/* Save and restore call-clobbered registers which are live across a call. Copyright (C) 1989, 1992, 1994 Free Software Foundation, Inc. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "config.h" #include "rtl.h" #include "insn-config.h" #include "flags.h" #include "regs.h" #include "hard-reg-set.h" #include "recog.h" #include "basic-block.h" #include "reload.h" #include "expr.h" #ifndef MAX_MOVE_MAX #define MAX_MOVE_MAX MOVE_MAX #endif #ifndef MAX_UNITS_PER_WORD #define MAX_UNITS_PER_WORD UNITS_PER_WORD #endif /* Modes for each hard register that we can save. The smallest mode is wide enough to save the entire contents of the register. When saving the register because it is live we first try to save in multi-register modes. If that is not possible the save is done one register at a time. */ static enum machine_mode regno_save_mode[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MAX_UNITS_PER_WORD + 1]; /* For each hard register, a place on the stack where it can be saved, if needed. */ static rtx regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MAX_UNITS_PER_WORD + 1]; /* We will only make a register eligible for caller-save if it can be saved in its widest mode with a simple SET insn as long as the memory address is valid. We record the INSN_CODE is those insns here since when we emit them, the addresses might not be valid, so they might not be recognized. */ static enum insn_code reg_save_code[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MAX_UNITS_PER_WORD + 1]; static enum insn_code reg_restore_code[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MAX_UNITS_PER_WORD + 1]; /* Set of hard regs currently live (during scan of all insns). */ static HARD_REG_SET hard_regs_live; /* Set of hard regs currently residing in save area (during insn scan). */ static HARD_REG_SET hard_regs_saved; /* Set of hard regs which need to be restored before referenced. */ static HARD_REG_SET hard_regs_need_restore; /* Number of registers currently in hard_regs_saved. */ int n_regs_saved; static void set_reg_live PROTO((rtx, rtx)); static void clear_reg_live PROTO((rtx)); static void restore_referenced_regs PROTO((rtx, rtx, enum machine_mode)); static int insert_save_restore PROTO((rtx, int, int, enum machine_mode, int)); /* Initialize for caller-save. Look at all the hard registers that are used by a call and for which regclass.c has not already excluded from being used across a call. Ensure that we can find a mode to save the register and that there is a simple insn to save and restore the register. This latter check avoids problems that would occur if we tried to save the MQ register of some machines directly into memory. */ void init_caller_save () { char *first_obj = (char *) oballoc (0); rtx addr_reg; int offset; rtx address; int i, j; /* First find all the registers that we need to deal with and all the modes that they can have. If we can't find a mode to use, we can't have the register live over calls. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { if (call_used_regs[i] && ! call_fixed_regs[i]) { for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++) { regno_save_mode[i][j] = choose_hard_reg_mode (i, j); if (regno_save_mode[i][j] == VOIDmode && j == 1) { call_fixed_regs[i] = 1; SET_HARD_REG_BIT (call_fixed_reg_set, i); } } } else regno_save_mode[i][1] = VOIDmode; } /* The following code tries to approximate the conditions under which we can easily save and restore a register without scratch registers or other complexities. It will usually work, except under conditions where the validity of an insn operand is dependent on the address offset. No such cases are currently known. We first find a typical offset from some BASE_REG_CLASS register. This address is chosen by finding the first register in the class and by finding the smallest power of two that is a valid offset from that register in every mode we will use to save registers. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (TEST_HARD_REG_BIT (reg_class_contents[(int) BASE_REG_CLASS], i)) break; if (i == FIRST_PSEUDO_REGISTER) abort (); addr_reg = gen_rtx (REG, Pmode, i); for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1) { address = gen_rtx (PLUS, Pmode, addr_reg, GEN_INT (offset)); for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (regno_save_mode[i][1] != VOIDmode && ! strict_memory_address_p (regno_save_mode[i][1], address)) break; if (i == FIRST_PSEUDO_REGISTER) break; } /* If we didn't find a valid address, we must use register indirect. */ if (offset == 0) address = addr_reg; /* Next we try to form an insn to save and restore the register. We see if such an insn is recognized and meets its constraints. */ start_sequence (); for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++) if (regno_save_mode[i][j] != VOIDmode) { rtx mem = gen_rtx (MEM, regno_save_mode[i][j], address); rtx reg = gen_rtx (REG, regno_save_mode[i][j], i); rtx savepat = gen_rtx (SET, VOIDmode, mem, reg); rtx restpat = gen_rtx (SET, VOIDmode, reg, mem); rtx saveinsn = emit_insn (savepat); rtx restinsn = emit_insn (restpat); int ok; reg_save_code[i][j] = recog_memoized (saveinsn); reg_restore_code[i][j] = recog_memoized (restinsn); /* Now extract both insns and see if we can meet their constraints. */ ok = (reg_save_code[i][j] != -1 && reg_restore_code[i][j] != -1); if (ok) { insn_extract (saveinsn); ok = constrain_operands (reg_save_code[i][j], 1); insn_extract (restinsn); ok &= constrain_operands (reg_restore_code[i][j], 1); } if (! ok) { regno_save_mode[i][j] = VOIDmode; if (j == 1) { call_fixed_regs[i] = 1; SET_HARD_REG_BIT (call_fixed_reg_set, i); } } } end_sequence (); obfree (first_obj); } /* Initialize save areas by showing that we haven't allocated any yet. */ void init_save_areas () { int i, j; for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++) regno_save_mem[i][j] = 0; } /* Allocate save areas for any hard registers that might need saving. We take a conservative approach here and look for call-clobbered hard registers that are assigned to pseudos that cross calls. This may overestimate slightly (especially if some of these registers are later used as spill registers), but it should not be significant. Then perform register elimination in the addresses of the save area locations; return 1 if all eliminated addresses are strictly valid. We assume that our caller has set up the elimination table to the worst (largest) possible offsets. Set *PCHANGED to 1 if we had to allocate some memory for the save area. Future work: In the fallback case we should iterate backwards across all possible modes for the save, choosing the largest available one instead of falling back to the smallest mode immediately. (eg TF -> DF -> SF). We do not try to use "move multiple" instructions that exist on some machines (such as the 68k moveml). It could be a win to try and use them when possible. The hard part is doing it in a way that is machine independent since they might be saving non-consecutive registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */ int setup_save_areas (pchanged) int *pchanged; { int i, j, k; HARD_REG_SET hard_regs_used; int ok = 1; /* Allocate space in the save area for the largest multi-register pseudos first, then work backwards to single register pseudos. */ /* Find and record all call-used hard-registers in this function. */ CLEAR_HARD_REG_SET (hard_regs_used); for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++) if (reg_renumber[i] >= 0 && reg_n_calls_crossed[i] > 0) { int regno = reg_renumber[i]; int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (regno_reg_rtx[i])); int nregs = endregno - regno; for (j = 0; j < nregs; j++) { if (call_used_regs[regno+j]) SET_HARD_REG_BIT (hard_regs_used, regno+j); } } /* Now run through all the call-used hard-registers and allocate space for them in the caller-save area. Try to allocate space in a manner which allows multi-register saves/restores to be done. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) for (j = MOVE_MAX / UNITS_PER_WORD; j > 0; j--) { int ok = 1; int do_save; /* If no mode exists for this size, try another. Also break out if we have already saved this hard register. */ if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0) continue; /* See if any register in this group has been saved. */ do_save = 1; for (k = 0; k < j; k++) if (regno_save_mem[i + k][1]) { do_save = 0; break; } if (! do_save) continue; for (k = 0; k < j; k++) { int regno = i + k; ok &= (TEST_HARD_REG_BIT (hard_regs_used, regno) != 0); } /* We have found an acceptable mode to store in. */ if (ok) { regno_save_mem[i][j] = assign_stack_local (regno_save_mode[i][j], GET_MODE_SIZE (regno_save_mode[i][j]), 0); /* Setup single word save area just in case... */ for (k = 0; k < j; k++) { /* This should not depend on WORDS_BIG_ENDIAN. The order of words in regs is the same as in memory. */ rtx temp = gen_rtx (MEM, regno_save_mode[i+k][1], XEXP (regno_save_mem[i][j], 0)); regno_save_mem[i+k][1] = adj_offsettable_operand (temp, k * UNITS_PER_WORD); } *pchanged = 1; } } for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) for (j = 1; j <= MOVE_MAX / UNITS_PER_WORD; j++) if (regno_save_mem[i][j] != 0) ok &= strict_memory_address_p (GET_MODE (regno_save_mem[i][j]), XEXP (eliminate_regs (regno_save_mem[i][j], 0, NULL_RTX), 0)); return ok; } /* Find the places where hard regs are live across calls and save them. INSN_MODE is the mode to assign to any insns that we add. This is used by reload to determine whether or not reloads or register eliminations need be done on these insns. */ void save_call_clobbered_regs (insn_mode) enum machine_mode insn_mode; { rtx insn; int b; for (b = 0; b < n_basic_blocks; b++) { regset regs_live = basic_block_live_at_start[b]; rtx prev_block_last = PREV_INSN (basic_block_head[b]); REGSET_ELT_TYPE bit; int offset, i, j; int regno; /* Compute hard regs live at start of block -- this is the real hard regs marked live, plus live pseudo regs that have been renumbered to hard regs. No registers have yet been saved because we restore all of them before the end of the basic block. */ #ifdef HARD_REG_SET hard_regs_live = *regs_live; #else COPY_HARD_REG_SET (hard_regs_live, regs_live); #endif CLEAR_HARD_REG_SET (hard_regs_saved); CLEAR_HARD_REG_SET (hard_regs_need_restore); n_regs_saved = 0; for (offset = 0, i = 0; offset < regset_size; offset++) { if (regs_live[offset] == 0) i += REGSET_ELT_BITS; else for (bit = 1; bit && i < max_regno; bit <<= 1, i++) if ((regs_live[offset] & bit) && (regno = reg_renumber[i]) >= 0) for (j = regno; j < regno + HARD_REGNO_NREGS (regno, PSEUDO_REGNO_MODE (i)); j++) SET_HARD_REG_BIT (hard_regs_live, j); } /* Now scan the insns in the block, keeping track of what hard regs are live as we go. When we see a call, save the live call-clobbered hard regs. */ for (insn = basic_block_head[b]; ; insn = NEXT_INSN (insn)) { RTX_CODE code = GET_CODE (insn); if (GET_RTX_CLASS (code) == 'i') { rtx link; /* If some registers have been saved, see if INSN references any of them. We must restore them before the insn if so. */ if (n_regs_saved) restore_referenced_regs (PATTERN (insn), insn, insn_mode); /* NB: the normal procedure is to first enliven any registers set by insn, then deaden any registers that had their last use at insn. This is incorrect now, since multiple pseudos may have been mapped to the same hard reg, and the death notes are ambiguous. So it must be done in the other, safe, order. */ for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) if (REG_NOTE_KIND (link) == REG_DEAD) clear_reg_live (XEXP (link, 0)); /* When we reach a call, we need to save all registers that are live, call-used, not fixed, and not already saved. We must test at this point because registers that die in a CALL_INSN are not live across the call and likewise for registers that are born in the CALL_INSN. If registers are filled with parameters for this function, and some of these are also being set by this function, then they will not appear to die (no REG_DEAD note for them), to check if in fact they do, collect the set registers in hard_regs_live first. */ if (code == CALL_INSN) { HARD_REG_SET this_call_sets; { HARD_REG_SET old_hard_regs_live; /* Save the hard_regs_live information. */ COPY_HARD_REG_SET (old_hard_regs_live, hard_regs_live); /* Now calculate hard_regs_live for this CALL_INSN only. */ CLEAR_HARD_REG_SET (hard_regs_live); note_stores (PATTERN (insn), set_reg_live); COPY_HARD_REG_SET (this_call_sets, hard_regs_live); /* Restore the hard_regs_live information. */ COPY_HARD_REG_SET (hard_regs_live, old_hard_regs_live); } for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (call_used_regs[regno] && ! call_fixed_regs[regno] && TEST_HARD_REG_BIT (hard_regs_live, regno) /* It must not be set by this instruction. */ && ! TEST_HARD_REG_BIT (this_call_sets, regno) && ! TEST_HARD_REG_BIT (hard_regs_saved, regno)) regno += insert_save_restore (insn, 1, regno, insn_mode, 0); /* Put the information for this CALL_INSN on top of what we already had. */ IOR_HARD_REG_SET (hard_regs_live, this_call_sets); COPY_HARD_REG_SET (hard_regs_need_restore, hard_regs_saved); /* Must recompute n_regs_saved. */ n_regs_saved = 0; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (TEST_HARD_REG_BIT (hard_regs_saved, regno)) n_regs_saved++; } else note_stores (PATTERN (insn), set_reg_live); for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) if (REG_NOTE_KIND (link) == REG_UNUSED) clear_reg_live (XEXP (link, 0)); } if (insn == basic_block_end[b]) break; } /* At the end of the basic block, we must restore any registers that remain saved. If the last insn in the block is a JUMP_INSN, put the restore before the insn, otherwise, put it after the insn. */ if (n_regs_saved) for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (TEST_HARD_REG_BIT (hard_regs_need_restore, regno)) regno += insert_save_restore ((GET_CODE (insn) == JUMP_INSN ? insn : NEXT_INSN (insn)), 0, regno, insn_mode, MOVE_MAX / UNITS_PER_WORD); /* If we added any insns at the start of the block, update the start of the block to point at those insns. */ basic_block_head[b] = NEXT_INSN (prev_block_last); } } /* Here from note_stores when an insn stores a value in a register. Set the proper bit or bits in hard_regs_live. All pseudos that have been assigned hard regs have had their register number changed already, so we can ignore pseudos. */ static void set_reg_live (reg, setter) rtx reg, setter; { register int regno, endregno, i; enum machine_mode mode = GET_MODE (reg); int word = 0; if (GET_CODE (reg) == SUBREG) { word = SUBREG_WORD (reg); reg = SUBREG_REG (reg); } if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER) return; regno = REGNO (reg) + word; endregno = regno + HARD_REGNO_NREGS (regno, mode); for (i = regno; i < endregno; i++) { SET_HARD_REG_BIT (hard_regs_live, i); CLEAR_HARD_REG_BIT (hard_regs_saved, i); CLEAR_HARD_REG_BIT (hard_regs_need_restore, i); } } /* Here when a REG_DEAD note records the last use of a reg. Clear the appropriate bit or bits in hard_regs_live. Again we can ignore pseudos. */ static void clear_reg_live (reg) rtx reg; { register int regno, endregno, i; if (GET_CODE (reg) != REG || REGNO (reg) >= FIRST_PSEUDO_REGISTER) return; regno = REGNO (reg); endregno= regno + HARD_REGNO_NREGS (regno, GET_MODE (reg)); for (i = regno; i < endregno; i++) { CLEAR_HARD_REG_BIT (hard_regs_live, i); CLEAR_HARD_REG_BIT (hard_regs_need_restore, i); CLEAR_HARD_REG_BIT (hard_regs_saved, i); } } /* If any register currently residing in the save area is referenced in X, which is part of INSN, emit code to restore the register in front of INSN. INSN_MODE is the mode to assign to any insns that we add. */ static void restore_referenced_regs (x, insn, insn_mode) rtx x; rtx insn; enum machine_mode insn_mode; { enum rtx_code code = GET_CODE (x); char *fmt; int i, j; if (code == CLOBBER) return; if (code == REG) { int regno = REGNO (x); /* If this is a pseudo, scan its memory location, since it might involve the use of another register, which might be saved. */ if (regno >= FIRST_PSEUDO_REGISTER && reg_equiv_mem[regno] != 0) restore_referenced_regs (XEXP (reg_equiv_mem[regno], 0), insn, insn_mode); else if (regno >= FIRST_PSEUDO_REGISTER && reg_equiv_address[regno] != 0) restore_referenced_regs (reg_equiv_address[regno], insn, insn_mode); /* Otherwise if this is a hard register, restore any piece of it that is currently saved. */ else if (regno < FIRST_PSEUDO_REGISTER) { int numregs = HARD_REGNO_NREGS (regno, GET_MODE (x)); /* Save at most SAVEREGS at a time. This can not be larger than MOVE_MAX, because that causes insert_save_restore to fail. */ int saveregs = MIN (numregs, MOVE_MAX / UNITS_PER_WORD); int endregno = regno + numregs; for (i = regno; i < endregno; i++) if (TEST_HARD_REG_BIT (hard_regs_need_restore, i)) i += insert_save_restore (insn, 0, i, insn_mode, saveregs); } return; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') restore_referenced_regs (XEXP (x, i), insn, insn_mode); else if (fmt[i] == 'E') for (j = XVECLEN (x, i) - 1; j >= 0; j--) restore_referenced_regs (XVECEXP (x, i, j), insn, insn_mode); } } /* Insert a sequence of insns to save or restore, SAVE_P says which, REGNO. Place these insns in front of INSN. INSN_MODE is the mode to assign to these insns. MAXRESTORE is the maximum number of registers which should be restored during this call (when SAVE_P == 0). It should never be less than 1 since we only work with entire registers. Note that we have verified in init_caller_save that we can do this with a simple SET, so use it. Set INSN_CODE to what we save there since the address might not be valid so the insn might not be recognized. These insns will be reloaded and have register elimination done by find_reload, so we need not worry about that here. Return the extra number of registers saved. */ static int insert_save_restore (insn, save_p, regno, insn_mode, maxrestore) rtx insn; int save_p; int regno; enum machine_mode insn_mode; int maxrestore; { rtx pat; enum insn_code code; int i, numregs; /* A common failure mode if register status is not correct in the RTL is for this routine to be called with a REGNO we didn't expect to save. That will cause us to write an insn with a (nil) SET_DEST or SET_SRC. Instead of doing so and causing a crash later, check for this common case and abort here instead. This will remove one step in debugging such problems. */ if (regno_save_mem[regno][1] == 0) abort (); #ifdef HAVE_cc0 /* If INSN references CC0, put our insns in front of the insn that sets CC0. This is always safe, since the only way we could be passed an insn that references CC0 is for a restore, and doing a restore earlier isn't a problem. We do, however, assume here that CALL_INSNs don't reference CC0. Guard against non-INSN's like CODE_LABEL. */ if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN) && reg_referenced_p (cc0_rtx, PATTERN (insn))) insn = prev_nonnote_insn (insn); #endif /* Get the pattern to emit and update our status. */ if (save_p) { int i, j, k; int ok; /* See if we can save several registers with a single instruction. Work backwards to the single register case. */ for (i = MOVE_MAX / UNITS_PER_WORD; i > 0; i--) { ok = 1; if (regno_save_mem[regno][i] != 0) for (j = 0; j < i; j++) { if (! call_used_regs[regno + j] || call_fixed_regs[regno + j] || ! TEST_HARD_REG_BIT (hard_regs_live, regno + j) || TEST_HARD_REG_BIT (hard_regs_saved, regno + j)) ok = 0; } else continue; /* Must do this one save at a time */ if (! ok) continue; pat = gen_rtx (SET, VOIDmode, regno_save_mem[regno][i], gen_rtx (REG, GET_MODE (regno_save_mem[regno][i]), regno)); code = reg_save_code[regno][i]; /* Set hard_regs_saved for all the registers we saved. */ for (k = 0; k < i; k++) { SET_HARD_REG_BIT (hard_regs_saved, regno + k); SET_HARD_REG_BIT (hard_regs_need_restore, regno + k); n_regs_saved++; } numregs = i; break; } } else { int i, j, k; int ok; /* See if we can restore `maxrestore' registers at once. Work backwards to the single register case. */ for (i = maxrestore; i > 0; i--) { ok = 1; if (regno_save_mem[regno][i]) for (j = 0; j < i; j++) { if (! TEST_HARD_REG_BIT (hard_regs_need_restore, regno + j)) ok = 0; } else continue; /* Must do this one restore at a time */ if (! ok) continue; pat = gen_rtx (SET, VOIDmode, gen_rtx (REG, GET_MODE (regno_save_mem[regno][i]), regno), regno_save_mem[regno][i]); code = reg_restore_code[regno][i]; /* Clear status for all registers we restored. */ for (k = 0; k < i; k++) { CLEAR_HARD_REG_BIT (hard_regs_need_restore, regno + k); n_regs_saved--; } numregs = i; break; } } /* Emit the insn and set the code and mode. */ insn = emit_insn_before (pat, insn); PUT_MODE (insn, insn_mode); INSN_CODE (insn) = code; /* Tell our callers how many extra registers we saved/restored */ return numregs - 1; }