/* Intrinsic function resolution. Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. Contributed by Andy Vaught & Katherine Holcomb This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Assign name and types to intrinsic procedures. For functions, the first argument to a resolution function is an expression pointer to the original function node and the rest are pointers to the arguments of the function call. For subroutines, a pointer to the code node is passed. The result type and library subroutine name are generally set according to the function arguments. */ #include "config.h" #include #include #include "gfortran.h" #include "intrinsic.h" /* String pool subroutines. This are used to provide static locations for the string constants that represent library function names. */ typedef struct string_node { struct string_node *next; char string[1]; } string_node; #define HASH_SIZE 13 static string_node *string_head[HASH_SIZE]; /* Return a hash code based on the name. */ static int hash (const char *name) { int h; h = 1; while (*name) h = 5311966 * h + *name++; if (h < 0) h = -h; return h % HASH_SIZE; } /* Given printf-like arguments, return a static address of the resulting string. If the name is not in the table, it is added. */ char * gfc_get_string (const char *format, ...) { char temp_name[50]; string_node *p; va_list ap; int h; va_start (ap, format); vsprintf (temp_name, format, ap); va_end (ap); h = hash (temp_name); /* Search */ for (p = string_head[h]; p; p = p->next) if (strcmp (p->string, temp_name) == 0) return p->string; /* Add */ p = gfc_getmem (sizeof (string_node) + strlen (temp_name)); strcpy (p->string, temp_name); p->next = string_head[h]; string_head[h] = p; return p->string; } static void free_strings (void) { string_node *p, *q; int h; for (h = 0; h < HASH_SIZE; h++) { for (p = string_head[h]; p; p = q) { q = p->next; gfc_free (p); } } } /********************** Resolution functions **********************/ void gfc_resolve_abs (gfc_expr * f, gfc_expr * a) { f->ts = a->ts; if (f->ts.type == BT_COMPLEX) f->ts.type = BT_REAL; f->value.function.name = gfc_get_string ("__abs_%c%d", gfc_type_letter (a->ts.type), a->ts.kind); } void gfc_resolve_acos (gfc_expr * f, gfc_expr * x) { f->ts = x->ts; f->value.function.name = gfc_get_string ("__acos_%c%d", gfc_type_letter (x->ts.type), x->ts.kind); } void gfc_resolve_aimag (gfc_expr * f, gfc_expr * x) { f->ts.type = BT_REAL; f->ts.kind = x->ts.kind; f->value.function.name = gfc_get_string ("__aimag_%c%d", gfc_type_letter (x->ts.type), x->ts.kind); } void gfc_resolve_aint (gfc_expr * f, gfc_expr * a, gfc_expr * kind) { f->ts.type = a->ts.type; f->ts.kind = (kind == NULL) ? a->ts.kind : mpz_get_si (kind->value.integer); /* The resolved name is only used for specific intrinsics where the return kind is the same as the arg kind. */ f->value.function.name = gfc_get_string ("__aint_%c%d", gfc_type_letter (a->ts.type), a->ts.kind); } void gfc_resolve_dint (gfc_expr * f, gfc_expr * a) { gfc_resolve_aint (f, a, NULL); } void gfc_resolve_all (gfc_expr * f, gfc_expr * mask, gfc_expr * dim) { f->ts = mask->ts; if (dim != NULL) { gfc_resolve_index (dim, 1); f->rank = mask->rank - 1; } f->value.function.name = gfc_get_string ("__all_%c%d", gfc_type_letter (mask->ts.type), mask->ts.kind); } void gfc_resolve_anint (gfc_expr * f, gfc_expr * a, gfc_expr * kind) { f->ts.type = a->ts.type; f->ts.kind = (kind == NULL) ? a->ts.kind : mpz_get_si (kind->value.integer); /* The resolved name is only used for specific intrinsics where the return kind is the same as the arg kind. */ f->value.function.name = gfc_get_string ("__anint_%c%d", gfc_type_letter (a->ts.type), a->ts.kind); } void gfc_resolve_dnint (gfc_expr * f, gfc_expr * a) { gfc_resolve_anint (f, a, NULL); } void gfc_resolve_any (gfc_expr * f, gfc_expr * mask, gfc_expr * dim) { f->ts = mask->ts; if (dim != NULL) { gfc_resolve_index (dim, 1); f->rank = mask->rank - 1; } f->value.function.name = gfc_get_string ("__any_%c%d", gfc_type_letter (mask->ts.type), mask->ts.kind); } void gfc_resolve_asin (gfc_expr * f, gfc_expr * x) { f->ts = x->ts; f->value.function.name = gfc_get_string ("__asin_%c%d", gfc_type_letter (x->ts.type), x->ts.kind); } void gfc_resolve_atan (gfc_expr * f, gfc_expr * x) { f->ts = x->ts; f->value.function.name = gfc_get_string ("__atan_%c%d", gfc_type_letter (x->ts.type), x->ts.kind); } void gfc_resolve_atan2 (gfc_expr * f, gfc_expr * x, gfc_expr * y ATTRIBUTE_UNUSED) { f->ts = x->ts; f->value.function.name = gfc_get_string ("__atan2_%c%d", gfc_type_letter (x->ts.type), x->ts.kind); } void gfc_resolve_btest (gfc_expr * f, gfc_expr * i, gfc_expr * pos) { f->ts.type = BT_LOGICAL; f->ts.kind = gfc_default_logical_kind (); f->value.function.name = gfc_get_string ("__btest_%d_%d", i->ts.kind, pos->ts.kind); } void gfc_resolve_ceiling (gfc_expr * f, gfc_expr * a, gfc_expr * kind) { f->ts.type = BT_INTEGER; f->ts.kind = (kind == NULL) ? gfc_default_integer_kind () : mpz_get_si (kind->value.integer); f->value.function.name = gfc_get_string ("__ceiling_%d_%c%d", f->ts.kind, gfc_type_letter (a->ts.type), a->ts.kind); } void gfc_resolve_char (gfc_expr * f, gfc_expr * a, gfc_expr * kind) { f->ts.type = BT_CHARACTER; f->ts.kind = (kind == NULL) ? gfc_default_character_kind () : mpz_get_si (kind->value.integer); f->value.function.name = gfc_get_string ("__char_%d_%c%d", f->ts.kind, gfc_type_letter (a->ts.type), a->ts.kind); } void gfc_resolve_cmplx (gfc_expr * f, gfc_expr * x, gfc_expr * y, gfc_expr * kind) { f->ts.type = BT_COMPLEX; f->ts.kind = (kind == NULL) ? gfc_default_real_kind () : mpz_get_si (kind->value.integer); if (y == NULL) f->value.function.name = gfc_get_string ("__cmplx0_%d_%c%d", f->ts.kind, gfc_type_letter (x->ts.type), x->ts.kind); else f->value.function.name = gfc_get_string ("__cmplx1_%d_%c%d_%c%d", f->ts.kind, gfc_type_letter (x->ts.type), x->ts.kind, gfc_type_letter (y->ts.type), y->ts.kind); } void gfc_resolve_dcmplx (gfc_expr * f, gfc_expr * x, gfc_expr * y) { gfc_resolve_cmplx (f, x, y, gfc_int_expr (gfc_default_double_kind ())); } void gfc_resolve_conjg (gfc_expr * f, gfc_expr * x) { f->ts = x->ts; f->value.function.name = gfc_get_string ("__conjg_%d", x->ts.kind); } void gfc_resolve_cos (gfc_expr * f, gfc_expr * x) { f->ts = x->ts; f->value.function.name = gfc_get_string ("__cos_%c%d", gfc_type_letter (x->ts.type), x->ts.kind); } void gfc_resolve_cosh (gfc_expr * f, gfc_expr * x) { f->ts = x->ts; f->value.function.name = gfc_get_string ("__cosh_%c%d", gfc_type_letter (x->ts.type), x->ts.kind); } void gfc_resolve_count (gfc_expr * f, gfc_expr * mask, gfc_expr * dim) { f->ts.type = BT_INTEGER; f->ts.kind = gfc_default_integer_kind (); if (dim != NULL) { f->rank = mask->rank - 1; gfc_resolve_index (dim, 1); } f->value.function.name = gfc_get_string ("__count_%d_%c%d", f->ts.kind, gfc_type_letter (mask->ts.type), mask->ts.kind); } void gfc_resolve_cshift (gfc_expr * f, gfc_expr * array, gfc_expr * shift, gfc_expr * dim) { int n; f->ts = array->ts; f->rank = array->rank; if (shift->rank > 0) n = 1; else n = 0; if (dim != NULL) { gfc_resolve_index (dim, 1); /* Convert dim to shift's kind, so we don't need so many variations. */ if (dim->ts.kind != shift->ts.kind) gfc_convert_type (dim, &shift->ts, 2); } f->value.function.name = gfc_get_string ("__cshift%d_%d", n, shift->ts.kind); } void gfc_resolve_dble (gfc_expr * f, gfc_expr * a) { f->ts.type = BT_REAL; f->ts.kind = gfc_default_double_kind (); f->value.function.name = gfc_get_string ("__dble_%c%d", gfc_type_letter (a->ts.type), a->ts.kind); } void gfc_resolve_dim (gfc_expr * f, gfc_expr * x, gfc_expr * y ATTRIBUTE_UNUSED) { f->ts = x->ts; f->value.function.name = gfc_get_string ("__dim_%c%d", gfc_type_letter (x->ts.type), x->ts.kind); } void gfc_resolve_dot_product (gfc_expr * f, gfc_expr * a, gfc_expr * b) { gfc_expr temp; if (a->ts.type == BT_LOGICAL && b->ts.type == BT_LOGICAL) { f->ts.type = BT_LOGICAL; f->ts.kind = gfc_default_logical_kind (); } else { temp.expr_type = EXPR_OP; gfc_clear_ts (&temp.ts); temp.operator = INTRINSIC_NONE; temp.op1 = a; temp.op2 = b; gfc_type_convert_binary (&temp); f->ts = temp.ts; } f->value.function.name = gfc_get_string ("__dot_product_%c%d", gfc_type_letter (f->ts.type), f->ts.kind); } void gfc_resolve_dprod (gfc_expr * f, gfc_expr * a ATTRIBUTE_UNUSED, gfc_expr * b ATTRIBUTE_UNUSED) { f->ts.kind = gfc_default_double_kind (); f->ts.type = BT_REAL; f->value.function.name = gfc_get_string ("__dprod_r%d", f->ts.kind); } void gfc_resolve_eoshift (gfc_expr * f, gfc_expr * array, gfc_expr * shift, gfc_expr * boundary, gfc_expr * dim) { int n; f->ts = array->ts; f->rank = array->rank; n = 0; if (shift->rank > 0) n = n | 1; if (boundary && boundary->rank > 0) n = n | 2; /* Convert dim to the same type as shift, so we don't need quite so many variations. */ if (dim != NULL && dim->ts.kind != shift->ts.kind) gfc_convert_type (dim, &shift->ts, 2); f->value.function.name = gfc_get_string ("__eoshift%d_%d", n, shift->ts.kind); } void gfc_resolve_exp (gfc_expr * f, gfc_expr * x) { f->ts = x->ts; f->value.function.name = gfc_get_string ("__exp_%c%d", gfc_type_letter (x->ts.type), x->ts.kind); } void gfc_resolve_exponent (gfc_expr * f, gfc_expr * x) { f->ts.type = BT_INTEGER; f->ts.kind = gfc_default_integer_kind (); f->value.function.name = gfc_get_string ("__exponent_%d", x->ts.kind); } void gfc_resolve_floor (gfc_expr * f, gfc_expr * a, gfc_expr * kind) { f->ts.type = BT_INTEGER; f->ts.kind = (kind == NULL) ? gfc_default_integer_kind () : mpz_get_si (kind->value.integer); f->value.function.name = gfc_get_string ("__floor%d_%c%d", f->ts.kind, gfc_type_letter (a->ts.type), a->ts.kind); } void gfc_resolve_fraction (gfc_expr * f, gfc_expr * x) { f->ts = x->ts; f->value.function.name = gfc_get_string ("__fraction_%d", x->ts.kind); } void gfc_resolve_iand (gfc_expr * f, gfc_expr * i, gfc_expr * j ATTRIBUTE_UNUSED) { f->ts = i->ts; f->value.function.name = gfc_get_string ("__iand_%d", i->ts.kind); } void gfc_resolve_ibclr (gfc_expr * f, gfc_expr * i, gfc_expr * pos ATTRIBUTE_UNUSED) { f->ts = i->ts; f->value.function.name = gfc_get_string ("__ibclr_%d", i->ts.kind); } void gfc_resolve_ibits (gfc_expr * f, gfc_expr * i, gfc_expr * pos ATTRIBUTE_UNUSED, gfc_expr * len ATTRIBUTE_UNUSED) { f->ts = i->ts; f->value.function.name = gfc_get_string ("__ibits_%d", i->ts.kind); } void gfc_resolve_ibset (gfc_expr * f, gfc_expr * i, gfc_expr * pos ATTRIBUTE_UNUSED) { f->ts = i->ts; f->value.function.name = gfc_get_string ("__ibset_%d", i->ts.kind); } void gfc_resolve_ichar (gfc_expr * f, gfc_expr * c) { f->ts.type = BT_INTEGER; f->ts.kind = gfc_default_integer_kind (); f->value.function.name = gfc_get_string ("__ichar_%d", c->ts.kind); } void gfc_resolve_idnint (gfc_expr * f, gfc_expr * a) { gfc_resolve_nint (f, a, NULL); } void gfc_resolve_ieor (gfc_expr * f, gfc_expr * i, gfc_expr * j ATTRIBUTE_UNUSED) { f->ts = i->ts; f->value.function.name = gfc_get_string ("__ieor_%d", i->ts.kind); } void gfc_resolve_ior (gfc_expr * f, gfc_expr * i, gfc_expr * j ATTRIBUTE_UNUSED) { f->ts = i->ts; f->value.function.name = gfc_get_string ("__ior_%d", i->ts.kind); } void gfc_resolve_int (gfc_expr * f, gfc_expr * a, gfc_expr * kind) { f->ts.type = BT_INTEGER; f->ts.kind = (kind == NULL) ? gfc_default_integer_kind () : mpz_get_si (kind->value.integer); f->value.function.name = gfc_get_string ("__int_%d_%c%d", f->ts.kind, gfc_type_letter (a->ts.type), a->ts.kind); } void gfc_resolve_ishft (gfc_expr * f, gfc_expr * i, gfc_expr * shift) { f->ts = i->ts; f->value.function.name = gfc_get_string ("__ishft_%d_%d", i->ts.kind, shift->ts.kind); } void gfc_resolve_ishftc (gfc_expr * f, gfc_expr * i, gfc_expr * shift, gfc_expr * size) { int s_kind; s_kind = (size == NULL) ? gfc_default_integer_kind () : shift->ts.kind; f->ts = i->ts; f->value.function.name = gfc_get_string ("__ishftc_%d_%d_%d", i->ts.kind, shift->ts.kind, s_kind); } void gfc_resolve_lbound (gfc_expr * f, gfc_expr * array ATTRIBUTE_UNUSED, gfc_expr * dim) { static char lbound[] = "__lbound"; f->ts.type = BT_INTEGER; f->ts.kind = gfc_default_integer_kind (); f->rank = (dim == NULL) ? 1 : 0; f->value.function.name = lbound; } void gfc_resolve_len (gfc_expr * f, gfc_expr * string) { f->ts.type = BT_INTEGER; f->ts.kind = gfc_default_integer_kind (); f->value.function.name = gfc_get_string ("__len_%d", string->ts.kind); } void gfc_resolve_len_trim (gfc_expr * f, gfc_expr * string) { f->ts.type = BT_INTEGER; f->ts.kind = gfc_default_integer_kind (); f->value.function.name = gfc_get_string ("__len_trim%d", string->ts.kind); } void gfc_resolve_log (gfc_expr * f, gfc_expr * x) { f->ts = x->ts; f->value.function.name = gfc_get_string ("__log_%c%d", gfc_type_letter (x->ts.type), x->ts.kind); } void gfc_resolve_log10 (gfc_expr * f, gfc_expr * x) { f->ts = x->ts; f->value.function.name = gfc_get_string ("__log10_%c%d", gfc_type_letter (x->ts.type), x->ts.kind); } void gfc_resolve_logical (gfc_expr * f, gfc_expr * a, gfc_expr * kind) { f->ts.type = BT_LOGICAL; f->ts.kind = (kind == NULL) ? gfc_default_logical_kind () : mpz_get_si (kind->value.integer); f->rank = a->rank; f->value.function.name = gfc_get_string ("__logical_%d_%c%d", f->ts.kind, gfc_type_letter (a->ts.type), a->ts.kind); } void gfc_resolve_matmul (gfc_expr * f, gfc_expr * a, gfc_expr * b) { gfc_expr temp; if (a->ts.type == BT_LOGICAL && b->ts.type == BT_LOGICAL) { f->ts.type = BT_LOGICAL; f->ts.kind = gfc_default_logical_kind (); } else { temp.expr_type = EXPR_OP; gfc_clear_ts (&temp.ts); temp.operator = INTRINSIC_NONE; temp.op1 = a; temp.op2 = b; gfc_type_convert_binary (&temp); f->ts = temp.ts; } f->rank = (a->rank == 2 && b->rank == 2) ? 2 : 1; f->value.function.name = gfc_get_string ("__matmul_%c%d", gfc_type_letter (f->ts.type), f->ts.kind); } static void gfc_resolve_minmax (const char * name, gfc_expr * f, gfc_actual_arglist * args) { gfc_actual_arglist *a; f->ts.type = args->expr->ts.type; f->ts.kind = args->expr->ts.kind; /* Find the largest type kind. */ for (a = args->next; a; a = a->next) { if (a->expr->ts.kind > f->ts.kind) f->ts.kind = a->expr->ts.kind; } /* Convert all parameters to the required kind. */ for (a = args; a; a = a->next) { if (a->expr->ts.kind != f->ts.kind) gfc_convert_type (a->expr, &f->ts, 2); } f->value.function.name = gfc_get_string (name, gfc_type_letter (f->ts.type), f->ts.kind); } void gfc_resolve_max (gfc_expr * f, gfc_actual_arglist * args) { gfc_resolve_minmax ("__max_%c%d", f, args); } void gfc_resolve_maxloc (gfc_expr * f, gfc_expr * array, gfc_expr * dim, gfc_expr * mask) { const char *name; f->ts.type = BT_INTEGER; f->ts.kind = gfc_default_integer_kind (); if (dim == NULL) f->rank = 1; else { f->rank = array->rank - 1; gfc_resolve_index (dim, 1); } name = mask ? "mmaxloc" : "maxloc"; f->value.function.name = gfc_get_string ("__%s%d_%d_%c%d", name, dim != NULL, f->ts.kind, gfc_type_letter (array->ts.type), array->ts.kind); } void gfc_resolve_maxval (gfc_expr * f, gfc_expr * array, gfc_expr * dim, gfc_expr * mask) { f->ts = array->ts; if (dim != NULL) { f->rank = array->rank - 1; gfc_resolve_index (dim, 1); } f->value.function.name = gfc_get_string ("__%s_%c%d", mask ? "mmaxval" : "maxval", gfc_type_letter (array->ts.type), array->ts.kind); } void gfc_resolve_merge (gfc_expr * f, gfc_expr * tsource, gfc_expr * fsource ATTRIBUTE_UNUSED, gfc_expr * mask ATTRIBUTE_UNUSED) { f->ts = tsource->ts; f->value.function.name = gfc_get_string ("__merge_%c%d", gfc_type_letter (tsource->ts.type), tsource->ts.kind); } void gfc_resolve_min (gfc_expr * f, gfc_actual_arglist * args) { gfc_resolve_minmax ("__min_%c%d", f, args); } void gfc_resolve_minloc (gfc_expr * f, gfc_expr * array, gfc_expr * dim, gfc_expr * mask) { const char *name; f->ts.type = BT_INTEGER; f->ts.kind = gfc_default_integer_kind (); if (dim == NULL) f->rank = 1; else { f->rank = array->rank - 1; gfc_resolve_index (dim, 1); } name = mask ? "mminloc" : "minloc"; f->value.function.name = gfc_get_string ("__%s%d_%d_%c%d", name, dim != NULL, f->ts.kind, gfc_type_letter (array->ts.type), array->ts.kind); } void gfc_resolve_minval (gfc_expr * f, gfc_expr * array, gfc_expr * dim, gfc_expr * mask) { f->ts = array->ts; if (dim != NULL) { f->rank = array->rank - 1; gfc_resolve_index (dim, 1); } f->value.function.name = gfc_get_string ("__%s_%c%d", mask ? "mminval" : "minval", gfc_type_letter (array->ts.type), array->ts.kind); } void gfc_resolve_mod (gfc_expr * f, gfc_expr * a, gfc_expr * p ATTRIBUTE_UNUSED) { f->ts = a->ts; f->value.function.name = gfc_get_string ("__mod_%c%d", gfc_type_letter (a->ts.type), a->ts.kind); } void gfc_resolve_modulo (gfc_expr * f, gfc_expr * a, gfc_expr * p ATTRIBUTE_UNUSED) { f->ts = a->ts; f->value.function.name = gfc_get_string ("__modulo_%c%d", gfc_type_letter (a->ts.type), a->ts.kind); } void gfc_resolve_nearest (gfc_expr * f, gfc_expr * a, gfc_expr *p ATTRIBUTE_UNUSED) { f->ts = a->ts; f->value.function.name = gfc_get_string ("__nearest_%c%d", gfc_type_letter (a->ts.type), a->ts.kind); } void gfc_resolve_nint (gfc_expr * f, gfc_expr * a, gfc_expr * kind) { f->ts.type = BT_INTEGER; f->ts.kind = (kind == NULL) ? gfc_default_integer_kind () : mpz_get_si (kind->value.integer); f->value.function.name = gfc_get_string ("__nint_%d_%d", f->ts.kind, a->ts.kind); } void gfc_resolve_not (gfc_expr * f, gfc_expr * i) { f->ts = i->ts; f->value.function.name = gfc_get_string ("__not_%d", i->ts.kind); } void gfc_resolve_pack (gfc_expr * f, gfc_expr * array ATTRIBUTE_UNUSED, gfc_expr * mask ATTRIBUTE_UNUSED, gfc_expr * vector ATTRIBUTE_UNUSED) { static char pack[] = "__pack"; f->ts = array->ts; f->rank = 1; f->value.function.name = pack; } void gfc_resolve_product (gfc_expr * f, gfc_expr * array, gfc_expr * dim, gfc_expr * mask) { f->ts = array->ts; if (dim != NULL) { f->rank = array->rank - 1; gfc_resolve_index (dim, 1); } f->value.function.name = gfc_get_string ("__%s_%c%d", mask ? "mproduct" : "product", gfc_type_letter (array->ts.type), array->ts.kind); } void gfc_resolve_real (gfc_expr * f, gfc_expr * a, gfc_expr * kind) { f->ts.type = BT_REAL; if (kind != NULL) f->ts.kind = mpz_get_si (kind->value.integer); else f->ts.kind = (a->ts.type == BT_COMPLEX) ? a->ts.kind : gfc_default_real_kind (); f->value.function.name = gfc_get_string ("__real_%d_%c%d", f->ts.kind, gfc_type_letter (a->ts.type), a->ts.kind); } void gfc_resolve_repeat (gfc_expr * f, gfc_expr * string, gfc_expr * ncopies ATTRIBUTE_UNUSED) { f->ts.type = BT_CHARACTER; f->ts.kind = string->ts.kind; f->value.function.name = gfc_get_string ("__repeat_%d", string->ts.kind); } void gfc_resolve_reshape (gfc_expr * f, gfc_expr * source, gfc_expr * shape, gfc_expr * pad ATTRIBUTE_UNUSED, gfc_expr * order ATTRIBUTE_UNUSED) { static char reshape0[] = "__reshape"; mpz_t rank; int kind; int i; f->ts = source->ts; gfc_array_size (shape, &rank); f->rank = mpz_get_si (rank); mpz_clear (rank); switch (source->ts.type) { case BT_COMPLEX: kind = source->ts.kind * 2; break; case BT_REAL: case BT_INTEGER: case BT_LOGICAL: kind = source->ts.kind; break; default: kind = 0; break; } switch (kind) { case 4: case 8: /* case 16: */ f->value.function.name = gfc_get_string ("__reshape_%d", source->ts.kind); break; default: f->value.function.name = reshape0; break; } /* TODO: Make this work with a constant ORDER parameter. */ if (shape->expr_type == EXPR_ARRAY && gfc_is_constant_expr (shape) && order == NULL) { gfc_constructor *c; f->shape = gfc_get_shape (f->rank); c = shape->value.constructor; for (i = 0; i < f->rank; i++) { mpz_init_set (f->shape[i], c->expr->value.integer); c = c->next; } } } void gfc_resolve_rrspacing (gfc_expr * f, gfc_expr * x) { f->ts = x->ts; f->value.function.name = gfc_get_string ("__rrspacing_%d", x->ts.kind); } void gfc_resolve_scale (gfc_expr * f, gfc_expr * x, gfc_expr * y ATTRIBUTE_UNUSED) { f->ts = x->ts; f->value.function.name = gfc_get_string ("__scale_%d_%d", x->ts.kind, x->ts.kind); } void gfc_resolve_scan (gfc_expr * f, gfc_expr * string, gfc_expr * set ATTRIBUTE_UNUSED, gfc_expr * back ATTRIBUTE_UNUSED) { f->ts.type = BT_INTEGER; f->ts.kind = gfc_default_integer_kind (); f->value.function.name = gfc_get_string ("__scan_%d", string->ts.kind); } void gfc_resolve_set_exponent (gfc_expr * f, gfc_expr * x, gfc_expr * i) { f->ts = x->ts; f->value.function.name = gfc_get_string ("__set_exponent_%d_%d", x->ts.kind, i->ts.kind); } void gfc_resolve_shape (gfc_expr * f, gfc_expr * array) { f->ts.type = BT_INTEGER; f->ts.kind = gfc_default_integer_kind (); f->rank = 1; f->value.function.name = gfc_get_string ("__shape_%d", f->ts.kind); f->shape = gfc_get_shape (1); mpz_init_set_ui (f->shape[0], array->rank); } void gfc_resolve_sign (gfc_expr * f, gfc_expr * a, gfc_expr * b ATTRIBUTE_UNUSED) { f->ts = a->ts; f->value.function.name = gfc_get_string ("__sign_%c%d", gfc_type_letter (a->ts.type), a->ts.kind); } void gfc_resolve_sin (gfc_expr * f, gfc_expr * x) { f->ts = x->ts; f->value.function.name = gfc_get_string ("__sin_%c%d", gfc_type_letter (x->ts.type), x->ts.kind); } void gfc_resolve_sinh (gfc_expr * f, gfc_expr * x) { f->ts = x->ts; f->value.function.name = gfc_get_string ("__sinh_%c%d", gfc_type_letter (x->ts.type), x->ts.kind); } void gfc_resolve_spacing (gfc_expr * f, gfc_expr * x) { f->ts = x->ts; f->value.function.name = gfc_get_string ("__spacing_%d", x->ts.kind); } void gfc_resolve_spread (gfc_expr * f, gfc_expr * source, gfc_expr * dim, gfc_expr * ncopies) { static char spread[] = "__spread"; f->ts = source->ts; f->rank = source->rank + 1; f->value.function.name = spread; gfc_resolve_index (dim, 1); gfc_resolve_index (ncopies, 1); } void gfc_resolve_sqrt (gfc_expr * f, gfc_expr * x) { f->ts = x->ts; f->value.function.name = gfc_get_string ("__sqrt_%c%d", gfc_type_letter (x->ts.type), x->ts.kind); } void gfc_resolve_sum (gfc_expr * f, gfc_expr * array, gfc_expr * dim, gfc_expr * mask) { f->ts = array->ts; if (dim != NULL) { f->rank = array->rank - 1; gfc_resolve_index (dim, 1); } f->value.function.name = gfc_get_string ("__%s_%c%d", mask ? "msum" : "sum", gfc_type_letter (array->ts.type), array->ts.kind); } void gfc_resolve_tan (gfc_expr * f, gfc_expr * x) { f->ts = x->ts; f->value.function.name = gfc_get_string ("__tan_%c%d", gfc_type_letter (x->ts.type), x->ts.kind); } void gfc_resolve_tanh (gfc_expr * f, gfc_expr * x) { f->ts = x->ts; f->value.function.name = gfc_get_string ("__tanh_%c%d", gfc_type_letter (x->ts.type), x->ts.kind); } void gfc_resolve_transfer (gfc_expr * f, gfc_expr * source ATTRIBUTE_UNUSED, gfc_expr * mold, gfc_expr * size) { /* TODO: Make this do something meaningful. */ static char transfer0[] = "__transfer0", transfer1[] = "__transfer1"; f->ts = mold->ts; if (size == NULL && mold->rank == 0) { f->rank = 0; f->value.function.name = transfer0; } else { f->rank = 1; f->value.function.name = transfer1; } } void gfc_resolve_transpose (gfc_expr * f, gfc_expr * matrix) { static char transpose0[] = "__transpose"; int kind; f->ts = matrix->ts; f->rank = 2; switch (matrix->ts.type) { case BT_COMPLEX: kind = matrix->ts.kind * 2; break; case BT_REAL: case BT_INTEGER: case BT_LOGICAL: kind = matrix->ts.kind; break; default: kind = 0; break; } switch (kind) { case 4: case 8: /* case 16: */ f->value.function.name = gfc_get_string ("__transpose_%d", kind); break; default: f->value.function.name = transpose0; } } void gfc_resolve_trim (gfc_expr * f, gfc_expr * string) { f->ts.type = BT_CHARACTER; f->ts.kind = string->ts.kind; f->value.function.name = gfc_get_string ("__trim_%d", string->ts.kind); } void gfc_resolve_ubound (gfc_expr * f, gfc_expr * array ATTRIBUTE_UNUSED, gfc_expr * dim) { static char ubound[] = "__ubound"; f->ts.type = BT_INTEGER; f->ts.kind = gfc_default_integer_kind (); f->rank = (dim == NULL) ? 1 : 0; f->value.function.name = ubound; } void gfc_resolve_unpack (gfc_expr * f, gfc_expr * vector, gfc_expr * mask, gfc_expr * field ATTRIBUTE_UNUSED) { f->ts.type = vector->ts.type; f->ts.kind = vector->ts.kind; f->rank = mask->rank; f->value.function.name = gfc_get_string ("__unpack%d", field->rank > 0 ? 1 : 0); } void gfc_resolve_verify (gfc_expr * f, gfc_expr * string, gfc_expr * set ATTRIBUTE_UNUSED, gfc_expr * back ATTRIBUTE_UNUSED) { f->ts.type = BT_INTEGER; f->ts.kind = gfc_default_integer_kind (); f->value.function.name = gfc_get_string ("__verify_%d", string->ts.kind); } /* Intrinsic subroutine resolution. */ void gfc_resolve_cpu_time (gfc_code * c ATTRIBUTE_UNUSED) { const char *name; name = gfc_get_string (PREFIX("cpu_time_%d"), c->ext.actual->expr->ts.kind); c->resolved_sym = gfc_get_intrinsic_sub_symbol (name); } void gfc_resolve_random_number (gfc_code * c ATTRIBUTE_UNUSED) { const char *name; int kind; kind = c->ext.actual->expr->ts.kind; if (c->ext.actual->expr->rank == 0) name = gfc_get_string (PREFIX("random_r%d"), kind); else name = gfc_get_string (PREFIX("arandom_r%d"), kind); c->resolved_sym = gfc_get_intrinsic_sub_symbol (name); } /* G77 compatibility subroutines etime() and dtime(). */ void gfc_resolve_etime_sub (gfc_code * c) { const char *name; name = gfc_get_string (PREFIX("etime_sub")); c->resolved_sym = gfc_get_intrinsic_sub_symbol (name); } /* G77 compatibility subroutine second(). */ void gfc_resolve_second_sub (gfc_code * c) { const char *name; name = gfc_get_string (PREFIX("second_sub")); c->resolved_sym = gfc_get_intrinsic_sub_symbol (name); } /* G77 compatibility function srand(). */ void gfc_resolve_srand (gfc_code * c) { const char *name; name = gfc_get_string (PREFIX("srand")); c->resolved_sym = gfc_get_intrinsic_sub_symbol (name); } /* Resolve the getarg intrinsic subroutine. */ void gfc_resolve_getarg (gfc_code * c) { const char *name; int kind; kind = gfc_default_integer_kind (); name = gfc_get_string (PREFIX("getarg_i%d"), kind); c->resolved_sym = gfc_get_intrinsic_sub_symbol (name); } /* Resolve the get_command intrinsic subroutine. */ void gfc_resolve_get_command (gfc_code * c) { const char *name; int kind; kind = gfc_default_integer_kind (); name = gfc_get_string (PREFIX("get_command_i%d"), kind); c->resolved_sym = gfc_get_intrinsic_sub_symbol (name); } /* Resolve the get_command_argument intrinsic subroutine. */ void gfc_resolve_get_command_argument (gfc_code * c) { const char *name; int kind; kind = gfc_default_integer_kind (); name = gfc_get_string (PREFIX("get_command_argument_i%d"), kind); c->resolved_sym = gfc_get_intrinsic_sub_symbol (name); } /* Determine if the arguments to SYSTEM_CLOCK are INTEGER(4) or INTEGER(8) */ void gfc_resolve_system_clock (gfc_code * c) { const char *name; int kind; if (c->ext.actual->expr != NULL) kind = c->ext.actual->expr->ts.kind; else if (c->ext.actual->next->expr != NULL) kind = c->ext.actual->next->expr->ts.kind; else if (c->ext.actual->next->next->expr != NULL) kind = c->ext.actual->next->next->expr->ts.kind; else kind = gfc_default_integer_kind (); name = gfc_get_string (PREFIX("system_clock_%d"), kind); c->resolved_sym = gfc_get_intrinsic_sub_symbol (name); } void gfc_iresolve_init_1 (void) { int i; for (i = 0; i < HASH_SIZE; i++) string_head[i] = NULL; } void gfc_iresolve_done_1 (void) { free_strings (); }