]> gcc.gnu.org Git - gcc.git/blob - gcc/unroll.c
Better fix for loop unrolling problem.
[gcc.git] / gcc / unroll.c
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1997 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Try to unroll a loop, and split induction variables.
23
24 Loops for which the number of iterations can be calculated exactly are
25 handled specially. If the number of iterations times the insn_count is
26 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
27 Otherwise, we try to unroll the loop a number of times modulo the number
28 of iterations, so that only one exit test will be needed. It is unrolled
29 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
30 the insn count.
31
32 Otherwise, if the number of iterations can be calculated exactly at
33 run time, and the loop is always entered at the top, then we try to
34 precondition the loop. That is, at run time, calculate how many times
35 the loop will execute, and then execute the loop body a few times so
36 that the remaining iterations will be some multiple of 4 (or 2 if the
37 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
38 with only one exit test needed at the end of the loop.
39
40 Otherwise, if the number of iterations can not be calculated exactly,
41 not even at run time, then we still unroll the loop a number of times
42 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
43 but there must be an exit test after each copy of the loop body.
44
45 For each induction variable, which is dead outside the loop (replaceable)
46 or for which we can easily calculate the final value, if we can easily
47 calculate its value at each place where it is set as a function of the
48 current loop unroll count and the variable's value at loop entry, then
49 the induction variable is split into `N' different variables, one for
50 each copy of the loop body. One variable is live across the backward
51 branch, and the others are all calculated as a function of this variable.
52 This helps eliminate data dependencies, and leads to further opportunities
53 for cse. */
54
55 /* Possible improvements follow: */
56
57 /* ??? Add an extra pass somewhere to determine whether unrolling will
58 give any benefit. E.g. after generating all unrolled insns, compute the
59 cost of all insns and compare against cost of insns in rolled loop.
60
61 - On traditional architectures, unrolling a non-constant bound loop
62 is a win if there is a giv whose only use is in memory addresses, the
63 memory addresses can be split, and hence giv increments can be
64 eliminated.
65 - It is also a win if the loop is executed many times, and preconditioning
66 can be performed for the loop.
67 Add code to check for these and similar cases. */
68
69 /* ??? Improve control of which loops get unrolled. Could use profiling
70 info to only unroll the most commonly executed loops. Perhaps have
71 a user specifyable option to control the amount of code expansion,
72 or the percent of loops to consider for unrolling. Etc. */
73
74 /* ??? Look at the register copies inside the loop to see if they form a
75 simple permutation. If so, iterate the permutation until it gets back to
76 the start state. This is how many times we should unroll the loop, for
77 best results, because then all register copies can be eliminated.
78 For example, the lisp nreverse function should be unrolled 3 times
79 while (this)
80 {
81 next = this->cdr;
82 this->cdr = prev;
83 prev = this;
84 this = next;
85 }
86
87 ??? The number of times to unroll the loop may also be based on data
88 references in the loop. For example, if we have a loop that references
89 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
90
91 /* ??? Add some simple linear equation solving capability so that we can
92 determine the number of loop iterations for more complex loops.
93 For example, consider this loop from gdb
94 #define SWAP_TARGET_AND_HOST(buffer,len)
95 {
96 char tmp;
97 char *p = (char *) buffer;
98 char *q = ((char *) buffer) + len - 1;
99 int iterations = (len + 1) >> 1;
100 int i;
101 for (p; p < q; p++, q--;)
102 {
103 tmp = *q;
104 *q = *p;
105 *p = tmp;
106 }
107 }
108 Note that:
109 start value = p = &buffer + current_iteration
110 end value = q = &buffer + len - 1 - current_iteration
111 Given the loop exit test of "p < q", then there must be "q - p" iterations,
112 set equal to zero and solve for number of iterations:
113 q - p = len - 1 - 2*current_iteration = 0
114 current_iteration = (len - 1) / 2
115 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
116 iterations of this loop. */
117
118 /* ??? Currently, no labels are marked as loop invariant when doing loop
119 unrolling. This is because an insn inside the loop, that loads the address
120 of a label inside the loop into a register, could be moved outside the loop
121 by the invariant code motion pass if labels were invariant. If the loop
122 is subsequently unrolled, the code will be wrong because each unrolled
123 body of the loop will use the same address, whereas each actually needs a
124 different address. A case where this happens is when a loop containing
125 a switch statement is unrolled.
126
127 It would be better to let labels be considered invariant. When we
128 unroll loops here, check to see if any insns using a label local to the
129 loop were moved before the loop. If so, then correct the problem, by
130 moving the insn back into the loop, or perhaps replicate the insn before
131 the loop, one copy for each time the loop is unrolled. */
132
133 /* The prime factors looked for when trying to unroll a loop by some
134 number which is modulo the total number of iterations. Just checking
135 for these 4 prime factors will find at least one factor for 75% of
136 all numbers theoretically. Practically speaking, this will succeed
137 almost all of the time since loops are generally a multiple of 2
138 and/or 5. */
139
140 #define NUM_FACTORS 4
141
142 struct _factor { int factor, count; } factors[NUM_FACTORS]
143 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
144
145 /* Describes the different types of loop unrolling performed. */
146
147 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
148
149 #include "config.h"
150 #include <stdio.h>
151 #include "rtl.h"
152 #include "insn-config.h"
153 #include "integrate.h"
154 #include "regs.h"
155 #include "recog.h"
156 #include "flags.h"
157 #include "expr.h"
158 #include "loop.h"
159
160 /* This controls which loops are unrolled, and by how much we unroll
161 them. */
162
163 #ifndef MAX_UNROLLED_INSNS
164 #define MAX_UNROLLED_INSNS 100
165 #endif
166
167 /* Indexed by register number, if non-zero, then it contains a pointer
168 to a struct induction for a DEST_REG giv which has been combined with
169 one of more address givs. This is needed because whenever such a DEST_REG
170 giv is modified, we must modify the value of all split address givs
171 that were combined with this DEST_REG giv. */
172
173 static struct induction **addr_combined_regs;
174
175 /* Indexed by register number, if this is a splittable induction variable,
176 then this will hold the current value of the register, which depends on the
177 iteration number. */
178
179 static rtx *splittable_regs;
180
181 /* Indexed by register number, if this is a splittable induction variable,
182 then this will hold the number of instructions in the loop that modify
183 the induction variable. Used to ensure that only the last insn modifying
184 a split iv will update the original iv of the dest. */
185
186 static int *splittable_regs_updates;
187
188 /* Values describing the current loop's iteration variable. These are set up
189 by loop_iterations, and used by precondition_loop_p. */
190
191 static rtx loop_iteration_var;
192 static rtx loop_initial_value;
193 static rtx loop_increment;
194 static rtx loop_final_value;
195 static enum rtx_code loop_comparison_code;
196
197 /* Forward declarations. */
198
199 static void init_reg_map PROTO((struct inline_remap *, int));
200 static int precondition_loop_p PROTO((rtx *, rtx *, rtx *, rtx, rtx));
201 static rtx calculate_giv_inc PROTO((rtx, rtx, int));
202 static rtx initial_reg_note_copy PROTO((rtx, struct inline_remap *));
203 static void final_reg_note_copy PROTO((rtx, struct inline_remap *));
204 static void copy_loop_body PROTO((rtx, rtx, struct inline_remap *, rtx, int,
205 enum unroll_types, rtx, rtx, rtx, rtx));
206 void iteration_info PROTO((rtx, rtx *, rtx *, rtx, rtx));
207 static rtx approx_final_value PROTO((enum rtx_code, rtx, int *, int *));
208 static int find_splittable_regs PROTO((enum unroll_types, rtx, rtx, rtx, int));
209 static int find_splittable_givs PROTO((struct iv_class *,enum unroll_types,
210 rtx, rtx, rtx, int));
211 static int reg_dead_after_loop PROTO((rtx, rtx, rtx));
212 static rtx fold_rtx_mult_add PROTO((rtx, rtx, rtx, enum machine_mode));
213 static rtx remap_split_bivs PROTO((rtx));
214
215 /* Try to unroll one loop and split induction variables in the loop.
216
217 The loop is described by the arguments LOOP_END, INSN_COUNT, and
218 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
219 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
220 indicates whether information generated in the strength reduction pass
221 is available.
222
223 This function is intended to be called from within `strength_reduce'
224 in loop.c. */
225
226 void
227 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
228 strength_reduce_p)
229 rtx loop_end;
230 int insn_count;
231 rtx loop_start;
232 rtx end_insert_before;
233 int strength_reduce_p;
234 {
235 int i, j, temp;
236 int unroll_number = 1;
237 rtx copy_start, copy_end;
238 rtx insn, copy, sequence, pattern, tem;
239 int max_labelno, max_insnno;
240 rtx insert_before;
241 struct inline_remap *map;
242 char *local_label;
243 char *local_regno;
244 int maxregnum;
245 int new_maxregnum;
246 rtx exit_label = 0;
247 rtx start_label;
248 struct iv_class *bl;
249 int splitting_not_safe = 0;
250 enum unroll_types unroll_type;
251 int loop_preconditioned = 0;
252 rtx safety_label;
253 /* This points to the last real insn in the loop, which should be either
254 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
255 jumps). */
256 rtx last_loop_insn;
257
258 /* Don't bother unrolling huge loops. Since the minimum factor is
259 two, loops greater than one half of MAX_UNROLLED_INSNS will never
260 be unrolled. */
261 if (insn_count > MAX_UNROLLED_INSNS / 2)
262 {
263 if (loop_dump_stream)
264 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
265 return;
266 }
267
268 /* When emitting debugger info, we can't unroll loops with unequal numbers
269 of block_beg and block_end notes, because that would unbalance the block
270 structure of the function. This can happen as a result of the
271 "if (foo) bar; else break;" optimization in jump.c. */
272 /* ??? Gcc has a general policy that -g is never supposed to change the code
273 that the compiler emits, so we must disable this optimization always,
274 even if debug info is not being output. This is rare, so this should
275 not be a significant performance problem. */
276
277 if (1 /* write_symbols != NO_DEBUG */)
278 {
279 int block_begins = 0;
280 int block_ends = 0;
281
282 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
283 {
284 if (GET_CODE (insn) == NOTE)
285 {
286 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
287 block_begins++;
288 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
289 block_ends++;
290 }
291 }
292
293 if (block_begins != block_ends)
294 {
295 if (loop_dump_stream)
296 fprintf (loop_dump_stream,
297 "Unrolling failure: Unbalanced block notes.\n");
298 return;
299 }
300 }
301
302 /* Determine type of unroll to perform. Depends on the number of iterations
303 and the size of the loop. */
304
305 /* If there is no strength reduce info, then set loop_n_iterations to zero.
306 This can happen if strength_reduce can't find any bivs in the loop.
307 A value of zero indicates that the number of iterations could not be
308 calculated. */
309
310 if (! strength_reduce_p)
311 loop_n_iterations = 0;
312
313 if (loop_dump_stream && loop_n_iterations > 0)
314 fprintf (loop_dump_stream,
315 "Loop unrolling: %d iterations.\n", loop_n_iterations);
316
317 /* Find and save a pointer to the last nonnote insn in the loop. */
318
319 last_loop_insn = prev_nonnote_insn (loop_end);
320
321 /* Calculate how many times to unroll the loop. Indicate whether or
322 not the loop is being completely unrolled. */
323
324 if (loop_n_iterations == 1)
325 {
326 /* If number of iterations is exactly 1, then eliminate the compare and
327 branch at the end of the loop since they will never be taken.
328 Then return, since no other action is needed here. */
329
330 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
331 don't do anything. */
332
333 if (GET_CODE (last_loop_insn) == BARRIER)
334 {
335 /* Delete the jump insn. This will delete the barrier also. */
336 delete_insn (PREV_INSN (last_loop_insn));
337 }
338 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
339 {
340 #ifdef HAVE_cc0
341 /* The immediately preceding insn is a compare which must be
342 deleted. */
343 delete_insn (last_loop_insn);
344 delete_insn (PREV_INSN (last_loop_insn));
345 #else
346 /* The immediately preceding insn may not be the compare, so don't
347 delete it. */
348 delete_insn (last_loop_insn);
349 #endif
350 }
351 return;
352 }
353 else if (loop_n_iterations > 0
354 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
355 {
356 unroll_number = loop_n_iterations;
357 unroll_type = UNROLL_COMPLETELY;
358 }
359 else if (loop_n_iterations > 0)
360 {
361 /* Try to factor the number of iterations. Don't bother with the
362 general case, only using 2, 3, 5, and 7 will get 75% of all
363 numbers theoretically, and almost all in practice. */
364
365 for (i = 0; i < NUM_FACTORS; i++)
366 factors[i].count = 0;
367
368 temp = loop_n_iterations;
369 for (i = NUM_FACTORS - 1; i >= 0; i--)
370 while (temp % factors[i].factor == 0)
371 {
372 factors[i].count++;
373 temp = temp / factors[i].factor;
374 }
375
376 /* Start with the larger factors first so that we generally
377 get lots of unrolling. */
378
379 unroll_number = 1;
380 temp = insn_count;
381 for (i = 3; i >= 0; i--)
382 while (factors[i].count--)
383 {
384 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
385 {
386 unroll_number *= factors[i].factor;
387 temp *= factors[i].factor;
388 }
389 else
390 break;
391 }
392
393 /* If we couldn't find any factors, then unroll as in the normal
394 case. */
395 if (unroll_number == 1)
396 {
397 if (loop_dump_stream)
398 fprintf (loop_dump_stream,
399 "Loop unrolling: No factors found.\n");
400 }
401 else
402 unroll_type = UNROLL_MODULO;
403 }
404
405
406 /* Default case, calculate number of times to unroll loop based on its
407 size. */
408 if (unroll_number == 1)
409 {
410 if (8 * insn_count < MAX_UNROLLED_INSNS)
411 unroll_number = 8;
412 else if (4 * insn_count < MAX_UNROLLED_INSNS)
413 unroll_number = 4;
414 else
415 unroll_number = 2;
416
417 unroll_type = UNROLL_NAIVE;
418 }
419
420 /* Now we know how many times to unroll the loop. */
421
422 if (loop_dump_stream)
423 fprintf (loop_dump_stream,
424 "Unrolling loop %d times.\n", unroll_number);
425
426
427 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
428 {
429 /* Loops of these types should never start with a jump down to
430 the exit condition test. For now, check for this case just to
431 be sure. UNROLL_NAIVE loops can be of this form, this case is
432 handled below. */
433 insn = loop_start;
434 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
435 insn = NEXT_INSN (insn);
436 if (GET_CODE (insn) == JUMP_INSN)
437 abort ();
438 }
439
440 if (unroll_type == UNROLL_COMPLETELY)
441 {
442 /* Completely unrolling the loop: Delete the compare and branch at
443 the end (the last two instructions). This delete must done at the
444 very end of loop unrolling, to avoid problems with calls to
445 back_branch_in_range_p, which is called by find_splittable_regs.
446 All increments of splittable bivs/givs are changed to load constant
447 instructions. */
448
449 copy_start = loop_start;
450
451 /* Set insert_before to the instruction immediately after the JUMP_INSN
452 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
453 the loop will be correctly handled by copy_loop_body. */
454 insert_before = NEXT_INSN (last_loop_insn);
455
456 /* Set copy_end to the insn before the jump at the end of the loop. */
457 if (GET_CODE (last_loop_insn) == BARRIER)
458 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
459 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
460 {
461 #ifdef HAVE_cc0
462 /* The instruction immediately before the JUMP_INSN is a compare
463 instruction which we do not want to copy. */
464 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
465 #else
466 /* The instruction immediately before the JUMP_INSN may not be the
467 compare, so we must copy it. */
468 copy_end = PREV_INSN (last_loop_insn);
469 #endif
470 }
471 else
472 {
473 /* We currently can't unroll a loop if it doesn't end with a
474 JUMP_INSN. There would need to be a mechanism that recognizes
475 this case, and then inserts a jump after each loop body, which
476 jumps to after the last loop body. */
477 if (loop_dump_stream)
478 fprintf (loop_dump_stream,
479 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
480 return;
481 }
482 }
483 else if (unroll_type == UNROLL_MODULO)
484 {
485 /* Partially unrolling the loop: The compare and branch at the end
486 (the last two instructions) must remain. Don't copy the compare
487 and branch instructions at the end of the loop. Insert the unrolled
488 code immediately before the compare/branch at the end so that the
489 code will fall through to them as before. */
490
491 copy_start = loop_start;
492
493 /* Set insert_before to the jump insn at the end of the loop.
494 Set copy_end to before the jump insn at the end of the loop. */
495 if (GET_CODE (last_loop_insn) == BARRIER)
496 {
497 insert_before = PREV_INSN (last_loop_insn);
498 copy_end = PREV_INSN (insert_before);
499 }
500 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
501 {
502 #ifdef HAVE_cc0
503 /* The instruction immediately before the JUMP_INSN is a compare
504 instruction which we do not want to copy or delete. */
505 insert_before = PREV_INSN (last_loop_insn);
506 copy_end = PREV_INSN (insert_before);
507 #else
508 /* The instruction immediately before the JUMP_INSN may not be the
509 compare, so we must copy it. */
510 insert_before = last_loop_insn;
511 copy_end = PREV_INSN (last_loop_insn);
512 #endif
513 }
514 else
515 {
516 /* We currently can't unroll a loop if it doesn't end with a
517 JUMP_INSN. There would need to be a mechanism that recognizes
518 this case, and then inserts a jump after each loop body, which
519 jumps to after the last loop body. */
520 if (loop_dump_stream)
521 fprintf (loop_dump_stream,
522 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
523 return;
524 }
525 }
526 else
527 {
528 /* Normal case: Must copy the compare and branch instructions at the
529 end of the loop. */
530
531 if (GET_CODE (last_loop_insn) == BARRIER)
532 {
533 /* Loop ends with an unconditional jump and a barrier.
534 Handle this like above, don't copy jump and barrier.
535 This is not strictly necessary, but doing so prevents generating
536 unconditional jumps to an immediately following label.
537
538 This will be corrected below if the target of this jump is
539 not the start_label. */
540
541 insert_before = PREV_INSN (last_loop_insn);
542 copy_end = PREV_INSN (insert_before);
543 }
544 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
545 {
546 /* Set insert_before to immediately after the JUMP_INSN, so that
547 NOTEs at the end of the loop will be correctly handled by
548 copy_loop_body. */
549 insert_before = NEXT_INSN (last_loop_insn);
550 copy_end = last_loop_insn;
551 }
552 else
553 {
554 /* We currently can't unroll a loop if it doesn't end with a
555 JUMP_INSN. There would need to be a mechanism that recognizes
556 this case, and then inserts a jump after each loop body, which
557 jumps to after the last loop body. */
558 if (loop_dump_stream)
559 fprintf (loop_dump_stream,
560 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
561 return;
562 }
563
564 /* If copying exit test branches because they can not be eliminated,
565 then must convert the fall through case of the branch to a jump past
566 the end of the loop. Create a label to emit after the loop and save
567 it for later use. Do not use the label after the loop, if any, since
568 it might be used by insns outside the loop, or there might be insns
569 added before it later by final_[bg]iv_value which must be after
570 the real exit label. */
571 exit_label = gen_label_rtx ();
572
573 insn = loop_start;
574 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
575 insn = NEXT_INSN (insn);
576
577 if (GET_CODE (insn) == JUMP_INSN)
578 {
579 /* The loop starts with a jump down to the exit condition test.
580 Start copying the loop after the barrier following this
581 jump insn. */
582 copy_start = NEXT_INSN (insn);
583
584 /* Splitting induction variables doesn't work when the loop is
585 entered via a jump to the bottom, because then we end up doing
586 a comparison against a new register for a split variable, but
587 we did not execute the set insn for the new register because
588 it was skipped over. */
589 splitting_not_safe = 1;
590 if (loop_dump_stream)
591 fprintf (loop_dump_stream,
592 "Splitting not safe, because loop not entered at top.\n");
593 }
594 else
595 copy_start = loop_start;
596 }
597
598 /* This should always be the first label in the loop. */
599 start_label = NEXT_INSN (copy_start);
600 /* There may be a line number note and/or a loop continue note here. */
601 while (GET_CODE (start_label) == NOTE)
602 start_label = NEXT_INSN (start_label);
603 if (GET_CODE (start_label) != CODE_LABEL)
604 {
605 /* This can happen as a result of jump threading. If the first insns in
606 the loop test the same condition as the loop's backward jump, or the
607 opposite condition, then the backward jump will be modified to point
608 to elsewhere, and the loop's start label is deleted.
609
610 This case currently can not be handled by the loop unrolling code. */
611
612 if (loop_dump_stream)
613 fprintf (loop_dump_stream,
614 "Unrolling failure: unknown insns between BEG note and loop label.\n");
615 return;
616 }
617 if (LABEL_NAME (start_label))
618 {
619 /* The jump optimization pass must have combined the original start label
620 with a named label for a goto. We can't unroll this case because
621 jumps which go to the named label must be handled differently than
622 jumps to the loop start, and it is impossible to differentiate them
623 in this case. */
624 if (loop_dump_stream)
625 fprintf (loop_dump_stream,
626 "Unrolling failure: loop start label is gone\n");
627 return;
628 }
629
630 if (unroll_type == UNROLL_NAIVE
631 && GET_CODE (last_loop_insn) == BARRIER
632 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
633 {
634 /* In this case, we must copy the jump and barrier, because they will
635 not be converted to jumps to an immediately following label. */
636
637 insert_before = NEXT_INSN (last_loop_insn);
638 copy_end = last_loop_insn;
639 }
640
641 if (unroll_type == UNROLL_NAIVE
642 && GET_CODE (last_loop_insn) == JUMP_INSN
643 && start_label != JUMP_LABEL (last_loop_insn))
644 {
645 /* ??? The loop ends with a conditional branch that does not branch back
646 to the loop start label. In this case, we must emit an unconditional
647 branch to the loop exit after emitting the final branch.
648 copy_loop_body does not have support for this currently, so we
649 give up. It doesn't seem worthwhile to unroll anyways since
650 unrolling would increase the number of branch instructions
651 executed. */
652 if (loop_dump_stream)
653 fprintf (loop_dump_stream,
654 "Unrolling failure: final conditional branch not to loop start\n");
655 return;
656 }
657
658 /* Allocate a translation table for the labels and insn numbers.
659 They will be filled in as we copy the insns in the loop. */
660
661 max_labelno = max_label_num ();
662 max_insnno = get_max_uid ();
663
664 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
665
666 map->integrating = 0;
667
668 /* Allocate the label map. */
669
670 if (max_labelno > 0)
671 {
672 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
673
674 local_label = (char *) alloca (max_labelno);
675 bzero (local_label, max_labelno);
676 }
677 else
678 map->label_map = 0;
679
680 /* Search the loop and mark all local labels, i.e. the ones which have to
681 be distinct labels when copied. For all labels which might be
682 non-local, set their label_map entries to point to themselves.
683 If they happen to be local their label_map entries will be overwritten
684 before the loop body is copied. The label_map entries for local labels
685 will be set to a different value each time the loop body is copied. */
686
687 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
688 {
689 if (GET_CODE (insn) == CODE_LABEL)
690 local_label[CODE_LABEL_NUMBER (insn)] = 1;
691 else if (GET_CODE (insn) == JUMP_INSN)
692 {
693 if (JUMP_LABEL (insn))
694 map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))]
695 = JUMP_LABEL (insn);
696 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
697 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
698 {
699 rtx pat = PATTERN (insn);
700 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
701 int len = XVECLEN (pat, diff_vec_p);
702 rtx label;
703
704 for (i = 0; i < len; i++)
705 {
706 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
707 map->label_map[CODE_LABEL_NUMBER (label)] = label;
708 }
709 }
710 }
711 }
712
713 /* Allocate space for the insn map. */
714
715 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
716
717 /* Set this to zero, to indicate that we are doing loop unrolling,
718 not function inlining. */
719 map->inline_target = 0;
720
721 /* The register and constant maps depend on the number of registers
722 present, so the final maps can't be created until after
723 find_splittable_regs is called. However, they are needed for
724 preconditioning, so we create temporary maps when preconditioning
725 is performed. */
726
727 /* The preconditioning code may allocate two new pseudo registers. */
728 maxregnum = max_reg_num ();
729
730 /* Allocate and zero out the splittable_regs and addr_combined_regs
731 arrays. These must be zeroed here because they will be used if
732 loop preconditioning is performed, and must be zero for that case.
733
734 It is safe to do this here, since the extra registers created by the
735 preconditioning code and find_splittable_regs will never be used
736 to access the splittable_regs[] and addr_combined_regs[] arrays. */
737
738 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
739 bzero ((char *) splittable_regs, maxregnum * sizeof (rtx));
740 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
741 bzero ((char *) splittable_regs_updates, maxregnum * sizeof (int));
742 addr_combined_regs
743 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
744 bzero ((char *) addr_combined_regs, maxregnum * sizeof (struct induction *));
745 /* We must limit it to max_reg_before_loop, because only these pseudo
746 registers have valid regno_first_uid info. Any register created after
747 that is unlikely to be local to the loop anyways. */
748 local_regno = (char *) alloca (max_reg_before_loop);
749 bzero (local_regno, max_reg_before_loop);
750
751 /* Mark all local registers, i.e. the ones which are referenced only
752 inside the loop. */
753 if (INSN_UID (copy_end) < max_uid_for_loop)
754 {
755 int copy_start_luid = INSN_LUID (copy_start);
756 int copy_end_luid = INSN_LUID (copy_end);
757
758 /* If a register is used in the jump insn, we must not duplicate it
759 since it will also be used outside the loop. */
760 if (GET_CODE (copy_end) == JUMP_INSN)
761 copy_end_luid--;
762 /* If copy_start points to the NOTE that starts the loop, then we must
763 use the next luid, because invariant pseudo-regs moved out of the loop
764 have their lifetimes modified to start here, but they are not safe
765 to duplicate. */
766 if (copy_start == loop_start)
767 copy_start_luid++;
768
769 /* If a pseudo's lifetime is entirely contained within this loop, then we
770 can use a different pseudo in each unrolled copy of the loop. This
771 results in better code. */
772 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; ++j)
773 if (REGNO_FIRST_UID (j) > 0 && REGNO_FIRST_UID (j) <= max_uid_for_loop
774 && uid_luid[REGNO_FIRST_UID (j)] >= copy_start_luid
775 && REGNO_LAST_UID (j) > 0 && REGNO_LAST_UID (j) <= max_uid_for_loop
776 && uid_luid[REGNO_LAST_UID (j)] <= copy_end_luid)
777 {
778 /* However, we must also check for loop-carried dependencies.
779 If the value the pseudo has at the end of iteration X is
780 used by iteration X+1, then we can not use a different pseudo
781 for each unrolled copy of the loop. */
782 /* A pseudo is safe if regno_first_uid is a set, and this
783 set dominates all instructions from regno_first_uid to
784 regno_last_uid. */
785 /* ??? This check is simplistic. We would get better code if
786 this check was more sophisticated. */
787 if (set_dominates_use (j, REGNO_FIRST_UID (j), REGNO_LAST_UID (j),
788 copy_start, copy_end))
789 local_regno[j] = 1;
790
791 if (loop_dump_stream)
792 {
793 if (local_regno[j])
794 fprintf (loop_dump_stream, "Marked reg %d as local\n", j);
795 else
796 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
797 j);
798 }
799 }
800 }
801
802 /* If this loop requires exit tests when unrolled, check to see if we
803 can precondition the loop so as to make the exit tests unnecessary.
804 Just like variable splitting, this is not safe if the loop is entered
805 via a jump to the bottom. Also, can not do this if no strength
806 reduce info, because precondition_loop_p uses this info. */
807
808 /* Must copy the loop body for preconditioning before the following
809 find_splittable_regs call since that will emit insns which need to
810 be after the preconditioned loop copies, but immediately before the
811 unrolled loop copies. */
812
813 /* Also, it is not safe to split induction variables for the preconditioned
814 copies of the loop body. If we split induction variables, then the code
815 assumes that each induction variable can be represented as a function
816 of its initial value and the loop iteration number. This is not true
817 in this case, because the last preconditioned copy of the loop body
818 could be any iteration from the first up to the `unroll_number-1'th,
819 depending on the initial value of the iteration variable. Therefore
820 we can not split induction variables here, because we can not calculate
821 their value. Hence, this code must occur before find_splittable_regs
822 is called. */
823
824 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
825 {
826 rtx initial_value, final_value, increment;
827
828 if (precondition_loop_p (&initial_value, &final_value, &increment,
829 loop_start, loop_end))
830 {
831 register rtx diff, temp;
832 enum machine_mode mode;
833 rtx *labels;
834 int abs_inc, neg_inc;
835
836 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
837
838 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
839 map->const_age_map = (unsigned *) alloca (maxregnum
840 * sizeof (unsigned));
841 map->const_equiv_map_size = maxregnum;
842 global_const_equiv_map = map->const_equiv_map;
843 global_const_equiv_map_size = maxregnum;
844
845 init_reg_map (map, maxregnum);
846
847 /* Limit loop unrolling to 4, since this will make 7 copies of
848 the loop body. */
849 if (unroll_number > 4)
850 unroll_number = 4;
851
852 /* Save the absolute value of the increment, and also whether or
853 not it is negative. */
854 neg_inc = 0;
855 abs_inc = INTVAL (increment);
856 if (abs_inc < 0)
857 {
858 abs_inc = - abs_inc;
859 neg_inc = 1;
860 }
861
862 start_sequence ();
863
864 /* Decide what mode to do these calculations in. Choose the larger
865 of final_value's mode and initial_value's mode, or a full-word if
866 both are constants. */
867 mode = GET_MODE (final_value);
868 if (mode == VOIDmode)
869 {
870 mode = GET_MODE (initial_value);
871 if (mode == VOIDmode)
872 mode = word_mode;
873 }
874 else if (mode != GET_MODE (initial_value)
875 && (GET_MODE_SIZE (mode)
876 < GET_MODE_SIZE (GET_MODE (initial_value))))
877 mode = GET_MODE (initial_value);
878
879 /* Calculate the difference between the final and initial values.
880 Final value may be a (plus (reg x) (const_int 1)) rtx.
881 Let the following cse pass simplify this if initial value is
882 a constant.
883
884 We must copy the final and initial values here to avoid
885 improperly shared rtl. */
886
887 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
888 copy_rtx (initial_value), NULL_RTX, 0,
889 OPTAB_LIB_WIDEN);
890
891 /* Now calculate (diff % (unroll * abs (increment))) by using an
892 and instruction. */
893 diff = expand_binop (GET_MODE (diff), and_optab, diff,
894 GEN_INT (unroll_number * abs_inc - 1),
895 NULL_RTX, 0, OPTAB_LIB_WIDEN);
896
897 /* Now emit a sequence of branches to jump to the proper precond
898 loop entry point. */
899
900 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
901 for (i = 0; i < unroll_number; i++)
902 labels[i] = gen_label_rtx ();
903
904 /* Check for the case where the initial value is greater than or
905 equal to the final value. In that case, we want to execute
906 exactly one loop iteration. The code below will fail for this
907 case. This check does not apply if the loop has a NE
908 comparison at the end. */
909
910 if (loop_comparison_code != NE)
911 {
912 emit_cmp_insn (initial_value, final_value, neg_inc ? LE : GE,
913 NULL_RTX, mode, 0, 0);
914 if (neg_inc)
915 emit_jump_insn (gen_ble (labels[1]));
916 else
917 emit_jump_insn (gen_bge (labels[1]));
918 JUMP_LABEL (get_last_insn ()) = labels[1];
919 LABEL_NUSES (labels[1])++;
920 }
921
922 /* Assuming the unroll_number is 4, and the increment is 2, then
923 for a negative increment: for a positive increment:
924 diff = 0,1 precond 0 diff = 0,7 precond 0
925 diff = 2,3 precond 3 diff = 1,2 precond 1
926 diff = 4,5 precond 2 diff = 3,4 precond 2
927 diff = 6,7 precond 1 diff = 5,6 precond 3 */
928
929 /* We only need to emit (unroll_number - 1) branches here, the
930 last case just falls through to the following code. */
931
932 /* ??? This would give better code if we emitted a tree of branches
933 instead of the current linear list of branches. */
934
935 for (i = 0; i < unroll_number - 1; i++)
936 {
937 int cmp_const;
938 enum rtx_code cmp_code;
939
940 /* For negative increments, must invert the constant compared
941 against, except when comparing against zero. */
942 if (i == 0)
943 {
944 cmp_const = 0;
945 cmp_code = EQ;
946 }
947 else if (neg_inc)
948 {
949 cmp_const = unroll_number - i;
950 cmp_code = GE;
951 }
952 else
953 {
954 cmp_const = i;
955 cmp_code = LE;
956 }
957
958 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
959 cmp_code, NULL_RTX, mode, 0, 0);
960
961 if (i == 0)
962 emit_jump_insn (gen_beq (labels[i]));
963 else if (neg_inc)
964 emit_jump_insn (gen_bge (labels[i]));
965 else
966 emit_jump_insn (gen_ble (labels[i]));
967 JUMP_LABEL (get_last_insn ()) = labels[i];
968 LABEL_NUSES (labels[i])++;
969 }
970
971 /* If the increment is greater than one, then we need another branch,
972 to handle other cases equivalent to 0. */
973
974 /* ??? This should be merged into the code above somehow to help
975 simplify the code here, and reduce the number of branches emitted.
976 For the negative increment case, the branch here could easily
977 be merged with the `0' case branch above. For the positive
978 increment case, it is not clear how this can be simplified. */
979
980 if (abs_inc != 1)
981 {
982 int cmp_const;
983 enum rtx_code cmp_code;
984
985 if (neg_inc)
986 {
987 cmp_const = abs_inc - 1;
988 cmp_code = LE;
989 }
990 else
991 {
992 cmp_const = abs_inc * (unroll_number - 1) + 1;
993 cmp_code = GE;
994 }
995
996 emit_cmp_insn (diff, GEN_INT (cmp_const), cmp_code, NULL_RTX,
997 mode, 0, 0);
998
999 if (neg_inc)
1000 emit_jump_insn (gen_ble (labels[0]));
1001 else
1002 emit_jump_insn (gen_bge (labels[0]));
1003 JUMP_LABEL (get_last_insn ()) = labels[0];
1004 LABEL_NUSES (labels[0])++;
1005 }
1006
1007 sequence = gen_sequence ();
1008 end_sequence ();
1009 emit_insn_before (sequence, loop_start);
1010
1011 /* Only the last copy of the loop body here needs the exit
1012 test, so set copy_end to exclude the compare/branch here,
1013 and then reset it inside the loop when get to the last
1014 copy. */
1015
1016 if (GET_CODE (last_loop_insn) == BARRIER)
1017 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1018 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1019 {
1020 #ifdef HAVE_cc0
1021 /* The immediately preceding insn is a compare which we do not
1022 want to copy. */
1023 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1024 #else
1025 /* The immediately preceding insn may not be a compare, so we
1026 must copy it. */
1027 copy_end = PREV_INSN (last_loop_insn);
1028 #endif
1029 }
1030 else
1031 abort ();
1032
1033 for (i = 1; i < unroll_number; i++)
1034 {
1035 emit_label_after (labels[unroll_number - i],
1036 PREV_INSN (loop_start));
1037
1038 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1039 bzero ((char *) map->const_equiv_map, maxregnum * sizeof (rtx));
1040 bzero ((char *) map->const_age_map,
1041 maxregnum * sizeof (unsigned));
1042 map->const_age = 0;
1043
1044 for (j = 0; j < max_labelno; j++)
1045 if (local_label[j])
1046 map->label_map[j] = gen_label_rtx ();
1047
1048 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1049 if (local_regno[j])
1050 {
1051 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1052 record_base_value (REGNO (map->reg_map[j]),
1053 regno_reg_rtx[j]);
1054 }
1055 /* The last copy needs the compare/branch insns at the end,
1056 so reset copy_end here if the loop ends with a conditional
1057 branch. */
1058
1059 if (i == unroll_number - 1)
1060 {
1061 if (GET_CODE (last_loop_insn) == BARRIER)
1062 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1063 else
1064 copy_end = last_loop_insn;
1065 }
1066
1067 /* None of the copies are the `last_iteration', so just
1068 pass zero for that parameter. */
1069 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
1070 unroll_type, start_label, loop_end,
1071 loop_start, copy_end);
1072 }
1073 emit_label_after (labels[0], PREV_INSN (loop_start));
1074
1075 if (GET_CODE (last_loop_insn) == BARRIER)
1076 {
1077 insert_before = PREV_INSN (last_loop_insn);
1078 copy_end = PREV_INSN (insert_before);
1079 }
1080 else
1081 {
1082 #ifdef HAVE_cc0
1083 /* The immediately preceding insn is a compare which we do not
1084 want to copy. */
1085 insert_before = PREV_INSN (last_loop_insn);
1086 copy_end = PREV_INSN (insert_before);
1087 #else
1088 /* The immediately preceding insn may not be a compare, so we
1089 must copy it. */
1090 insert_before = last_loop_insn;
1091 copy_end = PREV_INSN (last_loop_insn);
1092 #endif
1093 }
1094
1095 /* Set unroll type to MODULO now. */
1096 unroll_type = UNROLL_MODULO;
1097 loop_preconditioned = 1;
1098
1099 #ifdef HAIFA
1100 /* Fix the initial value for the loop as needed. */
1101 if (loop_n_iterations <= 0)
1102 loop_start_value [uid_loop_num [INSN_UID (loop_start)]]
1103 = initial_value;
1104 #endif
1105 }
1106 }
1107
1108 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1109 the loop unless all loops are being unrolled. */
1110 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1111 {
1112 if (loop_dump_stream)
1113 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
1114 return;
1115 }
1116
1117 /* At this point, we are guaranteed to unroll the loop. */
1118
1119 /* Keep track of the unroll factor for each loop. */
1120 if (unroll_type == UNROLL_COMPLETELY)
1121 loop_unroll_factor [uid_loop_num [INSN_UID (loop_start)]] = -1;
1122 else
1123 loop_unroll_factor [uid_loop_num [INSN_UID (loop_start)]] = unroll_number;
1124
1125
1126 /* For each biv and giv, determine whether it can be safely split into
1127 a different variable for each unrolled copy of the loop body.
1128 We precalculate and save this info here, since computing it is
1129 expensive.
1130
1131 Do this before deleting any instructions from the loop, so that
1132 back_branch_in_range_p will work correctly. */
1133
1134 if (splitting_not_safe)
1135 temp = 0;
1136 else
1137 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
1138 end_insert_before, unroll_number);
1139
1140 /* find_splittable_regs may have created some new registers, so must
1141 reallocate the reg_map with the new larger size, and must realloc
1142 the constant maps also. */
1143
1144 maxregnum = max_reg_num ();
1145 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
1146
1147 init_reg_map (map, maxregnum);
1148
1149 /* Space is needed in some of the map for new registers, so new_maxregnum
1150 is an (over)estimate of how many registers will exist at the end. */
1151 new_maxregnum = maxregnum + (temp * unroll_number * 2);
1152
1153 /* Must realloc space for the constant maps, because the number of registers
1154 may have changed. */
1155
1156 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1157 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1158
1159 map->const_equiv_map_size = new_maxregnum;
1160 global_const_equiv_map = map->const_equiv_map;
1161 global_const_equiv_map_size = new_maxregnum;
1162
1163 /* Search the list of bivs and givs to find ones which need to be remapped
1164 when split, and set their reg_map entry appropriately. */
1165
1166 for (bl = loop_iv_list; bl; bl = bl->next)
1167 {
1168 if (REGNO (bl->biv->src_reg) != bl->regno)
1169 map->reg_map[bl->regno] = bl->biv->src_reg;
1170 #if 0
1171 /* Currently, non-reduced/final-value givs are never split. */
1172 for (v = bl->giv; v; v = v->next_iv)
1173 if (REGNO (v->src_reg) != bl->regno)
1174 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1175 #endif
1176 }
1177
1178 /* Use our current register alignment and pointer flags. */
1179 map->regno_pointer_flag = regno_pointer_flag;
1180 map->regno_pointer_align = regno_pointer_align;
1181
1182 /* If the loop is being partially unrolled, and the iteration variables
1183 are being split, and are being renamed for the split, then must fix up
1184 the compare/jump instruction at the end of the loop to refer to the new
1185 registers. This compare isn't copied, so the registers used in it
1186 will never be replaced if it isn't done here. */
1187
1188 if (unroll_type == UNROLL_MODULO)
1189 {
1190 insn = NEXT_INSN (copy_end);
1191 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1192 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1193 }
1194
1195 /* For unroll_number - 1 times, make a copy of each instruction
1196 between copy_start and copy_end, and insert these new instructions
1197 before the end of the loop. */
1198
1199 for (i = 0; i < unroll_number; i++)
1200 {
1201 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1202 bzero ((char *) map->const_equiv_map, new_maxregnum * sizeof (rtx));
1203 bzero ((char *) map->const_age_map, new_maxregnum * sizeof (unsigned));
1204 map->const_age = 0;
1205
1206 for (j = 0; j < max_labelno; j++)
1207 if (local_label[j])
1208 map->label_map[j] = gen_label_rtx ();
1209
1210 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1211 if (local_regno[j])
1212 {
1213 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1214 record_base_value (REGNO (map->reg_map[j]),
1215 regno_reg_rtx[j]);
1216 }
1217
1218 /* If loop starts with a branch to the test, then fix it so that
1219 it points to the test of the first unrolled copy of the loop. */
1220 if (i == 0 && loop_start != copy_start)
1221 {
1222 insn = PREV_INSN (copy_start);
1223 pattern = PATTERN (insn);
1224
1225 tem = map->label_map[CODE_LABEL_NUMBER
1226 (XEXP (SET_SRC (pattern), 0))];
1227 SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
1228
1229 /* Set the jump label so that it can be used by later loop unrolling
1230 passes. */
1231 JUMP_LABEL (insn) = tem;
1232 LABEL_NUSES (tem)++;
1233 }
1234
1235 copy_loop_body (copy_start, copy_end, map, exit_label,
1236 i == unroll_number - 1, unroll_type, start_label,
1237 loop_end, insert_before, insert_before);
1238 }
1239
1240 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1241 insn to be deleted. This prevents any runaway delete_insn call from
1242 more insns that it should, as it always stops at a CODE_LABEL. */
1243
1244 /* Delete the compare and branch at the end of the loop if completely
1245 unrolling the loop. Deleting the backward branch at the end also
1246 deletes the code label at the start of the loop. This is done at
1247 the very end to avoid problems with back_branch_in_range_p. */
1248
1249 if (unroll_type == UNROLL_COMPLETELY)
1250 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1251 else
1252 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1253
1254 /* Delete all of the original loop instructions. Don't delete the
1255 LOOP_BEG note, or the first code label in the loop. */
1256
1257 insn = NEXT_INSN (copy_start);
1258 while (insn != safety_label)
1259 {
1260 if (insn != start_label)
1261 insn = delete_insn (insn);
1262 else
1263 insn = NEXT_INSN (insn);
1264 }
1265
1266 /* Can now delete the 'safety' label emitted to protect us from runaway
1267 delete_insn calls. */
1268 if (INSN_DELETED_P (safety_label))
1269 abort ();
1270 delete_insn (safety_label);
1271
1272 /* If exit_label exists, emit it after the loop. Doing the emit here
1273 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1274 This is needed so that mostly_true_jump in reorg.c will treat jumps
1275 to this loop end label correctly, i.e. predict that they are usually
1276 not taken. */
1277 if (exit_label)
1278 emit_label_after (exit_label, loop_end);
1279 }
1280 \f
1281 /* Return true if the loop can be safely, and profitably, preconditioned
1282 so that the unrolled copies of the loop body don't need exit tests.
1283
1284 This only works if final_value, initial_value and increment can be
1285 determined, and if increment is a constant power of 2.
1286 If increment is not a power of 2, then the preconditioning modulo
1287 operation would require a real modulo instead of a boolean AND, and this
1288 is not considered `profitable'. */
1289
1290 /* ??? If the loop is known to be executed very many times, or the machine
1291 has a very cheap divide instruction, then preconditioning is a win even
1292 when the increment is not a power of 2. Use RTX_COST to compute
1293 whether divide is cheap. */
1294
1295 static int
1296 precondition_loop_p (initial_value, final_value, increment, loop_start,
1297 loop_end)
1298 rtx *initial_value, *final_value, *increment;
1299 rtx loop_start, loop_end;
1300 {
1301
1302 if (loop_n_iterations > 0)
1303 {
1304 *initial_value = const0_rtx;
1305 *increment = const1_rtx;
1306 *final_value = GEN_INT (loop_n_iterations);
1307
1308 if (loop_dump_stream)
1309 fprintf (loop_dump_stream,
1310 "Preconditioning: Success, number of iterations known, %d.\n",
1311 loop_n_iterations);
1312 return 1;
1313 }
1314
1315 if (loop_initial_value == 0)
1316 {
1317 if (loop_dump_stream)
1318 fprintf (loop_dump_stream,
1319 "Preconditioning: Could not find initial value.\n");
1320 return 0;
1321 }
1322 else if (loop_increment == 0)
1323 {
1324 if (loop_dump_stream)
1325 fprintf (loop_dump_stream,
1326 "Preconditioning: Could not find increment value.\n");
1327 return 0;
1328 }
1329 else if (GET_CODE (loop_increment) != CONST_INT)
1330 {
1331 if (loop_dump_stream)
1332 fprintf (loop_dump_stream,
1333 "Preconditioning: Increment not a constant.\n");
1334 return 0;
1335 }
1336 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1337 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1338 {
1339 if (loop_dump_stream)
1340 fprintf (loop_dump_stream,
1341 "Preconditioning: Increment not a constant power of 2.\n");
1342 return 0;
1343 }
1344
1345 /* Unsigned_compare and compare_dir can be ignored here, since they do
1346 not matter for preconditioning. */
1347
1348 if (loop_final_value == 0)
1349 {
1350 if (loop_dump_stream)
1351 fprintf (loop_dump_stream,
1352 "Preconditioning: EQ comparison loop.\n");
1353 return 0;
1354 }
1355
1356 /* Must ensure that final_value is invariant, so call invariant_p to
1357 check. Before doing so, must check regno against max_reg_before_loop
1358 to make sure that the register is in the range covered by invariant_p.
1359 If it isn't, then it is most likely a biv/giv which by definition are
1360 not invariant. */
1361 if ((GET_CODE (loop_final_value) == REG
1362 && REGNO (loop_final_value) >= max_reg_before_loop)
1363 || (GET_CODE (loop_final_value) == PLUS
1364 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1365 || ! invariant_p (loop_final_value))
1366 {
1367 if (loop_dump_stream)
1368 fprintf (loop_dump_stream,
1369 "Preconditioning: Final value not invariant.\n");
1370 return 0;
1371 }
1372
1373 /* Fail for floating point values, since the caller of this function
1374 does not have code to deal with them. */
1375 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1376 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
1377 {
1378 if (loop_dump_stream)
1379 fprintf (loop_dump_stream,
1380 "Preconditioning: Floating point final or initial value.\n");
1381 return 0;
1382 }
1383
1384 /* Now set initial_value to be the iteration_var, since that may be a
1385 simpler expression, and is guaranteed to be correct if all of the
1386 above tests succeed.
1387
1388 We can not use the initial_value as calculated, because it will be
1389 one too small for loops of the form "while (i-- > 0)". We can not
1390 emit code before the loop_skip_over insns to fix this problem as this
1391 will then give a number one too large for loops of the form
1392 "while (--i > 0)".
1393
1394 Note that all loops that reach here are entered at the top, because
1395 this function is not called if the loop starts with a jump. */
1396
1397 /* Fail if loop_iteration_var is not live before loop_start, since we need
1398 to test its value in the preconditioning code. */
1399
1400 if (uid_luid[REGNO_FIRST_UID (REGNO (loop_iteration_var))]
1401 > INSN_LUID (loop_start))
1402 {
1403 if (loop_dump_stream)
1404 fprintf (loop_dump_stream,
1405 "Preconditioning: Iteration var not live before loop start.\n");
1406 return 0;
1407 }
1408
1409 *initial_value = loop_iteration_var;
1410 *increment = loop_increment;
1411 *final_value = loop_final_value;
1412
1413 /* Success! */
1414 if (loop_dump_stream)
1415 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1416 return 1;
1417 }
1418
1419
1420 /* All pseudo-registers must be mapped to themselves. Two hard registers
1421 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1422 REGNUM, to avoid function-inlining specific conversions of these
1423 registers. All other hard regs can not be mapped because they may be
1424 used with different
1425 modes. */
1426
1427 static void
1428 init_reg_map (map, maxregnum)
1429 struct inline_remap *map;
1430 int maxregnum;
1431 {
1432 int i;
1433
1434 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1435 map->reg_map[i] = regno_reg_rtx[i];
1436 /* Just clear the rest of the entries. */
1437 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1438 map->reg_map[i] = 0;
1439
1440 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1441 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1442 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1443 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1444 }
1445 \f
1446 /* Strength-reduction will often emit code for optimized biv/givs which
1447 calculates their value in a temporary register, and then copies the result
1448 to the iv. This procedure reconstructs the pattern computing the iv;
1449 verifying that all operands are of the proper form.
1450
1451 The return value is the amount that the giv is incremented by. */
1452
1453 static rtx
1454 calculate_giv_inc (pattern, src_insn, regno)
1455 rtx pattern, src_insn;
1456 int regno;
1457 {
1458 rtx increment;
1459 rtx increment_total = 0;
1460 int tries = 0;
1461
1462 retry:
1463 /* Verify that we have an increment insn here. First check for a plus
1464 as the set source. */
1465 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1466 {
1467 /* SR sometimes computes the new giv value in a temp, then copies it
1468 to the new_reg. */
1469 src_insn = PREV_INSN (src_insn);
1470 pattern = PATTERN (src_insn);
1471 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1472 abort ();
1473
1474 /* The last insn emitted is not needed, so delete it to avoid confusing
1475 the second cse pass. This insn sets the giv unnecessarily. */
1476 delete_insn (get_last_insn ());
1477 }
1478
1479 /* Verify that we have a constant as the second operand of the plus. */
1480 increment = XEXP (SET_SRC (pattern), 1);
1481 if (GET_CODE (increment) != CONST_INT)
1482 {
1483 /* SR sometimes puts the constant in a register, especially if it is
1484 too big to be an add immed operand. */
1485 src_insn = PREV_INSN (src_insn);
1486 increment = SET_SRC (PATTERN (src_insn));
1487
1488 /* SR may have used LO_SUM to compute the constant if it is too large
1489 for a load immed operand. In this case, the constant is in operand
1490 one of the LO_SUM rtx. */
1491 if (GET_CODE (increment) == LO_SUM)
1492 increment = XEXP (increment, 1);
1493 else if (GET_CODE (increment) == IOR
1494 || GET_CODE (increment) == ASHIFT
1495 || GET_CODE (increment) == PLUS)
1496 {
1497 /* The rs6000 port loads some constants with IOR.
1498 The alpha port loads some constants with ASHIFT and PLUS. */
1499 rtx second_part = XEXP (increment, 1);
1500 enum rtx_code code = GET_CODE (increment);
1501
1502 src_insn = PREV_INSN (src_insn);
1503 increment = SET_SRC (PATTERN (src_insn));
1504 /* Don't need the last insn anymore. */
1505 delete_insn (get_last_insn ());
1506
1507 if (GET_CODE (second_part) != CONST_INT
1508 || GET_CODE (increment) != CONST_INT)
1509 abort ();
1510
1511 if (code == IOR)
1512 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1513 else if (code == PLUS)
1514 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1515 else
1516 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1517 }
1518
1519 if (GET_CODE (increment) != CONST_INT)
1520 abort ();
1521
1522 /* The insn loading the constant into a register is no longer needed,
1523 so delete it. */
1524 delete_insn (get_last_insn ());
1525 }
1526
1527 if (increment_total)
1528 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1529 else
1530 increment_total = increment;
1531
1532 /* Check that the source register is the same as the register we expected
1533 to see as the source. If not, something is seriously wrong. */
1534 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1535 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1536 {
1537 /* Some machines (e.g. the romp), may emit two add instructions for
1538 certain constants, so lets try looking for another add immediately
1539 before this one if we have only seen one add insn so far. */
1540
1541 if (tries == 0)
1542 {
1543 tries++;
1544
1545 src_insn = PREV_INSN (src_insn);
1546 pattern = PATTERN (src_insn);
1547
1548 delete_insn (get_last_insn ());
1549
1550 goto retry;
1551 }
1552
1553 abort ();
1554 }
1555
1556 return increment_total;
1557 }
1558
1559 /* Copy REG_NOTES, except for insn references, because not all insn_map
1560 entries are valid yet. We do need to copy registers now though, because
1561 the reg_map entries can change during copying. */
1562
1563 static rtx
1564 initial_reg_note_copy (notes, map)
1565 rtx notes;
1566 struct inline_remap *map;
1567 {
1568 rtx copy;
1569
1570 if (notes == 0)
1571 return 0;
1572
1573 copy = rtx_alloc (GET_CODE (notes));
1574 PUT_MODE (copy, GET_MODE (notes));
1575
1576 if (GET_CODE (notes) == EXPR_LIST)
1577 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
1578 else if (GET_CODE (notes) == INSN_LIST)
1579 /* Don't substitute for these yet. */
1580 XEXP (copy, 0) = XEXP (notes, 0);
1581 else
1582 abort ();
1583
1584 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1585
1586 return copy;
1587 }
1588
1589 /* Fixup insn references in copied REG_NOTES. */
1590
1591 static void
1592 final_reg_note_copy (notes, map)
1593 rtx notes;
1594 struct inline_remap *map;
1595 {
1596 rtx note;
1597
1598 for (note = notes; note; note = XEXP (note, 1))
1599 if (GET_CODE (note) == INSN_LIST)
1600 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1601 }
1602
1603 /* Copy each instruction in the loop, substituting from map as appropriate.
1604 This is very similar to a loop in expand_inline_function. */
1605
1606 static void
1607 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1608 unroll_type, start_label, loop_end, insert_before,
1609 copy_notes_from)
1610 rtx copy_start, copy_end;
1611 struct inline_remap *map;
1612 rtx exit_label;
1613 int last_iteration;
1614 enum unroll_types unroll_type;
1615 rtx start_label, loop_end, insert_before, copy_notes_from;
1616 {
1617 rtx insn, pattern;
1618 rtx tem, copy;
1619 int dest_reg_was_split, i;
1620 rtx cc0_insn = 0;
1621 rtx final_label = 0;
1622 rtx giv_inc, giv_dest_reg, giv_src_reg;
1623
1624 /* If this isn't the last iteration, then map any references to the
1625 start_label to final_label. Final label will then be emitted immediately
1626 after the end of this loop body if it was ever used.
1627
1628 If this is the last iteration, then map references to the start_label
1629 to itself. */
1630 if (! last_iteration)
1631 {
1632 final_label = gen_label_rtx ();
1633 map->label_map[CODE_LABEL_NUMBER (start_label)] = final_label;
1634 }
1635 else
1636 map->label_map[CODE_LABEL_NUMBER (start_label)] = start_label;
1637
1638 start_sequence ();
1639
1640 insn = copy_start;
1641 do
1642 {
1643 insn = NEXT_INSN (insn);
1644
1645 map->orig_asm_operands_vector = 0;
1646
1647 switch (GET_CODE (insn))
1648 {
1649 case INSN:
1650 pattern = PATTERN (insn);
1651 copy = 0;
1652 giv_inc = 0;
1653
1654 /* Check to see if this is a giv that has been combined with
1655 some split address givs. (Combined in the sense that
1656 `combine_givs' in loop.c has put two givs in the same register.)
1657 In this case, we must search all givs based on the same biv to
1658 find the address givs. Then split the address givs.
1659 Do this before splitting the giv, since that may map the
1660 SET_DEST to a new register. */
1661
1662 if (GET_CODE (pattern) == SET
1663 && GET_CODE (SET_DEST (pattern)) == REG
1664 && addr_combined_regs[REGNO (SET_DEST (pattern))])
1665 {
1666 struct iv_class *bl;
1667 struct induction *v, *tv;
1668 int regno = REGNO (SET_DEST (pattern));
1669
1670 v = addr_combined_regs[REGNO (SET_DEST (pattern))];
1671 bl = reg_biv_class[REGNO (v->src_reg)];
1672
1673 /* Although the giv_inc amount is not needed here, we must call
1674 calculate_giv_inc here since it might try to delete the
1675 last insn emitted. If we wait until later to call it,
1676 we might accidentally delete insns generated immediately
1677 below by emit_unrolled_add. */
1678
1679 giv_inc = calculate_giv_inc (pattern, insn, regno);
1680
1681 /* Now find all address giv's that were combined with this
1682 giv 'v'. */
1683 for (tv = bl->giv; tv; tv = tv->next_iv)
1684 if (tv->giv_type == DEST_ADDR && tv->same == v)
1685 {
1686 int this_giv_inc;
1687
1688 /* If this DEST_ADDR giv was not split, then ignore it. */
1689 if (*tv->location != tv->dest_reg)
1690 continue;
1691
1692 /* Scale this_giv_inc if the multiplicative factors of
1693 the two givs are different. */
1694 this_giv_inc = INTVAL (giv_inc);
1695 if (tv->mult_val != v->mult_val)
1696 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1697 * INTVAL (tv->mult_val));
1698
1699 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1700 *tv->location = tv->dest_reg;
1701
1702 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1703 {
1704 /* Must emit an insn to increment the split address
1705 giv. Add in the const_adjust field in case there
1706 was a constant eliminated from the address. */
1707 rtx value, dest_reg;
1708
1709 /* tv->dest_reg will be either a bare register,
1710 or else a register plus a constant. */
1711 if (GET_CODE (tv->dest_reg) == REG)
1712 dest_reg = tv->dest_reg;
1713 else
1714 dest_reg = XEXP (tv->dest_reg, 0);
1715
1716 /* Check for shared address givs, and avoid
1717 incrementing the shared pseudo reg more than
1718 once. */
1719 if (! tv->same_insn && ! tv->shared)
1720 {
1721 /* tv->dest_reg may actually be a (PLUS (REG)
1722 (CONST)) here, so we must call plus_constant
1723 to add the const_adjust amount before calling
1724 emit_unrolled_add below. */
1725 value = plus_constant (tv->dest_reg,
1726 tv->const_adjust);
1727
1728 /* The constant could be too large for an add
1729 immediate, so can't directly emit an insn
1730 here. */
1731 emit_unrolled_add (dest_reg, XEXP (value, 0),
1732 XEXP (value, 1));
1733 }
1734
1735 /* Reset the giv to be just the register again, in case
1736 it is used after the set we have just emitted.
1737 We must subtract the const_adjust factor added in
1738 above. */
1739 tv->dest_reg = plus_constant (dest_reg,
1740 - tv->const_adjust);
1741 *tv->location = tv->dest_reg;
1742 }
1743 }
1744 }
1745
1746 /* If this is a setting of a splittable variable, then determine
1747 how to split the variable, create a new set based on this split,
1748 and set up the reg_map so that later uses of the variable will
1749 use the new split variable. */
1750
1751 dest_reg_was_split = 0;
1752
1753 if (GET_CODE (pattern) == SET
1754 && GET_CODE (SET_DEST (pattern)) == REG
1755 && splittable_regs[REGNO (SET_DEST (pattern))])
1756 {
1757 int regno = REGNO (SET_DEST (pattern));
1758
1759 dest_reg_was_split = 1;
1760
1761 /* Compute the increment value for the giv, if it wasn't
1762 already computed above. */
1763
1764 if (giv_inc == 0)
1765 giv_inc = calculate_giv_inc (pattern, insn, regno);
1766 giv_dest_reg = SET_DEST (pattern);
1767 giv_src_reg = SET_DEST (pattern);
1768
1769 if (unroll_type == UNROLL_COMPLETELY)
1770 {
1771 /* Completely unrolling the loop. Set the induction
1772 variable to a known constant value. */
1773
1774 /* The value in splittable_regs may be an invariant
1775 value, so we must use plus_constant here. */
1776 splittable_regs[regno]
1777 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1778
1779 if (GET_CODE (splittable_regs[regno]) == PLUS)
1780 {
1781 giv_src_reg = XEXP (splittable_regs[regno], 0);
1782 giv_inc = XEXP (splittable_regs[regno], 1);
1783 }
1784 else
1785 {
1786 /* The splittable_regs value must be a REG or a
1787 CONST_INT, so put the entire value in the giv_src_reg
1788 variable. */
1789 giv_src_reg = splittable_regs[regno];
1790 giv_inc = const0_rtx;
1791 }
1792 }
1793 else
1794 {
1795 /* Partially unrolling loop. Create a new pseudo
1796 register for the iteration variable, and set it to
1797 be a constant plus the original register. Except
1798 on the last iteration, when the result has to
1799 go back into the original iteration var register. */
1800
1801 /* Handle bivs which must be mapped to a new register
1802 when split. This happens for bivs which need their
1803 final value set before loop entry. The new register
1804 for the biv was stored in the biv's first struct
1805 induction entry by find_splittable_regs. */
1806
1807 if (regno < max_reg_before_loop
1808 && reg_iv_type[regno] == BASIC_INDUCT)
1809 {
1810 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1811 giv_dest_reg = giv_src_reg;
1812 }
1813
1814 #if 0
1815 /* If non-reduced/final-value givs were split, then
1816 this would have to remap those givs also. See
1817 find_splittable_regs. */
1818 #endif
1819
1820 splittable_regs[regno]
1821 = GEN_INT (INTVAL (giv_inc)
1822 + INTVAL (splittable_regs[regno]));
1823 giv_inc = splittable_regs[regno];
1824
1825 /* Now split the induction variable by changing the dest
1826 of this insn to a new register, and setting its
1827 reg_map entry to point to this new register.
1828
1829 If this is the last iteration, and this is the last insn
1830 that will update the iv, then reuse the original dest,
1831 to ensure that the iv will have the proper value when
1832 the loop exits or repeats.
1833
1834 Using splittable_regs_updates here like this is safe,
1835 because it can only be greater than one if all
1836 instructions modifying the iv are always executed in
1837 order. */
1838
1839 if (! last_iteration
1840 || (splittable_regs_updates[regno]-- != 1))
1841 {
1842 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1843 giv_dest_reg = tem;
1844 map->reg_map[regno] = tem;
1845 record_base_value (REGNO (tem), giv_src_reg);
1846 }
1847 else
1848 map->reg_map[regno] = giv_src_reg;
1849 }
1850
1851 /* The constant being added could be too large for an add
1852 immediate, so can't directly emit an insn here. */
1853 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1854 copy = get_last_insn ();
1855 pattern = PATTERN (copy);
1856 }
1857 else
1858 {
1859 pattern = copy_rtx_and_substitute (pattern, map);
1860 copy = emit_insn (pattern);
1861 }
1862 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1863
1864 #ifdef HAVE_cc0
1865 /* If this insn is setting CC0, it may need to look at
1866 the insn that uses CC0 to see what type of insn it is.
1867 In that case, the call to recog via validate_change will
1868 fail. So don't substitute constants here. Instead,
1869 do it when we emit the following insn.
1870
1871 For example, see the pyr.md file. That machine has signed and
1872 unsigned compares. The compare patterns must check the
1873 following branch insn to see which what kind of compare to
1874 emit.
1875
1876 If the previous insn set CC0, substitute constants on it as
1877 well. */
1878 if (sets_cc0_p (PATTERN (copy)) != 0)
1879 cc0_insn = copy;
1880 else
1881 {
1882 if (cc0_insn)
1883 try_constants (cc0_insn, map);
1884 cc0_insn = 0;
1885 try_constants (copy, map);
1886 }
1887 #else
1888 try_constants (copy, map);
1889 #endif
1890
1891 /* Make split induction variable constants `permanent' since we
1892 know there are no backward branches across iteration variable
1893 settings which would invalidate this. */
1894 if (dest_reg_was_split)
1895 {
1896 int regno = REGNO (SET_DEST (pattern));
1897
1898 if (regno < map->const_equiv_map_size
1899 && map->const_age_map[regno] == map->const_age)
1900 map->const_age_map[regno] = -1;
1901 }
1902 break;
1903
1904 case JUMP_INSN:
1905 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1906 copy = emit_jump_insn (pattern);
1907 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1908
1909 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1910 && ! last_iteration)
1911 {
1912 /* This is a branch to the beginning of the loop; this is the
1913 last insn being copied; and this is not the last iteration.
1914 In this case, we want to change the original fall through
1915 case to be a branch past the end of the loop, and the
1916 original jump label case to fall_through. */
1917
1918 if (invert_exp (pattern, copy))
1919 {
1920 if (! redirect_exp (&pattern,
1921 map->label_map[CODE_LABEL_NUMBER
1922 (JUMP_LABEL (insn))],
1923 exit_label, copy))
1924 abort ();
1925 }
1926 else
1927 {
1928 rtx jmp;
1929 rtx lab = gen_label_rtx ();
1930 /* Can't do it by reversing the jump (probably because we
1931 couldn't reverse the conditions), so emit a new
1932 jump_insn after COPY, and redirect the jump around
1933 that. */
1934 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
1935 jmp = emit_barrier_after (jmp);
1936 emit_label_after (lab, jmp);
1937 LABEL_NUSES (lab) = 0;
1938 if (! redirect_exp (&pattern,
1939 map->label_map[CODE_LABEL_NUMBER
1940 (JUMP_LABEL (insn))],
1941 lab, copy))
1942 abort ();
1943 }
1944 }
1945
1946 #ifdef HAVE_cc0
1947 if (cc0_insn)
1948 try_constants (cc0_insn, map);
1949 cc0_insn = 0;
1950 #endif
1951 try_constants (copy, map);
1952
1953 /* Set the jump label of COPY correctly to avoid problems with
1954 later passes of unroll_loop, if INSN had jump label set. */
1955 if (JUMP_LABEL (insn))
1956 {
1957 rtx label = 0;
1958
1959 /* Can't use the label_map for every insn, since this may be
1960 the backward branch, and hence the label was not mapped. */
1961 if (GET_CODE (pattern) == SET)
1962 {
1963 tem = SET_SRC (pattern);
1964 if (GET_CODE (tem) == LABEL_REF)
1965 label = XEXP (tem, 0);
1966 else if (GET_CODE (tem) == IF_THEN_ELSE)
1967 {
1968 if (XEXP (tem, 1) != pc_rtx)
1969 label = XEXP (XEXP (tem, 1), 0);
1970 else
1971 label = XEXP (XEXP (tem, 2), 0);
1972 }
1973 }
1974
1975 if (label && GET_CODE (label) == CODE_LABEL)
1976 JUMP_LABEL (copy) = label;
1977 else
1978 {
1979 /* An unrecognizable jump insn, probably the entry jump
1980 for a switch statement. This label must have been mapped,
1981 so just use the label_map to get the new jump label. */
1982 JUMP_LABEL (copy)
1983 = map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))];
1984 }
1985
1986 /* If this is a non-local jump, then must increase the label
1987 use count so that the label will not be deleted when the
1988 original jump is deleted. */
1989 LABEL_NUSES (JUMP_LABEL (copy))++;
1990 }
1991 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
1992 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
1993 {
1994 rtx pat = PATTERN (copy);
1995 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1996 int len = XVECLEN (pat, diff_vec_p);
1997 int i;
1998
1999 for (i = 0; i < len; i++)
2000 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2001 }
2002
2003 /* If this used to be a conditional jump insn but whose branch
2004 direction is now known, we must do something special. */
2005 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
2006 {
2007 #ifdef HAVE_cc0
2008 /* The previous insn set cc0 for us. So delete it. */
2009 delete_insn (PREV_INSN (copy));
2010 #endif
2011
2012 /* If this is now a no-op, delete it. */
2013 if (map->last_pc_value == pc_rtx)
2014 {
2015 /* Don't let delete_insn delete the label referenced here,
2016 because we might possibly need it later for some other
2017 instruction in the loop. */
2018 if (JUMP_LABEL (copy))
2019 LABEL_NUSES (JUMP_LABEL (copy))++;
2020 delete_insn (copy);
2021 if (JUMP_LABEL (copy))
2022 LABEL_NUSES (JUMP_LABEL (copy))--;
2023 copy = 0;
2024 }
2025 else
2026 /* Otherwise, this is unconditional jump so we must put a
2027 BARRIER after it. We could do some dead code elimination
2028 here, but jump.c will do it just as well. */
2029 emit_barrier ();
2030 }
2031 break;
2032
2033 case CALL_INSN:
2034 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
2035 copy = emit_call_insn (pattern);
2036 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2037
2038 /* Because the USAGE information potentially contains objects other
2039 than hard registers, we need to copy it. */
2040 CALL_INSN_FUNCTION_USAGE (copy)
2041 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn), map);
2042
2043 #ifdef HAVE_cc0
2044 if (cc0_insn)
2045 try_constants (cc0_insn, map);
2046 cc0_insn = 0;
2047 #endif
2048 try_constants (copy, map);
2049
2050 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2051 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2052 map->const_equiv_map[i] = 0;
2053 break;
2054
2055 case CODE_LABEL:
2056 /* If this is the loop start label, then we don't need to emit a
2057 copy of this label since no one will use it. */
2058
2059 if (insn != start_label)
2060 {
2061 copy = emit_label (map->label_map[CODE_LABEL_NUMBER (insn)]);
2062 map->const_age++;
2063 }
2064 break;
2065
2066 case BARRIER:
2067 copy = emit_barrier ();
2068 break;
2069
2070 case NOTE:
2071 /* VTOP notes are valid only before the loop exit test. If placed
2072 anywhere else, loop may generate bad code. */
2073
2074 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2075 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2076 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2077 copy = emit_note (NOTE_SOURCE_FILE (insn),
2078 NOTE_LINE_NUMBER (insn));
2079 else
2080 copy = 0;
2081 break;
2082
2083 default:
2084 abort ();
2085 break;
2086 }
2087
2088 map->insn_map[INSN_UID (insn)] = copy;
2089 }
2090 while (insn != copy_end);
2091
2092 /* Now finish coping the REG_NOTES. */
2093 insn = copy_start;
2094 do
2095 {
2096 insn = NEXT_INSN (insn);
2097 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2098 || GET_CODE (insn) == CALL_INSN)
2099 && map->insn_map[INSN_UID (insn)])
2100 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2101 }
2102 while (insn != copy_end);
2103
2104 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2105 each of these notes here, since there may be some important ones, such as
2106 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2107 iteration, because the original notes won't be deleted.
2108
2109 We can't use insert_before here, because when from preconditioning,
2110 insert_before points before the loop. We can't use copy_end, because
2111 there may be insns already inserted after it (which we don't want to
2112 copy) when not from preconditioning code. */
2113
2114 if (! last_iteration)
2115 {
2116 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2117 {
2118 if (GET_CODE (insn) == NOTE
2119 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
2120 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2121 }
2122 }
2123
2124 if (final_label && LABEL_NUSES (final_label) > 0)
2125 emit_label (final_label);
2126
2127 tem = gen_sequence ();
2128 end_sequence ();
2129 emit_insn_before (tem, insert_before);
2130 }
2131 \f
2132 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2133 emitted. This will correctly handle the case where the increment value
2134 won't fit in the immediate field of a PLUS insns. */
2135
2136 void
2137 emit_unrolled_add (dest_reg, src_reg, increment)
2138 rtx dest_reg, src_reg, increment;
2139 {
2140 rtx result;
2141
2142 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
2143 dest_reg, 0, OPTAB_LIB_WIDEN);
2144
2145 if (dest_reg != result)
2146 emit_move_insn (dest_reg, result);
2147 }
2148 \f
2149 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
2150 is a backward branch in that range that branches to somewhere between
2151 LOOP_START and INSN. Returns 0 otherwise. */
2152
2153 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2154 In practice, this is not a problem, because this function is seldom called,
2155 and uses a negligible amount of CPU time on average. */
2156
2157 int
2158 back_branch_in_range_p (insn, loop_start, loop_end)
2159 rtx insn;
2160 rtx loop_start, loop_end;
2161 {
2162 rtx p, q, target_insn;
2163
2164 /* Stop before we get to the backward branch at the end of the loop. */
2165 loop_end = prev_nonnote_insn (loop_end);
2166 if (GET_CODE (loop_end) == BARRIER)
2167 loop_end = PREV_INSN (loop_end);
2168
2169 /* Check in case insn has been deleted, search forward for first non
2170 deleted insn following it. */
2171 while (INSN_DELETED_P (insn))
2172 insn = NEXT_INSN (insn);
2173
2174 /* Check for the case where insn is the last insn in the loop. */
2175 if (insn == loop_end)
2176 return 0;
2177
2178 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2179 {
2180 if (GET_CODE (p) == JUMP_INSN)
2181 {
2182 target_insn = JUMP_LABEL (p);
2183
2184 /* Search from loop_start to insn, to see if one of them is
2185 the target_insn. We can't use INSN_LUID comparisons here,
2186 since insn may not have an LUID entry. */
2187 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2188 if (q == target_insn)
2189 return 1;
2190 }
2191 }
2192
2193 return 0;
2194 }
2195
2196 /* Try to generate the simplest rtx for the expression
2197 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2198 value of giv's. */
2199
2200 static rtx
2201 fold_rtx_mult_add (mult1, mult2, add1, mode)
2202 rtx mult1, mult2, add1;
2203 enum machine_mode mode;
2204 {
2205 rtx temp, mult_res;
2206 rtx result;
2207
2208 /* The modes must all be the same. This should always be true. For now,
2209 check to make sure. */
2210 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2211 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2212 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2213 abort ();
2214
2215 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2216 will be a constant. */
2217 if (GET_CODE (mult1) == CONST_INT)
2218 {
2219 temp = mult2;
2220 mult2 = mult1;
2221 mult1 = temp;
2222 }
2223
2224 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2225 if (! mult_res)
2226 mult_res = gen_rtx (MULT, mode, mult1, mult2);
2227
2228 /* Again, put the constant second. */
2229 if (GET_CODE (add1) == CONST_INT)
2230 {
2231 temp = add1;
2232 add1 = mult_res;
2233 mult_res = temp;
2234 }
2235
2236 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2237 if (! result)
2238 result = gen_rtx (PLUS, mode, add1, mult_res);
2239
2240 return result;
2241 }
2242
2243 /* Searches the list of induction struct's for the biv BL, to try to calculate
2244 the total increment value for one iteration of the loop as a constant.
2245
2246 Returns the increment value as an rtx, simplified as much as possible,
2247 if it can be calculated. Otherwise, returns 0. */
2248
2249 rtx
2250 biv_total_increment (bl, loop_start, loop_end)
2251 struct iv_class *bl;
2252 rtx loop_start, loop_end;
2253 {
2254 struct induction *v;
2255 rtx result;
2256
2257 /* For increment, must check every instruction that sets it. Each
2258 instruction must be executed only once each time through the loop.
2259 To verify this, we check that the the insn is always executed, and that
2260 there are no backward branches after the insn that branch to before it.
2261 Also, the insn must have a mult_val of one (to make sure it really is
2262 an increment). */
2263
2264 result = const0_rtx;
2265 for (v = bl->biv; v; v = v->next_iv)
2266 {
2267 if (v->always_computable && v->mult_val == const1_rtx
2268 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
2269 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2270 else
2271 return 0;
2272 }
2273
2274 return result;
2275 }
2276
2277 /* Determine the initial value of the iteration variable, and the amount
2278 that it is incremented each loop. Use the tables constructed by
2279 the strength reduction pass to calculate these values.
2280
2281 Initial_value and/or increment are set to zero if their values could not
2282 be calculated. */
2283
2284 void
2285 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2286 rtx iteration_var, *initial_value, *increment;
2287 rtx loop_start, loop_end;
2288 {
2289 struct iv_class *bl;
2290 struct induction *v, *b;
2291
2292 /* Clear the result values, in case no answer can be found. */
2293 *initial_value = 0;
2294 *increment = 0;
2295
2296 /* The iteration variable can be either a giv or a biv. Check to see
2297 which it is, and compute the variable's initial value, and increment
2298 value if possible. */
2299
2300 /* If this is a new register, can't handle it since we don't have any
2301 reg_iv_type entry for it. */
2302 if (REGNO (iteration_var) >= max_reg_before_loop)
2303 {
2304 if (loop_dump_stream)
2305 fprintf (loop_dump_stream,
2306 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2307 return;
2308 }
2309
2310 /* Reject iteration variables larger than the host wide int size, since they
2311 could result in a number of iterations greater than the range of our
2312 `unsigned HOST_WIDE_INT' variable loop_n_iterations. */
2313 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
2314 > HOST_BITS_PER_WIDE_INT))
2315 {
2316 if (loop_dump_stream)
2317 fprintf (loop_dump_stream,
2318 "Loop unrolling: Iteration var rejected because mode too large.\n");
2319 return;
2320 }
2321 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2322 {
2323 if (loop_dump_stream)
2324 fprintf (loop_dump_stream,
2325 "Loop unrolling: Iteration var not an integer.\n");
2326 return;
2327 }
2328 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2329 {
2330 /* Grab initial value, only useful if it is a constant. */
2331 bl = reg_biv_class[REGNO (iteration_var)];
2332 *initial_value = bl->initial_value;
2333
2334 *increment = biv_total_increment (bl, loop_start, loop_end);
2335 }
2336 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2337 {
2338 #if 1
2339 /* ??? The code below does not work because the incorrect number of
2340 iterations is calculated when the biv is incremented after the giv
2341 is set (which is the usual case). This can probably be accounted
2342 for by biasing the initial_value by subtracting the amount of the
2343 increment that occurs between the giv set and the giv test. However,
2344 a giv as an iterator is very rare, so it does not seem worthwhile
2345 to handle this. */
2346 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2347 if (loop_dump_stream)
2348 fprintf (loop_dump_stream,
2349 "Loop unrolling: Giv iterators are not handled.\n");
2350 return;
2351 #else
2352 /* Initial value is mult_val times the biv's initial value plus
2353 add_val. Only useful if it is a constant. */
2354 v = reg_iv_info[REGNO (iteration_var)];
2355 bl = reg_biv_class[REGNO (v->src_reg)];
2356 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2357 v->add_val, v->mode);
2358
2359 /* Increment value is mult_val times the increment value of the biv. */
2360
2361 *increment = biv_total_increment (bl, loop_start, loop_end);
2362 if (*increment)
2363 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2364 v->mode);
2365 #endif
2366 }
2367 else
2368 {
2369 if (loop_dump_stream)
2370 fprintf (loop_dump_stream,
2371 "Loop unrolling: Not basic or general induction var.\n");
2372 return;
2373 }
2374 }
2375
2376 /* Calculate the approximate final value of the iteration variable
2377 which has an loop exit test with code COMPARISON_CODE and comparison value
2378 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2379 was signed or unsigned, and the direction of the comparison. This info is
2380 needed to calculate the number of loop iterations. */
2381
2382 static rtx
2383 approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2384 enum rtx_code comparison_code;
2385 rtx comparison_value;
2386 int *unsigned_p;
2387 int *compare_dir;
2388 {
2389 /* Calculate the final value of the induction variable.
2390 The exact final value depends on the branch operator, and increment sign.
2391 This is only an approximate value. It will be wrong if the iteration
2392 variable is not incremented by one each time through the loop, and
2393 approx final value - start value % increment != 0. */
2394
2395 *unsigned_p = 0;
2396 switch (comparison_code)
2397 {
2398 case LEU:
2399 *unsigned_p = 1;
2400 case LE:
2401 *compare_dir = 1;
2402 return plus_constant (comparison_value, 1);
2403 case GEU:
2404 *unsigned_p = 1;
2405 case GE:
2406 *compare_dir = -1;
2407 return plus_constant (comparison_value, -1);
2408 case EQ:
2409 /* Can not calculate a final value for this case. */
2410 *compare_dir = 0;
2411 return 0;
2412 case LTU:
2413 *unsigned_p = 1;
2414 case LT:
2415 *compare_dir = 1;
2416 return comparison_value;
2417 break;
2418 case GTU:
2419 *unsigned_p = 1;
2420 case GT:
2421 *compare_dir = -1;
2422 return comparison_value;
2423 case NE:
2424 *compare_dir = 0;
2425 return comparison_value;
2426 default:
2427 abort ();
2428 }
2429 }
2430
2431 /* For each biv and giv, determine whether it can be safely split into
2432 a different variable for each unrolled copy of the loop body. If it
2433 is safe to split, then indicate that by saving some useful info
2434 in the splittable_regs array.
2435
2436 If the loop is being completely unrolled, then splittable_regs will hold
2437 the current value of the induction variable while the loop is unrolled.
2438 It must be set to the initial value of the induction variable here.
2439 Otherwise, splittable_regs will hold the difference between the current
2440 value of the induction variable and the value the induction variable had
2441 at the top of the loop. It must be set to the value 0 here.
2442
2443 Returns the total number of instructions that set registers that are
2444 splittable. */
2445
2446 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2447 constant values are unnecessary, since we can easily calculate increment
2448 values in this case even if nothing is constant. The increment value
2449 should not involve a multiply however. */
2450
2451 /* ?? Even if the biv/giv increment values aren't constant, it may still
2452 be beneficial to split the variable if the loop is only unrolled a few
2453 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2454
2455 static int
2456 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2457 unroll_number)
2458 enum unroll_types unroll_type;
2459 rtx loop_start, loop_end;
2460 rtx end_insert_before;
2461 int unroll_number;
2462 {
2463 struct iv_class *bl;
2464 struct induction *v;
2465 rtx increment, tem;
2466 rtx biv_final_value;
2467 int biv_splittable;
2468 int result = 0;
2469
2470 for (bl = loop_iv_list; bl; bl = bl->next)
2471 {
2472 /* Biv_total_increment must return a constant value,
2473 otherwise we can not calculate the split values. */
2474
2475 increment = biv_total_increment (bl, loop_start, loop_end);
2476 if (! increment || GET_CODE (increment) != CONST_INT)
2477 continue;
2478
2479 /* The loop must be unrolled completely, or else have a known number
2480 of iterations and only one exit, or else the biv must be dead
2481 outside the loop, or else the final value must be known. Otherwise,
2482 it is unsafe to split the biv since it may not have the proper
2483 value on loop exit. */
2484
2485 /* loop_number_exit_count is non-zero if the loop has an exit other than
2486 a fall through at the end. */
2487
2488 biv_splittable = 1;
2489 biv_final_value = 0;
2490 if (unroll_type != UNROLL_COMPLETELY
2491 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2492 || unroll_type == UNROLL_NAIVE)
2493 && (uid_luid[REGNO_LAST_UID (bl->regno)] >= INSN_LUID (loop_end)
2494 || ! bl->init_insn
2495 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2496 || (uid_luid[REGNO_FIRST_UID (bl->regno)]
2497 < INSN_LUID (bl->init_insn))
2498 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2499 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2500 biv_splittable = 0;
2501
2502 /* If any of the insns setting the BIV don't do so with a simple
2503 PLUS, we don't know how to split it. */
2504 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2505 if ((tem = single_set (v->insn)) == 0
2506 || GET_CODE (SET_DEST (tem)) != REG
2507 || REGNO (SET_DEST (tem)) != bl->regno
2508 || GET_CODE (SET_SRC (tem)) != PLUS)
2509 biv_splittable = 0;
2510
2511 /* If final value is non-zero, then must emit an instruction which sets
2512 the value of the biv to the proper value. This is done after
2513 handling all of the givs, since some of them may need to use the
2514 biv's value in their initialization code. */
2515
2516 /* This biv is splittable. If completely unrolling the loop, save
2517 the biv's initial value. Otherwise, save the constant zero. */
2518
2519 if (biv_splittable == 1)
2520 {
2521 if (unroll_type == UNROLL_COMPLETELY)
2522 {
2523 /* If the initial value of the biv is itself (i.e. it is too
2524 complicated for strength_reduce to compute), or is a hard
2525 register, or it isn't invariant, then we must create a new
2526 pseudo reg to hold the initial value of the biv. */
2527
2528 if (GET_CODE (bl->initial_value) == REG
2529 && (REGNO (bl->initial_value) == bl->regno
2530 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2531 || ! invariant_p (bl->initial_value)))
2532 {
2533 rtx tem = gen_reg_rtx (bl->biv->mode);
2534
2535 record_base_value (REGNO (tem), bl->biv->add_val);
2536 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2537 loop_start);
2538
2539 if (loop_dump_stream)
2540 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2541 bl->regno, REGNO (tem));
2542
2543 splittable_regs[bl->regno] = tem;
2544 }
2545 else
2546 splittable_regs[bl->regno] = bl->initial_value;
2547 }
2548 else
2549 splittable_regs[bl->regno] = const0_rtx;
2550
2551 /* Save the number of instructions that modify the biv, so that
2552 we can treat the last one specially. */
2553
2554 splittable_regs_updates[bl->regno] = bl->biv_count;
2555 result += bl->biv_count;
2556
2557 if (loop_dump_stream)
2558 fprintf (loop_dump_stream,
2559 "Biv %d safe to split.\n", bl->regno);
2560 }
2561
2562 /* Check every giv that depends on this biv to see whether it is
2563 splittable also. Even if the biv isn't splittable, givs which
2564 depend on it may be splittable if the biv is live outside the
2565 loop, and the givs aren't. */
2566
2567 result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2568 increment, unroll_number);
2569
2570 /* If final value is non-zero, then must emit an instruction which sets
2571 the value of the biv to the proper value. This is done after
2572 handling all of the givs, since some of them may need to use the
2573 biv's value in their initialization code. */
2574 if (biv_final_value)
2575 {
2576 /* If the loop has multiple exits, emit the insns before the
2577 loop to ensure that it will always be executed no matter
2578 how the loop exits. Otherwise emit the insn after the loop,
2579 since this is slightly more efficient. */
2580 if (! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
2581 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2582 biv_final_value),
2583 end_insert_before);
2584 else
2585 {
2586 /* Create a new register to hold the value of the biv, and then
2587 set the biv to its final value before the loop start. The biv
2588 is set to its final value before loop start to ensure that
2589 this insn will always be executed, no matter how the loop
2590 exits. */
2591 rtx tem = gen_reg_rtx (bl->biv->mode);
2592 record_base_value (REGNO (tem), bl->biv->add_val);
2593
2594 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2595 loop_start);
2596 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2597 biv_final_value),
2598 loop_start);
2599
2600 if (loop_dump_stream)
2601 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2602 REGNO (bl->biv->src_reg), REGNO (tem));
2603
2604 /* Set up the mapping from the original biv register to the new
2605 register. */
2606 bl->biv->src_reg = tem;
2607 }
2608 }
2609 }
2610 return result;
2611 }
2612
2613 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2614 for the instruction that is using it. Do not make any changes to that
2615 instruction. */
2616
2617 static int
2618 verify_addresses (v, giv_inc, unroll_number)
2619 struct induction *v;
2620 rtx giv_inc;
2621 int unroll_number;
2622 {
2623 int ret = 1;
2624 rtx orig_addr = *v->location;
2625 rtx last_addr = plus_constant (v->dest_reg,
2626 INTVAL (giv_inc) * (unroll_number - 1));
2627
2628 /* First check to see if either address would fail. */
2629 if (! validate_change (v->insn, v->location, v->dest_reg, 0)
2630 || ! validate_change (v->insn, v->location, last_addr, 0))
2631 ret = 0;
2632
2633 /* Now put things back the way they were before. This will always
2634 succeed. */
2635 validate_change (v->insn, v->location, orig_addr, 0);
2636
2637 return ret;
2638 }
2639
2640 /* For every giv based on the biv BL, check to determine whether it is
2641 splittable. This is a subroutine to find_splittable_regs ().
2642
2643 Return the number of instructions that set splittable registers. */
2644
2645 static int
2646 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2647 unroll_number)
2648 struct iv_class *bl;
2649 enum unroll_types unroll_type;
2650 rtx loop_start, loop_end;
2651 rtx increment;
2652 int unroll_number;
2653 {
2654 struct induction *v, *v2;
2655 rtx final_value;
2656 rtx tem;
2657 int result = 0;
2658
2659 /* Scan the list of givs, and set the same_insn field when there are
2660 multiple identical givs in the same insn. */
2661 for (v = bl->giv; v; v = v->next_iv)
2662 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2663 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2664 && ! v2->same_insn)
2665 v2->same_insn = v;
2666
2667 for (v = bl->giv; v; v = v->next_iv)
2668 {
2669 rtx giv_inc, value;
2670
2671 /* Only split the giv if it has already been reduced, or if the loop is
2672 being completely unrolled. */
2673 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2674 continue;
2675
2676 /* The giv can be split if the insn that sets the giv is executed once
2677 and only once on every iteration of the loop. */
2678 /* An address giv can always be split. v->insn is just a use not a set,
2679 and hence it does not matter whether it is always executed. All that
2680 matters is that all the biv increments are always executed, and we
2681 won't reach here if they aren't. */
2682 if (v->giv_type != DEST_ADDR
2683 && (! v->always_computable
2684 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2685 continue;
2686
2687 /* The giv increment value must be a constant. */
2688 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2689 v->mode);
2690 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2691 continue;
2692
2693 /* The loop must be unrolled completely, or else have a known number of
2694 iterations and only one exit, or else the giv must be dead outside
2695 the loop, or else the final value of the giv must be known.
2696 Otherwise, it is not safe to split the giv since it may not have the
2697 proper value on loop exit. */
2698
2699 /* The used outside loop test will fail for DEST_ADDR givs. They are
2700 never used outside the loop anyways, so it is always safe to split a
2701 DEST_ADDR giv. */
2702
2703 final_value = 0;
2704 if (unroll_type != UNROLL_COMPLETELY
2705 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2706 || unroll_type == UNROLL_NAIVE)
2707 && v->giv_type != DEST_ADDR
2708 /* The next part is true if the pseudo is used outside the loop.
2709 We assume that this is true for any pseudo created after loop
2710 starts, because we don't have a reg_n_info entry for them. */
2711 && (REGNO (v->dest_reg) >= max_reg_before_loop
2712 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2713 /* Check for the case where the pseudo is set by a shift/add
2714 sequence, in which case the first insn setting the pseudo
2715 is the first insn of the shift/add sequence. */
2716 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2717 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2718 != INSN_UID (XEXP (tem, 0)))))
2719 /* Line above always fails if INSN was moved by loop opt. */
2720 || (uid_luid[REGNO_LAST_UID (REGNO (v->dest_reg))]
2721 >= INSN_LUID (loop_end)))
2722 && ! (final_value = v->final_value))
2723 continue;
2724
2725 #if 0
2726 /* Currently, non-reduced/final-value givs are never split. */
2727 /* Should emit insns after the loop if possible, as the biv final value
2728 code below does. */
2729
2730 /* If the final value is non-zero, and the giv has not been reduced,
2731 then must emit an instruction to set the final value. */
2732 if (final_value && !v->new_reg)
2733 {
2734 /* Create a new register to hold the value of the giv, and then set
2735 the giv to its final value before the loop start. The giv is set
2736 to its final value before loop start to ensure that this insn
2737 will always be executed, no matter how we exit. */
2738 tem = gen_reg_rtx (v->mode);
2739 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2740 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2741 loop_start);
2742
2743 if (loop_dump_stream)
2744 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2745 REGNO (v->dest_reg), REGNO (tem));
2746
2747 v->src_reg = tem;
2748 }
2749 #endif
2750
2751 /* This giv is splittable. If completely unrolling the loop, save the
2752 giv's initial value. Otherwise, save the constant zero for it. */
2753
2754 if (unroll_type == UNROLL_COMPLETELY)
2755 {
2756 /* It is not safe to use bl->initial_value here, because it may not
2757 be invariant. It is safe to use the initial value stored in
2758 the splittable_regs array if it is set. In rare cases, it won't
2759 be set, so then we do exactly the same thing as
2760 find_splittable_regs does to get a safe value. */
2761 rtx biv_initial_value;
2762
2763 if (splittable_regs[bl->regno])
2764 biv_initial_value = splittable_regs[bl->regno];
2765 else if (GET_CODE (bl->initial_value) != REG
2766 || (REGNO (bl->initial_value) != bl->regno
2767 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2768 biv_initial_value = bl->initial_value;
2769 else
2770 {
2771 rtx tem = gen_reg_rtx (bl->biv->mode);
2772
2773 record_base_value (REGNO (tem), bl->biv->add_val);
2774 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2775 loop_start);
2776 biv_initial_value = tem;
2777 }
2778 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2779 v->add_val, v->mode);
2780 }
2781 else
2782 value = const0_rtx;
2783
2784 if (v->new_reg)
2785 {
2786 /* If a giv was combined with another giv, then we can only split
2787 this giv if the giv it was combined with was reduced. This
2788 is because the value of v->new_reg is meaningless in this
2789 case. */
2790 if (v->same && ! v->same->new_reg)
2791 {
2792 if (loop_dump_stream)
2793 fprintf (loop_dump_stream,
2794 "giv combined with unreduced giv not split.\n");
2795 continue;
2796 }
2797 /* If the giv is an address destination, it could be something other
2798 than a simple register, these have to be treated differently. */
2799 else if (v->giv_type == DEST_REG)
2800 {
2801 /* If value is not a constant, register, or register plus
2802 constant, then compute its value into a register before
2803 loop start. This prevents invalid rtx sharing, and should
2804 generate better code. We can use bl->initial_value here
2805 instead of splittable_regs[bl->regno] because this code
2806 is going before the loop start. */
2807 if (unroll_type == UNROLL_COMPLETELY
2808 && GET_CODE (value) != CONST_INT
2809 && GET_CODE (value) != REG
2810 && (GET_CODE (value) != PLUS
2811 || GET_CODE (XEXP (value, 0)) != REG
2812 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2813 {
2814 rtx tem = gen_reg_rtx (v->mode);
2815 record_base_value (REGNO (tem), v->add_val);
2816 emit_iv_add_mult (bl->initial_value, v->mult_val,
2817 v->add_val, tem, loop_start);
2818 value = tem;
2819 }
2820
2821 splittable_regs[REGNO (v->new_reg)] = value;
2822 }
2823 else
2824 {
2825 /* Splitting address givs is useful since it will often allow us
2826 to eliminate some increment insns for the base giv as
2827 unnecessary. */
2828
2829 /* If the addr giv is combined with a dest_reg giv, then all
2830 references to that dest reg will be remapped, which is NOT
2831 what we want for split addr regs. We always create a new
2832 register for the split addr giv, just to be safe. */
2833
2834 /* If we have multiple identical address givs within a
2835 single instruction, then use a single pseudo reg for
2836 both. This is necessary in case one is a match_dup
2837 of the other. */
2838
2839 v->const_adjust = 0;
2840
2841 if (v->same_insn)
2842 {
2843 v->dest_reg = v->same_insn->dest_reg;
2844 if (loop_dump_stream)
2845 fprintf (loop_dump_stream,
2846 "Sharing address givs in insn %d\n",
2847 INSN_UID (v->insn));
2848 }
2849 /* If multiple address GIVs have been combined with the
2850 same dest_reg GIV, do not create a new register for
2851 each. */
2852 else if (unroll_type != UNROLL_COMPLETELY
2853 && v->giv_type == DEST_ADDR
2854 && v->same && v->same->giv_type == DEST_ADDR
2855 && v->same->unrolled
2856 /* combine_givs_p may return true for some cases
2857 where the add and mult values are not equal.
2858 To share a register here, the values must be
2859 equal. */
2860 && rtx_equal_p (v->same->mult_val, v->mult_val)
2861 && rtx_equal_p (v->same->add_val, v->add_val))
2862
2863 {
2864 v->dest_reg = v->same->dest_reg;
2865 v->shared = 1;
2866 }
2867 else if (unroll_type != UNROLL_COMPLETELY)
2868 {
2869 /* If not completely unrolling the loop, then create a new
2870 register to hold the split value of the DEST_ADDR giv.
2871 Emit insn to initialize its value before loop start. */
2872
2873 rtx tem = gen_reg_rtx (v->mode);
2874 record_base_value (REGNO (tem), v->add_val);
2875 v->unrolled = 1;
2876
2877 /* If the address giv has a constant in its new_reg value,
2878 then this constant can be pulled out and put in value,
2879 instead of being part of the initialization code. */
2880
2881 if (GET_CODE (v->new_reg) == PLUS
2882 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2883 {
2884 v->dest_reg
2885 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2886
2887 /* Only succeed if this will give valid addresses.
2888 Try to validate both the first and the last
2889 address resulting from loop unrolling, if
2890 one fails, then can't do const elim here. */
2891 if (verify_addresses (v, giv_inc, unroll_number))
2892 {
2893 /* Save the negative of the eliminated const, so
2894 that we can calculate the dest_reg's increment
2895 value later. */
2896 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2897
2898 v->new_reg = XEXP (v->new_reg, 0);
2899 if (loop_dump_stream)
2900 fprintf (loop_dump_stream,
2901 "Eliminating constant from giv %d\n",
2902 REGNO (tem));
2903 }
2904 else
2905 v->dest_reg = tem;
2906 }
2907 else
2908 v->dest_reg = tem;
2909
2910 /* If the address hasn't been checked for validity yet, do so
2911 now, and fail completely if either the first or the last
2912 unrolled copy of the address is not a valid address
2913 for the instruction that uses it. */
2914 if (v->dest_reg == tem
2915 && ! verify_addresses (v, giv_inc, unroll_number))
2916 {
2917 if (loop_dump_stream)
2918 fprintf (loop_dump_stream,
2919 "Invalid address for giv at insn %d\n",
2920 INSN_UID (v->insn));
2921 continue;
2922 }
2923
2924 /* To initialize the new register, just move the value of
2925 new_reg into it. This is not guaranteed to give a valid
2926 instruction on machines with complex addressing modes.
2927 If we can't recognize it, then delete it and emit insns
2928 to calculate the value from scratch. */
2929 emit_insn_before (gen_rtx (SET, VOIDmode, tem,
2930 copy_rtx (v->new_reg)),
2931 loop_start);
2932 if (recog_memoized (PREV_INSN (loop_start)) < 0)
2933 {
2934 rtx sequence, ret;
2935
2936 /* We can't use bl->initial_value to compute the initial
2937 value, because the loop may have been preconditioned.
2938 We must calculate it from NEW_REG. Try using
2939 force_operand instead of emit_iv_add_mult. */
2940 delete_insn (PREV_INSN (loop_start));
2941
2942 start_sequence ();
2943 ret = force_operand (v->new_reg, tem);
2944 if (ret != tem)
2945 emit_move_insn (tem, ret);
2946 sequence = gen_sequence ();
2947 end_sequence ();
2948 emit_insn_before (sequence, loop_start);
2949
2950 if (loop_dump_stream)
2951 fprintf (loop_dump_stream,
2952 "Invalid init insn, rewritten.\n");
2953 }
2954 }
2955 else
2956 {
2957 v->dest_reg = value;
2958
2959 /* Check the resulting address for validity, and fail
2960 if the resulting address would be invalid. */
2961 if (! verify_addresses (v, giv_inc, unroll_number))
2962 {
2963 if (loop_dump_stream)
2964 fprintf (loop_dump_stream,
2965 "Invalid address for giv at insn %d\n",
2966 INSN_UID (v->insn));
2967 continue;
2968 }
2969 }
2970
2971 /* Store the value of dest_reg into the insn. This sharing
2972 will not be a problem as this insn will always be copied
2973 later. */
2974
2975 *v->location = v->dest_reg;
2976
2977 /* If this address giv is combined with a dest reg giv, then
2978 save the base giv's induction pointer so that we will be
2979 able to handle this address giv properly. The base giv
2980 itself does not have to be splittable. */
2981
2982 if (v->same && v->same->giv_type == DEST_REG)
2983 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2984
2985 if (GET_CODE (v->new_reg) == REG)
2986 {
2987 /* This giv maybe hasn't been combined with any others.
2988 Make sure that it's giv is marked as splittable here. */
2989
2990 splittable_regs[REGNO (v->new_reg)] = value;
2991
2992 /* Make it appear to depend upon itself, so that the
2993 giv will be properly split in the main loop above. */
2994 if (! v->same)
2995 {
2996 v->same = v;
2997 addr_combined_regs[REGNO (v->new_reg)] = v;
2998 }
2999 }
3000
3001 if (loop_dump_stream)
3002 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
3003 }
3004 }
3005 else
3006 {
3007 #if 0
3008 /* Currently, unreduced giv's can't be split. This is not too much
3009 of a problem since unreduced giv's are not live across loop
3010 iterations anyways. When unrolling a loop completely though,
3011 it makes sense to reduce&split givs when possible, as this will
3012 result in simpler instructions, and will not require that a reg
3013 be live across loop iterations. */
3014
3015 splittable_regs[REGNO (v->dest_reg)] = value;
3016 fprintf (stderr, "Giv %d at insn %d not reduced\n",
3017 REGNO (v->dest_reg), INSN_UID (v->insn));
3018 #else
3019 continue;
3020 #endif
3021 }
3022
3023 /* Unreduced givs are only updated once by definition. Reduced givs
3024 are updated as many times as their biv is. Mark it so if this is
3025 a splittable register. Don't need to do anything for address givs
3026 where this may not be a register. */
3027
3028 if (GET_CODE (v->new_reg) == REG)
3029 {
3030 int count = 1;
3031 if (! v->ignore)
3032 count = reg_biv_class[REGNO (v->src_reg)]->biv_count;
3033
3034 splittable_regs_updates[REGNO (v->new_reg)] = count;
3035 }
3036
3037 result++;
3038
3039 if (loop_dump_stream)
3040 {
3041 int regnum;
3042
3043 if (GET_CODE (v->dest_reg) == CONST_INT)
3044 regnum = -1;
3045 else if (GET_CODE (v->dest_reg) != REG)
3046 regnum = REGNO (XEXP (v->dest_reg, 0));
3047 else
3048 regnum = REGNO (v->dest_reg);
3049 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
3050 regnum, INSN_UID (v->insn));
3051 }
3052 }
3053
3054 return result;
3055 }
3056 \f
3057 /* Try to prove that the register is dead after the loop exits. Trace every
3058 loop exit looking for an insn that will always be executed, which sets
3059 the register to some value, and appears before the first use of the register
3060 is found. If successful, then return 1, otherwise return 0. */
3061
3062 /* ?? Could be made more intelligent in the handling of jumps, so that
3063 it can search past if statements and other similar structures. */
3064
3065 static int
3066 reg_dead_after_loop (reg, loop_start, loop_end)
3067 rtx reg, loop_start, loop_end;
3068 {
3069 rtx insn, label;
3070 enum rtx_code code;
3071 int jump_count = 0;
3072 int label_count = 0;
3073 int this_loop_num = uid_loop_num[INSN_UID (loop_start)];
3074
3075 /* In addition to checking all exits of this loop, we must also check
3076 all exits of inner nested loops that would exit this loop. We don't
3077 have any way to identify those, so we just give up if there are any
3078 such inner loop exits. */
3079
3080 for (label = loop_number_exit_labels[this_loop_num]; label;
3081 label = LABEL_NEXTREF (label))
3082 label_count++;
3083
3084 if (label_count != loop_number_exit_count[this_loop_num])
3085 return 0;
3086
3087 /* HACK: Must also search the loop fall through exit, create a label_ref
3088 here which points to the loop_end, and append the loop_number_exit_labels
3089 list to it. */
3090 label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
3091 LABEL_NEXTREF (label) = loop_number_exit_labels[this_loop_num];
3092
3093 for ( ; label; label = LABEL_NEXTREF (label))
3094 {
3095 /* Succeed if find an insn which sets the biv or if reach end of
3096 function. Fail if find an insn that uses the biv, or if come to
3097 a conditional jump. */
3098
3099 insn = NEXT_INSN (XEXP (label, 0));
3100 while (insn)
3101 {
3102 code = GET_CODE (insn);
3103 if (GET_RTX_CLASS (code) == 'i')
3104 {
3105 rtx set;
3106
3107 if (reg_referenced_p (reg, PATTERN (insn)))
3108 return 0;
3109
3110 set = single_set (insn);
3111 if (set && rtx_equal_p (SET_DEST (set), reg))
3112 break;
3113 }
3114
3115 if (code == JUMP_INSN)
3116 {
3117 if (GET_CODE (PATTERN (insn)) == RETURN)
3118 break;
3119 else if (! simplejump_p (insn)
3120 /* Prevent infinite loop following infinite loops. */
3121 || jump_count++ > 20)
3122 return 0;
3123 else
3124 insn = JUMP_LABEL (insn);
3125 }
3126
3127 insn = NEXT_INSN (insn);
3128 }
3129 }
3130
3131 /* Success, the register is dead on all loop exits. */
3132 return 1;
3133 }
3134
3135 /* Try to calculate the final value of the biv, the value it will have at
3136 the end of the loop. If we can do it, return that value. */
3137
3138 rtx
3139 final_biv_value (bl, loop_start, loop_end)
3140 struct iv_class *bl;
3141 rtx loop_start, loop_end;
3142 {
3143 rtx increment, tem;
3144
3145 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3146
3147 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3148 return 0;
3149
3150 /* The final value for reversed bivs must be calculated differently than
3151 for ordinary bivs. In this case, there is already an insn after the
3152 loop which sets this biv's final value (if necessary), and there are
3153 no other loop exits, so we can return any value. */
3154 if (bl->reversed)
3155 {
3156 if (loop_dump_stream)
3157 fprintf (loop_dump_stream,
3158 "Final biv value for %d, reversed biv.\n", bl->regno);
3159
3160 return const0_rtx;
3161 }
3162
3163 /* Try to calculate the final value as initial value + (number of iterations
3164 * increment). For this to work, increment must be invariant, the only
3165 exit from the loop must be the fall through at the bottom (otherwise
3166 it may not have its final value when the loop exits), and the initial
3167 value of the biv must be invariant. */
3168
3169 if (loop_n_iterations != 0
3170 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
3171 && invariant_p (bl->initial_value))
3172 {
3173 increment = biv_total_increment (bl, loop_start, loop_end);
3174
3175 if (increment && invariant_p (increment))
3176 {
3177 /* Can calculate the loop exit value, emit insns after loop
3178 end to calculate this value into a temporary register in
3179 case it is needed later. */
3180
3181 tem = gen_reg_rtx (bl->biv->mode);
3182 record_base_value (REGNO (tem), bl->biv->add_val);
3183 /* Make sure loop_end is not the last insn. */
3184 if (NEXT_INSN (loop_end) == 0)
3185 emit_note_after (NOTE_INSN_DELETED, loop_end);
3186 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3187 bl->initial_value, tem, NEXT_INSN (loop_end));
3188
3189 if (loop_dump_stream)
3190 fprintf (loop_dump_stream,
3191 "Final biv value for %d, calculated.\n", bl->regno);
3192
3193 return tem;
3194 }
3195 }
3196
3197 /* Check to see if the biv is dead at all loop exits. */
3198 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
3199 {
3200 if (loop_dump_stream)
3201 fprintf (loop_dump_stream,
3202 "Final biv value for %d, biv dead after loop exit.\n",
3203 bl->regno);
3204
3205 return const0_rtx;
3206 }
3207
3208 return 0;
3209 }
3210
3211 /* Try to calculate the final value of the giv, the value it will have at
3212 the end of the loop. If we can do it, return that value. */
3213
3214 rtx
3215 final_giv_value (v, loop_start, loop_end)
3216 struct induction *v;
3217 rtx loop_start, loop_end;
3218 {
3219 struct iv_class *bl;
3220 rtx insn;
3221 rtx increment, tem;
3222 rtx insert_before, seq;
3223
3224 bl = reg_biv_class[REGNO (v->src_reg)];
3225
3226 /* The final value for givs which depend on reversed bivs must be calculated
3227 differently than for ordinary givs. In this case, there is already an
3228 insn after the loop which sets this giv's final value (if necessary),
3229 and there are no other loop exits, so we can return any value. */
3230 if (bl->reversed)
3231 {
3232 if (loop_dump_stream)
3233 fprintf (loop_dump_stream,
3234 "Final giv value for %d, depends on reversed biv\n",
3235 REGNO (v->dest_reg));
3236 return const0_rtx;
3237 }
3238
3239 /* Try to calculate the final value as a function of the biv it depends
3240 upon. The only exit from the loop must be the fall through at the bottom
3241 (otherwise it may not have its final value when the loop exits). */
3242
3243 /* ??? Can calculate the final giv value by subtracting off the
3244 extra biv increments times the giv's mult_val. The loop must have
3245 only one exit for this to work, but the loop iterations does not need
3246 to be known. */
3247
3248 if (loop_n_iterations != 0
3249 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
3250 {
3251 /* ?? It is tempting to use the biv's value here since these insns will
3252 be put after the loop, and hence the biv will have its final value
3253 then. However, this fails if the biv is subsequently eliminated.
3254 Perhaps determine whether biv's are eliminable before trying to
3255 determine whether giv's are replaceable so that we can use the
3256 biv value here if it is not eliminable. */
3257
3258 /* We are emitting code after the end of the loop, so we must make
3259 sure that bl->initial_value is still valid then. It will still
3260 be valid if it is invariant. */
3261
3262 increment = biv_total_increment (bl, loop_start, loop_end);
3263
3264 if (increment && invariant_p (increment)
3265 && invariant_p (bl->initial_value))
3266 {
3267 /* Can calculate the loop exit value of its biv as
3268 (loop_n_iterations * increment) + initial_value */
3269
3270 /* The loop exit value of the giv is then
3271 (final_biv_value - extra increments) * mult_val + add_val.
3272 The extra increments are any increments to the biv which
3273 occur in the loop after the giv's value is calculated.
3274 We must search from the insn that sets the giv to the end
3275 of the loop to calculate this value. */
3276
3277 insert_before = NEXT_INSN (loop_end);
3278
3279 /* Put the final biv value in tem. */
3280 tem = gen_reg_rtx (bl->biv->mode);
3281 record_base_value (REGNO (tem), bl->biv->add_val);
3282 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3283 bl->initial_value, tem, insert_before);
3284
3285 /* Subtract off extra increments as we find them. */
3286 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3287 insn = NEXT_INSN (insn))
3288 {
3289 struct induction *biv;
3290
3291 for (biv = bl->biv; biv; biv = biv->next_iv)
3292 if (biv->insn == insn)
3293 {
3294 start_sequence ();
3295 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3296 biv->add_val, NULL_RTX, 0,
3297 OPTAB_LIB_WIDEN);
3298 seq = gen_sequence ();
3299 end_sequence ();
3300 emit_insn_before (seq, insert_before);
3301 }
3302 }
3303
3304 /* Now calculate the giv's final value. */
3305 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3306 insert_before);
3307
3308 if (loop_dump_stream)
3309 fprintf (loop_dump_stream,
3310 "Final giv value for %d, calc from biv's value.\n",
3311 REGNO (v->dest_reg));
3312
3313 return tem;
3314 }
3315 }
3316
3317 /* Replaceable giv's should never reach here. */
3318 if (v->replaceable)
3319 abort ();
3320
3321 /* Check to see if the biv is dead at all loop exits. */
3322 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3323 {
3324 if (loop_dump_stream)
3325 fprintf (loop_dump_stream,
3326 "Final giv value for %d, giv dead after loop exit.\n",
3327 REGNO (v->dest_reg));
3328
3329 return const0_rtx;
3330 }
3331
3332 return 0;
3333 }
3334
3335
3336 /* Calculate the number of loop iterations. Returns the exact number of loop
3337 iterations if it can be calculated, otherwise returns zero. */
3338
3339 unsigned HOST_WIDE_INT
3340 loop_iterations (loop_start, loop_end)
3341 rtx loop_start, loop_end;
3342 {
3343 rtx comparison, comparison_value;
3344 rtx iteration_var, initial_value, increment, final_value;
3345 enum rtx_code comparison_code;
3346 HOST_WIDE_INT i;
3347 int increment_dir;
3348 int unsigned_compare, compare_dir, final_larger;
3349 unsigned long tempu;
3350 rtx last_loop_insn;
3351
3352 /* First find the iteration variable. If the last insn is a conditional
3353 branch, and the insn before tests a register value, make that the
3354 iteration variable. */
3355
3356 loop_initial_value = 0;
3357 loop_increment = 0;
3358 loop_final_value = 0;
3359 loop_iteration_var = 0;
3360
3361 /* We used to use pren_nonnote_insn here, but that fails because it might
3362 accidentally get the branch for a contained loop if the branch for this
3363 loop was deleted. We can only trust branches immediately before the
3364 loop_end. */
3365 last_loop_insn = PREV_INSN (loop_end);
3366
3367 comparison = get_condition_for_loop (last_loop_insn);
3368 if (comparison == 0)
3369 {
3370 if (loop_dump_stream)
3371 fprintf (loop_dump_stream,
3372 "Loop unrolling: No final conditional branch found.\n");
3373 return 0;
3374 }
3375
3376 /* ??? Get_condition may switch position of induction variable and
3377 invariant register when it canonicalizes the comparison. */
3378
3379 comparison_code = GET_CODE (comparison);
3380 iteration_var = XEXP (comparison, 0);
3381 comparison_value = XEXP (comparison, 1);
3382
3383 if (GET_CODE (iteration_var) != REG)
3384 {
3385 if (loop_dump_stream)
3386 fprintf (loop_dump_stream,
3387 "Loop unrolling: Comparison not against register.\n");
3388 return 0;
3389 }
3390
3391 /* Loop iterations is always called before any new registers are created
3392 now, so this should never occur. */
3393
3394 if (REGNO (iteration_var) >= max_reg_before_loop)
3395 abort ();
3396
3397 iteration_info (iteration_var, &initial_value, &increment,
3398 loop_start, loop_end);
3399 if (initial_value == 0)
3400 /* iteration_info already printed a message. */
3401 return 0;
3402
3403 /* If the comparison value is an invariant register, then try to find
3404 its value from the insns before the start of the loop. */
3405
3406 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3407 {
3408 rtx insn, set;
3409
3410 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3411 {
3412 if (GET_CODE (insn) == CODE_LABEL)
3413 break;
3414
3415 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3416 && reg_set_p (comparison_value, insn))
3417 {
3418 /* We found the last insn before the loop that sets the register.
3419 If it sets the entire register, and has a REG_EQUAL note,
3420 then use the value of the REG_EQUAL note. */
3421 if ((set = single_set (insn))
3422 && (SET_DEST (set) == comparison_value))
3423 {
3424 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3425
3426 /* Only use the REG_EQUAL note if it is a constant.
3427 Other things, divide in particular, will cause
3428 problems later if we use them. */
3429 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3430 && CONSTANT_P (XEXP (note, 0)))
3431 comparison_value = XEXP (note, 0);
3432 }
3433 break;
3434 }
3435 }
3436 }
3437
3438 final_value = approx_final_value (comparison_code, comparison_value,
3439 &unsigned_compare, &compare_dir);
3440
3441 /* Save the calculated values describing this loop's bounds, in case
3442 precondition_loop_p will need them later. These values can not be
3443 recalculated inside precondition_loop_p because strength reduction
3444 optimizations may obscure the loop's structure. */
3445
3446 loop_iteration_var = iteration_var;
3447 loop_initial_value = initial_value;
3448 loop_increment = increment;
3449 loop_final_value = final_value;
3450 loop_comparison_code = comparison_code;
3451
3452 if (increment == 0)
3453 {
3454 if (loop_dump_stream)
3455 fprintf (loop_dump_stream,
3456 "Loop unrolling: Increment value can't be calculated.\n");
3457 return 0;
3458 }
3459 else if (GET_CODE (increment) != CONST_INT)
3460 {
3461 if (loop_dump_stream)
3462 fprintf (loop_dump_stream,
3463 "Loop unrolling: Increment value not constant.\n");
3464 return 0;
3465 }
3466 else if (GET_CODE (initial_value) != CONST_INT)
3467 {
3468 if (loop_dump_stream)
3469 fprintf (loop_dump_stream,
3470 "Loop unrolling: Initial value not constant.\n");
3471 return 0;
3472 }
3473 else if (final_value == 0)
3474 {
3475 if (loop_dump_stream)
3476 fprintf (loop_dump_stream,
3477 "Loop unrolling: EQ comparison loop.\n");
3478 return 0;
3479 }
3480 else if (GET_CODE (final_value) != CONST_INT)
3481 {
3482 if (loop_dump_stream)
3483 fprintf (loop_dump_stream,
3484 "Loop unrolling: Final value not constant.\n");
3485 return 0;
3486 }
3487
3488 /* ?? Final value and initial value do not have to be constants.
3489 Only their difference has to be constant. When the iteration variable
3490 is an array address, the final value and initial value might both
3491 be addresses with the same base but different constant offsets.
3492 Final value must be invariant for this to work.
3493
3494 To do this, need some way to find the values of registers which are
3495 invariant. */
3496
3497 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3498 if (unsigned_compare)
3499 final_larger
3500 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3501 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3502 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3503 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3504 else
3505 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3506 - (INTVAL (final_value) < INTVAL (initial_value));
3507
3508 if (INTVAL (increment) > 0)
3509 increment_dir = 1;
3510 else if (INTVAL (increment) == 0)
3511 increment_dir = 0;
3512 else
3513 increment_dir = -1;
3514
3515 /* There are 27 different cases: compare_dir = -1, 0, 1;
3516 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3517 There are 4 normal cases, 4 reverse cases (where the iteration variable
3518 will overflow before the loop exits), 4 infinite loop cases, and 15
3519 immediate exit (0 or 1 iteration depending on loop type) cases.
3520 Only try to optimize the normal cases. */
3521
3522 /* (compare_dir/final_larger/increment_dir)
3523 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3524 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3525 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3526 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3527
3528 /* ?? If the meaning of reverse loops (where the iteration variable
3529 will overflow before the loop exits) is undefined, then could
3530 eliminate all of these special checks, and just always assume
3531 the loops are normal/immediate/infinite. Note that this means
3532 the sign of increment_dir does not have to be known. Also,
3533 since it does not really hurt if immediate exit loops or infinite loops
3534 are optimized, then that case could be ignored also, and hence all
3535 loops can be optimized.
3536
3537 According to ANSI Spec, the reverse loop case result is undefined,
3538 because the action on overflow is undefined.
3539
3540 See also the special test for NE loops below. */
3541
3542 if (final_larger == increment_dir && final_larger != 0
3543 && (final_larger == compare_dir || compare_dir == 0))
3544 /* Normal case. */
3545 ;
3546 else
3547 {
3548 if (loop_dump_stream)
3549 fprintf (loop_dump_stream,
3550 "Loop unrolling: Not normal loop.\n");
3551 return 0;
3552 }
3553
3554 /* Calculate the number of iterations, final_value is only an approximation,
3555 so correct for that. Note that tempu and loop_n_iterations are
3556 unsigned, because they can be as large as 2^n - 1. */
3557
3558 i = INTVAL (increment);
3559 if (i > 0)
3560 tempu = INTVAL (final_value) - INTVAL (initial_value);
3561 else if (i < 0)
3562 {
3563 tempu = INTVAL (initial_value) - INTVAL (final_value);
3564 i = -i;
3565 }
3566 else
3567 abort ();
3568
3569 /* For NE tests, make sure that the iteration variable won't miss the
3570 final value. If tempu mod i is not zero, then the iteration variable
3571 will overflow before the loop exits, and we can not calculate the
3572 number of iterations. */
3573 if (compare_dir == 0 && (tempu % i) != 0)
3574 return 0;
3575
3576 return tempu / i + ((tempu % i) != 0);
3577 }
3578
3579 /* Replace uses of split bivs with their split pseudo register. This is
3580 for original instructions which remain after loop unrolling without
3581 copying. */
3582
3583 static rtx
3584 remap_split_bivs (x)
3585 rtx x;
3586 {
3587 register enum rtx_code code;
3588 register int i;
3589 register char *fmt;
3590
3591 if (x == 0)
3592 return x;
3593
3594 code = GET_CODE (x);
3595 switch (code)
3596 {
3597 case SCRATCH:
3598 case PC:
3599 case CC0:
3600 case CONST_INT:
3601 case CONST_DOUBLE:
3602 case CONST:
3603 case SYMBOL_REF:
3604 case LABEL_REF:
3605 return x;
3606
3607 case REG:
3608 #if 0
3609 /* If non-reduced/final-value givs were split, then this would also
3610 have to remap those givs also. */
3611 #endif
3612 if (REGNO (x) < max_reg_before_loop
3613 && reg_iv_type[REGNO (x)] == BASIC_INDUCT)
3614 return reg_biv_class[REGNO (x)]->biv->src_reg;
3615 break;
3616
3617 default:
3618 break;
3619 }
3620
3621 fmt = GET_RTX_FORMAT (code);
3622 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3623 {
3624 if (fmt[i] == 'e')
3625 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
3626 if (fmt[i] == 'E')
3627 {
3628 register int j;
3629 for (j = 0; j < XVECLEN (x, i); j++)
3630 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
3631 }
3632 }
3633 return x;
3634 }
3635
3636 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3637 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
3638 return 0. COPY_START is where we can start looking for the insns
3639 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
3640 insns.
3641
3642 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3643 must dominate LAST_UID.
3644
3645 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3646 may not dominate LAST_UID.
3647
3648 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3649 must dominate LAST_UID. */
3650
3651 int
3652 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
3653 int regno;
3654 int first_uid;
3655 int last_uid;
3656 rtx copy_start;
3657 rtx copy_end;
3658 {
3659 int passed_jump = 0;
3660 rtx p = NEXT_INSN (copy_start);
3661
3662 while (INSN_UID (p) != first_uid)
3663 {
3664 if (GET_CODE (p) == JUMP_INSN)
3665 passed_jump= 1;
3666 /* Could not find FIRST_UID. */
3667 if (p == copy_end)
3668 return 0;
3669 p = NEXT_INSN (p);
3670 }
3671
3672 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
3673 if (GET_RTX_CLASS (GET_CODE (p)) != 'i'
3674 || ! dead_or_set_regno_p (p, regno))
3675 return 0;
3676
3677 /* FIRST_UID is always executed. */
3678 if (passed_jump == 0)
3679 return 1;
3680
3681 while (INSN_UID (p) != last_uid)
3682 {
3683 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
3684 can not be sure that FIRST_UID dominates LAST_UID. */
3685 if (GET_CODE (p) == CODE_LABEL)
3686 return 0;
3687 /* Could not find LAST_UID, but we reached the end of the loop, so
3688 it must be safe. */
3689 else if (p == copy_end)
3690 return 1;
3691 p = NEXT_INSN (p);
3692 }
3693
3694 /* FIRST_UID is always executed if LAST_UID is executed. */
3695 return 1;
3696 }
This page took 0.201826 seconds and 6 git commands to generate.