]> gcc.gnu.org Git - gcc.git/blob - gcc/unroll.c
c-common.c: Include <stdlib.h> and <string.h>/<strings.h>.
[gcc.git] / gcc / unroll.c
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1997 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Try to unroll a loop, and split induction variables.
23
24 Loops for which the number of iterations can be calculated exactly are
25 handled specially. If the number of iterations times the insn_count is
26 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
27 Otherwise, we try to unroll the loop a number of times modulo the number
28 of iterations, so that only one exit test will be needed. It is unrolled
29 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
30 the insn count.
31
32 Otherwise, if the number of iterations can be calculated exactly at
33 run time, and the loop is always entered at the top, then we try to
34 precondition the loop. That is, at run time, calculate how many times
35 the loop will execute, and then execute the loop body a few times so
36 that the remaining iterations will be some multiple of 4 (or 2 if the
37 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
38 with only one exit test needed at the end of the loop.
39
40 Otherwise, if the number of iterations can not be calculated exactly,
41 not even at run time, then we still unroll the loop a number of times
42 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
43 but there must be an exit test after each copy of the loop body.
44
45 For each induction variable, which is dead outside the loop (replaceable)
46 or for which we can easily calculate the final value, if we can easily
47 calculate its value at each place where it is set as a function of the
48 current loop unroll count and the variable's value at loop entry, then
49 the induction variable is split into `N' different variables, one for
50 each copy of the loop body. One variable is live across the backward
51 branch, and the others are all calculated as a function of this variable.
52 This helps eliminate data dependencies, and leads to further opportunities
53 for cse. */
54
55 /* Possible improvements follow: */
56
57 /* ??? Add an extra pass somewhere to determine whether unrolling will
58 give any benefit. E.g. after generating all unrolled insns, compute the
59 cost of all insns and compare against cost of insns in rolled loop.
60
61 - On traditional architectures, unrolling a non-constant bound loop
62 is a win if there is a giv whose only use is in memory addresses, the
63 memory addresses can be split, and hence giv increments can be
64 eliminated.
65 - It is also a win if the loop is executed many times, and preconditioning
66 can be performed for the loop.
67 Add code to check for these and similar cases. */
68
69 /* ??? Improve control of which loops get unrolled. Could use profiling
70 info to only unroll the most commonly executed loops. Perhaps have
71 a user specifyable option to control the amount of code expansion,
72 or the percent of loops to consider for unrolling. Etc. */
73
74 /* ??? Look at the register copies inside the loop to see if they form a
75 simple permutation. If so, iterate the permutation until it gets back to
76 the start state. This is how many times we should unroll the loop, for
77 best results, because then all register copies can be eliminated.
78 For example, the lisp nreverse function should be unrolled 3 times
79 while (this)
80 {
81 next = this->cdr;
82 this->cdr = prev;
83 prev = this;
84 this = next;
85 }
86
87 ??? The number of times to unroll the loop may also be based on data
88 references in the loop. For example, if we have a loop that references
89 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
90
91 /* ??? Add some simple linear equation solving capability so that we can
92 determine the number of loop iterations for more complex loops.
93 For example, consider this loop from gdb
94 #define SWAP_TARGET_AND_HOST(buffer,len)
95 {
96 char tmp;
97 char *p = (char *) buffer;
98 char *q = ((char *) buffer) + len - 1;
99 int iterations = (len + 1) >> 1;
100 int i;
101 for (p; p < q; p++, q--;)
102 {
103 tmp = *q;
104 *q = *p;
105 *p = tmp;
106 }
107 }
108 Note that:
109 start value = p = &buffer + current_iteration
110 end value = q = &buffer + len - 1 - current_iteration
111 Given the loop exit test of "p < q", then there must be "q - p" iterations,
112 set equal to zero and solve for number of iterations:
113 q - p = len - 1 - 2*current_iteration = 0
114 current_iteration = (len - 1) / 2
115 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
116 iterations of this loop. */
117
118 /* ??? Currently, no labels are marked as loop invariant when doing loop
119 unrolling. This is because an insn inside the loop, that loads the address
120 of a label inside the loop into a register, could be moved outside the loop
121 by the invariant code motion pass if labels were invariant. If the loop
122 is subsequently unrolled, the code will be wrong because each unrolled
123 body of the loop will use the same address, whereas each actually needs a
124 different address. A case where this happens is when a loop containing
125 a switch statement is unrolled.
126
127 It would be better to let labels be considered invariant. When we
128 unroll loops here, check to see if any insns using a label local to the
129 loop were moved before the loop. If so, then correct the problem, by
130 moving the insn back into the loop, or perhaps replicate the insn before
131 the loop, one copy for each time the loop is unrolled. */
132
133 /* The prime factors looked for when trying to unroll a loop by some
134 number which is modulo the total number of iterations. Just checking
135 for these 4 prime factors will find at least one factor for 75% of
136 all numbers theoretically. Practically speaking, this will succeed
137 almost all of the time since loops are generally a multiple of 2
138 and/or 5. */
139
140 #define NUM_FACTORS 4
141
142 struct _factor { int factor, count; } factors[NUM_FACTORS]
143 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
144
145 /* Describes the different types of loop unrolling performed. */
146
147 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
148
149 #include "config.h"
150 #include <stdio.h>
151 #include "rtl.h"
152 #include "insn-config.h"
153 #include "integrate.h"
154 #include "regs.h"
155 #include "recog.h"
156 #include "flags.h"
157 #include "expr.h"
158 #include "loop.h"
159
160 /* This controls which loops are unrolled, and by how much we unroll
161 them. */
162
163 #ifndef MAX_UNROLLED_INSNS
164 #define MAX_UNROLLED_INSNS 100
165 #endif
166
167 /* Indexed by register number, if non-zero, then it contains a pointer
168 to a struct induction for a DEST_REG giv which has been combined with
169 one of more address givs. This is needed because whenever such a DEST_REG
170 giv is modified, we must modify the value of all split address givs
171 that were combined with this DEST_REG giv. */
172
173 static struct induction **addr_combined_regs;
174
175 /* Indexed by register number, if this is a splittable induction variable,
176 then this will hold the current value of the register, which depends on the
177 iteration number. */
178
179 static rtx *splittable_regs;
180
181 /* Indexed by register number, if this is a splittable induction variable,
182 then this will hold the number of instructions in the loop that modify
183 the induction variable. Used to ensure that only the last insn modifying
184 a split iv will update the original iv of the dest. */
185
186 static int *splittable_regs_updates;
187
188 /* Values describing the current loop's iteration variable. These are set up
189 by loop_iterations, and used by precondition_loop_p. */
190
191 static rtx loop_iteration_var;
192 static rtx loop_initial_value;
193 static rtx loop_increment;
194 static rtx loop_final_value;
195 static enum rtx_code loop_comparison_code;
196
197 /* Forward declarations. */
198
199 static void init_reg_map PROTO((struct inline_remap *, int));
200 static int precondition_loop_p PROTO((rtx *, rtx *, rtx *, rtx, rtx));
201 static rtx calculate_giv_inc PROTO((rtx, rtx, int));
202 static rtx initial_reg_note_copy PROTO((rtx, struct inline_remap *));
203 static void final_reg_note_copy PROTO((rtx, struct inline_remap *));
204 static void copy_loop_body PROTO((rtx, rtx, struct inline_remap *, rtx, int,
205 enum unroll_types, rtx, rtx, rtx, rtx));
206 void iteration_info PROTO((rtx, rtx *, rtx *, rtx, rtx));
207 static rtx approx_final_value PROTO((enum rtx_code, rtx, int *, int *));
208 static int find_splittable_regs PROTO((enum unroll_types, rtx, rtx, rtx, int));
209 static int find_splittable_givs PROTO((struct iv_class *,enum unroll_types,
210 rtx, rtx, rtx, int));
211 static int reg_dead_after_loop PROTO((rtx, rtx, rtx));
212 static rtx fold_rtx_mult_add PROTO((rtx, rtx, rtx, enum machine_mode));
213 static rtx remap_split_bivs PROTO((rtx));
214
215 /* Try to unroll one loop and split induction variables in the loop.
216
217 The loop is described by the arguments LOOP_END, INSN_COUNT, and
218 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
219 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
220 indicates whether information generated in the strength reduction pass
221 is available.
222
223 This function is intended to be called from within `strength_reduce'
224 in loop.c. */
225
226 void
227 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
228 strength_reduce_p)
229 rtx loop_end;
230 int insn_count;
231 rtx loop_start;
232 rtx end_insert_before;
233 int strength_reduce_p;
234 {
235 int i, j, temp;
236 int unroll_number = 1;
237 rtx copy_start, copy_end;
238 rtx insn, copy, sequence, pattern, tem;
239 int max_labelno, max_insnno;
240 rtx insert_before;
241 struct inline_remap *map;
242 char *local_label;
243 char *local_regno;
244 int maxregnum;
245 int new_maxregnum;
246 rtx exit_label = 0;
247 rtx start_label;
248 struct iv_class *bl;
249 int splitting_not_safe = 0;
250 enum unroll_types unroll_type;
251 int loop_preconditioned = 0;
252 rtx safety_label;
253 /* This points to the last real insn in the loop, which should be either
254 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
255 jumps). */
256 rtx last_loop_insn;
257
258 /* Don't bother unrolling huge loops. Since the minimum factor is
259 two, loops greater than one half of MAX_UNROLLED_INSNS will never
260 be unrolled. */
261 if (insn_count > MAX_UNROLLED_INSNS / 2)
262 {
263 if (loop_dump_stream)
264 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
265 return;
266 }
267
268 /* When emitting debugger info, we can't unroll loops with unequal numbers
269 of block_beg and block_end notes, because that would unbalance the block
270 structure of the function. This can happen as a result of the
271 "if (foo) bar; else break;" optimization in jump.c. */
272 /* ??? Gcc has a general policy that -g is never supposed to change the code
273 that the compiler emits, so we must disable this optimization always,
274 even if debug info is not being output. This is rare, so this should
275 not be a significant performance problem. */
276
277 if (1 /* write_symbols != NO_DEBUG */)
278 {
279 int block_begins = 0;
280 int block_ends = 0;
281
282 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
283 {
284 if (GET_CODE (insn) == NOTE)
285 {
286 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
287 block_begins++;
288 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
289 block_ends++;
290 }
291 }
292
293 if (block_begins != block_ends)
294 {
295 if (loop_dump_stream)
296 fprintf (loop_dump_stream,
297 "Unrolling failure: Unbalanced block notes.\n");
298 return;
299 }
300 }
301
302 /* Determine type of unroll to perform. Depends on the number of iterations
303 and the size of the loop. */
304
305 /* If there is no strength reduce info, then set loop_n_iterations to zero.
306 This can happen if strength_reduce can't find any bivs in the loop.
307 A value of zero indicates that the number of iterations could not be
308 calculated. */
309
310 if (! strength_reduce_p)
311 loop_n_iterations = 0;
312
313 if (loop_dump_stream && loop_n_iterations > 0)
314 fprintf (loop_dump_stream,
315 "Loop unrolling: %d iterations.\n", loop_n_iterations);
316
317 /* Find and save a pointer to the last nonnote insn in the loop. */
318
319 last_loop_insn = prev_nonnote_insn (loop_end);
320
321 /* Calculate how many times to unroll the loop. Indicate whether or
322 not the loop is being completely unrolled. */
323
324 if (loop_n_iterations == 1)
325 {
326 /* If number of iterations is exactly 1, then eliminate the compare and
327 branch at the end of the loop since they will never be taken.
328 Then return, since no other action is needed here. */
329
330 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
331 don't do anything. */
332
333 if (GET_CODE (last_loop_insn) == BARRIER)
334 {
335 /* Delete the jump insn. This will delete the barrier also. */
336 delete_insn (PREV_INSN (last_loop_insn));
337 }
338 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
339 {
340 #ifdef HAVE_cc0
341 /* The immediately preceding insn is a compare which must be
342 deleted. */
343 delete_insn (last_loop_insn);
344 delete_insn (PREV_INSN (last_loop_insn));
345 #else
346 /* The immediately preceding insn may not be the compare, so don't
347 delete it. */
348 delete_insn (last_loop_insn);
349 #endif
350 }
351 return;
352 }
353 else if (loop_n_iterations > 0
354 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
355 {
356 unroll_number = loop_n_iterations;
357 unroll_type = UNROLL_COMPLETELY;
358 }
359 else if (loop_n_iterations > 0)
360 {
361 /* Try to factor the number of iterations. Don't bother with the
362 general case, only using 2, 3, 5, and 7 will get 75% of all
363 numbers theoretically, and almost all in practice. */
364
365 for (i = 0; i < NUM_FACTORS; i++)
366 factors[i].count = 0;
367
368 temp = loop_n_iterations;
369 for (i = NUM_FACTORS - 1; i >= 0; i--)
370 while (temp % factors[i].factor == 0)
371 {
372 factors[i].count++;
373 temp = temp / factors[i].factor;
374 }
375
376 /* Start with the larger factors first so that we generally
377 get lots of unrolling. */
378
379 unroll_number = 1;
380 temp = insn_count;
381 for (i = 3; i >= 0; i--)
382 while (factors[i].count--)
383 {
384 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
385 {
386 unroll_number *= factors[i].factor;
387 temp *= factors[i].factor;
388 }
389 else
390 break;
391 }
392
393 /* If we couldn't find any factors, then unroll as in the normal
394 case. */
395 if (unroll_number == 1)
396 {
397 if (loop_dump_stream)
398 fprintf (loop_dump_stream,
399 "Loop unrolling: No factors found.\n");
400 }
401 else
402 unroll_type = UNROLL_MODULO;
403 }
404
405
406 /* Default case, calculate number of times to unroll loop based on its
407 size. */
408 if (unroll_number == 1)
409 {
410 if (8 * insn_count < MAX_UNROLLED_INSNS)
411 unroll_number = 8;
412 else if (4 * insn_count < MAX_UNROLLED_INSNS)
413 unroll_number = 4;
414 else
415 unroll_number = 2;
416
417 unroll_type = UNROLL_NAIVE;
418 }
419
420 /* Now we know how many times to unroll the loop. */
421
422 if (loop_dump_stream)
423 fprintf (loop_dump_stream,
424 "Unrolling loop %d times.\n", unroll_number);
425
426
427 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
428 {
429 /* Loops of these types should never start with a jump down to
430 the exit condition test. For now, check for this case just to
431 be sure. UNROLL_NAIVE loops can be of this form, this case is
432 handled below. */
433 insn = loop_start;
434 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
435 insn = NEXT_INSN (insn);
436 if (GET_CODE (insn) == JUMP_INSN)
437 abort ();
438 }
439
440 if (unroll_type == UNROLL_COMPLETELY)
441 {
442 /* Completely unrolling the loop: Delete the compare and branch at
443 the end (the last two instructions). This delete must done at the
444 very end of loop unrolling, to avoid problems with calls to
445 back_branch_in_range_p, which is called by find_splittable_regs.
446 All increments of splittable bivs/givs are changed to load constant
447 instructions. */
448
449 copy_start = loop_start;
450
451 /* Set insert_before to the instruction immediately after the JUMP_INSN
452 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
453 the loop will be correctly handled by copy_loop_body. */
454 insert_before = NEXT_INSN (last_loop_insn);
455
456 /* Set copy_end to the insn before the jump at the end of the loop. */
457 if (GET_CODE (last_loop_insn) == BARRIER)
458 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
459 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
460 {
461 #ifdef HAVE_cc0
462 /* The instruction immediately before the JUMP_INSN is a compare
463 instruction which we do not want to copy. */
464 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
465 #else
466 /* The instruction immediately before the JUMP_INSN may not be the
467 compare, so we must copy it. */
468 copy_end = PREV_INSN (last_loop_insn);
469 #endif
470 }
471 else
472 {
473 /* We currently can't unroll a loop if it doesn't end with a
474 JUMP_INSN. There would need to be a mechanism that recognizes
475 this case, and then inserts a jump after each loop body, which
476 jumps to after the last loop body. */
477 if (loop_dump_stream)
478 fprintf (loop_dump_stream,
479 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
480 return;
481 }
482 }
483 else if (unroll_type == UNROLL_MODULO)
484 {
485 /* Partially unrolling the loop: The compare and branch at the end
486 (the last two instructions) must remain. Don't copy the compare
487 and branch instructions at the end of the loop. Insert the unrolled
488 code immediately before the compare/branch at the end so that the
489 code will fall through to them as before. */
490
491 copy_start = loop_start;
492
493 /* Set insert_before to the jump insn at the end of the loop.
494 Set copy_end to before the jump insn at the end of the loop. */
495 if (GET_CODE (last_loop_insn) == BARRIER)
496 {
497 insert_before = PREV_INSN (last_loop_insn);
498 copy_end = PREV_INSN (insert_before);
499 }
500 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
501 {
502 #ifdef HAVE_cc0
503 /* The instruction immediately before the JUMP_INSN is a compare
504 instruction which we do not want to copy or delete. */
505 insert_before = PREV_INSN (last_loop_insn);
506 copy_end = PREV_INSN (insert_before);
507 #else
508 /* The instruction immediately before the JUMP_INSN may not be the
509 compare, so we must copy it. */
510 insert_before = last_loop_insn;
511 copy_end = PREV_INSN (last_loop_insn);
512 #endif
513 }
514 else
515 {
516 /* We currently can't unroll a loop if it doesn't end with a
517 JUMP_INSN. There would need to be a mechanism that recognizes
518 this case, and then inserts a jump after each loop body, which
519 jumps to after the last loop body. */
520 if (loop_dump_stream)
521 fprintf (loop_dump_stream,
522 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
523 return;
524 }
525 }
526 else
527 {
528 /* Normal case: Must copy the compare and branch instructions at the
529 end of the loop. */
530
531 if (GET_CODE (last_loop_insn) == BARRIER)
532 {
533 /* Loop ends with an unconditional jump and a barrier.
534 Handle this like above, don't copy jump and barrier.
535 This is not strictly necessary, but doing so prevents generating
536 unconditional jumps to an immediately following label.
537
538 This will be corrected below if the target of this jump is
539 not the start_label. */
540
541 insert_before = PREV_INSN (last_loop_insn);
542 copy_end = PREV_INSN (insert_before);
543 }
544 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
545 {
546 /* Set insert_before to immediately after the JUMP_INSN, so that
547 NOTEs at the end of the loop will be correctly handled by
548 copy_loop_body. */
549 insert_before = NEXT_INSN (last_loop_insn);
550 copy_end = last_loop_insn;
551 }
552 else
553 {
554 /* We currently can't unroll a loop if it doesn't end with a
555 JUMP_INSN. There would need to be a mechanism that recognizes
556 this case, and then inserts a jump after each loop body, which
557 jumps to after the last loop body. */
558 if (loop_dump_stream)
559 fprintf (loop_dump_stream,
560 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
561 return;
562 }
563
564 /* If copying exit test branches because they can not be eliminated,
565 then must convert the fall through case of the branch to a jump past
566 the end of the loop. Create a label to emit after the loop and save
567 it for later use. Do not use the label after the loop, if any, since
568 it might be used by insns outside the loop, or there might be insns
569 added before it later by final_[bg]iv_value which must be after
570 the real exit label. */
571 exit_label = gen_label_rtx ();
572
573 insn = loop_start;
574 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
575 insn = NEXT_INSN (insn);
576
577 if (GET_CODE (insn) == JUMP_INSN)
578 {
579 /* The loop starts with a jump down to the exit condition test.
580 Start copying the loop after the barrier following this
581 jump insn. */
582 copy_start = NEXT_INSN (insn);
583
584 /* Splitting induction variables doesn't work when the loop is
585 entered via a jump to the bottom, because then we end up doing
586 a comparison against a new register for a split variable, but
587 we did not execute the set insn for the new register because
588 it was skipped over. */
589 splitting_not_safe = 1;
590 if (loop_dump_stream)
591 fprintf (loop_dump_stream,
592 "Splitting not safe, because loop not entered at top.\n");
593 }
594 else
595 copy_start = loop_start;
596 }
597
598 /* This should always be the first label in the loop. */
599 start_label = NEXT_INSN (copy_start);
600 /* There may be a line number note and/or a loop continue note here. */
601 while (GET_CODE (start_label) == NOTE)
602 start_label = NEXT_INSN (start_label);
603 if (GET_CODE (start_label) != CODE_LABEL)
604 {
605 /* This can happen as a result of jump threading. If the first insns in
606 the loop test the same condition as the loop's backward jump, or the
607 opposite condition, then the backward jump will be modified to point
608 to elsewhere, and the loop's start label is deleted.
609
610 This case currently can not be handled by the loop unrolling code. */
611
612 if (loop_dump_stream)
613 fprintf (loop_dump_stream,
614 "Unrolling failure: unknown insns between BEG note and loop label.\n");
615 return;
616 }
617 if (LABEL_NAME (start_label))
618 {
619 /* The jump optimization pass must have combined the original start label
620 with a named label for a goto. We can't unroll this case because
621 jumps which go to the named label must be handled differently than
622 jumps to the loop start, and it is impossible to differentiate them
623 in this case. */
624 if (loop_dump_stream)
625 fprintf (loop_dump_stream,
626 "Unrolling failure: loop start label is gone\n");
627 return;
628 }
629
630 if (unroll_type == UNROLL_NAIVE
631 && GET_CODE (last_loop_insn) == BARRIER
632 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
633 {
634 /* In this case, we must copy the jump and barrier, because they will
635 not be converted to jumps to an immediately following label. */
636
637 insert_before = NEXT_INSN (last_loop_insn);
638 copy_end = last_loop_insn;
639 }
640
641 if (unroll_type == UNROLL_NAIVE
642 && GET_CODE (last_loop_insn) == JUMP_INSN
643 && start_label != JUMP_LABEL (last_loop_insn))
644 {
645 /* ??? The loop ends with a conditional branch that does not branch back
646 to the loop start label. In this case, we must emit an unconditional
647 branch to the loop exit after emitting the final branch.
648 copy_loop_body does not have support for this currently, so we
649 give up. It doesn't seem worthwhile to unroll anyways since
650 unrolling would increase the number of branch instructions
651 executed. */
652 if (loop_dump_stream)
653 fprintf (loop_dump_stream,
654 "Unrolling failure: final conditional branch not to loop start\n");
655 return;
656 }
657
658 /* Allocate a translation table for the labels and insn numbers.
659 They will be filled in as we copy the insns in the loop. */
660
661 max_labelno = max_label_num ();
662 max_insnno = get_max_uid ();
663
664 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
665
666 map->integrating = 0;
667
668 /* Allocate the label map. */
669
670 if (max_labelno > 0)
671 {
672 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
673
674 local_label = (char *) alloca (max_labelno);
675 bzero (local_label, max_labelno);
676 }
677 else
678 map->label_map = 0;
679
680 /* Search the loop and mark all local labels, i.e. the ones which have to
681 be distinct labels when copied. For all labels which might be
682 non-local, set their label_map entries to point to themselves.
683 If they happen to be local their label_map entries will be overwritten
684 before the loop body is copied. The label_map entries for local labels
685 will be set to a different value each time the loop body is copied. */
686
687 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
688 {
689 if (GET_CODE (insn) == CODE_LABEL)
690 local_label[CODE_LABEL_NUMBER (insn)] = 1;
691 else if (GET_CODE (insn) == JUMP_INSN)
692 {
693 if (JUMP_LABEL (insn))
694 set_label_in_map (map,
695 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
696 JUMP_LABEL (insn));
697 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
698 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
699 {
700 rtx pat = PATTERN (insn);
701 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
702 int len = XVECLEN (pat, diff_vec_p);
703 rtx label;
704
705 for (i = 0; i < len; i++)
706 {
707 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
708 set_label_in_map (map,
709 CODE_LABEL_NUMBER (label),
710 label);
711 }
712 }
713 }
714 }
715
716 /* Allocate space for the insn map. */
717
718 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
719
720 /* Set this to zero, to indicate that we are doing loop unrolling,
721 not function inlining. */
722 map->inline_target = 0;
723
724 /* The register and constant maps depend on the number of registers
725 present, so the final maps can't be created until after
726 find_splittable_regs is called. However, they are needed for
727 preconditioning, so we create temporary maps when preconditioning
728 is performed. */
729
730 /* The preconditioning code may allocate two new pseudo registers. */
731 maxregnum = max_reg_num ();
732
733 /* Allocate and zero out the splittable_regs and addr_combined_regs
734 arrays. These must be zeroed here because they will be used if
735 loop preconditioning is performed, and must be zero for that case.
736
737 It is safe to do this here, since the extra registers created by the
738 preconditioning code and find_splittable_regs will never be used
739 to access the splittable_regs[] and addr_combined_regs[] arrays. */
740
741 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
742 bzero ((char *) splittable_regs, maxregnum * sizeof (rtx));
743 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
744 bzero ((char *) splittable_regs_updates, maxregnum * sizeof (int));
745 addr_combined_regs
746 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
747 bzero ((char *) addr_combined_regs, maxregnum * sizeof (struct induction *));
748 /* We must limit it to max_reg_before_loop, because only these pseudo
749 registers have valid regno_first_uid info. Any register created after
750 that is unlikely to be local to the loop anyways. */
751 local_regno = (char *) alloca (max_reg_before_loop);
752 bzero (local_regno, max_reg_before_loop);
753
754 /* Mark all local registers, i.e. the ones which are referenced only
755 inside the loop. */
756 if (INSN_UID (copy_end) < max_uid_for_loop)
757 {
758 int copy_start_luid = INSN_LUID (copy_start);
759 int copy_end_luid = INSN_LUID (copy_end);
760
761 /* If a register is used in the jump insn, we must not duplicate it
762 since it will also be used outside the loop. */
763 if (GET_CODE (copy_end) == JUMP_INSN)
764 copy_end_luid--;
765 /* If copy_start points to the NOTE that starts the loop, then we must
766 use the next luid, because invariant pseudo-regs moved out of the loop
767 have their lifetimes modified to start here, but they are not safe
768 to duplicate. */
769 if (copy_start == loop_start)
770 copy_start_luid++;
771
772 /* If a pseudo's lifetime is entirely contained within this loop, then we
773 can use a different pseudo in each unrolled copy of the loop. This
774 results in better code. */
775 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; ++j)
776 if (REGNO_FIRST_UID (j) > 0 && REGNO_FIRST_UID (j) <= max_uid_for_loop
777 && uid_luid[REGNO_FIRST_UID (j)] >= copy_start_luid
778 && REGNO_LAST_UID (j) > 0 && REGNO_LAST_UID (j) <= max_uid_for_loop
779 && uid_luid[REGNO_LAST_UID (j)] <= copy_end_luid)
780 {
781 /* However, we must also check for loop-carried dependencies.
782 If the value the pseudo has at the end of iteration X is
783 used by iteration X+1, then we can not use a different pseudo
784 for each unrolled copy of the loop. */
785 /* A pseudo is safe if regno_first_uid is a set, and this
786 set dominates all instructions from regno_first_uid to
787 regno_last_uid. */
788 /* ??? This check is simplistic. We would get better code if
789 this check was more sophisticated. */
790 if (set_dominates_use (j, REGNO_FIRST_UID (j), REGNO_LAST_UID (j),
791 copy_start, copy_end))
792 local_regno[j] = 1;
793
794 if (loop_dump_stream)
795 {
796 if (local_regno[j])
797 fprintf (loop_dump_stream, "Marked reg %d as local\n", j);
798 else
799 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
800 j);
801 }
802 }
803 }
804
805 /* If this loop requires exit tests when unrolled, check to see if we
806 can precondition the loop so as to make the exit tests unnecessary.
807 Just like variable splitting, this is not safe if the loop is entered
808 via a jump to the bottom. Also, can not do this if no strength
809 reduce info, because precondition_loop_p uses this info. */
810
811 /* Must copy the loop body for preconditioning before the following
812 find_splittable_regs call since that will emit insns which need to
813 be after the preconditioned loop copies, but immediately before the
814 unrolled loop copies. */
815
816 /* Also, it is not safe to split induction variables for the preconditioned
817 copies of the loop body. If we split induction variables, then the code
818 assumes that each induction variable can be represented as a function
819 of its initial value and the loop iteration number. This is not true
820 in this case, because the last preconditioned copy of the loop body
821 could be any iteration from the first up to the `unroll_number-1'th,
822 depending on the initial value of the iteration variable. Therefore
823 we can not split induction variables here, because we can not calculate
824 their value. Hence, this code must occur before find_splittable_regs
825 is called. */
826
827 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
828 {
829 rtx initial_value, final_value, increment;
830
831 if (precondition_loop_p (&initial_value, &final_value, &increment,
832 loop_start, loop_end))
833 {
834 register rtx diff ;
835 enum machine_mode mode;
836 rtx *labels;
837 int abs_inc, neg_inc;
838
839 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
840
841 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
842 map->const_age_map = (unsigned *) alloca (maxregnum
843 * sizeof (unsigned));
844 map->const_equiv_map_size = maxregnum;
845 global_const_equiv_map = map->const_equiv_map;
846 global_const_equiv_map_size = maxregnum;
847
848 init_reg_map (map, maxregnum);
849
850 /* Limit loop unrolling to 4, since this will make 7 copies of
851 the loop body. */
852 if (unroll_number > 4)
853 unroll_number = 4;
854
855 /* Save the absolute value of the increment, and also whether or
856 not it is negative. */
857 neg_inc = 0;
858 abs_inc = INTVAL (increment);
859 if (abs_inc < 0)
860 {
861 abs_inc = - abs_inc;
862 neg_inc = 1;
863 }
864
865 start_sequence ();
866
867 /* Decide what mode to do these calculations in. Choose the larger
868 of final_value's mode and initial_value's mode, or a full-word if
869 both are constants. */
870 mode = GET_MODE (final_value);
871 if (mode == VOIDmode)
872 {
873 mode = GET_MODE (initial_value);
874 if (mode == VOIDmode)
875 mode = word_mode;
876 }
877 else if (mode != GET_MODE (initial_value)
878 && (GET_MODE_SIZE (mode)
879 < GET_MODE_SIZE (GET_MODE (initial_value))))
880 mode = GET_MODE (initial_value);
881
882 /* Calculate the difference between the final and initial values.
883 Final value may be a (plus (reg x) (const_int 1)) rtx.
884 Let the following cse pass simplify this if initial value is
885 a constant.
886
887 We must copy the final and initial values here to avoid
888 improperly shared rtl. */
889
890 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
891 copy_rtx (initial_value), NULL_RTX, 0,
892 OPTAB_LIB_WIDEN);
893
894 /* Now calculate (diff % (unroll * abs (increment))) by using an
895 and instruction. */
896 diff = expand_binop (GET_MODE (diff), and_optab, diff,
897 GEN_INT (unroll_number * abs_inc - 1),
898 NULL_RTX, 0, OPTAB_LIB_WIDEN);
899
900 /* Now emit a sequence of branches to jump to the proper precond
901 loop entry point. */
902
903 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
904 for (i = 0; i < unroll_number; i++)
905 labels[i] = gen_label_rtx ();
906
907 /* Check for the case where the initial value is greater than or
908 equal to the final value. In that case, we want to execute
909 exactly one loop iteration. The code below will fail for this
910 case. This check does not apply if the loop has a NE
911 comparison at the end. */
912
913 if (loop_comparison_code != NE)
914 {
915 emit_cmp_insn (initial_value, final_value, neg_inc ? LE : GE,
916 NULL_RTX, mode, 0, 0);
917 if (neg_inc)
918 emit_jump_insn (gen_ble (labels[1]));
919 else
920 emit_jump_insn (gen_bge (labels[1]));
921 JUMP_LABEL (get_last_insn ()) = labels[1];
922 LABEL_NUSES (labels[1])++;
923 }
924
925 /* Assuming the unroll_number is 4, and the increment is 2, then
926 for a negative increment: for a positive increment:
927 diff = 0,1 precond 0 diff = 0,7 precond 0
928 diff = 2,3 precond 3 diff = 1,2 precond 1
929 diff = 4,5 precond 2 diff = 3,4 precond 2
930 diff = 6,7 precond 1 diff = 5,6 precond 3 */
931
932 /* We only need to emit (unroll_number - 1) branches here, the
933 last case just falls through to the following code. */
934
935 /* ??? This would give better code if we emitted a tree of branches
936 instead of the current linear list of branches. */
937
938 for (i = 0; i < unroll_number - 1; i++)
939 {
940 int cmp_const;
941 enum rtx_code cmp_code;
942
943 /* For negative increments, must invert the constant compared
944 against, except when comparing against zero. */
945 if (i == 0)
946 {
947 cmp_const = 0;
948 cmp_code = EQ;
949 }
950 else if (neg_inc)
951 {
952 cmp_const = unroll_number - i;
953 cmp_code = GE;
954 }
955 else
956 {
957 cmp_const = i;
958 cmp_code = LE;
959 }
960
961 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
962 cmp_code, NULL_RTX, mode, 0, 0);
963
964 if (i == 0)
965 emit_jump_insn (gen_beq (labels[i]));
966 else if (neg_inc)
967 emit_jump_insn (gen_bge (labels[i]));
968 else
969 emit_jump_insn (gen_ble (labels[i]));
970 JUMP_LABEL (get_last_insn ()) = labels[i];
971 LABEL_NUSES (labels[i])++;
972 }
973
974 /* If the increment is greater than one, then we need another branch,
975 to handle other cases equivalent to 0. */
976
977 /* ??? This should be merged into the code above somehow to help
978 simplify the code here, and reduce the number of branches emitted.
979 For the negative increment case, the branch here could easily
980 be merged with the `0' case branch above. For the positive
981 increment case, it is not clear how this can be simplified. */
982
983 if (abs_inc != 1)
984 {
985 int cmp_const;
986 enum rtx_code cmp_code;
987
988 if (neg_inc)
989 {
990 cmp_const = abs_inc - 1;
991 cmp_code = LE;
992 }
993 else
994 {
995 cmp_const = abs_inc * (unroll_number - 1) + 1;
996 cmp_code = GE;
997 }
998
999 emit_cmp_insn (diff, GEN_INT (cmp_const), cmp_code, NULL_RTX,
1000 mode, 0, 0);
1001
1002 if (neg_inc)
1003 emit_jump_insn (gen_ble (labels[0]));
1004 else
1005 emit_jump_insn (gen_bge (labels[0]));
1006 JUMP_LABEL (get_last_insn ()) = labels[0];
1007 LABEL_NUSES (labels[0])++;
1008 }
1009
1010 sequence = gen_sequence ();
1011 end_sequence ();
1012 emit_insn_before (sequence, loop_start);
1013
1014 /* Only the last copy of the loop body here needs the exit
1015 test, so set copy_end to exclude the compare/branch here,
1016 and then reset it inside the loop when get to the last
1017 copy. */
1018
1019 if (GET_CODE (last_loop_insn) == BARRIER)
1020 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1021 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1022 {
1023 #ifdef HAVE_cc0
1024 /* The immediately preceding insn is a compare which we do not
1025 want to copy. */
1026 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1027 #else
1028 /* The immediately preceding insn may not be a compare, so we
1029 must copy it. */
1030 copy_end = PREV_INSN (last_loop_insn);
1031 #endif
1032 }
1033 else
1034 abort ();
1035
1036 for (i = 1; i < unroll_number; i++)
1037 {
1038 emit_label_after (labels[unroll_number - i],
1039 PREV_INSN (loop_start));
1040
1041 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1042 bzero ((char *) map->const_equiv_map, maxregnum * sizeof (rtx));
1043 bzero ((char *) map->const_age_map,
1044 maxregnum * sizeof (unsigned));
1045 map->const_age = 0;
1046
1047 for (j = 0; j < max_labelno; j++)
1048 if (local_label[j])
1049 set_label_in_map (map, j, gen_label_rtx ());
1050
1051 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1052 if (local_regno[j])
1053 {
1054 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1055 record_base_value (REGNO (map->reg_map[j]),
1056 regno_reg_rtx[j]);
1057 }
1058 /* The last copy needs the compare/branch insns at the end,
1059 so reset copy_end here if the loop ends with a conditional
1060 branch. */
1061
1062 if (i == unroll_number - 1)
1063 {
1064 if (GET_CODE (last_loop_insn) == BARRIER)
1065 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1066 else
1067 copy_end = last_loop_insn;
1068 }
1069
1070 /* None of the copies are the `last_iteration', so just
1071 pass zero for that parameter. */
1072 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
1073 unroll_type, start_label, loop_end,
1074 loop_start, copy_end);
1075 }
1076 emit_label_after (labels[0], PREV_INSN (loop_start));
1077
1078 if (GET_CODE (last_loop_insn) == BARRIER)
1079 {
1080 insert_before = PREV_INSN (last_loop_insn);
1081 copy_end = PREV_INSN (insert_before);
1082 }
1083 else
1084 {
1085 #ifdef HAVE_cc0
1086 /* The immediately preceding insn is a compare which we do not
1087 want to copy. */
1088 insert_before = PREV_INSN (last_loop_insn);
1089 copy_end = PREV_INSN (insert_before);
1090 #else
1091 /* The immediately preceding insn may not be a compare, so we
1092 must copy it. */
1093 insert_before = last_loop_insn;
1094 copy_end = PREV_INSN (last_loop_insn);
1095 #endif
1096 }
1097
1098 /* Set unroll type to MODULO now. */
1099 unroll_type = UNROLL_MODULO;
1100 loop_preconditioned = 1;
1101
1102 #ifdef HAIFA
1103 /* Fix the initial value for the loop as needed. */
1104 if (loop_n_iterations <= 0)
1105 loop_start_value [uid_loop_num [INSN_UID (loop_start)]]
1106 = initial_value;
1107 #endif
1108 }
1109 }
1110
1111 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1112 the loop unless all loops are being unrolled. */
1113 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1114 {
1115 if (loop_dump_stream)
1116 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
1117 return;
1118 }
1119
1120 /* At this point, we are guaranteed to unroll the loop. */
1121
1122 /* Keep track of the unroll factor for each loop. */
1123 if (unroll_type == UNROLL_COMPLETELY)
1124 loop_unroll_factor [uid_loop_num [INSN_UID (loop_start)]] = -1;
1125 else
1126 loop_unroll_factor [uid_loop_num [INSN_UID (loop_start)]] = unroll_number;
1127
1128
1129 /* For each biv and giv, determine whether it can be safely split into
1130 a different variable for each unrolled copy of the loop body.
1131 We precalculate and save this info here, since computing it is
1132 expensive.
1133
1134 Do this before deleting any instructions from the loop, so that
1135 back_branch_in_range_p will work correctly. */
1136
1137 if (splitting_not_safe)
1138 temp = 0;
1139 else
1140 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
1141 end_insert_before, unroll_number);
1142
1143 /* find_splittable_regs may have created some new registers, so must
1144 reallocate the reg_map with the new larger size, and must realloc
1145 the constant maps also. */
1146
1147 maxregnum = max_reg_num ();
1148 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
1149
1150 init_reg_map (map, maxregnum);
1151
1152 /* Space is needed in some of the map for new registers, so new_maxregnum
1153 is an (over)estimate of how many registers will exist at the end. */
1154 new_maxregnum = maxregnum + (temp * unroll_number * 2);
1155
1156 /* Must realloc space for the constant maps, because the number of registers
1157 may have changed. */
1158
1159 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1160 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1161
1162 map->const_equiv_map_size = new_maxregnum;
1163 global_const_equiv_map = map->const_equiv_map;
1164 global_const_equiv_map_size = new_maxregnum;
1165
1166 /* Search the list of bivs and givs to find ones which need to be remapped
1167 when split, and set their reg_map entry appropriately. */
1168
1169 for (bl = loop_iv_list; bl; bl = bl->next)
1170 {
1171 if (REGNO (bl->biv->src_reg) != bl->regno)
1172 map->reg_map[bl->regno] = bl->biv->src_reg;
1173 #if 0
1174 /* Currently, non-reduced/final-value givs are never split. */
1175 for (v = bl->giv; v; v = v->next_iv)
1176 if (REGNO (v->src_reg) != bl->regno)
1177 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1178 #endif
1179 }
1180
1181 /* Use our current register alignment and pointer flags. */
1182 map->regno_pointer_flag = regno_pointer_flag;
1183 map->regno_pointer_align = regno_pointer_align;
1184
1185 /* If the loop is being partially unrolled, and the iteration variables
1186 are being split, and are being renamed for the split, then must fix up
1187 the compare/jump instruction at the end of the loop to refer to the new
1188 registers. This compare isn't copied, so the registers used in it
1189 will never be replaced if it isn't done here. */
1190
1191 if (unroll_type == UNROLL_MODULO)
1192 {
1193 insn = NEXT_INSN (copy_end);
1194 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1195 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1196 }
1197
1198 /* For unroll_number - 1 times, make a copy of each instruction
1199 between copy_start and copy_end, and insert these new instructions
1200 before the end of the loop. */
1201
1202 for (i = 0; i < unroll_number; i++)
1203 {
1204 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1205 bzero ((char *) map->const_equiv_map, new_maxregnum * sizeof (rtx));
1206 bzero ((char *) map->const_age_map, new_maxregnum * sizeof (unsigned));
1207 map->const_age = 0;
1208
1209 for (j = 0; j < max_labelno; j++)
1210 if (local_label[j])
1211 set_label_in_map (map, j, gen_label_rtx ());
1212
1213 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1214 if (local_regno[j])
1215 {
1216 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1217 record_base_value (REGNO (map->reg_map[j]),
1218 regno_reg_rtx[j]);
1219 }
1220
1221 /* If loop starts with a branch to the test, then fix it so that
1222 it points to the test of the first unrolled copy of the loop. */
1223 if (i == 0 && loop_start != copy_start)
1224 {
1225 insn = PREV_INSN (copy_start);
1226 pattern = PATTERN (insn);
1227
1228 tem = get_label_from_map (map,
1229 CODE_LABEL_NUMBER
1230 (XEXP (SET_SRC (pattern), 0)));
1231 SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1232
1233 /* Set the jump label so that it can be used by later loop unrolling
1234 passes. */
1235 JUMP_LABEL (insn) = tem;
1236 LABEL_NUSES (tem)++;
1237 }
1238
1239 copy_loop_body (copy_start, copy_end, map, exit_label,
1240 i == unroll_number - 1, unroll_type, start_label,
1241 loop_end, insert_before, insert_before);
1242 }
1243
1244 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1245 insn to be deleted. This prevents any runaway delete_insn call from
1246 more insns that it should, as it always stops at a CODE_LABEL. */
1247
1248 /* Delete the compare and branch at the end of the loop if completely
1249 unrolling the loop. Deleting the backward branch at the end also
1250 deletes the code label at the start of the loop. This is done at
1251 the very end to avoid problems with back_branch_in_range_p. */
1252
1253 if (unroll_type == UNROLL_COMPLETELY)
1254 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1255 else
1256 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1257
1258 /* Delete all of the original loop instructions. Don't delete the
1259 LOOP_BEG note, or the first code label in the loop. */
1260
1261 insn = NEXT_INSN (copy_start);
1262 while (insn != safety_label)
1263 {
1264 if (insn != start_label)
1265 insn = delete_insn (insn);
1266 else
1267 insn = NEXT_INSN (insn);
1268 }
1269
1270 /* Can now delete the 'safety' label emitted to protect us from runaway
1271 delete_insn calls. */
1272 if (INSN_DELETED_P (safety_label))
1273 abort ();
1274 delete_insn (safety_label);
1275
1276 /* If exit_label exists, emit it after the loop. Doing the emit here
1277 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1278 This is needed so that mostly_true_jump in reorg.c will treat jumps
1279 to this loop end label correctly, i.e. predict that they are usually
1280 not taken. */
1281 if (exit_label)
1282 emit_label_after (exit_label, loop_end);
1283 }
1284 \f
1285 /* Return true if the loop can be safely, and profitably, preconditioned
1286 so that the unrolled copies of the loop body don't need exit tests.
1287
1288 This only works if final_value, initial_value and increment can be
1289 determined, and if increment is a constant power of 2.
1290 If increment is not a power of 2, then the preconditioning modulo
1291 operation would require a real modulo instead of a boolean AND, and this
1292 is not considered `profitable'. */
1293
1294 /* ??? If the loop is known to be executed very many times, or the machine
1295 has a very cheap divide instruction, then preconditioning is a win even
1296 when the increment is not a power of 2. Use RTX_COST to compute
1297 whether divide is cheap. */
1298
1299 static int
1300 precondition_loop_p (initial_value, final_value, increment, loop_start,
1301 loop_end)
1302 rtx *initial_value, *final_value, *increment;
1303 rtx loop_start, loop_end;
1304 {
1305
1306 if (loop_n_iterations > 0)
1307 {
1308 *initial_value = const0_rtx;
1309 *increment = const1_rtx;
1310 *final_value = GEN_INT (loop_n_iterations);
1311
1312 if (loop_dump_stream)
1313 fprintf (loop_dump_stream,
1314 "Preconditioning: Success, number of iterations known, %d.\n",
1315 loop_n_iterations);
1316 return 1;
1317 }
1318
1319 if (loop_initial_value == 0)
1320 {
1321 if (loop_dump_stream)
1322 fprintf (loop_dump_stream,
1323 "Preconditioning: Could not find initial value.\n");
1324 return 0;
1325 }
1326 else if (loop_increment == 0)
1327 {
1328 if (loop_dump_stream)
1329 fprintf (loop_dump_stream,
1330 "Preconditioning: Could not find increment value.\n");
1331 return 0;
1332 }
1333 else if (GET_CODE (loop_increment) != CONST_INT)
1334 {
1335 if (loop_dump_stream)
1336 fprintf (loop_dump_stream,
1337 "Preconditioning: Increment not a constant.\n");
1338 return 0;
1339 }
1340 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1341 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1342 {
1343 if (loop_dump_stream)
1344 fprintf (loop_dump_stream,
1345 "Preconditioning: Increment not a constant power of 2.\n");
1346 return 0;
1347 }
1348
1349 /* Unsigned_compare and compare_dir can be ignored here, since they do
1350 not matter for preconditioning. */
1351
1352 if (loop_final_value == 0)
1353 {
1354 if (loop_dump_stream)
1355 fprintf (loop_dump_stream,
1356 "Preconditioning: EQ comparison loop.\n");
1357 return 0;
1358 }
1359
1360 /* Must ensure that final_value is invariant, so call invariant_p to
1361 check. Before doing so, must check regno against max_reg_before_loop
1362 to make sure that the register is in the range covered by invariant_p.
1363 If it isn't, then it is most likely a biv/giv which by definition are
1364 not invariant. */
1365 if ((GET_CODE (loop_final_value) == REG
1366 && REGNO (loop_final_value) >= max_reg_before_loop)
1367 || (GET_CODE (loop_final_value) == PLUS
1368 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1369 || ! invariant_p (loop_final_value))
1370 {
1371 if (loop_dump_stream)
1372 fprintf (loop_dump_stream,
1373 "Preconditioning: Final value not invariant.\n");
1374 return 0;
1375 }
1376
1377 /* Fail for floating point values, since the caller of this function
1378 does not have code to deal with them. */
1379 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1380 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
1381 {
1382 if (loop_dump_stream)
1383 fprintf (loop_dump_stream,
1384 "Preconditioning: Floating point final or initial value.\n");
1385 return 0;
1386 }
1387
1388 /* Now set initial_value to be the iteration_var, since that may be a
1389 simpler expression, and is guaranteed to be correct if all of the
1390 above tests succeed.
1391
1392 We can not use the initial_value as calculated, because it will be
1393 one too small for loops of the form "while (i-- > 0)". We can not
1394 emit code before the loop_skip_over insns to fix this problem as this
1395 will then give a number one too large for loops of the form
1396 "while (--i > 0)".
1397
1398 Note that all loops that reach here are entered at the top, because
1399 this function is not called if the loop starts with a jump. */
1400
1401 /* Fail if loop_iteration_var is not live before loop_start, since we need
1402 to test its value in the preconditioning code. */
1403
1404 if (uid_luid[REGNO_FIRST_UID (REGNO (loop_iteration_var))]
1405 > INSN_LUID (loop_start))
1406 {
1407 if (loop_dump_stream)
1408 fprintf (loop_dump_stream,
1409 "Preconditioning: Iteration var not live before loop start.\n");
1410 return 0;
1411 }
1412
1413 *initial_value = loop_iteration_var;
1414 *increment = loop_increment;
1415 *final_value = loop_final_value;
1416
1417 /* Success! */
1418 if (loop_dump_stream)
1419 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1420 return 1;
1421 }
1422
1423
1424 /* All pseudo-registers must be mapped to themselves. Two hard registers
1425 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1426 REGNUM, to avoid function-inlining specific conversions of these
1427 registers. All other hard regs can not be mapped because they may be
1428 used with different
1429 modes. */
1430
1431 static void
1432 init_reg_map (map, maxregnum)
1433 struct inline_remap *map;
1434 int maxregnum;
1435 {
1436 int i;
1437
1438 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1439 map->reg_map[i] = regno_reg_rtx[i];
1440 /* Just clear the rest of the entries. */
1441 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1442 map->reg_map[i] = 0;
1443
1444 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1445 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1446 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1447 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1448 }
1449 \f
1450 /* Strength-reduction will often emit code for optimized biv/givs which
1451 calculates their value in a temporary register, and then copies the result
1452 to the iv. This procedure reconstructs the pattern computing the iv;
1453 verifying that all operands are of the proper form.
1454
1455 The return value is the amount that the giv is incremented by. */
1456
1457 static rtx
1458 calculate_giv_inc (pattern, src_insn, regno)
1459 rtx pattern, src_insn;
1460 int regno;
1461 {
1462 rtx increment;
1463 rtx increment_total = 0;
1464 int tries = 0;
1465
1466 retry:
1467 /* Verify that we have an increment insn here. First check for a plus
1468 as the set source. */
1469 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1470 {
1471 /* SR sometimes computes the new giv value in a temp, then copies it
1472 to the new_reg. */
1473 src_insn = PREV_INSN (src_insn);
1474 pattern = PATTERN (src_insn);
1475 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1476 abort ();
1477
1478 /* The last insn emitted is not needed, so delete it to avoid confusing
1479 the second cse pass. This insn sets the giv unnecessarily. */
1480 delete_insn (get_last_insn ());
1481 }
1482
1483 /* Verify that we have a constant as the second operand of the plus. */
1484 increment = XEXP (SET_SRC (pattern), 1);
1485 if (GET_CODE (increment) != CONST_INT)
1486 {
1487 /* SR sometimes puts the constant in a register, especially if it is
1488 too big to be an add immed operand. */
1489 src_insn = PREV_INSN (src_insn);
1490 increment = SET_SRC (PATTERN (src_insn));
1491
1492 /* SR may have used LO_SUM to compute the constant if it is too large
1493 for a load immed operand. In this case, the constant is in operand
1494 one of the LO_SUM rtx. */
1495 if (GET_CODE (increment) == LO_SUM)
1496 increment = XEXP (increment, 1);
1497
1498 /* Some ports store large constants in memory and add a REG_EQUAL
1499 note to the store insn. */
1500 else if (GET_CODE (increment) == MEM)
1501 {
1502 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1503 if (note)
1504 increment = XEXP (note, 0);
1505 }
1506
1507 else if (GET_CODE (increment) == IOR
1508 || GET_CODE (increment) == ASHIFT
1509 || GET_CODE (increment) == PLUS)
1510 {
1511 /* The rs6000 port loads some constants with IOR.
1512 The alpha port loads some constants with ASHIFT and PLUS. */
1513 rtx second_part = XEXP (increment, 1);
1514 enum rtx_code code = GET_CODE (increment);
1515
1516 src_insn = PREV_INSN (src_insn);
1517 increment = SET_SRC (PATTERN (src_insn));
1518 /* Don't need the last insn anymore. */
1519 delete_insn (get_last_insn ());
1520
1521 if (GET_CODE (second_part) != CONST_INT
1522 || GET_CODE (increment) != CONST_INT)
1523 abort ();
1524
1525 if (code == IOR)
1526 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1527 else if (code == PLUS)
1528 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1529 else
1530 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1531 }
1532
1533 if (GET_CODE (increment) != CONST_INT)
1534 abort ();
1535
1536 /* The insn loading the constant into a register is no longer needed,
1537 so delete it. */
1538 delete_insn (get_last_insn ());
1539 }
1540
1541 if (increment_total)
1542 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1543 else
1544 increment_total = increment;
1545
1546 /* Check that the source register is the same as the register we expected
1547 to see as the source. If not, something is seriously wrong. */
1548 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1549 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1550 {
1551 /* Some machines (e.g. the romp), may emit two add instructions for
1552 certain constants, so lets try looking for another add immediately
1553 before this one if we have only seen one add insn so far. */
1554
1555 if (tries == 0)
1556 {
1557 tries++;
1558
1559 src_insn = PREV_INSN (src_insn);
1560 pattern = PATTERN (src_insn);
1561
1562 delete_insn (get_last_insn ());
1563
1564 goto retry;
1565 }
1566
1567 abort ();
1568 }
1569
1570 return increment_total;
1571 }
1572
1573 /* Copy REG_NOTES, except for insn references, because not all insn_map
1574 entries are valid yet. We do need to copy registers now though, because
1575 the reg_map entries can change during copying. */
1576
1577 static rtx
1578 initial_reg_note_copy (notes, map)
1579 rtx notes;
1580 struct inline_remap *map;
1581 {
1582 rtx copy;
1583
1584 if (notes == 0)
1585 return 0;
1586
1587 copy = rtx_alloc (GET_CODE (notes));
1588 PUT_MODE (copy, GET_MODE (notes));
1589
1590 if (GET_CODE (notes) == EXPR_LIST)
1591 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
1592 else if (GET_CODE (notes) == INSN_LIST)
1593 /* Don't substitute for these yet. */
1594 XEXP (copy, 0) = XEXP (notes, 0);
1595 else
1596 abort ();
1597
1598 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1599
1600 return copy;
1601 }
1602
1603 /* Fixup insn references in copied REG_NOTES. */
1604
1605 static void
1606 final_reg_note_copy (notes, map)
1607 rtx notes;
1608 struct inline_remap *map;
1609 {
1610 rtx note;
1611
1612 for (note = notes; note; note = XEXP (note, 1))
1613 if (GET_CODE (note) == INSN_LIST)
1614 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1615 }
1616
1617 /* Copy each instruction in the loop, substituting from map as appropriate.
1618 This is very similar to a loop in expand_inline_function. */
1619
1620 static void
1621 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1622 unroll_type, start_label, loop_end, insert_before,
1623 copy_notes_from)
1624 rtx copy_start, copy_end;
1625 struct inline_remap *map;
1626 rtx exit_label;
1627 int last_iteration;
1628 enum unroll_types unroll_type;
1629 rtx start_label, loop_end, insert_before, copy_notes_from;
1630 {
1631 rtx insn, pattern;
1632 rtx tem, copy;
1633 int dest_reg_was_split, i;
1634 rtx cc0_insn = 0;
1635 rtx final_label = 0;
1636 rtx giv_inc, giv_dest_reg, giv_src_reg;
1637
1638 /* If this isn't the last iteration, then map any references to the
1639 start_label to final_label. Final label will then be emitted immediately
1640 after the end of this loop body if it was ever used.
1641
1642 If this is the last iteration, then map references to the start_label
1643 to itself. */
1644 if (! last_iteration)
1645 {
1646 final_label = gen_label_rtx ();
1647 set_label_in_map (map, CODE_LABEL_NUMBER (start_label),
1648 final_label);
1649 }
1650 else
1651 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1652
1653 start_sequence ();
1654
1655 insn = copy_start;
1656 do
1657 {
1658 insn = NEXT_INSN (insn);
1659
1660 map->orig_asm_operands_vector = 0;
1661
1662 switch (GET_CODE (insn))
1663 {
1664 case INSN:
1665 pattern = PATTERN (insn);
1666 copy = 0;
1667 giv_inc = 0;
1668
1669 /* Check to see if this is a giv that has been combined with
1670 some split address givs. (Combined in the sense that
1671 `combine_givs' in loop.c has put two givs in the same register.)
1672 In this case, we must search all givs based on the same biv to
1673 find the address givs. Then split the address givs.
1674 Do this before splitting the giv, since that may map the
1675 SET_DEST to a new register. */
1676
1677 if (GET_CODE (pattern) == SET
1678 && GET_CODE (SET_DEST (pattern)) == REG
1679 && addr_combined_regs[REGNO (SET_DEST (pattern))])
1680 {
1681 struct iv_class *bl;
1682 struct induction *v, *tv;
1683 int regno = REGNO (SET_DEST (pattern));
1684
1685 v = addr_combined_regs[REGNO (SET_DEST (pattern))];
1686 bl = reg_biv_class[REGNO (v->src_reg)];
1687
1688 /* Although the giv_inc amount is not needed here, we must call
1689 calculate_giv_inc here since it might try to delete the
1690 last insn emitted. If we wait until later to call it,
1691 we might accidentally delete insns generated immediately
1692 below by emit_unrolled_add. */
1693
1694 giv_inc = calculate_giv_inc (pattern, insn, regno);
1695
1696 /* Now find all address giv's that were combined with this
1697 giv 'v'. */
1698 for (tv = bl->giv; tv; tv = tv->next_iv)
1699 if (tv->giv_type == DEST_ADDR && tv->same == v)
1700 {
1701 int this_giv_inc;
1702
1703 /* If this DEST_ADDR giv was not split, then ignore it. */
1704 if (*tv->location != tv->dest_reg)
1705 continue;
1706
1707 /* Scale this_giv_inc if the multiplicative factors of
1708 the two givs are different. */
1709 this_giv_inc = INTVAL (giv_inc);
1710 if (tv->mult_val != v->mult_val)
1711 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1712 * INTVAL (tv->mult_val));
1713
1714 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1715 *tv->location = tv->dest_reg;
1716
1717 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1718 {
1719 /* Must emit an insn to increment the split address
1720 giv. Add in the const_adjust field in case there
1721 was a constant eliminated from the address. */
1722 rtx value, dest_reg;
1723
1724 /* tv->dest_reg will be either a bare register,
1725 or else a register plus a constant. */
1726 if (GET_CODE (tv->dest_reg) == REG)
1727 dest_reg = tv->dest_reg;
1728 else
1729 dest_reg = XEXP (tv->dest_reg, 0);
1730
1731 /* Check for shared address givs, and avoid
1732 incrementing the shared pseudo reg more than
1733 once. */
1734 if (! tv->same_insn && ! tv->shared)
1735 {
1736 /* tv->dest_reg may actually be a (PLUS (REG)
1737 (CONST)) here, so we must call plus_constant
1738 to add the const_adjust amount before calling
1739 emit_unrolled_add below. */
1740 value = plus_constant (tv->dest_reg,
1741 tv->const_adjust);
1742
1743 /* The constant could be too large for an add
1744 immediate, so can't directly emit an insn
1745 here. */
1746 emit_unrolled_add (dest_reg, XEXP (value, 0),
1747 XEXP (value, 1));
1748 }
1749
1750 /* Reset the giv to be just the register again, in case
1751 it is used after the set we have just emitted.
1752 We must subtract the const_adjust factor added in
1753 above. */
1754 tv->dest_reg = plus_constant (dest_reg,
1755 - tv->const_adjust);
1756 *tv->location = tv->dest_reg;
1757 }
1758 }
1759 }
1760
1761 /* If this is a setting of a splittable variable, then determine
1762 how to split the variable, create a new set based on this split,
1763 and set up the reg_map so that later uses of the variable will
1764 use the new split variable. */
1765
1766 dest_reg_was_split = 0;
1767
1768 if (GET_CODE (pattern) == SET
1769 && GET_CODE (SET_DEST (pattern)) == REG
1770 && splittable_regs[REGNO (SET_DEST (pattern))])
1771 {
1772 int regno = REGNO (SET_DEST (pattern));
1773
1774 dest_reg_was_split = 1;
1775
1776 /* Compute the increment value for the giv, if it wasn't
1777 already computed above. */
1778
1779 if (giv_inc == 0)
1780 giv_inc = calculate_giv_inc (pattern, insn, regno);
1781 giv_dest_reg = SET_DEST (pattern);
1782 giv_src_reg = SET_DEST (pattern);
1783
1784 if (unroll_type == UNROLL_COMPLETELY)
1785 {
1786 /* Completely unrolling the loop. Set the induction
1787 variable to a known constant value. */
1788
1789 /* The value in splittable_regs may be an invariant
1790 value, so we must use plus_constant here. */
1791 splittable_regs[regno]
1792 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1793
1794 if (GET_CODE (splittable_regs[regno]) == PLUS)
1795 {
1796 giv_src_reg = XEXP (splittable_regs[regno], 0);
1797 giv_inc = XEXP (splittable_regs[regno], 1);
1798 }
1799 else
1800 {
1801 /* The splittable_regs value must be a REG or a
1802 CONST_INT, so put the entire value in the giv_src_reg
1803 variable. */
1804 giv_src_reg = splittable_regs[regno];
1805 giv_inc = const0_rtx;
1806 }
1807 }
1808 else
1809 {
1810 /* Partially unrolling loop. Create a new pseudo
1811 register for the iteration variable, and set it to
1812 be a constant plus the original register. Except
1813 on the last iteration, when the result has to
1814 go back into the original iteration var register. */
1815
1816 /* Handle bivs which must be mapped to a new register
1817 when split. This happens for bivs which need their
1818 final value set before loop entry. The new register
1819 for the biv was stored in the biv's first struct
1820 induction entry by find_splittable_regs. */
1821
1822 if (regno < max_reg_before_loop
1823 && reg_iv_type[regno] == BASIC_INDUCT)
1824 {
1825 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1826 giv_dest_reg = giv_src_reg;
1827 }
1828
1829 #if 0
1830 /* If non-reduced/final-value givs were split, then
1831 this would have to remap those givs also. See
1832 find_splittable_regs. */
1833 #endif
1834
1835 splittable_regs[regno]
1836 = GEN_INT (INTVAL (giv_inc)
1837 + INTVAL (splittable_regs[regno]));
1838 giv_inc = splittable_regs[regno];
1839
1840 /* Now split the induction variable by changing the dest
1841 of this insn to a new register, and setting its
1842 reg_map entry to point to this new register.
1843
1844 If this is the last iteration, and this is the last insn
1845 that will update the iv, then reuse the original dest,
1846 to ensure that the iv will have the proper value when
1847 the loop exits or repeats.
1848
1849 Using splittable_regs_updates here like this is safe,
1850 because it can only be greater than one if all
1851 instructions modifying the iv are always executed in
1852 order. */
1853
1854 if (! last_iteration
1855 || (splittable_regs_updates[regno]-- != 1))
1856 {
1857 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1858 giv_dest_reg = tem;
1859 map->reg_map[regno] = tem;
1860 record_base_value (REGNO (tem), giv_src_reg);
1861 }
1862 else
1863 map->reg_map[regno] = giv_src_reg;
1864 }
1865
1866 /* The constant being added could be too large for an add
1867 immediate, so can't directly emit an insn here. */
1868 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1869 copy = get_last_insn ();
1870 pattern = PATTERN (copy);
1871 }
1872 else
1873 {
1874 pattern = copy_rtx_and_substitute (pattern, map);
1875 copy = emit_insn (pattern);
1876 }
1877 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1878
1879 #ifdef HAVE_cc0
1880 /* If this insn is setting CC0, it may need to look at
1881 the insn that uses CC0 to see what type of insn it is.
1882 In that case, the call to recog via validate_change will
1883 fail. So don't substitute constants here. Instead,
1884 do it when we emit the following insn.
1885
1886 For example, see the pyr.md file. That machine has signed and
1887 unsigned compares. The compare patterns must check the
1888 following branch insn to see which what kind of compare to
1889 emit.
1890
1891 If the previous insn set CC0, substitute constants on it as
1892 well. */
1893 if (sets_cc0_p (PATTERN (copy)) != 0)
1894 cc0_insn = copy;
1895 else
1896 {
1897 if (cc0_insn)
1898 try_constants (cc0_insn, map);
1899 cc0_insn = 0;
1900 try_constants (copy, map);
1901 }
1902 #else
1903 try_constants (copy, map);
1904 #endif
1905
1906 /* Make split induction variable constants `permanent' since we
1907 know there are no backward branches across iteration variable
1908 settings which would invalidate this. */
1909 if (dest_reg_was_split)
1910 {
1911 int regno = REGNO (SET_DEST (pattern));
1912
1913 if (regno < map->const_equiv_map_size
1914 && map->const_age_map[regno] == map->const_age)
1915 map->const_age_map[regno] = -1;
1916 }
1917 break;
1918
1919 case JUMP_INSN:
1920 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1921 copy = emit_jump_insn (pattern);
1922 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1923
1924 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1925 && ! last_iteration)
1926 {
1927 /* This is a branch to the beginning of the loop; this is the
1928 last insn being copied; and this is not the last iteration.
1929 In this case, we want to change the original fall through
1930 case to be a branch past the end of the loop, and the
1931 original jump label case to fall_through. */
1932
1933 if (invert_exp (pattern, copy))
1934 {
1935 if (! redirect_exp (&pattern,
1936 get_label_from_map (map,
1937 CODE_LABEL_NUMBER
1938 (JUMP_LABEL (insn))),
1939 exit_label, copy))
1940 abort ();
1941 }
1942 else
1943 {
1944 rtx jmp;
1945 rtx lab = gen_label_rtx ();
1946 /* Can't do it by reversing the jump (probably because we
1947 couldn't reverse the conditions), so emit a new
1948 jump_insn after COPY, and redirect the jump around
1949 that. */
1950 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
1951 jmp = emit_barrier_after (jmp);
1952 emit_label_after (lab, jmp);
1953 LABEL_NUSES (lab) = 0;
1954 if (! redirect_exp (&pattern,
1955 get_label_from_map (map,
1956 CODE_LABEL_NUMBER
1957 (JUMP_LABEL (insn))),
1958 lab, copy))
1959 abort ();
1960 }
1961 }
1962
1963 #ifdef HAVE_cc0
1964 if (cc0_insn)
1965 try_constants (cc0_insn, map);
1966 cc0_insn = 0;
1967 #endif
1968 try_constants (copy, map);
1969
1970 /* Set the jump label of COPY correctly to avoid problems with
1971 later passes of unroll_loop, if INSN had jump label set. */
1972 if (JUMP_LABEL (insn))
1973 {
1974 rtx label = 0;
1975
1976 /* Can't use the label_map for every insn, since this may be
1977 the backward branch, and hence the label was not mapped. */
1978 if (GET_CODE (pattern) == SET)
1979 {
1980 tem = SET_SRC (pattern);
1981 if (GET_CODE (tem) == LABEL_REF)
1982 label = XEXP (tem, 0);
1983 else if (GET_CODE (tem) == IF_THEN_ELSE)
1984 {
1985 if (XEXP (tem, 1) != pc_rtx)
1986 label = XEXP (XEXP (tem, 1), 0);
1987 else
1988 label = XEXP (XEXP (tem, 2), 0);
1989 }
1990 }
1991
1992 if (label && GET_CODE (label) == CODE_LABEL)
1993 JUMP_LABEL (copy) = label;
1994 else
1995 {
1996 /* An unrecognizable jump insn, probably the entry jump
1997 for a switch statement. This label must have been mapped,
1998 so just use the label_map to get the new jump label. */
1999 JUMP_LABEL (copy)
2000 = get_label_from_map (map,
2001 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2002 }
2003
2004 /* If this is a non-local jump, then must increase the label
2005 use count so that the label will not be deleted when the
2006 original jump is deleted. */
2007 LABEL_NUSES (JUMP_LABEL (copy))++;
2008 }
2009 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2010 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2011 {
2012 rtx pat = PATTERN (copy);
2013 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2014 int len = XVECLEN (pat, diff_vec_p);
2015 int i;
2016
2017 for (i = 0; i < len; i++)
2018 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2019 }
2020
2021 /* If this used to be a conditional jump insn but whose branch
2022 direction is now known, we must do something special. */
2023 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
2024 {
2025 #ifdef HAVE_cc0
2026 /* The previous insn set cc0 for us. So delete it. */
2027 delete_insn (PREV_INSN (copy));
2028 #endif
2029
2030 /* If this is now a no-op, delete it. */
2031 if (map->last_pc_value == pc_rtx)
2032 {
2033 /* Don't let delete_insn delete the label referenced here,
2034 because we might possibly need it later for some other
2035 instruction in the loop. */
2036 if (JUMP_LABEL (copy))
2037 LABEL_NUSES (JUMP_LABEL (copy))++;
2038 delete_insn (copy);
2039 if (JUMP_LABEL (copy))
2040 LABEL_NUSES (JUMP_LABEL (copy))--;
2041 copy = 0;
2042 }
2043 else
2044 /* Otherwise, this is unconditional jump so we must put a
2045 BARRIER after it. We could do some dead code elimination
2046 here, but jump.c will do it just as well. */
2047 emit_barrier ();
2048 }
2049 break;
2050
2051 case CALL_INSN:
2052 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
2053 copy = emit_call_insn (pattern);
2054 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2055
2056 /* Because the USAGE information potentially contains objects other
2057 than hard registers, we need to copy it. */
2058 CALL_INSN_FUNCTION_USAGE (copy)
2059 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn), map);
2060
2061 #ifdef HAVE_cc0
2062 if (cc0_insn)
2063 try_constants (cc0_insn, map);
2064 cc0_insn = 0;
2065 #endif
2066 try_constants (copy, map);
2067
2068 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2069 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2070 map->const_equiv_map[i] = 0;
2071 break;
2072
2073 case CODE_LABEL:
2074 /* If this is the loop start label, then we don't need to emit a
2075 copy of this label since no one will use it. */
2076
2077 if (insn != start_label)
2078 {
2079 copy = emit_label (get_label_from_map (map,
2080 CODE_LABEL_NUMBER (insn)));
2081 map->const_age++;
2082 }
2083 break;
2084
2085 case BARRIER:
2086 copy = emit_barrier ();
2087 break;
2088
2089 case NOTE:
2090 /* VTOP notes are valid only before the loop exit test. If placed
2091 anywhere else, loop may generate bad code. */
2092
2093 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2094 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2095 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2096 copy = emit_note (NOTE_SOURCE_FILE (insn),
2097 NOTE_LINE_NUMBER (insn));
2098 else
2099 copy = 0;
2100 break;
2101
2102 default:
2103 abort ();
2104 break;
2105 }
2106
2107 map->insn_map[INSN_UID (insn)] = copy;
2108 }
2109 while (insn != copy_end);
2110
2111 /* Now finish coping the REG_NOTES. */
2112 insn = copy_start;
2113 do
2114 {
2115 insn = NEXT_INSN (insn);
2116 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2117 || GET_CODE (insn) == CALL_INSN)
2118 && map->insn_map[INSN_UID (insn)])
2119 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2120 }
2121 while (insn != copy_end);
2122
2123 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2124 each of these notes here, since there may be some important ones, such as
2125 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2126 iteration, because the original notes won't be deleted.
2127
2128 We can't use insert_before here, because when from preconditioning,
2129 insert_before points before the loop. We can't use copy_end, because
2130 there may be insns already inserted after it (which we don't want to
2131 copy) when not from preconditioning code. */
2132
2133 if (! last_iteration)
2134 {
2135 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2136 {
2137 if (GET_CODE (insn) == NOTE
2138 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
2139 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2140 }
2141 }
2142
2143 if (final_label && LABEL_NUSES (final_label) > 0)
2144 emit_label (final_label);
2145
2146 tem = gen_sequence ();
2147 end_sequence ();
2148 emit_insn_before (tem, insert_before);
2149 }
2150 \f
2151 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2152 emitted. This will correctly handle the case where the increment value
2153 won't fit in the immediate field of a PLUS insns. */
2154
2155 void
2156 emit_unrolled_add (dest_reg, src_reg, increment)
2157 rtx dest_reg, src_reg, increment;
2158 {
2159 rtx result;
2160
2161 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
2162 dest_reg, 0, OPTAB_LIB_WIDEN);
2163
2164 if (dest_reg != result)
2165 emit_move_insn (dest_reg, result);
2166 }
2167 \f
2168 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
2169 is a backward branch in that range that branches to somewhere between
2170 LOOP_START and INSN. Returns 0 otherwise. */
2171
2172 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2173 In practice, this is not a problem, because this function is seldom called,
2174 and uses a negligible amount of CPU time on average. */
2175
2176 int
2177 back_branch_in_range_p (insn, loop_start, loop_end)
2178 rtx insn;
2179 rtx loop_start, loop_end;
2180 {
2181 rtx p, q, target_insn;
2182 rtx orig_loop_end = loop_end;
2183
2184 /* Stop before we get to the backward branch at the end of the loop. */
2185 loop_end = prev_nonnote_insn (loop_end);
2186 if (GET_CODE (loop_end) == BARRIER)
2187 loop_end = PREV_INSN (loop_end);
2188
2189 /* Check in case insn has been deleted, search forward for first non
2190 deleted insn following it. */
2191 while (INSN_DELETED_P (insn))
2192 insn = NEXT_INSN (insn);
2193
2194 /* Check for the case where insn is the last insn in the loop. Deal
2195 with the case where INSN was a deleted loop test insn, in which case
2196 it will now be the NOTE_LOOP_END. */
2197 if (insn == loop_end || insn == orig_loop_end)
2198 return 0;
2199
2200 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2201 {
2202 if (GET_CODE (p) == JUMP_INSN)
2203 {
2204 target_insn = JUMP_LABEL (p);
2205
2206 /* Search from loop_start to insn, to see if one of them is
2207 the target_insn. We can't use INSN_LUID comparisons here,
2208 since insn may not have an LUID entry. */
2209 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2210 if (q == target_insn)
2211 return 1;
2212 }
2213 }
2214
2215 return 0;
2216 }
2217
2218 /* Try to generate the simplest rtx for the expression
2219 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2220 value of giv's. */
2221
2222 static rtx
2223 fold_rtx_mult_add (mult1, mult2, add1, mode)
2224 rtx mult1, mult2, add1;
2225 enum machine_mode mode;
2226 {
2227 rtx temp, mult_res;
2228 rtx result;
2229
2230 /* The modes must all be the same. This should always be true. For now,
2231 check to make sure. */
2232 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2233 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2234 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2235 abort ();
2236
2237 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2238 will be a constant. */
2239 if (GET_CODE (mult1) == CONST_INT)
2240 {
2241 temp = mult2;
2242 mult2 = mult1;
2243 mult1 = temp;
2244 }
2245
2246 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2247 if (! mult_res)
2248 mult_res = gen_rtx_MULT (mode, mult1, mult2);
2249
2250 /* Again, put the constant second. */
2251 if (GET_CODE (add1) == CONST_INT)
2252 {
2253 temp = add1;
2254 add1 = mult_res;
2255 mult_res = temp;
2256 }
2257
2258 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2259 if (! result)
2260 result = gen_rtx_PLUS (mode, add1, mult_res);
2261
2262 return result;
2263 }
2264
2265 /* Searches the list of induction struct's for the biv BL, to try to calculate
2266 the total increment value for one iteration of the loop as a constant.
2267
2268 Returns the increment value as an rtx, simplified as much as possible,
2269 if it can be calculated. Otherwise, returns 0. */
2270
2271 rtx
2272 biv_total_increment (bl, loop_start, loop_end)
2273 struct iv_class *bl;
2274 rtx loop_start, loop_end;
2275 {
2276 struct induction *v;
2277 rtx result;
2278
2279 /* For increment, must check every instruction that sets it. Each
2280 instruction must be executed only once each time through the loop.
2281 To verify this, we check that the the insn is always executed, and that
2282 there are no backward branches after the insn that branch to before it.
2283 Also, the insn must have a mult_val of one (to make sure it really is
2284 an increment). */
2285
2286 result = const0_rtx;
2287 for (v = bl->biv; v; v = v->next_iv)
2288 {
2289 if (v->always_computable && v->mult_val == const1_rtx
2290 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
2291 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2292 else
2293 return 0;
2294 }
2295
2296 return result;
2297 }
2298
2299 /* Determine the initial value of the iteration variable, and the amount
2300 that it is incremented each loop. Use the tables constructed by
2301 the strength reduction pass to calculate these values.
2302
2303 Initial_value and/or increment are set to zero if their values could not
2304 be calculated. */
2305
2306 void
2307 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2308 rtx iteration_var, *initial_value, *increment;
2309 rtx loop_start, loop_end;
2310 {
2311 struct iv_class *bl;
2312 struct induction *v, *b;
2313
2314 /* Clear the result values, in case no answer can be found. */
2315 *initial_value = 0;
2316 *increment = 0;
2317
2318 /* The iteration variable can be either a giv or a biv. Check to see
2319 which it is, and compute the variable's initial value, and increment
2320 value if possible. */
2321
2322 /* If this is a new register, can't handle it since we don't have any
2323 reg_iv_type entry for it. */
2324 if (REGNO (iteration_var) >= max_reg_before_loop)
2325 {
2326 if (loop_dump_stream)
2327 fprintf (loop_dump_stream,
2328 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2329 return;
2330 }
2331
2332 /* Reject iteration variables larger than the host wide int size, since they
2333 could result in a number of iterations greater than the range of our
2334 `unsigned HOST_WIDE_INT' variable loop_n_iterations. */
2335 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
2336 > HOST_BITS_PER_WIDE_INT))
2337 {
2338 if (loop_dump_stream)
2339 fprintf (loop_dump_stream,
2340 "Loop unrolling: Iteration var rejected because mode too large.\n");
2341 return;
2342 }
2343 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2344 {
2345 if (loop_dump_stream)
2346 fprintf (loop_dump_stream,
2347 "Loop unrolling: Iteration var not an integer.\n");
2348 return;
2349 }
2350 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2351 {
2352 /* Grab initial value, only useful if it is a constant. */
2353 bl = reg_biv_class[REGNO (iteration_var)];
2354 *initial_value = bl->initial_value;
2355
2356 *increment = biv_total_increment (bl, loop_start, loop_end);
2357 }
2358 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2359 {
2360 #if 1
2361 /* ??? The code below does not work because the incorrect number of
2362 iterations is calculated when the biv is incremented after the giv
2363 is set (which is the usual case). This can probably be accounted
2364 for by biasing the initial_value by subtracting the amount of the
2365 increment that occurs between the giv set and the giv test. However,
2366 a giv as an iterator is very rare, so it does not seem worthwhile
2367 to handle this. */
2368 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2369 if (loop_dump_stream)
2370 fprintf (loop_dump_stream,
2371 "Loop unrolling: Giv iterators are not handled.\n");
2372 return;
2373 #else
2374 /* Initial value is mult_val times the biv's initial value plus
2375 add_val. Only useful if it is a constant. */
2376 v = reg_iv_info[REGNO (iteration_var)];
2377 bl = reg_biv_class[REGNO (v->src_reg)];
2378 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2379 v->add_val, v->mode);
2380
2381 /* Increment value is mult_val times the increment value of the biv. */
2382
2383 *increment = biv_total_increment (bl, loop_start, loop_end);
2384 if (*increment)
2385 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2386 v->mode);
2387 #endif
2388 }
2389 else
2390 {
2391 if (loop_dump_stream)
2392 fprintf (loop_dump_stream,
2393 "Loop unrolling: Not basic or general induction var.\n");
2394 return;
2395 }
2396 }
2397
2398 /* Calculate the approximate final value of the iteration variable
2399 which has an loop exit test with code COMPARISON_CODE and comparison value
2400 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2401 was signed or unsigned, and the direction of the comparison. This info is
2402 needed to calculate the number of loop iterations. */
2403
2404 static rtx
2405 approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2406 enum rtx_code comparison_code;
2407 rtx comparison_value;
2408 int *unsigned_p;
2409 int *compare_dir;
2410 {
2411 /* Calculate the final value of the induction variable.
2412 The exact final value depends on the branch operator, and increment sign.
2413 This is only an approximate value. It will be wrong if the iteration
2414 variable is not incremented by one each time through the loop, and
2415 approx final value - start value % increment != 0. */
2416
2417 *unsigned_p = 0;
2418 switch (comparison_code)
2419 {
2420 case LEU:
2421 *unsigned_p = 1;
2422 case LE:
2423 *compare_dir = 1;
2424 return plus_constant (comparison_value, 1);
2425 case GEU:
2426 *unsigned_p = 1;
2427 case GE:
2428 *compare_dir = -1;
2429 return plus_constant (comparison_value, -1);
2430 case EQ:
2431 /* Can not calculate a final value for this case. */
2432 *compare_dir = 0;
2433 return 0;
2434 case LTU:
2435 *unsigned_p = 1;
2436 case LT:
2437 *compare_dir = 1;
2438 return comparison_value;
2439 break;
2440 case GTU:
2441 *unsigned_p = 1;
2442 case GT:
2443 *compare_dir = -1;
2444 return comparison_value;
2445 case NE:
2446 *compare_dir = 0;
2447 return comparison_value;
2448 default:
2449 abort ();
2450 }
2451 }
2452
2453 /* For each biv and giv, determine whether it can be safely split into
2454 a different variable for each unrolled copy of the loop body. If it
2455 is safe to split, then indicate that by saving some useful info
2456 in the splittable_regs array.
2457
2458 If the loop is being completely unrolled, then splittable_regs will hold
2459 the current value of the induction variable while the loop is unrolled.
2460 It must be set to the initial value of the induction variable here.
2461 Otherwise, splittable_regs will hold the difference between the current
2462 value of the induction variable and the value the induction variable had
2463 at the top of the loop. It must be set to the value 0 here.
2464
2465 Returns the total number of instructions that set registers that are
2466 splittable. */
2467
2468 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2469 constant values are unnecessary, since we can easily calculate increment
2470 values in this case even if nothing is constant. The increment value
2471 should not involve a multiply however. */
2472
2473 /* ?? Even if the biv/giv increment values aren't constant, it may still
2474 be beneficial to split the variable if the loop is only unrolled a few
2475 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2476
2477 static int
2478 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2479 unroll_number)
2480 enum unroll_types unroll_type;
2481 rtx loop_start, loop_end;
2482 rtx end_insert_before;
2483 int unroll_number;
2484 {
2485 struct iv_class *bl;
2486 struct induction *v;
2487 rtx increment, tem;
2488 rtx biv_final_value;
2489 int biv_splittable;
2490 int result = 0;
2491
2492 for (bl = loop_iv_list; bl; bl = bl->next)
2493 {
2494 /* Biv_total_increment must return a constant value,
2495 otherwise we can not calculate the split values. */
2496
2497 increment = biv_total_increment (bl, loop_start, loop_end);
2498 if (! increment || GET_CODE (increment) != CONST_INT)
2499 continue;
2500
2501 /* The loop must be unrolled completely, or else have a known number
2502 of iterations and only one exit, or else the biv must be dead
2503 outside the loop, or else the final value must be known. Otherwise,
2504 it is unsafe to split the biv since it may not have the proper
2505 value on loop exit. */
2506
2507 /* loop_number_exit_count is non-zero if the loop has an exit other than
2508 a fall through at the end. */
2509
2510 biv_splittable = 1;
2511 biv_final_value = 0;
2512 if (unroll_type != UNROLL_COMPLETELY
2513 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2514 || unroll_type == UNROLL_NAIVE)
2515 && (uid_luid[REGNO_LAST_UID (bl->regno)] >= INSN_LUID (loop_end)
2516 || ! bl->init_insn
2517 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2518 || (uid_luid[REGNO_FIRST_UID (bl->regno)]
2519 < INSN_LUID (bl->init_insn))
2520 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2521 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2522 biv_splittable = 0;
2523
2524 /* If any of the insns setting the BIV don't do so with a simple
2525 PLUS, we don't know how to split it. */
2526 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2527 if ((tem = single_set (v->insn)) == 0
2528 || GET_CODE (SET_DEST (tem)) != REG
2529 || REGNO (SET_DEST (tem)) != bl->regno
2530 || GET_CODE (SET_SRC (tem)) != PLUS)
2531 biv_splittable = 0;
2532
2533 /* If final value is non-zero, then must emit an instruction which sets
2534 the value of the biv to the proper value. This is done after
2535 handling all of the givs, since some of them may need to use the
2536 biv's value in their initialization code. */
2537
2538 /* This biv is splittable. If completely unrolling the loop, save
2539 the biv's initial value. Otherwise, save the constant zero. */
2540
2541 if (biv_splittable == 1)
2542 {
2543 if (unroll_type == UNROLL_COMPLETELY)
2544 {
2545 /* If the initial value of the biv is itself (i.e. it is too
2546 complicated for strength_reduce to compute), or is a hard
2547 register, or it isn't invariant, then we must create a new
2548 pseudo reg to hold the initial value of the biv. */
2549
2550 if (GET_CODE (bl->initial_value) == REG
2551 && (REGNO (bl->initial_value) == bl->regno
2552 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2553 || ! invariant_p (bl->initial_value)))
2554 {
2555 rtx tem = gen_reg_rtx (bl->biv->mode);
2556
2557 record_base_value (REGNO (tem), bl->biv->add_val);
2558 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2559 loop_start);
2560
2561 if (loop_dump_stream)
2562 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2563 bl->regno, REGNO (tem));
2564
2565 splittable_regs[bl->regno] = tem;
2566 }
2567 else
2568 splittable_regs[bl->regno] = bl->initial_value;
2569 }
2570 else
2571 splittable_regs[bl->regno] = const0_rtx;
2572
2573 /* Save the number of instructions that modify the biv, so that
2574 we can treat the last one specially. */
2575
2576 splittable_regs_updates[bl->regno] = bl->biv_count;
2577 result += bl->biv_count;
2578
2579 if (loop_dump_stream)
2580 fprintf (loop_dump_stream,
2581 "Biv %d safe to split.\n", bl->regno);
2582 }
2583
2584 /* Check every giv that depends on this biv to see whether it is
2585 splittable also. Even if the biv isn't splittable, givs which
2586 depend on it may be splittable if the biv is live outside the
2587 loop, and the givs aren't. */
2588
2589 result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2590 increment, unroll_number);
2591
2592 /* If final value is non-zero, then must emit an instruction which sets
2593 the value of the biv to the proper value. This is done after
2594 handling all of the givs, since some of them may need to use the
2595 biv's value in their initialization code. */
2596 if (biv_final_value)
2597 {
2598 /* If the loop has multiple exits, emit the insns before the
2599 loop to ensure that it will always be executed no matter
2600 how the loop exits. Otherwise emit the insn after the loop,
2601 since this is slightly more efficient. */
2602 if (! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
2603 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2604 biv_final_value),
2605 end_insert_before);
2606 else
2607 {
2608 /* Create a new register to hold the value of the biv, and then
2609 set the biv to its final value before the loop start. The biv
2610 is set to its final value before loop start to ensure that
2611 this insn will always be executed, no matter how the loop
2612 exits. */
2613 rtx tem = gen_reg_rtx (bl->biv->mode);
2614 record_base_value (REGNO (tem), bl->biv->add_val);
2615
2616 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2617 loop_start);
2618 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2619 biv_final_value),
2620 loop_start);
2621
2622 if (loop_dump_stream)
2623 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2624 REGNO (bl->biv->src_reg), REGNO (tem));
2625
2626 /* Set up the mapping from the original biv register to the new
2627 register. */
2628 bl->biv->src_reg = tem;
2629 }
2630 }
2631 }
2632 return result;
2633 }
2634
2635 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2636 for the instruction that is using it. Do not make any changes to that
2637 instruction. */
2638
2639 static int
2640 verify_addresses (v, giv_inc, unroll_number)
2641 struct induction *v;
2642 rtx giv_inc;
2643 int unroll_number;
2644 {
2645 int ret = 1;
2646 rtx orig_addr = *v->location;
2647 rtx last_addr = plus_constant (v->dest_reg,
2648 INTVAL (giv_inc) * (unroll_number - 1));
2649
2650 /* First check to see if either address would fail. */
2651 if (! validate_change (v->insn, v->location, v->dest_reg, 0)
2652 || ! validate_change (v->insn, v->location, last_addr, 0))
2653 ret = 0;
2654
2655 /* Now put things back the way they were before. This will always
2656 succeed. */
2657 validate_change (v->insn, v->location, orig_addr, 0);
2658
2659 return ret;
2660 }
2661
2662 /* For every giv based on the biv BL, check to determine whether it is
2663 splittable. This is a subroutine to find_splittable_regs ().
2664
2665 Return the number of instructions that set splittable registers. */
2666
2667 static int
2668 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2669 unroll_number)
2670 struct iv_class *bl;
2671 enum unroll_types unroll_type;
2672 rtx loop_start, loop_end;
2673 rtx increment;
2674 int unroll_number;
2675 {
2676 struct induction *v, *v2;
2677 rtx final_value;
2678 rtx tem;
2679 int result = 0;
2680
2681 /* Scan the list of givs, and set the same_insn field when there are
2682 multiple identical givs in the same insn. */
2683 for (v = bl->giv; v; v = v->next_iv)
2684 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2685 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2686 && ! v2->same_insn)
2687 v2->same_insn = v;
2688
2689 for (v = bl->giv; v; v = v->next_iv)
2690 {
2691 rtx giv_inc, value;
2692
2693 /* Only split the giv if it has already been reduced, or if the loop is
2694 being completely unrolled. */
2695 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2696 continue;
2697
2698 /* The giv can be split if the insn that sets the giv is executed once
2699 and only once on every iteration of the loop. */
2700 /* An address giv can always be split. v->insn is just a use not a set,
2701 and hence it does not matter whether it is always executed. All that
2702 matters is that all the biv increments are always executed, and we
2703 won't reach here if they aren't. */
2704 if (v->giv_type != DEST_ADDR
2705 && (! v->always_computable
2706 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2707 continue;
2708
2709 /* The giv increment value must be a constant. */
2710 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2711 v->mode);
2712 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2713 continue;
2714
2715 /* The loop must be unrolled completely, or else have a known number of
2716 iterations and only one exit, or else the giv must be dead outside
2717 the loop, or else the final value of the giv must be known.
2718 Otherwise, it is not safe to split the giv since it may not have the
2719 proper value on loop exit. */
2720
2721 /* The used outside loop test will fail for DEST_ADDR givs. They are
2722 never used outside the loop anyways, so it is always safe to split a
2723 DEST_ADDR giv. */
2724
2725 final_value = 0;
2726 if (unroll_type != UNROLL_COMPLETELY
2727 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2728 || unroll_type == UNROLL_NAIVE)
2729 && v->giv_type != DEST_ADDR
2730 /* The next part is true if the pseudo is used outside the loop.
2731 We assume that this is true for any pseudo created after loop
2732 starts, because we don't have a reg_n_info entry for them. */
2733 && (REGNO (v->dest_reg) >= max_reg_before_loop
2734 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2735 /* Check for the case where the pseudo is set by a shift/add
2736 sequence, in which case the first insn setting the pseudo
2737 is the first insn of the shift/add sequence. */
2738 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2739 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2740 != INSN_UID (XEXP (tem, 0)))))
2741 /* Line above always fails if INSN was moved by loop opt. */
2742 || (uid_luid[REGNO_LAST_UID (REGNO (v->dest_reg))]
2743 >= INSN_LUID (loop_end)))
2744 && ! (final_value = v->final_value))
2745 continue;
2746
2747 #if 0
2748 /* Currently, non-reduced/final-value givs are never split. */
2749 /* Should emit insns after the loop if possible, as the biv final value
2750 code below does. */
2751
2752 /* If the final value is non-zero, and the giv has not been reduced,
2753 then must emit an instruction to set the final value. */
2754 if (final_value && !v->new_reg)
2755 {
2756 /* Create a new register to hold the value of the giv, and then set
2757 the giv to its final value before the loop start. The giv is set
2758 to its final value before loop start to ensure that this insn
2759 will always be executed, no matter how we exit. */
2760 tem = gen_reg_rtx (v->mode);
2761 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2762 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2763 loop_start);
2764
2765 if (loop_dump_stream)
2766 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2767 REGNO (v->dest_reg), REGNO (tem));
2768
2769 v->src_reg = tem;
2770 }
2771 #endif
2772
2773 /* This giv is splittable. If completely unrolling the loop, save the
2774 giv's initial value. Otherwise, save the constant zero for it. */
2775
2776 if (unroll_type == UNROLL_COMPLETELY)
2777 {
2778 /* It is not safe to use bl->initial_value here, because it may not
2779 be invariant. It is safe to use the initial value stored in
2780 the splittable_regs array if it is set. In rare cases, it won't
2781 be set, so then we do exactly the same thing as
2782 find_splittable_regs does to get a safe value. */
2783 rtx biv_initial_value;
2784
2785 if (splittable_regs[bl->regno])
2786 biv_initial_value = splittable_regs[bl->regno];
2787 else if (GET_CODE (bl->initial_value) != REG
2788 || (REGNO (bl->initial_value) != bl->regno
2789 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2790 biv_initial_value = bl->initial_value;
2791 else
2792 {
2793 rtx tem = gen_reg_rtx (bl->biv->mode);
2794
2795 record_base_value (REGNO (tem), bl->biv->add_val);
2796 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2797 loop_start);
2798 biv_initial_value = tem;
2799 }
2800 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2801 v->add_val, v->mode);
2802 }
2803 else
2804 value = const0_rtx;
2805
2806 if (v->new_reg)
2807 {
2808 /* If a giv was combined with another giv, then we can only split
2809 this giv if the giv it was combined with was reduced. This
2810 is because the value of v->new_reg is meaningless in this
2811 case. */
2812 if (v->same && ! v->same->new_reg)
2813 {
2814 if (loop_dump_stream)
2815 fprintf (loop_dump_stream,
2816 "giv combined with unreduced giv not split.\n");
2817 continue;
2818 }
2819 /* If the giv is an address destination, it could be something other
2820 than a simple register, these have to be treated differently. */
2821 else if (v->giv_type == DEST_REG)
2822 {
2823 /* If value is not a constant, register, or register plus
2824 constant, then compute its value into a register before
2825 loop start. This prevents invalid rtx sharing, and should
2826 generate better code. We can use bl->initial_value here
2827 instead of splittable_regs[bl->regno] because this code
2828 is going before the loop start. */
2829 if (unroll_type == UNROLL_COMPLETELY
2830 && GET_CODE (value) != CONST_INT
2831 && GET_CODE (value) != REG
2832 && (GET_CODE (value) != PLUS
2833 || GET_CODE (XEXP (value, 0)) != REG
2834 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2835 {
2836 rtx tem = gen_reg_rtx (v->mode);
2837 record_base_value (REGNO (tem), v->add_val);
2838 emit_iv_add_mult (bl->initial_value, v->mult_val,
2839 v->add_val, tem, loop_start);
2840 value = tem;
2841 }
2842
2843 splittable_regs[REGNO (v->new_reg)] = value;
2844 }
2845 else
2846 {
2847 /* Splitting address givs is useful since it will often allow us
2848 to eliminate some increment insns for the base giv as
2849 unnecessary. */
2850
2851 /* If the addr giv is combined with a dest_reg giv, then all
2852 references to that dest reg will be remapped, which is NOT
2853 what we want for split addr regs. We always create a new
2854 register for the split addr giv, just to be safe. */
2855
2856 /* If we have multiple identical address givs within a
2857 single instruction, then use a single pseudo reg for
2858 both. This is necessary in case one is a match_dup
2859 of the other. */
2860
2861 v->const_adjust = 0;
2862
2863 if (v->same_insn)
2864 {
2865 v->dest_reg = v->same_insn->dest_reg;
2866 if (loop_dump_stream)
2867 fprintf (loop_dump_stream,
2868 "Sharing address givs in insn %d\n",
2869 INSN_UID (v->insn));
2870 }
2871 /* If multiple address GIVs have been combined with the
2872 same dest_reg GIV, do not create a new register for
2873 each. */
2874 else if (unroll_type != UNROLL_COMPLETELY
2875 && v->giv_type == DEST_ADDR
2876 && v->same && v->same->giv_type == DEST_ADDR
2877 && v->same->unrolled
2878 /* combine_givs_p may return true for some cases
2879 where the add and mult values are not equal.
2880 To share a register here, the values must be
2881 equal. */
2882 && rtx_equal_p (v->same->mult_val, v->mult_val)
2883 && rtx_equal_p (v->same->add_val, v->add_val))
2884
2885 {
2886 v->dest_reg = v->same->dest_reg;
2887 v->shared = 1;
2888 }
2889 else if (unroll_type != UNROLL_COMPLETELY)
2890 {
2891 /* If not completely unrolling the loop, then create a new
2892 register to hold the split value of the DEST_ADDR giv.
2893 Emit insn to initialize its value before loop start. */
2894
2895 rtx tem = gen_reg_rtx (v->mode);
2896 record_base_value (REGNO (tem), v->add_val);
2897 v->unrolled = 1;
2898
2899 /* If the address giv has a constant in its new_reg value,
2900 then this constant can be pulled out and put in value,
2901 instead of being part of the initialization code. */
2902
2903 if (GET_CODE (v->new_reg) == PLUS
2904 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2905 {
2906 v->dest_reg
2907 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2908
2909 /* Only succeed if this will give valid addresses.
2910 Try to validate both the first and the last
2911 address resulting from loop unrolling, if
2912 one fails, then can't do const elim here. */
2913 if (verify_addresses (v, giv_inc, unroll_number))
2914 {
2915 /* Save the negative of the eliminated const, so
2916 that we can calculate the dest_reg's increment
2917 value later. */
2918 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2919
2920 v->new_reg = XEXP (v->new_reg, 0);
2921 if (loop_dump_stream)
2922 fprintf (loop_dump_stream,
2923 "Eliminating constant from giv %d\n",
2924 REGNO (tem));
2925 }
2926 else
2927 v->dest_reg = tem;
2928 }
2929 else
2930 v->dest_reg = tem;
2931
2932 /* If the address hasn't been checked for validity yet, do so
2933 now, and fail completely if either the first or the last
2934 unrolled copy of the address is not a valid address
2935 for the instruction that uses it. */
2936 if (v->dest_reg == tem
2937 && ! verify_addresses (v, giv_inc, unroll_number))
2938 {
2939 if (loop_dump_stream)
2940 fprintf (loop_dump_stream,
2941 "Invalid address for giv at insn %d\n",
2942 INSN_UID (v->insn));
2943 continue;
2944 }
2945
2946 /* To initialize the new register, just move the value of
2947 new_reg into it. This is not guaranteed to give a valid
2948 instruction on machines with complex addressing modes.
2949 If we can't recognize it, then delete it and emit insns
2950 to calculate the value from scratch. */
2951 emit_insn_before (gen_rtx_SET (VOIDmode, tem,
2952 copy_rtx (v->new_reg)),
2953 loop_start);
2954 if (recog_memoized (PREV_INSN (loop_start)) < 0)
2955 {
2956 rtx sequence, ret;
2957
2958 /* We can't use bl->initial_value to compute the initial
2959 value, because the loop may have been preconditioned.
2960 We must calculate it from NEW_REG. Try using
2961 force_operand instead of emit_iv_add_mult. */
2962 delete_insn (PREV_INSN (loop_start));
2963
2964 start_sequence ();
2965 ret = force_operand (v->new_reg, tem);
2966 if (ret != tem)
2967 emit_move_insn (tem, ret);
2968 sequence = gen_sequence ();
2969 end_sequence ();
2970 emit_insn_before (sequence, loop_start);
2971
2972 if (loop_dump_stream)
2973 fprintf (loop_dump_stream,
2974 "Invalid init insn, rewritten.\n");
2975 }
2976 }
2977 else
2978 {
2979 v->dest_reg = value;
2980
2981 /* Check the resulting address for validity, and fail
2982 if the resulting address would be invalid. */
2983 if (! verify_addresses (v, giv_inc, unroll_number))
2984 {
2985 if (loop_dump_stream)
2986 fprintf (loop_dump_stream,
2987 "Invalid address for giv at insn %d\n",
2988 INSN_UID (v->insn));
2989 continue;
2990 }
2991 }
2992
2993 /* Store the value of dest_reg into the insn. This sharing
2994 will not be a problem as this insn will always be copied
2995 later. */
2996
2997 *v->location = v->dest_reg;
2998
2999 /* If this address giv is combined with a dest reg giv, then
3000 save the base giv's induction pointer so that we will be
3001 able to handle this address giv properly. The base giv
3002 itself does not have to be splittable. */
3003
3004 if (v->same && v->same->giv_type == DEST_REG)
3005 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
3006
3007 if (GET_CODE (v->new_reg) == REG)
3008 {
3009 /* This giv maybe hasn't been combined with any others.
3010 Make sure that it's giv is marked as splittable here. */
3011
3012 splittable_regs[REGNO (v->new_reg)] = value;
3013
3014 /* Make it appear to depend upon itself, so that the
3015 giv will be properly split in the main loop above. */
3016 if (! v->same)
3017 {
3018 v->same = v;
3019 addr_combined_regs[REGNO (v->new_reg)] = v;
3020 }
3021 }
3022
3023 if (loop_dump_stream)
3024 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
3025 }
3026 }
3027 else
3028 {
3029 #if 0
3030 /* Currently, unreduced giv's can't be split. This is not too much
3031 of a problem since unreduced giv's are not live across loop
3032 iterations anyways. When unrolling a loop completely though,
3033 it makes sense to reduce&split givs when possible, as this will
3034 result in simpler instructions, and will not require that a reg
3035 be live across loop iterations. */
3036
3037 splittable_regs[REGNO (v->dest_reg)] = value;
3038 fprintf (stderr, "Giv %d at insn %d not reduced\n",
3039 REGNO (v->dest_reg), INSN_UID (v->insn));
3040 #else
3041 continue;
3042 #endif
3043 }
3044
3045 /* Unreduced givs are only updated once by definition. Reduced givs
3046 are updated as many times as their biv is. Mark it so if this is
3047 a splittable register. Don't need to do anything for address givs
3048 where this may not be a register. */
3049
3050 if (GET_CODE (v->new_reg) == REG)
3051 {
3052 int count = 1;
3053 if (! v->ignore)
3054 count = reg_biv_class[REGNO (v->src_reg)]->biv_count;
3055
3056 splittable_regs_updates[REGNO (v->new_reg)] = count;
3057 }
3058
3059 result++;
3060
3061 if (loop_dump_stream)
3062 {
3063 int regnum;
3064
3065 if (GET_CODE (v->dest_reg) == CONST_INT)
3066 regnum = -1;
3067 else if (GET_CODE (v->dest_reg) != REG)
3068 regnum = REGNO (XEXP (v->dest_reg, 0));
3069 else
3070 regnum = REGNO (v->dest_reg);
3071 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
3072 regnum, INSN_UID (v->insn));
3073 }
3074 }
3075
3076 return result;
3077 }
3078 \f
3079 /* Try to prove that the register is dead after the loop exits. Trace every
3080 loop exit looking for an insn that will always be executed, which sets
3081 the register to some value, and appears before the first use of the register
3082 is found. If successful, then return 1, otherwise return 0. */
3083
3084 /* ?? Could be made more intelligent in the handling of jumps, so that
3085 it can search past if statements and other similar structures. */
3086
3087 static int
3088 reg_dead_after_loop (reg, loop_start, loop_end)
3089 rtx reg, loop_start, loop_end;
3090 {
3091 rtx insn, label;
3092 enum rtx_code code;
3093 int jump_count = 0;
3094 int label_count = 0;
3095 int this_loop_num = uid_loop_num[INSN_UID (loop_start)];
3096
3097 /* In addition to checking all exits of this loop, we must also check
3098 all exits of inner nested loops that would exit this loop. We don't
3099 have any way to identify those, so we just give up if there are any
3100 such inner loop exits. */
3101
3102 for (label = loop_number_exit_labels[this_loop_num]; label;
3103 label = LABEL_NEXTREF (label))
3104 label_count++;
3105
3106 if (label_count != loop_number_exit_count[this_loop_num])
3107 return 0;
3108
3109 /* HACK: Must also search the loop fall through exit, create a label_ref
3110 here which points to the loop_end, and append the loop_number_exit_labels
3111 list to it. */
3112 label = gen_rtx_LABEL_REF (VOIDmode, loop_end);
3113 LABEL_NEXTREF (label) = loop_number_exit_labels[this_loop_num];
3114
3115 for ( ; label; label = LABEL_NEXTREF (label))
3116 {
3117 /* Succeed if find an insn which sets the biv or if reach end of
3118 function. Fail if find an insn that uses the biv, or if come to
3119 a conditional jump. */
3120
3121 insn = NEXT_INSN (XEXP (label, 0));
3122 while (insn)
3123 {
3124 code = GET_CODE (insn);
3125 if (GET_RTX_CLASS (code) == 'i')
3126 {
3127 rtx set;
3128
3129 if (reg_referenced_p (reg, PATTERN (insn)))
3130 return 0;
3131
3132 set = single_set (insn);
3133 if (set && rtx_equal_p (SET_DEST (set), reg))
3134 break;
3135 }
3136
3137 if (code == JUMP_INSN)
3138 {
3139 if (GET_CODE (PATTERN (insn)) == RETURN)
3140 break;
3141 else if (! simplejump_p (insn)
3142 /* Prevent infinite loop following infinite loops. */
3143 || jump_count++ > 20)
3144 return 0;
3145 else
3146 insn = JUMP_LABEL (insn);
3147 }
3148
3149 insn = NEXT_INSN (insn);
3150 }
3151 }
3152
3153 /* Success, the register is dead on all loop exits. */
3154 return 1;
3155 }
3156
3157 /* Try to calculate the final value of the biv, the value it will have at
3158 the end of the loop. If we can do it, return that value. */
3159
3160 rtx
3161 final_biv_value (bl, loop_start, loop_end)
3162 struct iv_class *bl;
3163 rtx loop_start, loop_end;
3164 {
3165 rtx increment, tem;
3166
3167 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3168
3169 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3170 return 0;
3171
3172 /* The final value for reversed bivs must be calculated differently than
3173 for ordinary bivs. In this case, there is already an insn after the
3174 loop which sets this biv's final value (if necessary), and there are
3175 no other loop exits, so we can return any value. */
3176 if (bl->reversed)
3177 {
3178 if (loop_dump_stream)
3179 fprintf (loop_dump_stream,
3180 "Final biv value for %d, reversed biv.\n", bl->regno);
3181
3182 return const0_rtx;
3183 }
3184
3185 /* Try to calculate the final value as initial value + (number of iterations
3186 * increment). For this to work, increment must be invariant, the only
3187 exit from the loop must be the fall through at the bottom (otherwise
3188 it may not have its final value when the loop exits), and the initial
3189 value of the biv must be invariant. */
3190
3191 if (loop_n_iterations != 0
3192 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
3193 && invariant_p (bl->initial_value))
3194 {
3195 increment = biv_total_increment (bl, loop_start, loop_end);
3196
3197 if (increment && invariant_p (increment))
3198 {
3199 /* Can calculate the loop exit value, emit insns after loop
3200 end to calculate this value into a temporary register in
3201 case it is needed later. */
3202
3203 tem = gen_reg_rtx (bl->biv->mode);
3204 record_base_value (REGNO (tem), bl->biv->add_val);
3205 /* Make sure loop_end is not the last insn. */
3206 if (NEXT_INSN (loop_end) == 0)
3207 emit_note_after (NOTE_INSN_DELETED, loop_end);
3208 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3209 bl->initial_value, tem, NEXT_INSN (loop_end));
3210
3211 if (loop_dump_stream)
3212 fprintf (loop_dump_stream,
3213 "Final biv value for %d, calculated.\n", bl->regno);
3214
3215 return tem;
3216 }
3217 }
3218
3219 /* Check to see if the biv is dead at all loop exits. */
3220 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
3221 {
3222 if (loop_dump_stream)
3223 fprintf (loop_dump_stream,
3224 "Final biv value for %d, biv dead after loop exit.\n",
3225 bl->regno);
3226
3227 return const0_rtx;
3228 }
3229
3230 return 0;
3231 }
3232
3233 /* Try to calculate the final value of the giv, the value it will have at
3234 the end of the loop. If we can do it, return that value. */
3235
3236 rtx
3237 final_giv_value (v, loop_start, loop_end)
3238 struct induction *v;
3239 rtx loop_start, loop_end;
3240 {
3241 struct iv_class *bl;
3242 rtx insn;
3243 rtx increment, tem;
3244 rtx insert_before, seq;
3245
3246 bl = reg_biv_class[REGNO (v->src_reg)];
3247
3248 /* The final value for givs which depend on reversed bivs must be calculated
3249 differently than for ordinary givs. In this case, there is already an
3250 insn after the loop which sets this giv's final value (if necessary),
3251 and there are no other loop exits, so we can return any value. */
3252 if (bl->reversed)
3253 {
3254 if (loop_dump_stream)
3255 fprintf (loop_dump_stream,
3256 "Final giv value for %d, depends on reversed biv\n",
3257 REGNO (v->dest_reg));
3258 return const0_rtx;
3259 }
3260
3261 /* Try to calculate the final value as a function of the biv it depends
3262 upon. The only exit from the loop must be the fall through at the bottom
3263 (otherwise it may not have its final value when the loop exits). */
3264
3265 /* ??? Can calculate the final giv value by subtracting off the
3266 extra biv increments times the giv's mult_val. The loop must have
3267 only one exit for this to work, but the loop iterations does not need
3268 to be known. */
3269
3270 if (loop_n_iterations != 0
3271 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
3272 {
3273 /* ?? It is tempting to use the biv's value here since these insns will
3274 be put after the loop, and hence the biv will have its final value
3275 then. However, this fails if the biv is subsequently eliminated.
3276 Perhaps determine whether biv's are eliminable before trying to
3277 determine whether giv's are replaceable so that we can use the
3278 biv value here if it is not eliminable. */
3279
3280 /* We are emitting code after the end of the loop, so we must make
3281 sure that bl->initial_value is still valid then. It will still
3282 be valid if it is invariant. */
3283
3284 increment = biv_total_increment (bl, loop_start, loop_end);
3285
3286 if (increment && invariant_p (increment)
3287 && invariant_p (bl->initial_value))
3288 {
3289 /* Can calculate the loop exit value of its biv as
3290 (loop_n_iterations * increment) + initial_value */
3291
3292 /* The loop exit value of the giv is then
3293 (final_biv_value - extra increments) * mult_val + add_val.
3294 The extra increments are any increments to the biv which
3295 occur in the loop after the giv's value is calculated.
3296 We must search from the insn that sets the giv to the end
3297 of the loop to calculate this value. */
3298
3299 insert_before = NEXT_INSN (loop_end);
3300
3301 /* Put the final biv value in tem. */
3302 tem = gen_reg_rtx (bl->biv->mode);
3303 record_base_value (REGNO (tem), bl->biv->add_val);
3304 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3305 bl->initial_value, tem, insert_before);
3306
3307 /* Subtract off extra increments as we find them. */
3308 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3309 insn = NEXT_INSN (insn))
3310 {
3311 struct induction *biv;
3312
3313 for (biv = bl->biv; biv; biv = biv->next_iv)
3314 if (biv->insn == insn)
3315 {
3316 start_sequence ();
3317 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3318 biv->add_val, NULL_RTX, 0,
3319 OPTAB_LIB_WIDEN);
3320 seq = gen_sequence ();
3321 end_sequence ();
3322 emit_insn_before (seq, insert_before);
3323 }
3324 }
3325
3326 /* Now calculate the giv's final value. */
3327 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3328 insert_before);
3329
3330 if (loop_dump_stream)
3331 fprintf (loop_dump_stream,
3332 "Final giv value for %d, calc from biv's value.\n",
3333 REGNO (v->dest_reg));
3334
3335 return tem;
3336 }
3337 }
3338
3339 /* Replaceable giv's should never reach here. */
3340 if (v->replaceable)
3341 abort ();
3342
3343 /* Check to see if the biv is dead at all loop exits. */
3344 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3345 {
3346 if (loop_dump_stream)
3347 fprintf (loop_dump_stream,
3348 "Final giv value for %d, giv dead after loop exit.\n",
3349 REGNO (v->dest_reg));
3350
3351 return const0_rtx;
3352 }
3353
3354 return 0;
3355 }
3356
3357
3358 /* Calculate the number of loop iterations. Returns the exact number of loop
3359 iterations if it can be calculated, otherwise returns zero. */
3360
3361 unsigned HOST_WIDE_INT
3362 loop_iterations (loop_start, loop_end)
3363 rtx loop_start, loop_end;
3364 {
3365 rtx comparison, comparison_value;
3366 rtx iteration_var, initial_value, increment, final_value;
3367 enum rtx_code comparison_code;
3368 HOST_WIDE_INT i;
3369 int increment_dir;
3370 int unsigned_compare, compare_dir, final_larger;
3371 unsigned long tempu;
3372 rtx last_loop_insn;
3373
3374 /* First find the iteration variable. If the last insn is a conditional
3375 branch, and the insn before tests a register value, make that the
3376 iteration variable. */
3377
3378 loop_initial_value = 0;
3379 loop_increment = 0;
3380 loop_final_value = 0;
3381 loop_iteration_var = 0;
3382
3383 /* We used to use pren_nonnote_insn here, but that fails because it might
3384 accidentally get the branch for a contained loop if the branch for this
3385 loop was deleted. We can only trust branches immediately before the
3386 loop_end. */
3387 last_loop_insn = PREV_INSN (loop_end);
3388
3389 comparison = get_condition_for_loop (last_loop_insn);
3390 if (comparison == 0)
3391 {
3392 if (loop_dump_stream)
3393 fprintf (loop_dump_stream,
3394 "Loop unrolling: No final conditional branch found.\n");
3395 return 0;
3396 }
3397
3398 /* ??? Get_condition may switch position of induction variable and
3399 invariant register when it canonicalizes the comparison. */
3400
3401 comparison_code = GET_CODE (comparison);
3402 iteration_var = XEXP (comparison, 0);
3403 comparison_value = XEXP (comparison, 1);
3404
3405 if (GET_CODE (iteration_var) != REG)
3406 {
3407 if (loop_dump_stream)
3408 fprintf (loop_dump_stream,
3409 "Loop unrolling: Comparison not against register.\n");
3410 return 0;
3411 }
3412
3413 /* Loop iterations is always called before any new registers are created
3414 now, so this should never occur. */
3415
3416 if (REGNO (iteration_var) >= max_reg_before_loop)
3417 abort ();
3418
3419 iteration_info (iteration_var, &initial_value, &increment,
3420 loop_start, loop_end);
3421 if (initial_value == 0)
3422 /* iteration_info already printed a message. */
3423 return 0;
3424
3425 /* If the comparison value is an invariant register, then try to find
3426 its value from the insns before the start of the loop. */
3427
3428 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3429 {
3430 rtx insn, set;
3431
3432 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3433 {
3434 if (GET_CODE (insn) == CODE_LABEL)
3435 break;
3436
3437 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3438 && reg_set_p (comparison_value, insn))
3439 {
3440 /* We found the last insn before the loop that sets the register.
3441 If it sets the entire register, and has a REG_EQUAL note,
3442 then use the value of the REG_EQUAL note. */
3443 if ((set = single_set (insn))
3444 && (SET_DEST (set) == comparison_value))
3445 {
3446 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3447
3448 /* Only use the REG_EQUAL note if it is a constant.
3449 Other things, divide in particular, will cause
3450 problems later if we use them. */
3451 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3452 && CONSTANT_P (XEXP (note, 0)))
3453 comparison_value = XEXP (note, 0);
3454 }
3455 break;
3456 }
3457 }
3458 }
3459
3460 final_value = approx_final_value (comparison_code, comparison_value,
3461 &unsigned_compare, &compare_dir);
3462
3463 /* Save the calculated values describing this loop's bounds, in case
3464 precondition_loop_p will need them later. These values can not be
3465 recalculated inside precondition_loop_p because strength reduction
3466 optimizations may obscure the loop's structure. */
3467
3468 loop_iteration_var = iteration_var;
3469 loop_initial_value = initial_value;
3470 loop_increment = increment;
3471 loop_final_value = final_value;
3472 loop_comparison_code = comparison_code;
3473
3474 if (increment == 0)
3475 {
3476 if (loop_dump_stream)
3477 fprintf (loop_dump_stream,
3478 "Loop unrolling: Increment value can't be calculated.\n");
3479 return 0;
3480 }
3481 else if (GET_CODE (increment) != CONST_INT)
3482 {
3483 if (loop_dump_stream)
3484 fprintf (loop_dump_stream,
3485 "Loop unrolling: Increment value not constant.\n");
3486 return 0;
3487 }
3488 else if (GET_CODE (initial_value) != CONST_INT)
3489 {
3490 if (loop_dump_stream)
3491 fprintf (loop_dump_stream,
3492 "Loop unrolling: Initial value not constant.\n");
3493 return 0;
3494 }
3495 else if (final_value == 0)
3496 {
3497 if (loop_dump_stream)
3498 fprintf (loop_dump_stream,
3499 "Loop unrolling: EQ comparison loop.\n");
3500 return 0;
3501 }
3502 else if (GET_CODE (final_value) != CONST_INT)
3503 {
3504 if (loop_dump_stream)
3505 fprintf (loop_dump_stream,
3506 "Loop unrolling: Final value not constant.\n");
3507 return 0;
3508 }
3509
3510 /* ?? Final value and initial value do not have to be constants.
3511 Only their difference has to be constant. When the iteration variable
3512 is an array address, the final value and initial value might both
3513 be addresses with the same base but different constant offsets.
3514 Final value must be invariant for this to work.
3515
3516 To do this, need some way to find the values of registers which are
3517 invariant. */
3518
3519 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3520 if (unsigned_compare)
3521 final_larger
3522 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3523 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3524 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3525 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3526 else
3527 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3528 - (INTVAL (final_value) < INTVAL (initial_value));
3529
3530 if (INTVAL (increment) > 0)
3531 increment_dir = 1;
3532 else if (INTVAL (increment) == 0)
3533 increment_dir = 0;
3534 else
3535 increment_dir = -1;
3536
3537 /* There are 27 different cases: compare_dir = -1, 0, 1;
3538 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3539 There are 4 normal cases, 4 reverse cases (where the iteration variable
3540 will overflow before the loop exits), 4 infinite loop cases, and 15
3541 immediate exit (0 or 1 iteration depending on loop type) cases.
3542 Only try to optimize the normal cases. */
3543
3544 /* (compare_dir/final_larger/increment_dir)
3545 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3546 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3547 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3548 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3549
3550 /* ?? If the meaning of reverse loops (where the iteration variable
3551 will overflow before the loop exits) is undefined, then could
3552 eliminate all of these special checks, and just always assume
3553 the loops are normal/immediate/infinite. Note that this means
3554 the sign of increment_dir does not have to be known. Also,
3555 since it does not really hurt if immediate exit loops or infinite loops
3556 are optimized, then that case could be ignored also, and hence all
3557 loops can be optimized.
3558
3559 According to ANSI Spec, the reverse loop case result is undefined,
3560 because the action on overflow is undefined.
3561
3562 See also the special test for NE loops below. */
3563
3564 if (final_larger == increment_dir && final_larger != 0
3565 && (final_larger == compare_dir || compare_dir == 0))
3566 /* Normal case. */
3567 ;
3568 else
3569 {
3570 if (loop_dump_stream)
3571 fprintf (loop_dump_stream,
3572 "Loop unrolling: Not normal loop.\n");
3573 return 0;
3574 }
3575
3576 /* Calculate the number of iterations, final_value is only an approximation,
3577 so correct for that. Note that tempu and loop_n_iterations are
3578 unsigned, because they can be as large as 2^n - 1. */
3579
3580 i = INTVAL (increment);
3581 if (i > 0)
3582 tempu = INTVAL (final_value) - INTVAL (initial_value);
3583 else if (i < 0)
3584 {
3585 tempu = INTVAL (initial_value) - INTVAL (final_value);
3586 i = -i;
3587 }
3588 else
3589 abort ();
3590
3591 /* For NE tests, make sure that the iteration variable won't miss the
3592 final value. If tempu mod i is not zero, then the iteration variable
3593 will overflow before the loop exits, and we can not calculate the
3594 number of iterations. */
3595 if (compare_dir == 0 && (tempu % i) != 0)
3596 return 0;
3597
3598 return tempu / i + ((tempu % i) != 0);
3599 }
3600
3601 /* Replace uses of split bivs with their split pseudo register. This is
3602 for original instructions which remain after loop unrolling without
3603 copying. */
3604
3605 static rtx
3606 remap_split_bivs (x)
3607 rtx x;
3608 {
3609 register enum rtx_code code;
3610 register int i;
3611 register char *fmt;
3612
3613 if (x == 0)
3614 return x;
3615
3616 code = GET_CODE (x);
3617 switch (code)
3618 {
3619 case SCRATCH:
3620 case PC:
3621 case CC0:
3622 case CONST_INT:
3623 case CONST_DOUBLE:
3624 case CONST:
3625 case SYMBOL_REF:
3626 case LABEL_REF:
3627 return x;
3628
3629 case REG:
3630 #if 0
3631 /* If non-reduced/final-value givs were split, then this would also
3632 have to remap those givs also. */
3633 #endif
3634 if (REGNO (x) < max_reg_before_loop
3635 && reg_iv_type[REGNO (x)] == BASIC_INDUCT)
3636 return reg_biv_class[REGNO (x)]->biv->src_reg;
3637 break;
3638
3639 default:
3640 break;
3641 }
3642
3643 fmt = GET_RTX_FORMAT (code);
3644 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3645 {
3646 if (fmt[i] == 'e')
3647 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
3648 if (fmt[i] == 'E')
3649 {
3650 register int j;
3651 for (j = 0; j < XVECLEN (x, i); j++)
3652 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
3653 }
3654 }
3655 return x;
3656 }
3657
3658 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3659 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
3660 return 0. COPY_START is where we can start looking for the insns
3661 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
3662 insns.
3663
3664 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3665 must dominate LAST_UID.
3666
3667 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3668 may not dominate LAST_UID.
3669
3670 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3671 must dominate LAST_UID. */
3672
3673 int
3674 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
3675 int regno;
3676 int first_uid;
3677 int last_uid;
3678 rtx copy_start;
3679 rtx copy_end;
3680 {
3681 int passed_jump = 0;
3682 rtx p = NEXT_INSN (copy_start);
3683
3684 while (INSN_UID (p) != first_uid)
3685 {
3686 if (GET_CODE (p) == JUMP_INSN)
3687 passed_jump= 1;
3688 /* Could not find FIRST_UID. */
3689 if (p == copy_end)
3690 return 0;
3691 p = NEXT_INSN (p);
3692 }
3693
3694 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
3695 if (GET_RTX_CLASS (GET_CODE (p)) != 'i'
3696 || ! dead_or_set_regno_p (p, regno))
3697 return 0;
3698
3699 /* FIRST_UID is always executed. */
3700 if (passed_jump == 0)
3701 return 1;
3702
3703 while (INSN_UID (p) != last_uid)
3704 {
3705 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
3706 can not be sure that FIRST_UID dominates LAST_UID. */
3707 if (GET_CODE (p) == CODE_LABEL)
3708 return 0;
3709 /* Could not find LAST_UID, but we reached the end of the loop, so
3710 it must be safe. */
3711 else if (p == copy_end)
3712 return 1;
3713 p = NEXT_INSN (p);
3714 }
3715
3716 /* FIRST_UID is always executed if LAST_UID is executed. */
3717 return 1;
3718 }
This page took 0.213967 seconds and 5 git commands to generate.