/* Natural loop functions Copyright (C) 1987-2015 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef GCC_CFGLOOP_H #define GCC_CFGLOOP_H #include "bitmap.h" #include "sbitmap.h" #include "hashtab.h" #include "hash-set.h" #include "vec.h" #include "tm.h" #include "hard-reg-set.h" #include "input.h" #include "function.h" #include "cfgloopmanip.h" /* Structure to hold decision about unrolling/peeling. */ enum lpt_dec { LPT_NONE, LPT_UNROLL_CONSTANT, LPT_UNROLL_RUNTIME, LPT_UNROLL_STUPID }; struct GTY (()) lpt_decision { enum lpt_dec decision; unsigned times; }; /* The type of extend applied to an IV. */ enum iv_extend_code { IV_SIGN_EXTEND, IV_ZERO_EXTEND, IV_UNKNOWN_EXTEND }; /* The structure describing a bound on number of iterations of a loop. */ struct GTY ((chain_next ("%h.next"))) nb_iter_bound { /* The statement STMT is executed at most ... */ gimple stmt; /* ... BOUND + 1 times (BOUND must be an unsigned constant). The + 1 is added for the following reasons: a) 0 would otherwise be unused, while we would need to care more about overflows (as MAX + 1 is sometimes produced as the estimate on number of executions of STMT). b) it is consistent with the result of number_of_iterations_exit. */ widest_int bound; /* True if the statement will cause the loop to be leaved the (at most) BOUND + 1-st time it is executed, that is, all the statements after it are executed at most BOUND times. */ bool is_exit; /* The next bound in the list. */ struct nb_iter_bound *next; }; /* Description of the loop exit. */ struct GTY ((for_user)) loop_exit { /* The exit edge. */ edge e; /* Previous and next exit in the list of the exits of the loop. */ struct loop_exit *prev; struct loop_exit *next; /* Next element in the list of loops from that E exits. */ struct loop_exit *next_e; }; struct loop_exit_hasher : ggc_hasher { typedef edge compare_type; static hashval_t hash (loop_exit *); static bool equal (loop_exit *, edge); static void remove (loop_exit *); }; typedef struct loop *loop_p; /* An integer estimation of the number of iterations. Estimate_state describes what is the state of the estimation. */ enum loop_estimation { /* Estimate was not computed yet. */ EST_NOT_COMPUTED, /* Estimate is ready. */ EST_AVAILABLE, EST_LAST }; /* The structure describing non-overflow control induction variable for loop's exit edge. */ struct GTY ((chain_next ("%h.next"))) control_iv { tree base; tree step; struct control_iv *next; }; /* Structure to hold information for each natural loop. */ struct GTY ((chain_next ("%h.next"))) loop { /* Index into loops array. */ int num; /* Number of loop insns. */ unsigned ninsns; /* Basic block of loop header. */ basic_block header; /* Basic block of loop latch. */ basic_block latch; /* For loop unrolling/peeling decision. */ struct lpt_decision lpt_decision; /* Average number of executed insns per iteration. */ unsigned av_ninsns; /* Number of blocks contained within the loop. */ unsigned num_nodes; /* Superloops of the loop, starting with the outermost loop. */ vec *superloops; /* The first inner (child) loop or NULL if innermost loop. */ struct loop *inner; /* Link to the next (sibling) loop. */ struct loop *next; /* Auxiliary info specific to a pass. */ PTR GTY ((skip (""))) aux; /* The number of times the latch of the loop is executed. This can be an INTEGER_CST, or a symbolic expression representing the number of iterations like "N - 1", or a COND_EXPR containing the runtime conditions under which the number of iterations is non zero. Don't access this field directly: number_of_latch_executions computes and caches the computed information in this field. */ tree nb_iterations; /* An integer guaranteed to be greater or equal to nb_iterations. Only valid if any_upper_bound is true. */ widest_int nb_iterations_upper_bound; /* An integer giving an estimate on nb_iterations. Unlike nb_iterations_upper_bound, there is no guarantee that it is at least nb_iterations. */ widest_int nb_iterations_estimate; bool any_upper_bound; bool any_estimate; /* True if the loop can be parallel. */ bool can_be_parallel; /* True if -Waggressive-loop-optimizations warned about this loop already. */ bool warned_aggressive_loop_optimizations; /* An integer estimation of the number of iterations. Estimate_state describes what is the state of the estimation. */ enum loop_estimation estimate_state; /* If > 0, an integer, where the user asserted that for any I in [ 0, nb_iterations ) and for any J in [ I, min ( I + safelen, nb_iterations ) ), the Ith and Jth iterations of the loop can be safely evaluated concurrently. */ int safelen; /* True if this loop should never be vectorized. */ bool dont_vectorize; /* True if we should try harder to vectorize this loop. */ bool force_vectorize; /* For SIMD loops, this is a unique identifier of the loop, referenced by IFN_GOMP_SIMD_VF, IFN_GOMP_SIMD_LANE and IFN_GOMP_SIMD_LAST_LANE builtins. */ tree simduid; /* Upper bound on number of iterations of a loop. */ struct nb_iter_bound *bounds; /* Non-overflow control ivs of a loop. */ struct control_iv *control_ivs; /* Head of the cyclic list of the exits of the loop. */ struct loop_exit *exits; /* Number of iteration analysis data for RTL. */ struct niter_desc *simple_loop_desc; /* For sanity checking during loop fixup we record here the former loop header for loops marked for removal. Note that this prevents the basic-block from being collected but its index can still be reused. */ basic_block former_header; }; /* Flags for state of loop structure. */ enum { LOOPS_HAVE_PREHEADERS = 1, LOOPS_HAVE_SIMPLE_LATCHES = 2, LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS = 4, LOOPS_HAVE_RECORDED_EXITS = 8, LOOPS_MAY_HAVE_MULTIPLE_LATCHES = 16, LOOP_CLOSED_SSA = 32, LOOPS_NEED_FIXUP = 64, LOOPS_HAVE_FALLTHRU_PREHEADERS = 128 }; #define LOOPS_NORMAL (LOOPS_HAVE_PREHEADERS | LOOPS_HAVE_SIMPLE_LATCHES \ | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS) #define AVOID_CFG_MODIFICATIONS (LOOPS_MAY_HAVE_MULTIPLE_LATCHES) /* Structure to hold CFG information about natural loops within a function. */ struct GTY (()) loops { /* State of loops. */ int state; /* Array of the loops. */ vec *larray; /* Maps edges to the list of their descriptions as loop exits. Edges whose sources or destinations have loop_father == NULL (which may happen during the cfg manipulations) should not appear in EXITS. */ hash_table *GTY(()) exits; /* Pointer to root of loop hierarchy tree. */ struct loop *tree_root; }; /* Loop recognition. */ bool bb_loop_header_p (basic_block); void init_loops_structure (struct function *, struct loops *, unsigned); extern struct loops *flow_loops_find (struct loops *); extern void disambiguate_loops_with_multiple_latches (void); extern void flow_loops_free (struct loops *); extern void flow_loops_dump (FILE *, void (*)(const struct loop *, FILE *, int), int); extern void flow_loop_dump (const struct loop *, FILE *, void (*)(const struct loop *, FILE *, int), int); struct loop *alloc_loop (void); extern void flow_loop_free (struct loop *); int flow_loop_nodes_find (basic_block, struct loop *); unsigned fix_loop_structure (bitmap changed_bbs); bool mark_irreducible_loops (void); void release_recorded_exits (void); void record_loop_exits (void); void rescan_loop_exit (edge, bool, bool); /* Loop data structure manipulation/querying. */ extern void flow_loop_tree_node_add (struct loop *, struct loop *); extern void flow_loop_tree_node_remove (struct loop *); extern bool flow_loop_nested_p (const struct loop *, const struct loop *); extern bool flow_bb_inside_loop_p (const struct loop *, const_basic_block); extern struct loop * find_common_loop (struct loop *, struct loop *); struct loop *superloop_at_depth (struct loop *, unsigned); struct eni_weights_d; extern int num_loop_insns (const struct loop *); extern int average_num_loop_insns (const struct loop *); extern unsigned get_loop_level (const struct loop *); extern bool loop_exit_edge_p (const struct loop *, const_edge); extern bool loop_exits_to_bb_p (struct loop *, basic_block); extern bool loop_exits_from_bb_p (struct loop *, basic_block); extern void mark_loop_exit_edges (void); extern location_t get_loop_location (struct loop *loop); /* Loops & cfg manipulation. */ extern basic_block *get_loop_body (const struct loop *); extern unsigned get_loop_body_with_size (const struct loop *, basic_block *, unsigned); extern basic_block *get_loop_body_in_dom_order (const struct loop *); extern basic_block *get_loop_body_in_bfs_order (const struct loop *); extern basic_block *get_loop_body_in_custom_order (const struct loop *, int (*) (const void *, const void *)); extern vec get_loop_exit_edges (const struct loop *); extern edge single_exit (const struct loop *); extern edge single_likely_exit (struct loop *loop); extern unsigned num_loop_branches (const struct loop *); extern edge loop_preheader_edge (const struct loop *); extern edge loop_latch_edge (const struct loop *); extern void add_bb_to_loop (basic_block, struct loop *); extern void remove_bb_from_loops (basic_block); extern void cancel_loop_tree (struct loop *); extern void delete_loop (struct loop *); extern void verify_loop_structure (void); /* Loop analysis. */ extern bool just_once_each_iteration_p (const struct loop *, const_basic_block); gcov_type expected_loop_iterations_unbounded (const struct loop *); extern unsigned expected_loop_iterations (const struct loop *); extern rtx doloop_condition_get (rtx); void mark_loop_for_removal (loop_p); /* Induction variable analysis. */ /* The description of induction variable. The things are a bit complicated due to need to handle subregs and extends. The value of the object described by it can be obtained as follows (all computations are done in extend_mode): Value in i-th iteration is delta + mult * extend_{extend_mode} (subreg_{mode} (base + i * step)). If first_special is true, the value in the first iteration is delta + mult * base If extend = UNKNOWN, first_special must be false, delta 0, mult 1 and value is subreg_{mode} (base + i * step) The get_iv_value function can be used to obtain these expressions. ??? Add a third mode field that would specify the mode in that inner computation is done, which would enable it to be different from the outer one? */ struct rtx_iv { /* Its base and step (mode of base and step is supposed to be extend_mode, see the description above). */ rtx base, step; /* The type of extend applied to it (IV_SIGN_EXTEND, IV_ZERO_EXTEND, or IV_UNKNOWN_EXTEND). */ enum iv_extend_code extend; /* Operations applied in the extended mode. */ rtx delta, mult; /* The mode it is extended to. */ machine_mode extend_mode; /* The mode the variable iterates in. */ machine_mode mode; /* Whether the first iteration needs to be handled specially. */ unsigned first_special : 1; }; /* The description of an exit from the loop and of the number of iterations till we take the exit. */ struct GTY(()) niter_desc { /* The edge out of the loop. */ edge out_edge; /* The other edge leading from the condition. */ edge in_edge; /* True if we are able to say anything about number of iterations of the loop. */ bool simple_p; /* True if the loop iterates the constant number of times. */ bool const_iter; /* Number of iterations if constant. */ uint64_t niter; /* Assumptions under that the rest of the information is valid. */ rtx assumptions; /* Assumptions under that the loop ends before reaching the latch, even if value of niter_expr says otherwise. */ rtx noloop_assumptions; /* Condition under that the loop is infinite. */ rtx infinite; /* Whether the comparison is signed. */ bool signed_p; /* The mode in that niter_expr should be computed. */ machine_mode mode; /* The number of iterations of the loop. */ rtx niter_expr; }; extern void iv_analysis_loop_init (struct loop *); extern bool iv_analyze (rtx_insn *, rtx, struct rtx_iv *); extern bool iv_analyze_result (rtx_insn *, rtx, struct rtx_iv *); extern bool iv_analyze_expr (rtx_insn *, rtx, machine_mode, struct rtx_iv *); extern rtx get_iv_value (struct rtx_iv *, rtx); extern bool biv_p (rtx_insn *, rtx); extern void find_simple_exit (struct loop *, struct niter_desc *); extern void iv_analysis_done (void); extern struct niter_desc *get_simple_loop_desc (struct loop *loop); extern void free_simple_loop_desc (struct loop *loop); static inline struct niter_desc * simple_loop_desc (struct loop *loop) { return loop->simple_loop_desc; } /* Accessors for the loop structures. */ /* Returns the loop with index NUM from FNs loop tree. */ static inline struct loop * get_loop (struct function *fn, unsigned num) { return (*loops_for_fn (fn)->larray)[num]; } /* Returns the number of superloops of LOOP. */ static inline unsigned loop_depth (const struct loop *loop) { return vec_safe_length (loop->superloops); } /* Returns the immediate superloop of LOOP, or NULL if LOOP is the outermost loop. */ static inline struct loop * loop_outer (const struct loop *loop) { unsigned n = vec_safe_length (loop->superloops); if (n == 0) return NULL; return (*loop->superloops)[n - 1]; } /* Returns true if LOOP has at least one exit edge. */ static inline bool loop_has_exit_edges (const struct loop *loop) { return loop->exits->next->e != NULL; } /* Returns the list of loops in FN. */ inline vec * get_loops (struct function *fn) { struct loops *loops = loops_for_fn (fn); if (!loops) return NULL; return loops->larray; } /* Returns the number of loops in FN (including the removed ones and the fake loop that forms the root of the loop tree). */ static inline unsigned number_of_loops (struct function *fn) { struct loops *loops = loops_for_fn (fn); if (!loops) return 0; return vec_safe_length (loops->larray); } /* Returns true if state of the loops satisfies all properties described by FLAGS. */ static inline bool loops_state_satisfies_p (unsigned flags) { return (current_loops->state & flags) == flags; } /* Sets FLAGS to the loops state. */ static inline void loops_state_set (unsigned flags) { current_loops->state |= flags; } /* Clears FLAGS from the loops state. */ static inline void loops_state_clear (unsigned flags) { if (!current_loops) return; current_loops->state &= ~flags; } /* Loop iterators. */ /* Flags for loop iteration. */ enum li_flags { LI_INCLUDE_ROOT = 1, /* Include the fake root of the loop tree. */ LI_FROM_INNERMOST = 2, /* Iterate over the loops in the reverse order, starting from innermost ones. */ LI_ONLY_INNERMOST = 4 /* Iterate only over innermost loops. */ }; /* The iterator for loops. */ struct loop_iterator { loop_iterator (loop_p *loop, unsigned flags); ~loop_iterator (); inline loop_p next (); /* The list of loops to visit. */ vec to_visit; /* The index of the actual loop. */ unsigned idx; }; inline loop_p loop_iterator::next () { int anum; while (this->to_visit.iterate (this->idx, &anum)) { this->idx++; loop_p loop = get_loop (cfun, anum); if (loop) return loop; } return NULL; } inline loop_iterator::loop_iterator (loop_p *loop, unsigned flags) { struct loop *aloop; unsigned i; int mn; this->idx = 0; if (!current_loops) { this->to_visit.create (0); *loop = NULL; return; } this->to_visit.create (number_of_loops (cfun)); mn = (flags & LI_INCLUDE_ROOT) ? 0 : 1; if (flags & LI_ONLY_INNERMOST) { for (i = 0; vec_safe_iterate (current_loops->larray, i, &aloop); i++) if (aloop != NULL && aloop->inner == NULL && aloop->num >= mn) this->to_visit.quick_push (aloop->num); } else if (flags & LI_FROM_INNERMOST) { /* Push the loops to LI->TO_VISIT in postorder. */ for (aloop = current_loops->tree_root; aloop->inner != NULL; aloop = aloop->inner) continue; while (1) { if (aloop->num >= mn) this->to_visit.quick_push (aloop->num); if (aloop->next) { for (aloop = aloop->next; aloop->inner != NULL; aloop = aloop->inner) continue; } else if (!loop_outer (aloop)) break; else aloop = loop_outer (aloop); } } else { /* Push the loops to LI->TO_VISIT in preorder. */ aloop = current_loops->tree_root; while (1) { if (aloop->num >= mn) this->to_visit.quick_push (aloop->num); if (aloop->inner != NULL) aloop = aloop->inner; else { while (aloop != NULL && aloop->next == NULL) aloop = loop_outer (aloop); if (aloop == NULL) break; aloop = aloop->next; } } } *loop = this->next (); } inline loop_iterator::~loop_iterator () { this->to_visit.release (); } #define FOR_EACH_LOOP(LOOP, FLAGS) \ for (loop_iterator li(&(LOOP), FLAGS); \ (LOOP); \ (LOOP) = li.next ()) /* The properties of the target. */ struct target_cfgloop { /* Number of available registers. */ unsigned x_target_avail_regs; /* Number of available registers that are call-clobbered. */ unsigned x_target_clobbered_regs; /* Number of registers reserved for temporary expressions. */ unsigned x_target_res_regs; /* The cost for register when there still is some reserve, but we are approaching the number of available registers. */ unsigned x_target_reg_cost[2]; /* The cost for register when we need to spill. */ unsigned x_target_spill_cost[2]; }; extern struct target_cfgloop default_target_cfgloop; #if SWITCHABLE_TARGET extern struct target_cfgloop *this_target_cfgloop; #else #define this_target_cfgloop (&default_target_cfgloop) #endif #define target_avail_regs \ (this_target_cfgloop->x_target_avail_regs) #define target_clobbered_regs \ (this_target_cfgloop->x_target_clobbered_regs) #define target_res_regs \ (this_target_cfgloop->x_target_res_regs) #define target_reg_cost \ (this_target_cfgloop->x_target_reg_cost) #define target_spill_cost \ (this_target_cfgloop->x_target_spill_cost) /* Register pressure estimation for induction variable optimizations & loop invariant motion. */ extern unsigned estimate_reg_pressure_cost (unsigned, unsigned, bool, bool); extern void init_set_costs (void); /* Loop optimizer initialization. */ extern void loop_optimizer_init (unsigned); extern void loop_optimizer_finalize (void); /* Optimization passes. */ enum { UAP_UNROLL = 1, /* Enables unrolling of loops if it seems profitable. */ UAP_UNROLL_ALL = 2 /* Enables unrolling of all loops. */ }; extern void doloop_optimize_loops (void); extern void move_loop_invariants (void); extern vec get_loop_hot_path (const struct loop *loop); /* Returns the outermost loop of the loop nest that contains LOOP.*/ static inline struct loop * loop_outermost (struct loop *loop) { unsigned n = vec_safe_length (loop->superloops); if (n <= 1) return loop; return (*loop->superloops)[1]; } extern void record_niter_bound (struct loop *, const widest_int &, bool, bool); extern HOST_WIDE_INT get_estimated_loop_iterations_int (struct loop *); extern HOST_WIDE_INT get_max_loop_iterations_int (struct loop *); extern bool get_estimated_loop_iterations (struct loop *loop, widest_int *nit); extern bool get_max_loop_iterations (struct loop *loop, widest_int *nit); extern int bb_loop_depth (const_basic_block); /* Converts VAL to widest_int. */ static inline widest_int gcov_type_to_wide_int (gcov_type val) { HOST_WIDE_INT a[2]; a[0] = (unsigned HOST_WIDE_INT) val; /* If HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_WIDEST_INT, avoid shifting by the size of type. */ val >>= HOST_BITS_PER_WIDE_INT - 1; val >>= 1; a[1] = (unsigned HOST_WIDE_INT) val; return widest_int::from_array (a, 2); } #endif /* GCC_CFGLOOP_H */