]> gcc.gnu.org Git - gcc.git/blob - libstdc++-v3/doc/xml/manual/strings.xml
101f8cd3331b818e4f875c95e06c38e07d28c601
[gcc.git] / libstdc++-v3 / doc / xml / manual / strings.xml
1 <chapter xmlns="http://docbook.org/ns/docbook" version="5.0"
2 xml:id="std.strings" xreflabel="Strings">
3 <?dbhtml filename="strings.html"?>
4
5 <info><title>
6 Strings
7 <indexterm><primary>Strings</primary></indexterm>
8 </title>
9 <keywordset>
10 <keyword>ISO C++</keyword>
11 <keyword>library</keyword>
12 </keywordset>
13 </info>
14
15 <!-- Sect1 01 : Character Traits -->
16
17 <!-- Sect1 02 : String Classes -->
18 <section xml:id="std.strings.string" xreflabel="string"><info><title>String Classes</title></info>
19
20
21 <section xml:id="strings.string.simple" xreflabel="Simple Transformations"><info><title>Simple Transformations</title></info>
22
23 <para>
24 Here are Standard, simple, and portable ways to perform common
25 transformations on a <code>string</code> instance, such as
26 "convert to all upper case." The word transformations
27 is especially apt, because the standard template function
28 <code>transform&lt;&gt;</code> is used.
29 </para>
30 <para>
31 This code will go through some iterations. Here's a simple
32 version:
33 </para>
34 <programlisting>
35 #include &lt;string&gt;
36 #include &lt;algorithm&gt;
37 #include &lt;cctype&gt; // old &lt;ctype.h&gt;
38
39 struct ToLower
40 {
41 char operator() (char c) const { return std::tolower(c); }
42 };
43
44 struct ToUpper
45 {
46 char operator() (char c) const { return std::toupper(c); }
47 };
48
49 int main()
50 {
51 std::string s ("Some Kind Of Initial Input Goes Here");
52
53 // Change everything into upper case
54 std::transform (s.begin(), s.end(), s.begin(), ToUpper());
55
56 // Change everything into lower case
57 std::transform (s.begin(), s.end(), s.begin(), ToLower());
58
59 // Change everything back into upper case, but store the
60 // result in a different string
61 std::string capital_s;
62 capital_s.resize(s.size());
63 std::transform (s.begin(), s.end(), capital_s.begin(), ToUpper());
64 }
65 </programlisting>
66 <para>
67 <emphasis>Note</emphasis> that these calls all
68 involve the global C locale through the use of the C functions
69 <code>toupper/tolower</code>. This is absolutely guaranteed to work --
70 but <emphasis>only</emphasis> if the string contains <emphasis>only</emphasis> characters
71 from the basic source character set, and there are <emphasis>only</emphasis>
72 96 of those. Which means that not even all English text can be
73 represented (certain British spellings, proper names, and so forth).
74 So, if all your input forevermore consists of only those 96
75 characters (hahahahahaha), then you're done.
76 </para>
77 <para><emphasis>Note</emphasis> that the
78 <code>ToUpper</code> and <code>ToLower</code> function objects
79 are needed because <code>toupper</code> and <code>tolower</code>
80 are overloaded names (declared in <code>&lt;cctype&gt;</code> and
81 <code>&lt;locale&gt;</code>) so the template-arguments for
82 <code>transform&lt;&gt;</code> cannot be deduced, as explained in
83 <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/ml/libstdc++/2002-11/msg00180.html">this
84 message</link>.
85 <!-- section 14.8.2.4 clause 16 in ISO 14882:1998 -->
86 At minimum, you can write short wrappers like
87 </para>
88 <programlisting>
89 char toLower (char c)
90 {
91 return std::tolower(c);
92 } </programlisting>
93 <para>(Thanks to James Kanze for assistance and suggestions on all of this.)
94 </para>
95 <para>Another common operation is trimming off excess whitespace. Much
96 like transformations, this task is trivial with the use of string's
97 <code>find</code> family. These examples are broken into multiple
98 statements for readability:
99 </para>
100 <programlisting>
101 std::string str (" \t blah blah blah \n ");
102
103 // trim leading whitespace
104 string::size_type notwhite = str.find_first_not_of(" \t\n");
105 str.erase(0,notwhite);
106
107 // trim trailing whitespace
108 notwhite = str.find_last_not_of(" \t\n");
109 str.erase(notwhite+1); </programlisting>
110 <para>Obviously, the calls to <code>find</code> could be inserted directly
111 into the calls to <code>erase</code>, in case your compiler does not
112 optimize named temporaries out of existence.
113 </para>
114
115 </section>
116 <section xml:id="strings.string.case" xreflabel="Case Sensitivity"><info><title>Case Sensitivity</title></info>
117
118 <para>
119 </para>
120
121 <para>The well-known-and-if-it-isn't-well-known-it-ought-to-be
122 <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.gotw.ca/gotw/">Guru of the Week</link>
123 discussions held on Usenet covered this topic in January of 1998.
124 Briefly, the challenge was, <quote>write a 'ci_string' class which
125 is identical to the standard 'string' class, but is
126 case-insensitive in the same way as the (common but nonstandard)
127 C function stricmp()</quote>.
128 </para>
129 <programlisting>
130 ci_string s( "AbCdE" );
131
132 // case insensitive
133 assert( s == "abcde" );
134 assert( s == "ABCDE" );
135
136 // still case-preserving, of course
137 assert( strcmp( s.c_str(), "AbCdE" ) == 0 );
138 assert( strcmp( s.c_str(), "abcde" ) != 0 ); </programlisting>
139
140 <para>The solution is surprisingly easy. The original answer was
141 posted on Usenet, and a revised version appears in Herb Sutter's
142 book <emphasis>Exceptional C++</emphasis> and on his website as <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.gotw.ca/gotw/029.htm">GotW 29</link>.
143 </para>
144 <para>See? Told you it was easy!</para>
145 <para>
146 <emphasis>Added June 2000:</emphasis> The May 2000 issue of C++
147 Report contains a fascinating <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://lafstern.org/matt/col2_new.pdf"> article</link> by
148 Matt Austern (yes, <emphasis>the</emphasis> Matt Austern) on why
149 case-insensitive comparisons are not as easy as they seem, and
150 why creating a class is the <emphasis>wrong</emphasis> way to go
151 about it in production code. (The GotW answer mentions one of
152 the principle difficulties; his article mentions more.)
153 </para>
154 <para>Basically, this is "easy" only if you ignore some things,
155 things which may be too important to your program to ignore. (I chose
156 to ignore them when originally writing this entry, and am surprised
157 that nobody ever called me on it...) The GotW question and answer
158 remain useful instructional tools, however.
159 </para>
160 <para><emphasis>Added September 2000:</emphasis> James Kanze provided a link to a
161 <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.unicode.org/reports/tr21/tr21-5.html">Unicode
162 Technical Report discussing case handling</link>, which provides some
163 very good information.
164 </para>
165
166 </section>
167 <section xml:id="strings.string.character_types" xreflabel="Arbitrary Characters"><info><title>Arbitrary Character Types</title></info>
168
169 <para>
170 </para>
171
172 <para>The <code>std::basic_string</code> is tantalizingly general, in that
173 it is parameterized on the type of the characters which it holds.
174 In theory, you could whip up a Unicode character class and instantiate
175 <code>std::basic_string&lt;my_unicode_char&gt;</code>, or assuming
176 that integers are wider than characters on your platform, maybe just
177 declare variables of type <code>std::basic_string&lt;int&gt;</code>.
178 </para>
179 <para>That's the theory. Remember however that basic_string has additional
180 type parameters, which take default arguments based on the character
181 type (called <code>CharT</code> here):
182 </para>
183 <programlisting>
184 template &lt;typename CharT,
185 typename Traits = char_traits&lt;CharT&gt;,
186 typename Alloc = allocator&lt;CharT&gt; &gt;
187 class basic_string { .... };</programlisting>
188 <para>Now, <code>allocator&lt;CharT&gt;</code> will probably Do The Right
189 Thing by default, unless you need to implement your own allocator
190 for your characters.
191 </para>
192 <para>But <code>char_traits</code> takes more work. The char_traits
193 template is <emphasis>declared</emphasis> but not <emphasis>defined</emphasis>.
194 That means there is only
195 </para>
196 <programlisting>
197 template &lt;typename CharT&gt;
198 struct char_traits
199 {
200 static void foo (type1 x, type2 y);
201 ...
202 };</programlisting>
203 <para>and functions such as char_traits&lt;CharT&gt;::foo() are not
204 actually defined anywhere for the general case. The C++ standard
205 permits this, because writing such a definition to fit all possible
206 CharT's cannot be done.
207 </para>
208 <para>The C++ standard also requires that char_traits be specialized for
209 instantiations of <code>char</code> and <code>wchar_t</code>, and it
210 is these template specializations that permit entities like
211 <code>basic_string&lt;char,char_traits&lt;char&gt;&gt;</code> to work.
212 </para>
213 <para>If you want to use character types other than char and wchar_t,
214 such as <code>unsigned char</code> and <code>int</code>, you will
215 need suitable specializations for them. For a time, in earlier
216 versions of GCC, there was a mostly-correct implementation that
217 let programmers be lazy but it broke under many situations, so it
218 was removed. GCC 3.4 introduced a new implementation that mostly
219 works and can be specialized even for <code>int</code> and other
220 built-in types.
221 </para>
222 <para>If you want to use your own special character class, then you have
223 <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/ml/libstdc++/2002-08/msg00163.html">a lot
224 of work to do</link>, especially if you with to use i18n features
225 (facets require traits information but don't have a traits argument).
226 </para>
227 <para>Another example of how to specialize char_traits was given <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/ml/libstdc++/2002-08/msg00260.html">on the
228 mailing list</link> and at a later date was put into the file <code>
229 include/ext/pod_char_traits.h</code>. We agree
230 that the way it's used with basic_string (scroll down to main())
231 doesn't look nice, but that's because <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/ml/libstdc++/2002-08/msg00236.html">the
232 nice-looking first attempt</link> turned out to <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/ml/libstdc++/2002-08/msg00242.html">not
233 be conforming C++</link>, due to the rule that CharT must be a POD.
234 (See how tricky this is?)
235 </para>
236
237 </section>
238
239 <section xml:id="strings.string.token" xreflabel="Tokenizing"><info><title>Tokenizing</title></info>
240
241 <para>
242 </para>
243 <para>The Standard C (and C++) function <code>strtok()</code> leaves a lot to
244 be desired in terms of user-friendliness. It's unintuitive, it
245 destroys the character string on which it operates, and it requires
246 you to handle all the memory problems. But it does let the client
247 code decide what to use to break the string into pieces; it allows
248 you to choose the "whitespace," so to speak.
249 </para>
250 <para>A C++ implementation lets us keep the good things and fix those
251 annoyances. The implementation here is more intuitive (you only
252 call it once, not in a loop with varying argument), it does not
253 affect the original string at all, and all the memory allocation
254 is handled for you.
255 </para>
256 <para>It's called stringtok, and it's a template function. Sources are
257 as below, in a less-portable form than it could be, to keep this
258 example simple (for example, see the comments on what kind of
259 string it will accept).
260 </para>
261
262 <programlisting>
263 #include &lt;string&gt;
264 template &lt;typename Container&gt;
265 void
266 stringtok(Container &amp;container, string const &amp;in,
267 const char * const delimiters = " \t\n")
268 {
269 const string::size_type len = in.length();
270 string::size_type i = 0;
271
272 while (i &lt; len)
273 {
274 // Eat leading whitespace
275 i = in.find_first_not_of(delimiters, i);
276 if (i == string::npos)
277 return; // Nothing left but white space
278
279 // Find the end of the token
280 string::size_type j = in.find_first_of(delimiters, i);
281
282 // Push token
283 if (j == string::npos)
284 {
285 container.push_back(in.substr(i));
286 return;
287 }
288 else
289 container.push_back(in.substr(i, j-i));
290
291 // Set up for next loop
292 i = j + 1;
293 }
294 }
295 </programlisting>
296
297
298 <para>
299 The author uses a more general (but less readable) form of it for
300 parsing command strings and the like. If you compiled and ran this
301 code using it:
302 </para>
303
304
305 <programlisting>
306 std::list&lt;string&gt; ls;
307 stringtok (ls, " this \t is\t\n a test ");
308 for (std::list&lt;string&gt;const_iterator i = ls.begin();
309 i != ls.end(); ++i)
310 {
311 std::cerr &lt;&lt; ':' &lt;&lt; (*i) &lt;&lt; ":\n";
312 } </programlisting>
313 <para>You would see this as output:
314 </para>
315 <programlisting>
316 :this:
317 :is:
318 :a:
319 :test: </programlisting>
320 <para>with all the whitespace removed. The original <code>s</code> is still
321 available for use, <code>ls</code> will clean up after itself, and
322 <code>ls.size()</code> will return how many tokens there were.
323 </para>
324 <para>As always, there is a price paid here, in that stringtok is not
325 as fast as strtok. The other benefits usually outweigh that, however.
326 </para>
327
328 <para><emphasis>Added February 2001:</emphasis> Mark Wilden pointed out that the
329 standard <code>std::getline()</code> function can be used with standard
330 <code>istringstreams</code> to perform
331 tokenizing as well. Build an istringstream from the input text,
332 and then use std::getline with varying delimiters (the three-argument
333 signature) to extract tokens into a string.
334 </para>
335
336
337 </section>
338 <section xml:id="strings.string.shrink" xreflabel="Shrink to Fit"><info><title>Shrink to Fit</title></info>
339
340 <para>
341 </para>
342 <para>From GCC 3.4 calling <code>s.reserve(res)</code> on a
343 <code>string s</code> with <code>res &lt; s.capacity()</code> will
344 reduce the string's capacity to <code>std::max(s.size(), res)</code>.
345 </para>
346 <para>This behaviour is suggested, but not required by the standard. Prior
347 to GCC 3.4 the following alternative can be used instead
348 </para>
349 <programlisting>
350 std::string(str.data(), str.size()).swap(str);
351 </programlisting>
352 <para>This is similar to the idiom for reducing
353 a <code>vector</code>'s memory usage
354 (see <link linkend="faq.size_equals_capacity">this FAQ
355 entry</link>) but the regular copy constructor cannot be used
356 because libstdc++'s <code>string</code> is Copy-On-Write in GCC 3.
357 </para>
358 <para>In <link linkend="status.iso.2011">C++11</link> mode you can call
359 <code>s.shrink_to_fit()</code> to achieve the same effect as
360 <code>s.reserve(s.size())</code>.
361 </para>
362
363
364 </section>
365
366 <section xml:id="strings.string.Cstring" xreflabel="CString (MFC)"><info><title>CString (MFC)</title></info>
367
368 <para>
369 </para>
370
371 <para>A common lament seen in various newsgroups deals with the Standard
372 string class as opposed to the Microsoft Foundation Class called
373 CString. Often programmers realize that a standard portable
374 answer is better than a proprietary nonportable one, but in porting
375 their application from a Win32 platform, they discover that they
376 are relying on special functions offered by the CString class.
377 </para>
378 <para>Things are not as bad as they seem. In
379 <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/ml/gcc/1999-04n/msg00236.html">this
380 message</link>, Joe Buck points out a few very important things:
381 </para>
382 <itemizedlist>
383 <listitem><para>The Standard <code>string</code> supports all the operations
384 that CString does, with three exceptions.
385 </para></listitem>
386 <listitem><para>Two of those exceptions (whitespace trimming and case
387 conversion) are trivial to implement. In fact, we do so
388 on this page.
389 </para></listitem>
390 <listitem><para>The third is <code>CString::Format</code>, which allows formatting
391 in the style of <code>sprintf</code>. This deserves some mention:
392 </para></listitem>
393 </itemizedlist>
394 <para>
395 The old libg++ library had a function called form(), which did much
396 the same thing. But for a Standard solution, you should use the
397 stringstream classes. These are the bridge between the iostream
398 hierarchy and the string class, and they operate with regular
399 streams seamlessly because they inherit from the iostream
400 hierarchy. An quick example:
401 </para>
402 <programlisting>
403 #include &lt;iostream&gt;
404 #include &lt;string&gt;
405 #include &lt;sstream&gt;
406
407 string f (string&amp; incoming) // incoming is "foo N"
408 {
409 istringstream incoming_stream(incoming);
410 string the_word;
411 int the_number;
412
413 incoming_stream &gt;&gt; the_word // extract "foo"
414 &gt;&gt; the_number; // extract N
415
416 ostringstream output_stream;
417 output_stream &lt;&lt; "The word was " &lt;&lt; the_word
418 &lt;&lt; " and 3*N was " &lt;&lt; (3*the_number);
419
420 return output_stream.str();
421 } </programlisting>
422 <para>A serious problem with CString is a design bug in its memory
423 allocation. Specifically, quoting from that same message:
424 </para>
425 <programlisting>
426 CString suffers from a common programming error that results in
427 poor performance. Consider the following code:
428
429 CString n_copies_of (const CString&amp; foo, unsigned n)
430 {
431 CString tmp;
432 for (unsigned i = 0; i &lt; n; i++)
433 tmp += foo;
434 return tmp;
435 }
436
437 This function is O(n^2), not O(n). The reason is that each +=
438 causes a reallocation and copy of the existing string. Microsoft
439 applications are full of this kind of thing (quadratic performance
440 on tasks that can be done in linear time) -- on the other hand,
441 we should be thankful, as it's created such a big market for high-end
442 ix86 hardware. :-)
443
444 If you replace CString with string in the above function, the
445 performance is O(n).
446 </programlisting>
447 <para>Joe Buck also pointed out some other things to keep in mind when
448 comparing CString and the Standard string class:
449 </para>
450 <itemizedlist>
451 <listitem><para>CString permits access to its internal representation; coders
452 who exploited that may have problems moving to <code>string</code>.
453 </para></listitem>
454 <listitem><para>Microsoft ships the source to CString (in the files
455 MFC\SRC\Str{core,ex}.cpp), so you could fix the allocation
456 bug and rebuild your MFC libraries.
457 <emphasis><emphasis>Note:</emphasis> It looks like the CString shipped
458 with VC++6.0 has fixed this, although it may in fact have been
459 one of the VC++ SPs that did it.</emphasis>
460 </para></listitem>
461 <listitem><para><code>string</code> operations like this have O(n) complexity
462 <emphasis>if the implementors do it correctly</emphasis>. The libstdc++
463 implementors did it correctly. Other vendors might not.
464 </para></listitem>
465 <listitem><para>While parts of the SGI STL are used in libstdc++, their
466 string class is not. The SGI <code>string</code> is essentially
467 <code>vector&lt;char&gt;</code> and does not do any reference
468 counting like libstdc++'s does. (It is O(n), though.)
469 So if you're thinking about SGI's string or rope classes,
470 you're now looking at four possibilities: CString, the
471 libstdc++ string, the SGI string, and the SGI rope, and this
472 is all before any allocator or traits customizations! (More
473 choices than you can shake a stick at -- want fries with that?)
474 </para></listitem>
475 </itemizedlist>
476
477 </section>
478 </section>
479
480 <!-- Sect1 03 : Interacting with C -->
481
482 </chapter>
This page took 0.060585 seconds and 4 git commands to generate.