/* Output Dwarf2 format symbol table information from the GNU C compiler. Copyright (C) 1992, 1993, 1995, 1996 Free Software Foundation, Inc. Contributed by Gary Funck (gary@intrepid.com). Derived from the DWARF 1 implementation written by Ron Guilmette (rfg@monkeys.com). Extensively modified by Jason Merrill (jason@cygnus.com). This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "config.h" #ifdef DWARF2_DEBUGGING_INFO #include #include #include "dwarf2.h" #include "tree.h" #include "flags.h" #include "rtl.h" #include "hard-reg-set.h" #include "regs.h" #include "insn-config.h" #include "reload.h" #include "output.h" #include "defaults.h" /* #define NDEBUG 1 */ #include "assert.h" extern char *getpwd (); /* IMPORTANT NOTE: Please see the file README.DWARF for important details regarding the GNU implementation of DWARF. */ /* NOTE: In the comments in this file, many references are made to "Debugging Information Entries". This term is abbreviated as `DIE' throughout the remainder of this file. */ #if defined(__GNUC__) && (NDEBUG == 1) #define inline static inline #else #define inline static #endif /* An internal representation of the DWARF output is built, and then walked to generate the DWARF debugging info. The walk of the internal representation is done after the entire program has been compiled. The types below are used to describe the internal representation. */ /* Each DIE may have a series of attribute/value pairs. Values can take on several forms. The forms that are used in this impelementation are listed below. */ typedef enum { dw_val_class_addr, dw_val_class_loc, dw_val_class_const, dw_val_class_unsigned_const, dw_val_class_long_long, dw_val_class_float, dw_val_class_flag, dw_val_class_die_ref, dw_val_class_fde_ref, dw_val_class_lbl_id, dw_val_class_section_offset, dw_val_class_str } dw_val_class; /* Various DIE's use offsets relative to the beginning of the .debug_info section to refer to each other. */ typedef long int dw_offset; /* Define typedefs here to avoid circular dependencies. */ typedef struct die_struct *dw_die_ref; typedef struct dw_attr_struct *dw_attr_ref; typedef struct dw_val_struct *dw_val_ref; typedef struct dw_line_info_struct *dw_line_info_ref; typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref; typedef struct dw_loc_descr_struct *dw_loc_descr_ref; typedef struct dw_cfi_struct *dw_cfi_ref; typedef struct dw_fde_struct *dw_fde_ref; typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref; typedef struct pubname_struct *pubname_ref; typedef dw_die_ref *arange_ref; /* Describe a double word constant value. */ typedef struct dw_long_long_struct { unsigned long hi; unsigned long low; } dw_long_long_const; /* Describe a floating point constant value. */ typedef struct dw_fp_struct { long *array; unsigned length; } dw_float_const; /* Each entry in the line_info_table maintains the file and line nuber associated with the label generated for that entry. The label gives the PC value associated with the line number entry. */ typedef struct dw_line_info_struct { unsigned long dw_file_num; unsigned long dw_line_num; } dw_line_info_entry; /* Line information for functions in separate sections; each one gets its own sequence. */ typedef struct dw_separate_line_info_struct { unsigned long dw_file_num; unsigned long dw_line_num; unsigned long function; } dw_separate_line_info_entry; /* The dw_val_node describes an attibute's value, as it is represnted internally. */ typedef struct dw_val_struct { dw_val_class val_class; union { char *val_addr; dw_loc_descr_ref val_loc; long int val_int; long unsigned val_unsigned; dw_long_long_const val_long_long; dw_float_const val_float; dw_die_ref val_die_ref; unsigned val_fde_index; char *val_str; char *val_lbl_id; char *val_section; unsigned char val_flag; } v; } dw_val_node; /* Locations in memory are described using a sequence of stack machine operations. */ typedef struct dw_loc_descr_struct { dw_loc_descr_ref dw_loc_next; enum dwarf_location_atom dw_loc_opc; dw_val_node dw_loc_oprnd1; dw_val_node dw_loc_oprnd2; } dw_loc_descr_node; /* Each DIE attribute has a field specifying the attribute kind, a link to the next attribute in the chain, and an attribute value. Attributes are typically linked below the DIE they modify. */ typedef struct dw_attr_struct { enum dwarf_attribute dw_attr; dw_attr_ref dw_attr_next; dw_val_node dw_attr_val; } dw_attr_node; /* Call frames are described using a sequence of Call Frame Information instructions. The register number, offset and address fields are provided as possible operands; their use is selected by the opcode field. */ typedef union dw_cfi_oprnd_struct { unsigned long dw_cfi_reg_num; long int dw_cfi_offset; char *dw_cfi_addr; } dw_cfi_oprnd; typedef struct dw_cfi_struct { dw_cfi_ref dw_cfi_next; enum dwarf_call_frame_info dw_cfi_opc; dw_cfi_oprnd dw_cfi_oprnd1; dw_cfi_oprnd dw_cfi_oprnd2; } dw_cfi_node; /* All call frame descriptions (FDE's) in the GCC generated DWARF refer to a single Common Information Entry (CIE), defined at the beginning of the .debug_frame section. This used of a single CIE obviates the need to keep track of multiple CIE's in the DWARF generation routines below. */ typedef struct dw_fde_struct { unsigned long dw_fde_offset; char *dw_fde_begin; char *dw_fde_current_label; char *dw_fde_end; dw_cfi_ref dw_fde_cfi; } dw_fde_node; /* The Debugging Information Entry (DIE) structure */ typedef struct die_struct { enum dwarf_tag die_tag; dw_attr_ref die_attr; dw_attr_ref die_attr_last; dw_die_ref die_parent; dw_die_ref die_child; dw_die_ref die_child_last; dw_die_ref die_sib; dw_offset die_offset; unsigned long die_abbrev; } die_node; /* The pubname structure */ typedef struct pubname_struct { dw_die_ref die; char * name; } pubname_entry; /* How to start an assembler comment. */ #ifndef ASM_COMMENT_START #define ASM_COMMENT_START ";#" #endif /* Define a macro which returns non-zero for a TYPE_DECL which was implicitly generated for a tagged type. Note that unlike the gcc front end (which generates a NULL named TYPE_DECL node for each complete tagged type, each array type, and each function type node created) the g++ front end generates a _named_ TYPE_DECL node for each tagged type node created. These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to generate a DW_TAG_typedef DIE for them. */ #define TYPE_DECL_IS_STUB(decl) \ (DECL_NAME (decl) == NULL \ || (DECL_ARTIFICIAL (decl) \ && is_tagged_type (TREE_TYPE (decl)) \ && decl == TYPE_STUB_DECL (TREE_TYPE (decl)))) /* Information concerning the compilation unit's programming language, and compiler version. */ extern int flag_traditional; extern char *version_string; extern char *language_string; /* Maximum size (in bytes) of an artificially generated label. */ #define MAX_ARTIFICIAL_LABEL_BYTES 30 /* Make sure we know the sizes of the various types dwarf can describe. These are only defaults. If the sizes are different for your target, you should override these values by defining the appropriate symbols in your tm.h file. */ #ifndef CHAR_TYPE_SIZE #define CHAR_TYPE_SIZE BITS_PER_UNIT #endif #ifndef PTR_SIZE #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT) #endif /* The size in bytes of a DWARF field indicating an offset or length relative to a debug info section, specified to be 4 bytes in the DWARF-2 specification. The SGI/MIPS ABI defines it to be the same as PTR_SIZE. */ #ifndef DWARF_OFFSET_SIZE #define DWARF_OFFSET_SIZE 4 #endif #define DWARF_VERSION 2 /* Fixed size portion of the DWARF compilation unit header. */ #define DWARF_COMPILE_UNIT_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 3) /* Fixed size portion of debugging line information prolog. */ #define DWARF_LINE_PROLOG_HEADER_SIZE 5 /* Fixed size portion of public names info. */ #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2) /* Round SIZE up to the nearest BOUNDARY. */ #define DWARF_ROUND(SIZE,BOUNDARY) \ (((SIZE) + (BOUNDARY) - 1) & ~((BOUNDARY) - 1)) /* Fixed size portion of the address range info. */ #define DWARF_ARANGES_HEADER_SIZE \ (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, PTR_SIZE * 2) - DWARF_OFFSET_SIZE) /* Fixed size portion of the CIE (including the length field). */ #define DWARF_CIE_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 5) /* The un-padded size of the CIE. Initialized in calc_fde_sizes, used in output_call_frame_info. */ static unsigned cie_size; /* Offsets recorded in opcodes are a multiple of this alignment factor. */ #ifdef STACK_GROWS_DOWNWARD #define DWARF_CIE_DATA_ALIGNMENT (-UNITS_PER_WORD) #else #define DWARF_CIE_DATA_ALIGNMENT UNITS_PER_WORD #endif /* Fixed size portion of the FDE. */ #define DWARF_FDE_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2 * PTR_SIZE) /* Define the architecture-dependent minimum instruction length (in bytes). In this implementation of DWARF, this field is used for information purposes only. Since GCC generates assembly language, we have no a priori knowledge of how many instruction bytes are generated for each source line, and therefore can use only the DW_LNE_set_address and DW_LNS_fixed_advance_pc line information commands. */ #ifndef DWARF_LINE_MIN_INSTR_LENGTH #define DWARF_LINE_MIN_INSTR_LENGTH 4 #endif /* Minimum line offset in a special line info. opcode. This value was chosen to give a reasonable range of values. */ #define DWARF_LINE_BASE -10 /* First special line opcde - leave room for the standard opcodes. */ #define DWARF_LINE_OPCODE_BASE 10 /* Range of line offsets in a special line info. opcode. */ #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1) /* Flag that indicates the initial value of the is_stmt_start flag. In the present implementation, we do not mark any lines as the beginning of a source statement, because that information is not made available by the GCC front-end. */ #define DWARF_LINE_DEFAULT_IS_STMT_START 1 /* This location is used by calc_die_sizes() to keep track the offset of each DIE within the .debug_info section. */ static unsigned long next_die_offset; /* This location is used by calc_fde_sizes() to keep track the offset of each FDE within the .debug_frame section. */ static unsigned long next_fde_offset; /* Record the root of the DIE's built for the current compilation unit. */ dw_die_ref comp_unit_die; /* The number of DIEs with a NULL parent waiting to be relocated. */ static int limbo_die_count; /* Pointer to an array of filenames referenced by this compilation unit. */ static char **file_table; /* Total number of entries in the table (i.e. array) pointed to by `file_table'. This is the *total* and includes both used and unused slots. */ static unsigned file_table_allocated; /* Number of entries in the file_table which are actually in use. */ static unsigned file_table_in_use; /* Size (in elements) of increments by which we may expand the filename table. */ #define FILE_TABLE_INCREMENT 64 /* Local pointer to the name of the main input file. Initialized in dwarf2out_init. */ static char *primary_filename; /* For Dwarf output, we must assign lexical-blocks id numbers in the order in which their beginnings are encountered. We output Dwarf debugging info that refers to the beginnings and ends of the ranges of code for each lexical block. The labels themselves are generated in final.c, which assigns numbers to the blocks in the same way. */ static unsigned next_block_number = 2; /* A pointer to the base of a table of references to DIE's that describe declarations. The table is indexed by DECL_UID() which is a unique number, indentifying each decl. */ static dw_die_ref *decl_die_table; /* Number of elements currently allocated for the decl_die_table. */ static unsigned decl_die_table_allocated; /* Number of elements in decl_die_table currently in use. */ static unsigned decl_die_table_in_use; /* Size (in elements) of increments by which we may expand the decl_die_table. */ #define DECL_DIE_TABLE_INCREMENT 256 /* A pointer to the base of a table of references to declaration scopes. This table is a display which tracks the nesting of declaration scopes at the current scope and containing scopes. This table is used to find the proper place to define type declaration DIE's. */ static tree *decl_scope_table; /* Number of elements currently allocated for the decl_scope_table. */ static unsigned decl_scope_table_allocated; /* Current level of nesting of declataion scopes. */ static unsigned decl_scope_depth; /* Size (in elements) of increments by which we may expand the decl_scope_table. */ #define DECL_SCOPE_TABLE_INCREMENT 64 /* A pointer to the base of a list of references to DIE's that are uniquely identified by their tag, presence/absence of children DIE's, and list of attribute/value pairs. */ static dw_die_ref *abbrev_die_table; /* Number of elements currently allocated for abbrev_die_table. */ static unsigned abbrev_die_table_allocated; /* Number of elements in type_die_table currently in use. */ static unsigned abbrev_die_table_in_use; /* Size (in elements) of increments by which we may expand the abbrev_die_table. */ #define ABBREV_DIE_TABLE_INCREMENT 256 /* A pointer to the base of a table that contains line information for each source code line in .text in the compilation unit. */ static dw_line_info_ref line_info_table; /* Number of elements currently allocated for line_info_table. */ static unsigned line_info_table_allocated; /* Number of elements in separate_line_info_table currently in use. */ static unsigned separate_line_info_table_in_use; /* A pointer to the base of a table that contains line information for each source code line outside of .text in the compilation unit. */ static dw_separate_line_info_ref separate_line_info_table; /* Number of elements currently allocated for separate_line_info_table. */ static unsigned separate_line_info_table_allocated; /* Number of elements in line_info_table currently in use. */ static unsigned line_info_table_in_use; /* Size (in elements) of increments by which we may expand the line_info_table. */ #define LINE_INFO_TABLE_INCREMENT 1024 /* A pointer to the base of a table that contains frame description information for each routine. */ static dw_fde_ref fde_table; /* Number of elements currently allocated for fde_table. */ static unsigned fde_table_allocated; /* Number of elements in fde_table currently in use. */ static unsigned fde_table_in_use; /* Size (in elements) of increments by which we may expand the fde_table. */ #define FDE_TABLE_INCREMENT 256 /* A list of call frame insns for the CIE. */ static dw_cfi_ref cie_cfi_head; /* A pointer to the base of a table that contains a list of publicly accessible names. */ static pubname_ref pubname_table; /* Number of elements currently allocated for pubname_table. */ static unsigned pubname_table_allocated; /* Number of elements in pubname_table currently in use. */ static unsigned pubname_table_in_use; /* Size (in elements) of increments by which we may expand the pubname_table. */ #define PUBNAME_TABLE_INCREMENT 64 /* A pointer to the base of a table that contains a list of publicly accessible names. */ static arange_ref arange_table; /* Number of elements currently allocated for arange_table. */ static unsigned arange_table_allocated; /* Number of elements in arange_table currently in use. */ static unsigned arange_table_in_use; /* Size (in elements) of increments by which we may expand the arange_table. */ #define ARANGE_TABLE_INCREMENT 64 /* A pointer to the base of a list of pending types which we haven't generated DIEs for yet, but which we will have to come back to later on. */ static tree *pending_types_list; /* Number of elements currently allocated for the pending_types_list. */ static unsigned pending_types_allocated; /* Number of elements of pending_types_list currently in use. */ static unsigned pending_types; /* Size (in elements) of increments by which we may expand the pending types list. Actually, a single hunk of space of this size should be enough for most typical programs. */ #define PENDING_TYPES_INCREMENT 64 /* The number of the current function definition for which debugging information is being generated. These numbers range from 1 up to the maximum number of function definitions contained within the current compilation unit. These numbers are used to create unique label id's unique to each function definition. */ static unsigned current_funcdef_number = 1; /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram attribute that accelerates the lookup of the FDE associated with the subprogram. This variable holds the table index of the FDE associated with the current function (body) definition. */ static unsigned current_funcdef_fde; /* Record whether the function being analyzed contains inlined functions. */ static int current_function_has_inlines; static int comp_unit_has_inlines; /* A pointer to the ..._DECL node which we have most recently been working on. We keep this around just in case something about it looks screwy and we want to tell the user what the source coordinates for the actual declaration are. */ static tree dwarf_last_decl; /* Forward declarations for functions defined in this file. */ static void gen_type_die (); static void add_type_attribute (); static void decls_for_scope (); static void gen_decl_die (); static unsigned lookup_filename (); static int constant_size PROTO((long unsigned)); static enum dwarf_form value_format PROTO((dw_val_ref)); static unsigned reg_number (); /* Definitions of defaults for assembler-dependent names of various pseudo-ops and section names. Theses may be overridden in the tm.h file (if necessary) for a particular assembler. */ #ifndef UNALIGNED_SHORT_ASM_OP #define UNALIGNED_SHORT_ASM_OP ".2byte" #endif #ifndef UNALIGNED_INT_ASM_OP #define UNALIGNED_INT_ASM_OP ".4byte" #endif #ifndef UNALIGNED_DOUBLE_INT_ASM_OP #define UNALIGNED_DOUBLE_INT_ASM_OP ".8byte" #endif #ifndef ASM_BYTE_OP #define ASM_BYTE_OP ".byte" #endif #ifndef UNALIGNED_OFFSET_ASM_OP #define UNALIGNED_OFFSET_ASM_OP \ (DWARF_OFFSET_SIZE == 8 ? UNALIGNED_DOUBLE_INT_ASM_OP : UNALIGNED_INT_ASM_OP) #endif #ifndef UNALIGNED_WORD_ASM_OP #define UNALIGNED_WORD_ASM_OP \ (PTR_SIZE == 8 ? UNALIGNED_DOUBLE_INT_ASM_OP : UNALIGNED_INT_ASM_OP) #endif /* Data and reference forms for relocatable data. */ #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4) #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4) /* Pseudo-op for defining a new section. */ #ifndef SECTION_ASM_OP #define SECTION_ASM_OP ".section" #endif /* The default format used by the ASM_OUTPUT_SECTION macro (see below) to print the SECTION_ASM_OP and the section name. The default here works for almost all svr4 assemblers, except for the sparc, where the section name must be enclosed in double quotes. (See sparcv4.h). */ #ifndef SECTION_FORMAT #define SECTION_FORMAT "\t%s\t%s\n" #endif /* Section names used to hold DWARF debugging information. */ #ifndef DEBUG_SECTION #define DEBUG_SECTION ".debug_info" #endif #ifndef ABBREV_SECTION #define ABBREV_SECTION ".debug_abbrev" #endif #ifndef ARANGES_SECTION #define ARANGES_SECTION ".debug_aranges" #endif #ifndef DW_MACINFO_SECTION #define DW_MACINFO_SECTION ".debug_macinfo" #endif #ifndef FRAME_SECTION #define FRAME_SECTION ".debug_frame" #endif #ifndef LINE_SECTION #define LINE_SECTION ".debug_line" #endif #ifndef LOC_SECTION #define LOC_SECTION ".debug_loc" #endif #ifndef PUBNAMES_SECTION #define PUBNAMES_SECTION ".debug_pubnames" #endif #ifndef STR_SECTION #define STR_SECTION ".debug_str" #endif /* Standerd ELF section names for compiled code and data. */ #ifndef TEXT_SECTION #define TEXT_SECTION ".text" #endif #ifndef DATA_SECTION #define DATA_SECTION ".data" #endif #ifndef BSS_SECTION #define BSS_SECTION ".bss" #endif /* Definitions of defaults for formats and names of various special (artificial) labels which may be generated within this file (when the -g options is used and DWARF_DEBUGGING_INFO is in effect. If necessary, these may be overridden from within the tm.h file, but typically, overriding these defaults is unnecessary. */ char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES]; #ifndef TEXT_END_LABEL #define TEXT_END_LABEL "Letext" #endif #ifndef DATA_END_LABEL #define DATA_END_LABEL "Ledata" #endif #ifndef BSS_END_LABEL #define BSS_END_LABEL "Lebss" #endif #ifndef INSN_LABEL_FMT #define INSN_LABEL_FMT "LI%u_" #endif #ifndef BLOCK_BEGIN_LABEL #define BLOCK_BEGIN_LABEL "LBB" #endif #ifndef BLOCK_END_LABEL #define BLOCK_END_LABEL "LBE" #endif #ifndef BODY_BEGIN_LABEL #define BODY_BEGIN_LABEL "Lbb" #endif #ifndef BODY_END_LABEL #define BODY_END_LABEL "Lbe" #endif #ifndef FUNC_BEGIN_LABEL #define FUNC_BEGIN_LABEL "LFB" #endif #ifndef FUNC_END_LABEL #define FUNC_END_LABEL "LFE" #endif #ifndef LINE_CODE_LABEL #define LINE_CODE_LABEL "LM" #endif #ifndef SEPARATE_LINE_CODE_LABEL #define SEPARATE_LINE_CODE_LABEL "LSM" #endif /* Definitions of defaults for various types of primitive assembly language output operations. These may be overridden from within the tm.h file, but typically, that is unecessary. */ #ifndef ASM_OUTPUT_SECTION #define ASM_OUTPUT_SECTION(FILE, SECTION) \ fprintf ((FILE), SECTION_FORMAT, SECTION_ASM_OP, SECTION) #endif #ifndef ASM_OUTPUT_DWARF_DELTA2 #define ASM_OUTPUT_DWARF_DELTA2(FILE,LABEL1,LABEL2) \ do { fprintf ((FILE), "\t%s\t", UNALIGNED_SHORT_ASM_OP); \ assemble_name (FILE, LABEL1); \ fprintf (FILE, "-"); \ assemble_name (FILE, LABEL2); \ } while (0) #endif #ifndef ASM_OUTPUT_DWARF_DELTA4 #define ASM_OUTPUT_DWARF_DELTA4(FILE,LABEL1,LABEL2) \ do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \ assemble_name (FILE, LABEL1); \ fprintf (FILE, "-"); \ assemble_name (FILE, LABEL2); \ } while (0) #endif #ifndef ASM_OUTPUT_DWARF_DELTA #define ASM_OUTPUT_DWARF_DELTA(FILE,LABEL1,LABEL2) \ do { fprintf ((FILE), "\t%s\t", UNALIGNED_OFFSET_ASM_OP); \ assemble_name (FILE, LABEL1); \ fprintf (FILE, "-"); \ assemble_name (FILE, LABEL2); \ } while (0) #endif #ifndef ASM_OUTPUT_DWARF_ADDR_DELTA #define ASM_OUTPUT_DWARF_ADDR_DELTA(FILE,LABEL1,LABEL2) \ do { fprintf ((FILE), "\t%s\t", UNALIGNED_WORD_ASM_OP); \ assemble_name (FILE, LABEL1); \ fprintf (FILE, "-"); \ assemble_name (FILE, LABEL2); \ } while (0) #endif #ifndef ASM_OUTPUT_DWARF_ADDR #define ASM_OUTPUT_DWARF_ADDR(FILE,LABEL) \ do { fprintf ((FILE), "\t%s\t", UNALIGNED_WORD_ASM_OP); \ assemble_name (FILE, LABEL); \ } while (0) #endif #ifndef ASM_OUTPUT_DWARF_ADDR_CONST #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE,ADDR) \ fprintf ((FILE), "\t%s\t%s", UNALIGNED_WORD_ASM_OP, (ADDR)) #endif #ifndef ASM_OUTPUT_DWARF_OFFSET #define ASM_OUTPUT_DWARF_OFFSET(FILE,LABEL) \ do { fprintf ((FILE), "\t%s\t", UNALIGNED_OFFSET_ASM_OP); \ assemble_name (FILE, LABEL); \ } while (0) #endif #ifndef ASM_OUTPUT_DWARF_DATA1 #define ASM_OUTPUT_DWARF_DATA1(FILE,VALUE) \ fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, VALUE) #endif #ifndef ASM_OUTPUT_DWARF_DATA2 #define ASM_OUTPUT_DWARF_DATA2(FILE,VALUE) \ fprintf ((FILE), "\t%s\t0x%x", UNALIGNED_SHORT_ASM_OP, (unsigned) VALUE) #endif #ifndef ASM_OUTPUT_DWARF_DATA4 #define ASM_OUTPUT_DWARF_DATA4(FILE,VALUE) \ fprintf ((FILE), "\t%s\t0x%x", UNALIGNED_INT_ASM_OP, (unsigned) VALUE) #endif #ifndef ASM_OUTPUT_DWARF_DATA #define ASM_OUTPUT_DWARF_DATA(FILE,VALUE) \ fprintf ((FILE), "\t%s\t0x%lx", UNALIGNED_OFFSET_ASM_OP, \ (unsigned long) VALUE) #endif #ifndef ASM_OUTPUT_DWARF_ADDR_DATA #define ASM_OUTPUT_DWARF_ADDR_DATA(FILE,VALUE) \ fprintf ((FILE), "\t%s\t0x%lx", UNALIGNED_WORD_ASM_OP, \ (unsigned long) VALUE) #endif #ifndef ASM_OUTPUT_DWARF_DATA8 #define ASM_OUTPUT_DWARF_DATA8(FILE,HIGH_VALUE,LOW_VALUE) \ do { \ if (WORDS_BIG_ENDIAN) \ { \ fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \ fprintf ((FILE), "\t%s\t0x%x", UNALIGNED_INT_ASM_OP, LOW_VALUE);\ } \ else \ { \ fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE);\ fprintf ((FILE), "\t%s\t0x%x", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \ } \ } while (0) #endif /* This is similar to the default ASM_OUTPUT_ASCII, except that no trailing newline is produced. When flag_verbose_asm is asserted, we add commnetary at the end of the line, so we must avoid output of a newline here. */ #ifndef ASM_OUTPUT_DWARF_STRING #define ASM_OUTPUT_DWARF_STRING(FILE,P) \ do { \ register int slen = strlen(P); \ register char *p = (P); \ register int i; \ fprintf (FILE, "\t.ascii \""); \ for (i = 0; i < slen; i++) \ { \ register int c = p[i]; \ if (c == '\"' || c == '\\') \ putc ('\\', FILE); \ if (c >= ' ' && c < 0177) \ putc (c, FILE); \ else \ { \ fprintf (FILE, "\\%o", c); \ } \ } \ fprintf (FILE, "\\0\""); \ } \ while (0) #endif /* Convert a reference to the assembler name of a C-level name. This macro has the same effect as ASM_OUTPUT_LABELREF, but copies to a string rather than writing to a file. */ #ifndef ASM_NAME_TO_STRING #define ASM_NAME_TO_STRING(STR, NAME) \ do { \ if ((NAME)[0] == '*') \ strcpy (STR, NAME+1); \ else \ strcpy (STR, NAME); \ } \ while (0) #endif /* The DWARF 2 CFA column which tracks the return address. Normally this is the column for PC, or the first column after all of the hard registers. */ #ifndef DWARF_FRAME_RETURN_COLUMN #ifdef PC_REGNUM #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM) #else #define DWARF_FRAME_RETURN_COLUMN FIRST_PSEUDO_REGISTER + 1 #endif #endif /* The mapping from gcc register number to DWARF 2 CFA column number. By default, we just provide columns for all registers. */ #ifndef DWARF_FRAME_REGNUM #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG) #endif /************************ general utility functions **************************/ /* Return a pointer to a copy of the section string name 's' with all attributes stripped off. */ inline char * stripattributes (s) register char *s; { register char *stripped, *p; stripped = xstrdup (s); p = stripped; while (*p && *p != ',') p++; *p = '\0'; return stripped; } /* Convert an integer constant expression into assembler syntax. Addition and subtraction are the only arithmetic that may appear in these expressions. This is an adaptation of output_addr_const() in final.c. Here, the target of the conversion is a string buffer. We can't use output_addr_const directly, because it writes to a file. */ static void addr_const_to_string (str, x) char *str; rtx x; { char buf1[256]; char buf2[256]; restart: str[0] = '\0'; switch (GET_CODE (x)) { case PC: if (flag_pic) strcat (str, ","); else abort (); break; case SYMBOL_REF: ASM_NAME_TO_STRING (buf1, XSTR (x, 0)); strcat (str, buf1); break; case LABEL_REF: ASM_GENERATE_INTERNAL_LABEL (buf1, "L", CODE_LABEL_NUMBER (XEXP (x, 0))); ASM_NAME_TO_STRING (buf2, buf1); strcat (str, buf2); break; case CODE_LABEL: ASM_GENERATE_INTERNAL_LABEL (buf1, "L", CODE_LABEL_NUMBER (x)); ASM_NAME_TO_STRING (buf2, buf1); strcat (str, buf2); break; case CONST_INT: sprintf (buf1, #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT "%d", #else "%ld", #endif INTVAL (x)); strcat (str, buf1); break; case CONST: /* This used to output parentheses around the expression, but that does not work on the 386 (either ATT or BSD assembler). */ addr_const_to_string (buf1, XEXP (x, 0)); strcat (str, buf1); break; case CONST_DOUBLE: if (GET_MODE (x) == VOIDmode) { /* We can use %d if the number is one word and positive. */ if (CONST_DOUBLE_HIGH (x)) sprintf (buf1, #if HOST_BITS_PER_WIDE_INT == 64 #if HOST_BITS_PER_WIDE_INT != HOST_BITS_PER_INT "0x%lx%016lx", #else "0x%x%016x", #endif #else #if HOST_BITS_PER_WIDE_INT != HOST_BITS_PER_INT "0x%lx%08lx", #else "0x%x%08x", #endif #endif CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x)); else if (CONST_DOUBLE_LOW (x) < 0) sprintf (buf1, #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT "0x%x", #else "0x%lx", #endif CONST_DOUBLE_LOW (x)); else sprintf (buf1, #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT "%d", #else "%ld", #endif CONST_DOUBLE_LOW (x)); strcat (str, buf1); } else /* We can't handle floating point constants; PRINT_OPERAND must handle them. */ output_operand_lossage ("floating constant misused"); break; case PLUS: /* Some assemblers need integer constants to appear last (eg masm). */ if (GET_CODE (XEXP (x, 0)) == CONST_INT) { addr_const_to_string (buf1, XEXP (x, 1)); strcat (str, buf1); if (INTVAL (XEXP (x, 0)) >= 0) strcat (str, "+"); addr_const_to_string (buf1, XEXP (x, 0)); strcat (str, buf1); } else { addr_const_to_string (buf1, XEXP (x, 0)); strcat (str, buf1); if (INTVAL (XEXP (x, 1)) >= 0) strcat (str, "+"); addr_const_to_string (buf1, XEXP (x, 1)); strcat (str, buf1); } break; case MINUS: /* Avoid outputting things like x-x or x+5-x, since some assemblers can't handle that. */ x = simplify_subtraction (x); if (GET_CODE (x) != MINUS) goto restart; addr_const_to_string (buf1, XEXP (x, 0)); strcat (str, buf1); strcat (str, "-"); if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) < 0) { strcat (str, ASM_OPEN_PAREN); addr_const_to_string (buf1, XEXP (x, 1)); strcat (str, buf1); strcat (str, ASM_CLOSE_PAREN); } else { addr_const_to_string (buf1, XEXP (x, 1)); strcat (str, buf1); } break; case ZERO_EXTEND: case SIGN_EXTEND: addr_const_to_string (buf1, XEXP (x, 0)); strcat (str, buf1); break; default: output_operand_lossage ("invalid expression as operand"); } } /* Convert an address constant to a string, and return a pointer to a copy of the result, located on the heap. */ static char * addr_to_string (x) rtx x; { char buf[1024]; addr_const_to_string (buf, x); return xstrdup (buf); } /* Test if rtl node points to a psuedo register. */ inline int is_pseudo_reg (rtl) register rtx rtl; { return (((GET_CODE (rtl) == REG) && (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)) || ((GET_CODE (rtl) == SUBREG) && (REGNO (XEXP (rtl, 0)) >= FIRST_PSEUDO_REGISTER))); } /* Return a reference to a type, with its const and volatile qualifiers removed. */ inline tree type_main_variant (type) register tree type; { type = TYPE_MAIN_VARIANT (type); /* There really should be only one main variant among any group of variants of a given type (and all of the MAIN_VARIANT values for all members of the group should point to that one type) but sometimes the C front-end messes this up for array types, so we work around that bug here. */ if (TREE_CODE (type) == ARRAY_TYPE) { while (type != TYPE_MAIN_VARIANT (type)) type = TYPE_MAIN_VARIANT (type); } return type; } /* Return non-zero if the given type node represents a tagged type. */ inline int is_tagged_type (type) register tree type; { register enum tree_code code = TREE_CODE (type); return (code == RECORD_TYPE || code == UNION_TYPE || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE); } /* Convert a DIE tag into its string name. */ static char * dwarf_tag_name (tag) register unsigned tag; { switch (tag) { case DW_TAG_padding: return "DW_TAG_padding"; case DW_TAG_array_type: return "DW_TAG_array_type"; case DW_TAG_class_type: return "DW_TAG_class_type"; case DW_TAG_entry_point: return "DW_TAG_entry_point"; case DW_TAG_enumeration_type: return "DW_TAG_enumeration_type"; case DW_TAG_formal_parameter: return "DW_TAG_formal_parameter"; case DW_TAG_imported_declaration: return "DW_TAG_imported_declaration"; case DW_TAG_label: return "DW_TAG_label"; case DW_TAG_lexical_block: return "DW_TAG_lexical_block"; case DW_TAG_member: return "DW_TAG_member"; case DW_TAG_pointer_type: return "DW_TAG_pointer_type"; case DW_TAG_reference_type: return "DW_TAG_reference_type"; case DW_TAG_compile_unit: return "DW_TAG_compile_unit"; case DW_TAG_string_type: return "DW_TAG_string_type"; case DW_TAG_structure_type: return "DW_TAG_structure_type"; case DW_TAG_subroutine_type: return "DW_TAG_subroutine_type"; case DW_TAG_typedef: return "DW_TAG_typedef"; case DW_TAG_union_type: return "DW_TAG_union_type"; case DW_TAG_unspecified_parameters: return "DW_TAG_unspecified_parameters"; case DW_TAG_variant: return "DW_TAG_variant"; case DW_TAG_common_block: return "DW_TAG_common_block"; case DW_TAG_common_inclusion: return "DW_TAG_common_inclusion"; case DW_TAG_inheritance: return "DW_TAG_inheritance"; case DW_TAG_inlined_subroutine: return "DW_TAG_inlined_subroutine"; case DW_TAG_module: return "DW_TAG_module"; case DW_TAG_ptr_to_member_type: return "DW_TAG_ptr_to_member_type"; case DW_TAG_set_type: return "DW_TAG_set_type"; case DW_TAG_subrange_type: return "DW_TAG_subrange_type"; case DW_TAG_with_stmt: return "DW_TAG_with_stmt"; case DW_TAG_access_declaration: return "DW_TAG_access_declaration"; case DW_TAG_base_type: return "DW_TAG_base_type"; case DW_TAG_catch_block: return "DW_TAG_catch_block"; case DW_TAG_const_type: return "DW_TAG_const_type"; case DW_TAG_constant: return "DW_TAG_constant"; case DW_TAG_enumerator: return "DW_TAG_enumerator"; case DW_TAG_file_type: return "DW_TAG_file_type"; case DW_TAG_friend: return "DW_TAG_friend"; case DW_TAG_namelist: return "DW_TAG_namelist"; case DW_TAG_namelist_item: return "DW_TAG_namelist_item"; case DW_TAG_packed_type: return "DW_TAG_packed_type"; case DW_TAG_subprogram: return "DW_TAG_subprogram"; case DW_TAG_template_type_param: return "DW_TAG_template_type_param"; case DW_TAG_template_value_param: return "DW_TAG_template_value_param"; case DW_TAG_thrown_type: return "DW_TAG_thrown_type"; case DW_TAG_try_block: return "DW_TAG_try_block"; case DW_TAG_variant_part: return "DW_TAG_variant_part"; case DW_TAG_variable: return "DW_TAG_variable"; case DW_TAG_volatile_type: return "DW_TAG_volatile_type"; case DW_TAG_MIPS_loop: return "DW_TAG_MIPS_loop"; case DW_TAG_format_label: return "DW_TAG_format_label"; case DW_TAG_function_template: return "DW_TAG_function_template"; case DW_TAG_class_template: return "DW_TAG_class_template"; default: return "DW_TAG_"; } } /* Convert a DWARF attribute code into its string name. */ static char * dwarf_attr_name (attr) register unsigned attr; { switch (attr) { case DW_AT_sibling: return "DW_AT_sibling"; case DW_AT_location: return "DW_AT_location"; case DW_AT_name: return "DW_AT_name"; case DW_AT_ordering: return "DW_AT_ordering"; case DW_AT_subscr_data: return "DW_AT_subscr_data"; case DW_AT_byte_size: return "DW_AT_byte_size"; case DW_AT_bit_offset: return "DW_AT_bit_offset"; case DW_AT_bit_size: return "DW_AT_bit_size"; case DW_AT_element_list: return "DW_AT_element_list"; case DW_AT_stmt_list: return "DW_AT_stmt_list"; case DW_AT_low_pc: return "DW_AT_low_pc"; case DW_AT_high_pc: return "DW_AT_high_pc"; case DW_AT_language: return "DW_AT_language"; case DW_AT_member: return "DW_AT_member"; case DW_AT_discr: return "DW_AT_discr"; case DW_AT_discr_value: return "DW_AT_discr_value"; case DW_AT_visibility: return "DW_AT_visibility"; case DW_AT_import: return "DW_AT_import"; case DW_AT_string_length: return "DW_AT_string_length"; case DW_AT_common_reference: return "DW_AT_common_reference"; case DW_AT_comp_dir: return "DW_AT_comp_dir"; case DW_AT_const_value: return "DW_AT_const_value"; case DW_AT_containing_type: return "DW_AT_containing_type"; case DW_AT_default_value: return "DW_AT_default_value"; case DW_AT_inline: return "DW_AT_inline"; case DW_AT_is_optional: return "DW_AT_is_optional"; case DW_AT_lower_bound: return "DW_AT_lower_bound"; case DW_AT_producer: return "DW_AT_producer"; case DW_AT_prototyped: return "DW_AT_prototyped"; case DW_AT_return_addr: return "DW_AT_return_addr"; case DW_AT_start_scope: return "DW_AT_start_scope"; case DW_AT_stride_size: return "DW_AT_stride_size"; case DW_AT_upper_bound: return "DW_AT_upper_bound"; case DW_AT_abstract_origin: return "DW_AT_abstract_origin"; case DW_AT_accessibility: return "DW_AT_accessibility"; case DW_AT_address_class: return "DW_AT_address_class"; case DW_AT_artificial: return "DW_AT_artificial"; case DW_AT_base_types: return "DW_AT_base_types"; case DW_AT_calling_convention: return "DW_AT_calling_convention"; case DW_AT_count: return "DW_AT_count"; case DW_AT_data_member_location: return "DW_AT_data_member_location"; case DW_AT_decl_column: return "DW_AT_decl_column"; case DW_AT_decl_file: return "DW_AT_decl_file"; case DW_AT_decl_line: return "DW_AT_decl_line"; case DW_AT_declaration: return "DW_AT_declaration"; case DW_AT_discr_list: return "DW_AT_discr_list"; case DW_AT_encoding: return "DW_AT_encoding"; case DW_AT_external: return "DW_AT_external"; case DW_AT_frame_base: return "DW_AT_frame_base"; case DW_AT_friend: return "DW_AT_friend"; case DW_AT_identifier_case: return "DW_AT_identifier_case"; case DW_AT_macro_info: return "DW_AT_macro_info"; case DW_AT_namelist_items: return "DW_AT_namelist_items"; case DW_AT_priority: return "DW_AT_priority"; case DW_AT_segment: return "DW_AT_segment"; case DW_AT_specification: return "DW_AT_specification"; case DW_AT_static_link: return "DW_AT_static_link"; case DW_AT_type: return "DW_AT_type"; case DW_AT_use_location: return "DW_AT_use_location"; case DW_AT_variable_parameter: return "DW_AT_variable_parameter"; case DW_AT_virtuality: return "DW_AT_virtuality"; case DW_AT_vtable_elem_location: return "DW_AT_vtable_elem_location"; case DW_AT_MIPS_fde: return "DW_AT_MIPS_fde"; case DW_AT_MIPS_loop_begin: return "DW_AT_MIPS_loop_begin"; case DW_AT_MIPS_tail_loop_begin: return "DW_AT_MIPS_tail_loop_begin"; case DW_AT_MIPS_epilog_begin: return "DW_AT_MIPS_epilog_begin"; case DW_AT_MIPS_loop_unroll_factor: return "DW_AT_MIPS_loop_unroll_factor"; case DW_AT_MIPS_software_pipeline_depth: return "DW_AT_MIPS_software_pipeline_depth"; case DW_AT_MIPS_linkage_name: return "DW_AT_MIPS_linkage_name"; case DW_AT_MIPS_stride: return "DW_AT_MIPS_stride"; case DW_AT_MIPS_abstract_name: return "DW_AT_MIPS_abstract_name"; case DW_AT_MIPS_clone_origin: return "DW_AT_MIPS_clone_origin"; case DW_AT_MIPS_has_inlines: return "DW_AT_MIPS_has_inlines"; case DW_AT_sf_names: return "DW_AT_sf_names"; case DW_AT_src_info: return "DW_AT_src_info"; case DW_AT_mac_info: return "DW_AT_mac_info"; case DW_AT_src_coords: return "DW_AT_src_coords"; case DW_AT_body_begin: return "DW_AT_body_begin"; case DW_AT_body_end: return "DW_AT_body_end"; default: return "DW_AT_"; } } /* Convert a DWARF value form code into its string name. */ static char * dwarf_form_name (form) register unsigned form; { switch (form) { case DW_FORM_addr: return "DW_FORM_addr"; case DW_FORM_block2: return "DW_FORM_block2"; case DW_FORM_block4: return "DW_FORM_block4"; case DW_FORM_data2: return "DW_FORM_data2"; case DW_FORM_data4: return "DW_FORM_data4"; case DW_FORM_data8: return "DW_FORM_data8"; case DW_FORM_string: return "DW_FORM_string"; case DW_FORM_block: return "DW_FORM_block"; case DW_FORM_block1: return "DW_FORM_block1"; case DW_FORM_data1: return "DW_FORM_data1"; case DW_FORM_flag: return "DW_FORM_flag"; case DW_FORM_sdata: return "DW_FORM_sdata"; case DW_FORM_strp: return "DW_FORM_strp"; case DW_FORM_udata: return "DW_FORM_udata"; case DW_FORM_ref_addr: return "DW_FORM_ref_addr"; case DW_FORM_ref1: return "DW_FORM_ref1"; case DW_FORM_ref2: return "DW_FORM_ref2"; case DW_FORM_ref4: return "DW_FORM_ref4"; case DW_FORM_ref8: return "DW_FORM_ref8"; case DW_FORM_ref_udata: return "DW_FORM_ref_udata"; case DW_FORM_indirect: return "DW_FORM_indirect"; default: return "DW_FORM_"; } } /* Convert a DWARF stack opcode into its string name. */ static char * dwarf_stack_op_name (op) register unsigned op; { switch (op) { case DW_OP_addr: return "DW_OP_addr"; case DW_OP_deref: return "DW_OP_deref"; case DW_OP_const1u: return "DW_OP_const1u"; case DW_OP_const1s: return "DW_OP_const1s"; case DW_OP_const2u: return "DW_OP_const2u"; case DW_OP_const2s: return "DW_OP_const2s"; case DW_OP_const4u: return "DW_OP_const4u"; case DW_OP_const4s: return "DW_OP_const4s"; case DW_OP_const8u: return "DW_OP_const8u"; case DW_OP_const8s: return "DW_OP_const8s"; case DW_OP_constu: return "DW_OP_constu"; case DW_OP_consts: return "DW_OP_consts"; case DW_OP_dup: return "DW_OP_dup"; case DW_OP_drop: return "DW_OP_drop"; case DW_OP_over: return "DW_OP_over"; case DW_OP_pick: return "DW_OP_pick"; case DW_OP_swap: return "DW_OP_swap"; case DW_OP_rot: return "DW_OP_rot"; case DW_OP_xderef: return "DW_OP_xderef"; case DW_OP_abs: return "DW_OP_abs"; case DW_OP_and: return "DW_OP_and"; case DW_OP_div: return "DW_OP_div"; case DW_OP_minus: return "DW_OP_minus"; case DW_OP_mod: return "DW_OP_mod"; case DW_OP_mul: return "DW_OP_mul"; case DW_OP_neg: return "DW_OP_neg"; case DW_OP_not: return "DW_OP_not"; case DW_OP_or: return "DW_OP_or"; case DW_OP_plus: return "DW_OP_plus"; case DW_OP_plus_uconst: return "DW_OP_plus_uconst"; case DW_OP_shl: return "DW_OP_shl"; case DW_OP_shr: return "DW_OP_shr"; case DW_OP_shra: return "DW_OP_shra"; case DW_OP_xor: return "DW_OP_xor"; case DW_OP_bra: return "DW_OP_bra"; case DW_OP_eq: return "DW_OP_eq"; case DW_OP_ge: return "DW_OP_ge"; case DW_OP_gt: return "DW_OP_gt"; case DW_OP_le: return "DW_OP_le"; case DW_OP_lt: return "DW_OP_lt"; case DW_OP_ne: return "DW_OP_ne"; case DW_OP_skip: return "DW_OP_skip"; case DW_OP_lit0: return "DW_OP_lit0"; case DW_OP_lit1: return "DW_OP_lit1"; case DW_OP_lit2: return "DW_OP_lit2"; case DW_OP_lit3: return "DW_OP_lit3"; case DW_OP_lit4: return "DW_OP_lit4"; case DW_OP_lit5: return "DW_OP_lit5"; case DW_OP_lit6: return "DW_OP_lit6"; case DW_OP_lit7: return "DW_OP_lit7"; case DW_OP_lit8: return "DW_OP_lit8"; case DW_OP_lit9: return "DW_OP_lit9"; case DW_OP_lit10: return "DW_OP_lit10"; case DW_OP_lit11: return "DW_OP_lit11"; case DW_OP_lit12: return "DW_OP_lit12"; case DW_OP_lit13: return "DW_OP_lit13"; case DW_OP_lit14: return "DW_OP_lit14"; case DW_OP_lit15: return "DW_OP_lit15"; case DW_OP_lit16: return "DW_OP_lit16"; case DW_OP_lit17: return "DW_OP_lit17"; case DW_OP_lit18: return "DW_OP_lit18"; case DW_OP_lit19: return "DW_OP_lit19"; case DW_OP_lit20: return "DW_OP_lit20"; case DW_OP_lit21: return "DW_OP_lit21"; case DW_OP_lit22: return "DW_OP_lit22"; case DW_OP_lit23: return "DW_OP_lit23"; case DW_OP_lit24: return "DW_OP_lit24"; case DW_OP_lit25: return "DW_OP_lit25"; case DW_OP_lit26: return "DW_OP_lit26"; case DW_OP_lit27: return "DW_OP_lit27"; case DW_OP_lit28: return "DW_OP_lit28"; case DW_OP_lit29: return "DW_OP_lit29"; case DW_OP_lit30: return "DW_OP_lit30"; case DW_OP_lit31: return "DW_OP_lit31"; case DW_OP_reg0: return "DW_OP_reg0"; case DW_OP_reg1: return "DW_OP_reg1"; case DW_OP_reg2: return "DW_OP_reg2"; case DW_OP_reg3: return "DW_OP_reg3"; case DW_OP_reg4: return "DW_OP_reg4"; case DW_OP_reg5: return "DW_OP_reg5"; case DW_OP_reg6: return "DW_OP_reg6"; case DW_OP_reg7: return "DW_OP_reg7"; case DW_OP_reg8: return "DW_OP_reg8"; case DW_OP_reg9: return "DW_OP_reg9"; case DW_OP_reg10: return "DW_OP_reg10"; case DW_OP_reg11: return "DW_OP_reg11"; case DW_OP_reg12: return "DW_OP_reg12"; case DW_OP_reg13: return "DW_OP_reg13"; case DW_OP_reg14: return "DW_OP_reg14"; case DW_OP_reg15: return "DW_OP_reg15"; case DW_OP_reg16: return "DW_OP_reg16"; case DW_OP_reg17: return "DW_OP_reg17"; case DW_OP_reg18: return "DW_OP_reg18"; case DW_OP_reg19: return "DW_OP_reg19"; case DW_OP_reg20: return "DW_OP_reg20"; case DW_OP_reg21: return "DW_OP_reg21"; case DW_OP_reg22: return "DW_OP_reg22"; case DW_OP_reg23: return "DW_OP_reg23"; case DW_OP_reg24: return "DW_OP_reg24"; case DW_OP_reg25: return "DW_OP_reg25"; case DW_OP_reg26: return "DW_OP_reg26"; case DW_OP_reg27: return "DW_OP_reg27"; case DW_OP_reg28: return "DW_OP_reg28"; case DW_OP_reg29: return "DW_OP_reg29"; case DW_OP_reg30: return "DW_OP_reg30"; case DW_OP_reg31: return "DW_OP_reg31"; case DW_OP_breg0: return "DW_OP_breg0"; case DW_OP_breg1: return "DW_OP_breg1"; case DW_OP_breg2: return "DW_OP_breg2"; case DW_OP_breg3: return "DW_OP_breg3"; case DW_OP_breg4: return "DW_OP_breg4"; case DW_OP_breg5: return "DW_OP_breg5"; case DW_OP_breg6: return "DW_OP_breg6"; case DW_OP_breg7: return "DW_OP_breg7"; case DW_OP_breg8: return "DW_OP_breg8"; case DW_OP_breg9: return "DW_OP_breg9"; case DW_OP_breg10: return "DW_OP_breg10"; case DW_OP_breg11: return "DW_OP_breg11"; case DW_OP_breg12: return "DW_OP_breg12"; case DW_OP_breg13: return "DW_OP_breg13"; case DW_OP_breg14: return "DW_OP_breg14"; case DW_OP_breg15: return "DW_OP_breg15"; case DW_OP_breg16: return "DW_OP_breg16"; case DW_OP_breg17: return "DW_OP_breg17"; case DW_OP_breg18: return "DW_OP_breg18"; case DW_OP_breg19: return "DW_OP_breg19"; case DW_OP_breg20: return "DW_OP_breg20"; case DW_OP_breg21: return "DW_OP_breg21"; case DW_OP_breg22: return "DW_OP_breg22"; case DW_OP_breg23: return "DW_OP_breg23"; case DW_OP_breg24: return "DW_OP_breg24"; case DW_OP_breg25: return "DW_OP_breg25"; case DW_OP_breg26: return "DW_OP_breg26"; case DW_OP_breg27: return "DW_OP_breg27"; case DW_OP_breg28: return "DW_OP_breg28"; case DW_OP_breg29: return "DW_OP_breg29"; case DW_OP_breg30: return "DW_OP_breg30"; case DW_OP_breg31: return "DW_OP_breg31"; case DW_OP_regx: return "DW_OP_regx"; case DW_OP_fbreg: return "DW_OP_fbreg"; case DW_OP_bregx: return "DW_OP_bregx"; case DW_OP_piece: return "DW_OP_piece"; case DW_OP_deref_size: return "DW_OP_deref_size"; case DW_OP_xderef_size: return "DW_OP_xderef_size"; case DW_OP_nop: return "DW_OP_nop"; default: return "OP_"; } } /* Convert a DWARF type code into its string name. */ static char * dwarf_type_encoding_name (enc) register unsigned enc; { switch (enc) { case DW_ATE_address: return "DW_ATE_address"; case DW_ATE_boolean: return "DW_ATE_boolean"; case DW_ATE_complex_float: return "DW_ATE_complex_float"; case DW_ATE_float: return "DW_ATE_float"; case DW_ATE_signed: return "DW_ATE_signed"; case DW_ATE_signed_char: return "DW_ATE_signed_char"; case DW_ATE_unsigned: return "DW_ATE_unsigned"; case DW_ATE_unsigned_char: return "DW_ATE_unsigned_char"; default: return "DW_ATE_"; } } /* Convert a DWARF call frame info. operation to its string name */ static char * dwarf_cfi_name (cfi_opc) register unsigned cfi_opc; { switch (cfi_opc) { case DW_CFA_advance_loc: return "DW_CFA_advance_loc"; case DW_CFA_offset: return "DW_CFA_offset"; case DW_CFA_restore: return "DW_CFA_restore"; case DW_CFA_nop: return "DW_CFA_nop"; case DW_CFA_set_loc: return "DW_CFA_set_loc"; case DW_CFA_advance_loc1: return "DW_CFA_advance_loc1"; case DW_CFA_advance_loc2: return "DW_CFA_advance_loc2"; case DW_CFA_advance_loc4: return "DW_CFA_advance_loc4"; case DW_CFA_offset_extended: return "DW_CFA_offset_extended"; case DW_CFA_restore_extended: return "DW_CFA_restore_extended"; case DW_CFA_undefined: return "DW_CFA_undefined"; case DW_CFA_same_value: return "DW_CFA_same_value"; case DW_CFA_register: return "DW_CFA_register"; case DW_CFA_remember_state: return "DW_CFA_remember_state"; case DW_CFA_restore_state: return "DW_CFA_restore_state"; case DW_CFA_def_cfa: return "DW_CFA_def_cfa"; case DW_CFA_def_cfa_register: return "DW_CFA_def_cfa_register"; case DW_CFA_def_cfa_offset: return "DW_CFA_def_cfa_offset"; /* SGI/MIPS specific */ case DW_CFA_MIPS_advance_loc8: return "DW_CFA_MIPS_advance_loc8"; default: return "DW_CFA_"; } } /* Determine the "ultimate origin" of a decl. The decl may be an inlined instance of an inlined instance of a decl which is local to an inline function, so we have to trace all of the way back through the origin chain to find out what sort of node actually served as the original seed for the given block. */ static tree decl_ultimate_origin (decl) register tree decl; { register tree immediate_origin = DECL_ABSTRACT_ORIGIN (decl); if (immediate_origin == NULL) return NULL; else { register tree ret_val; register tree lookahead = immediate_origin; do { ret_val = lookahead; lookahead = DECL_ABSTRACT_ORIGIN (ret_val); } while (lookahead != NULL && lookahead != ret_val); return ret_val; } } /* Determine the "ultimate origin" of a block. The block may be an inlined instance of an inlined instance of a block which is local to an inline function, so we have to trace all of the way back through the origin chain to find out what sort of node actually served as the original seed for the given block. */ static tree block_ultimate_origin (block) register tree block; { register tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block); if (immediate_origin == NULL) return NULL; else { register tree ret_val; register tree lookahead = immediate_origin; do { ret_val = lookahead; lookahead = (TREE_CODE (ret_val) == BLOCK) ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL; } while (lookahead != NULL && lookahead != ret_val); return ret_val; } } /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT of a virtual function may refer to a base class, so we check the 'this' parameter. */ static tree decl_class_context (decl) tree decl; { tree context = NULL_TREE; if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl)) context = DECL_CONTEXT (decl); else context = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))))); if (context && TREE_CODE_CLASS (TREE_CODE (context)) != 't') context = NULL_TREE; return context; } /**************** DIE internal representation constturction *******************/ /* Add an attribute/value pair to a DIE */ inline void add_dwarf_attr (die, attr) register dw_die_ref die; register dw_attr_ref attr; { if (die != NULL && attr != NULL) { if (die->die_attr == NULL) { die->die_attr = attr; die->die_attr_last = attr; } else { die->die_attr_last->dw_attr_next = attr; die->die_attr_last = attr; } } } /* Add a flag value attribute to a DIE. */ inline void add_AT_flag (die, attr_kind, flag) register dw_die_ref die; register enum dwarf_attribute attr_kind; register unsigned flag; { register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node)); if (attr != NULL) { attr->dw_attr_next = NULL; attr->dw_attr = attr_kind; attr->dw_attr_val.val_class = dw_val_class_flag; attr->dw_attr_val.v.val_flag = flag; add_dwarf_attr (die, attr); } } /* Add a signed integer attribute value to a DIE. */ inline void add_AT_int (die, attr_kind, int_val) register dw_die_ref die; register enum dwarf_attribute attr_kind; register long int int_val; { register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node)); if (attr != NULL) { attr->dw_attr_next = NULL; attr->dw_attr = attr_kind; attr->dw_attr_val.val_class = dw_val_class_const; attr->dw_attr_val.v.val_int = int_val; add_dwarf_attr (die, attr); } } /* Add an unsigned integer attribute value to a DIE. */ inline void add_AT_unsigned (die, attr_kind, unsigned_val) register dw_die_ref die; register enum dwarf_attribute attr_kind; register unsigned long unsigned_val; { register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node)); if (attr != NULL) { attr->dw_attr_next = NULL; attr->dw_attr = attr_kind; attr->dw_attr_val.val_class = dw_val_class_unsigned_const; attr->dw_attr_val.v.val_unsigned = unsigned_val; add_dwarf_attr (die, attr); } } /* Add an unsigned double integer attribute value to a DIE. */ inline void add_AT_long_long (die, attr_kind, val_hi, val_low) register dw_die_ref die; register enum dwarf_attribute attr_kind; register unsigned long val_hi; register unsigned long val_low; { register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node)); if (attr != NULL) { attr->dw_attr_next = NULL; attr->dw_attr = attr_kind; attr->dw_attr_val.val_class = dw_val_class_long_long; attr->dw_attr_val.v.val_long_long.hi = val_hi; attr->dw_attr_val.v.val_long_long.low = val_low; add_dwarf_attr (die, attr); } } /* Add a floating point attribute value to a DIE and return it. */ inline void add_AT_float (die, attr_kind, length, array) register dw_die_ref die; register enum dwarf_attribute attr_kind; register unsigned length; register long *array; { register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node)); if (attr != NULL) { attr->dw_attr_next = NULL; attr->dw_attr = attr_kind; attr->dw_attr_val.val_class = dw_val_class_float; attr->dw_attr_val.v.val_float.length = length; attr->dw_attr_val.v.val_float.array = array; add_dwarf_attr (die, attr); } } /* Add a string attribute value to a DIE. */ inline void add_AT_string (die, attr_kind, str) register dw_die_ref die; register enum dwarf_attribute attr_kind; register char *str; { register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node)); if (attr != NULL) { attr->dw_attr_next = NULL; attr->dw_attr = attr_kind; attr->dw_attr_val.val_class = dw_val_class_str; attr->dw_attr_val.v.val_str = xstrdup (str); add_dwarf_attr (die, attr); } } /* Add a DIE reference attribute value to a DIE. */ inline void add_AT_die_ref (die, attr_kind, targ_die) register dw_die_ref die; register enum dwarf_attribute attr_kind; register dw_die_ref targ_die; { register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node)); if (attr != NULL) { attr->dw_attr_next = NULL; attr->dw_attr = attr_kind; attr->dw_attr_val.val_class = dw_val_class_die_ref; attr->dw_attr_val.v.val_die_ref = targ_die; add_dwarf_attr (die, attr); } } /* Add an FDE reference attribute value to a DIE. */ inline void add_AT_fde_ref (die, attr_kind, targ_fde) register dw_die_ref die; register enum dwarf_attribute attr_kind; register unsigned targ_fde; { register dw_attr_ref attr; attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node)); if (attr != NULL) { attr->dw_attr_next = NULL; attr->dw_attr = attr_kind; attr->dw_attr_val.val_class = dw_val_class_fde_ref; attr->dw_attr_val.v.val_fde_index = targ_fde; add_dwarf_attr (die, attr); } } /* Add a location description attribute value to a DIE. */ inline void add_AT_loc (die, attr_kind, loc) register dw_die_ref die; register enum dwarf_attribute attr_kind; register dw_loc_descr_ref loc; { register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node)); if (attr != NULL) { attr->dw_attr_next = NULL; attr->dw_attr = attr_kind; attr->dw_attr_val.val_class = dw_val_class_loc; attr->dw_attr_val.v.val_loc = loc; add_dwarf_attr (die, attr); } } /* Add an address constant attribute value to a DIE. */ inline void add_AT_addr (die, attr_kind, addr) register dw_die_ref die; register enum dwarf_attribute attr_kind; char *addr; { register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node)); if (attr != NULL) { attr->dw_attr_next = NULL; attr->dw_attr = attr_kind; attr->dw_attr_val.val_class = dw_val_class_addr; attr->dw_attr_val.v.val_addr = addr; add_dwarf_attr (die, attr); } } /* Add a label identifier attribute value to a DIE. */ inline void add_AT_lbl_id (die, attr_kind, lbl_id) register dw_die_ref die; register enum dwarf_attribute attr_kind; register char *lbl_id; { register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node)); if (attr != NULL) { attr->dw_attr_next = NULL; attr->dw_attr = attr_kind; attr->dw_attr_val.val_class = dw_val_class_lbl_id; attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id); add_dwarf_attr (die, attr); } } /* Add a section offset attribute value to a DIE. */ inline void add_AT_section_offset (die, attr_kind, section) register dw_die_ref die; register enum dwarf_attribute attr_kind; register char *section; { register dw_attr_ref attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node)); if (attr != NULL) { attr->dw_attr_next = NULL; attr->dw_attr = attr_kind; attr->dw_attr_val.val_class = dw_val_class_section_offset; attr->dw_attr_val.v.val_section = section; add_dwarf_attr (die, attr); } } /* Test if die refers to an external subroutine. */ inline int is_extern_subr_die (die) register dw_die_ref die; { register dw_attr_ref a; register int is_subr = FALSE; register int is_extern = FALSE; if (die != NULL && die->die_tag == DW_TAG_subprogram) { is_subr = TRUE; for (a = die->die_attr; a != NULL; a = a->dw_attr_next) { if (a->dw_attr == DW_AT_external && a->dw_attr_val.val_class == dw_val_class_flag && a->dw_attr_val.v.val_flag != 0) { is_extern = TRUE; break; } } } return is_subr && is_extern; } /* Get the attribute of type attr_kind. */ inline dw_attr_ref get_AT (die, attr_kind) register dw_die_ref die; register enum dwarf_attribute attr_kind; { register dw_attr_ref a; register dw_die_ref spec = NULL; if (die != NULL) { for (a = die->die_attr; a != NULL; a = a->dw_attr_next) { if (a->dw_attr == attr_kind) return a; if (a->dw_attr == DW_AT_specification || a->dw_attr == DW_AT_abstract_origin) spec = a->dw_attr_val.v.val_die_ref; } if (spec) return get_AT (spec, attr_kind); } return NULL; } /* Return the "low pc" attribute value, typically associated with a subprogram DIE. Return null if the "low pc" attribute is either not prsent, or if it cannot be represented as an assembler label identifier. */ inline char * get_AT_low_pc (die) register dw_die_ref die; { register dw_attr_ref a = get_AT (die, DW_AT_low_pc); if (a && a->dw_attr_val.val_class == dw_val_class_lbl_id) return a->dw_attr_val.v.val_lbl_id; return NULL; } /* Return the "high pc" attribute value, typically associated with a subprogram DIE. Return null if the "high pc" attribute is either not prsent, or if it cannot be represented as an assembler label identifier. */ inline char * get_AT_hi_pc (die) register dw_die_ref die; { register dw_attr_ref a = get_AT (die, DW_AT_high_pc); if (a && a->dw_attr_val.val_class == dw_val_class_lbl_id) return a->dw_attr_val.v.val_lbl_id; return NULL; } /* Return the value of the string attribute designated by ATTR_KIND, or NULL if it is not present. */ inline char * get_AT_string (die, attr_kind) register dw_die_ref die; register enum dwarf_attribute attr_kind; { register dw_attr_ref a = get_AT (die, attr_kind); if (a && a->dw_attr_val.val_class == dw_val_class_str) return a->dw_attr_val.v.val_str; return NULL; } /* Return the value of the flag attribute designated by ATTR_KIND, or -1 if it is not present. */ inline int get_AT_flag (die, attr_kind) register dw_die_ref die; register enum dwarf_attribute attr_kind; { register dw_attr_ref a = get_AT (die, attr_kind); if (a && a->dw_attr_val.val_class == dw_val_class_flag) return a->dw_attr_val.v.val_flag; return -1; } /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0 if it is not present. */ inline unsigned get_AT_unsigned (die, attr_kind) register dw_die_ref die; register enum dwarf_attribute attr_kind; { register dw_attr_ref a = get_AT (die, attr_kind); if (a && a->dw_attr_val.val_class == dw_val_class_unsigned_const) return a->dw_attr_val.v.val_unsigned; return 0; } inline int is_c_family () { register unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language); return (lang == DW_LANG_C || lang == DW_LANG_C89 || lang == DW_LANG_C_plus_plus); } inline int is_fortran () { register unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language); return (lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90); } /* Remove the specified attribute if present. */ inline void remove_AT (die, attr_kind) register dw_die_ref die; register enum dwarf_attribute attr_kind; { register dw_attr_ref a; register dw_attr_ref removed = NULL;; if (die != NULL) { if (die->die_attr->dw_attr == attr_kind) { removed = die->die_attr; if (die->die_attr_last == die->die_attr) die->die_attr_last = NULL; die->die_attr = die->die_attr->dw_attr_next; } else for (a = die->die_attr; a->dw_attr_next != NULL; a = a->dw_attr_next) if (a->dw_attr_next->dw_attr == attr_kind) { removed = a->dw_attr_next; if (die->die_attr_last == a->dw_attr_next) die->die_attr_last = a; a->dw_attr_next = a->dw_attr_next->dw_attr_next; break; } if (removed) free (removed); } } /* Discard the children of this DIE. */ inline void remove_children (die) register dw_die_ref die; { register dw_die_ref child_die = die->die_child; die->die_child = NULL; die->die_child_last = NULL; while (child_die != NULL) { register dw_die_ref tmp_die = child_die; register dw_attr_ref a; child_die = child_die->die_sib; for (a = tmp_die->die_attr; a != NULL; ) { register dw_attr_ref tmp_a = a; a = a->dw_attr_next; free (tmp_a); } free (tmp_die); } } /* Add a child DIE below its parent. */ inline void add_child_die (die, child_die) register dw_die_ref die; register dw_die_ref child_die; { if (die != NULL && child_die != NULL) { assert (die != child_die); child_die->die_parent = die; child_die->die_sib = NULL; if (die->die_child == NULL) { die->die_child = child_die; die->die_child_last = child_die; } else { die->die_child_last->die_sib = child_die; die->die_child_last = child_die; } } } /* Return a pointer to a newly created DIE node. */ inline dw_die_ref new_die (tag_value, parent_die) register enum dwarf_tag tag_value; register dw_die_ref parent_die; { register dw_die_ref die = (dw_die_ref) xmalloc (sizeof (die_node)); if (die != NULL) { die->die_tag = tag_value; die->die_abbrev = 0; die->die_offset = 0; die->die_child = NULL; die->die_parent = NULL; die->die_sib = NULL; die->die_child_last = NULL; die->die_attr = NULL; die->die_attr_last = NULL; if (parent_die != NULL) add_child_die (parent_die, die); else ++limbo_die_count; } return die; } /* Return the DIE associated with the given type specifier. */ inline dw_die_ref lookup_type_die (type) register tree type; { return (dw_die_ref) TYPE_SYMTAB_POINTER (type); } /* Equate a DIE to a given type specifier. */ static void equate_type_number_to_die (type, type_die) register tree type; register dw_die_ref type_die; { TYPE_SYMTAB_POINTER (type) = (char *) type_die; } /* Return the DIE associated with a given declaration. */ inline dw_die_ref lookup_decl_die (decl) register tree decl; { register unsigned decl_id = DECL_UID (decl); return (decl_id < decl_die_table_in_use) ? decl_die_table[decl_id] : NULL; } /* Equate a DIE to a particular declaration. */ static void equate_decl_number_to_die (decl, decl_die) register tree decl; register dw_die_ref decl_die; { register unsigned decl_id = DECL_UID (decl); register unsigned i; register unsigned num_allocated; if (decl_id >= decl_die_table_allocated) { num_allocated = (((decl_id + 1) + DECL_DIE_TABLE_INCREMENT - 1) / DECL_DIE_TABLE_INCREMENT) * DECL_DIE_TABLE_INCREMENT; decl_die_table = (dw_die_ref *) xrealloc (decl_die_table, sizeof (dw_die_ref) * num_allocated); bzero (&decl_die_table[decl_die_table_allocated], (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref)); decl_die_table_allocated = num_allocated; } if (decl_id >= decl_die_table_in_use) { decl_die_table_in_use = (decl_id + 1); } decl_die_table[decl_id] = decl_die; } /* Return a pointer to a newly allocated location description. Location descriptions are simple expression terms that can be strung together to form more complicated location (address) descriptions. */ inline dw_loc_descr_ref new_loc_descr (op, oprnd1, oprnd2) register enum dwarf_location_atom op; register unsigned long oprnd1; register unsigned long oprnd2; { register dw_loc_descr_ref descr = (dw_loc_descr_ref) xmalloc (sizeof (dw_loc_descr_node)); if (descr != NULL) { descr->dw_loc_next = NULL; descr->dw_loc_opc = op; descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const; descr->dw_loc_oprnd1.v.val_unsigned = oprnd1; descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const; descr->dw_loc_oprnd2.v.val_unsigned = oprnd2; } return descr; } /* Add a location description term to a location description expression. */ inline void add_loc_descr (list_head, descr) register dw_loc_descr_ref *list_head; register dw_loc_descr_ref descr; { register dw_loc_descr_ref *d; /* find the end of the chain. */ for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next) { /* nothing */ ; } *d = descr; } /* Return a pointer to a newly allocated Call Frame Instruction. */ inline dw_cfi_ref new_cfi () { register dw_cfi_ref cfi = (dw_cfi_ref) xmalloc (sizeof (dw_cfi_node)); if (cfi != NULL) { cfi->dw_cfi_next = NULL; cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0; cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0; } return cfi; } /* Add a Call Frame Instruction to list of instructions. */ inline void add_cfi (list_head, cfi) register dw_cfi_ref *list_head; register dw_cfi_ref cfi; { register dw_cfi_ref *p; /* find the end of the chain. */ for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next) { /* nothing */ ; } *p = cfi; } /********* Print DWARF Internal Representation (debugging aids) ***************/ /* Keep track of the number of spaces used to indent the output of the debugging routines that print the structure of the DIE internal representation. */ static int print_indent; /* Indent the line the number of spaces given by print_indent. */ inline void print_spaces (outfile) FILE *outfile; { fprintf (outfile, "%*s", print_indent, ""); } /* Print the information assoaciated with a given DIE, and its children. This routine is a debugging aid only. */ static void print_die (die, outfile) dw_die_ref die; FILE *outfile; { register dw_attr_ref a; register dw_die_ref c; print_spaces (outfile); fprintf (outfile, "DIE %4u: %s\n", die->die_offset, dwarf_tag_name (die->die_tag)); print_spaces (outfile); fprintf (outfile, " abbrev id: %u", die->die_abbrev); fprintf (outfile, " offset: %u\n", die->die_offset); for (a = die->die_attr; a != NULL; a = a->dw_attr_next) { print_spaces (outfile); fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr)); switch (a->dw_attr_val.val_class) { case dw_val_class_addr: fprintf (outfile, "address"); break; case dw_val_class_loc: fprintf (outfile, "location descriptor"); break; case dw_val_class_const: fprintf (outfile, "%d", a->dw_attr_val.v.val_int); break; case dw_val_class_unsigned_const: fprintf (outfile, "%u", a->dw_attr_val.v.val_unsigned); break; case dw_val_class_long_long: fprintf (outfile, "constant (%u,%u)", a->dw_attr_val.v.val_long_long.hi, a->dw_attr_val.v.val_long_long.low); break; case dw_val_class_float: fprintf (outfile, "floating-point constant"); break; case dw_val_class_flag: fprintf (outfile, "%u", a->dw_attr_val.v.val_flag); break; case dw_val_class_die_ref: if (a->dw_attr_val.v.val_die_ref != NULL) { fprintf (outfile, "die -> %u", a->dw_attr_val.v.val_die_ref->die_offset); } else { fprintf (outfile, "die -> "); } break; case dw_val_class_lbl_id: fprintf (outfile, "label: %s", a->dw_attr_val.v.val_lbl_id); break; case dw_val_class_section_offset: fprintf (outfile, "section: %s", a->dw_attr_val.v.val_section); break; case dw_val_class_str: if (a->dw_attr_val.v.val_str != NULL) { fprintf (outfile, "\"%s\"", a->dw_attr_val.v.val_str); } else { fprintf (outfile, ""); } break; } fprintf (outfile, "\n"); } if (die->die_child != NULL) { print_indent += 4; for (c = die->die_child; c != NULL; c = c->die_sib) { print_die (c, outfile); } print_indent -= 4; } } /* Print the contents of the source code line number correspondence table. This routine is a debugging aid only. */ static void print_dwarf_line_table (outfile) FILE *outfile; { register unsigned i; register dw_line_info_ref line_info; fprintf (outfile, "\n\nDWARF source line information\n"); for (i = 1; i < line_info_table_in_use; ++i) { line_info = &line_info_table[i]; fprintf (outfile, "%5d: ", i); fprintf (outfile, "%-20s", file_table[line_info->dw_file_num]); fprintf (outfile, "%6d", line_info->dw_line_num); fprintf (outfile, "\n"); } fprintf (outfile, "\n\n"); } /* Print the information collected for a given DIE. */ void debug_dwarf_die (die) dw_die_ref die; { print_die (die, stderr); } /* Print all DWARF informaiton collected for the compilation unit. This routine is a debugging aid only. */ void debug_dwarf () { print_indent = 0; print_die (comp_unit_die, stderr); print_dwarf_line_table (stderr); } /***************** DWARF Information Construction Support *********************/ /* Traverse the DIE, and add a sibling attribute if it may have the effect of speeding up access to siblings. To save some space, avoid generating sibling attributes for DIE's without children. */ static void add_sibling_attributes(die) register dw_die_ref die; { register dw_die_ref c; register dw_attr_ref attr; if (die != comp_unit_die && die->die_child != NULL) { attr = (dw_attr_ref) xmalloc (sizeof (dw_attr_node)); if (attr != NULL) { attr->dw_attr_next = NULL; attr->dw_attr = DW_AT_sibling; attr->dw_attr_val.val_class = dw_val_class_die_ref; attr->dw_attr_val.v.val_die_ref = die->die_sib; } /* add the sibling link to the front of the attribute list. */ attr->dw_attr_next = die->die_attr; if (die->die_attr == NULL) { die->die_attr_last = attr; } die->die_attr = attr; } for (c = die->die_child; c != NULL; c = c->die_sib) { add_sibling_attributes (c); } } /* The format of each DIE (and its attribute value pairs) is encoded in an abbreviation table. This routine builds the abbreviation table and assigns a unique abbreviation id for each abbreviation entry. The children of each die are visited recursively. */ static void build_abbrev_table (die) register dw_die_ref die; { register unsigned long abbrev_id; register unsigned long n_alloc; register dw_die_ref c; register dw_attr_ref d_attr, a_attr; for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id) { register dw_die_ref abbrev = abbrev_die_table[abbrev_id]; if (abbrev->die_tag == die->die_tag) { if ((abbrev->die_child != NULL) == (die->die_child != NULL)) { a_attr = abbrev->die_attr; d_attr = die->die_attr; while (a_attr != NULL && d_attr != NULL) { if ((a_attr->dw_attr != d_attr->dw_attr) || (value_format (&a_attr->dw_attr_val) != value_format (&d_attr->dw_attr_val))) { break; } a_attr = a_attr->dw_attr_next; d_attr = d_attr->dw_attr_next; } if (a_attr == NULL && d_attr == NULL) { break; } } } } if (abbrev_id >= abbrev_die_table_in_use) { if (abbrev_die_table_in_use >= abbrev_die_table_allocated) { n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT; abbrev_die_table = (dw_die_ref *) xmalloc (abbrev_die_table, sizeof (dw_die_ref) * n_alloc); bzero (&abbrev_die_table[abbrev_die_table_allocated], (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref)); abbrev_die_table_allocated = n_alloc; } ++abbrev_die_table_in_use; abbrev_die_table[abbrev_id] = die; } die->die_abbrev = abbrev_id; for (c = die->die_child; c != NULL; c = c->die_sib) { build_abbrev_table (c); } } /********************** DWARF Information Sizing *****************************/ /* Return the size of an unsigned LEB128 quantity. */ inline unsigned long size_of_uleb128 (value) register unsigned long value; { register unsigned long size = 0; register unsigned byte; do { byte = (value & 0x7f); value >>= 7; size += 1; } while (value != 0); return size; } /* Return the size of a signed LEB128 quantity. */ inline unsigned long size_of_sleb128 (value) register long value; { register unsigned long size = 0; register unsigned byte; do { byte = (value & 0x7f); value >>= 7; size += 1; } while (!(((value == 0) && ((byte & 0x40) == 0)) || ((value == -1) && ((byte & 0x40) != 0)))); return size; } /* Return the size of a string, including the null byte. */ static unsigned long size_of_string (str) register char *str; { register unsigned long size = 0; register unsigned long slen = strlen (str); register unsigned long i; register unsigned c; for (i = 0; i < slen; ++i) { c = str[i]; if (c == '\\') { ++i; } size += 1; } /* Null terminator. */ size += 1; return size; } /* Return the size of a location descriptor. */ static unsigned long size_of_loc_descr (loc) register dw_loc_descr_ref loc; { register unsigned long size = 1; switch (loc->dw_loc_opc) { case DW_OP_addr: size += PTR_SIZE; break; case DW_OP_const1u: case DW_OP_const1s: size += 1; break; case DW_OP_const2u: case DW_OP_const2s: size += 2; break; case DW_OP_const4u: case DW_OP_const4s: size += 4; break; case DW_OP_const8u: case DW_OP_const8s: size += 8; break; case DW_OP_constu: size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned); break; case DW_OP_consts: size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int); break; case DW_OP_pick: size += 1; break; case DW_OP_plus_uconst: size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned); break; case DW_OP_skip: case DW_OP_bra: size += 2; break; case DW_OP_breg0: case DW_OP_breg1: case DW_OP_breg2: case DW_OP_breg3: case DW_OP_breg4: case DW_OP_breg5: case DW_OP_breg6: case DW_OP_breg7: case DW_OP_breg8: case DW_OP_breg9: case DW_OP_breg10: case DW_OP_breg11: case DW_OP_breg12: case DW_OP_breg13: case DW_OP_breg14: case DW_OP_breg15: case DW_OP_breg16: case DW_OP_breg17: case DW_OP_breg18: case DW_OP_breg19: case DW_OP_breg20: case DW_OP_breg21: case DW_OP_breg22: case DW_OP_breg23: case DW_OP_breg24: case DW_OP_breg25: case DW_OP_breg26: case DW_OP_breg27: case DW_OP_breg28: case DW_OP_breg29: case DW_OP_breg30: case DW_OP_breg31: size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int); break; case DW_OP_regx: size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned); break; case DW_OP_fbreg: size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int); break; case DW_OP_bregx: size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned); size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int); break; case DW_OP_piece: size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned); break; case DW_OP_deref_size: case DW_OP_xderef_size: size += 1; break; default: break; } return size; } /* Return the size of a series of location descriptors. */ static unsigned long size_of_locs (loc) register dw_loc_descr_ref loc; { register unsigned long size = 0; for (; loc != NULL; loc = loc->dw_loc_next) size += size_of_loc_descr (loc); return size; } /* Return the power-of-two number of bytes necessary to represent VALUE. */ static int constant_size (value) long unsigned value; { int log; if (value == 0) log = 0; else log = floor_log2 (value); log = log / 8; log = 1 << (floor_log2 (log) + 1); return log; } /* Return the size of a DIE, as it is represented in the .debug_info section. */ static unsigned long size_of_die (die) register dw_die_ref die; { register unsigned long size = 0; register dw_attr_ref a; size += size_of_uleb128 (die->die_abbrev); for (a = die->die_attr; a != NULL; a = a->dw_attr_next) { switch (a->dw_attr_val.val_class) { case dw_val_class_addr: size += PTR_SIZE; break; case dw_val_class_loc: { register unsigned long lsize = size_of_locs (a->dw_attr_val.v.val_loc); /* Block length. */ size += constant_size (lsize); size += lsize; } break; case dw_val_class_const: size += 4; break; case dw_val_class_unsigned_const: size += constant_size (a->dw_attr_val.v.val_unsigned); break; case dw_val_class_long_long: size += 1 + 8; /* block */ break; case dw_val_class_float: size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */ break; case dw_val_class_flag: size += 1; break; case dw_val_class_die_ref: size += DWARF_OFFSET_SIZE; break; case dw_val_class_fde_ref: size += DWARF_OFFSET_SIZE; break; case dw_val_class_lbl_id: size += PTR_SIZE; break; case dw_val_class_section_offset: size += DWARF_OFFSET_SIZE; break; case dw_val_class_str: size += size_of_string (a->dw_attr_val.v.val_str); break; default: abort (); } } return size; } /* Size the debgging information associted with a given DIE. Visits the DIE's children recursively. Updates the global variable next_die_offset, on each time through. Uses the current value of next_die_offset to updete the die_offset field in each DIE. */ static void calc_die_sizes (die) dw_die_ref die; { register dw_die_ref c; die->die_offset = next_die_offset; next_die_offset += size_of_die (die); for (c = die->die_child; c != NULL; c = c->die_sib) { calc_die_sizes (c); } if (die->die_child != NULL) { /* Count the null byte used to terminate sibling lists. */ next_die_offset += 1; } } /* Return the size of the line information prolog generated for the compilation unit. */ static unsigned long size_of_line_prolog () { register unsigned long size; register unsigned long ft_index; size = DWARF_LINE_PROLOG_HEADER_SIZE; /* Count the size of the table giving number of args for each standard opcode. */ size += DWARF_LINE_OPCODE_BASE - 1; /* Include directory table is empty (at present). Count only the the null byte used to terminate the table. */ size += 1; for (ft_index = 1; ft_index < file_table_in_use; ++ft_index) { /* File name entry. */ size += size_of_string (file_table[ft_index]); /* Include directory index. */ size += size_of_uleb128 (0); /* Modification time. */ size += size_of_uleb128 (0); /* File length in bytes. */ size += size_of_uleb128 (0); } /* Count the file table terminator. */ size += 1; return size; } /* Return the size of the line information generated for this compilation unit. */ static unsigned long size_of_line_info () { register unsigned long size; register unsigned long lt_index; register unsigned long current_line; register long line_offset; register long line_delta; register unsigned long current_file; register unsigned long function; /* Version number. */ size = 2; /* Prolog length specifier. */ size += DWARF_OFFSET_SIZE; /* Prolog. */ size += size_of_line_prolog (); /* Set address register instruction. */ size += 1 + size_of_uleb128 (1 + PTR_SIZE) + 1 + PTR_SIZE; current_file = 1; current_line = 1; for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index) { register dw_line_info_ref line_info; /* Advance pc instruction. */ size += 1 + 2; line_info = &line_info_table[lt_index]; if (line_info->dw_file_num != current_file) { /* Set file number instruction. */ size += 1; current_file = line_info->dw_file_num; size += size_of_uleb128 (current_file); } if (line_info->dw_line_num != current_line) { line_offset = line_info->dw_line_num - current_line; line_delta = line_offset - DWARF_LINE_BASE; current_line = line_info->dw_line_num; if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1)) { /* 1-byte special line number instruction. */ size += 1; } else { /* Advance line instruction. */ size += 1; size += size_of_sleb128 (line_offset); /* Generate line entry instruction. */ size += 1; } } } /* Advance pc instruction. */ size += 1 + 2; /* End of line number info. marker. */ size += 1 + size_of_uleb128 (1) + 1; function = 0; current_file = 1; current_line = 1; for (lt_index = 0; lt_index < separate_line_info_table_in_use; ) { register dw_separate_line_info_ref line_info = &separate_line_info_table[lt_index]; if (function != line_info->function) { function = line_info->function; /* Set address register instruction. */ size += 1 + size_of_uleb128 (1 + PTR_SIZE) + 1 + PTR_SIZE; } else { /* Advance pc instruction. */ size += 1 + 2; } if (line_info->dw_file_num != current_file) { /* Set file number instruction. */ size += 1; current_file = line_info->dw_file_num; size += size_of_uleb128 (current_file); } if (line_info->dw_line_num != current_line) { line_offset = line_info->dw_line_num - current_line; line_delta = line_offset - DWARF_LINE_BASE; current_line = line_info->dw_line_num; if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1)) { /* 1-byte special line number instruction. */ size += 1; } else { /* Advance line instruction. */ size += 1; size += size_of_sleb128 (line_offset); /* Generate line entry instruction. */ size += 1; } } ++lt_index; /* If we're done with a function, end its sequence. */ if (lt_index == separate_line_info_table_in_use || separate_line_info_table[lt_index].function != function) { current_file = 1; current_line = 1; /* Advance pc instruction. */ size += 1 + 2; /* End of line number info. marker. */ size += 1 + size_of_uleb128 (1) + 1; } } return size; } /* Return the size of the .debug_pubnames table generated for the compilation unit. */ static unsigned long size_of_pubnames () { register unsigned long size; register unsigned i; size = DWARF_PUBNAMES_HEADER_SIZE; for (i = 0; i < pubname_table_in_use; ++i) { register pubname_ref p = &pubname_table[i]; size += DWARF_OFFSET_SIZE + size_of_string (p->name); } size += DWARF_OFFSET_SIZE; return size; } /* Return the size of the information in the .debug_aranges seciton. */ static unsigned long size_of_aranges () { register unsigned long size; size = DWARF_ARANGES_HEADER_SIZE; /* Count the address/length pair for this compilation unit. */ size += 2 * PTR_SIZE; size += 2 * PTR_SIZE * arange_table_in_use; /* Count the two zero words used to terminated the address range table. */ size += 2 * PTR_SIZE; return size; } /**************** DWARF Debug Information Output *****************************/ /* Output an unsigned LEB128 quantity. */ static void output_uleb128 (value) register unsigned long value; { unsigned long save_value = value; fprintf (asm_out_file, "\t%s\t", ASM_BYTE_OP); do { register unsigned byte = (value & 0x7f); value >>= 7; if (value != 0) { /* More bytes to follow. */ byte |= 0x80; } fprintf (asm_out_file, "0x%x", byte); if (value != 0) { fprintf (asm_out_file, ","); } } while (value != 0); if (flag_verbose_asm) fprintf (asm_out_file, "\t%s ULEB128 0x%x", ASM_COMMENT_START, save_value); } /* Output an signed LEB128 quantity. */ static void output_sleb128 (value) register long value; { register int more; register unsigned byte; long save_value = value; fprintf (asm_out_file, "\t%s\t", ASM_BYTE_OP); do { byte = (value & 0x7f); /* arithmetic shift */ value >>= 7; more = !((((value == 0) && ((byte & 0x40) == 0)) || ((value == -1) && ((byte & 0x40) != 0)))); if (more) { byte |= 0x80; } fprintf (asm_out_file, "0x%x", byte); if (more) { fprintf (asm_out_file, ","); } } while (more); if (flag_verbose_asm) fprintf (asm_out_file, "\t%s SLEB128 %d", ASM_COMMENT_START, save_value); } /* Select the encoding of an attribute value. */ static enum dwarf_form value_format (v) dw_val_ref v; { switch (v->val_class) { case dw_val_class_addr: return DW_FORM_addr; case dw_val_class_loc: switch (constant_size (size_of_locs (v->v.val_loc))) { case 1: return DW_FORM_block1; case 2: return DW_FORM_block2; default: abort (); } case dw_val_class_const: return DW_FORM_data4; case dw_val_class_unsigned_const: switch (constant_size (v->v.val_unsigned)) { case 1: return DW_FORM_data1; case 2: return DW_FORM_data2; case 4: return DW_FORM_data4; default: abort (); } case dw_val_class_long_long: return DW_FORM_block1; case dw_val_class_float: return DW_FORM_block1; case dw_val_class_flag: return DW_FORM_flag; case dw_val_class_die_ref: return DW_FORM_ref; case dw_val_class_fde_ref: return DW_FORM_data; case dw_val_class_lbl_id: return DW_FORM_addr; case dw_val_class_section_offset: return DW_FORM_data; case dw_val_class_str: return DW_FORM_string; default: abort (); } } /* Output the encoding of an attribute value. */ static void output_value_format (v) dw_val_ref v; { enum dwarf_form form = value_format (v); output_uleb128 (form); if (flag_verbose_asm) fprintf (asm_out_file, " (%s)", dwarf_form_name (form)); fputc ('\n', asm_out_file); } /* Output the .debug_abbrev section which defines the DIE abbreviation table. */ static void output_abbrev_section () { unsigned long abbrev_id; dw_attr_ref a_attr; for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id) { register dw_die_ref abbrev = abbrev_die_table[abbrev_id]; output_uleb128 (abbrev_id); if (flag_verbose_asm) fprintf (asm_out_file, " (abbrev code)"); fputc ('\n', asm_out_file); output_uleb128 (abbrev->die_tag); if (flag_verbose_asm) fprintf (asm_out_file, " (TAG: %s)", dwarf_tag_name (abbrev->die_tag)); fputc ('\n', asm_out_file); fprintf (asm_out_file, "\t%s\t0x%x", ASM_BYTE_OP, (abbrev->die_child != NULL) ? DW_children_yes : DW_children_no); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s %s", ASM_COMMENT_START, (abbrev->die_child != NULL) ? "DW_children_yes" : "DW_children_no"); } fputc ('\n', asm_out_file); for (a_attr = abbrev->die_attr; a_attr != NULL; a_attr = a_attr->dw_attr_next) { output_uleb128 (a_attr->dw_attr); if (flag_verbose_asm) fprintf (asm_out_file, " (%s)", dwarf_attr_name (a_attr->dw_attr)); fputc ('\n', asm_out_file); output_value_format (&a_attr->dw_attr_val); } fprintf (asm_out_file, "\t%s\t0,0\n", ASM_BYTE_OP); } } /* Output location description stack opcode's operands (if any). */ static void output_loc_operands (loc) register dw_loc_descr_ref loc; { register dw_val_ref val1 = &loc->dw_loc_oprnd1; register dw_val_ref val2 = &loc->dw_loc_oprnd2; switch (loc->dw_loc_opc) { case DW_OP_addr: ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, val1->v.val_addr); fputc ('\n', asm_out_file); break; case DW_OP_const1u: case DW_OP_const1s: ASM_OUTPUT_DWARF_DATA1 (asm_out_file, val1->v.val_flag); fputc ('\n', asm_out_file); break; case DW_OP_const2u: case DW_OP_const2s: ASM_OUTPUT_DWARF_DATA2 (asm_out_file, val1->v.val_int); fputc ('\n', asm_out_file); break; case DW_OP_const4u: case DW_OP_const4s: ASM_OUTPUT_DWARF_DATA4 (asm_out_file, val1->v.val_int); fputc ('\n', asm_out_file); break; case DW_OP_const8u: case DW_OP_const8s: abort (); fputc ('\n', asm_out_file); break; case DW_OP_constu: output_uleb128 (val1->v.val_unsigned); fputc ('\n', asm_out_file); break; case DW_OP_consts: output_sleb128 (val1->v.val_int); fputc ('\n', asm_out_file); break; case DW_OP_pick: ASM_OUTPUT_DWARF_DATA1 (asm_out_file, val1->v.val_int); fputc ('\n', asm_out_file); break; case DW_OP_plus_uconst: output_uleb128 (val1->v.val_unsigned); fputc ('\n', asm_out_file); break; case DW_OP_skip: case DW_OP_bra: ASM_OUTPUT_DWARF_DATA2 (asm_out_file, val1->v.val_int); fputc ('\n', asm_out_file); break; case DW_OP_breg0: case DW_OP_breg1: case DW_OP_breg2: case DW_OP_breg3: case DW_OP_breg4: case DW_OP_breg5: case DW_OP_breg6: case DW_OP_breg7: case DW_OP_breg8: case DW_OP_breg9: case DW_OP_breg10: case DW_OP_breg11: case DW_OP_breg12: case DW_OP_breg13: case DW_OP_breg14: case DW_OP_breg15: case DW_OP_breg16: case DW_OP_breg17: case DW_OP_breg18: case DW_OP_breg19: case DW_OP_breg20: case DW_OP_breg21: case DW_OP_breg22: case DW_OP_breg23: case DW_OP_breg24: case DW_OP_breg25: case DW_OP_breg26: case DW_OP_breg27: case DW_OP_breg28: case DW_OP_breg29: case DW_OP_breg30: case DW_OP_breg31: output_sleb128 (val1->v.val_int); fputc ('\n', asm_out_file); break; case DW_OP_regx: output_uleb128 (val1->v.val_unsigned); fputc ('\n', asm_out_file); break; case DW_OP_fbreg: output_sleb128 (val1->v.val_int); fputc ('\n', asm_out_file); break; case DW_OP_bregx: output_uleb128 (val1->v.val_unsigned); fputc ('\n', asm_out_file); output_sleb128 (val2->v.val_int); fputc ('\n', asm_out_file); break; case DW_OP_piece: output_uleb128 (val1->v.val_unsigned); fputc ('\n', asm_out_file); break; case DW_OP_deref_size: case DW_OP_xderef_size: ASM_OUTPUT_DWARF_DATA1 (asm_out_file, val1->v.val_flag); fputc ('\n', asm_out_file); break; default: break; } } /* Compute the offset of a sibling. */ static unsigned long sibling_offset (die) dw_die_ref die; { unsigned long offset; if (die->die_child_last == NULL) { offset = die->die_offset + size_of_die (die); } else { offset = sibling_offset (die->die_child_last) + 1; } return offset; } /* Output the DIE and its attributes. Called recursively to generate the definitions of each child DIE. */ static void output_die (die) register dw_die_ref die; { register dw_attr_ref a; register dw_die_ref c; register unsigned long ref_offset; register unsigned long size; register dw_loc_descr_ref loc; register int i; output_uleb128 (die->die_abbrev); if (flag_verbose_asm) fprintf (asm_out_file, " (DIE (0x%x) %s)", die->die_offset, dwarf_tag_name (die->die_tag)); fputc ('\n', asm_out_file); for (a = die->die_attr; a != NULL; a = a->dw_attr_next) { switch (a->dw_attr_val.val_class) { case dw_val_class_addr: ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, a->dw_attr_val.v.val_addr); break; case dw_val_class_loc: size = size_of_locs (a->dw_attr_val.v.val_loc); /* Output the block length for this list of location operations. */ switch (constant_size (size)) { case 1: ASM_OUTPUT_DWARF_DATA1 (asm_out_file, size); break; case 2: ASM_OUTPUT_DWARF_DATA2 (asm_out_file, size); break; default: abort (); } if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s %s", ASM_COMMENT_START, dwarf_attr_name (a->dw_attr)); } fputc ('\n', asm_out_file); for (loc = a->dw_attr_val.v.val_loc; loc != NULL; loc = loc->dw_loc_next) { /* Output the opcode. */ ASM_OUTPUT_DWARF_DATA1 (asm_out_file, loc->dw_loc_opc); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s %s", ASM_COMMENT_START, dwarf_stack_op_name (loc->dw_loc_opc)); } fputc ('\n', asm_out_file); /* Output the operand(s) (if any). */ output_loc_operands (loc); } break; case dw_val_class_const: ASM_OUTPUT_DWARF_DATA4 (asm_out_file, a->dw_attr_val.v.val_int); break; case dw_val_class_unsigned_const: switch (constant_size (a->dw_attr_val.v.val_unsigned)) { case 1: ASM_OUTPUT_DWARF_DATA1 (asm_out_file, a->dw_attr_val.v.val_unsigned); break; case 2: ASM_OUTPUT_DWARF_DATA2 (asm_out_file, a->dw_attr_val.v.val_unsigned); break; case 4: ASM_OUTPUT_DWARF_DATA4 (asm_out_file, a->dw_attr_val.v.val_unsigned); break; default: abort (); } break; case dw_val_class_long_long: ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 8); if (flag_verbose_asm) fprintf (asm_out_file, "\t%s %s", ASM_COMMENT_START, dwarf_attr_name (a->dw_attr)); fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DATA8 (asm_out_file, a->dw_attr_val.v.val_long_long.hi, a->dw_attr_val.v.val_long_long.low); if (flag_verbose_asm) fprintf (asm_out_file, "\t%s long long constant", ASM_COMMENT_START); fputc ('\n', asm_out_file); break; case dw_val_class_float: ASM_OUTPUT_DWARF_DATA1 (asm_out_file, a->dw_attr_val.v.val_float.length * 4); if (flag_verbose_asm) fprintf (asm_out_file, "\t%s %s", ASM_COMMENT_START, dwarf_attr_name (a->dw_attr)); fputc ('\n', asm_out_file); for (i = 0; i < a->dw_attr_val.v.val_float.length; ++i) { ASM_OUTPUT_DWARF_DATA4 (asm_out_file, a->dw_attr_val.v.val_float.array[i]); if (flag_verbose_asm) fprintf (asm_out_file, "\t%s fp constant word %d", ASM_COMMENT_START, i); fputc ('\n', asm_out_file); } break; case dw_val_class_flag: ASM_OUTPUT_DWARF_DATA1 (asm_out_file, a->dw_attr_val.v.val_flag); break; case dw_val_class_die_ref: if (a->dw_attr_val.v.val_die_ref != NULL) { ref_offset = a->dw_attr_val.v.val_die_ref->die_offset; } else if (a->dw_attr == DW_AT_sibling) { ref_offset = sibling_offset(die); } else { abort (); } ASM_OUTPUT_DWARF_DATA (asm_out_file, ref_offset); break; case dw_val_class_fde_ref: ref_offset = fde_table[a->dw_attr_val.v.val_fde_index].dw_fde_offset; fprintf (asm_out_file, "\t%s\t%s+0x%x", UNALIGNED_OFFSET_ASM_OP, stripattributes (FRAME_SECTION), ref_offset); break; case dw_val_class_lbl_id: ASM_OUTPUT_DWARF_ADDR (asm_out_file, a->dw_attr_val.v.val_lbl_id); break; case dw_val_class_section_offset: ASM_OUTPUT_DWARF_OFFSET (asm_out_file, stripattributes (a->dw_attr_val.v.val_section)); break; case dw_val_class_str: ASM_OUTPUT_DWARF_STRING (asm_out_file, a->dw_attr_val.v.val_str); break; default: abort (); } if (a->dw_attr_val.val_class != dw_val_class_loc && a->dw_attr_val.val_class != dw_val_class_long_long && a->dw_attr_val.val_class != dw_val_class_float) { if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s %s", ASM_COMMENT_START, dwarf_attr_name (a->dw_attr)); } fputc ('\n', asm_out_file); } } for (c = die->die_child; c != NULL; c = c->die_sib) { output_die (c); } if (die->die_child != NULL) { /* Add null byte to terminate sibling list. */ ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 0); if (flag_verbose_asm) fprintf (asm_out_file, "\t%s end of children of DIE 0x%x", ASM_COMMENT_START, die->die_offset); fputc ('\n', asm_out_file); } } /* Output the compilation unit that appears at the beginning of the .debug_info section, and precedes the DIE descriptions. */ static void output_compilation_unit_header () { ASM_OUTPUT_DWARF_DATA (asm_out_file, next_die_offset - DWARF_OFFSET_SIZE); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s Length of Compilation Unit Info.", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DATA2 (asm_out_file, DWARF_VERSION); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s DWARF version number", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_OFFSET (asm_out_file, stripattributes (ABBREV_SECTION)); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s Offset Into Abbrev. Section", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DATA1 (asm_out_file, PTR_SIZE); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s Pointer Size (in bytes)", ASM_COMMENT_START); } fputc ('\n', asm_out_file); } /* Generate a new label for the CFI info to refer to. */ char * dwarf2out_cfi_label () { static char label[20]; static unsigned long label_num = 0; ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", label_num++); ASM_OUTPUT_LABEL (asm_out_file, label); return label; } /* Add CFI to the current fde at the PC value indicated by LABEL if specified, or to the CIE if LABEL is NULL. */ static void add_fde_cfi (label, cfi) register char * label; register dw_cfi_ref cfi; { if (label) { register dw_fde_ref fde = &fde_table[fde_table_in_use - 1]; if (*label == 0) label = dwarf2out_cfi_label (); if (fde->dw_fde_current_label == NULL || strcmp (label, fde->dw_fde_current_label) != 0) { register dw_cfi_ref xcfi; fde->dw_fde_current_label = label = xstrdup (label); /* Set the location counter to the new label. */ xcfi = new_cfi (); xcfi->dw_cfi_opc = DW_CFA_advance_loc4; xcfi->dw_cfi_oprnd1.dw_cfi_addr = label; add_cfi (&fde->dw_fde_cfi, xcfi); } add_cfi (&fde->dw_fde_cfi, cfi); } else add_cfi (&cie_cfi_head, cfi); } /* Subroutine of lookup_cfa. */ inline void lookup_cfa_1 (cfi, regp, offsetp) register dw_cfi_ref cfi; register unsigned long *regp; register long *offsetp; { switch (cfi->dw_cfi_opc) { case DW_CFA_def_cfa_offset: *offsetp = cfi->dw_cfi_oprnd1.dw_cfi_offset; break; case DW_CFA_def_cfa_register: *regp = cfi->dw_cfi_oprnd1.dw_cfi_reg_num; break; case DW_CFA_def_cfa: *regp = cfi->dw_cfi_oprnd1.dw_cfi_reg_num; *offsetp = cfi->dw_cfi_oprnd2.dw_cfi_offset; break; } } /* Find the previous value for the CFA. */ static void lookup_cfa (regp, offsetp) register unsigned long *regp; register long *offsetp; { register dw_cfi_ref cfi; *regp = (unsigned long) -1; *offsetp = 0; for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next) lookup_cfa_1 (cfi, regp, offsetp); if (fde_table_in_use) { register dw_fde_ref fde = &fde_table[fde_table_in_use - 1]; for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next) lookup_cfa_1 (cfi, regp, offsetp); } } /* Entry point to update the canonical frame address (CFA). LABEL is passed to add_fde_cfi. The value of CFA is now to be calculated from REG+OFFSET. */ void dwarf2out_def_cfa (label, reg, offset) register char * label; register unsigned reg; register long offset; { register dw_cfi_ref cfi; unsigned old_reg; long old_offset; reg = DWARF_FRAME_REGNUM (reg); lookup_cfa (&old_reg, &old_offset); if (reg == old_reg && offset == old_offset) return; cfi = new_cfi (); if (reg == old_reg) { cfi->dw_cfi_opc = DW_CFA_def_cfa_offset; cfi->dw_cfi_oprnd1.dw_cfi_offset = offset; } #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */ else if (offset == old_offset && old_reg != (unsigned long) -1) { cfi->dw_cfi_opc = DW_CFA_def_cfa_register; cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg; } #endif else { cfi->dw_cfi_opc = DW_CFA_def_cfa; cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg; cfi->dw_cfi_oprnd2.dw_cfi_offset = offset; } add_fde_cfi (label, cfi); } /* Add the CFI for saving a register. REG is the CFA column number. LABEL is passed to add_fde_cfi. If SREG is -1, the register is saved at OFFSET from the CFA; otherwise it is saved in SREG. */ static void reg_save (label, reg, sreg, offset) register char * label; register unsigned reg; register unsigned sreg; register long offset; { register dw_cfi_ref cfi = new_cfi (); cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg; if (sreg == -1) { if (reg & ~0x3f) /* The register number won't fit in 6 bits, so we have to use the long form. */ cfi->dw_cfi_opc = DW_CFA_offset_extended; else cfi->dw_cfi_opc = DW_CFA_offset; offset /= DWARF_CIE_DATA_ALIGNMENT; assert (offset >= 0); cfi->dw_cfi_oprnd2.dw_cfi_offset = offset; } else { cfi->dw_cfi_opc = DW_CFA_register; cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg; } add_fde_cfi (label, cfi); } /* Entry point for saving a register. REG is the GCC register number. LABEL and OFFSET are passed to reg_save. */ void dwarf2out_reg_save (label, reg, offset) register char * label; register unsigned reg; register long offset; { reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset); } /* Record the initial position of the return address. RTL is INCOMING_RETURN_ADDR_RTX. */ static void initial_return_save (rtl) register rtx rtl; { unsigned reg = -1; long offset = 0; switch (GET_CODE (rtl)) { case REG: /* RA is in a register. */ reg = reg_number (rtl); break; case MEM: /* RA is on the stack. */ rtl = XEXP (rtl, 0); switch (GET_CODE (rtl)) { case REG: assert (REGNO (rtl) == STACK_POINTER_REGNUM); offset = 0; break; case PLUS: assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM); offset = INTVAL (XEXP (rtl, 1)); break; case MINUS: assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM); offset = -INTVAL (XEXP (rtl, 1)); break; default: abort (); } break; default: abort (); } reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset); } /* Record call frame debugging information for INSN, which either sets SP or FP (adjusting how we calculate the frame address) or saves a register to the stack. If INSN is NULL_RTX, initialize our state. */ void dwarf2out_frame_debug (insn) rtx insn; { char *label; rtx src, dest; long offset; /* The current rule for calculating the DWARF2 canonical frame address. */ static unsigned cfa_reg; static long cfa_offset; /* The register used for saving registers to the stack, and its offset from the CFA. */ static unsigned cfa_store_reg; static long cfa_store_offset; /* A temporary register used in adjusting SP or setting up the store_reg. */ static unsigned cfa_temp_reg; static long cfa_temp_value; if (insn == NULL_RTX) { /* Set up state for generating call frame debug info. */ cfa_reg = STACK_POINTER_REGNUM; cfa_offset = 0; cfa_store_reg = STACK_POINTER_REGNUM; cfa_store_offset = 0; cfa_temp_reg = -1; cfa_temp_value = 0; return; } label = dwarf2out_cfi_label (); insn = PATTERN (insn); assert (GET_CODE (insn) == SET); src = SET_SRC (insn); dest = SET_DEST (insn); switch (GET_CODE (dest)) { case REG: /* Update the CFA rule wrt SP or FP. Make sure src is relative to the current CFA register. */ switch (GET_CODE (src)) { /* Setting FP from SP. */ case REG: assert (cfa_reg == REGNO (src)); assert (REGNO (dest) == STACK_POINTER_REGNUM || frame_pointer_needed && REGNO (dest) == FRAME_POINTER_REGNUM); cfa_reg = REGNO (dest); break; case PLUS: case MINUS: if (dest == stack_pointer_rtx) { /* Adjusting SP. */ switch (GET_CODE (XEXP (src, 1))) { case CONST_INT: offset = INTVAL (XEXP (src, 1)); break; case REG: assert (REGNO (XEXP (src, 1)) == cfa_temp_reg); offset = cfa_temp_value; break; default: abort (); } if (GET_CODE (src) == PLUS) offset = -offset; if (cfa_reg == STACK_POINTER_REGNUM) cfa_offset += offset; if (cfa_store_reg == STACK_POINTER_REGNUM) cfa_store_offset += offset; assert (XEXP (src, 0) == stack_pointer_rtx); } else { /* Initializing the store base register. */ assert (GET_CODE (src) == PLUS); assert (XEXP (src, 1) == stack_pointer_rtx); assert (GET_CODE (XEXP (src, 0)) == REG && REGNO (XEXP (src, 0)) == cfa_temp_reg); assert (cfa_store_reg == STACK_POINTER_REGNUM); cfa_store_reg = REGNO (dest); cfa_store_offset -= cfa_temp_value; } break; case CONST_INT: cfa_temp_reg = REGNO (dest); cfa_temp_value = INTVAL (src); break; default: abort (); } dwarf2out_def_cfa (label, cfa_reg, cfa_offset); break; case MEM: /* Saving a register to the stack. Make sure dest is relative to the CFA register. */ assert (GET_CODE (src) == REG); switch (GET_CODE (XEXP (dest, 0))) { /* With a push. */ case PRE_INC: case PRE_DEC: offset = GET_MODE_SIZE (GET_MODE (dest)); if (GET_CODE (src) == PRE_INC) offset = -offset; assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM); assert (cfa_store_reg == STACK_POINTER_REGNUM); cfa_store_offset += offset; if (cfa_reg == STACK_POINTER_REGNUM) cfa_offset = cfa_store_offset; offset = -cfa_store_offset; break; /* With an offset. */ case PLUS: case MINUS: offset = INTVAL (XEXP (XEXP (dest, 0), 1)); if (GET_CODE (src) == MINUS) offset = -offset; assert (cfa_store_reg == REGNO (XEXP (XEXP (dest, 0), 0))); offset -= cfa_store_offset; break; default: abort (); } dwarf2out_def_cfa (label, cfa_reg, cfa_offset); dwarf2out_reg_save (label, REGNO (src), offset); break; default: abort (); } } /* Return the size of a Call Frame Instruction. */ static unsigned long size_of_cfi (cfi) dw_cfi_ref cfi; { register unsigned long size; /* count the 1-byte opcode */ size = 1; switch (cfi->dw_cfi_opc) { case DW_CFA_offset: size += size_of_uleb128(cfi->dw_cfi_oprnd2.dw_cfi_offset); break; case DW_CFA_set_loc: size += PTR_SIZE; break; case DW_CFA_advance_loc1: size += 1; break; case DW_CFA_advance_loc2: size += 2; break; case DW_CFA_advance_loc4: size += 4; break; #ifdef MIPS_DEBUGGING_INFO case DW_CFA_MIPS_advance_loc8: size += 8; break; #endif case DW_CFA_offset_extended: case DW_CFA_def_cfa: size += size_of_uleb128(cfi->dw_cfi_oprnd1.dw_cfi_reg_num); size += size_of_uleb128(cfi->dw_cfi_oprnd2.dw_cfi_offset); break; case DW_CFA_restore_extended: case DW_CFA_undefined: size += size_of_uleb128(cfi->dw_cfi_oprnd1.dw_cfi_reg_num); break; case DW_CFA_same_value: case DW_CFA_def_cfa_register: size += size_of_uleb128(cfi->dw_cfi_oprnd1.dw_cfi_reg_num); break; case DW_CFA_register: size += size_of_uleb128(cfi->dw_cfi_oprnd1.dw_cfi_reg_num); size += size_of_uleb128(cfi->dw_cfi_oprnd2.dw_cfi_reg_num); break; case DW_CFA_def_cfa_offset: size += size_of_uleb128(cfi->dw_cfi_oprnd1.dw_cfi_offset); break; default: break; } return size; } /* Return the size of an FDE sans the length word. */ inline unsigned long size_of_fde (fde, npad) dw_fde_ref fde; unsigned long *npad; { register dw_cfi_ref cfi; register unsigned long aligned_size; register unsigned long size; size = DWARF_FDE_HEADER_SIZE; for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next) { size += size_of_cfi(cfi); } /* Round the size up to a word boundary. */ aligned_size = DWARF_ROUND (size, PTR_SIZE); *npad = aligned_size - size; return aligned_size; } /* Calculate the size of the FDE table, and establish the offset of each FDE in the .debug_frame section. */ static void calc_fde_sizes () { register unsigned long i; register dw_fde_ref fde; register unsigned long fde_size; register dw_cfi_ref cfi; unsigned long fde_pad; cie_size = DWARF_CIE_HEADER_SIZE; for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next) cie_size += size_of_cfi (cfi); /* Initialize the beginning FDE offset. */ next_fde_offset = DWARF_ROUND (cie_size, PTR_SIZE); for (i = 0; i < fde_table_in_use; ++i) { fde = &fde_table[i]; fde->dw_fde_offset = next_fde_offset; fde_size = size_of_fde (fde, &fde_pad); next_fde_offset += fde_size; } } /* Output a Call Frame Information opcode and its operand(s). */ static void output_cfi (cfi, fde) register dw_cfi_ref cfi; register dw_fde_ref fde; { if (cfi->dw_cfi_opc == DW_CFA_advance_loc) { ASM_OUTPUT_DWARF_DATA1 (asm_out_file, cfi->dw_cfi_opc | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)); if (flag_verbose_asm) fprintf (asm_out_file, "\t%s DW_CFA_advance_loc 0x%x", ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_offset); fputc ('\n', asm_out_file); } else if (cfi->dw_cfi_opc == DW_CFA_offset) { ASM_OUTPUT_DWARF_DATA1 (asm_out_file, cfi->dw_cfi_opc | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)); if (flag_verbose_asm) fprintf (asm_out_file, "\t%s DW_CFA_offset, column 0x%x", ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_reg_num); fputc ('\n', asm_out_file); output_uleb128(cfi->dw_cfi_oprnd2.dw_cfi_offset); fputc ('\n', asm_out_file); } else if (cfi->dw_cfi_opc == DW_CFA_restore) { ASM_OUTPUT_DWARF_DATA1 (asm_out_file, cfi->dw_cfi_opc | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)); if (flag_verbose_asm) fprintf (asm_out_file, "\t%s DW_CFA_restore, column 0x%x", ASM_COMMENT_START, cfi->dw_cfi_oprnd1.dw_cfi_reg_num); fputc ('\n', asm_out_file); } else { ASM_OUTPUT_DWARF_DATA1 (asm_out_file, cfi->dw_cfi_opc); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s %s", ASM_COMMENT_START, dwarf_cfi_name (cfi->dw_cfi_opc)); } fputc ('\n', asm_out_file); switch (cfi->dw_cfi_opc) { case DW_CFA_set_loc: ASM_OUTPUT_DWARF_ADDR (asm_out_file, cfi->dw_cfi_oprnd1.dw_cfi_addr); fputc ('\n', asm_out_file); break; case DW_CFA_advance_loc1: /* TODO: not currently implemented. */ abort (); break; case DW_CFA_advance_loc2: ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, cfi->dw_cfi_oprnd1.dw_cfi_addr, fde->dw_fde_current_label); fputc ('\n', asm_out_file); fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr; break; case DW_CFA_advance_loc4: ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, cfi->dw_cfi_oprnd1.dw_cfi_addr, fde->dw_fde_current_label); fputc ('\n', asm_out_file); fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr; break; #ifdef MIPS_DEBUGGING_INFO case DW_CFA_MIPS_advance_loc8: /* TODO: not currently implemented. */ abort (); break; #endif case DW_CFA_offset_extended: case DW_CFA_def_cfa: output_uleb128(cfi->dw_cfi_oprnd1.dw_cfi_reg_num); fputc ('\n', asm_out_file); output_uleb128(cfi->dw_cfi_oprnd2.dw_cfi_offset); fputc ('\n', asm_out_file); break; case DW_CFA_restore_extended: case DW_CFA_undefined: output_uleb128(cfi->dw_cfi_oprnd1.dw_cfi_reg_num); fputc ('\n', asm_out_file); break; case DW_CFA_same_value: case DW_CFA_def_cfa_register: output_uleb128(cfi->dw_cfi_oprnd1.dw_cfi_reg_num); fputc ('\n', asm_out_file); break; case DW_CFA_register: output_uleb128(cfi->dw_cfi_oprnd1.dw_cfi_reg_num); fputc ('\n', asm_out_file); output_uleb128(cfi->dw_cfi_oprnd2.dw_cfi_reg_num); fputc ('\n', asm_out_file); break; case DW_CFA_def_cfa_offset: output_uleb128(cfi->dw_cfi_oprnd1.dw_cfi_offset); fputc ('\n', asm_out_file); break; default: break; } } } /* Output the call frame information used to used to record information that relates to calculating the frame pointer, and records the location of saved registers. */ static void output_call_frame_info () { register unsigned long i, j; register dw_fde_ref fde; register unsigned long fde_size; register dw_cfi_ref cfi; unsigned long fde_pad; /* Only output the info if it will be interesting. */ for (i = 0; i < fde_table_in_use; ++i) if (fde_table[i].dw_fde_cfi != NULL) break; if (i == fde_table_in_use) return; /* (re-)initialize the beginning FDE offset. */ next_fde_offset = DWARF_ROUND (cie_size, PTR_SIZE); fputc ('\n', asm_out_file); ASM_OUTPUT_SECTION (asm_out_file, FRAME_SECTION); /* Output the CIE. */ ASM_OUTPUT_DWARF_DATA (asm_out_file, next_fde_offset - DWARF_OFFSET_SIZE); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s Length of Common Information Entry", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DATA4 (asm_out_file, DW_CIE_ID); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s CIE Identifier Tag", ASM_COMMENT_START); } fputc ('\n', asm_out_file); if (DWARF_OFFSET_SIZE == 8) { ASM_OUTPUT_DWARF_DATA4 (asm_out_file, DW_CIE_ID); fputc ('\n', asm_out_file); } ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_CIE_VERSION); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s CIE Version", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 0); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s CIE Augmentation (none)", ASM_COMMENT_START); } fputc ('\n', asm_out_file); output_uleb128 (1); if (flag_verbose_asm) fprintf (asm_out_file, " (CIE Code Alignment Factor)"); fputc ('\n', asm_out_file); output_sleb128 (DWARF_CIE_DATA_ALIGNMENT); if (flag_verbose_asm) fprintf (asm_out_file, " (CIE Data Alignment Factor)"); fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DWARF_FRAME_RETURN_COLUMN); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s CIE RA Column", ASM_COMMENT_START); } fputc ('\n', asm_out_file); for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next) output_cfi (cfi); /* Pad the CIE out to an address sized boundary. */ for (i = next_fde_offset - cie_size; i; --i) { /* Pad out to a pointer size boundary */ ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_CFA_nop); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s CIE DW_CFA_nop (pad)", ASM_COMMENT_START); } fputc ('\n', asm_out_file); } /* Loop through all of the FDE's. */ for (i = 0; i < fde_table_in_use; ++i) { fde = &fde_table[i]; if (fde->dw_fde_cfi == NULL) continue; fde_size = size_of_fde (fde, &fde_pad); ASM_OUTPUT_DWARF_DATA (asm_out_file, fde_size - DWARF_OFFSET_SIZE); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s FDE Length", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_OFFSET (asm_out_file, stripattributes (FRAME_SECTION)); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s FDE CIE offset", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_ADDR (asm_out_file, fde->dw_fde_begin); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s FDE initial location", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_ADDR_DELTA (asm_out_file, fde->dw_fde_end, fde->dw_fde_begin); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s FDE address range", ASM_COMMENT_START); } fputc ('\n', asm_out_file); /* Loop through the Call Frame Instructions associated with this FDE. */ fde->dw_fde_current_label = fde->dw_fde_begin; for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next) output_cfi (cfi, fde); /* Pad to a double word boundary. */ for (j = 0; j < fde_pad; ++j) { ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_CFA_nop); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s CIE DW_CFA_nop (pad)", ASM_COMMENT_START); } fputc ('\n', asm_out_file); } } } /* Add a new entry to .debug_pubnames if appropriate. */ static void add_pubname (decl, die) tree decl; dw_die_ref die; { pubname_ref p; if (! TREE_PUBLIC (decl)) return; if (pubname_table_in_use == pubname_table_allocated) { pubname_table_allocated += PUBNAME_TABLE_INCREMENT; pubname_table = (pubname_ref) xrealloc (pubname_table, pubname_table_allocated * sizeof (pubname_entry)); } p = &pubname_table[pubname_table_in_use++]; p->die = die; p->name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); } /* Output the public names table used to speed up access to externally visible names. For now, only generate entries for externally visible procedures. */ static void output_pubnames () { register unsigned i; { register unsigned long pubnames_length = size_of_pubnames (); ASM_OUTPUT_DWARF_DATA (asm_out_file, pubnames_length); } if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s Length of Public Names Info.", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DATA2 (asm_out_file, DWARF_VERSION); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s DWARF Version", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_OFFSET (asm_out_file, stripattributes (DEBUG_SECTION)); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s Offset of Compilation Unit Info.", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DATA (asm_out_file, next_die_offset); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s Compilation Unit Length", ASM_COMMENT_START); } fputc ('\n', asm_out_file); for (i = 0; i < pubname_table_in_use; ++i) { register pubname_ref pub = &pubname_table[i]; ASM_OUTPUT_DWARF_DATA (asm_out_file, pub->die->die_offset); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s DIE offset", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_STRING (asm_out_file, pub->name); if (flag_verbose_asm) { fprintf (asm_out_file, "%s external name", ASM_COMMENT_START); } fputc ('\n', asm_out_file); } ASM_OUTPUT_DWARF_DATA (asm_out_file, 0); fputc ('\n', asm_out_file); } /* Add a new entry to .debug_aranges if appropriate. */ static void add_arange (decl, die) tree decl; dw_die_ref die; { if (! DECL_SECTION_NAME (decl)) return; if (arange_table_in_use == arange_table_allocated) { arange_table_allocated += ARANGE_TABLE_INCREMENT; arange_table = (arange_ref) xrealloc (arange_table, arange_table_allocated * sizeof (dw_die_ref)); } arange_table[arange_table_in_use++] = die; } /* Output the information that goes into the .debug_aranges table. Namely, define the beginning and ending address range of the text section generated for this compilation unit. */ static void output_aranges () { register unsigned i; { register unsigned long aranges_length = size_of_aranges (); ASM_OUTPUT_DWARF_DATA (asm_out_file, aranges_length); } if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s Length of Address Ranges Info.", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DATA2 (asm_out_file, DWARF_VERSION); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s DWARF Version", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_OFFSET (asm_out_file, stripattributes (DEBUG_SECTION)); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s Offset of Compilation Unit Info.", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DATA1 (asm_out_file, PTR_SIZE); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s Size of Address", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 0); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s Size of Segment Descriptor", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 4); if (PTR_SIZE == 8) fprintf (asm_out_file, ",0,0"); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s Pad to %d byte boundary", ASM_COMMENT_START, 2 * PTR_SIZE); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_SECTION); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s Address", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_ADDR_DELTA (asm_out_file, text_end_label, TEXT_SECTION); if (flag_verbose_asm) { fprintf (asm_out_file, "%s Length", ASM_COMMENT_START); } fputc ('\n', asm_out_file); for (i = 0; i < arange_table_in_use; ++i) { dw_die_ref a = arange_table[i]; if (a->die_tag == DW_TAG_subprogram) ASM_OUTPUT_DWARF_ADDR (asm_out_file, get_AT_low_pc (a)); else ASM_OUTPUT_DWARF_ADDR (asm_out_file, get_AT_string (a, DW_AT_name)); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s Address", ASM_COMMENT_START); } fputc ('\n', asm_out_file); if (a->die_tag == DW_TAG_subprogram) ASM_OUTPUT_DWARF_ADDR_DELTA (asm_out_file, get_AT_hi_pc (a), get_AT_low_pc (a)); else ASM_OUTPUT_DWARF_ADDR_DATA (asm_out_file, get_AT_unsigned (a, DW_AT_byte_size)); if (flag_verbose_asm) { fprintf (asm_out_file, "%s Length", ASM_COMMENT_START); } fputc ('\n', asm_out_file); } /* Output the terminator words. */ ASM_OUTPUT_DWARF_ADDR_DATA (asm_out_file, 0); fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_ADDR_DATA (asm_out_file, 0); fputc ('\n', asm_out_file); } /* Output the source line number correspondence information. This information goes into the .debug_line section. */ static void output_line_info () { char line_label[MAX_ARTIFICIAL_LABEL_BYTES]; char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES]; register unsigned opc; register unsigned n_op_args; register unsigned long ft_index; register unsigned long lt_index; register unsigned long current_line; register long line_offset; register long line_delta; register unsigned long current_file; register unsigned long function; ASM_OUTPUT_DWARF_DATA (asm_out_file, size_of_line_info ()); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s Length of Source Line Info.", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DATA2 (asm_out_file, DWARF_VERSION); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s DWARF Version", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DATA (asm_out_file, size_of_line_prolog ()); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s Prolog Length", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DWARF_LINE_MIN_INSTR_LENGTH); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s Minimum Instruction Length", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DWARF_LINE_DEFAULT_IS_STMT_START); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s Default is_stmt_start flag", ASM_COMMENT_START); } fputc ('\n', asm_out_file); fprintf (asm_out_file, "\t%s\t%d", ASM_BYTE_OP, DWARF_LINE_BASE); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s Line Base Value (Special Opcodes)", ASM_COMMENT_START); } fputc ('\n', asm_out_file); fprintf (asm_out_file, "\t%s\t%u", ASM_BYTE_OP, DWARF_LINE_RANGE); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s Line Range Value (Special Opcodes)", ASM_COMMENT_START); } fputc ('\n', asm_out_file); fprintf (asm_out_file, "\t%s\t%u", ASM_BYTE_OP, DWARF_LINE_OPCODE_BASE); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s Special Opcode Base", ASM_COMMENT_START); } fputc ('\n', asm_out_file); for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; ++opc) { switch (opc) { case DW_LNS_advance_pc: case DW_LNS_advance_line: case DW_LNS_set_file: case DW_LNS_set_column: case DW_LNS_fixed_advance_pc: n_op_args = 1; break; default: n_op_args = 0; break; } ASM_OUTPUT_DWARF_DATA1 (asm_out_file, n_op_args); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s opcode: 0x%x has %d args", ASM_COMMENT_START, opc, n_op_args); } fputc ('\n', asm_out_file); } if (flag_verbose_asm) { fprintf (asm_out_file, "%s Include Directory Table\n", ASM_COMMENT_START); } /* Include directory table is empty, at present */ ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 0); fputc ('\n', asm_out_file); if (flag_verbose_asm) { fprintf (asm_out_file, "%s File Name Table\n", ASM_COMMENT_START); } for (ft_index = 1; ft_index < file_table_in_use; ++ft_index) { ASM_OUTPUT_DWARF_STRING (asm_out_file, file_table[ft_index]); if (flag_verbose_asm) { fprintf (asm_out_file, "%s File Entry: 0x%x", ASM_COMMENT_START, ft_index); } fputc ('\n', asm_out_file); /* Include directory index */ output_uleb128 (0); fputc ('\n', asm_out_file); /* Modification time */ output_uleb128 (0); fputc ('\n', asm_out_file); /* File length in bytes */ output_uleb128 (0); fputc ('\n', asm_out_file); } /* Terminate the file name table */ ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 0); fputc ('\n', asm_out_file); /* Set the address register to the first location in the text section */ ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 0); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s DW_LNE_set_address", ASM_COMMENT_START); } fputc ('\n', asm_out_file); output_uleb128 (1 + PTR_SIZE); fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNE_set_address); fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_SECTION); fputc ('\n', asm_out_file); /* Generate the line number to PC correspondence table, encoded as a series of state machine operations. */ current_file = 1; current_line = 1; strcpy (prev_line_label, TEXT_SECTION); for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index) { register dw_line_info_ref line_info; ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNS_fixed_advance_pc); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s DW_LNS_fixed_advance_pc", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index); ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, line_label, prev_line_label); fputc ('\n', asm_out_file); line_info = &line_info_table[lt_index]; if (line_info->dw_file_num != current_file) { current_file = line_info->dw_file_num; ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNS_set_file); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s DW_LNS_set_file", ASM_COMMENT_START); } fputc ('\n', asm_out_file); output_uleb128 (current_file); if (flag_verbose_asm) fprintf (asm_out_file, " (\"%s\")", file_table[current_file]); fputc ('\n', asm_out_file); } line_offset = line_info->dw_line_num - current_line; line_delta = line_offset - DWARF_LINE_BASE; current_line = line_info->dw_line_num; if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1)) { ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DWARF_LINE_OPCODE_BASE + line_delta); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s line %d", ASM_COMMENT_START, current_line); } fputc ('\n', asm_out_file); } else { ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNS_advance_line); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s advance to line %d", ASM_COMMENT_START, current_line); } fputc ('\n', asm_out_file); output_sleb128 (line_offset); fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNS_copy); fputc ('\n', asm_out_file); } strcpy (prev_line_label, line_label); } ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNS_fixed_advance_pc); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s DW_LNS_fixed_advance_pc", ASM_COMMENT_START); } fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, text_end_label, prev_line_label); fputc ('\n', asm_out_file); /* Output the marker for the end of the line number info. */ ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 0); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s DW_LNE_end_sequence", ASM_COMMENT_START); } fputc ('\n', asm_out_file); output_uleb128 (1); fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNE_end_sequence); fputc ('\n', asm_out_file); function = 0; current_file = 1; current_line = 1; for (lt_index = 0; lt_index < separate_line_info_table_in_use; ) { register dw_separate_line_info_ref line_info = &separate_line_info_table[lt_index]; ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL, lt_index); if (function != line_info->function) { function = line_info->function; /* Set the address register to the first line in the function */ ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 0); if (flag_verbose_asm) fprintf (asm_out_file, "\t%s DW_LNE_set_address", ASM_COMMENT_START); fputc ('\n', asm_out_file); output_uleb128 (1 + PTR_SIZE); fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNE_set_address); fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_ADDR (asm_out_file, line_label); fputc ('\n', asm_out_file); } else { ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNS_fixed_advance_pc); if (flag_verbose_asm) fprintf (asm_out_file, "\t%s DW_LNS_fixed_advance_pc", ASM_COMMENT_START); fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, line_label, prev_line_label); fputc ('\n', asm_out_file); } if (line_info->dw_file_num != current_file) { current_file = line_info->dw_file_num; ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNS_set_file); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s DW_LNS_set_file", ASM_COMMENT_START); } fputc ('\n', asm_out_file); output_uleb128 (current_file); if (flag_verbose_asm) fprintf (asm_out_file, " (\"%s\")", file_table[current_file]); fputc ('\n', asm_out_file); } if (line_info->dw_line_num != current_line) { line_offset = line_info->dw_line_num - current_line; line_delta = line_offset - DWARF_LINE_BASE; current_line = line_info->dw_line_num; if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1)) { ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DWARF_LINE_OPCODE_BASE + line_delta); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s line %d", ASM_COMMENT_START, current_line); } fputc ('\n', asm_out_file); } else { ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNS_advance_line); if (flag_verbose_asm) { fprintf (asm_out_file, "\t%s advance to line %d", ASM_COMMENT_START, current_line); } fputc ('\n', asm_out_file); output_sleb128 (line_offset); fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNS_copy); fputc ('\n', asm_out_file); } } ++lt_index; strcpy (prev_line_label, line_label); /* If we're done with a function, end its sequence. */ if (lt_index == separate_line_info_table_in_use || separate_line_info_table[lt_index].function != function) { current_file = 1; current_line = 1; ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNS_fixed_advance_pc); if (flag_verbose_asm) fprintf (asm_out_file, "\t%s DW_LNS_fixed_advance_pc", ASM_COMMENT_START); fputc ('\n', asm_out_file); ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function); ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, line_label, prev_line_label); fputc ('\n', asm_out_file); /* Output the marker for the end of this sequence. */ ASM_OUTPUT_DWARF_DATA1 (asm_out_file, 0); if (flag_verbose_asm) fprintf (asm_out_file, "\t%s DW_LNE_end_sequence", ASM_COMMENT_START); fputc ('\n', asm_out_file); output_uleb128 (1); fputc ('\n', asm_out_file); ASM_OUTPUT_DWARF_DATA1 (asm_out_file, DW_LNE_end_sequence); fputc ('\n', asm_out_file); } } } /**************** attribute support utilities ********************************/ /* * Given a pointer to a BLOCK node return non-zero if (and only if) the node * in question represents the outermost pair of curly braces (i.e. the "body * block") of a function or method. * * For any BLOCK node representing a "body block" of a function or method, the * BLOCK_SUPERCONTEXT of the node will point to another BLOCK node which * represents the outermost (function) scope for the function or method (i.e. * the one which includes the formal parameters). The BLOCK_SUPERCONTEXT of * *that* node in turn will point to the relevant FUNCTION_DECL node. */ inline int is_body_block (stmt) register tree stmt; { if (TREE_CODE (stmt) == BLOCK) { register tree parent = BLOCK_SUPERCONTEXT (stmt); if (TREE_CODE (parent) == BLOCK) { register tree grandparent = BLOCK_SUPERCONTEXT (parent); if (TREE_CODE (grandparent) == FUNCTION_DECL) return 1; } } return 0; } /* Given a pointer to a tree node for some base type, return a pointer to a DIE that describes the given type. This routine must only be called for GCC type nodes that correspond to Dwarf base (fundamental) types. */ static dw_die_ref base_type_die (type) register tree type; { register dw_die_ref base_type_result; register char *type_name; register enum dwarf_type encoding; if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE) return 0; { register tree name = TYPE_NAME (type); if (TREE_CODE (name) == TYPE_DECL) name = DECL_NAME (name); type_name = IDENTIFIER_POINTER (name); } switch (TREE_CODE (type)) { case INTEGER_TYPE: /* Carefully distinguish the C character types, without messing up if the language is not C. Note that we check only for the names that contain spaces; other names might occur by coincidence in other languages. */ if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE && (type == char_type_node || ! strcmp (type_name, "signed char") || ! strcmp (type_name, "unsigned char")))) { if (TREE_UNSIGNED (type)) encoding = DW_ATE_unsigned; else encoding = DW_ATE_signed; break; } /* else fall through */ case CHAR_TYPE: /* GNU Pascal/Ada CHAR type. Not used in C. */ if (TREE_UNSIGNED (type)) encoding = DW_ATE_unsigned_char; else encoding = DW_ATE_signed_char; break; case REAL_TYPE: encoding = DW_ATE_float; break; case COMPLEX_TYPE: encoding = DW_ATE_complex_float; break; case BOOLEAN_TYPE: /* GNU FORTRAN/Ada/C++ BOOLEAN type. */ encoding = DW_ATE_boolean; break; default: abort (); /* No other TREE_CODEs are Dwarf fundamental types. */ } base_type_result = new_die (DW_TAG_base_type, comp_unit_die); add_AT_string (base_type_result, DW_AT_name, type_name); add_AT_unsigned (base_type_result, DW_AT_byte_size, TYPE_PRECISION (type) / BITS_PER_UNIT); add_AT_unsigned (base_type_result, DW_AT_encoding, encoding); return base_type_result; } /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to the Dwarf "root" type for the given input type. The Dwarf "root" type of a given type is generally the same as the given type, except that if the given type is a pointer or reference type, then the root type of the given type is the root type of the "basis" type for the pointer or reference type. (This definition of the "root" type is recursive.) Also, the root type of a `const' qualified type or a `volatile' qualified type is the root type of the given type without the qualifiers. */ static tree root_type (type) register tree type; { if (TREE_CODE (type) == ERROR_MARK) return error_mark_node; switch (TREE_CODE (type)) { case ERROR_MARK: return error_mark_node; case POINTER_TYPE: case REFERENCE_TYPE: return type_main_variant (root_type (TREE_TYPE (type))); default: return type_main_variant (type); } } /* Given a pointer to an arbitrary ..._TYPE tree node, return non-zero if the given input type is a Dwarf "fundamental" type. Otherwise return null. */ inline int is_base_type (type) register tree type; { switch (TREE_CODE (type)) { case ERROR_MARK: case VOID_TYPE: case INTEGER_TYPE: case REAL_TYPE: case COMPLEX_TYPE: case BOOLEAN_TYPE: case CHAR_TYPE: return 1; case SET_TYPE: case ARRAY_TYPE: case RECORD_TYPE: case UNION_TYPE: case QUAL_UNION_TYPE: case ENUMERAL_TYPE: case FUNCTION_TYPE: case METHOD_TYPE: case POINTER_TYPE: case REFERENCE_TYPE: case FILE_TYPE: case OFFSET_TYPE: case LANG_TYPE: return 0; default: abort (); } return 0; } /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging entry that chains various modifiers in front of the given type. */ static dw_die_ref modified_type_die (type, is_const_type, is_volatile_type, context_die) register tree type; register int is_const_type; register int is_volatile_type; register dw_die_ref context_die; { register enum tree_code code = TREE_CODE (type); register dw_die_ref mod_type_die = NULL; register dw_die_ref sub_die = NULL; register tree item_type; if (code != ERROR_MARK) { type = build_type_variant (type, is_const_type, is_volatile_type); mod_type_die = lookup_type_die (type); if (mod_type_die) return mod_type_die; /* Handle C typedef types. */ if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL && DECL_ORIGINAL_TYPE (TYPE_NAME (type))) { tree dtype = TREE_TYPE (TYPE_NAME (type)); if (type == dtype) { /* For a named type, use the typedef. */ gen_type_die (type, context_die); mod_type_die = lookup_type_die (type); } else if (is_const_type < TYPE_READONLY (dtype) || is_volatile_type < TYPE_VOLATILE (dtype)) /* cv-unqualified version of named type. Just use the unnamed type to which it refers. */ mod_type_die = modified_type_die (DECL_ORIGINAL_TYPE (TYPE_NAME (type)), is_const_type, is_volatile_type); /* else cv-qualified version of named type; fall through. */ } if (mod_type_die) /* OK */; else if (is_const_type) { mod_type_die = new_die (DW_TAG_const_type, comp_unit_die); sub_die = modified_type_die (type, 0, is_volatile_type, context_die); } else if (is_volatile_type) { mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die); sub_die = modified_type_die (type, 0, 0, context_die); } else if (code == POINTER_TYPE) { mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die); add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE); #if 0 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0); #endif item_type = TREE_TYPE (type); sub_die = modified_type_die (item_type, TYPE_READONLY (item_type), TYPE_VOLATILE (item_type), context_die); } else if (code == REFERENCE_TYPE) { mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die); add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE); #if 0 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0); #endif item_type = TREE_TYPE (type); sub_die = modified_type_die (item_type, TYPE_READONLY (item_type), TYPE_VOLATILE (item_type), context_die); } else if (is_base_type (type)) { mod_type_die = base_type_die (type); } else { gen_type_die (type, context_die); /* We have to get the type_main_variant here (and pass that to the `lookup_type_die' routine) because the ..._TYPE node we have might simply be a *copy* of some original type node (where the copy was created to help us keep track of typedef names) and that copy might have a different TYPE_UID from the original ..._TYPE node. */ mod_type_die = lookup_type_die (type_main_variant (type)); assert (mod_type_die != NULL); } } if (sub_die != NULL) { add_AT_die_ref (mod_type_die, DW_AT_type, sub_die); } equate_type_number_to_die (type, mod_type_die); return mod_type_die; } /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is an enumerated type. */ inline int type_is_enum (type) register tree type; { return TREE_CODE (type) == ENUMERAL_TYPE; } /* Return the register number described by a given RTL node. */ static unsigned reg_number (rtl) register rtx rtl; { register unsigned regno = REGNO (rtl); if (regno >= FIRST_PSEUDO_REGISTER) { warning_with_decl (dwarf_last_decl, "internal regno botch: regno = %d\n", regno); regno = 0; } regno = DBX_REGISTER_NUMBER (regno); return regno; } /* Return a location descriptor that designates a machine register. */ static dw_loc_descr_ref reg_loc_descriptor (rtl) register rtx rtl; { register dw_loc_descr_ref loc_result = NULL; register unsigned reg = reg_number (rtl); if (reg >= 0 && reg <= 31) { loc_result = new_loc_descr (DW_OP_reg0 + reg, 0); } else { loc_result = new_loc_descr (DW_OP_regx, reg, 0); } return loc_result; } /* Return a location descriptor that designates a base+offset location. */ static dw_loc_descr_ref based_loc_descr (reg, offset) unsigned reg; long int offset; { register dw_loc_descr_ref loc_result; /* For the "frame base", we use the frame pointer or stack pointer registers, since the RTL for local variables is relative to one of them. */ register unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed ? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM); if (reg == fp_reg) { loc_result = new_loc_descr (DW_OP_fbreg, offset, 0); } else if (reg >= 0 && reg <= 31) { loc_result = new_loc_descr (DW_OP_breg0 + reg, offset); } else { loc_result = new_loc_descr (DW_OP_bregx, reg, offset); } return loc_result; } /* Return true if this RTL expression describes a base+offset calculation. */ inline int is_based_loc (rtl) register rtx rtl; { return GET_CODE (rtl) == PLUS && ((GET_CODE (XEXP (rtl, 0)) == REG && GET_CODE (XEXP (rtl, 1)) == CONST_INT)); } /* The following routine converts the RTL for a variable or parameter (resident in memory) into an equivalent Dwarf representation of a mechanism for getting the address of that same variable onto the top of a hypothetical "address evaluation" stack. When creating memory location descriptors, we are effectively transforming the RTL for a memory-resident object into its Dwarf postfix expression equivalent. This routine recursively descends an RTL tree, turning it into Dwarf postfix code as it goes. */ static dw_loc_descr_ref mem_loc_descriptor (rtl) register rtx rtl; { dw_loc_descr_ref mem_loc_result = NULL; /* Note that for a dynamically sized array, the location we will generate a description of here will be the lowest numbered location which is actually within the array. That's *not* necessarily the same as the zeroth element of the array. */ switch (GET_CODE (rtl)) { case SUBREG: /* The case of a subreg may arise when we have a local (register) variable or a formal (register) parameter which doesn't quite fill up an entire register. For now, just assume that it is legitimate to make the Dwarf info refer to the whole register which contains the given subreg. */ rtl = XEXP (rtl, 0); /* Drop thru. */ case REG: /* Whenever a register number forms a part of the description of the method for calculating the (dynamic) address of a memory resident object, DWARF rules require the register number be referred to as a "base register". This distinction is not based in any way upon what category of register the hardware believes the given register belongs to. This is strictly DWARF terminology we're dealing with here. Note that in cases where the location of a memory-resident data object could be expressed as: OP_ADD (OP_BASEREG (basereg), OP_CONST (0)) the actual DWARF location descriptor that we generate may just be OP_BASEREG (basereg). This may look deceptively like the object in question was allocated to a register (rather than in memory) so DWARF consumers need to be aware of the subtle distinction between OP_REG and OP_BASEREG. */ mem_loc_result = based_loc_descr (reg_number (rtl), 0); break; case MEM: mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0)); add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0)); break; case CONST: case SYMBOL_REF: mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0); mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr; mem_loc_result->dw_loc_oprnd1.v.val_addr = addr_to_string (rtl); break; case PLUS: if (is_based_loc (rtl)) { mem_loc_result = based_loc_descr ( reg_number (XEXP (rtl, 0)), INTVAL (XEXP (rtl, 1))); } else { add_loc_descr (&mem_loc_result, mem_loc_descriptor (XEXP (rtl, 0))); add_loc_descr (&mem_loc_result, mem_loc_descriptor (XEXP (rtl, 1))); add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_plus, 0, 0)); } break; case MULT: /* If a pseudo-reg is optimized away, it is possible for it to be replaced with a MEM containing a multiply. */ add_loc_descr (&mem_loc_result, mem_loc_descriptor (XEXP (rtl, 0))); add_loc_descr (&mem_loc_result, mem_loc_descriptor (XEXP (rtl, 1))); add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0)); break; case CONST_INT: mem_loc_result = new_loc_descr (DW_OP_constu, INTVAL (rtl), 0); break; default: abort (); } return mem_loc_result; } /* Output a proper Dwarf location descriptor for a variable or parameter which is either allocated in a register or in a memory location. For a register, we just generate an OP_REG and the register number. For a memory location we provide a Dwarf postfix expression describing how to generate the (dynamic) address of the object onto the address stack. */ static dw_loc_descr_ref loc_descriptor (rtl) register rtx rtl; { dw_loc_descr_ref loc_result = NULL; switch (GET_CODE (rtl)) { case SUBREG: /* The case of a subreg may arise when we have a local (register) variable or a formal (register) parameter which doesn't quite fill up an entire register. For now, just assume that it is legitimate to make the Dwarf info refer to the whole register which contains the given subreg. */ rtl = XEXP (rtl, 0); /* fall through */ case REG: loc_result = reg_loc_descriptor (rtl); break; case MEM: loc_result = mem_loc_descriptor (XEXP (rtl, 0)); break; default: abort (); /* Should never happen */ } return loc_result; } /* Given an unsigned value, round it up to the lowest multiple of `boundary' which is not less than the value itself. */ inline unsigned ceiling (value, boundary) register unsigned value; register unsigned boundary; { return (((value + boundary - 1) / boundary) * boundary); } /* Given a pointer to what is assumed to be a FIELD_DECL node, return a pointer to the declared type for the relevant field variable, or return `integer_type_node' if the given node turns out to be an ERROR_MARK node. */ inline tree field_type (decl) register tree decl; { register tree type; if (TREE_CODE (decl) == ERROR_MARK) return integer_type_node; type = DECL_BIT_FIELD_TYPE (decl); if (type == NULL) type = TREE_TYPE (decl); return type; } /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE node, return the alignment in bits for the type, or else return BITS_PER_WORD if the node actually turns out to be an ERROR_MARK node. */ inline unsigned simple_type_align_in_bits (type) register tree type; { return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD; } /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE node, return the size in bits for the type if it is a constant, or else return the alignment for the type if the type's size is not constant, or else return BITS_PER_WORD if the type actually turns out to be an ERROR_MARK node. */ inline unsigned simple_type_size_in_bits (type) register tree type; { if (TREE_CODE (type) == ERROR_MARK) return BITS_PER_WORD; else { register tree type_size_tree = TYPE_SIZE (type); if (TREE_CODE (type_size_tree) != INTEGER_CST) return TYPE_ALIGN (type); return (unsigned) TREE_INT_CST_LOW (type_size_tree); } } /* Given a pointer to what is assumed to be a FIELD_DECL node, compute and return the byte offset of the lowest addressed byte of the "containing object" for the given FIELD_DECL, or return 0 if we are unable to determine what that offset is, either because the argument turns out to be a pointer to an ERROR_MARK node, or because the offset is actually variable. (We can't handle the latter case just yet). */ static unsigned field_byte_offset (decl) register tree decl; { register unsigned type_align_in_bytes; register unsigned type_align_in_bits; register unsigned type_size_in_bits; register unsigned object_offset_in_align_units; register unsigned object_offset_in_bits; register unsigned object_offset_in_bytes; register tree type; register tree bitpos_tree; register tree field_size_tree; register unsigned bitpos_int; register unsigned deepest_bitpos; register unsigned field_size_in_bits; if (TREE_CODE (decl) == ERROR_MARK) return 0; if (TREE_CODE (decl) != FIELD_DECL) abort (); type = field_type (decl); bitpos_tree = DECL_FIELD_BITPOS (decl); field_size_tree = DECL_SIZE (decl); /* We cannot yet cope with fields whose positions or sizes are variable, so for now, when we see such things, we simply return 0. Someday, we may be able to handle such cases, but it will be damn difficult. */ if (TREE_CODE (bitpos_tree) != INTEGER_CST) return 0; bitpos_int = (unsigned) TREE_INT_CST_LOW (bitpos_tree); if (TREE_CODE (field_size_tree) != INTEGER_CST) return 0; field_size_in_bits = (unsigned) TREE_INT_CST_LOW (field_size_tree); type_size_in_bits = simple_type_size_in_bits (type); type_align_in_bits = simple_type_align_in_bits (type); type_align_in_bytes = type_align_in_bits / BITS_PER_UNIT; /* Note that the GCC front-end doesn't make any attempt to keep track of the starting bit offset (relative to the start of the containing structure type) of the hypothetical "containing object" for a bit- field. Thus, when computing the byte offset value for the start of the "containing object" of a bit-field, we must deduce this information on our own. This can be rather tricky to do in some cases. For example, handling the following structure type definition when compiling for an i386/i486 target (which only aligns long long's to 32-bit boundaries) can be very tricky: struct S { int field1; long long field2:31; }; Fortunately, there is a simple rule-of-thumb which can be used in such cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the structure shown above. It decides to do this based upon one simple rule for bit-field allocation. Quite simply, GCC allocates each "containing object" for each bit-field at the first (i.e. lowest addressed) legitimate alignment boundary (based upon the required minimum alignment for the declared type of the field) which it can possibly use, subject to the condition that there is still enough available space remaining in the containing object (when allocated at the selected point) to fully accommodate all of the bits of the bit-field itself. This simple rule makes it obvious why GCC allocates 8 bytes for each object of the structure type shown above. When looking for a place to allocate the "containing object" for `field2', the compiler simply tries to allocate a 64-bit "containing object" at each successive 32-bit boundary (starting at zero) until it finds a place to allocate that 64- bit field such that at least 31 contiguous (and previously unallocated) bits remain within that selected 64 bit field. (As it turns out, for the example above, the compiler finds that it is OK to allocate the "containing object" 64-bit field at bit-offset zero within the structure type.) Here we attempt to work backwards from the limited set of facts we're given, and we try to deduce from those facts, where GCC must have believed that the containing object started (within the structure type). The value we deduce is then used (by the callers of this routine) to generate DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields and, in the case of DW_AT_location, regular fields as well). */ /* Figure out the bit-distance from the start of the structure to the "deepest" bit of the bit-field. */ deepest_bitpos = bitpos_int + field_size_in_bits; /* This is the tricky part. Use some fancy footwork to deduce where the lowest addressed bit of the containing object must be. */ object_offset_in_bits = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits; /* Compute the offset of the containing object in "alignment units". */ object_offset_in_align_units = object_offset_in_bits / type_align_in_bits; /* Compute the offset of the containing object in bytes. */ object_offset_in_bytes = object_offset_in_align_units * type_align_in_bytes; return object_offset_in_bytes; } /****************************** attributes *********************************/ /* The following routines define various Dwarf attributes (and any data associated with them). */ /* Output the form of location attributes suitable for whole variables and whole parameters. Note that the location attributes for struct fields are generated by the routine `data_member_location_attribute' below. */ static void add_location_attribute (die, rtl) dw_die_ref die; register rtx rtl; { dw_loc_descr_ref loc_descr = NULL; /* Handle a special case. If we are about to output a location descriptor for a variable or parameter which has been optimized out of existence, don't do that. Instead we output a null location descriptor value as part of the location attribute. A variable which has been optimized out of existence will have a DECL_RTL value which denotes a pseudo-reg. Currently, in some rare cases, variables can have DECL_RTL values which look like (MEM (REG pseudo-reg#)). These cases are due to bugs elsewhere in the compiler. We treat such cases as if the variable(s) in question had been optimized out of existence. Note that in all cases where we wish to express the fact that a variable has been optimized out of existence, we do not simply suppress the generation of the entire location attribute because the absence of a location attribute in certain kinds of DIEs is used to indicate something else entirely... i.e. that the DIE represents an object declaration, but not a definition. So sayeth the PLSIG. */ if (!is_pseudo_reg (rtl) && (GET_CODE (rtl) != MEM || !is_pseudo_reg (XEXP (rtl, 0)))) { loc_descr = loc_descriptor (eliminate_regs (rtl, 0, NULL_RTX)); } #ifdef MIPS_DEBUGGING_INFO /* ??? SGI's dwarf reader is buggy, and will not accept a zero size location descriptor. Lets just use r0 for now to represent a variable that has been optimized away. */ if (loc_descr == NULL) { loc_descr = loc_descriptor (gen_rtx (REG, word_mode, 0)); } #endif add_AT_loc (die, DW_AT_location, loc_descr); } /* Attach the specialized form of location attribute used for data members of struct and union types. In the special case of a FIELD_DECL node which represents a bit-field, the "offset" part of this special location descriptor must indicate the distance in bytes from the lowest-addressed byte of the containing struct or union type to the lowest-addressed byte of the "containing object" for the bit-field. (See the `field_byte_offset' function above).. For any given bit-field, the "containing object" is a hypothetical object (of some integral or enum type) within which the given bit-field lives. The type of this hypothetical "containing object" is always the same as the declared type of the individual bit-field itself (for GCC anyway... the DWARF spec doesn't actually mandate this). Note that it is the size (in bytes) of the hypothetical "containing object" which will be given in the DW_AT_byte_size attribute for this bit-field. (See the `byte_size_attribute' function below.) It is also used when calculating the value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute' function below). */ static void add_data_member_location_attribute (die, decl) register dw_die_ref die; register tree decl; { register unsigned long offset; register dw_loc_descr_ref loc_descr; register enum dwarf_location_atom op; if (TREE_CODE (decl) == TREE_VEC) offset = TREE_INT_CST_LOW (BINFO_OFFSET (decl)); else offset = field_byte_offset (decl); /* The DWARF2 standard says that we should assume that the structure address is already on the stack, so we can specify a structure field address by using DW_OP_plus_uconst. */ #ifdef MIPS_DEBUGGING_INFO /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst operator correctly. It works only if we leave the offset on the stack. */ op = DW_OP_constu; #else op = DW_OP_plus_uconst; #endif loc_descr = new_loc_descr (op, offset, 0); add_AT_loc (die, DW_AT_data_member_location, loc_descr); } /* Attach an DW_AT_const_value attribute for a variable or a parameter which does not have a "location" either in memory or in a register. These things can arise in GNU C when a constant is passed as an actual parameter to an inlined function. They can also arise in C++ where declared constants do not necessarily get memory "homes". */ static void add_const_value_attribute (die, rtl) register dw_die_ref die; register rtx rtl; { switch (GET_CODE (rtl)) { case CONST_INT: /* Note that a CONST_INT rtx could represent either an integer or a floating-point constant. A CONST_INT is used whenever the constant will fit into a single word. In all such cases, the original mode of the constant value is wiped out, and the CONST_INT rtx is assigned VOIDmode. */ add_AT_unsigned (die, DW_AT_const_value, (unsigned) INTVAL (rtl)); break; case CONST_DOUBLE: /* Note that a CONST_DOUBLE rtx could represent either an integer or a floating-point constant. A CONST_DOUBLE is used whenever the constant requires more than one word in order to be adequately represented. We output CONST_DOUBLEs as blocks. */ { register enum machine_mode mode = GET_MODE (rtl); if (GET_MODE_CLASS (mode) == MODE_FLOAT) { union real_extract u; jmp_buf handler; register unsigned length = GET_MODE_SIZE (mode) / 4; register long *array = (long *) xmalloc (length * sizeof (long)); bcopy ((char *) &CONST_DOUBLE_LOW (rtl), (char *) &u, sizeof u); if (setjmp (handler)) { error ("floating point trap outputting debug info"); u.d = dconst0; } set_float_handler (handler); switch (mode) { case SFmode: REAL_VALUE_TO_TARGET_SINGLE (u.d, array[0]); break; case DFmode: REAL_VALUE_TO_TARGET_DOUBLE (u.d, array); break; case XFmode: case TFmode: REAL_VALUE_TO_TARGET_LONG_DOUBLE (u.d, array); break; default: abort (); } set_float_handler (NULL_PTR); add_AT_float (die, DW_AT_const_value, length, array); } else add_AT_long_long (die, DW_AT_const_value, CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl)); } break; case CONST_STRING: add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0)); break; case SYMBOL_REF: case LABEL_REF: case CONST: add_AT_addr (die, DW_AT_const_value, addr_to_string (rtl)); break; case PLUS: /* In cases where an inlined instance of an inline function is passed the address of an `auto' variable (which is local to the caller) we can get a situation where the DECL_RTL of the artificial local variable (for the inlining) which acts as a stand-in for the corresponding formal parameter (of the inline function) will look like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not exactly a compile-time constant expression, but it isn't the address of the (artificial) local variable either. Rather, it represents the *value* which the artificial local variable always has during its lifetime. We currently have no way to represent such quasi-constant values in Dwarf, so for now we just punt and generate an DW_AT_const_value attribute with null address. */ add_AT_addr (die, DW_AT_const_value, addr_to_string (const0_rtx)); break; default: /* No other kinds of rtx should be possible here. */ abort (); } } /* Generate *either* an DW_AT_location attribute or else an DW_AT_const_value data attribute for a variable or a parameter. We generate the DW_AT_const_value attribute only in those cases where the given variable or parameter does not have a true "location" either in memory or in a register. This can happen (for example) when a constant is passed as an actual argument in a call to an inline function. (It's possible that these things can crop up in other ways also.) Note that one type of constant value which can be passed into an inlined function is a constant pointer. This can happen for example if an actual argument in an inlined function call evaluates to a compile-time constant address. */ static void add_location_or_const_value_attribute (die, decl) register dw_die_ref die; register tree decl; { register rtx rtl; register tree declared_type; register tree passed_type; if (TREE_CODE (decl) == ERROR_MARK) { return; } if ((TREE_CODE (decl) != VAR_DECL) && (TREE_CODE (decl) != PARM_DECL)) { /* Should never happen. */ abort (); return; } /* Here we have to decide where we are going to say the parameter "lives" (as far as the debugger is concerned). We only have a couple of choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL. DECL_RTL normally indicates where the parameter lives during most of the activa- tion of the function. If optimization is enabled however, this could be either NULL or else a pseudo-reg. Both of those cases indicate that the parameter doesn't really live anywhere (as far as the code generation parts of GCC are concerned) during most of the function's activation. That will happen (for example) if the parameter is never referenced within the function. We could just generate a location descriptor here for all non-NULL non-pseudo values of DECL_RTL and ignore all of the rest, but we can be a little nicer than that if we also consider DECL_INCOMING_RTL in cases where DECL_RTL is NULL or is a pseudo-reg. Note however that we can only get away with using DECL_INCOMING_RTL as a backup substitute for DECL_RTL in certain limited cases. In cases where DECL_ARG_TYPE(decl) indicates the same type as TREE_TYPE(decl) we can be sure that the parameter was passed using the same type as it is declared to have within the function, and that its DECL_INCOMING_RTL points us to a place where a value of that type is passed. In cases where DECL_ARG_TYPE(decl) and TREE_TYPE(decl) are different types however, we cannot (in general) use DECL_INCOMING_RTL as a backup substitute for DECL_RTL because in these cases, DECL_INCOMING_RTL points us to a value of some type which is *different* from the type of the parameter itself. Thus, if we tried to use DECL_INCOMING_RTL to generate a location attribute in such cases, the debugger would end up (for example) trying to fetch a `float' from a place which actually contains the first part of a `double'. That would lead to really incorrect and confusing output at debug-time, and we don't want that now do we? So in general, we DO NOT use DECL_INCOMING_RTL as a backup for DECL_RTL in cases where DECL_ARG_TYPE(decl) != TREE_TYPE(decl). There are a couple of cute exceptions however. On little-endian machines we can get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE(decl) is not the same as TREE_TYPE(decl) but only when DECL_ARG_TYPE(decl) is an integral type which is smaller than TREE_TYPE(decl). These cases arise when (on a little-endian machine) a non-prototyped function has a parameter declared to be of type `short' or `char'. In such cases, TREE_TYPE(decl) will be `short' or `char', DECL_ARG_TYPE(decl) will be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the passed `int' value. If the debugger then uses that address to fetch a `short' or a `char' (on a little-endian machine) the result will be the correct data, so we allow for such exceptional cases below. Note that our goal here is to describe the place where the given formal parameter lives during most of the function's activation (i.e. between the end of the prologue and the start of the epilogue). We'll do that as best as we can. Note however that if the given formal parameter is modified sometime during the execution of the function, then a stack backtrace (at debug-time) will show the function as having been called with the *new* value rather than the value which was originally passed in. This happens rarely enough that it is not a major problem, but it *is* a problem, and I'd like to fix it. A future version of dwarf2out.c may generate two additional attributes for any given DW_TAG_formal_parameter DIE which will describe the "passed type" and the "passed location" for the given formal parameter in addition to the attributes we now generate to indicate the "declared type" and the "active location" for each parameter. This additional set of attributes could be used by debuggers for stack backtraces. Separately, note that sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also. This happens (for example) for inlined-instances of inline function formal parameters which are never referenced. This really shouldn't be happening. All PARM_DECL nodes should get valid non-NULL DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these values for inlined instances of inline function parameters, so when we see such cases, we are just SOL (shit-out-of-luck) for the time being (until integrate.c gets fixed). */ /* Use DECL_RTL as the "location" unless we find something better. */ rtl = DECL_RTL (decl); if (TREE_CODE (decl) == PARM_DECL) { if (rtl == NULL_RTX || is_pseudo_reg (rtl)) { declared_type = type_main_variant (TREE_TYPE (decl)); passed_type = type_main_variant (DECL_ARG_TYPE (decl)); /* This decl represents a formal parameter which was optimized out. Note that DECL_INCOMING_RTL may be NULL in here, but we handle all* cases where (rtl == NULL_RTX) just below. */ if (declared_type == passed_type) { rtl = DECL_INCOMING_RTL (decl); } else if (!BYTES_BIG_ENDIAN) { if (TREE_CODE (declared_type) == INTEGER_TYPE) { if (TYPE_SIZE (declared_type) <= TYPE_SIZE (passed_type)) { rtl = DECL_INCOMING_RTL (decl); } } } } } if (rtl == NULL_RTX) return; switch (GET_CODE (rtl)) { case CONST_INT: case CONST_DOUBLE: case CONST_STRING: case SYMBOL_REF: case LABEL_REF: case CONST: case PLUS: /* DECL_RTL could be (plus (reg ...) (const_int ...)) */ add_const_value_attribute (die, rtl); break; case MEM: case REG: case SUBREG: add_location_attribute (die, rtl); break; default: abort (); /* Should never happen. */ } } /* Generate an DW_AT_name attribute given some string value to be included as the value of the attribute. */ inline void add_name_attribute (die, name_string) register dw_die_ref die; register char *name_string; { if (name_string && *name_string) { add_AT_string (die, DW_AT_name, name_string); } } /* Given a tree node describing an array bound (either lower or upper) output a representation for that bound. FIXME: This uses location descriptions for variable bounds, whereas the DWARF-2 spec only allowes for constants or DIE references. */ static void add_bound_info (subrange_die, bound_attr, bound) register dw_die_ref subrange_die; register enum dwarf_attribute bound_attr; register tree bound; { register dw_loc_descr_ref bound_loc = NULL; register unsigned bound_value = 0; switch (TREE_CODE (bound)) { case ERROR_MARK: return; /* All fixed-bounds are represented by INTEGER_CST nodes. */ case INTEGER_CST: bound_value = TREE_INT_CST_LOW (bound); if (bound_attr == DW_AT_lower_bound && ((is_c_family () && bound_value == 0) || (is_fortran () && bound_value == 1))) /* use the default */; else add_AT_unsigned (subrange_die, bound_attr, bound_value); break; /* Dynamic bounds may be represented by NOP_EXPR nodes containing SAVE_EXPR nodes. */ case NOP_EXPR: bound = TREE_OPERAND (bound, 0); /* ... fall thru... */ case SAVE_EXPR: /* Handle the simple case of `int ar[i];'. */ if (bound_attr == DW_AT_upper_bound && is_c_family () && TREE_CODE (TREE_OPERAND (bound, 0)) == MINUS_EXPR) { tree t = TREE_OPERAND (bound, 0); if (integer_onep (TREE_OPERAND (bound, 1))) t = TREE_OPERAND (t, 0); if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL) { add_AT_die_ref (subrange_die, DW_AT_count, lookup_decl_die (t)); return; } } /* If optimization is turned on, the SAVE_EXPRs that describe how to access the upper bound values are essentially bogus. They only describe (at best) how to get at these values at the points in the generated code right after they have just been computed. Worse yet, in the typical case, the upper bound values will not even *be* computed in the optimized code, so these SAVE_EXPRs are entirely bogus. In order to compensate for this fact, we check here to see if optimization is enabled, and if so, we don't add an attribute for the (unknown and unknowable) upper bound. This should not cause too much trouble for existing (stupid?) debuggers because they have to deal with empty upper bounds location descriptions anyway in order to be able to deal with incomplete array types. Of course an intelligent debugger (GDB?) should be able to comprehend that a missing upper bound specification in a array type used for a storage class `auto' local array variable indicates that the upper bound is both unknown (at compile- time) and unknowable (at run-time) due to optimization. */ if (!optimize) { bound_loc = mem_loc_descriptor (eliminate_regs (SAVE_EXPR_RTL (bound), 0, NULL_RTX)); add_AT_loc (subrange_die, bound_attr, bound_loc); } /* else leave out the attribute. */ break; default: abort (); } } /* Note that the block of subscript information for an array type also includes information about the element type of type given array type. */ static void add_subscript_info (type_die, type) register dw_die_ref type_die; register tree type; { register unsigned dimension_number; register tree lower, upper; register dw_die_ref subrange_die; /* The GNU compilers represent multidimensional array types as sequences of one dimensional array types whose element types are themselves array types. Here we squish that down, so that each multidimensional array type gets only one array_type DIE in the Dwarf debugging info. The draft Dwarf specification say that we are allowed to do this kind of compression in C (because there is no difference between an array or arrays and a multidimensional array in C) but for other source languages (e.g. Ada) we probably shouldn't do this. */ /* ??? The SGI dwarf reader fails for multidimensional arrays with a const enum type. E.g. const enum machine_mode insn_operand_mode[2][10]. We work around this by disabling this feature. See also gen_array_type_die. */ #ifndef MIPS_DEBUGGING_INFO for (dimension_number = 0; TREE_CODE (type) == ARRAY_TYPE; type = TREE_TYPE (type), dimension_number++) { #endif register tree domain = TYPE_DOMAIN (type); /* Arrays come in three flavors: Unspecified bounds, fixed bounds, and (in GNU C only) variable bounds. Handle all three forms here. */ subrange_die = new_die (DW_TAG_subrange_type, type_die); if (domain) { /* We have an array type with specified bounds. */ lower = TYPE_MIN_VALUE (domain); upper = TYPE_MAX_VALUE (domain); /* define the index type. */ if (TREE_TYPE (domain)) add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0, type_die); add_bound_info (subrange_die, DW_AT_lower_bound, lower); add_bound_info (subrange_die, DW_AT_upper_bound, upper); } else { /* We have an array type with an unspecified length. The DWARF-2 spec does not say how to handle this; let's just leave out the bounds. */ } #ifndef MIPS_DEBUGGING_INFO } #endif } static void add_byte_size_attribute (die, tree_node) dw_die_ref die; register tree tree_node; { register unsigned size; switch (TREE_CODE (tree_node)) { case ERROR_MARK: size = 0; break; case ENUMERAL_TYPE: case RECORD_TYPE: case UNION_TYPE: case QUAL_UNION_TYPE: size = int_size_in_bytes (tree_node); break; case FIELD_DECL: /* For a data member of a struct or union, the DW_AT_byte_size is generally given as the number of bytes normally allocated for an object of the *declared* type of the member itself. This is true even for bit-fields. */ size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT; break; default: abort (); } /* Note that `size' might be -1 when we get to this point. If it is, that indicates that the byte size of the entity in question is variable. We have no good way of expressing this fact in Dwarf at the present time, so just let the -1 pass on through. */ add_AT_unsigned (die, DW_AT_byte_size, size); } /* For a FIELD_DECL node which represents a bit-field, output an attribute which specifies the distance in bits from the highest order bit of the "containing object" for the bit-field to the highest order bit of the bit-field itself. For any given bit-field, the "containing object" is a hypothetical object (of some integral or enum type) within which the given bit-field lives. The type of this hypothetical "containing object" is always the same as the declared type of the individual bit-field itself. The determination of the exact location of the "containing object" for a bit-field is rather complicated. It's handled by the `field_byte_offset' function (above). Note that it is the size (in bytes) of the hypothetical "containing object" which will be given in the DW_AT_byte_size attribute for this bit-field. (See `byte_size_attribute' above). */ inline void add_bit_offset_attribute (die, decl) register dw_die_ref die; register tree decl; { register unsigned object_offset_in_bytes = field_byte_offset (decl); register tree type = DECL_BIT_FIELD_TYPE (decl); register tree bitpos_tree = DECL_FIELD_BITPOS (decl); register unsigned bitpos_int; register unsigned highest_order_object_bit_offset; register unsigned highest_order_field_bit_offset; register unsigned bit_offset; assert (TREE_CODE (decl) == FIELD_DECL); /* Must be a field. */ assert (type); /* Must be a bit field. */ /* We can't yet handle bit-fields whose offsets are variable, so if we encounter such things, just return without generating any attribute whatsoever. */ if (TREE_CODE (bitpos_tree) != INTEGER_CST) { return; } bitpos_int = (unsigned) TREE_INT_CST_LOW (bitpos_tree); /* Note that the bit offset is always the distance (in bits) from the highest-order bit of the "containing object" to the highest-order bit of the bit-field itself. Since the "high-order end" of any object or field is different on big-endian and little-endian machines, the computation below must take account of these differences. */ highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT; highest_order_field_bit_offset = bitpos_int; if (!BYTES_BIG_ENDIAN) { highest_order_field_bit_offset += (unsigned) TREE_INT_CST_LOW (DECL_SIZE (decl)); highest_order_object_bit_offset += simple_type_size_in_bits (type); } bit_offset = (!BYTES_BIG_ENDIAN ? highest_order_object_bit_offset - highest_order_field_bit_offset : highest_order_field_bit_offset - highest_order_object_bit_offset); add_AT_unsigned (die, DW_AT_bit_offset, bit_offset); } /* For a FIELD_DECL node which represents a bit field, output an attribute which specifies the length in bits of the given field. */ inline void add_bit_size_attribute (die, decl) register dw_die_ref die; register tree decl; { assert (TREE_CODE (decl) == FIELD_DECL); /* Must be a field. */ assert (DECL_BIT_FIELD_TYPE (decl)); /* Must be a bit field. */ add_AT_unsigned (die, DW_AT_bit_size, (unsigned) TREE_INT_CST_LOW (DECL_SIZE (decl))); } /* If the compiled language is ANSI C, then add a 'prototyped' attribute, if arg types are given for the parameters of a function. */ inline void add_prototyped_attribute (die, func_type) register dw_die_ref die; register tree func_type; { if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89 && TYPE_ARG_TYPES (func_type) != NULL) add_AT_flag (die, DW_AT_prototyped, 1); } /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found by looking in either the type declaration or object declaration equate table. */ inline void add_abstract_origin_attribute (die, origin) register dw_die_ref die; register tree origin; { dw_die_ref origin_die = NULL; if (TREE_CODE_CLASS (TREE_CODE (origin)) == 'd') { origin_die = lookup_decl_die (origin); } else if (TREE_CODE_CLASS (TREE_CODE (origin)) == 't') { origin_die = lookup_type_die (origin); } add_AT_die_ref (die, DW_AT_abstract_origin, origin_die); } /* We do not currently support the pure_virtual attribute. */ inline void add_pure_or_virtual_attribute (die, func_decl) register dw_die_ref die; register tree func_decl; { if (DECL_VINDEX (func_decl)) { add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual); add_AT_loc (die, DW_AT_vtable_elem_location, new_loc_descr (DW_OP_constu, TREE_INT_CST_LOW (DECL_VINDEX (func_decl)))); /* GNU extension: Record what type this method came from originally. */ if (debug_info_level > DINFO_LEVEL_TERSE) add_AT_die_ref (die, DW_AT_containing_type, lookup_type_die (DECL_CONTEXT (func_decl))); } } /********************* utility routines for DIEs *************************/ /* Add source coordinate attributes for the given decl. */ static void add_src_coords_attributes (die, decl) register dw_die_ref die; register tree decl; { register unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl)); add_AT_unsigned (die, DW_AT_decl_file, file_index); add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl)); } /* Add an DW_AT_name attribute and source coordinate attribute for the given decl, but only if it actually has a name. */ static void add_name_and_src_coords_attributes (die, decl) register dw_die_ref die; register tree decl; { register tree decl_name; if (TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL) decl_name = DECL_ASSEMBLER_NAME (decl); else decl_name = DECL_NAME (decl); if (decl_name && IDENTIFIER_POINTER (decl_name)) { add_name_attribute (die, IDENTIFIER_POINTER (decl_name)); add_src_coords_attributes (die, decl); } } /* Push a new declaration scope. */ static void push_decl_scope (scope) tree scope; { /* Make room in the decl_scope_table, if necessary. */ if (decl_scope_table_allocated == decl_scope_depth) { decl_scope_table_allocated += DECL_SCOPE_TABLE_INCREMENT; decl_scope_table = (tree *) xrealloc (decl_scope_table, decl_scope_table_allocated * sizeof (tree)); } decl_scope_table[decl_scope_depth++] = scope; } /* Return the DIE for the scope the immediately contains this declaration. */ static dw_die_ref scope_die_for (t, context_die) register tree t; register dw_die_ref context_die; { register dw_die_ref scope_die = NULL; register tree containing_scope; register unsigned long i; /* Function-local tags and functions get stuck in limbo until they are fixed up by decls_for_scope. */ if (context_die == NULL && (TREE_CODE (t) == FUNCTION_DECL || is_tagged_type (t))) return NULL; /* Walk back up the declaration tree looking for a place to define this type. */ if (TREE_CODE_CLASS (TREE_CODE (t)) == 't') containing_scope = TYPE_CONTEXT (t); else if (TREE_CODE (t) == FUNCTION_DECL && DECL_VINDEX (t)) containing_scope = decl_class_context (t); else containing_scope = DECL_CONTEXT (t); if (containing_scope == NULL) { scope_die = comp_unit_die; } else { for (i = decl_scope_depth, scope_die = context_die; i > 0 && decl_scope_table[i - 1] != containing_scope; scope_die = scope_die->die_parent, --i) /* nothing */ ; if (i == 0) { assert (scope_die == comp_unit_die); assert (TREE_CODE_CLASS (TREE_CODE (containing_scope)) == 't'); if (debug_info_level > DINFO_LEVEL_TERSE) assert (TREE_ASM_WRITTEN (containing_scope)); } } return scope_die; } /* Pop a declaration scope. */ inline void pop_decl_scope () { assert (decl_scope_depth > 0); --decl_scope_depth; } /* Many forms of DIEs require a "type description" attribute. This routine locates the proper "type descriptor" die for the type given by 'type', and adds an DW_AT_type attribute below the given die. */ static void add_type_attribute (object_die, type, decl_const, decl_volatile, context_die) register dw_die_ref object_die; register tree type; register int decl_const; register int decl_volatile; register dw_die_ref context_die; { register enum tree_code code = TREE_CODE (type); register dw_die_ref type_die = NULL; if (code == ERROR_MARK) { return; } /* Handle a special case. For functions whose return type is void, we generate *no* type attribute. (Note that no object may have type `void', so this only applies to function return types). */ if (code == VOID_TYPE) { return; } type_die = modified_type_die (type, decl_const || TYPE_READONLY (type), decl_volatile || TYPE_VOLATILE (type), context_die); if (type_die != NULL) { add_AT_die_ref (object_die, DW_AT_type, type_die); } } /* Given a tree pointer to a struct, class, union, or enum type node, return a pointer to the (string) tag name for the given type, or zero if the type was declared without a tag. */ static char * type_tag (type) register tree type; { register char *name = 0; if (TYPE_NAME (type) != 0) { register tree t = 0; /* Find the IDENTIFIER_NODE for the type name. */ if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE) t = TYPE_NAME (type); /* The g++ front end makes the TYPE_NAME of *each* tagged type point to a TYPE_DECL node, regardless of whether or not a `typedef' was involved. */ else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL && ! DECL_IGNORED_P (TYPE_NAME (type))) t = DECL_NAME (TYPE_NAME (type)); /* Now get the name as a string, or invent one. */ if (t != 0) name = IDENTIFIER_POINTER (t); } return (name == 0 || *name == '\0') ? 0 : name; } /* Return the type associated with a data member, make a special check for bit field types. */ inline tree member_declared_type (member) register tree member; { return (DECL_BIT_FIELD_TYPE (member)) ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member); } /* Get the decl's label, as described by its RTL. This may be different from the DECL_NAME name used in the source file. */ static char * decl_start_label (decl) register tree decl; { rtx x; char *fnname; x = DECL_RTL (decl); if (GET_CODE (x) != MEM) { abort (); } x = XEXP (x, 0); if (GET_CODE (x) != SYMBOL_REF) { abort (); } fnname = XSTR (x, 0); return fnname; } /******************************* DIE Generation *************************/ /* These routines generate the internnal representation of the DIE's for the compilation unit. Debugging information is collected by walking the declaration trees passed in from dwarf2out_decl(). */ static void gen_array_type_die (type, context_die) register tree type; register dw_die_ref context_die; { register dw_die_ref scope_die = scope_die_for (type, context_die); register dw_die_ref array_die; register tree element_type; /* ??? The SGI dwarf reader fails for array of array of enum types unless the inner array type comes before the outer array type. Thus we must call gen_type_die before we call new_die. See below also. */ #ifdef MIPS_DEBUGGING_INFO gen_type_die (TREE_TYPE (type), context_die); #endif array_die = new_die (DW_TAG_array_type, scope_die); #if 0 /* We default the array ordering. SDB will probably do the right things even if DW_AT_ordering is not present. It's not even an issue until we start to get into multidimensional arrays anyway. If SDB is ever caught doing the Wrong Thing for multi-dimensional arrays, then we'll have to put the DW_AT_ordering attribute back in. (But if and when we find out that we need to put these in, we will only do so for multidimensional arrays. */ add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major); #endif #ifdef MIPS_DEBUGGING_INFO /* The SGI compilers handle arrays of unknown bound by setting AT_declaration and not emitting any subrange DIEs. */ if (! TYPE_DOMAIN (type)) add_AT_unsigned (array_die, DW_AT_declaration, 1); else #endif add_subscript_info (array_die, type); equate_type_number_to_die (type, array_die); /* Add representation of the type of the elements of this array type. */ element_type = TREE_TYPE (type); /* ??? The SGI dwarf reader fails for multidimensional arrays with a const enum type. E.g. const enum machine_mode insn_operand_mode[2][10]. We work around this by disabling this feature. See also add_subscript_info. */ #ifndef MIPS_DEBUGGING_INFO while (TREE_CODE (element_type) == ARRAY_TYPE) { element_type = TREE_TYPE (element_type); } gen_type_die (element_type, context_die); #endif add_type_attribute (array_die, element_type, 0, 0, context_die); } static void gen_set_type_die (type, context_die) register tree type; register dw_die_ref context_die; { register dw_die_ref type_die = new_die (DW_TAG_set_type, scope_die_for (type, context_die)); equate_type_number_to_die (type, type_die); add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die); } static void gen_entry_point_die (decl, context_die) register tree decl; register dw_die_ref context_die; { register tree origin = decl_ultimate_origin (decl); register dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die); if (origin != NULL) { add_abstract_origin_attribute (decl_die, origin); } else { add_name_and_src_coords_attributes (decl_die, decl); add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)), 0, 0, context_die); } if (DECL_ABSTRACT (decl)) { equate_decl_number_to_die (decl, decl_die); } else { add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl)); } } /* Remember a type in the pending_types_list. */ static void pend_type (type) register tree type; { if (pending_types == pending_types_allocated) { pending_types_allocated += PENDING_TYPES_INCREMENT; pending_types_list = (tree *) xrealloc (pending_types_list, sizeof (tree) * pending_types_allocated); } pending_types_list[pending_types++] = type; } /* Output any pending types (from the pending_types list) which we can output now (taking into account the scope that we are working on now). For each type output, remove the given type from the pending_types_list *before* we try to output it. */ static void output_pending_types_for_scope (context_die) register dw_die_ref context_die; { register tree type; while (pending_types) { --pending_types; type = pending_types_list[pending_types]; gen_type_die (type, context_die); assert (TREE_ASM_WRITTEN (type)); } } /* Generate a DIE to represent an inlined instance of an enumeration type. */ static void gen_inlined_enumeration_type_die (type, context_die) register tree type; register dw_die_ref context_die; { register dw_die_ref type_die; type_die = new_die (DW_TAG_enumeration_type, scope_die_for (type, context_die)); assert (TREE_ASM_WRITTEN (type)); add_abstract_origin_attribute (type_die, type); } /* Generate a DIE to represent an inlined instance of a structure type. */ static void gen_inlined_structure_type_die (type, context_die) register tree type; register dw_die_ref context_die; { register dw_die_ref type_die; type_die = new_die (DW_TAG_structure_type, scope_die_for (type, context_die)); assert (TREE_ASM_WRITTEN (type)); add_abstract_origin_attribute (type_die, type); } /* Generate a DIE to represent an inlined instance of a union type. */ static void gen_inlined_union_type_die (type, context_die) register tree type; register dw_die_ref context_die; { register dw_die_ref type_die; type_die = new_die (DW_TAG_union_type, scope_die_for (type, context_die)); assert (TREE_ASM_WRITTEN (type)); add_abstract_origin_attribute (type_die, type); } /* Generate a DIE to represent an enumeration type. Note that these DIEs include all of the information about the enumeration values also. Each enumerated type name/value is listed as a child of the enumerated type DIE. */ static void gen_enumeration_type_die (type, context_die) register tree type; register dw_die_ref context_die; { register dw_die_ref type_die = lookup_type_die (type); if (type_die == NULL) { type_die = new_die (DW_TAG_enumeration_type, scope_die_for (type, context_die)); equate_type_number_to_die (type, type_die); add_name_attribute (type_die, type_tag (type)); } else if (! TYPE_SIZE (type)) return; else remove_AT (type_die, DW_AT_declaration); /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the given enum type is incomplete, do not generate the DW_AT_byte_size attribute or the DW_AT_element_list attribute. */ if (TYPE_SIZE (type)) { register tree link; TREE_ASM_WRITTEN (type) = 1; add_byte_size_attribute (type_die, type); if (type_tag (type)) add_src_coords_attributes (type_die, TYPE_STUB_DECL (type)); for (link = TYPE_FIELDS (type); link != NULL; link = TREE_CHAIN (link)) { register dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die); add_name_attribute (enum_die, IDENTIFIER_POINTER (TREE_PURPOSE (link))); add_AT_unsigned (enum_die, DW_AT_const_value, (unsigned) TREE_INT_CST_LOW (TREE_VALUE (link))); } } else add_AT_flag (type_die, DW_AT_declaration, 1); } /* Generate a DIE to represent either a real live formal parameter decl or to represent just the type of some formal parameter position in some function type. Note that this routine is a bit unusual because its argument may be a ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE node. If it's the former then this function is being called to output a DIE to represent a formal parameter object (or some inlining thereof). If it's the latter, then this function is only being called to output a DW_TAG_formal_parameter DIE to stand as a placeholder for some formal argument type of some subprogram type. */ static dw_die_ref gen_formal_parameter_die (node, context_die) register tree node; register dw_die_ref context_die; { register dw_die_ref parm_die = new_die (DW_TAG_formal_parameter, context_die); register tree origin; switch (TREE_CODE_CLASS (TREE_CODE (node))) { /* We were called with some kind of a ..._DECL node. */ case 'd': origin = decl_ultimate_origin (node); if (origin != NULL) add_abstract_origin_attribute (parm_die, origin); else { add_name_and_src_coords_attributes (parm_die, node); add_type_attribute (parm_die, TREE_TYPE (node), TREE_READONLY (node), TREE_THIS_VOLATILE (node), context_die); if (DECL_ARTIFICIAL (node)) add_AT_flag (parm_die, DW_AT_artificial, 1); } equate_decl_number_to_die (node, parm_die); if (! DECL_ABSTRACT (node)) add_location_or_const_value_attribute (parm_die, node); break; /* We were called with some kind of a ..._TYPE node. */ case 't': add_type_attribute (parm_die, node, 0, 0, context_die); break; /* Should never happen. */ default: abort (); } return parm_die; } /* Generate a special type of DIE used as a stand-in for a trailing ellipsis at the end of an (ANSI prototyped) formal parameters list. */ static void gen_unspecified_parameters_die (decl_or_type, context_die) register tree decl_or_type; register dw_die_ref context_die; { register dw_die_ref parm_die = new_die (DW_TAG_unspecified_parameters, context_die); } /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a DW_TAG_unspecified_parameters DIE) to represent the types of the formal parameters as specified in some function type specification (except for those which appear as part of a function *definition*). Note that we must be careful here to output all of the parameter DIEs before* we output any DIEs needed to represent the types of the formal parameters. This keeps svr4 SDB happy because it (incorrectly) thinks that the first non-parameter DIE it sees ends the formal parameter list. */ static void gen_formal_types_die (function_or_method_type, context_die) register tree function_or_method_type; register dw_die_ref context_die; { register tree link; register tree formal_type = NULL; register tree first_parm_type = TYPE_ARG_TYPES (function_or_method_type); #if 0 /* In the case where we are generating a formal types list for a C++ non-static member function type, skip over the first thing on the TYPE_ARG_TYPES list because it only represents the type of the hidden `this pointer'. The debugger should be able to figure out (without being explicitly told) that this non-static member function type takes a `this pointer' and should be able to figure what the type of that hidden parameter is from the DW_AT_member attribute of the parent DW_TAG_subroutine_type DIE. */ if (TREE_CODE (function_or_method_type) == METHOD_TYPE) first_parm_type = TREE_CHAIN (first_parm_type); #endif /* Make our first pass over the list of formal parameter types and output a DW_TAG_formal_parameter DIE for each one. */ for (link = first_parm_type; link; link = TREE_CHAIN (link)) { register dw_die_ref parm_die; formal_type = TREE_VALUE (link); if (formal_type == void_type_node) break; /* Output a (nameless) DIE to represent the formal parameter itself. */ parm_die = gen_formal_parameter_die (formal_type, context_die); if (TREE_CODE (function_or_method_type) == METHOD_TYPE && link == first_parm_type) add_AT_flag (parm_die, DW_AT_artificial, 1); } /* If this function type has an ellipsis, add a DW_TAG_unspecified_parameters DIE to the end of the parameter list. */ if (formal_type != void_type_node) gen_unspecified_parameters_die (function_or_method_type, context_die); /* Make our second (and final) pass over the list of formal parameter types and output DIEs to represent those types (as necessary). */ for (link = TYPE_ARG_TYPES (function_or_method_type); link; link = TREE_CHAIN (link)) { formal_type = TREE_VALUE (link); if (formal_type == void_type_node) break; gen_type_die (formal_type, context_die); } } /* Generate a DIE to represent a declared function (either file-scope or block-local). */ static void gen_subprogram_die (decl, context_die) register tree decl; register dw_die_ref context_die; { char label_id[MAX_ARTIFICIAL_LABEL_BYTES]; register tree origin = decl_ultimate_origin (decl); register dw_die_ref subr_die; register dw_loc_descr_ref fp_loc = NULL; register unsigned fp_reg; register tree fn_arg_types; register tree outer_scope; register dw_die_ref old_die = lookup_decl_die (decl); register int declaration = (current_function_decl != decl || context_die->die_tag == DW_TAG_structure_type || context_die->die_tag == DW_TAG_union_type); if (origin != NULL) { subr_die = new_die (DW_TAG_subprogram, context_die); add_abstract_origin_attribute (subr_die, origin); } else if (old_die) { register unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl)); assert (get_AT_flag (old_die, DW_AT_declaration) == 1); /* If the definition comes from the same place as the declaration, maybe use the old DIE. We always want the DIE for this function that has the *_pc attributes to be under comp_unit_die so the debugger can find it. For inlines, that is the concrete instance, so we can use the old DIE here. For non-inline methods, we want a specification DIE at toplevel, so we need a new DIE. For local class methods, this does not apply. */ if ((DECL_ABSTRACT (decl) || old_die->die_parent == comp_unit_die || context_die == NULL) && get_AT_unsigned (old_die, DW_AT_decl_file) == file_index && (get_AT_unsigned (old_die, DW_AT_decl_line) == DECL_SOURCE_LINE (decl))) { subr_die = old_die; /* Clear out the declaration attribute and the parm types. */ remove_AT (subr_die, DW_AT_declaration); remove_children (subr_die); } else { subr_die = new_die (DW_TAG_subprogram, context_die); add_AT_die_ref (subr_die, DW_AT_specification, old_die); if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index) add_AT_unsigned (subr_die, DW_AT_decl_file, file_index); if (get_AT_unsigned (old_die, DW_AT_decl_line) != DECL_SOURCE_LINE (decl)) add_AT_unsigned (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl)); } } else { register dw_die_ref scope_die; if (DECL_CONTEXT (decl)) scope_die = scope_die_for (decl, context_die); else /* Don't put block extern declarations under comp_unit_die. */ scope_die = context_die; subr_die = new_die (DW_TAG_subprogram, scope_die); if (TREE_PUBLIC (decl)) add_AT_flag (subr_die, DW_AT_external, 1); add_name_and_src_coords_attributes (subr_die, decl); if (debug_info_level > DINFO_LEVEL_TERSE) { register tree type = TREE_TYPE (decl); add_prototyped_attribute (subr_die, type); add_type_attribute (subr_die, TREE_TYPE (type), 0, 0, context_die); } add_pure_or_virtual_attribute (subr_die, decl); if (DECL_ARTIFICIAL (decl)) add_AT_flag (subr_die, DW_AT_artificial, 1); if (TREE_PROTECTED (decl)) add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected); else if (TREE_PRIVATE (decl)) add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private); } if (declaration) { add_AT_flag (subr_die, DW_AT_declaration, 1); /* The first time we see a member function, it is in the context of the class to which it belongs. We make sure of this by emitting the class first. The next time is the definition, which is handled above. The two may come from the same source text. */ if (decl_class_context (decl)) equate_decl_number_to_die (decl, subr_die); } else if (DECL_ABSTRACT (decl)) { if (DECL_DEFER_OUTPUT (decl)) { if (DECL_INLINE (decl)) add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined); else add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined); } else if (DECL_INLINE (decl)) add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined); else if (declaration) /* block extern declaration in an inline function. */ add_AT_flag (subr_die, DW_AT_declaration, 1); else abort (); equate_decl_number_to_die (decl, subr_die); } else if (!DECL_EXTERNAL (decl)) { if (origin == NULL) equate_decl_number_to_die (decl, subr_die); ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL, current_funcdef_number); add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id); ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL, current_funcdef_number); add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id); add_pubname (decl, subr_die); add_arange (decl, subr_die); #ifdef MIPS_DEBUGGING_INFO /* Add a reference to the FDE for this routine. */ add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde); #endif /* Define the "frame base" location for this routine. We use the frame pointer or stack pointer registers, since the RTL for local variables is relative to one of them. */ fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed ? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM); assert (fp_reg >= 0 && fp_reg <= 31); fp_loc = new_loc_descr (DW_OP_reg0 + fp_reg); add_AT_loc (subr_die, DW_AT_frame_base, fp_loc); if (current_function_needs_context) add_AT_loc (subr_die, DW_AT_static_link, loc_descriptor (lookup_static_chain (decl))); } /* Now output descriptions of the arguments for this function. This gets (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list for a FUNCTION_DECL doesn't indicate cases where there was a trailing `...' at the end of the formal parameter list. In order to find out if there was a trailing ellipsis or not, we must instead look at the type associated with the FUNCTION_DECL. This will be a node of type FUNCTION_TYPE. If the chain of type nodes hanging off of this FUNCTION_TYPE node ends with a void_type_node then there should *not* be an ellipsis at the end. */ push_decl_scope (decl); /* In the case where we are describing a mere function declaration, all we need to do here (and all we *can* do here) is to describe the *types* of its formal parameters. */ if (debug_info_level <= DINFO_LEVEL_TERSE) /* do nothing */; else if (declaration) gen_formal_types_die (TREE_TYPE (decl), subr_die); else { /* Generate DIEs to represent all known formal parameters */ register tree arg_decls = DECL_ARGUMENTS (decl); register tree parm; /* When generating DIEs, generate the unspecified_parameters DIE instead if we come across the arg "__builtin_va_alist" */ for (parm = arg_decls; parm; parm = TREE_CHAIN (parm)) { if (TREE_CODE (parm) == PARM_DECL) { if (DECL_NAME (parm) && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)), "__builtin_va_alist")) { gen_unspecified_parameters_die (parm, subr_die); } else { gen_decl_die (parm, subr_die); } } } /* Decide whether we need a unspecified_parameters DIE at the end. There are 2 more cases to do this for: 1) the ansi ... declaration - this is detectable when the end of the arg list is not a void_type_node 2) an unprototyped function declaration (not a definition). This just means that we have no info about the parameters at all. */ fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl)); if (fn_arg_types) { /* this is the prototyped case, check for ... */ if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node) { gen_unspecified_parameters_die (decl, subr_die); } } else { /* this is unprotoyped, check for undefined (just declaration) */ if (!DECL_INITIAL (decl)) { gen_unspecified_parameters_die (decl, subr_die); } } } /* Output Dwarf info for all of the stuff within the body of the function (if it has one - it may be just a declaration). */ outer_scope = DECL_INITIAL (decl); /* Note that here, `outer_scope' is a pointer to the outermost BLOCK node created to represent a function. This outermost BLOCK actually represents the outermost binding contour for the function, i.e. the contour in which the function's formal parameters and labels get declared. Curiously, it appears that the front end doesn't actually put the PARM_DECL nodes for the current function onto the BLOCK_VARS list for this outer scope. (They are strung off of the DECL_ARGUMENTS list for the function instead.) The BLOCK_VARS list for the `outer_scope' does provide us with a list of the LABEL_DECL nodes for the function however, and we output DWARF info for those in decls_for_scope. Just within the `outer_scope' there will be a BLOCK node representing the function's outermost pair of curly braces, and any blocks used for the base and member initializers of a C++ constructor function. */ if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK) { current_function_has_inlines = 0; decls_for_scope (outer_scope, subr_die, 0); #if 0 && defined (MIPS_DEBUGGING_INFO) if (current_function_has_inlines) { add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1); if (! comp_unit_has_inlines) { add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1); comp_unit_has_inlines = 1; } } #endif } pop_decl_scope (); } /* Generate a DIE to represent a declared data object. */ static void gen_variable_die (decl, context_die) register tree decl; register dw_die_ref context_die; { register tree origin = decl_ultimate_origin (decl); register dw_die_ref var_die = new_die (DW_TAG_variable, context_die); dw_die_ref old_die = lookup_decl_die (decl); int declaration = (DECL_EXTERNAL (decl) || current_function_decl != decl_function_context (decl) || context_die->die_tag == DW_TAG_structure_type || context_die->die_tag == DW_TAG_union_type); if (origin != NULL) { add_abstract_origin_attribute (var_die, origin); } else if (old_die && TREE_STATIC (decl)) { assert (get_AT_flag (old_die, DW_AT_declaration) == 1); add_AT_die_ref (var_die, DW_AT_specification, old_die); if (DECL_NAME (decl)) { register unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl)); if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index) add_AT_unsigned (var_die, DW_AT_decl_file, file_index); if (get_AT_unsigned (old_die, DW_AT_decl_line) != DECL_SOURCE_LINE (decl)) add_AT_unsigned (var_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl)); } } else { add_name_and_src_coords_attributes (var_die, decl); add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl), TREE_THIS_VOLATILE (decl), context_die); if (TREE_PUBLIC (decl)) add_AT_flag (var_die, DW_AT_external, 1); if (DECL_ARTIFICIAL (decl)) add_AT_flag (var_die, DW_AT_artificial, 1); if (TREE_PROTECTED (decl)) add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected); else if (TREE_PRIVATE (decl)) add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private); } if (declaration) add_AT_flag (var_die, DW_AT_declaration, 1); if ((declaration && decl_class_context (decl)) || DECL_ABSTRACT (decl)) equate_decl_number_to_die (decl, var_die); if (! declaration && ! DECL_ABSTRACT (decl)) { equate_decl_number_to_die (decl, var_die); add_location_or_const_value_attribute (var_die, decl); add_pubname (decl, var_die); } } /* Generate a DIE to represent a label identifier. */ static void gen_label_die (decl, context_die) register tree decl; register dw_die_ref context_die; { register tree origin = decl_ultimate_origin (decl); register dw_die_ref lbl_die = new_die (DW_TAG_label, context_die); register rtx insn; char label[MAX_ARTIFICIAL_LABEL_BYTES]; char label2[MAX_ARTIFICIAL_LABEL_BYTES]; if (origin != NULL) { add_abstract_origin_attribute (lbl_die, origin); } else { add_name_and_src_coords_attributes (lbl_die, decl); } if (DECL_ABSTRACT (decl)) { equate_decl_number_to_die (decl, lbl_die); } else { insn = DECL_RTL (decl); if (GET_CODE (insn) == CODE_LABEL) { /* When optimization is enabled (via -O) some parts of the compiler (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which represent source-level labels which were explicitly declared by the user. This really shouldn't be happening though, so catch it if it ever does happen. */ if (INSN_DELETED_P (insn)) { abort (); /* Should never happen. */ } sprintf (label2, INSN_LABEL_FMT, current_funcdef_number); ASM_GENERATE_INTERNAL_LABEL (label, label2, (unsigned) INSN_UID (insn)); add_AT_lbl_id (lbl_die, DW_AT_low_pc, label); } } } /* Generate a DIE for a lexical block. */ static void gen_lexical_block_die (stmt, context_die, depth) register tree stmt; register dw_die_ref context_die; int depth; { register dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die); char label[MAX_ARTIFICIAL_LABEL_BYTES]; if (!BLOCK_ABSTRACT (stmt)) { ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL, next_block_number); add_AT_lbl_id (stmt_die, DW_AT_low_pc, label); ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL, next_block_number); add_AT_lbl_id (stmt_die, DW_AT_high_pc, label); } push_decl_scope (stmt); decls_for_scope (stmt, stmt_die, depth); pop_decl_scope (); } /* Generate a DIE for an inlined subprogram. */ static void gen_inlined_subroutine_die (stmt, context_die, depth) register tree stmt; register dw_die_ref context_die; int depth; { if (!BLOCK_ABSTRACT (stmt)) { register dw_die_ref subr_die = new_die (DW_TAG_inlined_subroutine, context_die); register tree decl = block_ultimate_origin (stmt); char label[MAX_ARTIFICIAL_LABEL_BYTES]; add_abstract_origin_attribute (subr_die, decl); ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL, next_block_number); add_AT_lbl_id (subr_die, DW_AT_low_pc, label); ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL, next_block_number); add_AT_lbl_id (subr_die, DW_AT_high_pc, label); push_decl_scope (decl); decls_for_scope (stmt, subr_die, depth); pop_decl_scope (); current_function_has_inlines = 1; } } /* Generate a DIE for a field in a record, or structure. */ static void gen_field_die (decl, context_die) register tree decl; register dw_die_ref context_die; { register dw_die_ref decl_die = new_die (DW_TAG_member, context_die); add_name_and_src_coords_attributes (decl_die, decl); add_type_attribute (decl_die, member_declared_type (decl), TREE_READONLY (decl), TREE_THIS_VOLATILE (decl), context_die); /* If this is a bit field... */ if (DECL_BIT_FIELD_TYPE (decl)) { add_byte_size_attribute (decl_die, decl); add_bit_size_attribute (decl_die, decl); add_bit_offset_attribute (decl_die, decl); } if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE) add_data_member_location_attribute (decl_die, decl); if (DECL_ARTIFICIAL (decl)) add_AT_flag (decl_die, DW_AT_artificial, 1); if (TREE_PROTECTED (decl)) add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected); else if (TREE_PRIVATE (decl)) add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private); } #if 0 /* Don't generate either pointer_type DIEs or reference_type DIEs here. Use modified_type_die instead. We keep this code here just in case these types of DIEs may be needed to represent certain things in other languages (e.g. Pascal) someday. */ static void gen_pointer_type_die (type, context_die) register tree type; register dw_die_ref context_die; { register dw_die_ref ptr_die = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die)); equate_type_number_to_die (type, ptr_die); add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die); add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE); } /* Don't generate either pointer_type DIEs or reference_type DIEs here. Use modified_type_die instead. We keep this code here just in case these types of DIEs may be needed to represent certain things in other languages (e.g. Pascal) someday. */ static void gen_reference_type_die (type, context_die) register tree type; register dw_die_ref context_die; { register dw_die_ref ref_die = new_die (DW_TAG_reference_type, scope_die_for (type, context_die)); equate_type_number_to_die (type, ref_die); add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die); add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE); } #endif /* Generate a DIE for a pointer to a member type. */ static void gen_ptr_to_mbr_type_die (type, context_die) register tree type; register dw_die_ref context_die; { register dw_die_ref ptr_die = new_die (DW_TAG_ptr_to_member_type, scope_die_for (type, context_die)); equate_type_number_to_die (type, ptr_die); add_AT_die_ref (ptr_die, DW_AT_containing_type, lookup_type_die (TYPE_OFFSET_BASETYPE (type))); add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die); } /* Generate the DIE for the compilation unit. */ static void gen_compile_unit_die (main_input_filename) register char *main_input_filename; { char producer[250]; char *wd = getpwd (); comp_unit_die = new_die (DW_TAG_compile_unit, NULL); add_name_attribute (comp_unit_die, main_input_filename); if (wd) { add_AT_string (comp_unit_die, DW_AT_comp_dir, wd); } sprintf (producer, "%s %s", language_string, version_string); #ifdef MIPS_DEBUGGING_INFO /* The MIPS/SGI compilers place the 'cc' command line options in the producer string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do not appear in the producer string, the debugger reaches the conclusion that the object file is stripped and has no debugging information. To get the MIPS/SGI debugger to believe that there is debugging information in the object file, we add a -g to the producer string. */ if (debug_info_level > DINFO_LEVEL_TERSE) strcat (producer, " -g"); #endif add_AT_string (comp_unit_die, DW_AT_producer, producer); if (strcmp (language_string, "GNU C++") == 0) add_AT_unsigned (comp_unit_die, DW_AT_language, DW_LANG_C_plus_plus); else if (strcmp (language_string, "GNU Ada") == 0) add_AT_unsigned (comp_unit_die, DW_AT_language, DW_LANG_Ada83); else if (strcmp (language_string, "GNU F77") == 0) add_AT_unsigned (comp_unit_die, DW_AT_language, DW_LANG_Fortran77); else if (flag_traditional) add_AT_unsigned (comp_unit_die, DW_AT_language, DW_LANG_C); else add_AT_unsigned (comp_unit_die, DW_AT_language, DW_LANG_C89); #if 0 /* unimplemented */ if (debug_info_level >= DINFO_LEVEL_VERBOSE) add_AT_unsigned (comp_unit_die, DW_AT_macro_info, 0); #endif } /* Generate a DIE for a string type. */ static void gen_string_type_die (type, context_die) register tree type; register dw_die_ref context_die; { register dw_die_ref type_die = new_die (DW_TAG_string_type, scope_die_for (type, context_die)); equate_type_number_to_die (type, type_die); /* Fudge the string length attribute for now. */ /* TODO: add string length info. string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type))); bound_representation (upper_bound, 0, 'u'); */ } /* Generate the DIE for a base class. */ static void gen_inheritance_die (binfo, context_die) register tree binfo; register dw_die_ref context_die; { dw_die_ref die = new_die (DW_TAG_inheritance, context_die); add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die); add_data_member_location_attribute (die, binfo); if (TREE_VIA_VIRTUAL (binfo)) add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual); if (TREE_VIA_PUBLIC (binfo)) add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public); else if (TREE_VIA_PROTECTED (binfo)) add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected); } /* Genearate a DIE for a class member. */ static void gen_member_die (type, context_die) register tree type; register dw_die_ref context_die; { register tree member; /* If this is not an incomplete type, output descriptions of each of its members. Note that as we output the DIEs necessary to represent the members of this record or union type, we will also be trying to output DIEs to represent the *types* of those members. However the `type' function (above) will specifically avoid generating type DIEs for member types *within* the list of member DIEs for this (containing) type execpt for those types (of members) which are explicitly marked as also being members of this (containing) type themselves. The g++ front- end can force any given type to be treated as a member of some other (containing) type by setting the TYPE_CONTEXT of the given (member) type to point to the TREE node representing the appropriate (containing) type. */ /* First output info about the base classes. */ if (TYPE_BINFO (type) && TYPE_BINFO_BASETYPES (type)) { register tree bases = TYPE_BINFO_BASETYPES (type); register int n_bases = TREE_VEC_LENGTH (bases); register int i; for (i = 0; i < n_bases; i++) gen_inheritance_die (TREE_VEC_ELT (bases, i), context_die); } /* Now output info about the data members and type members. */ for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member)) gen_decl_die (member, context_die); /* Now output info about the function members (if any). */ for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member)) gen_decl_die (member, context_die); } /* Generate a DIE for a structure or union type. */ static void gen_struct_or_union_type_die (type, context_die) register tree type; register dw_die_ref context_die; { register dw_die_ref type_die = lookup_type_die (type); register dw_die_ref scope_die = 0; register int nested = 0; if (type_die && ! TYPE_SIZE (type)) return; if (TYPE_CONTEXT (type) && TREE_CODE_CLASS (TREE_CODE (TYPE_CONTEXT (type))) == 't') nested = 1; scope_die = scope_die_for (type, context_die); if (! type_die || (nested && scope_die == comp_unit_die)) /* First occurrence of type or toplevel definition of nested class. */ { register dw_die_ref old_die = type_die; type_die = new_die (TREE_CODE (type) == RECORD_TYPE ? DW_TAG_structure_type : DW_TAG_union_type, scope_die); equate_type_number_to_die (type, type_die); add_name_attribute (type_die, type_tag (type)); if (old_die) add_AT_die_ref (type_die, DW_AT_specification, old_die); } else remove_AT (type_die, DW_AT_declaration); /* If we're not in the right context to be defining this type, defer to avoid tricky recursion. */ if (TYPE_SIZE (type) && decl_scope_depth > 0 && scope_die == comp_unit_die) { add_AT_flag (type_die, DW_AT_declaration, 1); pend_type (type); } /* If this type has been completed, then give it a byte_size attribute and then give a list of members. */ else if (TYPE_SIZE (type)) { /* Prevent infinite recursion in cases where the type of some member of this type is expressed in terms of this type itself. */ TREE_ASM_WRITTEN (type) = 1; add_byte_size_attribute (type_die, type); if (type_tag (type)) add_src_coords_attributes (type_die, TYPE_STUB_DECL (type)); push_decl_scope (type); gen_member_die (type, type_die); pop_decl_scope (); /* GNU extension: Record what type our vtable lives in. */ if (TYPE_VFIELD (type)) { tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type)); gen_type_die (vtype, context_die); add_AT_die_ref (type_die, DW_AT_containing_type, lookup_type_die (vtype)); } } else add_AT_flag (type_die, DW_AT_declaration, 1); } /* Generate a DIE for a subroutine _type_. */ static void gen_subroutine_type_die (type, context_die) register tree type; register dw_die_ref context_die; { register tree return_type = TREE_TYPE (type); register dw_die_ref subr_die = new_die (DW_TAG_subroutine_type, scope_die_for (type, context_die)); equate_type_number_to_die (type, subr_die); add_prototyped_attribute (subr_die, type); add_type_attribute (subr_die, return_type, 0, 0, context_die); gen_formal_types_die (type, subr_die); } /* Generate a DIE for a type definition */ static void gen_typedef_die (decl, context_die) register tree decl; register dw_die_ref context_die; { register dw_die_ref type_die; register tree origin; if (TREE_ASM_WRITTEN (decl)) return; TREE_ASM_WRITTEN (decl) = 1; type_die = new_die (DW_TAG_typedef, scope_die_for (decl, context_die)); origin = decl_ultimate_origin (decl); if (origin != NULL) add_abstract_origin_attribute (type_die, origin); else { register tree type; add_name_and_src_coords_attributes (type_die, decl); if (DECL_ORIGINAL_TYPE (decl)) { type = DECL_ORIGINAL_TYPE (decl); equate_type_number_to_die (TREE_TYPE (decl), type_die); } else type = TREE_TYPE (decl); add_type_attribute (type_die, type, TREE_READONLY (decl), TREE_THIS_VOLATILE (decl), context_die); } if (DECL_ABSTRACT (decl)) equate_decl_number_to_die (decl, type_die); } /* Generate a type description DIE. */ static void gen_type_die (type, context_die) register tree type; register dw_die_ref context_die; { if (type == 0 || type == error_mark_node) { return; } /* We are going to output a DIE to represent the unqualified version of of this type (i.e. without any const or volatile qualifiers) so get the main variant (i.e. the unqualified version) of this type now. */ type = type_main_variant (type); if (TREE_ASM_WRITTEN (type)) { return; } if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL && DECL_ORIGINAL_TYPE (TYPE_NAME (type))) { TREE_ASM_WRITTEN (type) = 1; gen_decl_die (TYPE_NAME (type), context_die); return; } switch (TREE_CODE (type)) { case ERROR_MARK: break; case POINTER_TYPE: case REFERENCE_TYPE: /* For these types, all that is required is that we output a DIE (or a set of DIEs) to represent the "basis" type. */ gen_type_die (TREE_TYPE (type), context_die); break; case OFFSET_TYPE: /* This code is used for C++ pointer-to-data-member types. */ /* Output a description of the relevant class type. */ gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die); /* Output a description of the type of the object pointed to. */ gen_type_die (TREE_TYPE (type), context_die); /* Now output a DIE to represent this pointer-to-data-member type itself. */ gen_ptr_to_mbr_type_die (type, context_die); break; case SET_TYPE: gen_type_die (TYPE_DOMAIN (type), context_die); gen_set_type_die (type, context_die); break; case FILE_TYPE: gen_type_die (TREE_TYPE (type), context_die); abort (); /* No way to represent these in Dwarf yet! */ break; case FUNCTION_TYPE: /* Force out return type (in case it wasn't forced out already). */ gen_type_die (TREE_TYPE (type), context_die); gen_subroutine_type_die (type, context_die); break; case METHOD_TYPE: /* Force out return type (in case it wasn't forced out already). */ gen_type_die (TREE_TYPE (type), context_die); gen_subroutine_type_die (type, context_die); break; case ARRAY_TYPE: if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE) { gen_type_die (TREE_TYPE (type), context_die); gen_string_type_die (type, context_die); } else { gen_array_type_die (type, context_die); } break; case ENUMERAL_TYPE: case RECORD_TYPE: case UNION_TYPE: case QUAL_UNION_TYPE: /* If this is a nested type whose containing class hasn't been written out yet, writing it out will cover this one, too. */ if (TYPE_CONTEXT (type) && TREE_CODE_CLASS (TREE_CODE (TYPE_CONTEXT (type))) == 't' && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type))) { gen_type_die (TYPE_CONTEXT (type), context_die); if (TREE_ASM_WRITTEN (TYPE_CONTEXT (type))) return; /* If that failed, attach ourselves to the stub. */ push_decl_scope (TYPE_CONTEXT (type)); context_die = lookup_type_die (TYPE_CONTEXT (type)); } if (TREE_CODE (type) == ENUMERAL_TYPE) gen_enumeration_type_die (type, context_die); else gen_struct_or_union_type_die (type, context_die); if (TYPE_CONTEXT (type) && TREE_CODE_CLASS (TREE_CODE (TYPE_CONTEXT (type))) == 't' && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type))) pop_decl_scope (); /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix it up if it is ever completed. gen_*_type_die will set it for us when appropriate. */ return; case VOID_TYPE: case INTEGER_TYPE: case REAL_TYPE: case COMPLEX_TYPE: case BOOLEAN_TYPE: case CHAR_TYPE: /* No DIEs needed for fundamental types. */ break; case LANG_TYPE: /* No Dwarf representation currently defined. */ break; default: abort (); } TREE_ASM_WRITTEN (type) = 1; } /* Generate a DIE for a tagged type instantiation. */ static void gen_tagged_type_instantiation_die (type, context_die) register tree type; register dw_die_ref context_die; { if (type == 0 || type == error_mark_node) { return; } /* We are going to output a DIE to represent the unqualified version of of this type (i.e. without any const or volatile qualifiers) so make sure that we have the main variant (i.e. the unqualified version) of this type now. */ assert (type == type_main_variant (type)); assert (TREE_ASM_WRITTEN (type)); switch (TREE_CODE (type)) { case ERROR_MARK: break; case ENUMERAL_TYPE: gen_inlined_enumeration_type_die (type, context_die); break; case RECORD_TYPE: gen_inlined_structure_type_die (type, context_die); break; case UNION_TYPE: case QUAL_UNION_TYPE: gen_inlined_union_type_die (type, context_die); break; default: abort (); /* Should never happen. */ } } /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the things which are local to the given block. */ static void gen_block_die (stmt, context_die, depth) register tree stmt; register dw_die_ref context_die; int depth; { register int must_output_die = 0; register tree origin; register tree decl; register enum tree_code origin_code; /* Ignore blocks never really used to make RTL. */ if (!stmt || !TREE_USED (stmt)) { return; } /* Determine the "ultimate origin" of this block. This block may be an inlined instance of an inlined instance of inline function, so we have to trace all of the way back through the origin chain to find out what sort of node actually served as the original seed for the creation of the current block. */ origin = block_ultimate_origin (stmt); origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK; /* Determine if we need to output any Dwarf DIEs at all to represent this block. */ if (origin_code == FUNCTION_DECL) { /* The outer scopes for inlinings *must* always be represented. We generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */ must_output_die = 1; } else { /* In the case where the current block represents an inlining of the "body block" of an inline function, we must *NOT* output any DIE for this block because we have already output a DIE to represent the whole inlined function scope and the "body block" of any function doesn't really represent a different scope according to ANSI C rules. So we check here to make sure that this block does not represent a "body block inlining" before trying to set the `must_output_die' flag. */ if (! is_body_block (origin ? origin : stmt)) { /* Determine if this block directly contains any "significant" local declarations which we will need to output DIEs for. */ if (debug_info_level > DINFO_LEVEL_TERSE) { /* We are not in terse mode so *any* local declaration counts as being a "significant" one. */ must_output_die = (BLOCK_VARS (stmt) != NULL); } else { /* We are in terse mode, so only local (nested) function definitions count as "significant" local declarations. */ for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl)) { if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl)) { must_output_die = 1; break; } } } } } /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block DIE for any block which contains no significant local declarations at all. Rather, in such cases we just call `decls_for_scope' so that any needed Dwarf info for any sub-blocks will get properly generated. Note that in terse mode, our definition of what constitutes a "significant" local declaration gets restricted to include only inlined function instances and local (nested) function definitions. */ if (must_output_die) { if (origin_code == FUNCTION_DECL) { gen_inlined_subroutine_die (stmt, context_die, depth); } else { gen_lexical_block_die (stmt, context_die, depth); } } else decls_for_scope (stmt, context_die, depth); } /* Generate all of the decls declared within a given scope and (recursively) all of it's sub-blocks. */ static void decls_for_scope (stmt, context_die, depth) register tree stmt; register dw_die_ref context_die; int depth; { register tree decl; register tree subblocks; /* Ignore blocks never really used to make RTL. */ if (!stmt || !TREE_USED (stmt)) { return; } if (!BLOCK_ABSTRACT (stmt) && depth > 0) { next_block_number++; } /* Output the DIEs to represent all of the data objects and typedefs declared directly within this block but not within any nested sub-blocks. Also, nested function and tag DIEs have been generated with a parent of NULL; fix that up now. */ for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl)) { register dw_die_ref die; if (TREE_CODE (decl) == FUNCTION_DECL) die = lookup_decl_die (decl); else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)) die = lookup_type_die (TREE_TYPE (decl)); else die = NULL; if (die && die->die_parent == NULL) { add_child_die (context_die, die); --limbo_die_count; } else gen_decl_die (decl, context_die); } /* Output the DIEs to represent all sub-blocks (and the items declared therein) of this block. */ for (subblocks = BLOCK_SUBBLOCKS (stmt); subblocks != NULL; subblocks = BLOCK_CHAIN (subblocks)) { gen_block_die (subblocks, context_die, depth + 1); } } /* Is this a typedef we can avoid emitting? */ inline int is_redundant_typedef (decl) register tree decl; { if (TYPE_DECL_IS_STUB (decl)) return 1; if (DECL_ARTIFICIAL (decl) && DECL_CONTEXT (decl) && is_tagged_type (DECL_CONTEXT (decl)) && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl)))) /* Also ignore the artificial member typedef for the class name. */ return 1; return 0; } /* Generate Dwarf debug information for a decl described by DECL. */ static void gen_decl_die (decl, context_die) register tree decl; register dw_die_ref context_die; { register tree origin; /* Make a note of the decl node we are going to be working on. We may need to give the user the source coordinates of where it appeared in case we notice (later on) that something about it looks screwy. */ dwarf_last_decl = decl; if (TREE_CODE (decl) == ERROR_MARK) { return; } /* If this ..._DECL node is marked to be ignored, then ignore it. But don't ignore a function definition, since that would screw up our count of blocks, and that it turn will completely screw up the the labels we will reference in subsequent DW_AT_low_pc and DW_AT_high_pc attributes (for subsequent blocks). */ if (DECL_IGNORED_P (decl) && TREE_CODE (decl) != FUNCTION_DECL) { return; } switch (TREE_CODE (decl)) { case CONST_DECL: /* The individual enumerators of an enum type get output when we output the Dwarf representation of the relevant enum type itself. */ break; case FUNCTION_DECL: /* Don't output any DIEs to represent mere function declarations, unless they are class members or explicit block externs. */ if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE && (current_function_decl == NULL_TREE || ! DECL_ARTIFICIAL (decl))) { break; } if (debug_info_level > DINFO_LEVEL_TERSE) { /* Before we describe the FUNCTION_DECL itself, make sure that we have described its return type. */ gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die); /* And its containing type. */ origin = decl_class_context (decl); if (origin) gen_type_die (origin, context_die); /* And its virtual context. */ if (DECL_VINDEX (decl)) gen_type_die (DECL_CONTEXT (decl), context_die); } /* Now output a DIE to represent the function itself. */ gen_subprogram_die (decl, context_die); break; case TYPE_DECL: /* If we are in terse mode, don't generate any DIEs to represent any actual typedefs. */ if (debug_info_level <= DINFO_LEVEL_TERSE) break; /* In the special case of a TYPE_DECL node representing the declaration of some type tag, if the given TYPE_DECL is marked as having been instantiated from some other (original) TYPE_DECL node (e.g. one which was generated within the original definition of an inline function) we have to generate a special (abbreviated) DW_TAG_structure_type, DW_TAG_union_type, or DW_TAG_enumeration-type DIE here. */ if (TYPE_DECL_IS_STUB (decl) && DECL_ABSTRACT_ORIGIN (decl)) { gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die); break; } if (is_redundant_typedef (decl)) gen_type_die (TREE_TYPE (decl), context_die); else { /* Output a DIE to represent the typedef itself. */ gen_typedef_die (decl, context_die); } break; case LABEL_DECL: if (debug_info_level >= DINFO_LEVEL_NORMAL) { gen_label_die (decl, context_die); } break; case VAR_DECL: /* If we are in terse mode, don't generate any DIEs to represent any variable declarations or definitions. */ if (debug_info_level <= DINFO_LEVEL_TERSE) { break; } /* Output any DIEs that are needed to specify the type of this data object. */ gen_type_die (TREE_TYPE (decl), context_die); /* And its containing type. */ origin = decl_class_context (decl); if (origin) gen_type_die (origin, context_die); /* Now output the DIE to represent the data object itself. This gets complicated because of the possibility that the VAR_DECL really represents an inlined instance of a formal parameter for an inline function. */ origin = decl_ultimate_origin (decl); if (origin != NULL && TREE_CODE (origin) == PARM_DECL) { gen_formal_parameter_die (decl, context_die); } else { gen_variable_die (decl, context_die); } break; case FIELD_DECL: /* Ignore the nameless fields that are used to skip bits, but handle C++ anonymous unions. */ if (DECL_NAME (decl) != 0 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE) { gen_type_die (member_declared_type (decl), context_die); gen_field_die (decl, context_die); } break; case PARM_DECL: gen_type_die (TREE_TYPE (decl), context_die); gen_formal_parameter_die (decl, context_die); break; default: abort (); } } /***************** Debug Information Generation Hooks ***********************/ void dwarf2out_decl (decl) register tree decl; { register dw_die_ref context_die = comp_unit_die; if (TREE_CODE (decl) == ERROR_MARK) { return; } /* If this ..._DECL node is marked to be ignored, then ignore it. We gotta hope that the node in question doesn't represent a function definition. If it does, then totally ignoring it is bound to screw up our count of blocks, and that it turn will completely screw up the the labels we will reference in subsequent DW_AT_low_pc and DW_AT_high_pc attributes (for subsequent blocks). (It's too bad that BLOCK nodes don't carry their own sequence numbers with them!) */ if (DECL_IGNORED_P (decl)) { if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl) != NULL) { abort (); } return; } switch (TREE_CODE (decl)) { case FUNCTION_DECL: /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a builtin function. Explicit programmer-supplied declarations of these same functions should NOT be ignored however. */ if (DECL_EXTERNAL (decl) && DECL_FUNCTION_CODE (decl)) { return; } /* What we would really like to do here is to filter out all mere file-scope declarations of file-scope functions which are never referenced later within this translation unit (and keep all of ones that *are* referenced later on) but we aren't clarvoiant, so we have no idea which functions will be referenced in the future (i.e. later on within the current translation unit). So here we just ignore all file-scope function declarations which are not also definitions. If and when the debugger needs to know something about these funcstion, it wil have to hunt around and find the DWARF information associated with the definition of the function. Note that we can't just check `DECL_EXTERNAL' to find out which FUNCTION_DECL nodes represent definitions and which ones represent mere declarations. We have to check `DECL_INITIAL' instead. That's because the C front-end supports some weird semantics for "extern inline" function definitions. These can get inlined within the current translation unit (an thus, we need to generate DWARF info for their abstract instances so that the DWARF info for the concrete inlined instances can have something to refer to) but the compiler never generates any out-of-lines instances of such things (despite the fact that they *are* definitions). The important point is that the C front-end marks these "extern inline" functions as DECL_EXTERNAL, but we need to generate DWARF for them anyway. Note that the C++ front-end also plays some similar games for inline function definitions appearing within include files which also contain `#pragma interface' pragmas. */ if (DECL_INITIAL (decl) == NULL_TREE) { return; } /* If we're a nested function, initially use a parent of NULL; if we're a plain function, this will be fixed up in decls_for_scope. If we're a method, it will be ignored, since we already have a DIE. */ if (decl_function_context (decl)) context_die = NULL; break; case VAR_DECL: /* Ignore this VAR_DECL if it refers to a file-scope extern data object declaration and if the declaration was never even referenced from within this entire compilation unit. We suppress these DIEs in order to save space in the .debug section (by eliminating entries which are probably useless). Note that we must not suppress block-local extern declarations (whether used or not) because that would screw-up the debugger's name lookup mechanism and cause it to miss things which really ought to be in scope at a given point. */ if (DECL_EXTERNAL (decl) && !TREE_USED (decl)) { return; } /* If we are in terse mode, don't generate any DIEs to represent any variable declarations or definitions. */ if (debug_info_level <= DINFO_LEVEL_TERSE) { return; } break; case TYPE_DECL: /* Don't bother trying to generate any DIEs to represent any of the normal built-in types for the language we are compiling. */ if (DECL_SOURCE_LINE (decl) == 0) { /* OK, we need to generate one for `bool' so GDB knows what type comparisons have. */ if ((get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C_plus_plus) && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE) modified_type_die (TREE_TYPE (decl), 0, 0, NULL); return; } /* If we are in terse mode, don't generate any DIEs for types. */ if (debug_info_level <= DINFO_LEVEL_TERSE) return; /* If we're a function-scope tag, initially use a parent of NULL; this will be fixed up in decls_for_scope. */ if (decl_function_context (decl)) context_die = NULL; break; default: return; } gen_decl_die (decl, context_die); output_pending_types_for_scope (comp_unit_die); if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl) != NULL) { current_funcdef_number++; } } /* Output a marker (i.e. a label) for the beginning of the generated code for a lexical block. */ void dwarf2out_begin_block (blocknum) register unsigned blocknum; { function_section (current_function_decl); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum); } /* Output a marker (i.e. a label) for the end of the generated code for a lexical block. */ void dwarf2out_end_block (blocknum) register unsigned blocknum; { function_section (current_function_decl); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum); } /* Output a marker (i.e. a label) at a point in the assembly code which corresponds to a given source level label. */ void dwarf2out_label (insn) register rtx insn; { char label[MAX_ARTIFICIAL_LABEL_BYTES]; if (debug_info_level >= DINFO_LEVEL_NORMAL) { function_section (current_function_decl); sprintf (label, INSN_LABEL_FMT, current_funcdef_number); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, label, (unsigned) INSN_UID (insn)); } } /* Output a marker (i.e. a label) for the beginning of a function, before the prologue. */ void dwarf2out_begin_prologue () { char label[MAX_ARTIFICIAL_LABEL_BYTES]; register dw_fde_ref fde; function_section (current_function_decl); ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL, current_funcdef_number); ASM_OUTPUT_LABEL (asm_out_file, label); /* Expand the fde table if necessary. */ if (fde_table_in_use == fde_table_allocated) { fde_table_allocated += FDE_TABLE_INCREMENT; fde_table = (dw_fde_ref) xrealloc (fde_table, fde_table_allocated * sizeof (dw_fde_node)); } /* Record the FDE associated with this function. */ current_funcdef_fde = fde_table_in_use; /* Add the new FDE at the end of the fde_table. */ fde = &fde_table[fde_table_in_use++]; fde->dw_fde_begin = xstrdup (label); fde->dw_fde_current_label = NULL; fde->dw_fde_end = NULL; fde->dw_fde_cfi = NULL; } /* Output a marker (i.e. a label) for the absolute end of the generated code for a function definition. This gets called *after* the epilogue code has been generated. */ void dwarf2out_end_epilogue () { dw_fde_ref fde; char label[MAX_ARTIFICIAL_LABEL_BYTES]; /* Output a label to mark the endpoint of the code generated for this function. */ ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL, current_funcdef_number); ASM_OUTPUT_LABEL (asm_out_file, label); fde = &fde_table[fde_table_in_use - 1]; fde->dw_fde_end = xstrdup (label); } /* Lookup a filename (in the list of filenames that we know about here in dwarf2out.c) and return its "index". The index of each (known) filename is just a unique number which is associated with only that one filename. We need such numbers for the sake of generating labels (in the .debug_sfnames section) and references to those files numbers (in the .debug_srcinfo and.debug_macinfo sections). If the filename given as an argument is not found in our current list, add it to the list and assign it the next available unique index number. In order to speed up searches, we remember the index of the filename was looked up last. This handles the majority of all searches. */ static unsigned lookup_filename (file_name) char *file_name; { static unsigned last_file_lookup_index = 0; register char *fn; register unsigned i; /* Check to see if the file name that was searched on the previous call matches this file name. If so, return the index. */ if (last_file_lookup_index != 0) { fn = file_table[last_file_lookup_index]; if (strcmp (file_name, fn) == 0) { return last_file_lookup_index; } } /* Didn't match the previous lookup, search the table */ for (i = 1; i < file_table_in_use; ++i) { fn = file_table[i]; if (strcmp (file_name, fn) == 0) { last_file_lookup_index = i; return i; } } /* Prepare to add a new table entry by making sure there is enough space in the table to do so. If not, expand the current table. */ if (file_table_in_use == file_table_allocated) { file_table_allocated += FILE_TABLE_INCREMENT; file_table = (char **) xrealloc (file_table, file_table_allocated * sizeof (char *)); } /* add the new entry to the end of the filename table. */ file_table[file_table_in_use] = xstrdup (file_name); last_file_lookup_index = file_table_in_use++; return last_file_lookup_index; } /* Output a label to mark the beginning of a source code line entry and record information relating to this source line, in 'line_info_table' for later output of the .debug_line section. */ void dwarf2out_line (filename, line) register char *filename; register unsigned line; { if (debug_info_level >= DINFO_LEVEL_NORMAL) { function_section (current_function_decl); if (DECL_SECTION_NAME (current_function_decl)) { register dw_separate_line_info_ref line_info; ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, SEPARATE_LINE_CODE_LABEL, separate_line_info_table_in_use); fputc ('\n', asm_out_file); /* expand the line info table if necessary */ if (separate_line_info_table_in_use == separate_line_info_table_allocated) { separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT; separate_line_info_table = (dw_separate_line_info_ref) xrealloc (separate_line_info_table, separate_line_info_table_allocated * sizeof (dw_separate_line_info_entry)); } /* add the new entry at the end of the line_info_table. */ line_info = &separate_line_info_table[separate_line_info_table_in_use++]; line_info->dw_file_num = lookup_filename (filename); line_info->dw_line_num = line; line_info->function = current_funcdef_number; } else { register dw_line_info_ref line_info; ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, LINE_CODE_LABEL, line_info_table_in_use); fputc ('\n', asm_out_file); /* expand the line info table if necessary */ if (line_info_table_in_use == line_info_table_allocated) { line_info_table_allocated += LINE_INFO_TABLE_INCREMENT; line_info_table = (dw_line_info_ref) xrealloc (line_info_table, line_info_table_allocated * sizeof (dw_line_info_entry)); } /* add the new entry at the end of the line_info_table. */ line_info = &line_info_table[line_info_table_in_use++]; line_info->dw_file_num = lookup_filename (filename); line_info->dw_line_num = line; } } } /* Record the beginning of a new source file, for later output of the .debug_macinfo section. At present, unimplemented. */ void dwarf2out_start_source_file (filename) register char *filename; { } /* Record the end of a source file, for later output of the .debug_macinfo section. At present, unimplemented. */ void dwarf2out_end_source_file () { } /* Called from check_newline in c-parse.y. The `buffer' parameter contains the tail part of the directive line, i.e. the part which is past the initial whitespace, #, whitespace, directive-name, whitespace part. */ void dwarf2out_define (lineno, buffer) register unsigned lineno; register char *buffer; { static int initialized = 0; if (!initialized) { dwarf2out_start_source_file (primary_filename); initialized = 1; } } /* Called from check_newline in c-parse.y. The `buffer' parameter contains the tail part of the directive line, i.e. the part which is past the initial whitespace, #, whitespace, directive-name, whitespace part. */ void dwarf2out_undef (lineno, buffer) register unsigned lineno; register char *buffer; { } /* Set up for Dwarf output at the start of compilation. */ void dwarf2out_init (asm_out_file, main_input_filename) register FILE *asm_out_file; register char *main_input_filename; { /* Remember the name of the primary input file. */ primary_filename = main_input_filename; /* Allocate the initial hunk of the file_table. */ file_table = (char **) xmalloc (FILE_TABLE_INCREMENT * sizeof (char *)); bzero (file_table, FILE_TABLE_INCREMENT * sizeof (char *)); file_table_allocated = FILE_TABLE_INCREMENT; /* skip the first entry - file numbers begin at 1 */ file_table_in_use = 1; /* Allocate the initial hunk of the decl_die_table. */ decl_die_table = (dw_die_ref *) xmalloc (DECL_DIE_TABLE_INCREMENT * sizeof (dw_die_ref)); bzero (decl_die_table, DECL_DIE_TABLE_INCREMENT * sizeof (dw_die_ref)); decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT; decl_die_table_in_use = 0; /* Allocate the initial hunk of the decl_scope_table. */ decl_scope_table = (tree *) xmalloc (DECL_SCOPE_TABLE_INCREMENT * sizeof (tree)); bzero (decl_scope_table, DECL_SCOPE_TABLE_INCREMENT * sizeof (tree)); decl_scope_table_allocated = DECL_SCOPE_TABLE_INCREMENT; decl_scope_depth = 0; /* Allocate the initial hunk of the abbrev_die_table. */ abbrev_die_table = (dw_die_ref *) xmalloc (ABBREV_DIE_TABLE_INCREMENT * sizeof (dw_die_ref)); bzero (abbrev_die_table, ABBREV_DIE_TABLE_INCREMENT * sizeof (dw_die_ref)); abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT; /* zero-th entry is allocated, but unused */ abbrev_die_table_in_use = 1; /* Allocate the initial hunk of the line_info_table. */ line_info_table = (dw_line_info_ref) xmalloc (LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry)); bzero (line_info_table, LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry)); line_info_table_allocated = LINE_INFO_TABLE_INCREMENT; /* zero-th entry is allocated, but unused */ line_info_table_in_use = 1; /* Allocate the initial hunk of the fde_table. */ fde_table = (dw_fde_ref) xmalloc (FDE_TABLE_INCREMENT * sizeof (dw_fde_node)); bzero (fde_table, FDE_TABLE_INCREMENT * sizeof (dw_fde_node)); fde_table_allocated = FDE_TABLE_INCREMENT; fde_table_in_use = 0; /* Generate the initial DIE for the .debug section. Note that the (string) value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE will (typically) be a relative pathname and that this pathname should be taken as being relative to the directory from which the compiler was invoked when the given (base) source file was compiled. */ gen_compile_unit_die (main_input_filename); ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0); /* Generate the CFA instructions common to all FDE's. Do it now for the sake of lookup_cfa. */ #ifdef INCOMING_RETURN_ADDR_RTX /* On entry, the Canonical Frame Address is at SP+0. */ dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, 0); initial_return_save (INCOMING_RETURN_ADDR_RTX); #endif } /* Output stuff that dwarf requires at the end of every file, and generate the DWARF-2 debugging info. */ void dwarf2out_finish () { /* Traverse the DIE tree and add sibling attributes to those DIE's that have children. */ add_sibling_attributes (comp_unit_die); /* Output a terminator label for the .text section. */ fputc ('\n', asm_out_file); ASM_OUTPUT_SECTION (asm_out_file, TEXT_SECTION); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, TEXT_END_LABEL, 0); #if 0 /* Output a terminator label for the .data section. */ fputc ('\n', asm_out_file); ASM_OUTPUT_SECTION (asm_out_file, DATA_SECTION); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, DATA_END_LABEL, 0); /* Output a terminator label for the .bss section. */ fputc ('\n', asm_out_file); ASM_OUTPUT_SECTION (asm_out_file, BSS_SECTION); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, BSS_END_LABEL, 0); #endif /* Output the source line correspondence table. */ if (line_info_table_in_use > 1 || separate_line_info_table_in_use) { fputc ('\n', asm_out_file); ASM_OUTPUT_SECTION (asm_out_file, LINE_SECTION); output_line_info (); /* We can only use the low/high_pc attributes if all of the code was in .text. */ if (separate_line_info_table_in_use == 0) { add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, TEXT_SECTION); add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label); } add_AT_section_offset (comp_unit_die, DW_AT_stmt_list, LINE_SECTION); } /* Output the abbreviation table. */ fputc ('\n', asm_out_file); ASM_OUTPUT_SECTION (asm_out_file, ABBREV_SECTION); build_abbrev_table (comp_unit_die); output_abbrev_section (); /* Initialize the beginning DIE offset - and calculate sizes/offsets. */ next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE; calc_die_sizes (comp_unit_die); /* calculate sizes/offsets for FDEs. */ calc_fde_sizes (); /* Output debugging information. */ fputc ('\n', asm_out_file); ASM_OUTPUT_SECTION (asm_out_file, DEBUG_SECTION); output_compilation_unit_header (); output_die (comp_unit_die); if (pubname_table_in_use) { /* Output public names table. */ fputc ('\n', asm_out_file); ASM_OUTPUT_SECTION (asm_out_file, PUBNAMES_SECTION); output_pubnames (); } if (fde_table_in_use) { /* Output call frame information. */ output_call_frame_info (); /* Output the address range information. */ fputc ('\n', asm_out_file); ASM_OUTPUT_SECTION (asm_out_file, ARANGES_SECTION); output_aranges (); } /* The only DIE we should have with a parent of NULL is comp_unit_die. */ assert (limbo_die_count == 1); } #endif /* DWARF2_DEBUGGING_INFO */