/* real.c - implementation of REAL_ARITHMETIC, REAL_VALUE_ATOF, and support for XFmode IEEE extended real floating point arithmetic. Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc. Contributed by Stephen L. Moshier (moshier@world.std.com). This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include #include #include "tree.h" #ifndef errno extern int errno; #endif /* To enable support of XFmode extended real floating point, define LONG_DOUBLE_TYPE_SIZE 96 in the tm.h file (m68k.h or i386.h). To support cross compilation between IEEE, VAX and IBM floating point formats, define REAL_ARITHMETIC in the tm.h file. In either case the machine files (tm.h) must not contain any code that tries to use host floating point arithmetic to convert REAL_VALUE_TYPEs from `double' to `float', pass them to fprintf, etc. In cross-compile situations a REAL_VALUE_TYPE may not be intelligible to the host computer's native arithmetic. The emulator defaults to the host's floating point format so that its decimal conversion functions can be used if desired (see real.h). The first part of this file interfaces gcc to a floating point arithmetic suite that was not written with gcc in mind. Avoid changing the low-level arithmetic routines unless you have suitable test programs available. A special version of the PARANOIA floating point arithmetic tester, modified for this purpose, can be found on usc.edu: /pub/C-numanal/ieeetest.zoo. Other tests, and libraries of XFmode and TFmode transcendental functions, can be obtained by ftp from netlib.att.com: netlib/cephes. */ /* Type of computer arithmetic. Only one of DEC, IBM, IEEE, or UNK should get defined. `IEEE', when REAL_WORDS_BIG_ENDIAN is non-zero, refers generically to big-endian IEEE floating-point data structure. This definition should work in SFmode `float' type and DFmode `double' type on virtually all big-endian IEEE machines. If LONG_DOUBLE_TYPE_SIZE has been defined to be 96, then IEEE also invokes the particular XFmode (`long double' type) data structure used by the Motorola 680x0 series processors. `IEEE', when REAL_WORDS_BIG_ENDIAN is zero, refers generally to little-endian IEEE machines. In this case, if LONG_DOUBLE_TYPE_SIZE has been defined to be 96, then IEEE also invokes the particular XFmode `long double' data structure used by the Intel 80x86 series processors. `DEC' refers specifically to the Digital Equipment Corp PDP-11 and VAX floating point data structure. This model currently supports no type wider than DFmode. `IBM' refers specifically to the IBM System/370 and compatible floating point data structure. This model currently supports no type wider than DFmode. The IBM conversions were contributed by frank@atom.ansto.gov.au (Frank Crawford). If LONG_DOUBLE_TYPE_SIZE = 64 (the default, unless tm.h defines it) then `long double' and `double' are both implemented, but they both mean DFmode. In this case, the software floating-point support available here is activated by writing #define REAL_ARITHMETIC in tm.h. The case LONG_DOUBLE_TYPE_SIZE = 128 activates TFmode support and may deactivate XFmode since `long double' is used to refer to both modes. The macros FLOAT_WORDS_BIG_ENDIAN, HOST_FLOAT_WORDS_BIG_ENDIAN, contributed by Richard Earnshaw , separate the floating point unit's endian-ness from that of the integer addressing. This permits one to define a big-endian FPU on a little-endian machine (e.g., ARM). An extension to BYTES_BIG_ENDIAN may be required for some machines in the future. These optional macros may be defined in tm.h. In real.h, they default to WORDS_BIG_ENDIAN, etc., so there is no need to define them for any normal host or target machine on which the floats and the integers have the same endian-ness. */ /* The following converts gcc macros into the ones used by this file. */ /* REAL_ARITHMETIC defined means that macros in real.h are defined to call emulator functions. */ #ifdef REAL_ARITHMETIC #if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT /* PDP-11, Pro350, VAX: */ #define DEC 1 #else /* it's not VAX */ #if TARGET_FLOAT_FORMAT == IBM_FLOAT_FORMAT /* IBM System/370 style */ #define IBM 1 #else /* it's also not an IBM */ #if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT #define IEEE #else /* it's not IEEE either */ /* UNKnown arithmetic. We don't support this and can't go on. */ unknown arithmetic type #define UNK 1 #endif /* not IEEE */ #endif /* not IBM */ #endif /* not VAX */ #define REAL_WORDS_BIG_ENDIAN FLOAT_WORDS_BIG_ENDIAN #else /* REAL_ARITHMETIC not defined means that the *host's* data structure will be used. It may differ by endian-ness from the target machine's structure and will get its ends swapped accordingly (but not here). Probably only the decimal <-> binary functions in this file will actually be used in this case. */ #if HOST_FLOAT_FORMAT == VAX_FLOAT_FORMAT #define DEC 1 #else /* it's not VAX */ #if HOST_FLOAT_FORMAT == IBM_FLOAT_FORMAT /* IBM System/370 style */ #define IBM 1 #else /* it's also not an IBM */ #if HOST_FLOAT_FORMAT == IEEE_FLOAT_FORMAT #define IEEE #else /* it's not IEEE either */ unknown arithmetic type #define UNK 1 #endif /* not IEEE */ #endif /* not IBM */ #endif /* not VAX */ #define REAL_WORDS_BIG_ENDIAN HOST_FLOAT_WORDS_BIG_ENDIAN #endif /* REAL_ARITHMETIC not defined */ /* Define INFINITY for support of infinity. Define NANS for support of Not-a-Number's (NaN's). */ #if !defined(DEC) && !defined(IBM) #define INFINITY #define NANS #endif /* Support of NaNs requires support of infinity. */ #ifdef NANS #ifndef INFINITY #define INFINITY #endif #endif /* Find a host integer type that is at least 16 bits wide, and another type at least twice whatever that size is. */ #if HOST_BITS_PER_CHAR >= 16 #define EMUSHORT char #define EMUSHORT_SIZE HOST_BITS_PER_CHAR #define EMULONG_SIZE (2 * HOST_BITS_PER_CHAR) #else #if HOST_BITS_PER_SHORT >= 16 #define EMUSHORT short #define EMUSHORT_SIZE HOST_BITS_PER_SHORT #define EMULONG_SIZE (2 * HOST_BITS_PER_SHORT) #else #if HOST_BITS_PER_INT >= 16 #define EMUSHORT int #define EMUSHORT_SIZE HOST_BITS_PER_INT #define EMULONG_SIZE (2 * HOST_BITS_PER_INT) #else #if HOST_BITS_PER_LONG >= 16 #define EMUSHORT long #define EMUSHORT_SIZE HOST_BITS_PER_LONG #define EMULONG_SIZE (2 * HOST_BITS_PER_LONG) #else /* You will have to modify this program to have a smaller unit size. */ #define EMU_NON_COMPILE #endif #endif #endif #endif #if HOST_BITS_PER_SHORT >= EMULONG_SIZE #define EMULONG short #else #if HOST_BITS_PER_INT >= EMULONG_SIZE #define EMULONG int #else #if HOST_BITS_PER_LONG >= EMULONG_SIZE #define EMULONG long #else #if HOST_BITS_PER_LONGLONG >= EMULONG_SIZE #define EMULONG long long int #else /* You will have to modify this program to have a smaller unit size. */ #define EMU_NON_COMPILE #endif #endif #endif #endif /* The host interface doesn't work if no 16-bit size exists. */ #if EMUSHORT_SIZE != 16 #define EMU_NON_COMPILE #endif /* OK to continue compilation. */ #ifndef EMU_NON_COMPILE /* Construct macros to translate between REAL_VALUE_TYPE and e type. In GET_REAL and PUT_REAL, r and e are pointers. A REAL_VALUE_TYPE is guaranteed to occupy contiguous locations in memory, with no holes. */ #if LONG_DOUBLE_TYPE_SIZE == 96 /* Number of 16 bit words in external e type format */ #define NE 6 #define MAXDECEXP 4932 #define MINDECEXP -4956 #define GET_REAL(r,e) bcopy ((char *) r, (char *) e, 2*NE) #define PUT_REAL(e,r) bcopy ((char *) e, (char *) r, 2*NE) #else /* no XFmode */ #if LONG_DOUBLE_TYPE_SIZE == 128 #define NE 10 #define MAXDECEXP 4932 #define MINDECEXP -4977 #define GET_REAL(r,e) bcopy ((char *) r, (char *) e, 2*NE) #define PUT_REAL(e,r) bcopy ((char *) e, (char *) r, 2*NE) #else #define NE 6 #define MAXDECEXP 4932 #define MINDECEXP -4956 #ifdef REAL_ARITHMETIC /* Emulator uses target format internally but host stores it in host endian-ness. */ #define GET_REAL(r,e) \ do { \ if (HOST_FLOAT_WORDS_BIG_ENDIAN == REAL_WORDS_BIG_ENDIAN) \ e53toe ((unsigned EMUSHORT *) (r), (e)); \ else \ { \ unsigned EMUSHORT w[4]; \ w[3] = ((EMUSHORT *) r)[0]; \ w[2] = ((EMUSHORT *) r)[1]; \ w[1] = ((EMUSHORT *) r)[2]; \ w[0] = ((EMUSHORT *) r)[3]; \ e53toe (w, (e)); \ } \ } while (0) #define PUT_REAL(e,r) \ do { \ if (HOST_FLOAT_WORDS_BIG_ENDIAN == REAL_WORDS_BIG_ENDIAN) \ etoe53 ((e), (unsigned EMUSHORT *) (r)); \ else \ { \ unsigned EMUSHORT w[4]; \ etoe53 ((e), w); \ *((EMUSHORT *) r) = w[3]; \ *((EMUSHORT *) r + 1) = w[2]; \ *((EMUSHORT *) r + 2) = w[1]; \ *((EMUSHORT *) r + 3) = w[0]; \ } \ } while (0) #else /* not REAL_ARITHMETIC */ /* emulator uses host format */ #define GET_REAL(r,e) e53toe ((unsigned EMUSHORT *) (r), (e)) #define PUT_REAL(e,r) etoe53 ((e), (unsigned EMUSHORT *) (r)) #endif /* not REAL_ARITHMETIC */ #endif /* not TFmode */ #endif /* no XFmode */ /* Number of 16 bit words in internal format */ #define NI (NE+3) /* Array offset to exponent */ #define E 1 /* Array offset to high guard word */ #define M 2 /* Number of bits of precision */ #define NBITS ((NI-4)*16) /* Maximum number of decimal digits in ASCII conversion * = NBITS*log10(2) */ #define NDEC (NBITS*8/27) /* The exponent of 1.0 */ #define EXONE (0x3fff) extern int extra_warnings; extern unsigned EMUSHORT ezero[], ehalf[], eone[], etwo[]; extern unsigned EMUSHORT elog2[], esqrt2[]; static void endian PROTO((unsigned EMUSHORT *, long *, enum machine_mode)); static void eclear PROTO((unsigned EMUSHORT *)); static void emov PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void eabs PROTO((unsigned EMUSHORT *)); static void eneg PROTO((unsigned EMUSHORT *)); static int eisneg PROTO((unsigned EMUSHORT *)); static int eisinf PROTO((unsigned EMUSHORT *)); static int eisnan PROTO((unsigned EMUSHORT *)); static void einfin PROTO((unsigned EMUSHORT *)); static void enan PROTO((unsigned EMUSHORT *, int)); static void emovi PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void emovo PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void ecleaz PROTO((unsigned EMUSHORT *)); static void ecleazs PROTO((unsigned EMUSHORT *)); static void emovz PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void einan PROTO((unsigned EMUSHORT *)); static int eiisnan PROTO((unsigned EMUSHORT *)); static int eiisneg PROTO((unsigned EMUSHORT *)); static void eiinfin PROTO((unsigned EMUSHORT *)); static int eiisinf PROTO((unsigned EMUSHORT *)); static int ecmpm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void eshdn1 PROTO((unsigned EMUSHORT *)); static void eshup1 PROTO((unsigned EMUSHORT *)); static void eshdn8 PROTO((unsigned EMUSHORT *)); static void eshup8 PROTO((unsigned EMUSHORT *)); static void eshup6 PROTO((unsigned EMUSHORT *)); static void eshdn6 PROTO((unsigned EMUSHORT *)); static void eaddm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void esubm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void m16m PROTO((unsigned int, unsigned short *, unsigned short *)); static int edivm PROTO((unsigned short *, unsigned short *)); static int emulm PROTO((unsigned short *, unsigned short *)); static void emdnorm PROTO((unsigned EMUSHORT *, int, int, EMULONG, int)); static void esub PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, unsigned EMUSHORT *)); static void eadd PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, unsigned EMUSHORT *)); static void eadd1 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, unsigned EMUSHORT *)); static void ediv PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, unsigned EMUSHORT *)); static void emul PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, unsigned EMUSHORT *)); static void e53toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void e64toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void e113toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void e24toe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void etoe113 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void toe113 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void etoe64 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void toe64 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void etoe53 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void toe53 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void etoe24 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void toe24 PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static int ecmp PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void eround PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void ltoe PROTO((HOST_WIDE_INT *, unsigned EMUSHORT *)); static void ultoe PROTO((unsigned HOST_WIDE_INT *, unsigned EMUSHORT *)); static void eifrac PROTO((unsigned EMUSHORT *, HOST_WIDE_INT *, unsigned EMUSHORT *)); static void euifrac PROTO((unsigned EMUSHORT *, unsigned HOST_WIDE_INT *, unsigned EMUSHORT *)); static int eshift PROTO((unsigned EMUSHORT *, int)); static int enormlz PROTO((unsigned EMUSHORT *)); static void e24toasc PROTO((unsigned EMUSHORT *, char *, int)); static void e53toasc PROTO((unsigned EMUSHORT *, char *, int)); static void e64toasc PROTO((unsigned EMUSHORT *, char *, int)); static void e113toasc PROTO((unsigned EMUSHORT *, char *, int)); static void etoasc PROTO((unsigned EMUSHORT *, char *, int)); static void asctoe24 PROTO((char *, unsigned EMUSHORT *)); static void asctoe53 PROTO((char *, unsigned EMUSHORT *)); static void asctoe64 PROTO((char *, unsigned EMUSHORT *)); static void asctoe113 PROTO((char *, unsigned EMUSHORT *)); static void asctoe PROTO((char *, unsigned EMUSHORT *)); static void asctoeg PROTO((char *, unsigned EMUSHORT *, int)); static void efloor PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void efrexp PROTO((unsigned EMUSHORT *, int *, unsigned EMUSHORT *)); static void eldexp PROTO((unsigned EMUSHORT *, int, unsigned EMUSHORT *)); static void eremain PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, unsigned EMUSHORT *)); static void eiremain PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void mtherr PROTO((char *, int)); #ifdef DEC static void dectoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void etodec PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void todec PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); #endif #ifdef IBM static void ibmtoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, enum machine_mode)); static void etoibm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, enum machine_mode)); static void toibm PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *, enum machine_mode)); #endif static void make_nan PROTO((unsigned EMUSHORT *, int, enum machine_mode)); static void uditoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void ditoe PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void etoudi PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void etodi PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); static void esqrt PROTO((unsigned EMUSHORT *, unsigned EMUSHORT *)); /* Copy 32-bit numbers obtained from array containing 16-bit numbers, swapping ends if required, into output array of longs. The result is normally passed to fprintf by the ASM_OUTPUT_ macros. */ static void endian (e, x, mode) unsigned EMUSHORT e[]; long x[]; enum machine_mode mode; { unsigned long th, t; if (REAL_WORDS_BIG_ENDIAN) { switch (mode) { case TFmode: /* Swap halfwords in the fourth long. */ th = (unsigned long) e[6] & 0xffff; t = (unsigned long) e[7] & 0xffff; t |= th << 16; x[3] = (long) t; case XFmode: /* Swap halfwords in the third long. */ th = (unsigned long) e[4] & 0xffff; t = (unsigned long) e[5] & 0xffff; t |= th << 16; x[2] = (long) t; /* fall into the double case */ case DFmode: /* swap halfwords in the second word */ th = (unsigned long) e[2] & 0xffff; t = (unsigned long) e[3] & 0xffff; t |= th << 16; x[1] = (long) t; /* fall into the float case */ case HFmode: case SFmode: /* swap halfwords in the first word */ th = (unsigned long) e[0] & 0xffff; t = (unsigned long) e[1] & 0xffff; t |= th << 16; x[0] = (long) t; break; default: abort (); } } else { /* Pack the output array without swapping. */ switch (mode) { case TFmode: /* Pack the fourth long. */ th = (unsigned long) e[7] & 0xffff; t = (unsigned long) e[6] & 0xffff; t |= th << 16; x[3] = (long) t; case XFmode: /* Pack the third long. Each element of the input REAL_VALUE_TYPE array has 16 useful bits in it. */ th = (unsigned long) e[5] & 0xffff; t = (unsigned long) e[4] & 0xffff; t |= th << 16; x[2] = (long) t; /* fall into the double case */ case DFmode: /* pack the second long */ th = (unsigned long) e[3] & 0xffff; t = (unsigned long) e[2] & 0xffff; t |= th << 16; x[1] = (long) t; /* fall into the float case */ case HFmode: case SFmode: /* pack the first long */ th = (unsigned long) e[1] & 0xffff; t = (unsigned long) e[0] & 0xffff; t |= th << 16; x[0] = (long) t; break; default: abort (); } } } /* This is the implementation of the REAL_ARITHMETIC macro. */ void earith (value, icode, r1, r2) REAL_VALUE_TYPE *value; int icode; REAL_VALUE_TYPE *r1; REAL_VALUE_TYPE *r2; { unsigned EMUSHORT d1[NE], d2[NE], v[NE]; enum tree_code code; GET_REAL (r1, d1); GET_REAL (r2, d2); #ifdef NANS /* Return NaN input back to the caller. */ if (eisnan (d1)) { PUT_REAL (d1, value); return; } if (eisnan (d2)) { PUT_REAL (d2, value); return; } #endif code = (enum tree_code) icode; switch (code) { case PLUS_EXPR: eadd (d2, d1, v); break; case MINUS_EXPR: esub (d2, d1, v); /* d1 - d2 */ break; case MULT_EXPR: emul (d2, d1, v); break; case RDIV_EXPR: #ifndef REAL_INFINITY if (ecmp (d2, ezero) == 0) { #ifdef NANS enan (v, eisneg (d1) ^ eisneg (d2)); break; #else abort (); #endif } #endif ediv (d2, d1, v); /* d1/d2 */ break; case MIN_EXPR: /* min (d1,d2) */ if (ecmp (d1, d2) < 0) emov (d1, v); else emov (d2, v); break; case MAX_EXPR: /* max (d1,d2) */ if (ecmp (d1, d2) > 0) emov (d1, v); else emov (d2, v); break; default: emov (ezero, v); break; } PUT_REAL (v, value); } /* Truncate REAL_VALUE_TYPE toward zero to signed HOST_WIDE_INT. implements REAL_VALUE_RNDZINT (x) (etrunci (x)). */ REAL_VALUE_TYPE etrunci (x) REAL_VALUE_TYPE x; { unsigned EMUSHORT f[NE], g[NE]; REAL_VALUE_TYPE r; HOST_WIDE_INT l; GET_REAL (&x, g); #ifdef NANS if (eisnan (g)) return (x); #endif eifrac (g, &l, f); ltoe (&l, g); PUT_REAL (g, &r); return (r); } /* Truncate REAL_VALUE_TYPE toward zero to unsigned HOST_WIDE_INT; implements REAL_VALUE_UNSIGNED_RNDZINT (x) (etruncui (x)). */ REAL_VALUE_TYPE etruncui (x) REAL_VALUE_TYPE x; { unsigned EMUSHORT f[NE], g[NE]; REAL_VALUE_TYPE r; unsigned HOST_WIDE_INT l; GET_REAL (&x, g); #ifdef NANS if (eisnan (g)) return (x); #endif euifrac (g, &l, f); ultoe (&l, g); PUT_REAL (g, &r); return (r); } /* This is the REAL_VALUE_ATOF function. It converts a decimal string to binary, rounding off as indicated by the machine_mode argument. Then it promotes the rounded value to REAL_VALUE_TYPE. */ REAL_VALUE_TYPE ereal_atof (s, t) char *s; enum machine_mode t; { unsigned EMUSHORT tem[NE], e[NE]; REAL_VALUE_TYPE r; switch (t) { case HFmode: case SFmode: asctoe24 (s, tem); e24toe (tem, e); break; case DFmode: asctoe53 (s, tem); e53toe (tem, e); break; case XFmode: asctoe64 (s, tem); e64toe (tem, e); break; case TFmode: asctoe113 (s, tem); e113toe (tem, e); break; default: asctoe (s, e); } PUT_REAL (e, &r); return (r); } /* Expansion of REAL_NEGATE. */ REAL_VALUE_TYPE ereal_negate (x) REAL_VALUE_TYPE x; { unsigned EMUSHORT e[NE]; REAL_VALUE_TYPE r; GET_REAL (&x, e); eneg (e); PUT_REAL (e, &r); return (r); } /* Round real toward zero to HOST_WIDE_INT; implements REAL_VALUE_FIX (x). */ HOST_WIDE_INT efixi (x) REAL_VALUE_TYPE x; { unsigned EMUSHORT f[NE], g[NE]; HOST_WIDE_INT l; GET_REAL (&x, f); #ifdef NANS if (eisnan (f)) { warning ("conversion from NaN to int"); return (-1); } #endif eifrac (f, &l, g); return l; } /* Round real toward zero to unsigned HOST_WIDE_INT implements REAL_VALUE_UNSIGNED_FIX (x). Negative input returns zero. */ unsigned HOST_WIDE_INT efixui (x) REAL_VALUE_TYPE x; { unsigned EMUSHORT f[NE], g[NE]; unsigned HOST_WIDE_INT l; GET_REAL (&x, f); #ifdef NANS if (eisnan (f)) { warning ("conversion from NaN to unsigned int"); return (-1); } #endif euifrac (f, &l, g); return l; } /* REAL_VALUE_FROM_INT macro. */ void ereal_from_int (d, i, j, mode) REAL_VALUE_TYPE *d; HOST_WIDE_INT i, j; enum machine_mode mode; { unsigned EMUSHORT df[NE], dg[NE]; HOST_WIDE_INT low, high; int sign; if (GET_MODE_CLASS (mode) != MODE_FLOAT) abort (); sign = 0; low = i; if ((high = j) < 0) { sign = 1; /* complement and add 1 */ high = ~high; if (low) low = -low; else high += 1; } eldexp (eone, HOST_BITS_PER_WIDE_INT, df); ultoe ((unsigned HOST_WIDE_INT *) &high, dg); emul (dg, df, dg); ultoe ((unsigned HOST_WIDE_INT *) &low, df); eadd (df, dg, dg); if (sign) eneg (dg); /* A REAL_VALUE_TYPE may not be wide enough to hold the two HOST_WIDE_INTS. Avoid double-rounding errors later by rounding off now from the extra-wide internal format to the requested precision. */ switch (GET_MODE_BITSIZE (mode)) { case 32: etoe24 (dg, df); e24toe (df, dg); break; case 64: etoe53 (dg, df); e53toe (df, dg); break; case 96: etoe64 (dg, df); e64toe (df, dg); break; case 128: etoe113 (dg, df); e113toe (df, dg); break; default: abort (); } PUT_REAL (dg, d); } /* REAL_VALUE_FROM_UNSIGNED_INT macro. */ void ereal_from_uint (d, i, j, mode) REAL_VALUE_TYPE *d; unsigned HOST_WIDE_INT i, j; enum machine_mode mode; { unsigned EMUSHORT df[NE], dg[NE]; unsigned HOST_WIDE_INT low, high; if (GET_MODE_CLASS (mode) != MODE_FLOAT) abort (); low = i; high = j; eldexp (eone, HOST_BITS_PER_WIDE_INT, df); ultoe (&high, dg); emul (dg, df, dg); ultoe (&low, df); eadd (df, dg, dg); /* A REAL_VALUE_TYPE may not be wide enough to hold the two HOST_WIDE_INTS. Avoid double-rounding errors later by rounding off now from the extra-wide internal format to the requested precision. */ switch (GET_MODE_BITSIZE (mode)) { case 32: etoe24 (dg, df); e24toe (df, dg); break; case 64: etoe53 (dg, df); e53toe (df, dg); break; case 96: etoe64 (dg, df); e64toe (df, dg); break; case 128: etoe113 (dg, df); e113toe (df, dg); break; default: abort (); } PUT_REAL (dg, d); } /* REAL_VALUE_TO_INT macro. */ void ereal_to_int (low, high, rr) HOST_WIDE_INT *low, *high; REAL_VALUE_TYPE rr; { unsigned EMUSHORT d[NE], df[NE], dg[NE], dh[NE]; int s; GET_REAL (&rr, d); #ifdef NANS if (eisnan (d)) { warning ("conversion from NaN to int"); *low = -1; *high = -1; return; } #endif /* convert positive value */ s = 0; if (eisneg (d)) { eneg (d); s = 1; } eldexp (eone, HOST_BITS_PER_WIDE_INT, df); ediv (df, d, dg); /* dg = d / 2^32 is the high word */ euifrac (dg, (unsigned HOST_WIDE_INT *) high, dh); emul (df, dh, dg); /* fractional part is the low word */ euifrac (dg, (unsigned HOST_WIDE_INT *)low, dh); if (s) { /* complement and add 1 */ *high = ~(*high); if (*low) *low = -(*low); else *high += 1; } } /* REAL_VALUE_LDEXP macro. */ REAL_VALUE_TYPE ereal_ldexp (x, n) REAL_VALUE_TYPE x; int n; { unsigned EMUSHORT e[NE], y[NE]; REAL_VALUE_TYPE r; GET_REAL (&x, e); #ifdef NANS if (eisnan (e)) return (x); #endif eldexp (e, n, y); PUT_REAL (y, &r); return (r); } /* These routines are conditionally compiled because functions of the same names may be defined in fold-const.c. */ #ifdef REAL_ARITHMETIC /* Check for infinity in a REAL_VALUE_TYPE. */ int target_isinf (x) REAL_VALUE_TYPE x; { unsigned EMUSHORT e[NE]; #ifdef INFINITY GET_REAL (&x, e); return (eisinf (e)); #else return 0; #endif } /* Check whether a REAL_VALUE_TYPE item is a NaN. */ int target_isnan (x) REAL_VALUE_TYPE x; { unsigned EMUSHORT e[NE]; #ifdef NANS GET_REAL (&x, e); return (eisnan (e)); #else return (0); #endif } /* Check for a negative REAL_VALUE_TYPE number. This just checks the sign bit, so that -0 counts as negative. */ int target_negative (x) REAL_VALUE_TYPE x; { return ereal_isneg (x); } /* Expansion of REAL_VALUE_TRUNCATE. The result is in floating point, rounded to nearest or even. */ REAL_VALUE_TYPE real_value_truncate (mode, arg) enum machine_mode mode; REAL_VALUE_TYPE arg; { unsigned EMUSHORT e[NE], t[NE]; REAL_VALUE_TYPE r; GET_REAL (&arg, e); #ifdef NANS if (eisnan (e)) return (arg); #endif eclear (t); switch (mode) { case TFmode: etoe113 (e, t); e113toe (t, t); break; case XFmode: etoe64 (e, t); e64toe (t, t); break; case DFmode: etoe53 (e, t); e53toe (t, t); break; case HFmode: case SFmode: etoe24 (e, t); e24toe (t, t); break; case SImode: r = etrunci (arg); return (r); /* If an unsupported type was requested, presume that the machine files know something useful to do with the unmodified value. */ default: return (arg); } PUT_REAL (t, &r); return (r); } /* Try to change R into its exact multiplicative inverse in machine mode MODE. Return nonzero function value if successful. */ int exact_real_inverse (mode, r) enum machine_mode mode; REAL_VALUE_TYPE *r; { unsigned EMUSHORT e[NE], einv[NE]; REAL_VALUE_TYPE rinv; int i; GET_REAL (r, e); /* Test for input in range. Don't transform IEEE special values. */ if (eisinf (e) || eisnan (e) || (ecmp (e, ezero) == 0)) return 0; /* Test for a power of 2: all significand bits zero except the MSB. We are assuming the target has binary (or hex) arithmetic. */ if (e[NE - 2] != 0x8000) return 0; for (i = 0; i < NE - 2; i++) { if (e[i] != 0) return 0; } /* Compute the inverse and truncate it to the required mode. */ ediv (e, eone, einv); PUT_REAL (einv, &rinv); rinv = real_value_truncate (mode, rinv); #ifdef CHECK_FLOAT_VALUE /* This check is not redundant. It may, for example, flush a supposedly IEEE denormal value to zero. */ i = 0; if (CHECK_FLOAT_VALUE (mode, rinv, i)) return 0; #endif GET_REAL (&rinv, einv); /* Check the bits again, because the truncation might have generated an arbitrary saturation value on overflow. */ if (einv[NE - 2] != 0x8000) return 0; for (i = 0; i < NE - 2; i++) { if (einv[i] != 0) return 0; } /* Fail if the computed inverse is out of range. */ if (eisinf (einv) || eisnan (einv) || (ecmp (einv, ezero) == 0)) return 0; /* Output the reciprocal and return success flag. */ PUT_REAL (einv, r); return 1; } #endif /* REAL_ARITHMETIC defined */ /* Used for debugging--print the value of R in human-readable format on stderr. */ void debug_real (r) REAL_VALUE_TYPE r; { char dstr[30]; REAL_VALUE_TO_DECIMAL (r, "%.20g", dstr); fprintf (stderr, "%s", dstr); } /* The following routines convert REAL_VALUE_TYPE to the various floating point formats that are meaningful to supported computers. The results are returned in 32-bit pieces, each piece stored in a `long'. This is so they can be printed by statements like fprintf (file, "%lx, %lx", L[0], L[1]); that will work on both narrow- and wide-word host computers. */ /* Convert R to a 128-bit long double precision value. The output array L contains four 32-bit pieces of the result, in the order they would appear in memory. */ void etartdouble (r, l) REAL_VALUE_TYPE r; long l[]; { unsigned EMUSHORT e[NE]; GET_REAL (&r, e); etoe113 (e, e); endian (e, l, TFmode); } /* Convert R to a double extended precision value. The output array L contains three 32-bit pieces of the result, in the order they would appear in memory. */ void etarldouble (r, l) REAL_VALUE_TYPE r; long l[]; { unsigned EMUSHORT e[NE]; GET_REAL (&r, e); etoe64 (e, e); endian (e, l, XFmode); } /* Convert R to a double precision value. The output array L contains two 32-bit pieces of the result, in the order they would appear in memory. */ void etardouble (r, l) REAL_VALUE_TYPE r; long l[]; { unsigned EMUSHORT e[NE]; GET_REAL (&r, e); etoe53 (e, e); endian (e, l, DFmode); } /* Convert R to a single precision float value stored in the least-significant bits of a `long'. */ long etarsingle (r) REAL_VALUE_TYPE r; { unsigned EMUSHORT e[NE]; long l; GET_REAL (&r, e); etoe24 (e, e); endian (e, &l, SFmode); return ((long) l); } /* Convert X to a decimal ASCII string S for output to an assembly language file. Note, there is no standard way to spell infinity or a NaN, so these values may require special treatment in the tm.h macros. */ void ereal_to_decimal (x, s) REAL_VALUE_TYPE x; char *s; { unsigned EMUSHORT e[NE]; GET_REAL (&x, e); etoasc (e, s, 20); } /* Compare X and Y. Return 1 if X > Y, 0 if X == Y, -1 if X < Y, or -2 if either is a NaN. */ int ereal_cmp (x, y) REAL_VALUE_TYPE x, y; { unsigned EMUSHORT ex[NE], ey[NE]; GET_REAL (&x, ex); GET_REAL (&y, ey); return (ecmp (ex, ey)); } /* Return 1 if the sign bit of X is set, else return 0. */ int ereal_isneg (x) REAL_VALUE_TYPE x; { unsigned EMUSHORT ex[NE]; GET_REAL (&x, ex); return (eisneg (ex)); } /* End of REAL_ARITHMETIC interface */ /* Extended precision IEEE binary floating point arithmetic routines Numbers are stored in C language as arrays of 16-bit unsigned short integers. The arguments of the routines are pointers to the arrays. External e type data structure, similar to Intel 8087 chip temporary real format but possibly with a larger significand: NE-1 significand words (least significant word first, most significant bit is normally set) exponent (value = EXONE for 1.0, top bit is the sign) Internal exploded e-type data structure of a number (a "word" is 16 bits): ei[0] sign word (0 for positive, 0xffff for negative) ei[1] biased exponent (value = EXONE for the number 1.0) ei[2] high guard word (always zero after normalization) ei[3] to ei[NI-2] significand (NI-4 significand words, most significant word first, most significant bit is set) ei[NI-1] low guard word (0x8000 bit is rounding place) Routines for external format e-type numbers asctoe (string, e) ASCII string to extended double e type asctoe64 (string, &d) ASCII string to long double asctoe53 (string, &d) ASCII string to double asctoe24 (string, &f) ASCII string to single asctoeg (string, e, prec) ASCII string to specified precision e24toe (&f, e) IEEE single precision to e type e53toe (&d, e) IEEE double precision to e type e64toe (&d, e) IEEE long double precision to e type e113toe (&d, e) 128-bit long double precision to e type eabs (e) absolute value eadd (a, b, c) c = b + a eclear (e) e = 0 ecmp (a, b) Returns 1 if a > b, 0 if a == b, -1 if a < b, -2 if either a or b is a NaN. ediv (a, b, c) c = b / a efloor (a, b) truncate to integer, toward -infinity efrexp (a, exp, s) extract exponent and significand eifrac (e, &l, frac) e to HOST_WIDE_INT and e type fraction euifrac (e, &l, frac) e to unsigned HOST_WIDE_INT and e type fraction einfin (e) set e to infinity, leaving its sign alone eldexp (a, n, b) multiply by 2**n emov (a, b) b = a emul (a, b, c) c = b * a eneg (e) e = -e eround (a, b) b = nearest integer value to a esub (a, b, c) c = b - a e24toasc (&f, str, n) single to ASCII string, n digits after decimal e53toasc (&d, str, n) double to ASCII string, n digits after decimal e64toasc (&d, str, n) 80-bit long double to ASCII string e113toasc (&d, str, n) 128-bit long double to ASCII string etoasc (e, str, n) e to ASCII string, n digits after decimal etoe24 (e, &f) convert e type to IEEE single precision etoe53 (e, &d) convert e type to IEEE double precision etoe64 (e, &d) convert e type to IEEE long double precision ltoe (&l, e) HOST_WIDE_INT to e type ultoe (&l, e) unsigned HOST_WIDE_INT to e type eisneg (e) 1 if sign bit of e != 0, else 0 eisinf (e) 1 if e has maximum exponent (non-IEEE) or is infinite (IEEE) eisnan (e) 1 if e is a NaN Routines for internal format exploded e-type numbers eaddm (ai, bi) add significands, bi = bi + ai ecleaz (ei) ei = 0 ecleazs (ei) set ei = 0 but leave its sign alone ecmpm (ai, bi) compare significands, return 1, 0, or -1 edivm (ai, bi) divide significands, bi = bi / ai emdnorm (ai,l,s,exp) normalize and round off emovi (a, ai) convert external a to internal ai emovo (ai, a) convert internal ai to external a emovz (ai, bi) bi = ai, low guard word of bi = 0 emulm (ai, bi) multiply significands, bi = bi * ai enormlz (ei) left-justify the significand eshdn1 (ai) shift significand and guards down 1 bit eshdn8 (ai) shift down 8 bits eshdn6 (ai) shift down 16 bits eshift (ai, n) shift ai n bits up (or down if n < 0) eshup1 (ai) shift significand and guards up 1 bit eshup8 (ai) shift up 8 bits eshup6 (ai) shift up 16 bits esubm (ai, bi) subtract significands, bi = bi - ai eiisinf (ai) 1 if infinite eiisnan (ai) 1 if a NaN eiisneg (ai) 1 if sign bit of ai != 0, else 0 einan (ai) set ai = NaN eiinfin (ai) set ai = infinity The result is always normalized and rounded to NI-4 word precision after each arithmetic operation. Exception flags are NOT fully supported. Signaling NaN's are NOT supported; they are treated the same as quiet NaN's. Define INFINITY for support of infinity; otherwise a saturation arithmetic is implemented. Define NANS for support of Not-a-Number items; otherwise the arithmetic will never produce a NaN output, and might be confused by a NaN input. If NaN's are supported, the output of `ecmp (a,b)' is -2 if either a or b is a NaN. This means asking `if (ecmp (a,b) < 0)' may not be legitimate. Use `if (ecmp (a,b) == -1)' for `less than' if in doubt. Denormals are always supported here where appropriate (e.g., not for conversion to DEC numbers). */ /* Definitions for error codes that are passed to the common error handling routine mtherr. For Digital Equipment PDP-11 and VAX computers, certain IBM systems, and others that use numbers with a 56-bit significand, the symbol DEC should be defined. In this mode, most floating point constants are given as arrays of octal integers to eliminate decimal to binary conversion errors that might be introduced by the compiler. For computers, such as IBM PC, that follow the IEEE Standard for Binary Floating Point Arithmetic (ANSI/IEEE Std 754-1985), the symbol IEEE should be defined. These numbers have 53-bit significands. In this mode, constants are provided as arrays of hexadecimal 16 bit integers. The endian-ness of generated values is controlled by REAL_WORDS_BIG_ENDIAN. To accommodate other types of computer arithmetic, all constants are also provided in a normal decimal radix which one can hope are correctly converted to a suitable format by the available C language compiler. To invoke this mode, the symbol UNK is defined. An important difference among these modes is a predefined set of machine arithmetic constants for each. The numbers MACHEP (the machine roundoff error), MAXNUM (largest number represented), and several other parameters are preset by the configuration symbol. Check the file const.c to ensure that these values are correct for your computer. For ANSI C compatibility, define ANSIC equal to 1. Currently this affects only the atan2 function and others that use it. */ /* Constant definitions for math error conditions. */ #define DOMAIN 1 /* argument domain error */ #define SING 2 /* argument singularity */ #define OVERFLOW 3 /* overflow range error */ #define UNDERFLOW 4 /* underflow range error */ #define TLOSS 5 /* total loss of precision */ #define PLOSS 6 /* partial loss of precision */ #define INVALID 7 /* NaN-producing operation */ /* e type constants used by high precision check routines */ #if LONG_DOUBLE_TYPE_SIZE == 128 /* 0.0 */ unsigned EMUSHORT ezero[NE] = {0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,}; extern unsigned EMUSHORT ezero[]; /* 5.0E-1 */ unsigned EMUSHORT ehalf[NE] = {0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3ffe,}; extern unsigned EMUSHORT ehalf[]; /* 1.0E0 */ unsigned EMUSHORT eone[NE] = {0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x3fff,}; extern unsigned EMUSHORT eone[]; /* 2.0E0 */ unsigned EMUSHORT etwo[NE] = {0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4000,}; extern unsigned EMUSHORT etwo[]; /* 3.2E1 */ unsigned EMUSHORT e32[NE] = {0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x8000, 0x4004,}; extern unsigned EMUSHORT e32[]; /* 6.93147180559945309417232121458176568075500134360255E-1 */ unsigned EMUSHORT elog2[NE] = {0x40f3, 0xf6af, 0x03f2, 0xb398, 0xc9e3, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,}; extern unsigned EMUSHORT elog2[]; /* 1.41421356237309504880168872420969807856967187537695E0 */ unsigned EMUSHORT esqrt2[NE] = {0x1d6f, 0xbe9f, 0x754a, 0x89b3, 0x597d, 0x6484, 0174736, 0171463, 0132404, 0x3fff,}; extern unsigned EMUSHORT esqrt2[]; /* 3.14159265358979323846264338327950288419716939937511E0 */ unsigned EMUSHORT epi[NE] = {0x2902, 0x1cd1, 0x80dc, 0x628b, 0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,}; extern unsigned EMUSHORT epi[]; #else /* LONG_DOUBLE_TYPE_SIZE is other than 128 */ unsigned EMUSHORT ezero[NE] = {0, 0000000, 0000000, 0000000, 0000000, 0000000,}; unsigned EMUSHORT ehalf[NE] = {0, 0000000, 0000000, 0000000, 0100000, 0x3ffe,}; unsigned EMUSHORT eone[NE] = {0, 0000000, 0000000, 0000000, 0100000, 0x3fff,}; unsigned EMUSHORT etwo[NE] = {0, 0000000, 0000000, 0000000, 0100000, 0040000,}; unsigned EMUSHORT e32[NE] = {0, 0000000, 0000000, 0000000, 0100000, 0040004,}; unsigned EMUSHORT elog2[NE] = {0xc9e4, 0x79ab, 0150717, 0013767, 0130562, 0x3ffe,}; unsigned EMUSHORT esqrt2[NE] = {0x597e, 0x6484, 0174736, 0171463, 0132404, 0x3fff,}; unsigned EMUSHORT epi[NE] = {0xc4c6, 0xc234, 0020550, 0155242, 0144417, 0040000,}; #endif /* Control register for rounding precision. This can be set to 113 (if NE=10), 80 (if NE=6), 64, 56, 53, or 24 bits. */ int rndprc = NBITS; extern int rndprc; /* Clear out entire e-type number X. */ static void eclear (x) register unsigned EMUSHORT *x; { register int i; for (i = 0; i < NE; i++) *x++ = 0; } /* Move e-type number from A to B. */ static void emov (a, b) register unsigned EMUSHORT *a, *b; { register int i; for (i = 0; i < NE; i++) *b++ = *a++; } /* Absolute value of e-type X. */ static void eabs (x) unsigned EMUSHORT x[]; { /* sign is top bit of last word of external format */ x[NE - 1] &= 0x7fff; } /* Negate the e-type number X. */ static void eneg (x) unsigned EMUSHORT x[]; { x[NE - 1] ^= 0x8000; /* Toggle the sign bit */ } /* Return 1 if sign bit of e-type number X is nonzero, else zero. */ static int eisneg (x) unsigned EMUSHORT x[]; { if (x[NE - 1] & 0x8000) return (1); else return (0); } /* Return 1 if e-type number X is infinity, else return zero. */ static int eisinf (x) unsigned EMUSHORT x[]; { #ifdef NANS if (eisnan (x)) return (0); #endif if ((x[NE - 1] & 0x7fff) == 0x7fff) return (1); else return (0); } /* Check if e-type number is not a number. The bit pattern is one that we defined, so we know for sure how to detect it. */ static int eisnan (x) unsigned EMUSHORT x[]; { #ifdef NANS int i; /* NaN has maximum exponent */ if ((x[NE - 1] & 0x7fff) != 0x7fff) return (0); /* ... and non-zero significand field. */ for (i = 0; i < NE - 1; i++) { if (*x++ != 0) return (1); } #endif return (0); } /* Fill e-type number X with infinity pattern (IEEE) or largest possible number (non-IEEE). */ static void einfin (x) register unsigned EMUSHORT *x; { register int i; #ifdef INFINITY for (i = 0; i < NE - 1; i++) *x++ = 0; *x |= 32767; #else for (i = 0; i < NE - 1; i++) *x++ = 0xffff; *x |= 32766; if (rndprc < NBITS) { if (rndprc == 113) { *(x - 9) = 0; *(x - 8) = 0; } if (rndprc == 64) { *(x - 5) = 0; } if (rndprc == 53) { *(x - 4) = 0xf800; } else { *(x - 4) = 0; *(x - 3) = 0; *(x - 2) = 0xff00; } } #endif } /* Output an e-type NaN. This generates Intel's quiet NaN pattern for extended real. The exponent is 7fff, the leading mantissa word is c000. */ static void enan (x, sign) register unsigned EMUSHORT *x; int sign; { register int i; for (i = 0; i < NE - 2; i++) *x++ = 0; *x++ = 0xc000; *x = (sign << 15) | 0x7fff; } /* Move in an e-type number A, converting it to exploded e-type B. */ static void emovi (a, b) unsigned EMUSHORT *a, *b; { register unsigned EMUSHORT *p, *q; int i; q = b; p = a + (NE - 1); /* point to last word of external number */ /* get the sign bit */ if (*p & 0x8000) *q++ = 0xffff; else *q++ = 0; /* get the exponent */ *q = *p--; *q++ &= 0x7fff; /* delete the sign bit */ #ifdef INFINITY if ((*(q - 1) & 0x7fff) == 0x7fff) { #ifdef NANS if (eisnan (a)) { *q++ = 0; for (i = 3; i < NI; i++) *q++ = *p--; return; } #endif for (i = 2; i < NI; i++) *q++ = 0; return; } #endif /* clear high guard word */ *q++ = 0; /* move in the significand */ for (i = 0; i < NE - 1; i++) *q++ = *p--; /* clear low guard word */ *q = 0; } /* Move out exploded e-type number A, converting it to e type B. */ static void emovo (a, b) unsigned EMUSHORT *a, *b; { register unsigned EMUSHORT *p, *q; unsigned EMUSHORT i; int j; p = a; q = b + (NE - 1); /* point to output exponent */ /* combine sign and exponent */ i = *p++; if (i) *q-- = *p++ | 0x8000; else *q-- = *p++; #ifdef INFINITY if (*(p - 1) == 0x7fff) { #ifdef NANS if (eiisnan (a)) { enan (b, eiisneg (a)); return; } #endif einfin (b); return; } #endif /* skip over guard word */ ++p; /* move the significand */ for (j = 0; j < NE - 1; j++) *q-- = *p++; } /* Clear out exploded e-type number XI. */ static void ecleaz (xi) register unsigned EMUSHORT *xi; { register int i; for (i = 0; i < NI; i++) *xi++ = 0; } /* Clear out exploded e-type XI, but don't touch the sign. */ static void ecleazs (xi) register unsigned EMUSHORT *xi; { register int i; ++xi; for (i = 0; i < NI - 1; i++) *xi++ = 0; } /* Move exploded e-type number from A to B. */ static void emovz (a, b) register unsigned EMUSHORT *a, *b; { register int i; for (i = 0; i < NI - 1; i++) *b++ = *a++; /* clear low guard word */ *b = 0; } /* Generate exploded e-type NaN. The explicit pattern for this is maximum exponent and top two significant bits set. */ static void einan (x) unsigned EMUSHORT x[]; { ecleaz (x); x[E] = 0x7fff; x[M + 1] = 0xc000; } /* Return nonzero if exploded e-type X is a NaN. */ static int eiisnan (x) unsigned EMUSHORT x[]; { int i; if ((x[E] & 0x7fff) == 0x7fff) { for (i = M + 1; i < NI; i++) { if (x[i] != 0) return (1); } } return (0); } /* Return nonzero if sign of exploded e-type X is nonzero. */ static int eiisneg (x) unsigned EMUSHORT x[]; { return x[0] != 0; } /* Fill exploded e-type X with infinity pattern. This has maximum exponent and significand all zeros. */ static void eiinfin (x) unsigned EMUSHORT x[]; { ecleaz (x); x[E] = 0x7fff; } /* Return nonzero if exploded e-type X is infinite. */ static int eiisinf (x) unsigned EMUSHORT x[]; { #ifdef NANS if (eiisnan (x)) return (0); #endif if ((x[E] & 0x7fff) == 0x7fff) return (1); return (0); } /* Compare significands of numbers in internal exploded e-type format. Guard words are included in the comparison. Returns +1 if a > b 0 if a == b -1 if a < b */ static int ecmpm (a, b) register unsigned EMUSHORT *a, *b; { int i; a += M; /* skip up to significand area */ b += M; for (i = M; i < NI; i++) { if (*a++ != *b++) goto difrnt; } return (0); difrnt: if (*(--a) > *(--b)) return (1); else return (-1); } /* Shift significand of exploded e-type X down by 1 bit. */ static void eshdn1 (x) register unsigned EMUSHORT *x; { register unsigned EMUSHORT bits; int i; x += M; /* point to significand area */ bits = 0; for (i = M; i < NI; i++) { if (*x & 1) bits |= 1; *x >>= 1; if (bits & 2) *x |= 0x8000; bits <<= 1; ++x; } } /* Shift significand of exploded e-type X up by 1 bit. */ static void eshup1 (x) register unsigned EMUSHORT *x; { register unsigned EMUSHORT bits; int i; x += NI - 1; bits = 0; for (i = M; i < NI; i++) { if (*x & 0x8000) bits |= 1; *x <<= 1; if (bits & 2) *x |= 1; bits <<= 1; --x; } } /* Shift significand of exploded e-type X down by 8 bits. */ static void eshdn8 (x) register unsigned EMUSHORT *x; { register unsigned EMUSHORT newbyt, oldbyt; int i; x += M; oldbyt = 0; for (i = M; i < NI; i++) { newbyt = *x << 8; *x >>= 8; *x |= oldbyt; oldbyt = newbyt; ++x; } } /* Shift significand of exploded e-type X up by 8 bits. */ static void eshup8 (x) register unsigned EMUSHORT *x; { int i; register unsigned EMUSHORT newbyt, oldbyt; x += NI - 1; oldbyt = 0; for (i = M; i < NI; i++) { newbyt = *x >> 8; *x <<= 8; *x |= oldbyt; oldbyt = newbyt; --x; } } /* Shift significand of exploded e-type X up by 16 bits. */ static void eshup6 (x) register unsigned EMUSHORT *x; { int i; register unsigned EMUSHORT *p; p = x + M; x += M + 1; for (i = M; i < NI - 1; i++) *p++ = *x++; *p = 0; } /* Shift significand of exploded e-type X down by 16 bits. */ static void eshdn6 (x) register unsigned EMUSHORT *x; { int i; register unsigned EMUSHORT *p; x += NI - 1; p = x + 1; for (i = M; i < NI - 1; i++) *(--p) = *(--x); *(--p) = 0; } /* Add significands of exploded e-type X and Y. X + Y replaces Y. */ static void eaddm (x, y) unsigned EMUSHORT *x, *y; { register unsigned EMULONG a; int i; unsigned int carry; x += NI - 1; y += NI - 1; carry = 0; for (i = M; i < NI; i++) { a = (unsigned EMULONG) (*x) + (unsigned EMULONG) (*y) + carry; if (a & 0x10000) carry = 1; else carry = 0; *y = (unsigned EMUSHORT) a; --x; --y; } } /* Subtract significands of exploded e-type X and Y. Y - X replaces Y. */ static void esubm (x, y) unsigned EMUSHORT *x, *y; { unsigned EMULONG a; int i; unsigned int carry; x += NI - 1; y += NI - 1; carry = 0; for (i = M; i < NI; i++) { a = (unsigned EMULONG) (*y) - (unsigned EMULONG) (*x) - carry; if (a & 0x10000) carry = 1; else carry = 0; *y = (unsigned EMUSHORT) a; --x; --y; } } static unsigned EMUSHORT equot[NI]; #if 0 /* Radix 2 shift-and-add versions of multiply and divide */ /* Divide significands */ int edivm (den, num) unsigned EMUSHORT den[], num[]; { int i; register unsigned EMUSHORT *p, *q; unsigned EMUSHORT j; p = &equot[0]; *p++ = num[0]; *p++ = num[1]; for (i = M; i < NI; i++) { *p++ = 0; } /* Use faster compare and subtraction if denominator has only 15 bits of significance. */ p = &den[M + 2]; if (*p++ == 0) { for (i = M + 3; i < NI; i++) { if (*p++ != 0) goto fulldiv; } if ((den[M + 1] & 1) != 0) goto fulldiv; eshdn1 (num); eshdn1 (den); p = &den[M + 1]; q = &num[M + 1]; for (i = 0; i < NBITS + 2; i++) { if (*p <= *q) { *q -= *p; j = 1; } else { j = 0; } eshup1 (equot); equot[NI - 2] |= j; eshup1 (num); } goto divdon; } /* The number of quotient bits to calculate is NBITS + 1 scaling guard bit + 1 roundoff bit. */ fulldiv: p = &equot[NI - 2]; for (i = 0; i < NBITS + 2; i++) { if (ecmpm (den, num) <= 0) { esubm (den, num); j = 1; /* quotient bit = 1 */ } else j = 0; eshup1 (equot); *p |= j; eshup1 (num); } divdon: eshdn1 (equot); eshdn1 (equot); /* test for nonzero remainder after roundoff bit */ p = &num[M]; j = 0; for (i = M; i < NI; i++) { j |= *p++; } if (j) j = 1; for (i = 0; i < NI; i++) num[i] = equot[i]; return ((int) j); } /* Multiply significands */ int emulm (a, b) unsigned EMUSHORT a[], b[]; { unsigned EMUSHORT *p, *q; int i, j, k; equot[0] = b[0]; equot[1] = b[1]; for (i = M; i < NI; i++) equot[i] = 0; p = &a[NI - 2]; k = NBITS; while (*p == 0) /* significand is not supposed to be zero */ { eshdn6 (a); k -= 16; } if ((*p & 0xff) == 0) { eshdn8 (a); k -= 8; } q = &equot[NI - 1]; j = 0; for (i = 0; i < k; i++) { if (*p & 1) eaddm (b, equot); /* remember if there were any nonzero bits shifted out */ if (*q & 1) j |= 1; eshdn1 (a); eshdn1 (equot); } for (i = 0; i < NI; i++) b[i] = equot[i]; /* return flag for lost nonzero bits */ return (j); } #else /* Radix 65536 versions of multiply and divide. */ /* Multiply significand of e-type number B by 16-bit quantity A, return e-type result to C. */ static void m16m (a, b, c) unsigned int a; unsigned EMUSHORT b[], c[]; { register unsigned EMUSHORT *pp; register unsigned EMULONG carry; unsigned EMUSHORT *ps; unsigned EMUSHORT p[NI]; unsigned EMULONG aa, m; int i; aa = a; pp = &p[NI-2]; *pp++ = 0; *pp = 0; ps = &b[NI-1]; for (i=M+1; i> 16) + (m >> 16) + *pp; *pp = (unsigned EMUSHORT)carry; *(pp-1) = carry >> 16; } } for (i=M; i 0) { tquot -= 1; esubm (den, tprod); if (ecmpm (tprod, num) > 0) { tquot -= 1; esubm (den, tprod); } } esubm (tprod, num); equot[i] = tquot; eshup6(num); } /* test for nonzero remainder after roundoff bit */ p = &num[M]; j = 0; for (i=M; i NBITS) { ecleazs (s); return; } #endif exp -= j; #ifndef INFINITY if (exp >= 32767L) goto overf; #else if ((j > NBITS) && (exp < 32767)) { ecleazs (s); return; } #endif if (exp < 0L) { if (exp > (EMULONG) (-NBITS - 1)) { j = (int) exp; i = eshift (s, j); if (i) lost = 1; } else { ecleazs (s); return; } } /* Round off, unless told not to by rcntrl. */ if (rcntrl == 0) goto mdfin; /* Set up rounding parameters if the control register changed. */ if (rndprc != rlast) { ecleaz (rbit); switch (rndprc) { default: case NBITS: rw = NI - 1; /* low guard word */ rmsk = 0xffff; rmbit = 0x8000; re = rw - 1; rebit = 1; break; case 113: rw = 10; rmsk = 0x7fff; rmbit = 0x4000; rebit = 0x8000; re = rw; break; case 64: rw = 7; rmsk = 0xffff; rmbit = 0x8000; re = rw - 1; rebit = 1; break; /* For DEC or IBM arithmetic */ case 56: rw = 6; rmsk = 0xff; rmbit = 0x80; rebit = 0x100; re = rw; break; case 53: rw = 6; rmsk = 0x7ff; rmbit = 0x0400; rebit = 0x800; re = rw; break; case 24: rw = 4; rmsk = 0xff; rmbit = 0x80; rebit = 0x100; re = rw; break; } rbit[re] = rebit; rlast = rndprc; } /* Shift down 1 temporarily if the data structure has an implied most significant bit and the number is denormal. Intel long double denormals also lose one bit of precision. */ if ((exp <= 0) && (rndprc != NBITS) && ((rndprc != 64) || ((rndprc == 64) && ! REAL_WORDS_BIG_ENDIAN))) { lost |= s[NI - 1] & 1; eshdn1 (s); } /* Clear out all bits below the rounding bit, remembering in r if any were nonzero. */ r = s[rw] & rmsk; if (rndprc < NBITS) { i = rw + 1; while (i < NI) { if (s[i]) r |= 1; s[i] = 0; ++i; } } s[rw] &= ~rmsk; if ((r & rmbit) != 0) { if (r == rmbit) { if (lost == 0) { /* round to even */ if ((s[re] & rebit) == 0) goto mddone; } else { if (subflg != 0) goto mddone; } } eaddm (rbit, s); } mddone: /* Undo the temporary shift for denormal values. */ if ((exp <= 0) && (rndprc != NBITS) && ((rndprc != 64) || ((rndprc == 64) && ! REAL_WORDS_BIG_ENDIAN))) { eshup1 (s); } if (s[2] != 0) { /* overflow on roundoff */ eshdn1 (s); exp += 1; } mdfin: s[NI - 1] = 0; if (exp >= 32767L) { #ifndef INFINITY overf: #endif #ifdef INFINITY s[1] = 32767; for (i = 2; i < NI - 1; i++) s[i] = 0; if (extra_warnings) warning ("floating point overflow"); #else s[1] = 32766; s[2] = 0; for (i = M + 1; i < NI - 1; i++) s[i] = 0xffff; s[NI - 1] = 0; if ((rndprc < 64) || (rndprc == 113)) { s[rw] &= ~rmsk; if (rndprc == 24) { s[5] = 0; s[6] = 0; } } #endif return; } if (exp < 0) s[1] = 0; else s[1] = (unsigned EMUSHORT) exp; } /* Subtract. C = B - A, all e type numbers. */ static int subflg = 0; static void esub (a, b, c) unsigned EMUSHORT *a, *b, *c; { #ifdef NANS if (eisnan (a)) { emov (a, c); return; } if (eisnan (b)) { emov (b, c); return; } /* Infinity minus infinity is a NaN. Test for subtracting infinities of the same sign. */ if (eisinf (a) && eisinf (b) && ((eisneg (a) ^ eisneg (b)) == 0)) { mtherr ("esub", INVALID); enan (c, 0); return; } #endif subflg = 1; eadd1 (a, b, c); } /* Add. C = A + B, all e type. */ static void eadd (a, b, c) unsigned EMUSHORT *a, *b, *c; { #ifdef NANS /* NaN plus anything is a NaN. */ if (eisnan (a)) { emov (a, c); return; } if (eisnan (b)) { emov (b, c); return; } /* Infinity minus infinity is a NaN. Test for adding infinities of opposite signs. */ if (eisinf (a) && eisinf (b) && ((eisneg (a) ^ eisneg (b)) != 0)) { mtherr ("esub", INVALID); enan (c, 0); return; } #endif subflg = 0; eadd1 (a, b, c); } /* Arithmetic common to both addition and subtraction. */ static void eadd1 (a, b, c) unsigned EMUSHORT *a, *b, *c; { unsigned EMUSHORT ai[NI], bi[NI], ci[NI]; int i, lost, j, k; EMULONG lt, lta, ltb; #ifdef INFINITY if (eisinf (a)) { emov (a, c); if (subflg) eneg (c); return; } if (eisinf (b)) { emov (b, c); return; } #endif emovi (a, ai); emovi (b, bi); if (subflg) ai[0] = ~ai[0]; /* compare exponents */ lta = ai[E]; ltb = bi[E]; lt = lta - ltb; if (lt > 0L) { /* put the larger number in bi */ emovz (bi, ci); emovz (ai, bi); emovz (ci, ai); ltb = bi[E]; lt = -lt; } lost = 0; if (lt != 0L) { if (lt < (EMULONG) (-NBITS - 1)) goto done; /* answer same as larger addend */ k = (int) lt; lost = eshift (ai, k); /* shift the smaller number down */ } else { /* exponents were the same, so must compare significands */ i = ecmpm (ai, bi); if (i == 0) { /* the numbers are identical in magnitude */ /* if different signs, result is zero */ if (ai[0] != bi[0]) { eclear (c); return; } /* if same sign, result is double */ /* double denormalized tiny number */ if ((bi[E] == 0) && ((bi[3] & 0x8000) == 0)) { eshup1 (bi); goto done; } /* add 1 to exponent unless both are zero! */ for (j = 1; j < NI - 1; j++) { if (bi[j] != 0) { ltb += 1; if (ltb >= 0x7fff) { eclear (c); if (ai[0] != 0) eneg (c); einfin (c); return; } break; } } bi[E] = (unsigned EMUSHORT) ltb; goto done; } if (i > 0) { /* put the larger number in bi */ emovz (bi, ci); emovz (ai, bi); emovz (ci, ai); } } if (ai[0] == bi[0]) { eaddm (ai, bi); subflg = 0; } else { esubm (ai, bi); subflg = 1; } emdnorm (bi, lost, subflg, ltb, 64); done: emovo (bi, c); } /* Divide: C = B/A, all e type. */ static void ediv (a, b, c) unsigned EMUSHORT *a, *b, *c; { unsigned EMUSHORT ai[NI], bi[NI]; int i, sign; EMULONG lt, lta, ltb; /* IEEE says if result is not a NaN, the sign is "-" if and only if operands have opposite signs -- but flush -0 to 0 later if not IEEE. */ sign = eisneg(a) ^ eisneg(b); #ifdef NANS /* Return any NaN input. */ if (eisnan (a)) { emov (a, c); return; } if (eisnan (b)) { emov (b, c); return; } /* Zero over zero, or infinity over infinity, is a NaN. */ if (((ecmp (a, ezero) == 0) && (ecmp (b, ezero) == 0)) || (eisinf (a) && eisinf (b))) { mtherr ("ediv", INVALID); enan (c, sign); return; } #endif /* Infinity over anything else is infinity. */ #ifdef INFINITY if (eisinf (b)) { einfin (c); goto divsign; } /* Anything else over infinity is zero. */ if (eisinf (a)) { eclear (c); goto divsign; } #endif emovi (a, ai); emovi (b, bi); lta = ai[E]; ltb = bi[E]; if (bi[E] == 0) { /* See if numerator is zero. */ for (i = 1; i < NI - 1; i++) { if (bi[i] != 0) { ltb -= enormlz (bi); goto dnzro1; } } eclear (c); goto divsign; } dnzro1: if (ai[E] == 0) { /* possible divide by zero */ for (i = 1; i < NI - 1; i++) { if (ai[i] != 0) { lta -= enormlz (ai); goto dnzro2; } } /* Divide by zero is not an invalid operation. It is a divide-by-zero operation! */ einfin (c); mtherr ("ediv", SING); goto divsign; } dnzro2: i = edivm (ai, bi); /* calculate exponent */ lt = ltb - lta + EXONE; emdnorm (bi, i, 0, lt, 64); emovo (bi, c); divsign: if (sign #ifndef IEEE && (ecmp (c, ezero) != 0) #endif ) *(c+(NE-1)) |= 0x8000; else *(c+(NE-1)) &= ~0x8000; } /* Multiply e-types A and B, return e-type product C. */ static void emul (a, b, c) unsigned EMUSHORT *a, *b, *c; { unsigned EMUSHORT ai[NI], bi[NI]; int i, j, sign; EMULONG lt, lta, ltb; /* IEEE says if result is not a NaN, the sign is "-" if and only if operands have opposite signs -- but flush -0 to 0 later if not IEEE. */ sign = eisneg(a) ^ eisneg(b); #ifdef NANS /* NaN times anything is the same NaN. */ if (eisnan (a)) { emov (a, c); return; } if (eisnan (b)) { emov (b, c); return; } /* Zero times infinity is a NaN. */ if ((eisinf (a) && (ecmp (b, ezero) == 0)) || (eisinf (b) && (ecmp (a, ezero) == 0))) { mtherr ("emul", INVALID); enan (c, sign); return; } #endif /* Infinity times anything else is infinity. */ #ifdef INFINITY if (eisinf (a) || eisinf (b)) { einfin (c); goto mulsign; } #endif emovi (a, ai); emovi (b, bi); lta = ai[E]; ltb = bi[E]; if (ai[E] == 0) { for (i = 1; i < NI - 1; i++) { if (ai[i] != 0) { lta -= enormlz (ai); goto mnzer1; } } eclear (c); goto mulsign; } mnzer1: if (bi[E] == 0) { for (i = 1; i < NI - 1; i++) { if (bi[i] != 0) { ltb -= enormlz (bi); goto mnzer2; } } eclear (c); goto mulsign; } mnzer2: /* Multiply significands */ j = emulm (ai, bi); /* calculate exponent */ lt = lta + ltb - (EXONE - 1); emdnorm (bi, j, 0, lt, 64); emovo (bi, c); mulsign: if (sign #ifndef IEEE && (ecmp (c, ezero) != 0) #endif ) *(c+(NE-1)) |= 0x8000; else *(c+(NE-1)) &= ~0x8000; } /* Convert double precision PE to e-type Y. */ static void e53toe (pe, y) unsigned EMUSHORT *pe, *y; { #ifdef DEC dectoe (pe, y); #else #ifdef IBM ibmtoe (pe, y, DFmode); #else register unsigned EMUSHORT r; register unsigned EMUSHORT *e, *p; unsigned EMUSHORT yy[NI]; int denorm, k; e = pe; denorm = 0; /* flag if denormalized number */ ecleaz (yy); if (! REAL_WORDS_BIG_ENDIAN) e += 3; r = *e; yy[0] = 0; if (r & 0x8000) yy[0] = 0xffff; yy[M] = (r & 0x0f) | 0x10; r &= ~0x800f; /* strip sign and 4 significand bits */ #ifdef INFINITY if (r == 0x7ff0) { #ifdef NANS if (! REAL_WORDS_BIG_ENDIAN) { if (((pe[3] & 0xf) != 0) || (pe[2] != 0) || (pe[1] != 0) || (pe[0] != 0)) { enan (y, yy[0] != 0); return; } } else { if (((pe[0] & 0xf) != 0) || (pe[1] != 0) || (pe[2] != 0) || (pe[3] != 0)) { enan (y, yy[0] != 0); return; } } #endif /* NANS */ eclear (y); einfin (y); if (yy[0]) eneg (y); return; } #endif /* INFINITY */ r >>= 4; /* If zero exponent, then the significand is denormalized. So take back the understood high significand bit. */ if (r == 0) { denorm = 1; yy[M] &= ~0x10; } r += EXONE - 01777; yy[E] = r; p = &yy[M + 1]; #ifdef IEEE if (! REAL_WORDS_BIG_ENDIAN) { *p++ = *(--e); *p++ = *(--e); *p++ = *(--e); } else { ++e; *p++ = *e++; *p++ = *e++; *p++ = *e++; } #endif eshift (yy, -5); if (denorm) { /* if zero exponent, then normalize the significand */ if ((k = enormlz (yy)) > NBITS) ecleazs (yy); else yy[E] -= (unsigned EMUSHORT) (k - 1); } emovo (yy, y); #endif /* not IBM */ #endif /* not DEC */ } /* Convert double extended precision float PE to e type Y. */ static void e64toe (pe, y) unsigned EMUSHORT *pe, *y; { unsigned EMUSHORT yy[NI]; unsigned EMUSHORT *e, *p, *q; int i; e = pe; p = yy; for (i = 0; i < NE - 5; i++) *p++ = 0; /* This precision is not ordinarily supported on DEC or IBM. */ #ifdef DEC for (i = 0; i < 5; i++) *p++ = *e++; #endif #ifdef IBM p = &yy[0] + (NE - 1); *p-- = *e++; ++e; for (i = 0; i < 5; i++) *p-- = *e++; #endif #ifdef IEEE if (! REAL_WORDS_BIG_ENDIAN) { for (i = 0; i < 5; i++) *p++ = *e++; /* For denormal long double Intel format, shift significand up one -- but only if the top significand bit is zero. A top bit of 1 is "pseudodenormal" when the exponent is zero. */ if((yy[NE-1] & 0x7fff) == 0 && (yy[NE-2] & 0x8000) == 0) { unsigned EMUSHORT temp[NI]; emovi(yy, temp); eshup1(temp); emovo(temp,y); return; } } else { p = &yy[0] + (NE - 1); #ifdef ARM_EXTENDED_IEEE_FORMAT /* For ARMs, the exponent is in the lowest 15 bits of the word. */ *p-- = (e[0] & 0x8000) | (e[1] & 0x7ffff); e += 2; #else *p-- = *e++; ++e; #endif for (i = 0; i < 4; i++) *p-- = *e++; } #endif #ifdef INFINITY /* Point to the exponent field and check max exponent cases. */ p = &yy[NE - 1]; if ((*p & 0x7fff) == 0x7fff) { #ifdef NANS if (! REAL_WORDS_BIG_ENDIAN) { for (i = 0; i < 4; i++) { if ((i != 3 && pe[i] != 0) /* Anything but 0x8000 here, including 0, is a NaN. */ || (i == 3 && pe[i] != 0x8000)) { enan (y, (*p & 0x8000) != 0); return; } } } else { #ifdef ARM_EXTENDED_IEEE_FORMAT for (i = 2; i <= 5; i++) { if (pe[i] != 0) { enan (y, (*p & 0x8000) != 0); return; } } #else /* not ARM */ /* In Motorola extended precision format, the most significant bit of an infinity mantissa could be either 1 or 0. It is the lower order bits that tell whether the value is a NaN. */ if ((pe[2] & 0x7fff) != 0) goto bigend_nan; for (i = 3; i <= 5; i++) { if (pe[i] != 0) { bigend_nan: enan (y, (*p & 0x8000) != 0); return; } } #endif /* not ARM */ } #endif /* NANS */ eclear (y); einfin (y); if (*p & 0x8000) eneg (y); return; } #endif /* INFINITY */ p = yy; q = y; for (i = 0; i < NE; i++) *q++ = *p++; } /* Convert 128-bit long double precision float PE to e type Y. */ static void e113toe (pe, y) unsigned EMUSHORT *pe, *y; { register unsigned EMUSHORT r; unsigned EMUSHORT *e, *p; unsigned EMUSHORT yy[NI]; int denorm, i; e = pe; denorm = 0; ecleaz (yy); #ifdef IEEE if (! REAL_WORDS_BIG_ENDIAN) e += 7; #endif r = *e; yy[0] = 0; if (r & 0x8000) yy[0] = 0xffff; r &= 0x7fff; #ifdef INFINITY if (r == 0x7fff) { #ifdef NANS if (! REAL_WORDS_BIG_ENDIAN) { for (i = 0; i < 7; i++) { if (pe[i] != 0) { enan (y, yy[0] != 0); return; } } } else { for (i = 1; i < 8; i++) { if (pe[i] != 0) { enan (y, yy[0] != 0); return; } } } #endif /* NANS */ eclear (y); einfin (y); if (yy[0]) eneg (y); return; } #endif /* INFINITY */ yy[E] = r; p = &yy[M + 1]; #ifdef IEEE if (! REAL_WORDS_BIG_ENDIAN) { for (i = 0; i < 7; i++) *p++ = *(--e); } else { ++e; for (i = 0; i < 7; i++) *p++ = *e++; } #endif /* If denormal, remove the implied bit; else shift down 1. */ if (r == 0) { yy[M] = 0; } else { yy[M] = 1; eshift (yy, -1); } emovo (yy, y); } /* Convert single precision float PE to e type Y. */ static void e24toe (pe, y) unsigned EMUSHORT *pe, *y; { #ifdef IBM ibmtoe (pe, y, SFmode); #else register unsigned EMUSHORT r; register unsigned EMUSHORT *e, *p; unsigned EMUSHORT yy[NI]; int denorm, k; e = pe; denorm = 0; /* flag if denormalized number */ ecleaz (yy); #ifdef IEEE if (! REAL_WORDS_BIG_ENDIAN) e += 1; #endif #ifdef DEC e += 1; #endif r = *e; yy[0] = 0; if (r & 0x8000) yy[0] = 0xffff; yy[M] = (r & 0x7f) | 0200; r &= ~0x807f; /* strip sign and 7 significand bits */ #ifdef INFINITY if (r == 0x7f80) { #ifdef NANS if (REAL_WORDS_BIG_ENDIAN) { if (((pe[0] & 0x7f) != 0) || (pe[1] != 0)) { enan (y, yy[0] != 0); return; } } else { if (((pe[1] & 0x7f) != 0) || (pe[0] != 0)) { enan (y, yy[0] != 0); return; } } #endif /* NANS */ eclear (y); einfin (y); if (yy[0]) eneg (y); return; } #endif /* INFINITY */ r >>= 7; /* If zero exponent, then the significand is denormalized. So take back the understood high significand bit. */ if (r == 0) { denorm = 1; yy[M] &= ~0200; } r += EXONE - 0177; yy[E] = r; p = &yy[M + 1]; #ifdef DEC *p++ = *(--e); #endif #ifdef IEEE if (! REAL_WORDS_BIG_ENDIAN) *p++ = *(--e); else { ++e; *p++ = *e++; } #endif eshift (yy, -8); if (denorm) { /* if zero exponent, then normalize the significand */ if ((k = enormlz (yy)) > NBITS) ecleazs (yy); else yy[E] -= (unsigned EMUSHORT) (k - 1); } emovo (yy, y); #endif /* not IBM */ } /* Convert e-type X to IEEE 128-bit long double format E. */ static void etoe113 (x, e) unsigned EMUSHORT *x, *e; { unsigned EMUSHORT xi[NI]; EMULONG exp; int rndsav; #ifdef NANS if (eisnan (x)) { make_nan (e, eisneg (x), TFmode); return; } #endif emovi (x, xi); exp = (EMULONG) xi[E]; #ifdef INFINITY if (eisinf (x)) goto nonorm; #endif /* round off to nearest or even */ rndsav = rndprc; rndprc = 113; emdnorm (xi, 0, 0, exp, 64); rndprc = rndsav; nonorm: toe113 (xi, e); } /* Convert exploded e-type X, that has already been rounded to 113-bit precision, to IEEE 128-bit long double format Y. */ static void toe113 (a, b) unsigned EMUSHORT *a, *b; { register unsigned EMUSHORT *p, *q; unsigned EMUSHORT i; #ifdef NANS if (eiisnan (a)) { make_nan (b, eiisneg (a), TFmode); return; } #endif p = a; if (REAL_WORDS_BIG_ENDIAN) q = b; else q = b + 7; /* point to output exponent */ /* If not denormal, delete the implied bit. */ if (a[E] != 0) { eshup1 (a); } /* combine sign and exponent */ i = *p++; if (REAL_WORDS_BIG_ENDIAN) { if (i) *q++ = *p++ | 0x8000; else *q++ = *p++; } else { if (i) *q-- = *p++ | 0x8000; else *q-- = *p++; } /* skip over guard word */ ++p; /* move the significand */ if (REAL_WORDS_BIG_ENDIAN) { for (i = 0; i < 7; i++) *q++ = *p++; } else { for (i = 0; i < 7; i++) *q-- = *p++; } } /* Convert e-type X to IEEE double extended format E. */ static void etoe64 (x, e) unsigned EMUSHORT *x, *e; { unsigned EMUSHORT xi[NI]; EMULONG exp; int rndsav; #ifdef NANS if (eisnan (x)) { make_nan (e, eisneg (x), XFmode); return; } #endif emovi (x, xi); /* adjust exponent for offset */ exp = (EMULONG) xi[E]; #ifdef INFINITY if (eisinf (x)) goto nonorm; #endif /* round off to nearest or even */ rndsav = rndprc; rndprc = 64; emdnorm (xi, 0, 0, exp, 64); rndprc = rndsav; nonorm: toe64 (xi, e); } /* Convert exploded e-type X, that has already been rounded to 64-bit precision, to IEEE double extended format Y. */ static void toe64 (a, b) unsigned EMUSHORT *a, *b; { register unsigned EMUSHORT *p, *q; unsigned EMUSHORT i; #ifdef NANS if (eiisnan (a)) { make_nan (b, eiisneg (a), XFmode); return; } #endif /* Shift denormal long double Intel format significand down one bit. */ if ((a[E] == 0) && ! REAL_WORDS_BIG_ENDIAN) eshdn1 (a); p = a; #ifdef IBM q = b; #endif #ifdef DEC q = b + 4; #endif #ifdef IEEE if (REAL_WORDS_BIG_ENDIAN) q = b; else { q = b + 4; /* point to output exponent */ #if LONG_DOUBLE_TYPE_SIZE == 96 /* Clear the last two bytes of 12-byte Intel format */ *(q+1) = 0; #endif } #endif /* combine sign and exponent */ i = *p++; #ifdef IBM if (i) *q++ = *p++ | 0x8000; else *q++ = *p++; *q++ = 0; #endif #ifdef DEC if (i) *q-- = *p++ | 0x8000; else *q-- = *p++; #endif #ifdef IEEE if (REAL_WORDS_BIG_ENDIAN) { #ifdef ARM_EXTENDED_IEEE_FORMAT /* The exponent is in the lowest 15 bits of the first word. */ *q++ = i ? 0x8000 : 0; *q++ = *p++; #else if (i) *q++ = *p++ | 0x8000; else *q++ = *p++; *q++ = 0; #endif } else { if (i) *q-- = *p++ | 0x8000; else *q-- = *p++; } #endif /* skip over guard word */ ++p; /* move the significand */ #ifdef IBM for (i = 0; i < 4; i++) *q++ = *p++; #endif #ifdef DEC for (i = 0; i < 4; i++) *q-- = *p++; #endif #ifdef IEEE if (REAL_WORDS_BIG_ENDIAN) { for (i = 0; i < 4; i++) *q++ = *p++; } else { #ifdef INFINITY if (eiisinf (a)) { /* Intel long double infinity significand. */ *q-- = 0x8000; *q-- = 0; *q-- = 0; *q = 0; return; } #endif for (i = 0; i < 4; i++) *q-- = *p++; } #endif } /* e type to double precision. */ #ifdef DEC /* Convert e-type X to DEC-format double E. */ static void etoe53 (x, e) unsigned EMUSHORT *x, *e; { etodec (x, e); /* see etodec.c */ } /* Convert exploded e-type X, that has already been rounded to 56-bit double precision, to DEC double Y. */ static void toe53 (x, y) unsigned EMUSHORT *x, *y; { todec (x, y); } #else #ifdef IBM /* Convert e-type X to IBM 370-format double E. */ static void etoe53 (x, e) unsigned EMUSHORT *x, *e; { etoibm (x, e, DFmode); } /* Convert exploded e-type X, that has already been rounded to 56-bit precision, to IBM 370 double Y. */ static void toe53 (x, y) unsigned EMUSHORT *x, *y; { toibm (x, y, DFmode); } #else /* it's neither DEC nor IBM */ /* Convert e-type X to IEEE double E. */ static void etoe53 (x, e) unsigned EMUSHORT *x, *e; { unsigned EMUSHORT xi[NI]; EMULONG exp; int rndsav; #ifdef NANS if (eisnan (x)) { make_nan (e, eisneg (x), DFmode); return; } #endif emovi (x, xi); /* adjust exponent for offsets */ exp = (EMULONG) xi[E] - (EXONE - 0x3ff); #ifdef INFINITY if (eisinf (x)) goto nonorm; #endif /* round off to nearest or even */ rndsav = rndprc; rndprc = 53; emdnorm (xi, 0, 0, exp, 64); rndprc = rndsav; nonorm: toe53 (xi, e); } /* Convert exploded e-type X, that has already been rounded to 53-bit precision, to IEEE double Y. */ static void toe53 (x, y) unsigned EMUSHORT *x, *y; { unsigned EMUSHORT i; unsigned EMUSHORT *p; #ifdef NANS if (eiisnan (x)) { make_nan (y, eiisneg (x), DFmode); return; } #endif p = &x[0]; #ifdef IEEE if (! REAL_WORDS_BIG_ENDIAN) y += 3; #endif *y = 0; /* output high order */ if (*p++) *y = 0x8000; /* output sign bit */ i = *p++; if (i >= (unsigned int) 2047) { /* Saturate at largest number less than infinity. */ #ifdef INFINITY *y |= 0x7ff0; if (! REAL_WORDS_BIG_ENDIAN) { *(--y) = 0; *(--y) = 0; *(--y) = 0; } else { ++y; *y++ = 0; *y++ = 0; *y++ = 0; } #else *y |= (unsigned EMUSHORT) 0x7fef; if (! REAL_WORDS_BIG_ENDIAN) { *(--y) = 0xffff; *(--y) = 0xffff; *(--y) = 0xffff; } else { ++y; *y++ = 0xffff; *y++ = 0xffff; *y++ = 0xffff; } #endif return; } if (i == 0) { eshift (x, 4); } else { i <<= 4; eshift (x, 5); } i |= *p++ & (unsigned EMUSHORT) 0x0f; /* *p = xi[M] */ *y |= (unsigned EMUSHORT) i; /* high order output already has sign bit set */ if (! REAL_WORDS_BIG_ENDIAN) { *(--y) = *p++; *(--y) = *p++; *(--y) = *p; } else { ++y; *y++ = *p++; *y++ = *p++; *y++ = *p++; } } #endif /* not IBM */ #endif /* not DEC */ /* e type to single precision. */ #ifdef IBM /* Convert e-type X to IBM 370 float E. */ static void etoe24 (x, e) unsigned EMUSHORT *x, *e; { etoibm (x, e, SFmode); } /* Convert exploded e-type X, that has already been rounded to float precision, to IBM 370 float Y. */ static void toe24 (x, y) unsigned EMUSHORT *x, *y; { toibm (x, y, SFmode); } #else /* Convert e-type X to IEEE float E. DEC float is the same as IEEE float. */ static void etoe24 (x, e) unsigned EMUSHORT *x, *e; { EMULONG exp; unsigned EMUSHORT xi[NI]; int rndsav; #ifdef NANS if (eisnan (x)) { make_nan (e, eisneg (x), SFmode); return; } #endif emovi (x, xi); /* adjust exponent for offsets */ exp = (EMULONG) xi[E] - (EXONE - 0177); #ifdef INFINITY if (eisinf (x)) goto nonorm; #endif /* round off to nearest or even */ rndsav = rndprc; rndprc = 24; emdnorm (xi, 0, 0, exp, 64); rndprc = rndsav; nonorm: toe24 (xi, e); } /* Convert exploded e-type X, that has already been rounded to float precision, to IEEE float Y. */ static void toe24 (x, y) unsigned EMUSHORT *x, *y; { unsigned EMUSHORT i; unsigned EMUSHORT *p; #ifdef NANS if (eiisnan (x)) { make_nan (y, eiisneg (x), SFmode); return; } #endif p = &x[0]; #ifdef IEEE if (! REAL_WORDS_BIG_ENDIAN) y += 1; #endif #ifdef DEC y += 1; #endif *y = 0; /* output high order */ if (*p++) *y = 0x8000; /* output sign bit */ i = *p++; /* Handle overflow cases. */ if (i >= 255) { #ifdef INFINITY *y |= (unsigned EMUSHORT) 0x7f80; #ifdef DEC *(--y) = 0; #endif #ifdef IEEE if (! REAL_WORDS_BIG_ENDIAN) *(--y) = 0; else { ++y; *y = 0; } #endif #else /* no INFINITY */ *y |= (unsigned EMUSHORT) 0x7f7f; #ifdef DEC *(--y) = 0xffff; #endif #ifdef IEEE if (! REAL_WORDS_BIG_ENDIAN) *(--y) = 0xffff; else { ++y; *y = 0xffff; } #endif #ifdef ERANGE errno = ERANGE; #endif #endif /* no INFINITY */ return; } if (i == 0) { eshift (x, 7); } else { i <<= 7; eshift (x, 8); } i |= *p++ & (unsigned EMUSHORT) 0x7f; /* *p = xi[M] */ /* High order output already has sign bit set. */ *y |= i; #ifdef DEC *(--y) = *p; #endif #ifdef IEEE if (! REAL_WORDS_BIG_ENDIAN) *(--y) = *p; else { ++y; *y = *p; } #endif } #endif /* not IBM */ /* Compare two e type numbers. Return +1 if a > b 0 if a == b -1 if a < b -2 if either a or b is a NaN. */ static int ecmp (a, b) unsigned EMUSHORT *a, *b; { unsigned EMUSHORT ai[NI], bi[NI]; register unsigned EMUSHORT *p, *q; register int i; int msign; #ifdef NANS if (eisnan (a) || eisnan (b)) return (-2); #endif emovi (a, ai); p = ai; emovi (b, bi); q = bi; if (*p != *q) { /* the signs are different */ /* -0 equals + 0 */ for (i = 1; i < NI - 1; i++) { if (ai[i] != 0) goto nzro; if (bi[i] != 0) goto nzro; } return (0); nzro: if (*p == 0) return (1); else return (-1); } /* both are the same sign */ if (*p == 0) msign = 1; else msign = -1; i = NI - 1; do { if (*p++ != *q++) { goto diff; } } while (--i > 0); return (0); /* equality */ diff: if (*(--p) > *(--q)) return (msign); /* p is bigger */ else return (-msign); /* p is littler */ } /* Find e-type nearest integer to X, as floor (X + 0.5). */ static void eround (x, y) unsigned EMUSHORT *x, *y; { eadd (ehalf, x, y); efloor (y, y); } /* Convert HOST_WIDE_INT LP to e type Y. */ static void ltoe (lp, y) HOST_WIDE_INT *lp; unsigned EMUSHORT *y; { unsigned EMUSHORT yi[NI]; unsigned HOST_WIDE_INT ll; int k; ecleaz (yi); if (*lp < 0) { /* make it positive */ ll = (unsigned HOST_WIDE_INT) (-(*lp)); yi[0] = 0xffff; /* put correct sign in the e type number */ } else { ll = (unsigned HOST_WIDE_INT) (*lp); } /* move the long integer to yi significand area */ #if HOST_BITS_PER_WIDE_INT == 64 yi[M] = (unsigned EMUSHORT) (ll >> 48); yi[M + 1] = (unsigned EMUSHORT) (ll >> 32); yi[M + 2] = (unsigned EMUSHORT) (ll >> 16); yi[M + 3] = (unsigned EMUSHORT) ll; yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ #else yi[M] = (unsigned EMUSHORT) (ll >> 16); yi[M + 1] = (unsigned EMUSHORT) ll; yi[E] = EXONE + 15; /* exponent if normalize shift count were 0 */ #endif if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ ecleaz (yi); /* it was zero */ else yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */ emovo (yi, y); /* output the answer */ } /* Convert unsigned HOST_WIDE_INT LP to e type Y. */ static void ultoe (lp, y) unsigned HOST_WIDE_INT *lp; unsigned EMUSHORT *y; { unsigned EMUSHORT yi[NI]; unsigned HOST_WIDE_INT ll; int k; ecleaz (yi); ll = *lp; /* move the long integer to ayi significand area */ #if HOST_BITS_PER_WIDE_INT == 64 yi[M] = (unsigned EMUSHORT) (ll >> 48); yi[M + 1] = (unsigned EMUSHORT) (ll >> 32); yi[M + 2] = (unsigned EMUSHORT) (ll >> 16); yi[M + 3] = (unsigned EMUSHORT) ll; yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ #else yi[M] = (unsigned EMUSHORT) (ll >> 16); yi[M + 1] = (unsigned EMUSHORT) ll; yi[E] = EXONE + 15; /* exponent if normalize shift count were 0 */ #endif if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ ecleaz (yi); /* it was zero */ else yi[E] -= (unsigned EMUSHORT) k; /* subtract shift count from exponent */ emovo (yi, y); /* output the answer */ } /* Find signed HOST_WIDE_INT integer I and floating point fractional part FRAC of e-type (packed internal format) floating point input X. The integer output I has the sign of the input, except that positive overflow is permitted if FIXUNS_TRUNC_LIKE_FIX_TRUNC. The output e-type fraction FRAC is the positive fractional part of abs (X). */ static void eifrac (x, i, frac) unsigned EMUSHORT *x; HOST_WIDE_INT *i; unsigned EMUSHORT *frac; { unsigned EMUSHORT xi[NI]; int j, k; unsigned HOST_WIDE_INT ll; emovi (x, xi); k = (int) xi[E] - (EXONE - 1); if (k <= 0) { /* if exponent <= 0, integer = 0 and real output is fraction */ *i = 0L; emovo (xi, frac); return; } if (k > (HOST_BITS_PER_WIDE_INT - 1)) { /* long integer overflow: output large integer and correct fraction */ if (xi[0]) *i = ((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1); else { #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC /* In this case, let it overflow and convert as if unsigned. */ euifrac (x, &ll, frac); *i = (HOST_WIDE_INT) ll; return; #else /* In other cases, return the largest positive integer. */ *i = (((unsigned HOST_WIDE_INT) 1) << (HOST_BITS_PER_WIDE_INT - 1)) - 1; #endif } eshift (xi, k); if (extra_warnings) warning ("overflow on truncation to integer"); } else if (k > 16) { /* Shift more than 16 bits: first shift up k-16 mod 16, then shift up by 16's. */ j = k - ((k >> 4) << 4); eshift (xi, j); ll = xi[M]; k -= j; do { eshup6 (xi); ll = (ll << 16) | xi[M]; } while ((k -= 16) > 0); *i = ll; if (xi[0]) *i = -(*i); } else { /* shift not more than 16 bits */ eshift (xi, k); *i = (HOST_WIDE_INT) xi[M] & 0xffff; if (xi[0]) *i = -(*i); } xi[0] = 0; xi[E] = EXONE - 1; xi[M] = 0; if ((k = enormlz (xi)) > NBITS) ecleaz (xi); else xi[E] -= (unsigned EMUSHORT) k; emovo (xi, frac); } /* Find unsigned HOST_WIDE_INT integer I and floating point fractional part FRAC of e-type X. A negative input yields integer output = 0 but correct fraction. */ static void euifrac (x, i, frac) unsigned EMUSHORT *x; unsigned HOST_WIDE_INT *i; unsigned EMUSHORT *frac; { unsigned HOST_WIDE_INT ll; unsigned EMUSHORT xi[NI]; int j, k; emovi (x, xi); k = (int) xi[E] - (EXONE - 1); if (k <= 0) { /* if exponent <= 0, integer = 0 and argument is fraction */ *i = 0L; emovo (xi, frac); return; } if (k > HOST_BITS_PER_WIDE_INT) { /* Long integer overflow: output large integer and correct fraction. Note, the BSD microvax compiler says that ~(0UL) is a syntax error. */ *i = ~(0L); eshift (xi, k); if (extra_warnings) warning ("overflow on truncation to unsigned integer"); } else if (k > 16) { /* Shift more than 16 bits: first shift up k-16 mod 16, then shift up by 16's. */ j = k - ((k >> 4) << 4); eshift (xi, j); ll = xi[M]; k -= j; do { eshup6 (xi); ll = (ll << 16) | xi[M]; } while ((k -= 16) > 0); *i = ll; } else { /* shift not more than 16 bits */ eshift (xi, k); *i = (HOST_WIDE_INT) xi[M] & 0xffff; } if (xi[0]) /* A negative value yields unsigned integer 0. */ *i = 0L; xi[0] = 0; xi[E] = EXONE - 1; xi[M] = 0; if ((k = enormlz (xi)) > NBITS) ecleaz (xi); else xi[E] -= (unsigned EMUSHORT) k; emovo (xi, frac); } /* Shift the significand of exploded e-type X up or down by SC bits. */ static int eshift (x, sc) unsigned EMUSHORT *x; int sc; { unsigned EMUSHORT lost; unsigned EMUSHORT *p; if (sc == 0) return (0); lost = 0; p = x + NI - 1; if (sc < 0) { sc = -sc; while (sc >= 16) { lost |= *p; /* remember lost bits */ eshdn6 (x); sc -= 16; } while (sc >= 8) { lost |= *p & 0xff; eshdn8 (x); sc -= 8; } while (sc > 0) { lost |= *p & 1; eshdn1 (x); sc -= 1; } } else { while (sc >= 16) { eshup6 (x); sc -= 16; } while (sc >= 8) { eshup8 (x); sc -= 8; } while (sc > 0) { eshup1 (x); sc -= 1; } } if (lost) lost = 1; return ((int) lost); } /* Shift normalize the significand area of exploded e-type X. Return the shift count (up = positive). */ static int enormlz (x) unsigned EMUSHORT x[]; { register unsigned EMUSHORT *p; int sc; sc = 0; p = &x[M]; if (*p != 0) goto normdn; ++p; if (*p & 0x8000) return (0); /* already normalized */ while (*p == 0) { eshup6 (x); sc += 16; /* With guard word, there are NBITS+16 bits available. Return true if all are zero. */ if (sc > NBITS) return (sc); } /* see if high byte is zero */ while ((*p & 0xff00) == 0) { eshup8 (x); sc += 8; } /* now shift 1 bit at a time */ while ((*p & 0x8000) == 0) { eshup1 (x); sc += 1; if (sc > NBITS) { mtherr ("enormlz", UNDERFLOW); return (sc); } } return (sc); /* Normalize by shifting down out of the high guard word of the significand */ normdn: if (*p & 0xff00) { eshdn8 (x); sc -= 8; } while (*p != 0) { eshdn1 (x); sc -= 1; if (sc < -NBITS) { mtherr ("enormlz", OVERFLOW); return (sc); } } return (sc); } /* Powers of ten used in decimal <-> binary conversions. */ #define NTEN 12 #define MAXP 4096 #if LONG_DOUBLE_TYPE_SIZE == 128 static unsigned EMUSHORT etens[NTEN + 1][NE] = { {0x6576, 0x4a92, 0x804a, 0x153f, 0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */ {0x6a32, 0xce52, 0x329a, 0x28ce, 0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */ {0x526c, 0x50ce, 0xf18b, 0x3d28, 0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,}, {0x9c66, 0x58f8, 0xbc50, 0x5c54, 0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,}, {0x851e, 0xeab7, 0x98fe, 0x901b, 0xddbb, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,}, {0x0235, 0x0137, 0x36b1, 0x336c, 0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,}, {0x50f8, 0x25fb, 0xc76b, 0x6b71, 0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,}, {0x0000, 0x0000, 0x0000, 0x0000, 0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,}, {0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,}, {0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,}, {0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,}, {0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,}, {0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */ }; static unsigned EMUSHORT emtens[NTEN + 1][NE] = { {0x2030, 0xcffc, 0xa1c3, 0x8123, 0x2de3, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,}, /* 10**-4096 */ {0x8264, 0xd2cb, 0xf2ea, 0x12d4, 0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,}, /* 10**-2048 */ {0xf53f, 0xf698, 0x6bd3, 0x0158, 0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,}, {0xe731, 0x04d4, 0xe3f2, 0xd332, 0x7132, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,}, {0xa23e, 0x5308, 0xfefb, 0x1155, 0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,}, {0xe26d, 0xdbde, 0xd05d, 0xb3f6, 0xac7c, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,}, {0x2a20, 0x6224, 0x47b3, 0x98d7, 0x3f23, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,}, {0x0b5b, 0x4af2, 0xa581, 0x18ed, 0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,}, {0xbf71, 0xa9b3, 0x7989, 0xbe68, 0x4c2e, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,}, {0x3d4d, 0x7c3d, 0x36ba, 0x0d2b, 0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,}, {0xc155, 0xa4a8, 0x404e, 0x6113, 0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,}, {0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3d70, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,}, {0xcccd, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,}, /* 10**-1 */ }; #else /* LONG_DOUBLE_TYPE_SIZE is other than 128 */ static unsigned EMUSHORT etens[NTEN + 1][NE] = { {0xc94c, 0x979a, 0x8a20, 0x5202, 0xc460, 0x7525,}, /* 10**4096 */ {0xa74d, 0x5de4, 0xc53d, 0x3b5d, 0x9e8b, 0x5a92,}, /* 10**2048 */ {0x650d, 0x0c17, 0x8175, 0x7586, 0xc976, 0x4d48,}, {0xcc65, 0x91c6, 0xa60e, 0xa0ae, 0xe319, 0x46a3,}, {0xddbc, 0xde8d, 0x9df9, 0xebfb, 0xaa7e, 0x4351,}, {0xc66f, 0x8cdf, 0x80e9, 0x47c9, 0x93ba, 0x41a8,}, {0x3cbf, 0xa6d5, 0xffcf, 0x1f49, 0xc278, 0x40d3,}, {0xf020, 0xb59d, 0x2b70, 0xada8, 0x9dc5, 0x4069,}, {0x0000, 0x0000, 0x0400, 0xc9bf, 0x8e1b, 0x4034,}, {0x0000, 0x0000, 0x0000, 0x2000, 0xbebc, 0x4019,}, {0x0000, 0x0000, 0x0000, 0x0000, 0x9c40, 0x400c,}, {0x0000, 0x0000, 0x0000, 0x0000, 0xc800, 0x4005,}, {0x0000, 0x0000, 0x0000, 0x0000, 0xa000, 0x4002,}, /* 10**1 */ }; static unsigned EMUSHORT emtens[NTEN + 1][NE] = { {0x2de4, 0x9fde, 0xd2ce, 0x04c8, 0xa6dd, 0x0ad8,}, /* 10**-4096 */ {0x4925, 0x2de4, 0x3436, 0x534f, 0xceae, 0x256b,}, /* 10**-2048 */ {0x87a6, 0xc0bd, 0xda57, 0x82a5, 0xa2a6, 0x32b5,}, {0x7133, 0xd21c, 0xdb23, 0xee32, 0x9049, 0x395a,}, {0xfa91, 0x1939, 0x637a, 0x4325, 0xc031, 0x3cac,}, {0xac7d, 0xe4a0, 0x64bc, 0x467c, 0xddd0, 0x3e55,}, {0x3f24, 0xe9a5, 0xa539, 0xea27, 0xa87f, 0x3f2a,}, {0x67de, 0x94ba, 0x4539, 0x1ead, 0xcfb1, 0x3f94,}, {0x4c2f, 0xe15b, 0xc44d, 0x94be, 0xe695, 0x3fc9,}, {0xfdc2, 0xcefc, 0x8461, 0x7711, 0xabcc, 0x3fe4,}, {0xd3c3, 0x652b, 0xe219, 0x1758, 0xd1b7, 0x3ff1,}, {0x3d71, 0xd70a, 0x70a3, 0x0a3d, 0xa3d7, 0x3ff8,}, {0xcccd, 0xcccc, 0xcccc, 0xcccc, 0xcccc, 0x3ffb,}, /* 10**-1 */ }; #endif /* Convert float value X to ASCII string STRING with NDIG digits after the decimal point. */ static void e24toasc (x, string, ndigs) unsigned EMUSHORT x[]; char *string; int ndigs; { unsigned EMUSHORT w[NI]; e24toe (x, w); etoasc (w, string, ndigs); } /* Convert double value X to ASCII string STRING with NDIG digits after the decimal point. */ static void e53toasc (x, string, ndigs) unsigned EMUSHORT x[]; char *string; int ndigs; { unsigned EMUSHORT w[NI]; e53toe (x, w); etoasc (w, string, ndigs); } /* Convert double extended value X to ASCII string STRING with NDIG digits after the decimal point. */ static void e64toasc (x, string, ndigs) unsigned EMUSHORT x[]; char *string; int ndigs; { unsigned EMUSHORT w[NI]; e64toe (x, w); etoasc (w, string, ndigs); } /* Convert 128-bit long double value X to ASCII string STRING with NDIG digits after the decimal point. */ static void e113toasc (x, string, ndigs) unsigned EMUSHORT x[]; char *string; int ndigs; { unsigned EMUSHORT w[NI]; e113toe (x, w); etoasc (w, string, ndigs); } /* Convert e-type X to ASCII string STRING with NDIGS digits after the decimal point. */ static char wstring[80]; /* working storage for ASCII output */ static void etoasc (x, string, ndigs) unsigned EMUSHORT x[]; char *string; int ndigs; { EMUSHORT digit; unsigned EMUSHORT y[NI], t[NI], u[NI], w[NI]; unsigned EMUSHORT *p, *r, *ten; unsigned EMUSHORT sign; int i, j, k, expon, rndsav; char *s, *ss; unsigned EMUSHORT m; rndsav = rndprc; ss = string; s = wstring; *ss = '\0'; *s = '\0'; #ifdef NANS if (eisnan (x)) { sprintf (wstring, " NaN "); goto bxit; } #endif rndprc = NBITS; /* set to full precision */ emov (x, y); /* retain external format */ if (y[NE - 1] & 0x8000) { sign = 0xffff; y[NE - 1] &= 0x7fff; } else { sign = 0; } expon = 0; ten = &etens[NTEN][0]; emov (eone, t); /* Test for zero exponent */ if (y[NE - 1] == 0) { for (k = 0; k < NE - 1; k++) { if (y[k] != 0) goto tnzro; /* denormalized number */ } goto isone; /* valid all zeros */ } tnzro: /* Test for infinity. */ if (y[NE - 1] == 0x7fff) { if (sign) sprintf (wstring, " -Infinity "); else sprintf (wstring, " Infinity "); goto bxit; } /* Test for exponent nonzero but significand denormalized. * This is an error condition. */ if ((y[NE - 1] != 0) && ((y[NE - 2] & 0x8000) == 0)) { mtherr ("etoasc", DOMAIN); sprintf (wstring, "NaN"); goto bxit; } /* Compare to 1.0 */ i = ecmp (eone, y); if (i == 0) goto isone; if (i == -2) abort (); if (i < 0) { /* Number is greater than 1 */ /* Convert significand to an integer and strip trailing decimal zeros. */ emov (y, u); u[NE - 1] = EXONE + NBITS - 1; p = &etens[NTEN - 4][0]; m = 16; do { ediv (p, u, t); efloor (t, w); for (j = 0; j < NE - 1; j++) { if (t[j] != w[j]) goto noint; } emov (t, u); expon += (int) m; noint: p += NE; m >>= 1; } while (m != 0); /* Rescale from integer significand */ u[NE - 1] += y[NE - 1] - (unsigned int) (EXONE + NBITS - 1); emov (u, y); /* Find power of 10 */ emov (eone, t); m = MAXP; p = &etens[0][0]; /* An unordered compare result shouldn't happen here. */ while (ecmp (ten, u) <= 0) { if (ecmp (p, u) <= 0) { ediv (p, u, u); emul (p, t, t); expon += (int) m; } m >>= 1; if (m == 0) break; p += NE; } } else { /* Number is less than 1.0 */ /* Pad significand with trailing decimal zeros. */ if (y[NE - 1] == 0) { while ((y[NE - 2] & 0x8000) == 0) { emul (ten, y, y); expon -= 1; } } else { emovi (y, w); for (i = 0; i < NDEC + 1; i++) { if ((w[NI - 1] & 0x7) != 0) break; /* multiply by 10 */ emovz (w, u); eshdn1 (u); eshdn1 (u); eaddm (w, u); u[1] += 3; while (u[2] != 0) { eshdn1 (u); u[1] += 1; } if (u[NI - 1] != 0) break; if (eone[NE - 1] <= u[1]) break; emovz (u, w); expon -= 1; } emovo (w, y); } k = -MAXP; p = &emtens[0][0]; r = &etens[0][0]; emov (y, w); emov (eone, t); while (ecmp (eone, w) > 0) { if (ecmp (p, w) >= 0) { emul (r, w, w); emul (r, t, t); expon += k; } k /= 2; if (k == 0) break; p += NE; r += NE; } ediv (t, eone, t); } isone: /* Find the first (leading) digit. */ emovi (t, w); emovz (w, t); emovi (y, w); emovz (w, y); eiremain (t, y); digit = equot[NI - 1]; while ((digit == 0) && (ecmp (y, ezero) != 0)) { eshup1 (y); emovz (y, u); eshup1 (u); eshup1 (u); eaddm (u, y); eiremain (t, y); digit = equot[NI - 1]; expon -= 1; } s = wstring; if (sign) *s++ = '-'; else *s++ = ' '; /* Examine number of digits requested by caller. */ if (ndigs < 0) ndigs = 0; if (ndigs > NDEC) ndigs = NDEC; if (digit == 10) { *s++ = '1'; *s++ = '.'; if (ndigs > 0) { *s++ = '0'; ndigs -= 1; } expon += 1; } else { *s++ = (char)digit + '0'; *s++ = '.'; } /* Generate digits after the decimal point. */ for (k = 0; k <= ndigs; k++) { /* multiply current number by 10, without normalizing */ eshup1 (y); emovz (y, u); eshup1 (u); eshup1 (u); eaddm (u, y); eiremain (t, y); *s++ = (char) equot[NI - 1] + '0'; } digit = equot[NI - 1]; --s; ss = s; /* round off the ASCII string */ if (digit > 4) { /* Test for critical rounding case in ASCII output. */ if (digit == 5) { emovo (y, t); if (ecmp (t, ezero) != 0) goto roun; /* round to nearest */ if ((*(s - 1) & 1) == 0) goto doexp; /* round to even */ } /* Round up and propagate carry-outs */ roun: --s; k = *s & 0x7f; /* Carry out to most significant digit? */ if (k == '.') { --s; k = *s; k += 1; *s = (char) k; /* Most significant digit carries to 10? */ if (k > '9') { expon += 1; *s = '1'; } goto doexp; } /* Round up and carry out from less significant digits */ k += 1; *s = (char) k; if (k > '9') { *s = '0'; goto roun; } } doexp: /* if (expon >= 0) sprintf (ss, "e+%d", expon); else sprintf (ss, "e%d", expon); */ sprintf (ss, "e%d", expon); bxit: rndprc = rndsav; /* copy out the working string */ s = string; ss = wstring; while (*ss == ' ') /* strip possible leading space */ ++ss; while ((*s++ = *ss++) != '\0') ; } /* Convert ASCII string to floating point. Numeric input is a free format decimal number of any length, with or without decimal point. Entering E after the number followed by an integer number causes the second number to be interpreted as a power of 10 to be multiplied by the first number (i.e., "scientific" notation). */ /* Convert ASCII string S to single precision float value Y. */ static void asctoe24 (s, y) char *s; unsigned EMUSHORT *y; { asctoeg (s, y, 24); } /* Convert ASCII string S to double precision value Y. */ static void asctoe53 (s, y) char *s; unsigned EMUSHORT *y; { #if defined(DEC) || defined(IBM) asctoeg (s, y, 56); #else asctoeg (s, y, 53); #endif } /* Convert ASCII string S to double extended value Y. */ static void asctoe64 (s, y) char *s; unsigned EMUSHORT *y; { asctoeg (s, y, 64); } /* Convert ASCII string S to 128-bit long double Y. */ static void asctoe113 (s, y) char *s; unsigned EMUSHORT *y; { asctoeg (s, y, 113); } /* Convert ASCII string S to e type Y. */ static void asctoe (s, y) char *s; unsigned EMUSHORT *y; { asctoeg (s, y, NBITS); } /* Convert ASCII string SS to e type Y, with a specified rounding precision of OPREC bits. */ static void asctoeg (ss, y, oprec) char *ss; unsigned EMUSHORT *y; int oprec; { unsigned EMUSHORT yy[NI], xt[NI], tt[NI]; int esign, decflg, sgnflg, nexp, exp, prec, lost; int k, trail, c, rndsav; EMULONG lexp; unsigned EMUSHORT nsign, *p; char *sp, *s, *lstr; /* Copy the input string. */ lstr = (char *) alloca (strlen (ss) + 1); s = ss; while (*s == ' ') /* skip leading spaces */ ++s; sp = lstr; while ((*sp++ = *s++) != '\0') ; s = lstr; rndsav = rndprc; rndprc = NBITS; /* Set to full precision */ lost = 0; nsign = 0; decflg = 0; sgnflg = 0; nexp = 0; exp = 0; prec = 0; ecleaz (yy); trail = 0; nxtcom: k = *s - '0'; if ((k >= 0) && (k <= 9)) { /* Ignore leading zeros */ if ((prec == 0) && (decflg == 0) && (k == 0)) goto donchr; /* Identify and strip trailing zeros after the decimal point. */ if ((trail == 0) && (decflg != 0)) { sp = s; while ((*sp >= '0') && (*sp <= '9')) ++sp; /* Check for syntax error */ c = *sp & 0x7f; if ((c != 'e') && (c != 'E') && (c != '\0') && (c != '\n') && (c != '\r') && (c != ' ') && (c != ',')) goto error; --sp; while (*sp == '0') *sp-- = 'z'; trail = 1; if (*s == 'z') goto donchr; } /* If enough digits were given to more than fill up the yy register, continuing until overflow into the high guard word yy[2] guarantees that there will be a roundoff bit at the top of the low guard word after normalization. */ if (yy[2] == 0) { if (decflg) nexp += 1; /* count digits after decimal point */ eshup1 (yy); /* multiply current number by 10 */ emovz (yy, xt); eshup1 (xt); eshup1 (xt); eaddm (xt, yy); ecleaz (xt); xt[NI - 2] = (unsigned EMUSHORT) k; eaddm (xt, yy); } else { /* Mark any lost non-zero digit. */ lost |= k; /* Count lost digits before the decimal point. */ if (decflg == 0) nexp -= 1; } prec += 1; goto donchr; } switch (*s) { case 'z': break; case 'E': case 'e': goto expnt; case '.': /* decimal point */ if (decflg) goto error; ++decflg; break; case '-': nsign = 0xffff; if (sgnflg) goto error; ++sgnflg; break; case '+': if (sgnflg) goto error; ++sgnflg; break; case ',': case ' ': case '\0': case '\n': case '\r': goto daldone; case 'i': case 'I': goto infinite; default: error: #ifdef NANS einan (yy); #else mtherr ("asctoe", DOMAIN); eclear (yy); #endif goto aexit; } donchr: ++s; goto nxtcom; /* Exponent interpretation */ expnt: /* 0.0eXXX is zero, regardless of XXX. Check for the 0.0. */ for (k = 0; k < NI; k++) { if (yy[k] != 0) goto read_expnt; } goto aexit; read_expnt: esign = 1; exp = 0; ++s; /* check for + or - */ if (*s == '-') { esign = -1; ++s; } if (*s == '+') ++s; while ((*s >= '0') && (*s <= '9')) { exp *= 10; exp += *s++ - '0'; if (exp > -(MINDECEXP)) { if (esign < 0) goto zero; else goto infinite; } } if (esign < 0) exp = -exp; if (exp > MAXDECEXP) { infinite: ecleaz (yy); yy[E] = 0x7fff; /* infinity */ goto aexit; } if (exp < MINDECEXP) { zero: ecleaz (yy); goto aexit; } daldone: nexp = exp - nexp; /* Pad trailing zeros to minimize power of 10, per IEEE spec. */ while ((nexp > 0) && (yy[2] == 0)) { emovz (yy, xt); eshup1 (xt); eshup1 (xt); eaddm (yy, xt); eshup1 (xt); if (xt[2] != 0) break; nexp -= 1; emovz (xt, yy); } if ((k = enormlz (yy)) > NBITS) { ecleaz (yy); goto aexit; } lexp = (EXONE - 1 + NBITS) - k; emdnorm (yy, lost, 0, lexp, 64); /* Convert to external format: Multiply by 10**nexp. If precision is 64 bits, the maximum relative error incurred in forming 10**n for 0 <= n <= 324 is 8.2e-20, at 10**180. For 0 <= n <= 999, the peak relative error is 1.4e-19 at 10**947. For 0 >= n >= -999, it is -1.55e-19 at 10**-435. */ lexp = yy[E]; if (nexp == 0) { k = 0; goto expdon; } esign = 1; if (nexp < 0) { nexp = -nexp; esign = -1; if (nexp > 4096) { /* Punt. Can't handle this without 2 divides. */ emovi (etens[0], tt); lexp -= tt[E]; k = edivm (tt, yy); lexp += EXONE; nexp -= 4096; } } p = &etens[NTEN][0]; emov (eone, xt); exp = 1; do { if (exp & nexp) emul (p, xt, xt); p -= NE; exp = exp + exp; } while (exp <= MAXP); emovi (xt, tt); if (esign < 0) { lexp -= tt[E]; k = edivm (tt, yy); lexp += EXONE; } else { lexp += tt[E]; k = emulm (tt, yy); lexp -= EXONE - 1; } expdon: /* Round and convert directly to the destination type */ if (oprec == 53) lexp -= EXONE - 0x3ff; #ifdef IBM else if (oprec == 24 || oprec == 56) lexp -= EXONE - (0x41 << 2); #else else if (oprec == 24) lexp -= EXONE - 0177; #endif #ifdef DEC else if (oprec == 56) lexp -= EXONE - 0201; #endif rndprc = oprec; emdnorm (yy, k, 0, lexp, 64); aexit: rndprc = rndsav; yy[0] = nsign; switch (oprec) { #ifdef DEC case 56: todec (yy, y); /* see etodec.c */ break; #endif #ifdef IBM case 56: toibm (yy, y, DFmode); break; #endif case 53: toe53 (yy, y); break; case 24: toe24 (yy, y); break; case 64: toe64 (yy, y); break; case 113: toe113 (yy, y); break; case NBITS: emovo (yy, y); break; } } /* Return Y = largest integer not greater than X (truncated toward minus infinity). */ static unsigned EMUSHORT bmask[] = { 0xffff, 0xfffe, 0xfffc, 0xfff8, 0xfff0, 0xffe0, 0xffc0, 0xff80, 0xff00, 0xfe00, 0xfc00, 0xf800, 0xf000, 0xe000, 0xc000, 0x8000, 0x0000, }; static void efloor (x, y) unsigned EMUSHORT x[], y[]; { register unsigned EMUSHORT *p; int e, expon, i; unsigned EMUSHORT f[NE]; emov (x, f); /* leave in external format */ expon = (int) f[NE - 1]; e = (expon & 0x7fff) - (EXONE - 1); if (e <= 0) { eclear (y); goto isitneg; } /* number of bits to clear out */ e = NBITS - e; emov (f, y); if (e <= 0) return; p = &y[0]; while (e >= 16) { *p++ = 0; e -= 16; } /* clear the remaining bits */ *p &= bmask[e]; /* truncate negatives toward minus infinity */ isitneg: if ((unsigned EMUSHORT) expon & (unsigned EMUSHORT) 0x8000) { for (i = 0; i < NE - 1; i++) { if (f[i] != y[i]) { esub (eone, y, y); break; } } } } /* Return S and EXP such that S * 2^EXP = X and .5 <= S < 1. For example, 1.1 = 0.55 * 2^1. */ static void efrexp (x, exp, s) unsigned EMUSHORT x[]; int *exp; unsigned EMUSHORT s[]; { unsigned EMUSHORT xi[NI]; EMULONG li; emovi (x, xi); /* Handle denormalized numbers properly using long integer exponent. */ li = (EMULONG) ((EMUSHORT) xi[1]); if (li == 0) { li -= enormlz (xi); } xi[1] = 0x3ffe; emovo (xi, s); *exp = (int) (li - 0x3ffe); } /* Return e type Y = X * 2^PWR2. */ static void eldexp (x, pwr2, y) unsigned EMUSHORT x[]; int pwr2; unsigned EMUSHORT y[]; { unsigned EMUSHORT xi[NI]; EMULONG li; int i; emovi (x, xi); li = xi[1]; li += pwr2; i = 0; emdnorm (xi, i, i, li, 64); emovo (xi, y); } /* C = remainder after dividing B by A, all e type values. Least significant integer quotient bits left in EQUOT. */ static void eremain (a, b, c) unsigned EMUSHORT a[], b[], c[]; { unsigned EMUSHORT den[NI], num[NI]; #ifdef NANS if (eisinf (b) || (ecmp (a, ezero) == 0) || eisnan (a) || eisnan (b)) { enan (c, 0); return; } #endif if (ecmp (a, ezero) == 0) { mtherr ("eremain", SING); eclear (c); return; } emovi (a, den); emovi (b, num); eiremain (den, num); /* Sign of remainder = sign of quotient */ if (a[0] == b[0]) num[0] = 0; else num[0] = 0xffff; emovo (num, c); } /* Return quotient of exploded e-types NUM / DEN in EQUOT, remainder in NUM. */ static void eiremain (den, num) unsigned EMUSHORT den[], num[]; { EMULONG ld, ln; unsigned EMUSHORT j; ld = den[E]; ld -= enormlz (den); ln = num[E]; ln -= enormlz (num); ecleaz (equot); while (ln >= ld) { if (ecmpm (den, num) <= 0) { esubm (den, num); j = 1; } else j = 0; eshup1 (equot); equot[NI - 1] |= j; eshup1 (num); ln -= 1; } emdnorm (num, 0, 0, ln, 0); } /* Report an error condition CODE encountered in function NAME. CODE is one of the following: Mnemonic Value Significance DOMAIN 1 argument domain error SING 2 function singularity OVERFLOW 3 overflow range error UNDERFLOW 4 underflow range error TLOSS 5 total loss of precision PLOSS 6 partial loss of precision INVALID 7 NaN - producing operation EDOM 33 Unix domain error code ERANGE 34 Unix range error code The order of appearance of the following messages is bound to the error codes defined above. */ #define NMSGS 8 static char *ermsg[NMSGS] = { "unknown", /* error code 0 */ "domain", /* error code 1 */ "singularity", /* et seq. */ "overflow", "underflow", "total loss of precision", "partial loss of precision", "invalid operation" }; int merror = 0; extern int merror; static void mtherr (name, code) char *name; int code; { char errstr[80]; /* The string passed by the calling program is supposed to be the name of the function in which the error occurred. The code argument selects which error message string will be printed. */ if ((code <= 0) || (code >= NMSGS)) code = 0; sprintf (errstr, " %s %s error", name, ermsg[code]); if (extra_warnings) warning (errstr); /* Set global error message word */ merror = code + 1; } #ifdef DEC /* Convert DEC double precision D to e type E. */ static void dectoe (d, e) unsigned EMUSHORT *d; unsigned EMUSHORT *e; { unsigned EMUSHORT y[NI]; register unsigned EMUSHORT r, *p; ecleaz (y); /* start with a zero */ p = y; /* point to our number */ r = *d; /* get DEC exponent word */ if (*d & (unsigned int) 0x8000) *p = 0xffff; /* fill in our sign */ ++p; /* bump pointer to our exponent word */ r &= 0x7fff; /* strip the sign bit */ if (r == 0) /* answer = 0 if high order DEC word = 0 */ goto done; r >>= 7; /* shift exponent word down 7 bits */ r += EXONE - 0201; /* subtract DEC exponent offset */ /* add our e type exponent offset */ *p++ = r; /* to form our exponent */ r = *d++; /* now do the high order mantissa */ r &= 0177; /* strip off the DEC exponent and sign bits */ r |= 0200; /* the DEC understood high order mantissa bit */ *p++ = r; /* put result in our high guard word */ *p++ = *d++; /* fill in the rest of our mantissa */ *p++ = *d++; *p = *d; eshdn8 (y); /* shift our mantissa down 8 bits */ done: emovo (y, e); } /* Convert e type X to DEC double precision D. */ static void etodec (x, d) unsigned EMUSHORT *x, *d; { unsigned EMUSHORT xi[NI]; EMULONG exp; int rndsav; emovi (x, xi); /* Adjust exponent for offsets. */ exp = (EMULONG) xi[E] - (EXONE - 0201); /* Round off to nearest or even. */ rndsav = rndprc; rndprc = 56; emdnorm (xi, 0, 0, exp, 64); rndprc = rndsav; todec (xi, d); } /* Convert exploded e-type X, that has already been rounded to 56-bit precision, to DEC format double Y. */ static void todec (x, y) unsigned EMUSHORT *x, *y; { unsigned EMUSHORT i; unsigned EMUSHORT *p; p = x; *y = 0; if (*p++) *y = 0100000; i = *p++; if (i == 0) { *y++ = 0; *y++ = 0; *y++ = 0; *y++ = 0; return; } if (i > 0377) { *y++ |= 077777; *y++ = 0xffff; *y++ = 0xffff; *y++ = 0xffff; #ifdef ERANGE errno = ERANGE; #endif return; } i &= 0377; i <<= 7; eshup8 (x); x[M] &= 0177; i |= x[M]; *y++ |= i; *y++ = x[M + 1]; *y++ = x[M + 2]; *y++ = x[M + 3]; } #endif /* DEC */ #ifdef IBM /* Convert IBM single/double precision to e type. */ static void ibmtoe (d, e, mode) unsigned EMUSHORT *d; unsigned EMUSHORT *e; enum machine_mode mode; { unsigned EMUSHORT y[NI]; register unsigned EMUSHORT r, *p; int rndsav; ecleaz (y); /* start with a zero */ p = y; /* point to our number */ r = *d; /* get IBM exponent word */ if (*d & (unsigned int) 0x8000) *p = 0xffff; /* fill in our sign */ ++p; /* bump pointer to our exponent word */ r &= 0x7f00; /* strip the sign bit */ r >>= 6; /* shift exponent word down 6 bits */ /* in fact shift by 8 right and 2 left */ r += EXONE - (0x41 << 2); /* subtract IBM exponent offset */ /* add our e type exponent offset */ *p++ = r; /* to form our exponent */ *p++ = *d++ & 0xff; /* now do the high order mantissa */ /* strip off the IBM exponent and sign bits */ if (mode != SFmode) /* there are only 2 words in SFmode */ { *p++ = *d++; /* fill in the rest of our mantissa */ *p++ = *d++; } *p = *d; if (y[M] == 0 && y[M+1] == 0 && y[M+2] == 0 && y[M+3] == 0) y[0] = y[E] = 0; else y[E] -= 5 + enormlz (y); /* now normalise the mantissa */ /* handle change in RADIX */ emovo (y, e); } /* Convert e type to IBM single/double precision. */ static void etoibm (x, d, mode) unsigned EMUSHORT *x, *d; enum machine_mode mode; { unsigned EMUSHORT xi[NI]; EMULONG exp; int rndsav; emovi (x, xi); exp = (EMULONG) xi[E] - (EXONE - (0x41 << 2)); /* adjust exponent for offsets */ /* round off to nearest or even */ rndsav = rndprc; rndprc = 56; emdnorm (xi, 0, 0, exp, 64); rndprc = rndsav; toibm (xi, d, mode); } static void toibm (x, y, mode) unsigned EMUSHORT *x, *y; enum machine_mode mode; { unsigned EMUSHORT i; unsigned EMUSHORT *p; int r; p = x; *y = 0; if (*p++) *y = 0x8000; i = *p++; if (i == 0) { *y++ = 0; *y++ = 0; if (mode != SFmode) { *y++ = 0; *y++ = 0; } return; } r = i & 0x3; i >>= 2; if (i > 0x7f) { *y++ |= 0x7fff; *y++ = 0xffff; if (mode != SFmode) { *y++ = 0xffff; *y++ = 0xffff; } #ifdef ERANGE errno = ERANGE; #endif return; } i &= 0x7f; *y |= (i << 8); eshift (x, r + 5); *y++ |= x[M]; *y++ = x[M + 1]; if (mode != SFmode) { *y++ = x[M + 2]; *y++ = x[M + 3]; } } #endif /* IBM */ /* Output a binary NaN bit pattern in the target machine's format. */ /* If special NaN bit patterns are required, define them in tm.h as arrays of unsigned 16-bit shorts. Otherwise, use the default patterns here. */ #ifdef TFMODE_NAN TFMODE_NAN; #else #ifdef IEEE unsigned EMUSHORT TFbignan[8] = {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; unsigned EMUSHORT TFlittlenan[8] = {0, 0, 0, 0, 0, 0, 0x8000, 0xffff}; #endif #endif #ifdef XFMODE_NAN XFMODE_NAN; #else #ifdef IEEE unsigned EMUSHORT XFbignan[6] = {0x7fff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff}; unsigned EMUSHORT XFlittlenan[6] = {0, 0, 0, 0xc000, 0xffff, 0}; #endif #endif #ifdef DFMODE_NAN DFMODE_NAN; #else #ifdef IEEE unsigned EMUSHORT DFbignan[4] = {0x7fff, 0xffff, 0xffff, 0xffff}; unsigned EMUSHORT DFlittlenan[4] = {0, 0, 0, 0xfff8}; #endif #endif #ifdef SFMODE_NAN SFMODE_NAN; #else #ifdef IEEE unsigned EMUSHORT SFbignan[2] = {0x7fff, 0xffff}; unsigned EMUSHORT SFlittlenan[2] = {0, 0xffc0}; #endif #endif static void make_nan (nan, sign, mode) unsigned EMUSHORT *nan; int sign; enum machine_mode mode; { int n; unsigned EMUSHORT *p; switch (mode) { /* Possibly the `reserved operand' patterns on a VAX can be used like NaN's, but probably not in the same way as IEEE. */ #if !defined(DEC) && !defined(IBM) case TFmode: n = 8; if (REAL_WORDS_BIG_ENDIAN) p = TFbignan; else p = TFlittlenan; break; case XFmode: n = 6; if (REAL_WORDS_BIG_ENDIAN) p = XFbignan; else p = XFlittlenan; break; case DFmode: n = 4; if (REAL_WORDS_BIG_ENDIAN) p = DFbignan; else p = DFlittlenan; break; case HFmode: case SFmode: n = 2; if (REAL_WORDS_BIG_ENDIAN) p = SFbignan; else p = SFlittlenan; break; #endif default: abort (); } if (REAL_WORDS_BIG_ENDIAN) *nan++ = (sign << 15) | *p++; while (--n != 0) *nan++ = *p++; if (! REAL_WORDS_BIG_ENDIAN) *nan = (sign << 15) | *p; } /* This is the inverse of the function `etarsingle' invoked by REAL_VALUE_TO_TARGET_SINGLE. */ REAL_VALUE_TYPE ereal_unto_float (f) long f; { REAL_VALUE_TYPE r; unsigned EMUSHORT s[2]; unsigned EMUSHORT e[NE]; /* Convert 32 bit integer to array of 16 bit pieces in target machine order. This is the inverse operation to what the function `endian' does. */ if (REAL_WORDS_BIG_ENDIAN) { s[0] = (unsigned EMUSHORT) (f >> 16); s[1] = (unsigned EMUSHORT) f; } else { s[0] = (unsigned EMUSHORT) f; s[1] = (unsigned EMUSHORT) (f >> 16); } /* Convert and promote the target float to E-type. */ e24toe (s, e); /* Output E-type to REAL_VALUE_TYPE. */ PUT_REAL (e, &r); return r; } /* This is the inverse of the function `etardouble' invoked by REAL_VALUE_TO_TARGET_DOUBLE. */ REAL_VALUE_TYPE ereal_unto_double (d) long d[]; { REAL_VALUE_TYPE r; unsigned EMUSHORT s[4]; unsigned EMUSHORT e[NE]; /* Convert array of HOST_WIDE_INT to equivalent array of 16-bit pieces. */ if (REAL_WORDS_BIG_ENDIAN) { s[0] = (unsigned EMUSHORT) (d[0] >> 16); s[1] = (unsigned EMUSHORT) d[0]; s[2] = (unsigned EMUSHORT) (d[1] >> 16); s[3] = (unsigned EMUSHORT) d[1]; } else { /* Target float words are little-endian. */ s[0] = (unsigned EMUSHORT) d[0]; s[1] = (unsigned EMUSHORT) (d[0] >> 16); s[2] = (unsigned EMUSHORT) d[1]; s[3] = (unsigned EMUSHORT) (d[1] >> 16); } /* Convert target double to E-type. */ e53toe (s, e); /* Output E-type to REAL_VALUE_TYPE. */ PUT_REAL (e, &r); return r; } /* Convert an SFmode target `float' value to a REAL_VALUE_TYPE. This is somewhat like ereal_unto_float, but the input types for these are different. */ REAL_VALUE_TYPE ereal_from_float (f) HOST_WIDE_INT f; { REAL_VALUE_TYPE r; unsigned EMUSHORT s[2]; unsigned EMUSHORT e[NE]; /* Convert 32 bit integer to array of 16 bit pieces in target machine order. This is the inverse operation to what the function `endian' does. */ if (REAL_WORDS_BIG_ENDIAN) { s[0] = (unsigned EMUSHORT) (f >> 16); s[1] = (unsigned EMUSHORT) f; } else { s[0] = (unsigned EMUSHORT) f; s[1] = (unsigned EMUSHORT) (f >> 16); } /* Convert and promote the target float to E-type. */ e24toe (s, e); /* Output E-type to REAL_VALUE_TYPE. */ PUT_REAL (e, &r); return r; } /* Convert a DFmode target `double' value to a REAL_VALUE_TYPE. This is somewhat like ereal_unto_double, but the input types for these are different. The DFmode is stored as an array of HOST_WIDE_INT in the target's data format, with no holes in the bit packing. The first element of the input array holds the bits that would come first in the target computer's memory. */ REAL_VALUE_TYPE ereal_from_double (d) HOST_WIDE_INT d[]; { REAL_VALUE_TYPE r; unsigned EMUSHORT s[4]; unsigned EMUSHORT e[NE]; /* Convert array of HOST_WIDE_INT to equivalent array of 16-bit pieces. */ if (REAL_WORDS_BIG_ENDIAN) { s[0] = (unsigned EMUSHORT) (d[0] >> 16); s[1] = (unsigned EMUSHORT) d[0]; #if HOST_BITS_PER_WIDE_INT == 32 s[2] = (unsigned EMUSHORT) (d[1] >> 16); s[3] = (unsigned EMUSHORT) d[1]; #else /* In this case the entire target double is contained in the first array element. The second element of the input is ignored. */ s[2] = (unsigned EMUSHORT) (d[0] >> 48); s[3] = (unsigned EMUSHORT) (d[0] >> 32); #endif } else { /* Target float words are little-endian. */ s[0] = (unsigned EMUSHORT) d[0]; s[1] = (unsigned EMUSHORT) (d[0] >> 16); #if HOST_BITS_PER_WIDE_INT == 32 s[2] = (unsigned EMUSHORT) d[1]; s[3] = (unsigned EMUSHORT) (d[1] >> 16); #else s[2] = (unsigned EMUSHORT) (d[0] >> 32); s[3] = (unsigned EMUSHORT) (d[0] >> 48); #endif } /* Convert target double to E-type. */ e53toe (s, e); /* Output E-type to REAL_VALUE_TYPE. */ PUT_REAL (e, &r); return r; } /* Convert target computer unsigned 64-bit integer to e-type. The endian-ness of DImode follows the convention for integers, so we use WORDS_BIG_ENDIAN here, not REAL_WORDS_BIG_ENDIAN. */ static void uditoe (di, e) unsigned EMUSHORT *di; /* Address of the 64-bit int. */ unsigned EMUSHORT *e; { unsigned EMUSHORT yi[NI]; int k; ecleaz (yi); if (WORDS_BIG_ENDIAN) { for (k = M; k < M + 4; k++) yi[k] = *di++; } else { for (k = M + 3; k >= M; k--) yi[k] = *di++; } yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ ecleaz (yi); /* it was zero */ else yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */ emovo (yi, e); } /* Convert target computer signed 64-bit integer to e-type. */ static void ditoe (di, e) unsigned EMUSHORT *di; /* Address of the 64-bit int. */ unsigned EMUSHORT *e; { unsigned EMULONG acc; unsigned EMUSHORT yi[NI]; unsigned EMUSHORT carry; int k, sign; ecleaz (yi); if (WORDS_BIG_ENDIAN) { for (k = M; k < M + 4; k++) yi[k] = *di++; } else { for (k = M + 3; k >= M; k--) yi[k] = *di++; } /* Take absolute value */ sign = 0; if (yi[M] & 0x8000) { sign = 1; carry = 0; for (k = M + 3; k >= M; k--) { acc = (unsigned EMULONG) (~yi[k] & 0xffff) + carry; yi[k] = acc; carry = 0; if (acc & 0x10000) carry = 1; } } yi[E] = EXONE + 47; /* exponent if normalize shift count were 0 */ if ((k = enormlz (yi)) > NBITS)/* normalize the significand */ ecleaz (yi); /* it was zero */ else yi[E] -= (unsigned EMUSHORT) k;/* subtract shift count from exponent */ emovo (yi, e); if (sign) eneg (e); } /* Convert e-type to unsigned 64-bit int. */ static void etoudi (x, i) unsigned EMUSHORT *x; unsigned EMUSHORT *i; { unsigned EMUSHORT xi[NI]; int j, k; emovi (x, xi); if (xi[0]) { xi[M] = 0; goto noshift; } k = (int) xi[E] - (EXONE - 1); if (k <= 0) { for (j = 0; j < 4; j++) *i++ = 0; return; } if (k > 64) { for (j = 0; j < 4; j++) *i++ = 0xffff; if (extra_warnings) warning ("overflow on truncation to integer"); return; } if (k > 16) { /* Shift more than 16 bits: first shift up k-16 mod 16, then shift up by 16's. */ j = k - ((k >> 4) << 4); if (j == 0) j = 16; eshift (xi, j); if (WORDS_BIG_ENDIAN) *i++ = xi[M]; else { i += 3; *i-- = xi[M]; } k -= j; do { eshup6 (xi); if (WORDS_BIG_ENDIAN) *i++ = xi[M]; else *i-- = xi[M]; } while ((k -= 16) > 0); } else { /* shift not more than 16 bits */ eshift (xi, k); noshift: if (WORDS_BIG_ENDIAN) { i += 3; *i-- = xi[M]; *i-- = 0; *i-- = 0; *i = 0; } else { *i++ = xi[M]; *i++ = 0; *i++ = 0; *i = 0; } } } /* Convert e-type to signed 64-bit int. */ static void etodi (x, i) unsigned EMUSHORT *x; unsigned EMUSHORT *i; { unsigned EMULONG acc; unsigned EMUSHORT xi[NI]; unsigned EMUSHORT carry; unsigned EMUSHORT *isave; int j, k; emovi (x, xi); k = (int) xi[E] - (EXONE - 1); if (k <= 0) { for (j = 0; j < 4; j++) *i++ = 0; return; } if (k > 64) { for (j = 0; j < 4; j++) *i++ = 0xffff; if (extra_warnings) warning ("overflow on truncation to integer"); return; } isave = i; if (k > 16) { /* Shift more than 16 bits: first shift up k-16 mod 16, then shift up by 16's. */ j = k - ((k >> 4) << 4); if (j == 0) j = 16; eshift (xi, j); if (WORDS_BIG_ENDIAN) *i++ = xi[M]; else { i += 3; *i-- = xi[M]; } k -= j; do { eshup6 (xi); if (WORDS_BIG_ENDIAN) *i++ = xi[M]; else *i-- = xi[M]; } while ((k -= 16) > 0); } else { /* shift not more than 16 bits */ eshift (xi, k); if (WORDS_BIG_ENDIAN) { i += 3; *i = xi[M]; *i-- = 0; *i-- = 0; *i = 0; } else { *i++ = xi[M]; *i++ = 0; *i++ = 0; *i = 0; } } /* Negate if negative */ if (xi[0]) { carry = 0; if (WORDS_BIG_ENDIAN) isave += 3; for (k = 0; k < 4; k++) { acc = (unsigned EMULONG) (~(*isave) & 0xffff) + carry; if (WORDS_BIG_ENDIAN) *isave-- = acc; else *isave++ = acc; carry = 0; if (acc & 0x10000) carry = 1; } } } /* Longhand square root routine. */ static int esqinited = 0; static unsigned short sqrndbit[NI]; static void esqrt (x, y) unsigned EMUSHORT *x, *y; { unsigned EMUSHORT temp[NI], num[NI], sq[NI], xx[NI]; EMULONG m, exp; int i, j, k, n, nlups; if (esqinited == 0) { ecleaz (sqrndbit); sqrndbit[NI - 2] = 1; esqinited = 1; } /* Check for arg <= 0 */ i = ecmp (x, ezero); if (i <= 0) { if (i == -1) { mtherr ("esqrt", DOMAIN); eclear (y); } else emov (x, y); return; } #ifdef INFINITY if (eisinf (x)) { eclear (y); einfin (y); return; } #endif /* Bring in the arg and renormalize if it is denormal. */ emovi (x, xx); m = (EMULONG) xx[1]; /* local long word exponent */ if (m == 0) m -= enormlz (xx); /* Divide exponent by 2 */ m -= 0x3ffe; exp = (unsigned short) ((m / 2) + 0x3ffe); /* Adjust if exponent odd */ if ((m & 1) != 0) { if (m > 0) exp += 1; eshdn1 (xx); } ecleaz (sq); ecleaz (num); n = 8; /* get 8 bits of result per inner loop */ nlups = rndprc; j = 0; while (nlups > 0) { /* bring in next word of arg */ if (j < NE) num[NI - 1] = xx[j + 3]; /* Do additional bit on last outer loop, for roundoff. */ if (nlups <= 8) n = nlups + 1; for (i = 0; i < n; i++) { /* Next 2 bits of arg */ eshup1 (num); eshup1 (num); /* Shift up answer */ eshup1 (sq); /* Make trial divisor */ for (k = 0; k < NI; k++) temp[k] = sq[k]; eshup1 (temp); eaddm (sqrndbit, temp); /* Subtract and insert answer bit if it goes in */ if (ecmpm (temp, num) <= 0) { esubm (temp, num); sq[NI - 2] |= 1; } } nlups -= n; j += 1; } /* Adjust for extra, roundoff loop done. */ exp += (NBITS - 1) - rndprc; /* Sticky bit = 1 if the remainder is nonzero. */ k = 0; for (i = 3; i < NI; i++) k |= (int) num[i]; /* Renormalize and round off. */ emdnorm (sq, k, 0, exp, 64); emovo (sq, y); } #endif /* EMU_NON_COMPILE not defined */ /* Return the binary precision of the significand for a given floating point mode. The mode can hold an integer value that many bits wide, without losing any bits. */ int significand_size (mode) enum machine_mode mode; { /* Don't test the modes, but their sizes, lest this code won't work for BITS_PER_UNIT != 8 . */ switch (GET_MODE_BITSIZE (mode)) { case 32: return 24; case 64: #if TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT return 53; #else #if TARGET_FLOAT_FORMAT == IBM_FLOAT_FORMAT return 56; #else #if TARGET_FLOAT_FORMAT == VAX_FLOAT_FORMAT return 56; #else abort (); #endif #endif #endif case 96: return 64; case 128: return 113; default: abort (); } }