg_rtx is in a reload that just loads the same value as we do. Note that any secondary reloads must be of the identical class since the values, modes, and result registers are the same, so we need not do anything with any secondary reloads. */ for (j = 0; j < n_reloads; j++) { if (i == j || reload_reg_rtx[j] == 0 || ! reg_overlap_mentioned_p (reload_reg_rtx[j], reload_reg_rtx[i])) continue; if (reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS && reload_opnum[j] > max_input_address_opnum) max_input_address_opnum = reload_opnum[j]; /* If the reload regs aren't exactly the same (e.g, different modes) or if the values are different, we can't merge this reload. But if it is an input reload, we might still merge RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */ if (! rtx_equal_p (reload_reg_rtx[i], reload_reg_rtx[j]) || reload_out[j] != 0 || reload_in[j] == 0 || ! rtx_equal_p (reload_in[i], reload_in[j])) { if (reload_when_needed[j] != RELOAD_FOR_INPUT || ((reload_when_needed[i] != RELOAD_FOR_INPUT_ADDRESS || reload_opnum[i] > reload_opnum[j]) && reload_when_needed[i] != RELOAD_FOR_OTHER_ADDRESS)) break; conflicting_input = 1; if (min_conflicting_input_opnum > reload_opnum[j]) min_conflicting_input_opnum = reload_opnum[j]; } } /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if we, in fact, found any matching reloads. */ if (j == n_reloads && max_input_address_opnum <= min_conflicting_input_opnum) { for (j = 0; j < n_reloads; j++) if (i != j && reload_reg_rtx[j] != 0 && rtx_equal_p (reload_reg_rtx[i], reload_reg_rtx[j]) && (! conflicting_input || reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS || reload_when_needed[j] == RELOAD_FOR_OTHER_ADDRESS)) { reload_when_needed[i] = RELOAD_OTHER; reload_in[j] = 0; reload_spill_index[j] = -1; transfer_replacements (i, j); } /* If this is now RELOAD_OTHER, look for any reloads that load parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS if they were for inputs, RELOAD_OTHER for outputs. Note that this test is equivalent to looking for reloads for this operand number. */ if (reload_when_needed[i] == RELOAD_OTHER) for (j = 0; j < n_reloads; j++) if (reload_in[j] != 0 && reload_when_needed[i] != RELOAD_OTHER && reg_overlap_mentioned_for_reload_p (reload_in[j], reload_in[i])) reload_when_needed[j] = ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS) ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER); } } } /* Output insns to reload values in and out of the chosen reload regs. */ static void emit_reload_insns (insn) rtx insn; { register int j; rtx input_reload_insns[MAX_RECOG_OPERANDS]; rtx other_input_address_reload_insns = 0; rtx other_input_reload_insns = 0; rtx input_address_reload_insns[MAX_RECOG_OPERANDS]; rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS]; rtx output_reload_insns[MAX_RECOG_OPERANDS]; rtx output_address_reload_insns[MAX_RECOG_OPERANDS]; rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS]; rtx operand_reload_insns = 0; rtx other_operand_reload_insns = 0; rtx other_output_reload_insns[MAX_RECOG_OPERANDS]; rtx following_insn = NEXT_INSN (insn); rtx before_insn = insn; int special; /* Values to be put in spill_reg_store are put here first. */ rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER]; HARD_REG_SET reg_reloaded_died; CLEAR_HARD_REG_SET (reg_reloaded_died); for (j = 0; j < reload_n_operands; j++) input_reload_insns[j] = input_address_reload_insns[j] = inpaddr_address_reload_insns[j] = output_reload_insns[j] = output_address_reload_insns[j] = outaddr_address_reload_insns[j] = other_output_reload_insns[j] = 0; /* Now output the instructions to copy the data into and out of the reload registers. Do these in the order that the reloads were reported, since reloads of base and index registers precede reloads of operands and the operands may need the base and index registers reloaded. */ for (j = 0; j < n_reloads; j++) { register rtx old; rtx oldequiv_reg = 0; rtx this_reload_insn = 0; int expect_occurrences = 1; if (reload_spill_index[j] >= 0) new_spill_reg_store[reload_spill_index[j]] = 0; old = reload_in[j]; if (old != 0 && ! reload_inherited[j] && ! rtx_equal_p (reload_reg_rtx[j], old) && reload_reg_rtx[j] != 0) { register rtx reloadreg = reload_reg_rtx[j]; rtx oldequiv = 0; enum machine_mode mode; rtx *where; /* Determine the mode to reload in. This is very tricky because we have three to choose from. There is the mode the insn operand wants (reload_inmode[J]). There is the mode of the reload register RELOADREG. There is the intrinsic mode of the operand, which we could find by stripping some SUBREGs. It turns out that RELOADREG's mode is irrelevant: we can change that arbitrarily. Consider (SUBREG:SI foo:QI) as an operand that must be SImode; then the reload reg may not support QImode moves, so use SImode. If foo is in memory due to spilling a pseudo reg, this is safe, because the QImode value is in the least significant part of a slot big enough for a SImode. If foo is some other sort of memory reference, then it is impossible to reload this case, so previous passes had better make sure this never happens. Then consider a one-word union which has SImode and one of its members is a float, being fetched as (SUBREG:SF union:SI). We must fetch that as SFmode because we could be loading into a float-only register. In this case OLD's mode is correct. Consider an immediate integer: it has VOIDmode. Here we need to get a mode from something else. In some cases, there is a fourth mode, the operand's containing mode. If the insn specifies a containing mode for this operand, it overrides all others. I am not sure whether the algorithm here is always right, but it does the right things in those cases. */ mode = GET_MODE (old); if (mode == VOIDmode) mode = reload_inmode[j]; #ifdef SECONDARY_INPUT_RELOAD_CLASS /* If we need a secondary register for this operation, see if the value is already in a register in that class. Don't do this if the secondary register will be used as a scratch register. */ if (reload_secondary_in_reload[j] >= 0 && reload_secondary_in_icode[j] == CODE_FOR_nothing && optimize) oldequiv = find_equiv_reg (old, insn, reload_reg_class[reload_secondary_in_reload[j]], -1, NULL_PTR, 0, mode); #endif /* If reloading from memory, see if there is a register that already holds the same value. If so, reload from there. We can pass 0 as the reload_reg_p argument because any other reload has either already been emitted, in which case find_equiv_reg will see the reload-insn, or has yet to be emitted, in which case it doesn't matter because we will use this equiv reg right away. */ if (oldequiv == 0 && optimize && (GET_CODE (old) == MEM || (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (old)] < 0))) oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL_PTR, 0, mode); if (oldequiv) { int regno = true_regnum (oldequiv); /* If OLDEQUIV is a spill register, don't use it for this if any other reload needs it at an earlier stage of this insn or at this stage. */ if (spill_reg_order[regno] >= 0 && (! reload_reg_free_p (regno, reload_opnum[j], reload_when_needed[j]) || ! reload_reg_free_before_p (regno, reload_opnum[j], reload_when_needed[j]))) oldequiv = 0; /* If OLDEQUIV is not a spill register, don't use it if any other reload wants it. */ if (spill_reg_order[regno] < 0) { int k; for (k = 0; k < n_reloads; k++) if (reload_reg_rtx[k] != 0 && k != j && reg_overlap_mentioned_for_reload_p (reload_reg_rtx[k], oldequiv)) { oldequiv = 0; break; } } /* If it is no cheaper to copy from OLDEQUIV into the reload register than it would be to move from memory, don't use it. Likewise, if we need a secondary register or memory. */ if (oldequiv != 0 && ((REGNO_REG_CLASS (regno) != reload_reg_class[j] && (REGISTER_MOVE_COST (REGNO_REG_CLASS (regno), reload_reg_class[j]) >= MEMORY_MOVE_COST (mode, REGNO_REG_CLASS (regno), 1))) #ifdef SECONDARY_INPUT_RELOAD_CLASS || (SECONDARY_INPUT_RELOAD_CLASS (reload_reg_class[j], mode, oldequiv) != NO_REGS) #endif #ifdef SECONDARY_MEMORY_NEEDED || SECONDARY_MEMORY_NEEDED (reload_reg_class[j], REGNO_REG_CLASS (regno), mode) #endif )) oldequiv = 0; } if (oldequiv == 0) oldequiv = old; else if (GET_CODE (oldequiv) == REG) oldequiv_reg = oldequiv; else if (GET_CODE (oldequiv) == SUBREG) oldequiv_reg = SUBREG_REG (oldequiv); /* If we are reloading from a register that was recently stored in with an output-reload, see if we can prove there was actually no need to store the old value in it. */ if (optimize && GET_CODE (oldequiv) == REG && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER && spill_reg_store[REGNO (oldequiv)] && GET_CODE (old) == REG && dead_or_set_p (insn, old) /* This is unsafe if operand occurs more than once in current insn. Perhaps some occurrences weren't reloaded. */ && count_occurrences (PATTERN (insn), old) == 1) delete_output_reload (insn, j, spill_reg_store[REGNO (oldequiv)]); /* Encapsulate both RELOADREG and OLDEQUIV into that mode, then load RELOADREG from OLDEQUIV. Note that we cannot use gen_lowpart_common since it can do the wrong thing when RELOADREG has a multi-word mode. Note that RELOADREG must always be a REG here. */ if (GET_MODE (reloadreg) != mode) reloadreg = gen_rtx_REG (mode, REGNO (reloadreg)); while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode) oldequiv = SUBREG_REG (oldequiv); if (GET_MODE (oldequiv) != VOIDmode && mode != GET_MODE (oldequiv)) oldequiv = gen_rtx_SUBREG (mode, oldequiv, 0); /* Switch to the right place to emit the reload insns. */ switch (reload_when_needed[j]) { case RELOAD_OTHER: where = &other_input_reload_insns; break; case RELOAD_FOR_INPUT: where = &input_reload_insns[reload_opnum[j]]; break; case RELOAD_FOR_INPUT_ADDRESS: where = &input_address_reload_insns[reload_opnum[j]]; break; case RELOAD_FOR_INPADDR_ADDRESS: where = &inpaddr_address_reload_insns[reload_opnum[j]]; break; case RELOAD_FOR_OUTPUT_ADDRESS: where = &output_address_reload_insns[reload_opnum[j]]; break; case RELOAD_FOR_OUTADDR_ADDRESS: where = &outaddr_address_reload_insns[reload_opnum[j]]; break; case RELOAD_FOR_OPERAND_ADDRESS: where = &operand_reload_insns; break; case RELOAD_FOR_OPADDR_ADDR: where = &other_operand_reload_insns; break; case RELOAD_FOR_OTHER_ADDRESS: where = &other_input_address_reload_insns; break; default: abort (); } push_to_sequence (*where); special = 0; /* Auto-increment addresses must be reloaded in a special way. */ if (GET_CODE (oldequiv) == POST_INC || GET_CODE (oldequiv) == POST_DEC || GET_CODE (oldequiv) == PRE_INC || GET_CODE (oldequiv) == PRE_DEC) { /* We are not going to bother supporting the case where a incremented register can't be copied directly from OLDEQUIV since this seems highly unlikely. */ if (reload_secondary_in_reload[j] >= 0) abort (); /* Prevent normal processing of this reload. */ special = 1; /* Output a special code sequence for this case. */ inc_for_reload (reloadreg, oldequiv, reload_inc[j]); } /* If we are reloading a pseudo-register that was set by the previous insn, see if we can get rid of that pseudo-register entirely by redirecting the previous insn into our reload register. */ else if (optimize && GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER && dead_or_set_p (insn, old) /* This is unsafe if some other reload uses the same reg first. */ && reload_reg_free_before_p (REGNO (reloadreg), reload_opnum[j], reload_when_needed[j])) { rtx temp = PREV_INSN (insn); while (temp && GET_CODE (temp) == NOTE) temp = PREV_INSN (temp); if (temp && GET_CODE (temp) == INSN && GET_CODE (PATTERN (temp)) == SET && SET_DEST (PATTERN (temp)) == old /* Make sure we can access insn_operand_constraint. */ && asm_noperands (PATTERN (temp)) < 0 /* This is unsafe if prev insn rejects our reload reg. */ && constraint_accepts_reg_p (insn_operand_constraint[recog_memoized (temp)][0], reloadreg) /* This is unsafe if operand occurs more than once in current insn. Perhaps some occurrences aren't reloaded. */ && count_occurrences (PATTERN (insn), old) == 1 /* Don't risk splitting a matching pair of operands. */ && ! reg_mentioned_p (old, SET_SRC (PATTERN (temp)))) { /* Store into the reload register instead of the pseudo. */ SET_DEST (PATTERN (temp)) = reloadreg; /* If these are the only uses of the pseudo reg, pretend for GDB it lives in the reload reg we used. */ if (REG_N_DEATHS (REGNO (old)) == 1 && REG_N_SETS (REGNO (old)) == 1) { reg_renumber[REGNO (old)] = REGNO (reload_reg_rtx[j]); alter_reg (REGNO (old), -1); } special = 1; } } /* We can't do that, so output an insn to load RELOADREG. */ if (! special) { #ifdef SECONDARY_INPUT_RELOAD_CLASS rtx second_reload_reg = 0; enum insn_code icode; /* If we have a secondary reload, pick up the secondary register and icode, if any. If OLDEQUIV and OLD are different or if this is an in-out reload, recompute whether or not we still need a secondary register and what the icode should be. If we still need a secondary register and the class or icode is different, go back to reloading from OLD if using OLDEQUIV means that we got the wrong type of register. We cannot have different class or icode due to an in-out reload because we don't make such reloads when both the input and output need secondary reload registers. */ if (reload_secondary_in_reload[j] >= 0) { int secondary_reload = reload_secondary_in_reload[j]; rtx real_oldequiv = oldequiv; rtx real_old = old; /* If OLDEQUIV is a pseudo with a MEM, get the real MEM and similarly for OLD. See comments in get_secondary_reload in reload.c. */ if (GET_CODE (oldequiv) == REG && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER && reg_equiv_mem[REGNO (oldequiv)] != 0) real_oldequiv = reg_equiv_mem[REGNO (oldequiv)]; if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER && reg_equiv_mem[REGNO (old)] != 0) real_old = reg_equiv_mem[REGNO (old)]; second_reload_reg = reload_reg_rtx[secondary_reload]; icode = reload_secondary_in_icode[j]; if ((old != oldequiv && ! rtx_equal_p (old, oldequiv)) || (reload_in[j] != 0 && reload_out[j] != 0)) { enum reg_class new_class = SECONDARY_INPUT_RELOAD_CLASS (reload_reg_class[j], mode, real_oldequiv); if (new_class == NO_REGS) second_reload_reg = 0; else { enum insn_code new_icode; enum machine_mode new_mode; if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], REGNO (second_reload_reg))) oldequiv = old, real_oldequiv = real_old; else { new_icode = reload_in_optab[(int) mode]; if (new_icode != CODE_FOR_nothing && ((insn_operand_predicate[(int) new_icode][0] && ! ((*insn_operand_predicate[(int) new_icode][0]) (reloadreg, mode))) || (insn_operand_predicate[(int) new_icode][1] && ! ((*insn_operand_predicate[(int) new_icode][1]) (real_oldequiv, mode))))) new_icode = CODE_FOR_nothing; if (new_icode == CODE_FOR_nothing) new_mode = mode; else new_mode = insn_operand_mode[(int) new_icode][2]; if (GET_MODE (second_reload_reg) != new_mode) { if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg), new_mode)) oldequiv = old, real_oldequiv = real_old; else second_reload_reg = gen_rtx_REG (new_mode, REGNO (second_reload_reg)); } } } } /* If we still need a secondary reload register, check to see if it is being used as a scratch or intermediate register and generate code appropriately. If we need a scratch register, use REAL_OLDEQUIV since the form of the insn may depend on the actual address if it is a MEM. */ if (second_reload_reg) { if (icode != CODE_FOR_nothing) { emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv, second_reload_reg)); special = 1; } else { /* See if we need a scratch register to load the intermediate register (a tertiary reload). */ enum insn_code tertiary_icode = reload_secondary_in_icode[secondary_reload]; if (tertiary_icode != CODE_FOR_nothing) { rtx third_reload_reg = reload_reg_rtx[reload_secondary_in_reload[secondary_reload]]; emit_insn ((GEN_FCN (tertiary_icode) (second_reload_reg, real_oldequiv, third_reload_reg))); } else gen_reload (second_reload_reg, oldequiv, reload_opnum[j], reload_when_needed[j]); oldequiv = second_reload_reg; } } } #endif if (! special && ! rtx_equal_p (reloadreg, oldequiv)) gen_reload (reloadreg, oldequiv, reload_opnum[j], reload_when_needed[j]); #if defined(SECONDARY_INPUT_RELOAD_CLASS) && defined(PRESERVE_DEATH_INFO_REGNO_P) /* We may have to make a REG_DEAD note for the secondary reload register in the insns we just made. Find the last insn that mentioned the register. */ if (! special && second_reload_reg && PRESERVE_DEATH_INFO_REGNO_P (REGNO (second_reload_reg))) { rtx prev; for (prev = get_last_insn (); prev; prev = PREV_INSN (prev)) if (GET_RTX_CLASS (GET_CODE (prev) == 'i') && reg_overlap_mentioned_for_reload_p (second_reload_reg, PATTERN (prev))) { REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_DEAD, second_reload_reg, REG_NOTES (prev)); break; } } #endif } this_reload_insn = get_last_insn (); /* End this sequence. */ *where = get_insns (); end_sequence (); } /* When inheriting a wider reload, we have a MEM in reload_in[j], e.g. inheriting a SImode output reload for (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */ if (optimize && reload_inherited[j] && reload_in[j] && GET_CODE (reload_in[j]) == MEM && reload_spill_index[j] >= 0 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j])) { expect_occurrences = count_occurrences (PATTERN (insn), reload_in[j]) == 1 ? 0 : -1; reload_in[j] = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]]; } /* Add a note saying the input reload reg dies in this insn, if anyone cares. */ #ifdef PRESERVE_DEATH_INFO_REGNO_P if (old != 0 && reload_reg_rtx[j] != old && reload_reg_rtx[j] != 0 && reload_out[j] == 0 && ! reload_inherited[j] && PRESERVE_DEATH_INFO_REGNO_P (REGNO (reload_reg_rtx[j]))) { register rtx reloadreg = reload_reg_rtx[j]; #if 0 /* We can't abort here because we need to support this for sched.c. It's not terrible to miss a REG_DEAD note, but we should try to figure out how to do this correctly. */ /* The code below is incorrect for address-only reloads. */ if (reload_when_needed[j] != RELOAD_OTHER && reload_when_needed[j] != RELOAD_FOR_INPUT) abort (); #endif /* Add a death note to this insn, for an input reload. */ if ((reload_when_needed[j] == RELOAD_OTHER || reload_when_needed[j] == RELOAD_FOR_INPUT) && ! dead_or_set_p (insn, reloadreg)) REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, reloadreg, REG_NOTES (insn)); } /* When we inherit a reload, the last marked death of the reload reg may no longer really be a death. */ if (reload_reg_rtx[j] != 0 && PRESERVE_DEATH_INFO_REGNO_P (REGNO (reload_reg_rtx[j])) && reload_inherited[j]) { /* Handle inheriting an output reload. Remove the death note from the output reload insn. */ if (reload_spill_index[j] >= 0 && GET_CODE (reload_in[j]) == REG && spill_reg_store[reload_spill_index[j]] != 0 && find_regno_note (spill_reg_store[reload_spill_index[j]], REG_DEAD, REGNO (reload_reg_rtx[j]))) remove_death (REGNO (reload_reg_rtx[j]), spill_reg_store[reload_spill_index[j]]); /* Likewise for input reloads that were inherited. */ else if (reload_spill_index[j] >= 0 && GET_CODE (reload_in[j]) == REG && spill_reg_store[reload_spill_index[j]] == 0 && reload_inheritance_insn[j] != 0 && find_regno_note (reload_inheritance_insn[j], REG_DEAD, REGNO (reload_reg_rtx[j]))) remove_death (REGNO (reload_reg_rtx[j]), reload_inheritance_insn[j]); else { rtx prev; /* We got this register from find_equiv_reg. Search back for its last death note and get rid of it. But don't search back too far. Don't go past a place where this reg is set, since a death note before that remains valid. */ for (prev = PREV_INSN (insn); prev && GET_CODE (prev) != CODE_LABEL; prev = PREV_INSN (prev)) if (GET_RTX_CLASS (GET_CODE (prev)) == 'i' && dead_or_set_p (prev, reload_reg_rtx[j])) { if (find_regno_note (prev, REG_DEAD, REGNO (reload_reg_rtx[j]))) remove_death (REGNO (reload_reg_rtx[j]), prev); break; } } } /* We might have used find_equiv_reg above to choose an alternate place from which to reload. If so, and it died, we need to remove that death and move it to one of the insns we just made. */ if (oldequiv_reg != 0 && PRESERVE_DEATH_INFO_REGNO_P (true_regnum (oldequiv_reg))) { rtx prev, prev1; for (prev = PREV_INSN (insn); prev && GET_CODE (prev) != CODE_LABEL; prev = PREV_INSN (prev)) if (GET_RTX_CLASS (GET_CODE (prev)) == 'i' && dead_or_set_p (prev, oldequiv_reg)) { if (find_regno_note (prev, REG_DEAD, REGNO (oldequiv_reg))) { for (prev1 = this_reload_insn; prev1; prev1 = PREV_INSN (prev1)) if (GET_RTX_CLASS (GET_CODE (prev1) == 'i') && reg_overlap_mentioned_for_reload_p (oldequiv_reg, PATTERN (prev1))) { REG_NOTES (prev1) = gen_rtx_EXPR_LIST (REG_DEAD, oldequiv_reg, REG_NOTES (prev1)); break; } remove_death (REGNO (oldequiv_reg), prev); } break; } } #endif /* If we are reloading a register that was recently stored in with an output-reload, see if we can prove there was actually no need to store the old value in it. */ if (optimize && reload_inherited[j] && reload_spill_index[j] >= 0 && reload_in[j] != 0 && GET_CODE (reload_in[j]) == REG #if 0 /* There doesn't seem to be any reason to restrict this to pseudos and doing so loses in the case where we are copying from a register of the wrong class. */ && REGNO (reload_in[j]) >= FIRST_PSEUDO_REGISTER #endif && spill_reg_store[reload_spill_index[j]] != 0 /* This is unsafe if some other reload uses the same reg first. */ && reload_reg_free_before_p (reload_spill_index[j], reload_opnum[j], reload_when_needed[j]) && dead_or_set_p (insn, reload_in[j]) /* This is unsafe if operand occurs more than once in current insn. Perhaps some occurrences weren't reloaded. */ && (count_occurrences (PATTERN (insn), reload_in[j]) == expect_occurrences)) delete_output_reload (insn, j, spill_reg_store[reload_spill_index[j]]); /* Input-reloading is done. Now do output-reloading, storing the value from the reload-register after the main insn if reload_out[j] is nonzero. ??? At some point we need to support handling output reloads of JUMP_INSNs or insns that set cc0. */ old = reload_out[j]; if (old != 0 && reload_reg_rtx[j] != old && reload_reg_rtx[j] != 0) { register rtx reloadreg = reload_reg_rtx[j]; #ifdef SECONDARY_OUTPUT_RELOAD_CLASS register rtx second_reloadreg = 0; #endif rtx note, p; enum machine_mode mode; int special = 0; /* An output operand that dies right away does need a reload, but need not be copied from it. Show the new location in the REG_UNUSED note. */ if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH) && (note = find_reg_note (insn, REG_UNUSED, old)) != 0) { XEXP (note, 0) = reload_reg_rtx[j]; continue; } /* Likewise for a SUBREG of an operand that dies. */ else if (GET_CODE (old) == SUBREG && GET_CODE (SUBREG_REG (old)) == REG && 0 != (note = find_reg_note (insn, REG_UNUSED, SUBREG_REG (old)))) { XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reload_reg_rtx[j]); continue; } else if (GET_CODE (old) == SCRATCH) /* If we aren't optimizing, there won't be a REG_UNUSED note, but we don't want to make an output reload. */ continue; #if 0 /* Strip off of OLD any size-increasing SUBREGs such as (SUBREG:SI foo:QI 0). */ while (GET_CODE (old) == SUBREG && SUBREG_WORD (old) == 0 && (GET_MODE_SIZE (GET_MODE (old)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (old))))) old = SUBREG_REG (old); #endif /* If is a JUMP_INSN, we can't support output reloads yet. */ if (GET_CODE (insn) == JUMP_INSN) abort (); if (reload_when_needed[j] == RELOAD_OTHER) start_sequence (); else push_to_sequence (output_reload_insns[reload_opnum[j]]); /* Determine the mode to reload in. See comments above (for input reloading). */ mode = GET_MODE (old); if (mode == VOIDmode) { /* VOIDmode should never happen for an output. */ if (asm_noperands (PATTERN (insn)) < 0) /* It's the compiler's fault. */ fatal_insn ("VOIDmode on an output", insn); error_for_asm (insn, "output operand is constant in `asm'"); /* Prevent crash--use something we know is valid. */ mode = word_mode; old = gen_rtx_REG (mode, REGNO (reloadreg)); } if (GET_MODE (reloadreg) != mode) reloadreg = gen_rtx_REG (mode, REGNO (reloadreg)); #ifdef SECONDARY_OUTPUT_RELOAD_CLASS /* If we need two reload regs, set RELOADREG to the intermediate one, since it will be stored into OLD. We might need a secondary register only for an input reload, so check again here. */ if (reload_secondary_out_reload[j] >= 0) { rtx real_old = old; if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER && reg_equiv_mem[REGNO (old)] != 0) real_old = reg_equiv_mem[REGNO (old)]; if((SECONDARY_OUTPUT_RELOAD_CLASS (reload_reg_class[j], mode, real_old) != NO_REGS)) { second_reloadreg = reloadreg; reloadreg = reload_reg_rtx[reload_secondary_out_reload[j]]; /* See if RELOADREG is to be used as a scratch register or as an intermediate register. */ if (reload_secondary_out_icode[j] != CODE_FOR_nothing) { emit_insn ((GEN_FCN (reload_secondary_out_icode[j]) (real_old, second_reloadreg, reloadreg))); special = 1; } else { /* See if we need both a scratch and intermediate reload register. */ int secondary_reload = reload_secondary_out_reload[j]; enum insn_code tertiary_icode = reload_secondary_out_icode[secondary_reload]; if (GET_MODE (reloadreg) != mode) reloadreg = gen_rtx_REG (mode, REGNO (reloadreg)); if (tertiary_icode != CODE_FOR_nothing) { rtx third_reloadreg = reload_reg_rtx[reload_secondary_out_reload[secondary_reload]]; rtx tem; /* Copy primary reload reg to secondary reload reg. (Note that these have been swapped above, then secondary reload reg to OLD using our insn. */ /* If REAL_OLD is a paradoxical SUBREG, remove it and try to put the opposite SUBREG on RELOADREG. */ if (GET_CODE (real_old) == SUBREG && (GET_MODE_SIZE (GET_MODE (real_old)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old)))) && 0 != (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (real_old)), reloadreg))) real_old = SUBREG_REG (real_old), reloadreg = tem; gen_reload (reloadreg, second_reloadreg, reload_opnum[j], reload_when_needed[j]); emit_insn ((GEN_FCN (tertiary_icode) (real_old, reloadreg, third_reloadreg))); special = 1; } else /* Copy between the reload regs here and then to OUT later. */ gen_reload (reloadreg, second_reloadreg, reload_opnum[j], reload_when_needed[j]); } } } #endif /* Output the last reload insn. */ if (! special) { rtx set; /* Don't output the last reload if OLD is not the dest of INSN and is in the src and is clobbered by INSN. */ if (! flag_expensive_optimizations || GET_CODE (old) != REG || !(set = single_set (insn)) || rtx_equal_p (old, SET_DEST (set)) || !reg_mentioned_p (old, SET_SRC (set)) || !regno_clobbered_p (REGNO (old), insn)) gen_reload (old, reloadreg, reload_opnum[j], reload_when_needed[j]); } #ifdef PRESERVE_DEATH_INFO_REGNO_P /* If final will look at death notes for this reg, put one on the last output-reload insn to use it. Similarly for any secondary register. */ if (PRESERVE_DEATH_INFO_REGNO_P (REGNO (reloadreg))) for (p = get_last_insn (); p; p = PREV_INSN (p)) if (GET_RTX_CLASS (GET_CODE (p)) == 'i' && reg_overlap_mentioned_for_reload_p (reloadreg, PATTERN (p))) REG_NOTES (p) = gen_rtx_EXPR_LIST (REG_DEAD, reloadreg, REG_NOTES (p)); #ifdef SECONDARY_OUTPUT_RELOAD_CLASS if (! special && second_reloadreg && PRESERVE_DEATH_INFO_REGNO_P (REGNO (second_reloadreg))) for (p = get_last_insn (); p; p = PREV_INSN (p)) if (GET_RTX_CLASS (GET_CODE (p)) == 'i' && reg_overlap_mentioned_for_reload_p (second_reloadreg, PATTERN (p))) REG_NOTES (p) = gen_rtx_EXPR_LIST (REG_DEAD, second_reloadreg, REG_NOTES (p)); #endif #endif /* Look at all insns we emitted, just to be safe. */ for (p = get_insns (); p; p = NEXT_INSN (p)) if (GET_RTX_CLASS (GET_CODE (p)) == 'i') { rtx pat = PATTERN (p); /* If this output reload doesn't come from a spill reg, clear any memory of reloaded copies of the pseudo reg. If this output reload comes from a spill reg, reg_has_output_reload will make this do nothing. */ note_stores (pat, forget_old_reloads_1); if (reg_mentioned_p (reload_reg_rtx[j], pat)) { if (reload_spill_index[j] < 0 && GET_CODE (pat) == SET && SET_SRC (pat) == reload_reg_rtx[j]) { int src = REGNO (SET_SRC (pat)); reload_spill_index[j] = src; SET_HARD_REG_BIT (reg_is_output_reload, src); if (find_regno_note (insn, REG_DEAD, src)) SET_HARD_REG_BIT (reg_reloaded_died, src); } if (reload_spill_index[j] >= 0) new_spill_reg_store[reload_spill_index[j]] = p; } } if (reload_when_needed[j] == RELOAD_OTHER) { emit_insns (other_output_reload_insns[reload_opnum[j]]); other_output_reload_insns[reload_opnum[j]] = get_insns (); } else output_reload_insns[reload_opnum[j]] = get_insns (); end_sequence (); } } /* Now write all the insns we made for reloads in the order expected by the allocation functions. Prior to the insn being reloaded, we write the following reloads: RELOAD_FOR_OTHER_ADDRESS reloads for input addresses. RELOAD_OTHER reloads. For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the RELOAD_FOR_INPUT reload for the operand. RELOAD_FOR_OPADDR_ADDRS reloads. RELOAD_FOR_OPERAND_ADDRESS reloads. After the insn being reloaded, we write the following: For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output reloads for the operand. The RELOAD_OTHER output reloads are output in descending order by reload number. */ emit_insns_before (other_input_address_reload_insns, before_insn); emit_insns_before (other_input_reload_insns, before_insn); for (j = 0; j < reload_n_operands; j++) { emit_insns_before (inpaddr_address_reload_insns[j], before_insn); emit_insns_before (input_address_reload_insns[j], before_insn); emit_insns_before (input_reload_insns[j], before_insn); } emit_insns_before (other_operand_reload_insns, before_insn); emit_insns_before (operand_reload_insns, before_insn); for (j = 0; j < reload_n_operands; j++) { emit_insns_before (outaddr_address_reload_insns[j], following_insn); emit_insns_before (output_address_reload_insns[j], following_insn); emit_insns_before (output_reload_insns[j], following_insn); emit_insns_before (other_output_reload_insns[j], following_insn); } /* Move death notes from INSN to output-operand-address and output reload insns. */ #ifdef PRESERVE_DEATH_INFO_REGNO_P { rtx insn1; /* Loop over those insns, last ones first. */ for (insn1 = PREV_INSN (following_insn); insn1 != insn; insn1 = PREV_INSN (insn1)) if (GET_CODE (insn1) == INSN && GET_CODE (PATTERN (insn1)) == SET) { rtx source = SET_SRC (PATTERN (insn1)); rtx dest = SET_DEST (PATTERN (insn1)); /* The note we will examine next. */ rtx reg_notes = REG_NOTES (insn); /* The place that pointed to this note. */ rtx *prev_reg_note = ®_NOTES (insn); /* If the note is for something used in the source of this reload insn, or in the output address, move the note. */ while (reg_notes) { rtx next_reg_notes = XEXP (reg_notes, 1); if (REG_NOTE_KIND (reg_notes) == REG_DEAD && GET_CODE (XEXP (reg_notes, 0)) == REG && ((GET_CODE (dest) != REG && reg_overlap_mentioned_for_reload_p (XEXP (reg_notes, 0), dest)) || reg_overlap_mentioned_for_reload_p (XEXP (reg_notes, 0), source))) { *prev_reg_note = next_reg_notes; XEXP (reg_notes, 1) = REG_NOTES (insn1); REG_NOTES (insn1) = reg_notes; } else prev_reg_note = &XEXP (reg_notes, 1); reg_notes = next_reg_notes; } } } #endif /* For all the spill regs newly reloaded in this instruction, record what they were reloaded from, so subsequent instructions can inherit the reloads. Update spill_reg_store for the reloads of this insn. Copy the elements that were updated in the loop above. */ for (j = 0; j < n_reloads; j++) { register int r = reload_order[j]; register int i = reload_spill_index[r]; /* I is nonneg if this reload used a register. If reload_reg_rtx[r] is 0, this is an optional reload that we opted to ignore. */ if (i >= 0 && reload_reg_rtx[r] != 0) { int nr = HARD_REGNO_NREGS (i, GET_MODE (reload_reg_rtx[r])); int k; int part_reaches_end = 0; int all_reaches_end = 1; /* For a multi register reload, we need to check if all or part of the value lives to the end. */ for (k = 0; k < nr; k++) { if (reload_reg_reaches_end_p (i + k, reload_opnum[r], reload_when_needed[r])) part_reaches_end = 1; else all_reaches_end = 0; } /* Ignore reloads that don't reach the end of the insn in entirety. */ if (all_reaches_end) { /* First, clear out memory of what used to be in this spill reg. If consecutive registers are used, clear them all. */ for (k = 0; k < nr; k++) CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k); /* Maybe the spill reg contains a copy of reload_out. */ if (reload_out[r] != 0 && GET_CODE (reload_out[r]) == REG) { register int nregno = REGNO (reload_out[r]); int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1 : HARD_REGNO_NREGS (nregno, GET_MODE (reload_reg_rtx[r]))); spill_reg_store[i] = new_spill_reg_store[i]; reg_last_reload_reg[nregno] = reload_reg_rtx[r]; /* If NREGNO is a hard register, it may occupy more than one register. If it does, say what is in the rest of the registers assuming that both registers agree on how many words the object takes. If not, invalidate the subsequent registers. */ if (nregno < FIRST_PSEUDO_REGISTER) for (k = 1; k < nnr; k++) reg_last_reload_reg[nregno + k] = (nr == nnr ? gen_rtx_REG (reg_raw_mode[REGNO (reload_reg_rtx[r]) + k], REGNO (reload_reg_rtx[r]) + k) : 0); /* Now do the inverse operation. */ for (k = 0; k < nr; k++) { CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k); reg_reloaded_contents[i + k] = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr ? nregno : nregno + k); reg_reloaded_insn[i + k] = insn; SET_HARD_REG_BIT (reg_reloaded_valid, i + k); } } /* Maybe the spill reg contains a copy of reload_in. Only do something if there will not be an output reload for the register being reloaded. */ else if (reload_out[r] == 0 && reload_in[r] != 0 && spill_reg_order[i] >= 0 && ((GET_CODE (reload_in[r]) == REG && ! reg_has_output_reload[REGNO (reload_in[r])]) || (GET_CODE (reload_in_reg[r]) == REG && ! reg_has_output_reload[REGNO (reload_in_reg[r])]))) { register int nregno; int nnr; if (GET_CODE (reload_in[r]) == REG) nregno = REGNO (reload_in[r]); else nregno = REGNO (reload_in_reg[r]); nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1 : HARD_REGNO_NREGS (nregno, GET_MODE (reload_reg_rtx[r]))); reg_last_reload_reg[nregno] = reload_reg_rtx[r]; if (nregno < FIRST_PSEUDO_REGISTER) for (k = 1; k < nnr; k++) reg_last_reload_reg[nregno + k] = (nr == nnr ? gen_rtx_REG (reg_raw_mode[REGNO (reload_reg_rtx[r]) + k], REGNO (reload_reg_rtx[r]) + k) : 0); /* Unless we inherited this reload, show we haven't recently done a store. */ if (! reload_inherited[r]) spill_reg_store[i] = 0; for (k = 0; k < nr; k++) { CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k); reg_reloaded_contents[i + k] = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr ? nregno : nregno + k); reg_reloaded_insn[i + k] = insn; SET_HARD_REG_BIT (reg_reloaded_valid, i + k); } } } /* However, if part of the reload reaches the end, then we must invalidate the old info for the part that survives to the end. */ else if (part_reaches_end) { for (k = 0; k < nr; k++) if (reload_reg_reaches_end_p (i + k, reload_opnum[r], reload_when_needed[r])) CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k); } } /* The following if-statement was #if 0'd in 1.34 (or before...). It's reenabled in 1.35 because supposedly nothing else deals with this problem. */ /* If a register gets output-reloaded from a non-spill register, that invalidates any previous reloaded copy of it. But forget_old_reloads_1 won't get to see it, because it thinks only about the original insn. So invalidate it here. */ if (i < 0 && reload_out[r] != 0 && GET_CODE (reload_out[r]) == REG) { register int nregno = REGNO (reload_out[r]); if (nregno >= FIRST_PSEUDO_REGISTER) reg_last_reload_reg[nregno] = 0; else { int num_regs = HARD_REGNO_NREGS (nregno,GET_MODE (reload_out[r])); while (num_regs-- > 0) reg_last_reload_reg[nregno + num_regs] = 0; } } } IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died); } /* Emit code to perform a reload from IN (which may be a reload register) to OUT (which may also be a reload register). IN or OUT is from operand OPNUM with reload type TYPE. Returns first insn emitted. */ rtx gen_reload (out, in, opnum, type) rtx out; rtx in; int opnum; enum reload_type type; { rtx last = get_last_insn (); rtx tem; /* If IN is a paradoxical SUBREG, remove it and try to put the opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */ if (GET_CODE (in) == SUBREG && (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))) && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0) in = SUBREG_REG (in), out = tem; else if (GET_CODE (out) == SUBREG && (GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))) && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0) out = SUBREG_REG (out), in = tem; /* How to do this reload can get quite tricky. Normally, we are being asked to reload a simple operand, such as a MEM, a constant, or a pseudo register that didn't get a hard register. In that case we can just call emit_move_insn. We can also be asked to reload a PLUS that adds a register or a MEM to another register, constant or MEM. This can occur during frame pointer elimination and while reloading addresses. This case is handled by trying to emit a single insn to perform the add. If it is not valid, we use a two insn sequence. Finally, we could be called to handle an 'o' constraint by putting an address into a register. In that case, we first try to do this with a named pattern of "reload_load_address". If no such pattern exists, we just emit a SET insn and hope for the best (it will normally be valid on machines that use 'o'). This entire process is made complex because reload will never process the insns we generate here and so we must ensure that they will fit their constraints and also by the fact that parts of IN might be being reloaded separately and replaced with spill registers. Because of this, we are, in some sense, just guessing the right approach here. The one listed above seems to work. ??? At some point, this whole thing needs to be rethought. */ if (GET_CODE (in) == PLUS && (GET_CODE (XEXP (in, 0)) == REG || GET_CODE (XEXP (in, 0)) == SUBREG || GET_CODE (XEXP (in, 0)) == MEM) && (GET_CODE (XEXP (in, 1)) == REG || GET_CODE (XEXP (in, 1)) == SUBREG || CONSTANT_P (XEXP (in, 1)) || GET_CODE (XEXP (in, 1)) == MEM)) { /* We need to compute the sum of a register or a MEM and another register, constant, or MEM, and put it into the reload register. The best possible way of doing this is if the machine has a three-operand ADD insn that accepts the required operands. The simplest approach is to try to generate such an insn and see if it is recognized and matches its constraints. If so, it can be used. It might be better not to actually emit the insn unless it is valid, but we need to pass the insn as an operand to `recog' and `insn_extract' and it is simpler to emit and then delete the insn if not valid than to dummy things up. */ rtx op0, op1, tem, insn; int code; op0 = find_replacement (&XEXP (in, 0)); op1 = find_replacement (&XEXP (in, 1)); /* Since constraint checking is strict, commutativity won't be checked, so we need to do that here to avoid spurious failure if the add instruction is two-address and the second operand of the add is the same as the reload reg, which is frequently the case. If the insn would be A = B + A, rearrange it so it will be A = A + B as constrain_operands expects. */ if (GET_CODE (XEXP (in, 1)) == REG && REGNO (out) == REGNO (XEXP (in, 1))) tem = op0, op0 = op1, op1 = tem; if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1)) in = gen_rtx_PLUS (GET_MODE (in), op0, op1); insn = emit_insn (gen_rtx_SET (VOIDmode, out, in)); code = recog_memoized (insn); if (code >= 0) { insn_extract (insn); /* We want constrain operands to treat this insn strictly in its validity determination, i.e., the way it would after reload has completed. */ if (constrain_operands (code, 1)) return insn; } delete_insns_since (last); /* If that failed, we must use a conservative two-insn sequence. use move to copy constant, MEM, or pseudo register to the reload register since "move" will be able to handle an arbitrary operand, unlike add which can't, in general. Then add the registers. If there is another way to do this for a specific machine, a DEFINE_PEEPHOLE should be specified that recognizes the sequence we emit below. */ if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG || (GET_CODE (op1) == REG && REGNO (op1) >= FIRST_PSEUDO_REGISTER)) tem = op0, op0 = op1, op1 = tem; gen_reload (out, op0, opnum, type); /* If OP0 and OP1 are the same, we can use OUT for OP1. This fixes a problem on the 32K where the stack pointer cannot be used as an operand of an add insn. */ if (rtx_equal_p (op0, op1)) op1 = out; insn = emit_insn (gen_add2_insn (out, op1)); /* If that failed, copy the address register to the reload register. Then add the constant to the reload register. */ code = recog_memoized (insn); if (code >= 0) { insn_extract (insn); /* We want constrain operands to treat this insn strictly in its validity determination, i.e., the way it would after reload has completed. */ if (constrain_operands (code, 1)) { /* Add a REG_EQUIV note so that find_equiv_reg can find it. */ REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUIV, in, REG_NOTES (insn)); return insn; } } delete_insns_since (last); gen_reload (out, op1, opnum, type); insn = emit_insn (gen_add2_insn (out, op0)); REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUIV, in, REG_NOTES (insn)); } #ifdef SECONDARY_MEMORY_NEEDED /* If we need a memory location to do the move, do it that way. */ else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER && GET_CODE (out) == REG && REGNO (out) < FIRST_PSEUDO_REGISTER && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)), REGNO_REG_CLASS (REGNO (out)), GET_MODE (out))) { /* Get the memory to use and rewrite both registers to its mode. */ rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type); if (GET_MODE (loc) != GET_MODE (out)) out = gen_rtx_REG (GET_MODE (loc), REGNO (out)); if (GET_MODE (loc) != GET_MODE (in)) in = gen_rtx_REG (GET_MODE (loc), REGNO (in)); gen_reload (loc, in, opnum, type); gen_reload (out, loc, opnum, type); } #endif /* If IN is a simple operand, use gen_move_insn. */ else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG) emit_insn (gen_move_insn (out, in)); #ifdef HAVE_reload_load_address else if (HAVE_reload_load_address) emit_insn (gen_reload_load_address (out, in)); #endif /* Otherwise, just write (set OUT IN) and hope for the best. */ else emit_insn (gen_rtx_SET (VOIDmode, out, in)); /* Return the first insn emitted. We can not just return get_last_insn, because there may have been multiple instructions emitted. Also note that gen_move_insn may emit more than one insn itself, so we can not assume that there is one insn emitted per emit_insn_before call. */ return last ? NEXT_INSN (last) : get_insns (); } /* Delete a previously made output-reload whose result we now believe is not needed. First we double-check. INSN is the insn now being processed. OUTPUT_RELOAD_INSN is the insn of the output reload. J is the reload-number for this insn. */ static void delete_output_reload (insn, j, output_reload_insn) rtx insn; int j; rtx output_reload_insn; { register rtx i1; /* Get the raw pseudo-register referred to. */ rtx reg = reload_in[j]; while (GET_CODE (reg) == SUBREG) reg = SUBREG_REG (reg); /* If the pseudo-reg we are reloading is no longer referenced anywhere between the store into it and here, and no jumps or labels intervene, then the value can get here through the reload reg alone. Otherwise, give up--return. */ for (i1 = NEXT_INSN (output_reload_insn); i1 != insn; i1 = NEXT_INSN (i1)) { if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN) return; if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN) && reg_mentioned_p (reg, PATTERN (i1))) { /* If this is just a single USE with an REG_EQUAL note in front of INSN, this is no problem, because this mentions just the address that we are using here. But if there is more than one such USE, the insn might use the operand directly, or another reload might do that. This is analogous to the count_occurences check in the callers. */ int num_occurences = 0; while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE && find_reg_note (i1, REG_EQUAL, NULL_RTX)) { num_occurences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0; i1 = NEXT_INSN (i1); } if (num_occurences == 1 && i1 == insn) break; return; } } /* The caller has already checked that REG dies or is set in INSN. It has also checked that we are optimizing, and thus some inaccurancies in the debugging information are acceptable. So we could just delete output_reload_insn. But in some cases we can improve the debugging information without sacrificing optimization - maybe even improving the code: See if the pseudo reg has been completely replaced with reload regs. If so, delete the store insn and forget we had a stack slot for the pseudo. */ if (reload_out[j] != reload_in[j] && REG_N_DEATHS (REGNO (reg)) == 1 && REG_BASIC_BLOCK (REGNO (reg)) >= 0 && find_regno_note (insn, REG_DEAD, REGNO (reg))) { rtx i2; /* We know that it was used only between here and the beginning of the current basic block. (We also know that the last use before INSN was the output reload we are thinking of deleting, but never mind that.) Search that range; see if any ref remains. */ for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2)) { rtx set = single_set (i2); /* Uses which just store in the pseudo don't count, since if they are the only uses, they are dead. */ if (set != 0 && SET_DEST (set) == reg) continue; if (GET_CODE (i2) == CODE_LABEL || GET_CODE (i2) == JUMP_INSN) break; if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN) && reg_mentioned_p (reg, PATTERN (i2))) { /* Some other ref remains; just delete the output reload we know to be dead. */ delete_insn (output_reload_insn); return; } } /* Delete the now-dead stores into this pseudo. */ for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2)) { rtx set = single_set (i2); if (set != 0 && SET_DEST (set) == reg) { /* This might be a basic block head, thus don't use delete_insn. */ PUT_CODE (i2, NOTE); NOTE_SOURCE_FILE (i2) = 0; NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED; } if (GET_CODE (i2) == CODE_LABEL || GET_CODE (i2) == JUMP_INSN) break; } /* For the debugging info, say the pseudo lives in this reload reg. */ reg_renumber[REGNO (reg)] = REGNO (reload_reg_rtx[j]); alter_reg (REGNO (reg), -1); } delete_insn (output_reload_insn); } /* Output reload-insns to reload VALUE into RELOADREG. VALUE is an autoincrement or autodecrement RTX whose operand is a register or memory location; so reloading involves incrementing that location. INC_AMOUNT is the number to increment or decrement by (always positive). This cannot be deduced from VALUE. */ static void inc_for_reload (reloadreg, value, inc_amount) rtx reloadreg; rtx value; int inc_amount; { /* REG or MEM to be copied and incremented. */ rtx incloc = XEXP (value, 0); /* Nonzero if increment after copying. */ int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC); rtx last; rtx inc; rtx add_insn; int code; /* No hard register is equivalent to this register after inc/dec operation. If REG_LAST_RELOAD_REG were non-zero, we could inc/dec that register as well (maybe even using it for the source), but I'm not sure it's worth worrying about. */ if (GET_CODE (incloc) == REG) reg_last_reload_reg[REGNO (incloc)] = 0; if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC) inc_amount = - inc_amount; inc = GEN_INT (inc_amount); /* If this is post-increment, first copy the location to the reload reg. */ if (post) emit_insn (gen_move_insn (reloadreg, incloc)); /* See if we can directly increment INCLOC. Use a method similar to that in gen_reload. */ last = get_last_insn (); add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc, gen_rtx_PLUS (GET_MODE (incloc), incloc, inc))); code = recog_memoized (add_insn); if (code >= 0) { insn_extract (add_insn); if (constrain_operands (code, 1)) { /* If this is a pre-increment and we have incremented the value where it lives, copy the incremented value to RELOADREG to be used as an address. */ if (! post) emit_insn (gen_move_insn (reloadreg, incloc)); return; } } delete_insns_since (last); /* If couldn't do the increment directly, must increment in RELOADREG. The way we do this depends on whether this is pre- or post-increment. For pre-increment, copy INCLOC to the reload register, increment it there, then save back. */ if (! post) { emit_insn (gen_move_insn (reloadreg, incloc)); emit_insn (gen_add2_insn (reloadreg, inc)); emit_insn (gen_move_insn (incloc, reloadreg)); } else { /* Postincrement. Because this might be a jump insn or a compare, and because RELOADREG may not be available after the insn in an input reload, we must do the incrementation before the insn being reloaded for. We have already copied INCLOC to RELOADREG. Increment the copy in RELOADREG, save that back, then decrement RELOADREG so it has the original value. */ emit_insn (gen_add2_insn (reloadreg, inc)); emit_insn (gen_move_insn (incloc, reloadreg)); emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount))); } return; } /* Return 1 if we are certain that the constraint-string STRING allows the hard register REG. Return 0 if we can't be sure of this. */ static int constraint_accepts_reg_p (string, reg) char *string; rtx reg; { int value = 0; int regno = true_regnum (reg); int c; /* Initialize for first alternative. */ value = 0; /* Check that each alternative contains `g' or `r'. */ while (1) switch (c = *string++) { case 0: /* If an alternative lacks `g' or `r', we lose. */ return value; case ',': /* If an alternative lacks `g' or `r', we lose. */ if (value == 0) return 0; /* Initialize for next alternative. */ value = 0; break; case 'g': case 'r': /* Any general reg wins for this alternative. */ if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno)) value = 1; break; default: /* Any reg in specified class wins for this alternative. */ { enum reg_class class = REG_CLASS_FROM_LETTER (c); if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)) value = 1; } } } /* Return the number of places FIND appears within X, but don't count an occurrence if some SET_DEST is FIND. */ int count_occurrences (x, find) register rtx x, find; { register int i, j; register enum rtx_code code; register char *format_ptr; int count; if (x == find) return 1; if (x == 0) return 0; code = GET_CODE (x); switch (code) { case REG: case QUEUED: case CONST_INT: case CONST_DOUBLE: case SYMBOL_REF: case CODE_LABEL: case PC: case CC0: return 0; case SET: if (SET_DEST (x) == find) return count_occurrences (SET_SRC (x), find); break; default: break; } format_ptr = GET_RTX_FORMAT (code); count = 0; for (i = 0; i < GET_RTX_LENGTH (code); i++) { switch (*format_ptr++) { case 'e': count += count_occurrences (XEXP (x, i), find); break; case 'E': if (XVEC (x, i) != NULL) { for (j = 0; j < XVECLEN (x, i); j++) count += count_occurrences (XVECEXP (x, i, j), find); } break; } } return count; } /* This array holds values which are equivalent to a hard register during reload_cse_regs. Each array element is an EXPR_LIST of values. Each time a hard register is set, we set the corresponding array element to the value. Each time a hard register is copied into memory, we add the memory location to the corresponding array element. We don't store values or memory addresses with side effects in this array. If the value is a CONST_INT, then the mode of the containing EXPR_LIST is the mode in which that CONST_INT was referenced. We sometimes clobber a specific entry in a list. In that case, we just set XEXP (list-entry, 0) to 0. */ static rtx *reg_values; /* This is a preallocated REG rtx which we use as a temporary in reload_cse_invalidate_regno, so that we don't need to allocate a new one each time through a loop in that function. */ static rtx invalidate_regno_rtx; /* This is a set of registers for which we must remove REG_DEAD notes in previous insns, because our modifications made them invalid. That can happen if we introduced the register into the current insn, or we deleted the current insn which used to set the register. */ static HARD_REG_SET no_longer_dead_regs; /* Invalidate any entries in reg_values which depend on REGNO, including those for REGNO itself. This is called if REGNO is changing. If CLOBBER is true, then always forget anything we currently know about REGNO. MODE is the mode of the assignment to REGNO, which is used to determine how many hard registers are being changed. If MODE is VOIDmode, then only REGNO is being changed; this is used when invalidating call clobbered registers across a call. */ static void reload_cse_invalidate_regno (regno, mode, clobber) int regno; enum machine_mode mode; int clobber; { int endregno; register int i; /* Our callers don't always go through true_regnum; we may see a pseudo-register here from a CLOBBER or the like. We probably won't ever see a pseudo-register that has a real register number, for we check anyhow for safety. */ if (regno >= FIRST_PSEUDO_REGISTER) regno = reg_renumber[regno]; if (regno < 0) return; if (mode == VOIDmode) endregno = regno + 1; else endregno = regno + HARD_REGNO_NREGS (regno, mode); if (clobber) for (i = regno; i < endregno; i++) reg_values[i] = 0; for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { rtx x; for (x = reg_values[i]; x; x = XEXP (x, 1)) { if (XEXP (x, 0) != 0 && refers_to_regno_p (regno, endregno, XEXP (x, 0), NULL_PTR)) { /* If this is the only entry on the list, clear reg_values[i]. Otherwise, just clear this entry on the list. */ if (XEXP (x, 1) == 0 && x == reg_values[i]) { reg_values[i] = 0; break; } XEXP (x, 0) = 0; } } } /* We must look at earlier registers, in case REGNO is part of a multi word value but is not the first register. If an earlier register has a value in a mode which overlaps REGNO, then we must invalidate that earlier register. Note that we do not need to check REGNO or later registers (we must not check REGNO itself, because we would incorrectly conclude that there was a conflict). */ for (i = 0; i < regno; i++) { rtx x; for (x = reg_values[i]; x; x = XEXP (x, 1)) { if (XEXP (x, 0) != 0) { PUT_MODE (invalidate_regno_rtx, GET_MODE (x)); REGNO (invalidate_regno_rtx) = i; if (refers_to_regno_p (regno, endregno, invalidate_regno_rtx, NULL_PTR)) { reload_cse_invalidate_regno (i, VOIDmode, 1); break; } } } } } /* The memory at address MEM_BASE is being changed. Return whether this change will invalidate VAL. */ static int reload_cse_mem_conflict_p (mem_base, val) rtx mem_base; rtx val; { enum rtx_code code; char *fmt; int i; code = GET_CODE (val); switch (code) { /* Get rid of a few simple cases quickly. */ case REG: case PC: case CC0: case SCRATCH: case CONST: case CONST_INT: case CONST_DOUBLE: case SYMBOL_REF: case LABEL_REF: return 0; case MEM: if (GET_MODE (mem_base) == BLKmode || GET_MODE (val) == BLKmode) return 1; if (anti_dependence (val, mem_base)) return 1; /* The address may contain nested MEMs. */ break; default: break; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') { if (reload_cse_mem_conflict_p (mem_base, XEXP (val, i))) return 1; } else if (fmt[i] == 'E') { int j; for (j = 0; j < XVECLEN (val, i); j++) if (reload_cse_mem_conflict_p (mem_base, XVECEXP (val, i, j))) return 1; } } return 0; } /* Invalidate any entries in reg_values which are changed because of a store to MEM_RTX. If this is called because of a non-const call instruction, MEM_RTX is (mem:BLK const0_rtx). */ static void reload_cse_invalidate_mem (mem_rtx) rtx mem_rtx; { register int i; for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { rtx x; for (x = reg_values[i]; x; x = XEXP (x, 1)) { if (XEXP (x, 0) != 0 && reload_cse_mem_conflict_p (mem_rtx, XEXP (x, 0))) { /* If this is the only entry on the list, clear reg_values[i]. Otherwise, just clear this entry on the list. */ if (XEXP (x, 1) == 0 && x == reg_values[i]) { reg_values[i] = 0; break; } XEXP (x, 0) = 0; } } } } /* Invalidate DEST, which is being assigned to or clobbered. The second parameter exists so that this function can be passed to note_stores; it is ignored. */ static void reload_cse_invalidate_rtx (dest, ignore) rtx dest; rtx ignore ATTRIBUTE_UNUSED; { while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SIGN_EXTRACT || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG) dest = XEXP (dest, 0); if (GET_CODE (dest) == REG) reload_cse_invalidate_regno (REGNO (dest), GET_MODE (dest), 1); else if (GET_CODE (dest) == MEM) reload_cse_invalidate_mem (dest); } /* Possibly delete death notes on the insns before INSN if modifying INSN extended the lifespan of the registers. */ static void reload_cse_delete_death_notes (insn) rtx insn; { int dreg; for (dreg = 0; dreg < FIRST_PSEUDO_REGISTER; dreg++) { rtx trial; if (! TEST_HARD_REG_BIT (no_longer_dead_regs, dreg)) continue; for (trial = prev_nonnote_insn (insn); (trial && GET_CODE (trial) != CODE_LABEL && GET_CODE (trial) != BARRIER); trial = prev_nonnote_insn (trial)) { if (find_regno_note (trial, REG_DEAD, dreg)) { remove_death (dreg, trial); break; } } } } /* Record that the current insn uses hard reg REGNO in mode MODE. This will be used in reload_cse_delete_death_notes to delete prior REG_DEAD notes for this register. */ static void reload_cse_no_longer_dead (regno, mode) int regno; enum machine_mode mode; { int nregs = HARD_REGNO_NREGS (regno, mode); while (nregs-- > 0) { SET_HARD_REG_BIT (no_longer_dead_regs, regno); regno++; } } /* Do a very simple CSE pass over the hard registers. This function detects no-op moves where we happened to assign two different pseudo-registers to the same hard register, and then copied one to the other. Reload will generate a useless instruction copying a register to itself. This function also detects cases where we load a value from memory into two different registers, and (if memory is more expensive than registers) changes it to simply copy the first register into the second register. Another optimization is performed that scans the operands of each instruction to see whether the value is already available in a hard register. It then replaces the operand with the hard register if possible, much like an optional reload would. */ void reload_cse_regs (first) rtx first; { char *firstobj; rtx callmem; register int i; rtx insn; init_alias_analysis (); reg_values = (rtx *) alloca (FIRST_PSEUDO_REGISTER * sizeof (rtx)); for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) reg_values[i] = 0; /* Create our EXPR_LIST structures on reload_obstack, so that we can free them when we are done. */ push_obstacks (&reload_obstack, &reload_obstack); firstobj = (char *) obstack_alloc (&reload_obstack, 0); /* We pass this to reload_cse_invalidate_mem to invalidate all of memory for a non-const call instruction. */ callmem = gen_rtx_MEM (BLKmode, const0_rtx); /* This is used in reload_cse_invalidate_regno to avoid consing a new REG in a loop in that function. */ invalidate_regno_rtx = gen_rtx_REG (VOIDmode, 0); for (insn = first; insn; insn = NEXT_INSN (insn)) { rtx body; if (GET_CODE (insn) == CODE_LABEL) { /* Forget all the register values at a code label. We don't try to do anything clever around jumps. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) reg_values[i] = 0; continue; } #ifdef NON_SAVING_SETJMP if (NON_SAVING_SETJMP && GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP) { for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) reg_values[i] = 0; continue; } #endif if (GET_RTX_CLASS (GET_CODE (insn)) != 'i') continue; CLEAR_HARD_REG_SET (no_longer_dead_regs); /* If this is a call instruction, forget anything stored in a call clobbered register, or, if this is not a const call, in memory. */ if (GET_CODE (insn) == CALL_INSN) { for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (call_used_regs[i]) reload_cse_invalidate_regno (i, VOIDmode, 1); if (! CONST_CALL_P (insn)) reload_cse_invalidate_mem (callmem); } body = PATTERN (insn); if (GET_CODE (body) == SET) { int count = 0; if (reload_cse_noop_set_p (body, insn)) { PUT_CODE (insn, NOTE); NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (insn) = 0; reload_cse_delete_death_notes (insn); /* We're done with this insn. */ continue; } /* It's not a no-op, but we can try to simplify it. */ CLEAR_HARD_REG_SET (no_longer_dead_regs); count += reload_cse_simplify_set (body, insn); if (count > 0 && apply_change_group ()) reload_cse_delete_death_notes (insn); else if (reload_cse_simplify_operands (insn)) reload_cse_delete_death_notes (insn); reload_cse_record_set (body, body); } else if (GET_CODE (body) == PARALLEL) { int count = 0; /* If every action in a PARALLEL is a noop, we can delete the entire PARALLEL. */ for (i = XVECLEN (body, 0) - 1; i >= 0; --i) if ((GET_CODE (XVECEXP (body, 0, i)) != SET || ! reload_cse_noop_set_p (XVECEXP (body, 0, i), insn)) && GET_CODE (XVECEXP (body, 0, i)) != CLOBBER) break; if (i < 0) { PUT_CODE (insn, NOTE); NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (insn) = 0; reload_cse_delete_death_notes (insn); /* We're done with this insn. */ continue; } /* It's not a no-op, but we can try to simplify it. */ CLEAR_HARD_REG_SET (no_longer_dead_regs); for (i = XVECLEN (body, 0) - 1; i >= 0; --i) if (GET_CODE (XVECEXP (body, 0, i)) == SET) count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn); if (count > 0 && apply_change_group ()) reload_cse_delete_death_notes (insn); else if (reload_cse_simplify_operands (insn)) reload_cse_delete_death_notes (insn); /* Look through the PARALLEL and record the values being set, if possible. Also handle any CLOBBERs. */ for (i = XVECLEN (body, 0) - 1; i >= 0; --i) { rtx x = XVECEXP (body, 0, i); if (GET_CODE (x) == SET) reload_cse_record_set (x, body); else note_stores (x, reload_cse_invalidate_rtx); } } else note_stores (body, reload_cse_invalidate_rtx); #ifdef AUTO_INC_DEC /* Clobber any registers which appear in REG_INC notes. We could keep track of the changes to their values, but it is unlikely to help. */ { rtx x; for (x = REG_NOTES (insn); x; x = XEXP (x, 1)) if (REG_NOTE_KIND (x) == REG_INC) reload_cse_invalidate_rtx (XEXP (x, 0), NULL_RTX); } #endif /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only after we have processed the insn. */ if (GET_CODE (insn) == CALL_INSN) { rtx x; for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1)) if (GET_CODE (XEXP (x, 0)) == CLOBBER) reload_cse_invalidate_rtx (XEXP (XEXP (x, 0), 0), NULL_RTX); } } /* Free all the temporary structures we created, and go back to the regular obstacks. */ obstack_free (&reload_obstack, firstobj); pop_obstacks (); } /* Return whether the values known for REGNO are equal to VAL. MODE is the mode of the object that VAL is being copied to; this matters if VAL is a CONST_INT. */ static int reload_cse_regno_equal_p (regno, val, mode) int regno; rtx val; enum machine_mode mode; { rtx x; if (val == 0) return 0; for (x = reg_values[regno]; x; x = XEXP (x, 1)) if (XEXP (x, 0) != 0 && rtx_equal_p (XEXP (x, 0), val) && (GET_CODE (val) != CONST_INT || mode == GET_MODE (x) || (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)) /* On a big endian machine if the value spans more than one register then this register holds the high part of it and we can't use it. ??? We should also compare with the high part of the value. */ && !(WORDS_BIG_ENDIAN && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1) && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode), GET_MODE_BITSIZE (GET_MODE (x)))))) return 1; return 0; } /* See whether a single set is a noop. SET is the set instruction we are should check, and INSN is the instruction from which it came. */ static int reload_cse_noop_set_p (set, insn) rtx set; rtx insn; { rtx src, dest; enum machine_mode dest_mode; int dreg, sreg; int ret; src = SET_SRC (set); dest = SET_DEST (set); dest_mode = GET_MODE (dest); if (side_effects_p (src)) return 0; dreg = true_regnum (dest); sreg = true_regnum (src); /* Check for setting a register to itself. In this case, we don't have to worry about REG_DEAD notes. */ if (dreg >= 0 && dreg == sreg) return 1; ret = 0; if (dreg >= 0) { /* Check for setting a register to itself. */ if (dreg == sreg) ret = 1; /* Check for setting a register to a value which we already know is in the register. */ else if (reload_cse_regno_equal_p (dreg, src, dest_mode)) ret = 1; /* Check for setting a register DREG to another register SREG where SREG is equal to a value which is already in DREG. */ else if (sreg >= 0) { rtx x; for (x = reg_values[sreg]; x; x = XEXP (x, 1)) { rtx tmp; if (XEXP (x, 0) == 0) continue; if (dest_mode == GET_MODE (x)) tmp = XEXP (x, 0); else if (GET_MODE_BITSIZE (dest_mode) < GET_MODE_BITSIZE (GET_MODE (x))) tmp = gen_lowpart_common (dest_mode, XEXP (x, 0)); else continue; if (tmp && reload_cse_regno_equal_p (dreg, tmp, dest_mode)) { ret = 1; break; } } } } else if (GET_CODE (dest) == MEM) { /* Check for storing a register to memory when we know that the register is equivalent to the memory location. */ if (sreg >= 0 && reload_cse_regno_equal_p (sreg, dest, dest_mode) && ! side_effects_p (dest)) ret = 1; } /* If we can delete this SET, then we need to look for an earlier REG_DEAD note on DREG, and remove it if it exists. */ if (ret && dreg >= 0) { if (! find_regno_note (insn, REG_UNUSED, dreg)) reload_cse_no_longer_dead (dreg, dest_mode); } return ret; } /* Try to simplify a single SET instruction. SET is the set pattern. INSN is the instruction it came from. This function only handles one case: if we set a register to a value which is not a register, we try to find that value in some other register and change the set into a register copy. */ static int reload_cse_simplify_set (set, insn) rtx set; rtx insn; { int dreg; rtx src; enum machine_mode dest_mode; enum reg_class dclass; register int i; dreg = true_regnum (SET_DEST (set)); if (dreg < 0) return 0; src = SET_SRC (set); if (side_effects_p (src) || true_regnum (src) >= 0) return 0; dclass = REGNO_REG_CLASS (dreg); /* If memory loads are cheaper than register copies, don't change them. */ if (GET_CODE (src) == MEM && MEMORY_MOVE_COST (GET_MODE (src), dclass, 1) < 2) return 0; dest_mode = GET_MODE (SET_DEST (set)); for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { if (i != dreg && REGISTER_MOVE_COST (REGNO_REG_CLASS (i), dclass) == 2 && reload_cse_regno_equal_p (i, src, dest_mode)) { int validated; /* Pop back to the real obstacks while changing the insn. */ pop_obstacks (); validated = validate_change (insn, &SET_SRC (set), gen_rtx_REG (dest_mode, i), 1); /* Go back to the obstack we are using for temporary storage. */ push_obstacks (&reload_obstack, &reload_obstack); if (validated && ! find_regno_note (insn, REG_UNUSED, i)) { reload_cse_no_longer_dead (i, dest_mode); return 1; } } } return 0; } /* Try to replace operands in INSN with equivalent values that are already in registers. This can be viewed as optional reloading. For each non-register operand in the insn, see if any hard regs are known to be equivalent to that operand. Record the alternatives which can accept these hard registers. Among all alternatives, select the ones which are better or equal to the one currently matching, where "better" is in terms of '?' and '!' constraints. Among the remaining alternatives, select the one which replaces most operands with hard registers. */ static int reload_cse_simplify_operands (insn) rtx insn; { #ifdef REGISTER_CONSTRAINTS int insn_code_number, n_operands, n_alternatives; int i,j; char *constraints[MAX_RECOG_OPERANDS]; /* Vector recording how bad an alternative is. */ int *alternative_reject; /* Vector recording how many registers can be introduced by choosing this alternative. */ int *alternative_nregs; /* Array of vectors recording, for each operand and each alternative, which hard register to substitute, or -1 if the operand should be left as it is. */ int *op_alt_regno[MAX_RECOG_OPERANDS]; /* Array of alternatives, sorted in order of decreasing desirability. */ int *alternative_order; /* Find out some information about this insn. */ insn_code_number = recog_memoized (insn); /* We don't modify asm instructions. */ if (insn_code_number < 0) return 0; n_operands = insn_n_operands[insn_code_number]; n_alternatives = insn_n_alternatives[insn_code_number]; if (n_alternatives == 0 || n_operands == 0) return 0; insn_extract (insn); /* Figure out which alternative currently matches. */ if (! constrain_operands (insn_code_number, 1)) abort (); alternative_reject = (int *) alloca (n_alternatives * sizeof (int)); alternative_nregs = (int *) alloca (n_alternatives * sizeof (int)); alternative_order = (int *) alloca (n_alternatives * sizeof (int)); bzero ((char *)alternative_reject, n_alternatives * sizeof (int)); bzero ((char *)alternative_nregs, n_alternatives * sizeof (int)); for (i = 0; i < n_operands; i++) { enum machine_mode mode; int regno; char *p; op_alt_regno[i] = (int *) alloca (n_alternatives * sizeof (int)); for (j = 0; j < n_alternatives; j++) op_alt_regno[i][j] = -1; p = constraints[i] = insn_operand_constraint[insn_code_number][i]; mode = insn_operand_mode[insn_code_number][i]; /* Add the reject values for each alternative given by the constraints for this operand. */ j = 0; while (*p != '\0') { char c = *p++; if (c == ',') j++; else if (c == '?') alternative_reject[j] += 3; else if (c == '!') alternative_reject[j] += 300; } /* We won't change operands which are already registers. We also don't want to modify output operands. */ regno = true_regnum (recog_operand[i]); if (regno >= 0 || constraints[i][0] == '=' || constraints[i][0] == '+') continue; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) { int class = (int) NO_REGS; if (! reload_cse_regno_equal_p (regno, recog_operand[i], mode)) continue; /* We found a register equal to this operand. Now look for all alternatives that can accept this register and have not been assigned a register they can use yet. */ j = 0; p = constraints[i]; for (;;) { char c = *p++; switch (c) { case '=': case '+': case '?': case '#': case '&': case '!': case '*': case '%': case '0': case '1': case '2': case '3': case '4': case 'm': case '<': case '>': case 'V': case 'o': case 'E': case 'F': case 'G': case 'H': case 's': case 'i': case 'n': case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'P': #ifdef EXTRA_CONSTRAINT case 'Q': case 'R': case 'S': case 'T': case 'U': #endif case 'p': case 'X': /* These don't say anything we care about. */ break; case 'g': case 'r': class = reg_class_subunion[(int) class][(int) GENERAL_REGS]; break; default: class = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER (c)]; break; case ',': case '\0': /* See if REGNO fits this alternative, and set it up as the replacement register if we don't have one for this alternative yet. */ if (op_alt_regno[i][j] == -1 && reg_fits_class_p (gen_rtx_REG (mode, regno), class, 0, mode)) { alternative_nregs[j]++; op_alt_regno[i][j] = regno; } j++; break; } if (c == '\0') break; } } } /* Record all alternatives which are better or equal to the currently matching one in the alternative_order array. */ for (i = j = 0; i < n_alternatives; i++) if (alternative_reject[i] <= alternative_reject[which_alternative]) alternative_order[j++] = i; n_alternatives = j; /* Sort it. Given a small number of alternatives, a dumb algorithm won't hurt too much. */ for (i = 0; i < n_alternatives - 1; i++) { int best = i; int best_reject = alternative_reject[alternative_order[i]]; int best_nregs = alternative_nregs[alternative_order[i]]; int tmp; for (j = i + 1; j < n_alternatives; j++) { int this_reject = alternative_reject[alternative_order[j]]; int this_nregs = alternative_nregs[alternative_order[j]]; if (this_reject < best_reject || (this_reject == best_reject && this_nregs < best_nregs)) { best = j; best_reject = this_reject; best_nregs = this_nregs; } } tmp = alternative_order[best]; alternative_order[best] = alternative_order[i]; alternative_order[i] = tmp; } /* Substitute the operands as determined by op_alt_regno for the best alternative. */ j = alternative_order[0]; CLEAR_HARD_REG_SET (no_longer_dead_regs); /* Pop back to the real obstacks while changing the insn. */ pop_obstacks (); for (i = 0; i < n_operands; i++) { enum machine_mode mode = insn_operand_mode[insn_code_number][i]; if (op_alt_regno[i][j] == -1) continue; reload_cse_no_longer_dead (op_alt_regno[i][j], mode); validate_change (insn, recog_operand_loc[i], gen_rtx_REG (mode, op_alt_regno[i][j]), 1); } for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--) { int op = recog_dup_num[i]; enum machine_mode mode = insn_operand_mode[insn_code_number][op]; if (op_alt_regno[op][j] == -1) continue; reload_cse_no_longer_dead (op_alt_regno[op][j], mode); validate_change (insn, recog_dup_loc[i], gen_rtx_REG (mode, op_alt_regno[op][j]), 1); } /* Go back to the obstack we are using for temporary storage. */ push_obstacks (&reload_obstack, &reload_obstack); return apply_change_group (); #else return 0; #endif } /* These two variables are used to pass information from reload_cse_record_set to reload_cse_check_clobber. */ static int reload_cse_check_clobbered; static rtx reload_cse_check_src; /* See if DEST overlaps with RELOAD_CSE_CHECK_SRC. If it does, set RELOAD_CSE_CHECK_CLOBBERED. This is called via note_stores. The second argument, which is passed by note_stores, is ignored. */ static void reload_cse_check_clobber (dest, ignore) rtx dest; rtx ignore ATTRIBUTE_UNUSED; { if (reg_overlap_mentioned_p (dest, reload_cse_check_src)) reload_cse_check_clobbered = 1; } /* Record the result of a SET instruction. SET is the set pattern. BODY is the pattern of the insn that it came from. */ static void reload_cse_record_set (set, body) rtx set; rtx body; { rtx dest, src, x; int dreg, sreg; enum machine_mode dest_mode; dest = SET_DEST (set); src = SET_SRC (set); dreg = true_regnum (dest); sreg = true_regnum (src); dest_mode = GET_MODE (dest); /* Some machines don't define AUTO_INC_DEC, but they still use push instructions. We need to catch that case here in order to invalidate the stack pointer correctly. Note that invalidating the stack pointer is different from invalidating DEST. */ x = dest; while (GET_CODE (x) == SUBREG || GET_CODE (x) == ZERO_EXTRACT || GET_CODE (x) == SIGN_EXTRACT || GET_CODE (x) == STRICT_LOW_PART) x = XEXP (x, 0); if (push_operand (x, GET_MODE (x))) { reload_cse_invalidate_rtx (stack_pointer_rtx, NULL_RTX); reload_cse_invalidate_rtx (dest, NULL_RTX); return; } /* We can only handle an assignment to a register, or a store of a register to a memory location. For other cases, we just clobber the destination. We also have to just clobber if there are side effects in SRC or DEST. */ if ((dreg < 0 && GET_CODE (dest) != MEM) || side_effects_p (src) || side_effects_p (dest)) { reload_cse_invalidate_rtx (dest, NULL_RTX); return; } #ifdef HAVE_cc0 /* We don't try to handle values involving CC, because it's a pain to keep track of when they have to be invalidated. */ if (reg_mentioned_p (cc0_rtx, src) || reg_mentioned_p (cc0_rtx, dest)) { reload_cse_invalidate_rtx (dest, NULL_RTX); return; } #endif /* If BODY is a PARALLEL, then we need to see whether the source of SET is clobbered by some other instruction in the PARALLEL. */ if (GET_CODE (body) == PARALLEL) { int i; for (i = XVECLEN (body, 0) - 1; i >= 0; --i) { rtx x; x = XVECEXP (body, 0, i); if (x == set) continue; reload_cse_check_clobbered = 0; reload_cse_check_src = src; note_stores (x, reload_cse_check_clobber); if (reload_cse_check_clobbered) { reload_cse_invalidate_rtx (dest, NULL_RTX); return; } } } if (dreg >= 0) { int i; /* This is an assignment to a register. Update the value we have stored for the register. */ if (sreg >= 0) { rtx x; /* This is a copy from one register to another. Any values which were valid for SREG are now valid for DREG. If the mode changes, we use gen_lowpart_common to extract only the part of the value that is copied. */ reg_values[dreg] = 0; for (x = reg_values[sreg]; x; x = XEXP (x, 1)) { rtx tmp; if (XEXP (x, 0) == 0) continue; if (dest_mode == GET_MODE (XEXP (x, 0))) tmp = XEXP (x, 0); else if (GET_MODE_BITSIZE (dest_mode) > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))) continue; else tmp = gen_lowpart_common (dest_mode, XEXP (x, 0)); if (tmp) reg_values[dreg] = gen_rtx_EXPR_LIST (dest_mode, tmp, reg_values[dreg]); } } else reg_values[dreg] = gen_rtx_EXPR_LIST (dest_mode, src, NULL_RTX); /* We've changed DREG, so invalidate any values held by other registers that depend upon it. */ reload_cse_invalidate_regno (dreg, dest_mode, 0); /* If this assignment changes more than one hard register, forget anything we know about the others. */ for (i = 1; i < HARD_REGNO_NREGS (dreg, dest_mode); i++) reg_values[dreg + i] = 0; } else if (GET_CODE (dest) == MEM) { /* Invalidate conflicting memory locations. */ reload_cse_invalidate_mem (dest); /* If we're storing a register to memory, add DEST to the list in REG_VALUES. */ if (sreg >= 0 && ! side_effects_p (dest)) reg_values[sreg] = gen_rtx_EXPR_LIST (dest_mode, dest, reg_values[sreg]); } else { /* We should have bailed out earlier. */ abort (); } }