]> gcc.gnu.org Git - gcc.git/blob - gcc/tree.c
Warning fixes:
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 88, 92-97, 1998 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
31
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
35
36 #include "config.h"
37 #include "system.h"
38 #include <setjmp.h>
39 #include "flags.h"
40 #include "tree.h"
41 #include "except.h"
42 #include "function.h"
43 #include "obstack.h"
44 #include "toplev.h"
45
46 #define obstack_chunk_alloc xmalloc
47 #define obstack_chunk_free free
48 /* obstack.[ch] explicitly declined to prototype this. */
49 extern int _obstack_allocated_p PROTO ((struct obstack *h, GENERIC_PTR obj));
50
51 /* Tree nodes of permanent duration are allocated in this obstack.
52 They are the identifier nodes, and everything outside of
53 the bodies and parameters of function definitions. */
54
55 struct obstack permanent_obstack;
56
57 /* The initial RTL, and all ..._TYPE nodes, in a function
58 are allocated in this obstack. Usually they are freed at the
59 end of the function, but if the function is inline they are saved.
60 For top-level functions, this is maybepermanent_obstack.
61 Separate obstacks are made for nested functions. */
62
63 struct obstack *function_maybepermanent_obstack;
64
65 /* This is the function_maybepermanent_obstack for top-level functions. */
66
67 struct obstack maybepermanent_obstack;
68
69 /* This is a list of function_maybepermanent_obstacks for top-level inline
70 functions that are compiled in the middle of compiling other functions. */
71
72 struct simple_obstack_stack *toplev_inline_obstacks;
73
74 /* Former elements of toplev_inline_obstacks that have been recycled. */
75
76 struct simple_obstack_stack *extra_inline_obstacks;
77
78 /* This is a list of function_maybepermanent_obstacks for inline functions
79 nested in the current function that were compiled in the middle of
80 compiling other functions. */
81
82 struct simple_obstack_stack *inline_obstacks;
83
84 /* The contents of the current function definition are allocated
85 in this obstack, and all are freed at the end of the function.
86 For top-level functions, this is temporary_obstack.
87 Separate obstacks are made for nested functions. */
88
89 struct obstack *function_obstack;
90
91 /* This is used for reading initializers of global variables. */
92
93 struct obstack temporary_obstack;
94
95 /* The tree nodes of an expression are allocated
96 in this obstack, and all are freed at the end of the expression. */
97
98 struct obstack momentary_obstack;
99
100 /* The tree nodes of a declarator are allocated
101 in this obstack, and all are freed when the declarator
102 has been parsed. */
103
104 static struct obstack temp_decl_obstack;
105
106 /* This points at either permanent_obstack
107 or the current function_maybepermanent_obstack. */
108
109 struct obstack *saveable_obstack;
110
111 /* This is same as saveable_obstack during parse and expansion phase;
112 it points to the current function's obstack during optimization.
113 This is the obstack to be used for creating rtl objects. */
114
115 struct obstack *rtl_obstack;
116
117 /* This points at either permanent_obstack or the current function_obstack. */
118
119 struct obstack *current_obstack;
120
121 /* This points at either permanent_obstack or the current function_obstack
122 or momentary_obstack. */
123
124 struct obstack *expression_obstack;
125
126 /* Stack of obstack selections for push_obstacks and pop_obstacks. */
127
128 struct obstack_stack
129 {
130 struct obstack_stack *next;
131 struct obstack *current;
132 struct obstack *saveable;
133 struct obstack *expression;
134 struct obstack *rtl;
135 };
136
137 struct obstack_stack *obstack_stack;
138
139 /* Obstack for allocating struct obstack_stack entries. */
140
141 static struct obstack obstack_stack_obstack;
142
143 /* Addresses of first objects in some obstacks.
144 This is for freeing their entire contents. */
145 char *maybepermanent_firstobj;
146 char *temporary_firstobj;
147 char *momentary_firstobj;
148 char *temp_decl_firstobj;
149
150 /* This is used to preserve objects (mainly array initializers) that need to
151 live until the end of the current function, but no further. */
152 char *momentary_function_firstobj;
153
154 /* Nonzero means all ..._TYPE nodes should be allocated permanently. */
155
156 int all_types_permanent;
157
158 /* Stack of places to restore the momentary obstack back to. */
159
160 struct momentary_level
161 {
162 /* Pointer back to previous such level. */
163 struct momentary_level *prev;
164 /* First object allocated within this level. */
165 char *base;
166 /* Value of expression_obstack saved at entry to this level. */
167 struct obstack *obstack;
168 };
169
170 struct momentary_level *momentary_stack;
171
172 /* Table indexed by tree code giving a string containing a character
173 classifying the tree code. Possibilities are
174 t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
175
176 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
177
178 char tree_code_type[MAX_TREE_CODES] = {
179 #include "tree.def"
180 };
181 #undef DEFTREECODE
182
183 /* Table indexed by tree code giving number of expression
184 operands beyond the fixed part of the node structure.
185 Not used for types or decls. */
186
187 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
188
189 int tree_code_length[MAX_TREE_CODES] = {
190 #include "tree.def"
191 };
192 #undef DEFTREECODE
193
194 /* Names of tree components.
195 Used for printing out the tree and error messages. */
196 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
197
198 char *tree_code_name[MAX_TREE_CODES] = {
199 #include "tree.def"
200 };
201 #undef DEFTREECODE
202
203 /* Statistics-gathering stuff. */
204 typedef enum
205 {
206 d_kind,
207 t_kind,
208 b_kind,
209 s_kind,
210 r_kind,
211 e_kind,
212 c_kind,
213 id_kind,
214 op_id_kind,
215 perm_list_kind,
216 temp_list_kind,
217 vec_kind,
218 x_kind,
219 lang_decl,
220 lang_type,
221 all_kinds
222 } tree_node_kind;
223
224 int tree_node_counts[(int)all_kinds];
225 int tree_node_sizes[(int)all_kinds];
226 int id_string_size = 0;
227
228 char *tree_node_kind_names[] = {
229 "decls",
230 "types",
231 "blocks",
232 "stmts",
233 "refs",
234 "exprs",
235 "constants",
236 "identifiers",
237 "op_identifiers",
238 "perm_tree_lists",
239 "temp_tree_lists",
240 "vecs",
241 "random kinds",
242 "lang_decl kinds",
243 "lang_type kinds"
244 };
245
246 /* Hash table for uniquizing IDENTIFIER_NODEs by name. */
247
248 #define MAX_HASH_TABLE 1009
249 static tree hash_table[MAX_HASH_TABLE]; /* id hash buckets */
250
251 /* 0 while creating built-in identifiers. */
252 static int do_identifier_warnings;
253
254 /* Unique id for next decl created. */
255 static int next_decl_uid;
256 /* Unique id for next type created. */
257 static int next_type_uid = 1;
258
259 /* The language-specific function for alias analysis. If NULL, the
260 language does not do any special alias analysis. */
261 int (*lang_get_alias_set) PROTO((tree));
262
263 /* Here is how primitive or already-canonicalized types' hash
264 codes are made. */
265 #define TYPE_HASH(TYPE) ((unsigned long) (TYPE) & 0777777)
266
267 extern char *mode_name[];
268
269 void gcc_obstack_init ();
270 \f
271 /* Init the principal obstacks. */
272
273 void
274 init_obstacks ()
275 {
276 gcc_obstack_init (&obstack_stack_obstack);
277 gcc_obstack_init (&permanent_obstack);
278
279 gcc_obstack_init (&temporary_obstack);
280 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
281 gcc_obstack_init (&momentary_obstack);
282 momentary_firstobj = (char *) obstack_alloc (&momentary_obstack, 0);
283 momentary_function_firstobj = momentary_firstobj;
284 gcc_obstack_init (&maybepermanent_obstack);
285 maybepermanent_firstobj
286 = (char *) obstack_alloc (&maybepermanent_obstack, 0);
287 gcc_obstack_init (&temp_decl_obstack);
288 temp_decl_firstobj = (char *) obstack_alloc (&temp_decl_obstack, 0);
289
290 function_obstack = &temporary_obstack;
291 function_maybepermanent_obstack = &maybepermanent_obstack;
292 current_obstack = &permanent_obstack;
293 expression_obstack = &permanent_obstack;
294 rtl_obstack = saveable_obstack = &permanent_obstack;
295
296 /* Init the hash table of identifiers. */
297 bzero ((char *) hash_table, sizeof hash_table);
298 }
299
300 void
301 gcc_obstack_init (obstack)
302 struct obstack *obstack;
303 {
304 /* Let particular systems override the size of a chunk. */
305 #ifndef OBSTACK_CHUNK_SIZE
306 #define OBSTACK_CHUNK_SIZE 0
307 #endif
308 /* Let them override the alloc and free routines too. */
309 #ifndef OBSTACK_CHUNK_ALLOC
310 #define OBSTACK_CHUNK_ALLOC xmalloc
311 #endif
312 #ifndef OBSTACK_CHUNK_FREE
313 #define OBSTACK_CHUNK_FREE free
314 #endif
315 _obstack_begin (obstack, OBSTACK_CHUNK_SIZE, 0,
316 (void *(*) ()) OBSTACK_CHUNK_ALLOC,
317 (void (*) ()) OBSTACK_CHUNK_FREE);
318 }
319
320 /* Save all variables describing the current status into the structure *P.
321 This is used before starting a nested function.
322
323 CONTEXT is the decl_function_context for the function we're about to
324 compile; if it isn't current_function_decl, we have to play some games. */
325
326 void
327 save_tree_status (p, context)
328 struct function *p;
329 tree context;
330 {
331 p->all_types_permanent = all_types_permanent;
332 p->momentary_stack = momentary_stack;
333 p->maybepermanent_firstobj = maybepermanent_firstobj;
334 p->temporary_firstobj = temporary_firstobj;
335 p->momentary_firstobj = momentary_firstobj;
336 p->momentary_function_firstobj = momentary_function_firstobj;
337 p->function_obstack = function_obstack;
338 p->function_maybepermanent_obstack = function_maybepermanent_obstack;
339 p->current_obstack = current_obstack;
340 p->expression_obstack = expression_obstack;
341 p->saveable_obstack = saveable_obstack;
342 p->rtl_obstack = rtl_obstack;
343 p->inline_obstacks = inline_obstacks;
344
345 if (context == current_function_decl)
346 /* Objects that need to be saved in this function can be in the nonsaved
347 obstack of the enclosing function since they can't possibly be needed
348 once it has returned. */
349 function_maybepermanent_obstack = function_obstack;
350 else
351 {
352 /* We're compiling a function which isn't nested in the current
353 function. We need to create a new maybepermanent_obstack for this
354 function, since it can't go onto any of the existing obstacks. */
355 struct simple_obstack_stack **head;
356 struct simple_obstack_stack *current;
357
358 if (context == NULL_TREE)
359 head = &toplev_inline_obstacks;
360 else
361 {
362 struct function *f = find_function_data (context);
363 head = &f->inline_obstacks;
364 }
365
366 if (context == NULL_TREE && extra_inline_obstacks)
367 {
368 current = extra_inline_obstacks;
369 extra_inline_obstacks = current->next;
370 }
371 else
372 {
373 current = ((struct simple_obstack_stack *)
374 xmalloc (sizeof (struct simple_obstack_stack)));
375
376 current->obstack
377 = (struct obstack *) xmalloc (sizeof (struct obstack));
378 gcc_obstack_init (current->obstack);
379 }
380
381 function_maybepermanent_obstack = current->obstack;
382
383 current->next = *head;
384 *head = current;
385 }
386
387 maybepermanent_firstobj
388 = (char *) obstack_finish (function_maybepermanent_obstack);
389
390 function_obstack = (struct obstack *) xmalloc (sizeof (struct obstack));
391 gcc_obstack_init (function_obstack);
392
393 current_obstack = &permanent_obstack;
394 expression_obstack = &permanent_obstack;
395 rtl_obstack = saveable_obstack = &permanent_obstack;
396
397 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
398 momentary_firstobj = (char *) obstack_finish (&momentary_obstack);
399 momentary_function_firstobj = momentary_firstobj;
400 }
401
402 /* Restore all variables describing the current status from the structure *P.
403 This is used after a nested function. */
404
405 void
406 restore_tree_status (p, context)
407 struct function *p;
408 tree context;
409 {
410 all_types_permanent = p->all_types_permanent;
411 momentary_stack = p->momentary_stack;
412
413 obstack_free (&momentary_obstack, momentary_function_firstobj);
414
415 /* Free saveable storage used by the function just compiled and not
416 saved.
417
418 CAUTION: This is in function_obstack of the containing function.
419 So we must be sure that we never allocate from that obstack during
420 the compilation of a nested function if we expect it to survive
421 past the nested function's end. */
422 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
423
424 /* If we were compiling a toplevel function, we can free this space now. */
425 if (context == NULL_TREE)
426 {
427 obstack_free (&temporary_obstack, temporary_firstobj);
428 obstack_free (&momentary_obstack, momentary_function_firstobj);
429 }
430
431 /* If we were compiling a toplevel function that we don't actually want
432 to save anything from, return the obstack to the pool. */
433 if (context == NULL_TREE
434 && obstack_empty_p (function_maybepermanent_obstack))
435 {
436 struct simple_obstack_stack *current, **p = &toplev_inline_obstacks;
437
438 if ((*p) != NULL)
439 {
440 while ((*p)->obstack != function_maybepermanent_obstack)
441 p = &((*p)->next);
442 current = *p;
443 *p = current->next;
444
445 current->next = extra_inline_obstacks;
446 extra_inline_obstacks = current;
447 }
448 }
449
450 obstack_free (function_obstack, 0);
451 free (function_obstack);
452
453 temporary_firstobj = p->temporary_firstobj;
454 momentary_firstobj = p->momentary_firstobj;
455 momentary_function_firstobj = p->momentary_function_firstobj;
456 maybepermanent_firstobj = p->maybepermanent_firstobj;
457 function_obstack = p->function_obstack;
458 function_maybepermanent_obstack = p->function_maybepermanent_obstack;
459 current_obstack = p->current_obstack;
460 expression_obstack = p->expression_obstack;
461 saveable_obstack = p->saveable_obstack;
462 rtl_obstack = p->rtl_obstack;
463 inline_obstacks = p->inline_obstacks;
464 }
465 \f
466 /* Start allocating on the temporary (per function) obstack.
467 This is done in start_function before parsing the function body,
468 and before each initialization at top level, and to go back
469 to temporary allocation after doing permanent_allocation. */
470
471 void
472 temporary_allocation ()
473 {
474 /* Note that function_obstack at top level points to temporary_obstack.
475 But within a nested function context, it is a separate obstack. */
476 current_obstack = function_obstack;
477 expression_obstack = function_obstack;
478 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
479 momentary_stack = 0;
480 inline_obstacks = 0;
481 }
482
483 /* Start allocating on the permanent obstack but don't
484 free the temporary data. After calling this, call
485 `permanent_allocation' to fully resume permanent allocation status. */
486
487 void
488 end_temporary_allocation ()
489 {
490 current_obstack = &permanent_obstack;
491 expression_obstack = &permanent_obstack;
492 rtl_obstack = saveable_obstack = &permanent_obstack;
493 }
494
495 /* Resume allocating on the temporary obstack, undoing
496 effects of `end_temporary_allocation'. */
497
498 void
499 resume_temporary_allocation ()
500 {
501 current_obstack = function_obstack;
502 expression_obstack = function_obstack;
503 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
504 }
505
506 /* While doing temporary allocation, switch to allocating in such a
507 way as to save all nodes if the function is inlined. Call
508 resume_temporary_allocation to go back to ordinary temporary
509 allocation. */
510
511 void
512 saveable_allocation ()
513 {
514 /* Note that function_obstack at top level points to temporary_obstack.
515 But within a nested function context, it is a separate obstack. */
516 expression_obstack = current_obstack = saveable_obstack;
517 }
518
519 /* Switch to current obstack CURRENT and maybepermanent obstack SAVEABLE,
520 recording the previously current obstacks on a stack.
521 This does not free any storage in any obstack. */
522
523 void
524 push_obstacks (current, saveable)
525 struct obstack *current, *saveable;
526 {
527 struct obstack_stack *p
528 = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
529 (sizeof (struct obstack_stack)));
530
531 p->current = current_obstack;
532 p->saveable = saveable_obstack;
533 p->expression = expression_obstack;
534 p->rtl = rtl_obstack;
535 p->next = obstack_stack;
536 obstack_stack = p;
537
538 current_obstack = current;
539 expression_obstack = current;
540 rtl_obstack = saveable_obstack = saveable;
541 }
542
543 /* Save the current set of obstacks, but don't change them. */
544
545 void
546 push_obstacks_nochange ()
547 {
548 struct obstack_stack *p
549 = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
550 (sizeof (struct obstack_stack)));
551
552 p->current = current_obstack;
553 p->saveable = saveable_obstack;
554 p->expression = expression_obstack;
555 p->rtl = rtl_obstack;
556 p->next = obstack_stack;
557 obstack_stack = p;
558 }
559
560 /* Pop the obstack selection stack. */
561
562 void
563 pop_obstacks ()
564 {
565 struct obstack_stack *p = obstack_stack;
566 obstack_stack = p->next;
567
568 current_obstack = p->current;
569 saveable_obstack = p->saveable;
570 expression_obstack = p->expression;
571 rtl_obstack = p->rtl;
572
573 obstack_free (&obstack_stack_obstack, p);
574 }
575
576 /* Nonzero if temporary allocation is currently in effect.
577 Zero if currently doing permanent allocation. */
578
579 int
580 allocation_temporary_p ()
581 {
582 return current_obstack != &permanent_obstack;
583 }
584
585 /* Go back to allocating on the permanent obstack
586 and free everything in the temporary obstack.
587
588 FUNCTION_END is true only if we have just finished compiling a function.
589 In that case, we also free preserved initial values on the momentary
590 obstack. */
591
592 void
593 permanent_allocation (function_end)
594 int function_end;
595 {
596 /* Free up previous temporary obstack data */
597 obstack_free (&temporary_obstack, temporary_firstobj);
598 if (function_end)
599 {
600 obstack_free (&momentary_obstack, momentary_function_firstobj);
601 momentary_firstobj = momentary_function_firstobj;
602 }
603 else
604 obstack_free (&momentary_obstack, momentary_firstobj);
605 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
606 obstack_free (&temp_decl_obstack, temp_decl_firstobj);
607
608 /* Free up the maybepermanent_obstacks for any of our nested functions
609 which were compiled at a lower level. */
610 while (inline_obstacks)
611 {
612 struct simple_obstack_stack *current = inline_obstacks;
613 inline_obstacks = current->next;
614 obstack_free (current->obstack, 0);
615 free (current->obstack);
616 free (current);
617 }
618
619 current_obstack = &permanent_obstack;
620 expression_obstack = &permanent_obstack;
621 rtl_obstack = saveable_obstack = &permanent_obstack;
622 }
623
624 /* Save permanently everything on the maybepermanent_obstack. */
625
626 void
627 preserve_data ()
628 {
629 maybepermanent_firstobj
630 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
631 }
632
633 void
634 preserve_initializer ()
635 {
636 struct momentary_level *tem;
637 char *old_momentary;
638
639 temporary_firstobj
640 = (char *) obstack_alloc (&temporary_obstack, 0);
641 maybepermanent_firstobj
642 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
643
644 old_momentary = momentary_firstobj;
645 momentary_firstobj
646 = (char *) obstack_alloc (&momentary_obstack, 0);
647 if (momentary_firstobj != old_momentary)
648 for (tem = momentary_stack; tem; tem = tem->prev)
649 tem->base = momentary_firstobj;
650 }
651
652 /* Start allocating new rtl in current_obstack.
653 Use resume_temporary_allocation
654 to go back to allocating rtl in saveable_obstack. */
655
656 void
657 rtl_in_current_obstack ()
658 {
659 rtl_obstack = current_obstack;
660 }
661
662 /* Start allocating rtl from saveable_obstack. Intended to be used after
663 a call to push_obstacks_nochange. */
664
665 void
666 rtl_in_saveable_obstack ()
667 {
668 rtl_obstack = saveable_obstack;
669 }
670 \f
671 /* Allocate SIZE bytes in the current obstack
672 and return a pointer to them.
673 In practice the current obstack is always the temporary one. */
674
675 char *
676 oballoc (size)
677 int size;
678 {
679 return (char *) obstack_alloc (current_obstack, size);
680 }
681
682 /* Free the object PTR in the current obstack
683 as well as everything allocated since PTR.
684 In practice the current obstack is always the temporary one. */
685
686 void
687 obfree (ptr)
688 char *ptr;
689 {
690 obstack_free (current_obstack, ptr);
691 }
692
693 /* Allocate SIZE bytes in the permanent obstack
694 and return a pointer to them. */
695
696 char *
697 permalloc (size)
698 int size;
699 {
700 return (char *) obstack_alloc (&permanent_obstack, size);
701 }
702
703 /* Allocate NELEM items of SIZE bytes in the permanent obstack
704 and return a pointer to them. The storage is cleared before
705 returning the value. */
706
707 char *
708 perm_calloc (nelem, size)
709 int nelem;
710 long size;
711 {
712 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
713 bzero (rval, nelem * size);
714 return rval;
715 }
716
717 /* Allocate SIZE bytes in the saveable obstack
718 and return a pointer to them. */
719
720 char *
721 savealloc (size)
722 int size;
723 {
724 return (char *) obstack_alloc (saveable_obstack, size);
725 }
726
727 /* Allocate SIZE bytes in the expression obstack
728 and return a pointer to them. */
729
730 char *
731 expralloc (size)
732 int size;
733 {
734 return (char *) obstack_alloc (expression_obstack, size);
735 }
736 \f
737 /* Print out which obstack an object is in. */
738
739 void
740 print_obstack_name (object, file, prefix)
741 char *object;
742 FILE *file;
743 char *prefix;
744 {
745 struct obstack *obstack = NULL;
746 char *obstack_name = NULL;
747 struct function *p;
748
749 for (p = outer_function_chain; p; p = p->next)
750 {
751 if (_obstack_allocated_p (p->function_obstack, object))
752 {
753 obstack = p->function_obstack;
754 obstack_name = "containing function obstack";
755 }
756 if (_obstack_allocated_p (p->function_maybepermanent_obstack, object))
757 {
758 obstack = p->function_maybepermanent_obstack;
759 obstack_name = "containing function maybepermanent obstack";
760 }
761 }
762
763 if (_obstack_allocated_p (&obstack_stack_obstack, object))
764 {
765 obstack = &obstack_stack_obstack;
766 obstack_name = "obstack_stack_obstack";
767 }
768 else if (_obstack_allocated_p (function_obstack, object))
769 {
770 obstack = function_obstack;
771 obstack_name = "function obstack";
772 }
773 else if (_obstack_allocated_p (&permanent_obstack, object))
774 {
775 obstack = &permanent_obstack;
776 obstack_name = "permanent_obstack";
777 }
778 else if (_obstack_allocated_p (&momentary_obstack, object))
779 {
780 obstack = &momentary_obstack;
781 obstack_name = "momentary_obstack";
782 }
783 else if (_obstack_allocated_p (function_maybepermanent_obstack, object))
784 {
785 obstack = function_maybepermanent_obstack;
786 obstack_name = "function maybepermanent obstack";
787 }
788 else if (_obstack_allocated_p (&temp_decl_obstack, object))
789 {
790 obstack = &temp_decl_obstack;
791 obstack_name = "temp_decl_obstack";
792 }
793
794 /* Check to see if the object is in the free area of the obstack. */
795 if (obstack != NULL)
796 {
797 if (object >= obstack->next_free
798 && object < obstack->chunk_limit)
799 fprintf (file, "%s in free portion of obstack %s",
800 prefix, obstack_name);
801 else
802 fprintf (file, "%s allocated from %s", prefix, obstack_name);
803 }
804 else
805 fprintf (file, "%s not allocated from any obstack", prefix);
806 }
807
808 void
809 debug_obstack (object)
810 char *object;
811 {
812 print_obstack_name (object, stderr, "object");
813 fprintf (stderr, ".\n");
814 }
815
816 /* Return 1 if OBJ is in the permanent obstack.
817 This is slow, and should be used only for debugging.
818 Use TREE_PERMANENT for other purposes. */
819
820 int
821 object_permanent_p (obj)
822 tree obj;
823 {
824 return _obstack_allocated_p (&permanent_obstack, obj);
825 }
826 \f
827 /* Start a level of momentary allocation.
828 In C, each compound statement has its own level
829 and that level is freed at the end of each statement.
830 All expression nodes are allocated in the momentary allocation level. */
831
832 void
833 push_momentary ()
834 {
835 struct momentary_level *tem
836 = (struct momentary_level *) obstack_alloc (&momentary_obstack,
837 sizeof (struct momentary_level));
838 tem->prev = momentary_stack;
839 tem->base = (char *) obstack_base (&momentary_obstack);
840 tem->obstack = expression_obstack;
841 momentary_stack = tem;
842 expression_obstack = &momentary_obstack;
843 }
844
845 /* Set things up so the next clear_momentary will only clear memory
846 past our present position in momentary_obstack. */
847
848 void
849 preserve_momentary ()
850 {
851 momentary_stack->base = (char *) obstack_base (&momentary_obstack);
852 }
853
854 /* Free all the storage in the current momentary-allocation level.
855 In C, this happens at the end of each statement. */
856
857 void
858 clear_momentary ()
859 {
860 obstack_free (&momentary_obstack, momentary_stack->base);
861 }
862
863 /* Discard a level of momentary allocation.
864 In C, this happens at the end of each compound statement.
865 Restore the status of expression node allocation
866 that was in effect before this level was created. */
867
868 void
869 pop_momentary ()
870 {
871 struct momentary_level *tem = momentary_stack;
872 momentary_stack = tem->prev;
873 expression_obstack = tem->obstack;
874 /* We can't free TEM from the momentary_obstack, because there might
875 be objects above it which have been saved. We can free back to the
876 stack of the level we are popping off though. */
877 obstack_free (&momentary_obstack, tem->base);
878 }
879
880 /* Pop back to the previous level of momentary allocation,
881 but don't free any momentary data just yet. */
882
883 void
884 pop_momentary_nofree ()
885 {
886 struct momentary_level *tem = momentary_stack;
887 momentary_stack = tem->prev;
888 expression_obstack = tem->obstack;
889 }
890
891 /* Call when starting to parse a declaration:
892 make expressions in the declaration last the length of the function.
893 Returns an argument that should be passed to resume_momentary later. */
894
895 int
896 suspend_momentary ()
897 {
898 register int tem = expression_obstack == &momentary_obstack;
899 expression_obstack = saveable_obstack;
900 return tem;
901 }
902
903 /* Call when finished parsing a declaration:
904 restore the treatment of node-allocation that was
905 in effect before the suspension.
906 YES should be the value previously returned by suspend_momentary. */
907
908 void
909 resume_momentary (yes)
910 int yes;
911 {
912 if (yes)
913 expression_obstack = &momentary_obstack;
914 }
915 \f
916 /* Init the tables indexed by tree code.
917 Note that languages can add to these tables to define their own codes. */
918
919 void
920 init_tree_codes ()
921 {
922
923 }
924
925 /* Return a newly allocated node of code CODE.
926 Initialize the node's unique id and its TREE_PERMANENT flag.
927 For decl and type nodes, some other fields are initialized.
928 The rest of the node is initialized to zero.
929
930 Achoo! I got a code in the node. */
931
932 tree
933 make_node (code)
934 enum tree_code code;
935 {
936 register tree t;
937 register int type = TREE_CODE_CLASS (code);
938 register int length = 0;
939 register struct obstack *obstack = current_obstack;
940 register int i;
941 #ifdef GATHER_STATISTICS
942 register tree_node_kind kind;
943 #endif
944
945 switch (type)
946 {
947 case 'd': /* A decl node */
948 #ifdef GATHER_STATISTICS
949 kind = d_kind;
950 #endif
951 length = sizeof (struct tree_decl);
952 /* All decls in an inline function need to be saved. */
953 if (obstack != &permanent_obstack)
954 obstack = saveable_obstack;
955
956 /* PARM_DECLs go on the context of the parent. If this is a nested
957 function, then we must allocate the PARM_DECL on the parent's
958 obstack, so that they will live to the end of the parent's
959 closing brace. This is necessary in case we try to inline the
960 function into its parent.
961
962 PARM_DECLs of top-level functions do not have this problem. However,
963 we allocate them where we put the FUNCTION_DECL for languages such as
964 Ada that need to consult some flags in the PARM_DECLs of the function
965 when calling it.
966
967 See comment in restore_tree_status for why we can't put this
968 in function_obstack. */
969 if (code == PARM_DECL && obstack != &permanent_obstack)
970 {
971 tree context = 0;
972 if (current_function_decl)
973 context = decl_function_context (current_function_decl);
974
975 if (context)
976 obstack
977 = find_function_data (context)->function_maybepermanent_obstack;
978 }
979 break;
980
981 case 't': /* a type node */
982 #ifdef GATHER_STATISTICS
983 kind = t_kind;
984 #endif
985 length = sizeof (struct tree_type);
986 /* All data types are put where we can preserve them if nec. */
987 if (obstack != &permanent_obstack)
988 obstack = all_types_permanent ? &permanent_obstack : saveable_obstack;
989 break;
990
991 case 'b': /* a lexical block */
992 #ifdef GATHER_STATISTICS
993 kind = b_kind;
994 #endif
995 length = sizeof (struct tree_block);
996 /* All BLOCK nodes are put where we can preserve them if nec. */
997 if (obstack != &permanent_obstack)
998 obstack = saveable_obstack;
999 break;
1000
1001 case 's': /* an expression with side effects */
1002 #ifdef GATHER_STATISTICS
1003 kind = s_kind;
1004 goto usual_kind;
1005 #endif
1006 case 'r': /* a reference */
1007 #ifdef GATHER_STATISTICS
1008 kind = r_kind;
1009 goto usual_kind;
1010 #endif
1011 case 'e': /* an expression */
1012 case '<': /* a comparison expression */
1013 case '1': /* a unary arithmetic expression */
1014 case '2': /* a binary arithmetic expression */
1015 #ifdef GATHER_STATISTICS
1016 kind = e_kind;
1017 usual_kind:
1018 #endif
1019 obstack = expression_obstack;
1020 /* All BIND_EXPR nodes are put where we can preserve them if nec. */
1021 if (code == BIND_EXPR && obstack != &permanent_obstack)
1022 obstack = saveable_obstack;
1023 length = sizeof (struct tree_exp)
1024 + (tree_code_length[(int) code] - 1) * sizeof (char *);
1025 break;
1026
1027 case 'c': /* a constant */
1028 #ifdef GATHER_STATISTICS
1029 kind = c_kind;
1030 #endif
1031 obstack = expression_obstack;
1032
1033 /* We can't use tree_code_length for INTEGER_CST, since the number of
1034 words is machine-dependent due to varying length of HOST_WIDE_INT,
1035 which might be wider than a pointer (e.g., long long). Similarly
1036 for REAL_CST, since the number of words is machine-dependent due
1037 to varying size and alignment of `double'. */
1038
1039 if (code == INTEGER_CST)
1040 length = sizeof (struct tree_int_cst);
1041 else if (code == REAL_CST)
1042 length = sizeof (struct tree_real_cst);
1043 else
1044 length = sizeof (struct tree_common)
1045 + tree_code_length[(int) code] * sizeof (char *);
1046 break;
1047
1048 case 'x': /* something random, like an identifier. */
1049 #ifdef GATHER_STATISTICS
1050 if (code == IDENTIFIER_NODE)
1051 kind = id_kind;
1052 else if (code == OP_IDENTIFIER)
1053 kind = op_id_kind;
1054 else if (code == TREE_VEC)
1055 kind = vec_kind;
1056 else
1057 kind = x_kind;
1058 #endif
1059 length = sizeof (struct tree_common)
1060 + tree_code_length[(int) code] * sizeof (char *);
1061 /* Identifier nodes are always permanent since they are
1062 unique in a compiler run. */
1063 if (code == IDENTIFIER_NODE) obstack = &permanent_obstack;
1064 break;
1065
1066 default:
1067 abort ();
1068 }
1069
1070 t = (tree) obstack_alloc (obstack, length);
1071
1072 #ifdef GATHER_STATISTICS
1073 tree_node_counts[(int)kind]++;
1074 tree_node_sizes[(int)kind] += length;
1075 #endif
1076
1077 /* Clear a word at a time. */
1078 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
1079 ((int *) t)[i] = 0;
1080 /* Clear any extra bytes. */
1081 for (i = length / sizeof (int) * sizeof (int); i < length; i++)
1082 ((char *) t)[i] = 0;
1083
1084 TREE_SET_CODE (t, code);
1085 if (obstack == &permanent_obstack)
1086 TREE_PERMANENT (t) = 1;
1087
1088 switch (type)
1089 {
1090 case 's':
1091 TREE_SIDE_EFFECTS (t) = 1;
1092 TREE_TYPE (t) = void_type_node;
1093 break;
1094
1095 case 'd':
1096 if (code != FUNCTION_DECL)
1097 DECL_ALIGN (t) = 1;
1098 DECL_IN_SYSTEM_HEADER (t)
1099 = in_system_header && (obstack == &permanent_obstack);
1100 DECL_SOURCE_LINE (t) = lineno;
1101 DECL_SOURCE_FILE (t) = (input_filename) ? input_filename : "<built-in>";
1102 DECL_UID (t) = next_decl_uid++;
1103 break;
1104
1105 case 't':
1106 TYPE_UID (t) = next_type_uid++;
1107 TYPE_ALIGN (t) = 1;
1108 TYPE_MAIN_VARIANT (t) = t;
1109 TYPE_OBSTACK (t) = obstack;
1110 TYPE_ATTRIBUTES (t) = NULL_TREE;
1111 #ifdef SET_DEFAULT_TYPE_ATTRIBUTES
1112 SET_DEFAULT_TYPE_ATTRIBUTES (t);
1113 #endif
1114 /* Note that we have not yet computed the alias set for this
1115 type. */
1116 TYPE_ALIAS_SET (t) = -1;
1117 break;
1118
1119 case 'c':
1120 TREE_CONSTANT (t) = 1;
1121 break;
1122 }
1123
1124 return t;
1125 }
1126 \f
1127 /* Return a new node with the same contents as NODE
1128 except that its TREE_CHAIN is zero and it has a fresh uid. */
1129
1130 tree
1131 copy_node (node)
1132 tree node;
1133 {
1134 register tree t;
1135 register enum tree_code code = TREE_CODE (node);
1136 register int length = 0;
1137 register int i;
1138
1139 switch (TREE_CODE_CLASS (code))
1140 {
1141 case 'd': /* A decl node */
1142 length = sizeof (struct tree_decl);
1143 break;
1144
1145 case 't': /* a type node */
1146 length = sizeof (struct tree_type);
1147 break;
1148
1149 case 'b': /* a lexical block node */
1150 length = sizeof (struct tree_block);
1151 break;
1152
1153 case 'r': /* a reference */
1154 case 'e': /* an expression */
1155 case 's': /* an expression with side effects */
1156 case '<': /* a comparison expression */
1157 case '1': /* a unary arithmetic expression */
1158 case '2': /* a binary arithmetic expression */
1159 length = sizeof (struct tree_exp)
1160 + (tree_code_length[(int) code] - 1) * sizeof (char *);
1161 break;
1162
1163 case 'c': /* a constant */
1164 /* We can't use tree_code_length for INTEGER_CST, since the number of
1165 words is machine-dependent due to varying length of HOST_WIDE_INT,
1166 which might be wider than a pointer (e.g., long long). Similarly
1167 for REAL_CST, since the number of words is machine-dependent due
1168 to varying size and alignment of `double'. */
1169 if (code == INTEGER_CST)
1170 length = sizeof (struct tree_int_cst);
1171 else if (code == REAL_CST)
1172 length = sizeof (struct tree_real_cst);
1173 else
1174 length = (sizeof (struct tree_common)
1175 + tree_code_length[(int) code] * sizeof (char *));
1176 break;
1177
1178 case 'x': /* something random, like an identifier. */
1179 length = sizeof (struct tree_common)
1180 + tree_code_length[(int) code] * sizeof (char *);
1181 if (code == TREE_VEC)
1182 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
1183 }
1184
1185 t = (tree) obstack_alloc (current_obstack, length);
1186
1187 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
1188 ((int *) t)[i] = ((int *) node)[i];
1189 /* Clear any extra bytes. */
1190 for (i = length / sizeof (int) * sizeof (int); i < length; i++)
1191 ((char *) t)[i] = ((char *) node)[i];
1192
1193 /* EXPR_WITH_FILE_LOCATION must keep filename info stored in TREE_CHAIN */
1194 if (TREE_CODE (node) != EXPR_WITH_FILE_LOCATION)
1195 TREE_CHAIN (t) = 0;
1196 TREE_ASM_WRITTEN (t) = 0;
1197
1198 if (TREE_CODE_CLASS (code) == 'd')
1199 DECL_UID (t) = next_decl_uid++;
1200 else if (TREE_CODE_CLASS (code) == 't')
1201 {
1202 TYPE_UID (t) = next_type_uid++;
1203 TYPE_OBSTACK (t) = current_obstack;
1204
1205 /* The following is so that the debug code for
1206 the copy is different from the original type.
1207 The two statements usually duplicate each other
1208 (because they clear fields of the same union),
1209 but the optimizer should catch that. */
1210 TYPE_SYMTAB_POINTER (t) = 0;
1211 TYPE_SYMTAB_ADDRESS (t) = 0;
1212 }
1213
1214 TREE_PERMANENT (t) = (current_obstack == &permanent_obstack);
1215
1216 return t;
1217 }
1218
1219 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1220 For example, this can copy a list made of TREE_LIST nodes. */
1221
1222 tree
1223 copy_list (list)
1224 tree list;
1225 {
1226 tree head;
1227 register tree prev, next;
1228
1229 if (list == 0)
1230 return 0;
1231
1232 head = prev = copy_node (list);
1233 next = TREE_CHAIN (list);
1234 while (next)
1235 {
1236 TREE_CHAIN (prev) = copy_node (next);
1237 prev = TREE_CHAIN (prev);
1238 next = TREE_CHAIN (next);
1239 }
1240 return head;
1241 }
1242 \f
1243 #define HASHBITS 30
1244
1245 /* Return an IDENTIFIER_NODE whose name is TEXT (a null-terminated string).
1246 If an identifier with that name has previously been referred to,
1247 the same node is returned this time. */
1248
1249 tree
1250 get_identifier (text)
1251 register char *text;
1252 {
1253 register int hi;
1254 register int i;
1255 register tree idp;
1256 register int len, hash_len;
1257
1258 /* Compute length of text in len. */
1259 for (len = 0; text[len]; len++);
1260
1261 /* Decide how much of that length to hash on */
1262 hash_len = len;
1263 if (warn_id_clash && len > id_clash_len)
1264 hash_len = id_clash_len;
1265
1266 /* Compute hash code */
1267 hi = hash_len * 613 + (unsigned) text[0];
1268 for (i = 1; i < hash_len; i += 2)
1269 hi = ((hi * 613) + (unsigned) (text[i]));
1270
1271 hi &= (1 << HASHBITS) - 1;
1272 hi %= MAX_HASH_TABLE;
1273
1274 /* Search table for identifier */
1275 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1276 if (IDENTIFIER_LENGTH (idp) == len
1277 && IDENTIFIER_POINTER (idp)[0] == text[0]
1278 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1279 return idp; /* <-- return if found */
1280
1281 /* Not found; optionally warn about a similar identifier */
1282 if (warn_id_clash && do_identifier_warnings && len >= id_clash_len)
1283 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1284 if (!strncmp (IDENTIFIER_POINTER (idp), text, id_clash_len))
1285 {
1286 warning ("`%s' and `%s' identical in first %d characters",
1287 IDENTIFIER_POINTER (idp), text, id_clash_len);
1288 break;
1289 }
1290
1291 if (tree_code_length[(int) IDENTIFIER_NODE] < 0)
1292 abort (); /* set_identifier_size hasn't been called. */
1293
1294 /* Not found, create one, add to chain */
1295 idp = make_node (IDENTIFIER_NODE);
1296 IDENTIFIER_LENGTH (idp) = len;
1297 #ifdef GATHER_STATISTICS
1298 id_string_size += len;
1299 #endif
1300
1301 IDENTIFIER_POINTER (idp) = obstack_copy0 (&permanent_obstack, text, len);
1302
1303 TREE_CHAIN (idp) = hash_table[hi];
1304 hash_table[hi] = idp;
1305 return idp; /* <-- return if created */
1306 }
1307
1308 /* If an identifier with the name TEXT (a null-terminated string) has
1309 previously been referred to, return that node; otherwise return
1310 NULL_TREE. */
1311
1312 tree
1313 maybe_get_identifier (text)
1314 register char *text;
1315 {
1316 register int hi;
1317 register int i;
1318 register tree idp;
1319 register int len, hash_len;
1320
1321 /* Compute length of text in len. */
1322 for (len = 0; text[len]; len++);
1323
1324 /* Decide how much of that length to hash on */
1325 hash_len = len;
1326 if (warn_id_clash && len > id_clash_len)
1327 hash_len = id_clash_len;
1328
1329 /* Compute hash code */
1330 hi = hash_len * 613 + (unsigned) text[0];
1331 for (i = 1; i < hash_len; i += 2)
1332 hi = ((hi * 613) + (unsigned) (text[i]));
1333
1334 hi &= (1 << HASHBITS) - 1;
1335 hi %= MAX_HASH_TABLE;
1336
1337 /* Search table for identifier */
1338 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1339 if (IDENTIFIER_LENGTH (idp) == len
1340 && IDENTIFIER_POINTER (idp)[0] == text[0]
1341 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1342 return idp; /* <-- return if found */
1343
1344 return NULL_TREE;
1345 }
1346
1347 /* Enable warnings on similar identifiers (if requested).
1348 Done after the built-in identifiers are created. */
1349
1350 void
1351 start_identifier_warnings ()
1352 {
1353 do_identifier_warnings = 1;
1354 }
1355
1356 /* Record the size of an identifier node for the language in use.
1357 SIZE is the total size in bytes.
1358 This is called by the language-specific files. This must be
1359 called before allocating any identifiers. */
1360
1361 void
1362 set_identifier_size (size)
1363 int size;
1364 {
1365 tree_code_length[(int) IDENTIFIER_NODE]
1366 = (size - sizeof (struct tree_common)) / sizeof (tree);
1367 }
1368 \f
1369 /* Return a newly constructed INTEGER_CST node whose constant value
1370 is specified by the two ints LOW and HI.
1371 The TREE_TYPE is set to `int'.
1372
1373 This function should be used via the `build_int_2' macro. */
1374
1375 tree
1376 build_int_2_wide (low, hi)
1377 HOST_WIDE_INT low, hi;
1378 {
1379 register tree t = make_node (INTEGER_CST);
1380 TREE_INT_CST_LOW (t) = low;
1381 TREE_INT_CST_HIGH (t) = hi;
1382 TREE_TYPE (t) = integer_type_node;
1383 return t;
1384 }
1385
1386 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1387
1388 tree
1389 build_real (type, d)
1390 tree type;
1391 REAL_VALUE_TYPE d;
1392 {
1393 tree v;
1394 int overflow = 0;
1395
1396 /* Check for valid float value for this type on this target machine;
1397 if not, can print error message and store a valid value in D. */
1398 #ifdef CHECK_FLOAT_VALUE
1399 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1400 #endif
1401
1402 v = make_node (REAL_CST);
1403 TREE_TYPE (v) = type;
1404 TREE_REAL_CST (v) = d;
1405 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1406 return v;
1407 }
1408
1409 /* Return a new REAL_CST node whose type is TYPE
1410 and whose value is the integer value of the INTEGER_CST node I. */
1411
1412 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1413
1414 REAL_VALUE_TYPE
1415 real_value_from_int_cst (type, i)
1416 tree type, i;
1417 {
1418 REAL_VALUE_TYPE d;
1419
1420 #ifdef REAL_ARITHMETIC
1421 if (! TREE_UNSIGNED (TREE_TYPE (i)))
1422 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1423 TYPE_MODE (type));
1424 else
1425 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
1426 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
1427 #else /* not REAL_ARITHMETIC */
1428 /* Some 386 compilers mishandle unsigned int to float conversions,
1429 so introduce a temporary variable E to avoid those bugs. */
1430 if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
1431 {
1432 REAL_VALUE_TYPE e;
1433
1434 d = (double) (~ TREE_INT_CST_HIGH (i));
1435 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1436 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1437 d *= e;
1438 e = (double) (unsigned HOST_WIDE_INT) (~ TREE_INT_CST_LOW (i));
1439 d += e;
1440 d = (- d - 1.0);
1441 }
1442 else
1443 {
1444 REAL_VALUE_TYPE e;
1445
1446 d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
1447 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1448 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1449 d *= e;
1450 e = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (i);
1451 d += e;
1452 }
1453 #endif /* not REAL_ARITHMETIC */
1454 return d;
1455 }
1456
1457 /* This function can't be implemented if we can't do arithmetic
1458 on the float representation. */
1459
1460 tree
1461 build_real_from_int_cst (type, i)
1462 tree type;
1463 tree i;
1464 {
1465 tree v;
1466 int overflow = TREE_OVERFLOW (i);
1467 REAL_VALUE_TYPE d;
1468 jmp_buf float_error;
1469
1470 v = make_node (REAL_CST);
1471 TREE_TYPE (v) = type;
1472
1473 if (setjmp (float_error))
1474 {
1475 d = dconst0;
1476 overflow = 1;
1477 goto got_it;
1478 }
1479
1480 set_float_handler (float_error);
1481
1482 #ifdef REAL_ARITHMETIC
1483 d = real_value_from_int_cst (type, i);
1484 #else
1485 d = REAL_VALUE_TRUNCATE (TYPE_MODE (type),
1486 real_value_from_int_cst (type, i));
1487 #endif
1488
1489 /* Check for valid float value for this type on this target machine. */
1490
1491 got_it:
1492 set_float_handler (NULL_PTR);
1493
1494 #ifdef CHECK_FLOAT_VALUE
1495 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1496 #endif
1497
1498 TREE_REAL_CST (v) = d;
1499 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1500 return v;
1501 }
1502
1503 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1504
1505 /* Return a newly constructed STRING_CST node whose value is
1506 the LEN characters at STR.
1507 The TREE_TYPE is not initialized. */
1508
1509 tree
1510 build_string (len, str)
1511 int len;
1512 char *str;
1513 {
1514 /* Put the string in saveable_obstack since it will be placed in the RTL
1515 for an "asm" statement and will also be kept around a while if
1516 deferring constant output in varasm.c. */
1517
1518 register tree s = make_node (STRING_CST);
1519 TREE_STRING_LENGTH (s) = len;
1520 TREE_STRING_POINTER (s) = obstack_copy0 (saveable_obstack, str, len);
1521 return s;
1522 }
1523
1524 /* Return a newly constructed COMPLEX_CST node whose value is
1525 specified by the real and imaginary parts REAL and IMAG.
1526 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1527 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1528
1529 tree
1530 build_complex (type, real, imag)
1531 tree type;
1532 tree real, imag;
1533 {
1534 register tree t = make_node (COMPLEX_CST);
1535
1536 TREE_REALPART (t) = real;
1537 TREE_IMAGPART (t) = imag;
1538 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1539 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1540 TREE_CONSTANT_OVERFLOW (t)
1541 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
1542 return t;
1543 }
1544
1545 /* Build a newly constructed TREE_VEC node of length LEN. */
1546
1547 tree
1548 make_tree_vec (len)
1549 int len;
1550 {
1551 register tree t;
1552 register int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
1553 register struct obstack *obstack = current_obstack;
1554 register int i;
1555
1556 #ifdef GATHER_STATISTICS
1557 tree_node_counts[(int)vec_kind]++;
1558 tree_node_sizes[(int)vec_kind] += length;
1559 #endif
1560
1561 t = (tree) obstack_alloc (obstack, length);
1562
1563 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
1564 ((int *) t)[i] = 0;
1565
1566 TREE_SET_CODE (t, TREE_VEC);
1567 TREE_VEC_LENGTH (t) = len;
1568 if (obstack == &permanent_obstack)
1569 TREE_PERMANENT (t) = 1;
1570
1571 return t;
1572 }
1573 \f
1574 /* Return 1 if EXPR is the integer constant zero or a complex constant
1575 of zero. */
1576
1577 int
1578 integer_zerop (expr)
1579 tree expr;
1580 {
1581 STRIP_NOPS (expr);
1582
1583 return ((TREE_CODE (expr) == INTEGER_CST
1584 && ! TREE_CONSTANT_OVERFLOW (expr)
1585 && TREE_INT_CST_LOW (expr) == 0
1586 && TREE_INT_CST_HIGH (expr) == 0)
1587 || (TREE_CODE (expr) == COMPLEX_CST
1588 && integer_zerop (TREE_REALPART (expr))
1589 && integer_zerop (TREE_IMAGPART (expr))));
1590 }
1591
1592 /* Return 1 if EXPR is the integer constant one or the corresponding
1593 complex constant. */
1594
1595 int
1596 integer_onep (expr)
1597 tree expr;
1598 {
1599 STRIP_NOPS (expr);
1600
1601 return ((TREE_CODE (expr) == INTEGER_CST
1602 && ! TREE_CONSTANT_OVERFLOW (expr)
1603 && TREE_INT_CST_LOW (expr) == 1
1604 && TREE_INT_CST_HIGH (expr) == 0)
1605 || (TREE_CODE (expr) == COMPLEX_CST
1606 && integer_onep (TREE_REALPART (expr))
1607 && integer_zerop (TREE_IMAGPART (expr))));
1608 }
1609
1610 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1611 it contains. Likewise for the corresponding complex constant. */
1612
1613 int
1614 integer_all_onesp (expr)
1615 tree expr;
1616 {
1617 register int prec;
1618 register int uns;
1619
1620 STRIP_NOPS (expr);
1621
1622 if (TREE_CODE (expr) == COMPLEX_CST
1623 && integer_all_onesp (TREE_REALPART (expr))
1624 && integer_zerop (TREE_IMAGPART (expr)))
1625 return 1;
1626
1627 else if (TREE_CODE (expr) != INTEGER_CST
1628 || TREE_CONSTANT_OVERFLOW (expr))
1629 return 0;
1630
1631 uns = TREE_UNSIGNED (TREE_TYPE (expr));
1632 if (!uns)
1633 return TREE_INT_CST_LOW (expr) == -1 && TREE_INT_CST_HIGH (expr) == -1;
1634
1635 /* Note that using TYPE_PRECISION here is wrong. We care about the
1636 actual bits, not the (arbitrary) range of the type. */
1637 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1638 if (prec >= HOST_BITS_PER_WIDE_INT)
1639 {
1640 int high_value, shift_amount;
1641
1642 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1643
1644 if (shift_amount > HOST_BITS_PER_WIDE_INT)
1645 /* Can not handle precisions greater than twice the host int size. */
1646 abort ();
1647 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
1648 /* Shifting by the host word size is undefined according to the ANSI
1649 standard, so we must handle this as a special case. */
1650 high_value = -1;
1651 else
1652 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1653
1654 return TREE_INT_CST_LOW (expr) == -1
1655 && TREE_INT_CST_HIGH (expr) == high_value;
1656 }
1657 else
1658 return TREE_INT_CST_LOW (expr) == ((HOST_WIDE_INT) 1 << prec) - 1;
1659 }
1660
1661 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1662 one bit on). */
1663
1664 int
1665 integer_pow2p (expr)
1666 tree expr;
1667 {
1668 int prec;
1669 HOST_WIDE_INT high, low;
1670
1671 STRIP_NOPS (expr);
1672
1673 if (TREE_CODE (expr) == COMPLEX_CST
1674 && integer_pow2p (TREE_REALPART (expr))
1675 && integer_zerop (TREE_IMAGPART (expr)))
1676 return 1;
1677
1678 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
1679 return 0;
1680
1681 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1682 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1683 high = TREE_INT_CST_HIGH (expr);
1684 low = TREE_INT_CST_LOW (expr);
1685
1686 /* First clear all bits that are beyond the type's precision in case
1687 we've been sign extended. */
1688
1689 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1690 ;
1691 else if (prec > HOST_BITS_PER_WIDE_INT)
1692 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1693 else
1694 {
1695 high = 0;
1696 if (prec < HOST_BITS_PER_WIDE_INT)
1697 low &= ~((HOST_WIDE_INT) (-1) << prec);
1698 }
1699
1700 if (high == 0 && low == 0)
1701 return 0;
1702
1703 return ((high == 0 && (low & (low - 1)) == 0)
1704 || (low == 0 && (high & (high - 1)) == 0));
1705 }
1706
1707 /* Return the power of two represented by a tree node known to be a
1708 power of two. */
1709
1710 int
1711 tree_log2 (expr)
1712 tree expr;
1713 {
1714 int prec;
1715 HOST_WIDE_INT high, low;
1716
1717 STRIP_NOPS (expr);
1718
1719 if (TREE_CODE (expr) == COMPLEX_CST)
1720 return tree_log2 (TREE_REALPART (expr));
1721
1722 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1723 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1724
1725 high = TREE_INT_CST_HIGH (expr);
1726 low = TREE_INT_CST_LOW (expr);
1727
1728 /* First clear all bits that are beyond the type's precision in case
1729 we've been sign extended. */
1730
1731 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1732 ;
1733 else if (prec > HOST_BITS_PER_WIDE_INT)
1734 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1735 else
1736 {
1737 high = 0;
1738 if (prec < HOST_BITS_PER_WIDE_INT)
1739 low &= ~((HOST_WIDE_INT) (-1) << prec);
1740 }
1741
1742 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1743 : exact_log2 (low));
1744 }
1745
1746 /* Return 1 if EXPR is the real constant zero. */
1747
1748 int
1749 real_zerop (expr)
1750 tree expr;
1751 {
1752 STRIP_NOPS (expr);
1753
1754 return ((TREE_CODE (expr) == REAL_CST
1755 && ! TREE_CONSTANT_OVERFLOW (expr)
1756 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1757 || (TREE_CODE (expr) == COMPLEX_CST
1758 && real_zerop (TREE_REALPART (expr))
1759 && real_zerop (TREE_IMAGPART (expr))));
1760 }
1761
1762 /* Return 1 if EXPR is the real constant one in real or complex form. */
1763
1764 int
1765 real_onep (expr)
1766 tree expr;
1767 {
1768 STRIP_NOPS (expr);
1769
1770 return ((TREE_CODE (expr) == REAL_CST
1771 && ! TREE_CONSTANT_OVERFLOW (expr)
1772 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1773 || (TREE_CODE (expr) == COMPLEX_CST
1774 && real_onep (TREE_REALPART (expr))
1775 && real_zerop (TREE_IMAGPART (expr))));
1776 }
1777
1778 /* Return 1 if EXPR is the real constant two. */
1779
1780 int
1781 real_twop (expr)
1782 tree expr;
1783 {
1784 STRIP_NOPS (expr);
1785
1786 return ((TREE_CODE (expr) == REAL_CST
1787 && ! TREE_CONSTANT_OVERFLOW (expr)
1788 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1789 || (TREE_CODE (expr) == COMPLEX_CST
1790 && real_twop (TREE_REALPART (expr))
1791 && real_zerop (TREE_IMAGPART (expr))));
1792 }
1793
1794 /* Nonzero if EXP is a constant or a cast of a constant. */
1795
1796 int
1797 really_constant_p (exp)
1798 tree exp;
1799 {
1800 /* This is not quite the same as STRIP_NOPS. It does more. */
1801 while (TREE_CODE (exp) == NOP_EXPR
1802 || TREE_CODE (exp) == CONVERT_EXPR
1803 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1804 exp = TREE_OPERAND (exp, 0);
1805 return TREE_CONSTANT (exp);
1806 }
1807 \f
1808 /* Return first list element whose TREE_VALUE is ELEM.
1809 Return 0 if ELEM is not in LIST. */
1810
1811 tree
1812 value_member (elem, list)
1813 tree elem, list;
1814 {
1815 while (list)
1816 {
1817 if (elem == TREE_VALUE (list))
1818 return list;
1819 list = TREE_CHAIN (list);
1820 }
1821 return NULL_TREE;
1822 }
1823
1824 /* Return first list element whose TREE_PURPOSE is ELEM.
1825 Return 0 if ELEM is not in LIST. */
1826
1827 tree
1828 purpose_member (elem, list)
1829 tree elem, list;
1830 {
1831 while (list)
1832 {
1833 if (elem == TREE_PURPOSE (list))
1834 return list;
1835 list = TREE_CHAIN (list);
1836 }
1837 return NULL_TREE;
1838 }
1839
1840 /* Return first list element whose BINFO_TYPE is ELEM.
1841 Return 0 if ELEM is not in LIST. */
1842
1843 tree
1844 binfo_member (elem, list)
1845 tree elem, list;
1846 {
1847 while (list)
1848 {
1849 if (elem == BINFO_TYPE (list))
1850 return list;
1851 list = TREE_CHAIN (list);
1852 }
1853 return NULL_TREE;
1854 }
1855
1856 /* Return nonzero if ELEM is part of the chain CHAIN. */
1857
1858 int
1859 chain_member (elem, chain)
1860 tree elem, chain;
1861 {
1862 while (chain)
1863 {
1864 if (elem == chain)
1865 return 1;
1866 chain = TREE_CHAIN (chain);
1867 }
1868
1869 return 0;
1870 }
1871
1872 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
1873 chain CHAIN. */
1874 /* ??? This function was added for machine specific attributes but is no
1875 longer used. It could be deleted if we could confirm all front ends
1876 don't use it. */
1877
1878 int
1879 chain_member_value (elem, chain)
1880 tree elem, chain;
1881 {
1882 while (chain)
1883 {
1884 if (elem == TREE_VALUE (chain))
1885 return 1;
1886 chain = TREE_CHAIN (chain);
1887 }
1888
1889 return 0;
1890 }
1891
1892 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1893 for any piece of chain CHAIN. */
1894 /* ??? This function was added for machine specific attributes but is no
1895 longer used. It could be deleted if we could confirm all front ends
1896 don't use it. */
1897
1898 int
1899 chain_member_purpose (elem, chain)
1900 tree elem, chain;
1901 {
1902 while (chain)
1903 {
1904 if (elem == TREE_PURPOSE (chain))
1905 return 1;
1906 chain = TREE_CHAIN (chain);
1907 }
1908
1909 return 0;
1910 }
1911
1912 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1913 We expect a null pointer to mark the end of the chain.
1914 This is the Lisp primitive `length'. */
1915
1916 int
1917 list_length (t)
1918 tree t;
1919 {
1920 register tree tail;
1921 register int len = 0;
1922
1923 for (tail = t; tail; tail = TREE_CHAIN (tail))
1924 len++;
1925
1926 return len;
1927 }
1928
1929 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1930 by modifying the last node in chain 1 to point to chain 2.
1931 This is the Lisp primitive `nconc'. */
1932
1933 tree
1934 chainon (op1, op2)
1935 tree op1, op2;
1936 {
1937
1938 if (op1)
1939 {
1940 register tree t1;
1941 register tree t2;
1942
1943 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1944 ;
1945 TREE_CHAIN (t1) = op2;
1946 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1947 if (t2 == t1)
1948 abort (); /* Circularity created. */
1949 return op1;
1950 }
1951 else return op2;
1952 }
1953
1954 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1955
1956 tree
1957 tree_last (chain)
1958 register tree chain;
1959 {
1960 register tree next;
1961 if (chain)
1962 while ((next = TREE_CHAIN (chain)))
1963 chain = next;
1964 return chain;
1965 }
1966
1967 /* Reverse the order of elements in the chain T,
1968 and return the new head of the chain (old last element). */
1969
1970 tree
1971 nreverse (t)
1972 tree t;
1973 {
1974 register tree prev = 0, decl, next;
1975 for (decl = t; decl; decl = next)
1976 {
1977 next = TREE_CHAIN (decl);
1978 TREE_CHAIN (decl) = prev;
1979 prev = decl;
1980 }
1981 return prev;
1982 }
1983
1984 /* Given a chain CHAIN of tree nodes,
1985 construct and return a list of those nodes. */
1986
1987 tree
1988 listify (chain)
1989 tree chain;
1990 {
1991 tree result = NULL_TREE;
1992 tree in_tail = chain;
1993 tree out_tail = NULL_TREE;
1994
1995 while (in_tail)
1996 {
1997 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
1998 if (out_tail)
1999 TREE_CHAIN (out_tail) = next;
2000 else
2001 result = next;
2002 out_tail = next;
2003 in_tail = TREE_CHAIN (in_tail);
2004 }
2005
2006 return result;
2007 }
2008 \f
2009 /* Return a newly created TREE_LIST node whose
2010 purpose and value fields are PARM and VALUE. */
2011
2012 tree
2013 build_tree_list (parm, value)
2014 tree parm, value;
2015 {
2016 register tree t = make_node (TREE_LIST);
2017 TREE_PURPOSE (t) = parm;
2018 TREE_VALUE (t) = value;
2019 return t;
2020 }
2021
2022 /* Similar, but build on the temp_decl_obstack. */
2023
2024 tree
2025 build_decl_list (parm, value)
2026 tree parm, value;
2027 {
2028 register tree node;
2029 register struct obstack *ambient_obstack = current_obstack;
2030 current_obstack = &temp_decl_obstack;
2031 node = build_tree_list (parm, value);
2032 current_obstack = ambient_obstack;
2033 return node;
2034 }
2035
2036 /* Similar, but build on the expression_obstack. */
2037
2038 tree
2039 build_expr_list (parm, value)
2040 tree parm, value;
2041 {
2042 register tree node;
2043 register struct obstack *ambient_obstack = current_obstack;
2044 current_obstack = expression_obstack;
2045 node = build_tree_list (parm, value);
2046 current_obstack = ambient_obstack;
2047 return node;
2048 }
2049
2050 /* Return a newly created TREE_LIST node whose
2051 purpose and value fields are PARM and VALUE
2052 and whose TREE_CHAIN is CHAIN. */
2053
2054 tree
2055 tree_cons (purpose, value, chain)
2056 tree purpose, value, chain;
2057 {
2058 #if 0
2059 register tree node = make_node (TREE_LIST);
2060 #else
2061 register int i;
2062 register tree node = (tree) obstack_alloc (current_obstack, sizeof (struct tree_list));
2063 #ifdef GATHER_STATISTICS
2064 tree_node_counts[(int)x_kind]++;
2065 tree_node_sizes[(int)x_kind] += sizeof (struct tree_list);
2066 #endif
2067
2068 for (i = (sizeof (struct tree_common) / sizeof (int)) - 1; i >= 0; i--)
2069 ((int *) node)[i] = 0;
2070
2071 TREE_SET_CODE (node, TREE_LIST);
2072 if (current_obstack == &permanent_obstack)
2073 TREE_PERMANENT (node) = 1;
2074 #endif
2075
2076 TREE_CHAIN (node) = chain;
2077 TREE_PURPOSE (node) = purpose;
2078 TREE_VALUE (node) = value;
2079 return node;
2080 }
2081
2082 /* Similar, but build on the temp_decl_obstack. */
2083
2084 tree
2085 decl_tree_cons (purpose, value, chain)
2086 tree purpose, value, chain;
2087 {
2088 register tree node;
2089 register struct obstack *ambient_obstack = current_obstack;
2090 current_obstack = &temp_decl_obstack;
2091 node = tree_cons (purpose, value, chain);
2092 current_obstack = ambient_obstack;
2093 return node;
2094 }
2095
2096 /* Similar, but build on the expression_obstack. */
2097
2098 tree
2099 expr_tree_cons (purpose, value, chain)
2100 tree purpose, value, chain;
2101 {
2102 register tree node;
2103 register struct obstack *ambient_obstack = current_obstack;
2104 current_obstack = expression_obstack;
2105 node = tree_cons (purpose, value, chain);
2106 current_obstack = ambient_obstack;
2107 return node;
2108 }
2109
2110 /* Same as `tree_cons' but make a permanent object. */
2111
2112 tree
2113 perm_tree_cons (purpose, value, chain)
2114 tree purpose, value, chain;
2115 {
2116 register tree node;
2117 register struct obstack *ambient_obstack = current_obstack;
2118 current_obstack = &permanent_obstack;
2119
2120 node = tree_cons (purpose, value, chain);
2121 current_obstack = ambient_obstack;
2122 return node;
2123 }
2124
2125 /* Same as `tree_cons', but make this node temporary, regardless. */
2126
2127 tree
2128 temp_tree_cons (purpose, value, chain)
2129 tree purpose, value, chain;
2130 {
2131 register tree node;
2132 register struct obstack *ambient_obstack = current_obstack;
2133 current_obstack = &temporary_obstack;
2134
2135 node = tree_cons (purpose, value, chain);
2136 current_obstack = ambient_obstack;
2137 return node;
2138 }
2139
2140 /* Same as `tree_cons', but save this node if the function's RTL is saved. */
2141
2142 tree
2143 saveable_tree_cons (purpose, value, chain)
2144 tree purpose, value, chain;
2145 {
2146 register tree node;
2147 register struct obstack *ambient_obstack = current_obstack;
2148 current_obstack = saveable_obstack;
2149
2150 node = tree_cons (purpose, value, chain);
2151 current_obstack = ambient_obstack;
2152 return node;
2153 }
2154 \f
2155 /* Return the size nominally occupied by an object of type TYPE
2156 when it resides in memory. The value is measured in units of bytes,
2157 and its data type is that normally used for type sizes
2158 (which is the first type created by make_signed_type or
2159 make_unsigned_type). */
2160
2161 tree
2162 size_in_bytes (type)
2163 tree type;
2164 {
2165 tree t;
2166
2167 if (type == error_mark_node)
2168 return integer_zero_node;
2169
2170 type = TYPE_MAIN_VARIANT (type);
2171 t = TYPE_SIZE_UNIT (type);
2172 if (t == 0)
2173 {
2174 incomplete_type_error (NULL_TREE, type);
2175 return integer_zero_node;
2176 }
2177 if (TREE_CODE (t) == INTEGER_CST)
2178 force_fit_type (t, 0);
2179
2180 return t;
2181 }
2182
2183 /* Return the size of TYPE (in bytes) as a wide integer
2184 or return -1 if the size can vary or is larger than an integer. */
2185
2186 HOST_WIDE_INT
2187 int_size_in_bytes (type)
2188 tree type;
2189 {
2190 tree t;
2191
2192 if (type == error_mark_node)
2193 return 0;
2194
2195 type = TYPE_MAIN_VARIANT (type);
2196 t = TYPE_SIZE_UNIT (type);
2197 if (t == 0
2198 || TREE_CODE (t) != INTEGER_CST
2199 || TREE_INT_CST_HIGH (t) != 0)
2200 return -1;
2201
2202 return TREE_INT_CST_LOW (t);
2203 }
2204 \f
2205 /* Return, as a tree node, the number of elements for TYPE (which is an
2206 ARRAY_TYPE) minus one. This counts only elements of the top array.
2207
2208 Don't let any SAVE_EXPRs escape; if we are called as part of a cleanup
2209 action, they would get unsaved. */
2210
2211 tree
2212 array_type_nelts (type)
2213 tree type;
2214 {
2215 tree index_type, min, max;
2216
2217 /* If they did it with unspecified bounds, then we should have already
2218 given an error about it before we got here. */
2219 if (! TYPE_DOMAIN (type))
2220 return error_mark_node;
2221
2222 index_type = TYPE_DOMAIN (type);
2223 min = TYPE_MIN_VALUE (index_type);
2224 max = TYPE_MAX_VALUE (index_type);
2225
2226 if (! TREE_CONSTANT (min))
2227 {
2228 STRIP_NOPS (min);
2229 if (TREE_CODE (min) == SAVE_EXPR)
2230 min = build (RTL_EXPR, TREE_TYPE (TYPE_MIN_VALUE (index_type)), 0,
2231 SAVE_EXPR_RTL (min));
2232 else
2233 min = TYPE_MIN_VALUE (index_type);
2234 }
2235
2236 if (! TREE_CONSTANT (max))
2237 {
2238 STRIP_NOPS (max);
2239 if (TREE_CODE (max) == SAVE_EXPR)
2240 max = build (RTL_EXPR, TREE_TYPE (TYPE_MAX_VALUE (index_type)), 0,
2241 SAVE_EXPR_RTL (max));
2242 else
2243 max = TYPE_MAX_VALUE (index_type);
2244 }
2245
2246 return (integer_zerop (min)
2247 ? max
2248 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
2249 }
2250 \f
2251 /* Return nonzero if arg is static -- a reference to an object in
2252 static storage. This is not the same as the C meaning of `static'. */
2253
2254 int
2255 staticp (arg)
2256 tree arg;
2257 {
2258 switch (TREE_CODE (arg))
2259 {
2260 case FUNCTION_DECL:
2261 /* Nested functions aren't static, since taking their address
2262 involves a trampoline. */
2263 return (decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
2264 && ! DECL_NON_ADDR_CONST_P (arg);
2265
2266 case VAR_DECL:
2267 return (TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2268 && ! DECL_NON_ADDR_CONST_P (arg);
2269
2270 case CONSTRUCTOR:
2271 return TREE_STATIC (arg);
2272
2273 case STRING_CST:
2274 return 1;
2275
2276 /* If we are referencing a bitfield, we can't evaluate an
2277 ADDR_EXPR at compile time and so it isn't a constant. */
2278 case COMPONENT_REF:
2279 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
2280 && staticp (TREE_OPERAND (arg, 0)));
2281
2282 case BIT_FIELD_REF:
2283 return 0;
2284
2285 #if 0
2286 /* This case is technically correct, but results in setting
2287 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
2288 compile time. */
2289 case INDIRECT_REF:
2290 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
2291 #endif
2292
2293 case ARRAY_REF:
2294 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2295 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2296 return staticp (TREE_OPERAND (arg, 0));
2297
2298 default:
2299 return 0;
2300 }
2301 }
2302 \f
2303 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2304 Do this to any expression which may be used in more than one place,
2305 but must be evaluated only once.
2306
2307 Normally, expand_expr would reevaluate the expression each time.
2308 Calling save_expr produces something that is evaluated and recorded
2309 the first time expand_expr is called on it. Subsequent calls to
2310 expand_expr just reuse the recorded value.
2311
2312 The call to expand_expr that generates code that actually computes
2313 the value is the first call *at compile time*. Subsequent calls
2314 *at compile time* generate code to use the saved value.
2315 This produces correct result provided that *at run time* control
2316 always flows through the insns made by the first expand_expr
2317 before reaching the other places where the save_expr was evaluated.
2318 You, the caller of save_expr, must make sure this is so.
2319
2320 Constants, and certain read-only nodes, are returned with no
2321 SAVE_EXPR because that is safe. Expressions containing placeholders
2322 are not touched; see tree.def for an explanation of what these
2323 are used for. */
2324
2325 tree
2326 save_expr (expr)
2327 tree expr;
2328 {
2329 register tree t = fold (expr);
2330
2331 /* We don't care about whether this can be used as an lvalue in this
2332 context. */
2333 while (TREE_CODE (t) == NON_LVALUE_EXPR)
2334 t = TREE_OPERAND (t, 0);
2335
2336 /* If the tree evaluates to a constant, then we don't want to hide that
2337 fact (i.e. this allows further folding, and direct checks for constants).
2338 However, a read-only object that has side effects cannot be bypassed.
2339 Since it is no problem to reevaluate literals, we just return the
2340 literal node. */
2341
2342 if (TREE_CONSTANT (t) || (TREE_READONLY (t) && ! TREE_SIDE_EFFECTS (t))
2343 || TREE_CODE (t) == SAVE_EXPR || TREE_CODE (t) == ERROR_MARK)
2344 return t;
2345
2346 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2347 it means that the size or offset of some field of an object depends on
2348 the value within another field.
2349
2350 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2351 and some variable since it would then need to be both evaluated once and
2352 evaluated more than once. Front-ends must assure this case cannot
2353 happen by surrounding any such subexpressions in their own SAVE_EXPR
2354 and forcing evaluation at the proper time. */
2355 if (contains_placeholder_p (t))
2356 return t;
2357
2358 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
2359
2360 /* This expression might be placed ahead of a jump to ensure that the
2361 value was computed on both sides of the jump. So make sure it isn't
2362 eliminated as dead. */
2363 TREE_SIDE_EFFECTS (t) = 1;
2364 return t;
2365 }
2366
2367 /* Arrange for an expression to be expanded multiple independent
2368 times. This is useful for cleanup actions, as the backend can
2369 expand them multiple times in different places. */
2370
2371 tree
2372 unsave_expr (expr)
2373 tree expr;
2374 {
2375 tree t;
2376
2377 /* If this is already protected, no sense in protecting it again. */
2378 if (TREE_CODE (expr) == UNSAVE_EXPR)
2379 return expr;
2380
2381 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
2382 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
2383 return t;
2384 }
2385
2386 /* Returns the index of the first non-tree operand for CODE, or the number
2387 of operands if all are trees. */
2388
2389 int
2390 first_rtl_op (code)
2391 enum tree_code code;
2392 {
2393 switch (code)
2394 {
2395 case SAVE_EXPR:
2396 return 2;
2397 case RTL_EXPR:
2398 return 0;
2399 case CALL_EXPR:
2400 return 2;
2401 case WITH_CLEANUP_EXPR:
2402 /* Should be defined to be 2. */
2403 return 1;
2404 case METHOD_CALL_EXPR:
2405 return 3;
2406 default:
2407 return tree_code_length [(int) code];
2408 }
2409 }
2410
2411 /* Modify a tree in place so that all the evaluate only once things
2412 are cleared out. Return the EXPR given. */
2413
2414 tree
2415 unsave_expr_now (expr)
2416 tree expr;
2417 {
2418 enum tree_code code;
2419 register int i;
2420 int first_rtl;
2421
2422 if (expr == NULL_TREE)
2423 return expr;
2424
2425 code = TREE_CODE (expr);
2426 first_rtl = first_rtl_op (code);
2427 switch (code)
2428 {
2429 case SAVE_EXPR:
2430 SAVE_EXPR_RTL (expr) = 0;
2431 break;
2432
2433 case TARGET_EXPR:
2434 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
2435 TREE_OPERAND (expr, 3) = NULL_TREE;
2436 break;
2437
2438 case RTL_EXPR:
2439 /* I don't yet know how to emit a sequence multiple times. */
2440 if (RTL_EXPR_SEQUENCE (expr) != 0)
2441 abort ();
2442 break;
2443
2444 case CALL_EXPR:
2445 CALL_EXPR_RTL (expr) = 0;
2446 if (TREE_OPERAND (expr, 1)
2447 && TREE_CODE (TREE_OPERAND (expr, 1)) == TREE_LIST)
2448 {
2449 tree exp = TREE_OPERAND (expr, 1);
2450 while (exp)
2451 {
2452 unsave_expr_now (TREE_VALUE (exp));
2453 exp = TREE_CHAIN (exp);
2454 }
2455 }
2456 break;
2457
2458 default:
2459 break;
2460 }
2461
2462 switch (TREE_CODE_CLASS (code))
2463 {
2464 case 'c': /* a constant */
2465 case 't': /* a type node */
2466 case 'x': /* something random, like an identifier or an ERROR_MARK. */
2467 case 'd': /* A decl node */
2468 case 'b': /* A block node */
2469 return expr;
2470
2471 case 'e': /* an expression */
2472 case 'r': /* a reference */
2473 case 's': /* an expression with side effects */
2474 case '<': /* a comparison expression */
2475 case '2': /* a binary arithmetic expression */
2476 case '1': /* a unary arithmetic expression */
2477 for (i = first_rtl - 1; i >= 0; i--)
2478 unsave_expr_now (TREE_OPERAND (expr, i));
2479 return expr;
2480
2481 default:
2482 abort ();
2483 }
2484 }
2485 \f
2486 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2487 or offset that depends on a field within a record. */
2488
2489 int
2490 contains_placeholder_p (exp)
2491 tree exp;
2492 {
2493 register enum tree_code code = TREE_CODE (exp);
2494 int result;
2495
2496 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
2497 in it since it is supplying a value for it. */
2498 if (code == WITH_RECORD_EXPR)
2499 return 0;
2500 else if (code == PLACEHOLDER_EXPR)
2501 return 1;
2502
2503 switch (TREE_CODE_CLASS (code))
2504 {
2505 case 'r':
2506 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2507 position computations since they will be converted into a
2508 WITH_RECORD_EXPR involving the reference, which will assume
2509 here will be valid. */
2510 return contains_placeholder_p (TREE_OPERAND (exp, 0));
2511
2512 case 'x':
2513 if (code == TREE_LIST)
2514 return (contains_placeholder_p (TREE_VALUE (exp))
2515 || (TREE_CHAIN (exp) != 0
2516 && contains_placeholder_p (TREE_CHAIN (exp))));
2517 break;
2518
2519 case '1':
2520 case '2': case '<':
2521 case 'e':
2522 switch (code)
2523 {
2524 case COMPOUND_EXPR:
2525 /* Ignoring the first operand isn't quite right, but works best. */
2526 return contains_placeholder_p (TREE_OPERAND (exp, 1));
2527
2528 case RTL_EXPR:
2529 case CONSTRUCTOR:
2530 return 0;
2531
2532 case COND_EXPR:
2533 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
2534 || contains_placeholder_p (TREE_OPERAND (exp, 1))
2535 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
2536
2537 case SAVE_EXPR:
2538 /* If we already know this doesn't have a placeholder, don't
2539 check again. */
2540 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
2541 return 0;
2542
2543 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
2544 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
2545 if (result)
2546 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
2547
2548 return result;
2549
2550 case CALL_EXPR:
2551 return (TREE_OPERAND (exp, 1) != 0
2552 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
2553
2554 default:
2555 break;
2556 }
2557
2558 switch (tree_code_length[(int) code])
2559 {
2560 case 1:
2561 return contains_placeholder_p (TREE_OPERAND (exp, 0));
2562 case 2:
2563 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
2564 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
2565 default:
2566 return 0;
2567 }
2568
2569 default:
2570 return 0;
2571 }
2572 return 0;
2573 }
2574
2575 /* Return 1 if EXP contains any expressions that produce cleanups for an
2576 outer scope to deal with. Used by fold. */
2577
2578 int
2579 has_cleanups (exp)
2580 tree exp;
2581 {
2582 int i, nops, cmp;
2583
2584 if (! TREE_SIDE_EFFECTS (exp))
2585 return 0;
2586
2587 switch (TREE_CODE (exp))
2588 {
2589 case TARGET_EXPR:
2590 case WITH_CLEANUP_EXPR:
2591 return 1;
2592
2593 case CLEANUP_POINT_EXPR:
2594 return 0;
2595
2596 case CALL_EXPR:
2597 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
2598 {
2599 cmp = has_cleanups (TREE_VALUE (exp));
2600 if (cmp)
2601 return cmp;
2602 }
2603 return 0;
2604
2605 default:
2606 break;
2607 }
2608
2609 /* This general rule works for most tree codes. All exceptions should be
2610 handled above. If this is a language-specific tree code, we can't
2611 trust what might be in the operand, so say we don't know
2612 the situation. */
2613 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
2614 return -1;
2615
2616 nops = first_rtl_op (TREE_CODE (exp));
2617 for (i = 0; i < nops; i++)
2618 if (TREE_OPERAND (exp, i) != 0)
2619 {
2620 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
2621 if (type == 'e' || type == '<' || type == '1' || type == '2'
2622 || type == 'r' || type == 's')
2623 {
2624 cmp = has_cleanups (TREE_OPERAND (exp, i));
2625 if (cmp)
2626 return cmp;
2627 }
2628 }
2629
2630 return 0;
2631 }
2632 \f
2633 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2634 return a tree with all occurrences of references to F in a
2635 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2636 contains only arithmetic expressions or a CALL_EXPR with a
2637 PLACEHOLDER_EXPR occurring only in its arglist. */
2638
2639 tree
2640 substitute_in_expr (exp, f, r)
2641 tree exp;
2642 tree f;
2643 tree r;
2644 {
2645 enum tree_code code = TREE_CODE (exp);
2646 tree op0, op1, op2;
2647 tree new;
2648 tree inner;
2649
2650 switch (TREE_CODE_CLASS (code))
2651 {
2652 case 'c':
2653 case 'd':
2654 return exp;
2655
2656 case 'x':
2657 if (code == PLACEHOLDER_EXPR)
2658 return exp;
2659 else if (code == TREE_LIST)
2660 {
2661 op0 = (TREE_CHAIN (exp) == 0
2662 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
2663 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
2664 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2665 return exp;
2666
2667 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2668 }
2669
2670 abort ();
2671
2672 case '1':
2673 case '2':
2674 case '<':
2675 case 'e':
2676 switch (tree_code_length[(int) code])
2677 {
2678 case 1:
2679 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2680 if (op0 == TREE_OPERAND (exp, 0))
2681 return exp;
2682
2683 new = fold (build1 (code, TREE_TYPE (exp), op0));
2684 break;
2685
2686 case 2:
2687 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
2688 could, but we don't support it. */
2689 if (code == RTL_EXPR)
2690 return exp;
2691 else if (code == CONSTRUCTOR)
2692 abort ();
2693
2694 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2695 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2696 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2697 return exp;
2698
2699 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2700 break;
2701
2702 case 3:
2703 /* It cannot be that anything inside a SAVE_EXPR contains a
2704 PLACEHOLDER_EXPR. */
2705 if (code == SAVE_EXPR)
2706 return exp;
2707
2708 else if (code == CALL_EXPR)
2709 {
2710 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2711 if (op1 == TREE_OPERAND (exp, 1))
2712 return exp;
2713
2714 return build (code, TREE_TYPE (exp),
2715 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2716 }
2717
2718 else if (code != COND_EXPR)
2719 abort ();
2720
2721 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2722 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2723 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2724 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2725 && op2 == TREE_OPERAND (exp, 2))
2726 return exp;
2727
2728 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2729 break;
2730
2731 default:
2732 abort ();
2733 }
2734
2735 break;
2736
2737 case 'r':
2738 switch (code)
2739 {
2740 case COMPONENT_REF:
2741 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2742 and it is the right field, replace it with R. */
2743 for (inner = TREE_OPERAND (exp, 0);
2744 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2745 inner = TREE_OPERAND (inner, 0))
2746 ;
2747 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2748 && TREE_OPERAND (exp, 1) == f)
2749 return r;
2750
2751 /* If this expression hasn't been completed let, leave it
2752 alone. */
2753 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2754 && TREE_TYPE (inner) == 0)
2755 return exp;
2756
2757 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2758 if (op0 == TREE_OPERAND (exp, 0))
2759 return exp;
2760
2761 new = fold (build (code, TREE_TYPE (exp), op0,
2762 TREE_OPERAND (exp, 1)));
2763 break;
2764
2765 case BIT_FIELD_REF:
2766 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2767 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2768 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2769 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2770 && op2 == TREE_OPERAND (exp, 2))
2771 return exp;
2772
2773 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2774 break;
2775
2776 case INDIRECT_REF:
2777 case BUFFER_REF:
2778 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2779 if (op0 == TREE_OPERAND (exp, 0))
2780 return exp;
2781
2782 new = fold (build1 (code, TREE_TYPE (exp), op0));
2783 break;
2784
2785 default:
2786 abort ();
2787 }
2788 break;
2789
2790 default:
2791 abort ();
2792 }
2793
2794 TREE_READONLY (new) = TREE_READONLY (exp);
2795 return new;
2796 }
2797 \f
2798 /* Stabilize a reference so that we can use it any number of times
2799 without causing its operands to be evaluated more than once.
2800 Returns the stabilized reference. This works by means of save_expr,
2801 so see the caveats in the comments about save_expr.
2802
2803 Also allows conversion expressions whose operands are references.
2804 Any other kind of expression is returned unchanged. */
2805
2806 tree
2807 stabilize_reference (ref)
2808 tree ref;
2809 {
2810 register tree result;
2811 register enum tree_code code = TREE_CODE (ref);
2812
2813 switch (code)
2814 {
2815 case VAR_DECL:
2816 case PARM_DECL:
2817 case RESULT_DECL:
2818 /* No action is needed in this case. */
2819 return ref;
2820
2821 case NOP_EXPR:
2822 case CONVERT_EXPR:
2823 case FLOAT_EXPR:
2824 case FIX_TRUNC_EXPR:
2825 case FIX_FLOOR_EXPR:
2826 case FIX_ROUND_EXPR:
2827 case FIX_CEIL_EXPR:
2828 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2829 break;
2830
2831 case INDIRECT_REF:
2832 result = build_nt (INDIRECT_REF,
2833 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2834 break;
2835
2836 case COMPONENT_REF:
2837 result = build_nt (COMPONENT_REF,
2838 stabilize_reference (TREE_OPERAND (ref, 0)),
2839 TREE_OPERAND (ref, 1));
2840 break;
2841
2842 case BIT_FIELD_REF:
2843 result = build_nt (BIT_FIELD_REF,
2844 stabilize_reference (TREE_OPERAND (ref, 0)),
2845 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2846 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2847 break;
2848
2849 case ARRAY_REF:
2850 result = build_nt (ARRAY_REF,
2851 stabilize_reference (TREE_OPERAND (ref, 0)),
2852 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2853 break;
2854
2855 case COMPOUND_EXPR:
2856 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2857 it wouldn't be ignored. This matters when dealing with
2858 volatiles. */
2859 return stabilize_reference_1 (ref);
2860
2861 case RTL_EXPR:
2862 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2863 save_expr (build1 (ADDR_EXPR,
2864 build_pointer_type (TREE_TYPE (ref)),
2865 ref)));
2866 break;
2867
2868
2869 /* If arg isn't a kind of lvalue we recognize, make no change.
2870 Caller should recognize the error for an invalid lvalue. */
2871 default:
2872 return ref;
2873
2874 case ERROR_MARK:
2875 return error_mark_node;
2876 }
2877
2878 TREE_TYPE (result) = TREE_TYPE (ref);
2879 TREE_READONLY (result) = TREE_READONLY (ref);
2880 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2881 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2882 TREE_RAISES (result) = TREE_RAISES (ref);
2883
2884 return result;
2885 }
2886
2887 /* Subroutine of stabilize_reference; this is called for subtrees of
2888 references. Any expression with side-effects must be put in a SAVE_EXPR
2889 to ensure that it is only evaluated once.
2890
2891 We don't put SAVE_EXPR nodes around everything, because assigning very
2892 simple expressions to temporaries causes us to miss good opportunities
2893 for optimizations. Among other things, the opportunity to fold in the
2894 addition of a constant into an addressing mode often gets lost, e.g.
2895 "y[i+1] += x;". In general, we take the approach that we should not make
2896 an assignment unless we are forced into it - i.e., that any non-side effect
2897 operator should be allowed, and that cse should take care of coalescing
2898 multiple utterances of the same expression should that prove fruitful. */
2899
2900 tree
2901 stabilize_reference_1 (e)
2902 tree e;
2903 {
2904 register tree result;
2905 register enum tree_code code = TREE_CODE (e);
2906
2907 /* We cannot ignore const expressions because it might be a reference
2908 to a const array but whose index contains side-effects. But we can
2909 ignore things that are actual constant or that already have been
2910 handled by this function. */
2911
2912 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2913 return e;
2914
2915 switch (TREE_CODE_CLASS (code))
2916 {
2917 case 'x':
2918 case 't':
2919 case 'd':
2920 case 'b':
2921 case '<':
2922 case 's':
2923 case 'e':
2924 case 'r':
2925 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2926 so that it will only be evaluated once. */
2927 /* The reference (r) and comparison (<) classes could be handled as
2928 below, but it is generally faster to only evaluate them once. */
2929 if (TREE_SIDE_EFFECTS (e))
2930 return save_expr (e);
2931 return e;
2932
2933 case 'c':
2934 /* Constants need no processing. In fact, we should never reach
2935 here. */
2936 return e;
2937
2938 case '2':
2939 /* Division is slow and tends to be compiled with jumps,
2940 especially the division by powers of 2 that is often
2941 found inside of an array reference. So do it just once. */
2942 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2943 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2944 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2945 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2946 return save_expr (e);
2947 /* Recursively stabilize each operand. */
2948 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2949 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2950 break;
2951
2952 case '1':
2953 /* Recursively stabilize each operand. */
2954 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2955 break;
2956
2957 default:
2958 abort ();
2959 }
2960
2961 TREE_TYPE (result) = TREE_TYPE (e);
2962 TREE_READONLY (result) = TREE_READONLY (e);
2963 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2964 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2965 TREE_RAISES (result) = TREE_RAISES (e);
2966
2967 return result;
2968 }
2969 \f
2970 /* Low-level constructors for expressions. */
2971
2972 /* Build an expression of code CODE, data type TYPE,
2973 and operands as specified by the arguments ARG1 and following arguments.
2974 Expressions and reference nodes can be created this way.
2975 Constants, decls, types and misc nodes cannot be. */
2976
2977 tree
2978 build VPROTO((enum tree_code code, tree tt, ...))
2979 {
2980 #ifndef __STDC__
2981 enum tree_code code;
2982 tree tt;
2983 #endif
2984 va_list p;
2985 register tree t;
2986 register int length;
2987 register int i;
2988
2989 VA_START (p, tt);
2990
2991 #ifndef __STDC__
2992 code = va_arg (p, enum tree_code);
2993 tt = va_arg (p, tree);
2994 #endif
2995
2996 t = make_node (code);
2997 length = tree_code_length[(int) code];
2998 TREE_TYPE (t) = tt;
2999
3000 if (length == 2)
3001 {
3002 /* This is equivalent to the loop below, but faster. */
3003 register tree arg0 = va_arg (p, tree);
3004 register tree arg1 = va_arg (p, tree);
3005 TREE_OPERAND (t, 0) = arg0;
3006 TREE_OPERAND (t, 1) = arg1;
3007 if ((arg0 && TREE_SIDE_EFFECTS (arg0))
3008 || (arg1 && TREE_SIDE_EFFECTS (arg1)))
3009 TREE_SIDE_EFFECTS (t) = 1;
3010 TREE_RAISES (t)
3011 = (arg0 && TREE_RAISES (arg0)) || (arg1 && TREE_RAISES (arg1));
3012 }
3013 else if (length == 1)
3014 {
3015 register tree arg0 = va_arg (p, tree);
3016
3017 /* Call build1 for this! */
3018 if (TREE_CODE_CLASS (code) != 's')
3019 abort ();
3020 TREE_OPERAND (t, 0) = arg0;
3021 if (arg0 && TREE_SIDE_EFFECTS (arg0))
3022 TREE_SIDE_EFFECTS (t) = 1;
3023 TREE_RAISES (t) = (arg0 && TREE_RAISES (arg0));
3024 }
3025 else
3026 {
3027 for (i = 0; i < length; i++)
3028 {
3029 register tree operand = va_arg (p, tree);
3030 TREE_OPERAND (t, i) = operand;
3031 if (operand)
3032 {
3033 if (TREE_SIDE_EFFECTS (operand))
3034 TREE_SIDE_EFFECTS (t) = 1;
3035 if (TREE_RAISES (operand))
3036 TREE_RAISES (t) = 1;
3037 }
3038 }
3039 }
3040 va_end (p);
3041 return t;
3042 }
3043
3044 /* Same as above, but only builds for unary operators.
3045 Saves lions share of calls to `build'; cuts down use
3046 of varargs, which is expensive for RISC machines. */
3047
3048 tree
3049 build1 (code, type, node)
3050 enum tree_code code;
3051 tree type;
3052 tree node;
3053 {
3054 register struct obstack *obstack = expression_obstack;
3055 register int i, length;
3056 #ifdef GATHER_STATISTICS
3057 register tree_node_kind kind;
3058 #endif
3059 register tree t;
3060
3061 #ifdef GATHER_STATISTICS
3062 if (TREE_CODE_CLASS (code) == 'r')
3063 kind = r_kind;
3064 else
3065 kind = e_kind;
3066 #endif
3067
3068 length = sizeof (struct tree_exp);
3069
3070 t = (tree) obstack_alloc (obstack, length);
3071
3072 #ifdef GATHER_STATISTICS
3073 tree_node_counts[(int)kind]++;
3074 tree_node_sizes[(int)kind] += length;
3075 #endif
3076
3077 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
3078 ((int *) t)[i] = 0;
3079
3080 TREE_TYPE (t) = type;
3081 TREE_SET_CODE (t, code);
3082
3083 if (obstack == &permanent_obstack)
3084 TREE_PERMANENT (t) = 1;
3085
3086 TREE_OPERAND (t, 0) = node;
3087 if (node)
3088 {
3089 if (TREE_SIDE_EFFECTS (node))
3090 TREE_SIDE_EFFECTS (t) = 1;
3091 if (TREE_RAISES (node))
3092 TREE_RAISES (t) = 1;
3093 }
3094
3095 return t;
3096 }
3097
3098 /* Similar except don't specify the TREE_TYPE
3099 and leave the TREE_SIDE_EFFECTS as 0.
3100 It is permissible for arguments to be null,
3101 or even garbage if their values do not matter. */
3102
3103 tree
3104 build_nt VPROTO((enum tree_code code, ...))
3105 {
3106 #ifndef __STDC__
3107 enum tree_code code;
3108 #endif
3109 va_list p;
3110 register tree t;
3111 register int length;
3112 register int i;
3113
3114 VA_START (p, code);
3115
3116 #ifndef __STDC__
3117 code = va_arg (p, enum tree_code);
3118 #endif
3119
3120 t = make_node (code);
3121 length = tree_code_length[(int) code];
3122
3123 for (i = 0; i < length; i++)
3124 TREE_OPERAND (t, i) = va_arg (p, tree);
3125
3126 va_end (p);
3127 return t;
3128 }
3129
3130 /* Similar to `build_nt', except we build
3131 on the temp_decl_obstack, regardless. */
3132
3133 tree
3134 build_parse_node VPROTO((enum tree_code code, ...))
3135 {
3136 #ifndef __STDC__
3137 enum tree_code code;
3138 #endif
3139 register struct obstack *ambient_obstack = expression_obstack;
3140 va_list p;
3141 register tree t;
3142 register int length;
3143 register int i;
3144
3145 VA_START (p, code);
3146
3147 #ifndef __STDC__
3148 code = va_arg (p, enum tree_code);
3149 #endif
3150
3151 expression_obstack = &temp_decl_obstack;
3152
3153 t = make_node (code);
3154 length = tree_code_length[(int) code];
3155
3156 for (i = 0; i < length; i++)
3157 TREE_OPERAND (t, i) = va_arg (p, tree);
3158
3159 va_end (p);
3160 expression_obstack = ambient_obstack;
3161 return t;
3162 }
3163
3164 #if 0
3165 /* Commented out because this wants to be done very
3166 differently. See cp-lex.c. */
3167 tree
3168 build_op_identifier (op1, op2)
3169 tree op1, op2;
3170 {
3171 register tree t = make_node (OP_IDENTIFIER);
3172 TREE_PURPOSE (t) = op1;
3173 TREE_VALUE (t) = op2;
3174 return t;
3175 }
3176 #endif
3177 \f
3178 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3179 We do NOT enter this node in any sort of symbol table.
3180
3181 layout_decl is used to set up the decl's storage layout.
3182 Other slots are initialized to 0 or null pointers. */
3183
3184 tree
3185 build_decl (code, name, type)
3186 enum tree_code code;
3187 tree name, type;
3188 {
3189 register tree t;
3190
3191 t = make_node (code);
3192
3193 /* if (type == error_mark_node)
3194 type = integer_type_node; */
3195 /* That is not done, deliberately, so that having error_mark_node
3196 as the type can suppress useless errors in the use of this variable. */
3197
3198 DECL_NAME (t) = name;
3199 DECL_ASSEMBLER_NAME (t) = name;
3200 TREE_TYPE (t) = type;
3201
3202 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3203 layout_decl (t, 0);
3204 else if (code == FUNCTION_DECL)
3205 DECL_MODE (t) = FUNCTION_MODE;
3206
3207 return t;
3208 }
3209 \f
3210 /* BLOCK nodes are used to represent the structure of binding contours
3211 and declarations, once those contours have been exited and their contents
3212 compiled. This information is used for outputting debugging info. */
3213
3214 tree
3215 build_block (vars, tags, subblocks, supercontext, chain)
3216 tree vars, tags, subblocks, supercontext, chain;
3217 {
3218 register tree block = make_node (BLOCK);
3219 BLOCK_VARS (block) = vars;
3220 BLOCK_TYPE_TAGS (block) = tags;
3221 BLOCK_SUBBLOCKS (block) = subblocks;
3222 BLOCK_SUPERCONTEXT (block) = supercontext;
3223 BLOCK_CHAIN (block) = chain;
3224 return block;
3225 }
3226
3227 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
3228 location where an expression or an identifier were encountered. It
3229 is necessary for languages where the frontend parser will handle
3230 recursively more than one file (Java is one of them). */
3231
3232 tree
3233 build_expr_wfl (node, file, line, col)
3234 tree node;
3235 char *file;
3236 int line, col;
3237 {
3238 static char *last_file = 0;
3239 static tree last_filenode = NULL_TREE;
3240 register tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
3241
3242 EXPR_WFL_NODE (wfl) = node;
3243 EXPR_WFL_SET_LINECOL (wfl, line, col);
3244 if (file != last_file)
3245 {
3246 last_file = file;
3247 last_filenode = file ? get_identifier (file) : NULL_TREE;
3248 }
3249 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
3250 if (node)
3251 {
3252 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
3253 TREE_TYPE (wfl) = TREE_TYPE (node);
3254 }
3255 return wfl;
3256 }
3257 \f
3258 /* Return a declaration like DDECL except that its DECL_MACHINE_ATTRIBUTE
3259 is ATTRIBUTE. */
3260
3261 tree
3262 build_decl_attribute_variant (ddecl, attribute)
3263 tree ddecl, attribute;
3264 {
3265 DECL_MACHINE_ATTRIBUTES (ddecl) = attribute;
3266 return ddecl;
3267 }
3268
3269 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3270 is ATTRIBUTE.
3271
3272 Record such modified types already made so we don't make duplicates. */
3273
3274 tree
3275 build_type_attribute_variant (ttype, attribute)
3276 tree ttype, attribute;
3277 {
3278 if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3279 {
3280 register int hashcode;
3281 register struct obstack *ambient_obstack = current_obstack;
3282 tree ntype;
3283
3284 if (ambient_obstack != &permanent_obstack)
3285 current_obstack = TYPE_OBSTACK (ttype);
3286
3287 ntype = copy_node (ttype);
3288 current_obstack = ambient_obstack;
3289
3290 TYPE_POINTER_TO (ntype) = 0;
3291 TYPE_REFERENCE_TO (ntype) = 0;
3292 TYPE_ATTRIBUTES (ntype) = attribute;
3293
3294 /* Create a new main variant of TYPE. */
3295 TYPE_MAIN_VARIANT (ntype) = ntype;
3296 TYPE_NEXT_VARIANT (ntype) = 0;
3297 TYPE_READONLY (ntype) = TYPE_VOLATILE (ntype) = 0;
3298
3299 hashcode = TYPE_HASH (TREE_CODE (ntype))
3300 + TYPE_HASH (TREE_TYPE (ntype))
3301 + attribute_hash_list (attribute);
3302
3303 switch (TREE_CODE (ntype))
3304 {
3305 case FUNCTION_TYPE:
3306 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
3307 break;
3308 case ARRAY_TYPE:
3309 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
3310 break;
3311 case INTEGER_TYPE:
3312 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
3313 break;
3314 case REAL_TYPE:
3315 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
3316 break;
3317 default:
3318 break;
3319 }
3320
3321 ntype = type_hash_canon (hashcode, ntype);
3322 ttype = build_type_variant (ntype, TYPE_READONLY (ttype),
3323 TYPE_VOLATILE (ttype));
3324 }
3325
3326 return ttype;
3327 }
3328
3329 /* Return a 1 if ATTR_NAME and ATTR_ARGS is valid for either declaration DECL
3330 or type TYPE and 0 otherwise. Validity is determined the configuration
3331 macros VALID_MACHINE_DECL_ATTRIBUTE and VALID_MACHINE_TYPE_ATTRIBUTE. */
3332
3333 int
3334 valid_machine_attribute (attr_name, attr_args, decl, type)
3335 tree attr_name;
3336 tree attr_args ATTRIBUTE_UNUSED;
3337 tree decl ATTRIBUTE_UNUSED;
3338 tree type ATTRIBUTE_UNUSED;
3339 {
3340 int valid = 0;
3341 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
3342 tree decl_attr_list = decl != 0 ? DECL_MACHINE_ATTRIBUTES (decl) : 0;
3343 #endif
3344 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
3345 tree type_attr_list = TYPE_ATTRIBUTES (type);
3346 #endif
3347
3348 if (TREE_CODE (attr_name) != IDENTIFIER_NODE)
3349 abort ();
3350
3351 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
3352 if (decl != 0
3353 && VALID_MACHINE_DECL_ATTRIBUTE (decl, decl_attr_list, attr_name, attr_args))
3354 {
3355 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3356 decl_attr_list);
3357
3358 if (attr != NULL_TREE)
3359 {
3360 /* Override existing arguments. Declarations are unique so we can
3361 modify this in place. */
3362 TREE_VALUE (attr) = attr_args;
3363 }
3364 else
3365 {
3366 decl_attr_list = tree_cons (attr_name, attr_args, decl_attr_list);
3367 decl = build_decl_attribute_variant (decl, decl_attr_list);
3368 }
3369
3370 valid = 1;
3371 }
3372 #endif
3373
3374 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
3375 if (valid)
3376 /* Don't apply the attribute to both the decl and the type. */;
3377 else if (VALID_MACHINE_TYPE_ATTRIBUTE (type, type_attr_list, attr_name,
3378 attr_args))
3379 {
3380 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3381 type_attr_list);
3382
3383 if (attr != NULL_TREE)
3384 {
3385 /* Override existing arguments.
3386 ??? This currently works since attribute arguments are not
3387 included in `attribute_hash_list'. Something more complicated
3388 may be needed in the future. */
3389 TREE_VALUE (attr) = attr_args;
3390 }
3391 else
3392 {
3393 /* If this is part of a declaration, create a type variant,
3394 otherwise, this is part of a type definition, so add it
3395 to the base type. */
3396 type_attr_list = tree_cons (attr_name, attr_args, type_attr_list);
3397 if (decl != 0)
3398 type = build_type_attribute_variant (type, type_attr_list);
3399 else
3400 TYPE_ATTRIBUTES (type) = type_attr_list;
3401 }
3402 if (decl != 0)
3403 TREE_TYPE (decl) = type;
3404 valid = 1;
3405 }
3406
3407 /* Handle putting a type attribute on pointer-to-function-type by putting
3408 the attribute on the function type. */
3409 else if (POINTER_TYPE_P (type)
3410 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3411 && VALID_MACHINE_TYPE_ATTRIBUTE (TREE_TYPE (type), type_attr_list,
3412 attr_name, attr_args))
3413 {
3414 tree inner_type = TREE_TYPE (type);
3415 tree inner_attr_list = TYPE_ATTRIBUTES (inner_type);
3416 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3417 type_attr_list);
3418
3419 if (attr != NULL_TREE)
3420 TREE_VALUE (attr) = attr_args;
3421 else
3422 {
3423 inner_attr_list = tree_cons (attr_name, attr_args, inner_attr_list);
3424 inner_type = build_type_attribute_variant (inner_type,
3425 inner_attr_list);
3426 }
3427
3428 if (decl != 0)
3429 TREE_TYPE (decl) = build_pointer_type (inner_type);
3430
3431 valid = 1;
3432 }
3433 #endif
3434
3435 return valid;
3436 }
3437
3438 /* Return non-zero if IDENT is a valid name for attribute ATTR,
3439 or zero if not.
3440
3441 We try both `text' and `__text__', ATTR may be either one. */
3442 /* ??? It might be a reasonable simplification to require ATTR to be only
3443 `text'. One might then also require attribute lists to be stored in
3444 their canonicalized form. */
3445
3446 int
3447 is_attribute_p (attr, ident)
3448 char *attr;
3449 tree ident;
3450 {
3451 int ident_len, attr_len;
3452 char *p;
3453
3454 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3455 return 0;
3456
3457 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
3458 return 1;
3459
3460 p = IDENTIFIER_POINTER (ident);
3461 ident_len = strlen (p);
3462 attr_len = strlen (attr);
3463
3464 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3465 if (attr[0] == '_')
3466 {
3467 if (attr[1] != '_'
3468 || attr[attr_len - 2] != '_'
3469 || attr[attr_len - 1] != '_')
3470 abort ();
3471 if (ident_len == attr_len - 4
3472 && strncmp (attr + 2, p, attr_len - 4) == 0)
3473 return 1;
3474 }
3475 else
3476 {
3477 if (ident_len == attr_len + 4
3478 && p[0] == '_' && p[1] == '_'
3479 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3480 && strncmp (attr, p + 2, attr_len) == 0)
3481 return 1;
3482 }
3483
3484 return 0;
3485 }
3486
3487 /* Given an attribute name and a list of attributes, return a pointer to the
3488 attribute's list element if the attribute is part of the list, or NULL_TREE
3489 if not found. */
3490
3491 tree
3492 lookup_attribute (attr_name, list)
3493 char *attr_name;
3494 tree list;
3495 {
3496 tree l;
3497
3498 for (l = list; l; l = TREE_CHAIN (l))
3499 {
3500 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
3501 abort ();
3502 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
3503 return l;
3504 }
3505
3506 return NULL_TREE;
3507 }
3508
3509 /* Return an attribute list that is the union of a1 and a2. */
3510
3511 tree
3512 merge_attributes (a1, a2)
3513 register tree a1, a2;
3514 {
3515 tree attributes;
3516
3517 /* Either one unset? Take the set one. */
3518
3519 if (! (attributes = a1))
3520 attributes = a2;
3521
3522 /* One that completely contains the other? Take it. */
3523
3524 else if (a2 && ! attribute_list_contained (a1, a2))
3525 {
3526 if (attribute_list_contained (a2, a1))
3527 attributes = a2;
3528 else
3529 {
3530 /* Pick the longest list, and hang on the other list. */
3531 /* ??? For the moment we punt on the issue of attrs with args. */
3532
3533 if (list_length (a1) < list_length (a2))
3534 attributes = a2, a2 = a1;
3535
3536 for (; a2; a2 = TREE_CHAIN (a2))
3537 if (lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3538 attributes) == NULL_TREE)
3539 {
3540 a1 = copy_node (a2);
3541 TREE_CHAIN (a1) = attributes;
3542 attributes = a1;
3543 }
3544 }
3545 }
3546 return attributes;
3547 }
3548
3549 /* Given types T1 and T2, merge their attributes and return
3550 the result. */
3551
3552 tree
3553 merge_machine_type_attributes (t1, t2)
3554 tree t1, t2;
3555 {
3556 #ifdef MERGE_MACHINE_TYPE_ATTRIBUTES
3557 return MERGE_MACHINE_TYPE_ATTRIBUTES (t1, t2);
3558 #else
3559 return merge_attributes (TYPE_ATTRIBUTES (t1),
3560 TYPE_ATTRIBUTES (t2));
3561 #endif
3562 }
3563
3564 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3565 the result. */
3566
3567 tree
3568 merge_machine_decl_attributes (olddecl, newdecl)
3569 tree olddecl, newdecl;
3570 {
3571 #ifdef MERGE_MACHINE_DECL_ATTRIBUTES
3572 return MERGE_MACHINE_DECL_ATTRIBUTES (olddecl, newdecl);
3573 #else
3574 return merge_attributes (DECL_MACHINE_ATTRIBUTES (olddecl),
3575 DECL_MACHINE_ATTRIBUTES (newdecl));
3576 #endif
3577 }
3578 \f
3579 /* Return a type like TYPE except that its TYPE_READONLY is CONSTP
3580 and its TYPE_VOLATILE is VOLATILEP.
3581
3582 Such variant types already made are recorded so that duplicates
3583 are not made.
3584
3585 A variant types should never be used as the type of an expression.
3586 Always copy the variant information into the TREE_READONLY
3587 and TREE_THIS_VOLATILE of the expression, and then give the expression
3588 as its type the "main variant", the variant whose TYPE_READONLY
3589 and TYPE_VOLATILE are zero. Use TYPE_MAIN_VARIANT to find the
3590 main variant. */
3591
3592 tree
3593 build_type_variant (type, constp, volatilep)
3594 tree type;
3595 int constp, volatilep;
3596 {
3597 register tree t;
3598
3599 /* Treat any nonzero argument as 1. */
3600 constp = !!constp;
3601 volatilep = !!volatilep;
3602
3603 /* Search the chain of variants to see if there is already one there just
3604 like the one we need to have. If so, use that existing one. We must
3605 preserve the TYPE_NAME, since there is code that depends on this. */
3606
3607 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3608 if (constp == TYPE_READONLY (t) && volatilep == TYPE_VOLATILE (t)
3609 && TYPE_NAME (t) == TYPE_NAME (type))
3610 return t;
3611
3612 /* We need a new one. */
3613
3614 t = build_type_copy (type);
3615 TYPE_READONLY (t) = constp;
3616 TYPE_VOLATILE (t) = volatilep;
3617
3618 return t;
3619 }
3620
3621 /* Create a new variant of TYPE, equivalent but distinct.
3622 This is so the caller can modify it. */
3623
3624 tree
3625 build_type_copy (type)
3626 tree type;
3627 {
3628 register tree t, m = TYPE_MAIN_VARIANT (type);
3629 register struct obstack *ambient_obstack = current_obstack;
3630
3631 current_obstack = TYPE_OBSTACK (type);
3632 t = copy_node (type);
3633 current_obstack = ambient_obstack;
3634
3635 TYPE_POINTER_TO (t) = 0;
3636 TYPE_REFERENCE_TO (t) = 0;
3637
3638 /* Add this type to the chain of variants of TYPE. */
3639 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3640 TYPE_NEXT_VARIANT (m) = t;
3641
3642 return t;
3643 }
3644 \f
3645 /* Hashing of types so that we don't make duplicates.
3646 The entry point is `type_hash_canon'. */
3647
3648 /* Each hash table slot is a bucket containing a chain
3649 of these structures. */
3650
3651 struct type_hash
3652 {
3653 struct type_hash *next; /* Next structure in the bucket. */
3654 int hashcode; /* Hash code of this type. */
3655 tree type; /* The type recorded here. */
3656 };
3657
3658 /* Now here is the hash table. When recording a type, it is added
3659 to the slot whose index is the hash code mod the table size.
3660 Note that the hash table is used for several kinds of types
3661 (function types, array types and array index range types, for now).
3662 While all these live in the same table, they are completely independent,
3663 and the hash code is computed differently for each of these. */
3664
3665 #define TYPE_HASH_SIZE 59
3666 struct type_hash *type_hash_table[TYPE_HASH_SIZE];
3667
3668 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3669 with types in the TREE_VALUE slots), by adding the hash codes
3670 of the individual types. */
3671
3672 int
3673 type_hash_list (list)
3674 tree list;
3675 {
3676 register int hashcode;
3677 register tree tail;
3678 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3679 hashcode += TYPE_HASH (TREE_VALUE (tail));
3680 return hashcode;
3681 }
3682
3683 /* Look in the type hash table for a type isomorphic to TYPE.
3684 If one is found, return it. Otherwise return 0. */
3685
3686 tree
3687 type_hash_lookup (hashcode, type)
3688 int hashcode;
3689 tree type;
3690 {
3691 register struct type_hash *h;
3692 for (h = type_hash_table[hashcode % TYPE_HASH_SIZE]; h; h = h->next)
3693 if (h->hashcode == hashcode
3694 && TREE_CODE (h->type) == TREE_CODE (type)
3695 && TREE_TYPE (h->type) == TREE_TYPE (type)
3696 && attribute_list_equal (TYPE_ATTRIBUTES (h->type),
3697 TYPE_ATTRIBUTES (type))
3698 && (TYPE_MAX_VALUE (h->type) == TYPE_MAX_VALUE (type)
3699 || tree_int_cst_equal (TYPE_MAX_VALUE (h->type),
3700 TYPE_MAX_VALUE (type)))
3701 && (TYPE_MIN_VALUE (h->type) == TYPE_MIN_VALUE (type)
3702 || tree_int_cst_equal (TYPE_MIN_VALUE (h->type),
3703 TYPE_MIN_VALUE (type)))
3704 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3705 && (TYPE_DOMAIN (h->type) == TYPE_DOMAIN (type)
3706 || (TYPE_DOMAIN (h->type)
3707 && TREE_CODE (TYPE_DOMAIN (h->type)) == TREE_LIST
3708 && TYPE_DOMAIN (type)
3709 && TREE_CODE (TYPE_DOMAIN (type)) == TREE_LIST
3710 && type_list_equal (TYPE_DOMAIN (h->type),
3711 TYPE_DOMAIN (type)))))
3712 return h->type;
3713 return 0;
3714 }
3715
3716 /* Add an entry to the type-hash-table
3717 for a type TYPE whose hash code is HASHCODE. */
3718
3719 void
3720 type_hash_add (hashcode, type)
3721 int hashcode;
3722 tree type;
3723 {
3724 register struct type_hash *h;
3725
3726 h = (struct type_hash *) oballoc (sizeof (struct type_hash));
3727 h->hashcode = hashcode;
3728 h->type = type;
3729 h->next = type_hash_table[hashcode % TYPE_HASH_SIZE];
3730 type_hash_table[hashcode % TYPE_HASH_SIZE] = h;
3731 }
3732
3733 /* Given TYPE, and HASHCODE its hash code, return the canonical
3734 object for an identical type if one already exists.
3735 Otherwise, return TYPE, and record it as the canonical object
3736 if it is a permanent object.
3737
3738 To use this function, first create a type of the sort you want.
3739 Then compute its hash code from the fields of the type that
3740 make it different from other similar types.
3741 Then call this function and use the value.
3742 This function frees the type you pass in if it is a duplicate. */
3743
3744 /* Set to 1 to debug without canonicalization. Never set by program. */
3745 int debug_no_type_hash = 0;
3746
3747 tree
3748 type_hash_canon (hashcode, type)
3749 int hashcode;
3750 tree type;
3751 {
3752 tree t1;
3753
3754 if (debug_no_type_hash)
3755 return type;
3756
3757 t1 = type_hash_lookup (hashcode, type);
3758 if (t1 != 0)
3759 {
3760 obstack_free (TYPE_OBSTACK (type), type);
3761 #ifdef GATHER_STATISTICS
3762 tree_node_counts[(int)t_kind]--;
3763 tree_node_sizes[(int)t_kind] -= sizeof (struct tree_type);
3764 #endif
3765 return t1;
3766 }
3767
3768 /* If this is a permanent type, record it for later reuse. */
3769 if (TREE_PERMANENT (type))
3770 type_hash_add (hashcode, type);
3771
3772 return type;
3773 }
3774
3775 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3776 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3777 by adding the hash codes of the individual attributes. */
3778
3779 int
3780 attribute_hash_list (list)
3781 tree list;
3782 {
3783 register int hashcode;
3784 register tree tail;
3785 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3786 /* ??? Do we want to add in TREE_VALUE too? */
3787 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3788 return hashcode;
3789 }
3790
3791 /* Given two lists of attributes, return true if list l2 is
3792 equivalent to l1. */
3793
3794 int
3795 attribute_list_equal (l1, l2)
3796 tree l1, l2;
3797 {
3798 return attribute_list_contained (l1, l2)
3799 && attribute_list_contained (l2, l1);
3800 }
3801
3802 /* Given two lists of attributes, return true if list L2 is
3803 completely contained within L1. */
3804 /* ??? This would be faster if attribute names were stored in a canonicalized
3805 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3806 must be used to show these elements are equivalent (which they are). */
3807 /* ??? It's not clear that attributes with arguments will always be handled
3808 correctly. */
3809
3810 int
3811 attribute_list_contained (l1, l2)
3812 tree l1, l2;
3813 {
3814 register tree t1, t2;
3815
3816 /* First check the obvious, maybe the lists are identical. */
3817 if (l1 == l2)
3818 return 1;
3819
3820 /* Maybe the lists are similar. */
3821 for (t1 = l1, t2 = l2;
3822 t1 && t2
3823 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3824 && TREE_VALUE (t1) == TREE_VALUE (t2);
3825 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3826
3827 /* Maybe the lists are equal. */
3828 if (t1 == 0 && t2 == 0)
3829 return 1;
3830
3831 for (; t2; t2 = TREE_CHAIN (t2))
3832 {
3833 tree attr
3834 = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3835
3836 if (attr == NULL_TREE)
3837 return 0;
3838 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3839 return 0;
3840 }
3841
3842 return 1;
3843 }
3844
3845 /* Given two lists of types
3846 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3847 return 1 if the lists contain the same types in the same order.
3848 Also, the TREE_PURPOSEs must match. */
3849
3850 int
3851 type_list_equal (l1, l2)
3852 tree l1, l2;
3853 {
3854 register tree t1, t2;
3855
3856 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3857 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3858 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3859 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3860 && (TREE_TYPE (TREE_PURPOSE (t1))
3861 == TREE_TYPE (TREE_PURPOSE (t2))))))
3862 return 0;
3863
3864 return t1 == t2;
3865 }
3866
3867 /* Nonzero if integer constants T1 and T2
3868 represent the same constant value. */
3869
3870 int
3871 tree_int_cst_equal (t1, t2)
3872 tree t1, t2;
3873 {
3874 if (t1 == t2)
3875 return 1;
3876 if (t1 == 0 || t2 == 0)
3877 return 0;
3878 if (TREE_CODE (t1) == INTEGER_CST
3879 && TREE_CODE (t2) == INTEGER_CST
3880 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3881 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3882 return 1;
3883 return 0;
3884 }
3885
3886 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3887 The precise way of comparison depends on their data type. */
3888
3889 int
3890 tree_int_cst_lt (t1, t2)
3891 tree t1, t2;
3892 {
3893 if (t1 == t2)
3894 return 0;
3895
3896 if (!TREE_UNSIGNED (TREE_TYPE (t1)))
3897 return INT_CST_LT (t1, t2);
3898 return INT_CST_LT_UNSIGNED (t1, t2);
3899 }
3900
3901 /* Return an indication of the sign of the integer constant T.
3902 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3903 Note that -1 will never be returned it T's type is unsigned. */
3904
3905 int
3906 tree_int_cst_sgn (t)
3907 tree t;
3908 {
3909 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3910 return 0;
3911 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3912 return 1;
3913 else if (TREE_INT_CST_HIGH (t) < 0)
3914 return -1;
3915 else
3916 return 1;
3917 }
3918
3919 /* Compare two constructor-element-type constants. Return 1 if the lists
3920 are known to be equal; otherwise return 0. */
3921
3922 int
3923 simple_cst_list_equal (l1, l2)
3924 tree l1, l2;
3925 {
3926 while (l1 != NULL_TREE && l2 != NULL_TREE)
3927 {
3928 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3929 return 0;
3930
3931 l1 = TREE_CHAIN (l1);
3932 l2 = TREE_CHAIN (l2);
3933 }
3934
3935 return (l1 == l2);
3936 }
3937
3938 /* Return truthvalue of whether T1 is the same tree structure as T2.
3939 Return 1 if they are the same.
3940 Return 0 if they are understandably different.
3941 Return -1 if either contains tree structure not understood by
3942 this function. */
3943
3944 int
3945 simple_cst_equal (t1, t2)
3946 tree t1, t2;
3947 {
3948 register enum tree_code code1, code2;
3949 int cmp;
3950
3951 if (t1 == t2)
3952 return 1;
3953 if (t1 == 0 || t2 == 0)
3954 return 0;
3955
3956 code1 = TREE_CODE (t1);
3957 code2 = TREE_CODE (t2);
3958
3959 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3960 {
3961 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3962 || code2 == NON_LVALUE_EXPR)
3963 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3964 else
3965 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3966 }
3967 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3968 || code2 == NON_LVALUE_EXPR)
3969 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3970
3971 if (code1 != code2)
3972 return 0;
3973
3974 switch (code1)
3975 {
3976 case INTEGER_CST:
3977 return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3978 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
3979
3980 case REAL_CST:
3981 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3982
3983 case STRING_CST:
3984 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3985 && !bcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3986 TREE_STRING_LENGTH (t1));
3987
3988 case CONSTRUCTOR:
3989 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3990 return 1;
3991 else
3992 abort ();
3993
3994 case SAVE_EXPR:
3995 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3996
3997 case CALL_EXPR:
3998 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3999 if (cmp <= 0)
4000 return cmp;
4001 return simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4002
4003 case TARGET_EXPR:
4004 /* Special case: if either target is an unallocated VAR_DECL,
4005 it means that it's going to be unified with whatever the
4006 TARGET_EXPR is really supposed to initialize, so treat it
4007 as being equivalent to anything. */
4008 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
4009 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
4010 && DECL_RTL (TREE_OPERAND (t1, 0)) == 0)
4011 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
4012 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
4013 && DECL_RTL (TREE_OPERAND (t2, 0)) == 0))
4014 cmp = 1;
4015 else
4016 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4017 if (cmp <= 0)
4018 return cmp;
4019 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4020
4021 case WITH_CLEANUP_EXPR:
4022 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4023 if (cmp <= 0)
4024 return cmp;
4025 return simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t1, 2));
4026
4027 case COMPONENT_REF:
4028 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
4029 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4030 return 0;
4031
4032 case VAR_DECL:
4033 case PARM_DECL:
4034 case CONST_DECL:
4035 case FUNCTION_DECL:
4036 return 0;
4037
4038 default:
4039 break;
4040 }
4041
4042 /* This general rule works for most tree codes. All exceptions should be
4043 handled above. If this is a language-specific tree code, we can't
4044 trust what might be in the operand, so say we don't know
4045 the situation. */
4046 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
4047 return -1;
4048
4049 switch (TREE_CODE_CLASS (code1))
4050 {
4051 int i;
4052 case '1':
4053 case '2':
4054 case '<':
4055 case 'e':
4056 case 'r':
4057 case 's':
4058 cmp = 1;
4059 for (i=0; i<tree_code_length[(int) code1]; ++i)
4060 {
4061 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
4062 if (cmp <= 0)
4063 return cmp;
4064 }
4065 return cmp;
4066
4067 default:
4068 return -1;
4069 }
4070 }
4071 \f
4072 /* Constructors for pointer, array and function types.
4073 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4074 constructed by language-dependent code, not here.) */
4075
4076 /* Construct, lay out and return the type of pointers to TO_TYPE.
4077 If such a type has already been constructed, reuse it. */
4078
4079 tree
4080 build_pointer_type (to_type)
4081 tree to_type;
4082 {
4083 register tree t = TYPE_POINTER_TO (to_type);
4084
4085 /* First, if we already have a type for pointers to TO_TYPE, use it. */
4086
4087 if (t)
4088 return t;
4089
4090 /* We need a new one. Put this in the same obstack as TO_TYPE. */
4091 push_obstacks (TYPE_OBSTACK (to_type), TYPE_OBSTACK (to_type));
4092 t = make_node (POINTER_TYPE);
4093 pop_obstacks ();
4094
4095 TREE_TYPE (t) = to_type;
4096
4097 /* Record this type as the pointer to TO_TYPE. */
4098 TYPE_POINTER_TO (to_type) = t;
4099
4100 /* Lay out the type. This function has many callers that are concerned
4101 with expression-construction, and this simplifies them all.
4102 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
4103 layout_type (t);
4104
4105 return t;
4106 }
4107
4108 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
4109 MAXVAL should be the maximum value in the domain
4110 (one less than the length of the array).
4111
4112 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
4113 We don't enforce this limit, that is up to caller (e.g. language front end).
4114 The limit exists because the result is a signed type and we don't handle
4115 sizes that use more than one HOST_WIDE_INT. */
4116
4117 tree
4118 build_index_type (maxval)
4119 tree maxval;
4120 {
4121 register tree itype = make_node (INTEGER_TYPE);
4122
4123 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
4124 TYPE_MIN_VALUE (itype) = size_zero_node;
4125
4126 push_obstacks (TYPE_OBSTACK (itype), TYPE_OBSTACK (itype));
4127 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
4128 pop_obstacks ();
4129
4130 TYPE_MODE (itype) = TYPE_MODE (sizetype);
4131 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
4132 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
4133 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
4134 if (TREE_CODE (maxval) == INTEGER_CST)
4135 {
4136 int maxint = (int) TREE_INT_CST_LOW (maxval);
4137 /* If the domain should be empty, make sure the maxval
4138 remains -1 and is not spoiled by truncation. */
4139 if (INT_CST_LT (maxval, integer_zero_node))
4140 {
4141 TYPE_MAX_VALUE (itype) = build_int_2 (-1, -1);
4142 TREE_TYPE (TYPE_MAX_VALUE (itype)) = sizetype;
4143 }
4144 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
4145 }
4146 else
4147 return itype;
4148 }
4149
4150 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4151 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4152 low bound LOWVAL and high bound HIGHVAL.
4153 if TYPE==NULL_TREE, sizetype is used. */
4154
4155 tree
4156 build_range_type (type, lowval, highval)
4157 tree type, lowval, highval;
4158 {
4159 register tree itype = make_node (INTEGER_TYPE);
4160
4161 TREE_TYPE (itype) = type;
4162 if (type == NULL_TREE)
4163 type = sizetype;
4164
4165 push_obstacks (TYPE_OBSTACK (itype), TYPE_OBSTACK (itype));
4166 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4167 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
4168 pop_obstacks ();
4169
4170 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4171 TYPE_MODE (itype) = TYPE_MODE (type);
4172 TYPE_SIZE (itype) = TYPE_SIZE (type);
4173 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
4174 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4175 if (TREE_CODE (lowval) == INTEGER_CST)
4176 {
4177 HOST_WIDE_INT lowint, highint;
4178 int maxint;
4179
4180 lowint = TREE_INT_CST_LOW (lowval);
4181 if (highval && TREE_CODE (highval) == INTEGER_CST)
4182 highint = TREE_INT_CST_LOW (highval);
4183 else
4184 highint = (~(unsigned HOST_WIDE_INT)0) >> 1;
4185
4186 maxint = (int) (highint - lowint);
4187 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
4188 }
4189 else
4190 return itype;
4191 }
4192
4193 /* Just like build_index_type, but takes lowval and highval instead
4194 of just highval (maxval). */
4195
4196 tree
4197 build_index_2_type (lowval,highval)
4198 tree lowval, highval;
4199 {
4200 return build_range_type (NULL_TREE, lowval, highval);
4201 }
4202
4203 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
4204 Needed because when index types are not hashed, equal index types
4205 built at different times appear distinct, even though structurally,
4206 they are not. */
4207
4208 int
4209 index_type_equal (itype1, itype2)
4210 tree itype1, itype2;
4211 {
4212 if (TREE_CODE (itype1) != TREE_CODE (itype2))
4213 return 0;
4214 if (TREE_CODE (itype1) == INTEGER_TYPE)
4215 {
4216 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
4217 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
4218 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
4219 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
4220 return 0;
4221 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
4222 TYPE_MIN_VALUE (itype2))
4223 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
4224 TYPE_MAX_VALUE (itype2)))
4225 return 1;
4226 }
4227
4228 return 0;
4229 }
4230
4231 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4232 and number of elements specified by the range of values of INDEX_TYPE.
4233 If such a type has already been constructed, reuse it. */
4234
4235 tree
4236 build_array_type (elt_type, index_type)
4237 tree elt_type, index_type;
4238 {
4239 register tree t;
4240 int hashcode;
4241
4242 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4243 {
4244 error ("arrays of functions are not meaningful");
4245 elt_type = integer_type_node;
4246 }
4247
4248 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
4249 build_pointer_type (elt_type);
4250
4251 /* Allocate the array after the pointer type,
4252 in case we free it in type_hash_canon. */
4253 t = make_node (ARRAY_TYPE);
4254 TREE_TYPE (t) = elt_type;
4255 TYPE_DOMAIN (t) = index_type;
4256
4257 if (index_type == 0)
4258 {
4259 return t;
4260 }
4261
4262 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
4263 t = type_hash_canon (hashcode, t);
4264
4265 if (TYPE_SIZE (t) == 0)
4266 layout_type (t);
4267 return t;
4268 }
4269
4270 /* Return the TYPE of the elements comprising
4271 the innermost dimension of ARRAY. */
4272
4273 tree
4274 get_inner_array_type (array)
4275 tree array;
4276 {
4277 tree type = TREE_TYPE (array);
4278
4279 while (TREE_CODE (type) == ARRAY_TYPE)
4280 type = TREE_TYPE (type);
4281
4282 return type;
4283 }
4284
4285 /* Construct, lay out and return
4286 the type of functions returning type VALUE_TYPE
4287 given arguments of types ARG_TYPES.
4288 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4289 are data type nodes for the arguments of the function.
4290 If such a type has already been constructed, reuse it. */
4291
4292 tree
4293 build_function_type (value_type, arg_types)
4294 tree value_type, arg_types;
4295 {
4296 register tree t;
4297 int hashcode;
4298
4299 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4300 {
4301 error ("function return type cannot be function");
4302 value_type = integer_type_node;
4303 }
4304
4305 /* Make a node of the sort we want. */
4306 t = make_node (FUNCTION_TYPE);
4307 TREE_TYPE (t) = value_type;
4308 TYPE_ARG_TYPES (t) = arg_types;
4309
4310 /* If we already have such a type, use the old one and free this one. */
4311 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
4312 t = type_hash_canon (hashcode, t);
4313
4314 if (TYPE_SIZE (t) == 0)
4315 layout_type (t);
4316 return t;
4317 }
4318
4319 /* Build the node for the type of references-to-TO_TYPE. */
4320
4321 tree
4322 build_reference_type (to_type)
4323 tree to_type;
4324 {
4325 register tree t = TYPE_REFERENCE_TO (to_type);
4326
4327 /* First, if we already have a type for pointers to TO_TYPE, use it. */
4328
4329 if (t)
4330 return t;
4331
4332 /* We need a new one. Put this in the same obstack as TO_TYPE. */
4333 push_obstacks (TYPE_OBSTACK (to_type), TYPE_OBSTACK (to_type));
4334 t = make_node (REFERENCE_TYPE);
4335 pop_obstacks ();
4336
4337 TREE_TYPE (t) = to_type;
4338
4339 /* Record this type as the pointer to TO_TYPE. */
4340 TYPE_REFERENCE_TO (to_type) = t;
4341
4342 layout_type (t);
4343
4344 return t;
4345 }
4346
4347 /* Construct, lay out and return the type of methods belonging to class
4348 BASETYPE and whose arguments and values are described by TYPE.
4349 If that type exists already, reuse it.
4350 TYPE must be a FUNCTION_TYPE node. */
4351
4352 tree
4353 build_method_type (basetype, type)
4354 tree basetype, type;
4355 {
4356 register tree t;
4357 int hashcode;
4358
4359 /* Make a node of the sort we want. */
4360 t = make_node (METHOD_TYPE);
4361
4362 if (TREE_CODE (type) != FUNCTION_TYPE)
4363 abort ();
4364
4365 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4366 TREE_TYPE (t) = TREE_TYPE (type);
4367
4368 /* The actual arglist for this function includes a "hidden" argument
4369 which is "this". Put it into the list of argument types. */
4370
4371 TYPE_ARG_TYPES (t)
4372 = tree_cons (NULL_TREE,
4373 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
4374
4375 /* If we already have such a type, use the old one and free this one. */
4376 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4377 t = type_hash_canon (hashcode, t);
4378
4379 if (TYPE_SIZE (t) == 0)
4380 layout_type (t);
4381
4382 return t;
4383 }
4384
4385 /* Construct, lay out and return the type of offsets to a value
4386 of type TYPE, within an object of type BASETYPE.
4387 If a suitable offset type exists already, reuse it. */
4388
4389 tree
4390 build_offset_type (basetype, type)
4391 tree basetype, type;
4392 {
4393 register tree t;
4394 int hashcode;
4395
4396 /* Make a node of the sort we want. */
4397 t = make_node (OFFSET_TYPE);
4398
4399 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4400 TREE_TYPE (t) = type;
4401
4402 /* If we already have such a type, use the old one and free this one. */
4403 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4404 t = type_hash_canon (hashcode, t);
4405
4406 if (TYPE_SIZE (t) == 0)
4407 layout_type (t);
4408
4409 return t;
4410 }
4411
4412 /* Create a complex type whose components are COMPONENT_TYPE. */
4413
4414 tree
4415 build_complex_type (component_type)
4416 tree component_type;
4417 {
4418 register tree t;
4419 int hashcode;
4420
4421 /* Make a node of the sort we want. */
4422 t = make_node (COMPLEX_TYPE);
4423
4424 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4425 TYPE_VOLATILE (t) = TYPE_VOLATILE (component_type);
4426 TYPE_READONLY (t) = TYPE_READONLY (component_type);
4427
4428 /* If we already have such a type, use the old one and free this one. */
4429 hashcode = TYPE_HASH (component_type);
4430 t = type_hash_canon (hashcode, t);
4431
4432 if (TYPE_SIZE (t) == 0)
4433 layout_type (t);
4434
4435 return t;
4436 }
4437 \f
4438 /* Return OP, stripped of any conversions to wider types as much as is safe.
4439 Converting the value back to OP's type makes a value equivalent to OP.
4440
4441 If FOR_TYPE is nonzero, we return a value which, if converted to
4442 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4443
4444 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4445 narrowest type that can hold the value, even if they don't exactly fit.
4446 Otherwise, bit-field references are changed to a narrower type
4447 only if they can be fetched directly from memory in that type.
4448
4449 OP must have integer, real or enumeral type. Pointers are not allowed!
4450
4451 There are some cases where the obvious value we could return
4452 would regenerate to OP if converted to OP's type,
4453 but would not extend like OP to wider types.
4454 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4455 For example, if OP is (unsigned short)(signed char)-1,
4456 we avoid returning (signed char)-1 if FOR_TYPE is int,
4457 even though extending that to an unsigned short would regenerate OP,
4458 since the result of extending (signed char)-1 to (int)
4459 is different from (int) OP. */
4460
4461 tree
4462 get_unwidened (op, for_type)
4463 register tree op;
4464 tree for_type;
4465 {
4466 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4467 register tree type = TREE_TYPE (op);
4468 register unsigned final_prec
4469 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4470 register int uns
4471 = (for_type != 0 && for_type != type
4472 && final_prec > TYPE_PRECISION (type)
4473 && TREE_UNSIGNED (type));
4474 register tree win = op;
4475
4476 while (TREE_CODE (op) == NOP_EXPR)
4477 {
4478 register int bitschange
4479 = TYPE_PRECISION (TREE_TYPE (op))
4480 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4481
4482 /* Truncations are many-one so cannot be removed.
4483 Unless we are later going to truncate down even farther. */
4484 if (bitschange < 0
4485 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4486 break;
4487
4488 /* See what's inside this conversion. If we decide to strip it,
4489 we will set WIN. */
4490 op = TREE_OPERAND (op, 0);
4491
4492 /* If we have not stripped any zero-extensions (uns is 0),
4493 we can strip any kind of extension.
4494 If we have previously stripped a zero-extension,
4495 only zero-extensions can safely be stripped.
4496 Any extension can be stripped if the bits it would produce
4497 are all going to be discarded later by truncating to FOR_TYPE. */
4498
4499 if (bitschange > 0)
4500 {
4501 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4502 win = op;
4503 /* TREE_UNSIGNED says whether this is a zero-extension.
4504 Let's avoid computing it if it does not affect WIN
4505 and if UNS will not be needed again. */
4506 if ((uns || TREE_CODE (op) == NOP_EXPR)
4507 && TREE_UNSIGNED (TREE_TYPE (op)))
4508 {
4509 uns = 1;
4510 win = op;
4511 }
4512 }
4513 }
4514
4515 if (TREE_CODE (op) == COMPONENT_REF
4516 /* Since type_for_size always gives an integer type. */
4517 && TREE_CODE (type) != REAL_TYPE
4518 /* Don't crash if field not laid out yet. */
4519 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4520 {
4521 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4522 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
4523
4524 /* We can get this structure field in the narrowest type it fits in.
4525 If FOR_TYPE is 0, do this only for a field that matches the
4526 narrower type exactly and is aligned for it
4527 The resulting extension to its nominal type (a fullword type)
4528 must fit the same conditions as for other extensions. */
4529
4530 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4531 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4532 && (! uns || final_prec <= innerprec
4533 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4534 && type != 0)
4535 {
4536 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4537 TREE_OPERAND (op, 1));
4538 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4539 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4540 TREE_RAISES (win) = TREE_RAISES (op);
4541 }
4542 }
4543 return win;
4544 }
4545 \f
4546 /* Return OP or a simpler expression for a narrower value
4547 which can be sign-extended or zero-extended to give back OP.
4548 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4549 or 0 if the value should be sign-extended. */
4550
4551 tree
4552 get_narrower (op, unsignedp_ptr)
4553 register tree op;
4554 int *unsignedp_ptr;
4555 {
4556 register int uns = 0;
4557 int first = 1;
4558 register tree win = op;
4559
4560 while (TREE_CODE (op) == NOP_EXPR)
4561 {
4562 register int bitschange
4563 = TYPE_PRECISION (TREE_TYPE (op))
4564 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4565
4566 /* Truncations are many-one so cannot be removed. */
4567 if (bitschange < 0)
4568 break;
4569
4570 /* See what's inside this conversion. If we decide to strip it,
4571 we will set WIN. */
4572 op = TREE_OPERAND (op, 0);
4573
4574 if (bitschange > 0)
4575 {
4576 /* An extension: the outermost one can be stripped,
4577 but remember whether it is zero or sign extension. */
4578 if (first)
4579 uns = TREE_UNSIGNED (TREE_TYPE (op));
4580 /* Otherwise, if a sign extension has been stripped,
4581 only sign extensions can now be stripped;
4582 if a zero extension has been stripped, only zero-extensions. */
4583 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4584 break;
4585 first = 0;
4586 }
4587 else /* bitschange == 0 */
4588 {
4589 /* A change in nominal type can always be stripped, but we must
4590 preserve the unsignedness. */
4591 if (first)
4592 uns = TREE_UNSIGNED (TREE_TYPE (op));
4593 first = 0;
4594 }
4595
4596 win = op;
4597 }
4598
4599 if (TREE_CODE (op) == COMPONENT_REF
4600 /* Since type_for_size always gives an integer type. */
4601 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE)
4602 {
4603 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4604 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
4605
4606 /* We can get this structure field in a narrower type that fits it,
4607 but the resulting extension to its nominal type (a fullword type)
4608 must satisfy the same conditions as for other extensions.
4609
4610 Do this only for fields that are aligned (not bit-fields),
4611 because when bit-field insns will be used there is no
4612 advantage in doing this. */
4613
4614 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4615 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4616 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4617 && type != 0)
4618 {
4619 if (first)
4620 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4621 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4622 TREE_OPERAND (op, 1));
4623 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4624 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4625 TREE_RAISES (win) = TREE_RAISES (op);
4626 }
4627 }
4628 *unsignedp_ptr = uns;
4629 return win;
4630 }
4631 \f
4632 /* Nonzero if integer constant C has a value that is permissible
4633 for type TYPE (an INTEGER_TYPE). */
4634
4635 int
4636 int_fits_type_p (c, type)
4637 tree c, type;
4638 {
4639 if (TREE_UNSIGNED (type))
4640 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4641 && INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c))
4642 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
4643 && INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type)))
4644 /* Negative ints never fit unsigned types. */
4645 && ! (TREE_INT_CST_HIGH (c) < 0
4646 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4647 else
4648 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4649 && INT_CST_LT (TYPE_MAX_VALUE (type), c))
4650 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
4651 && INT_CST_LT (c, TYPE_MIN_VALUE (type)))
4652 /* Unsigned ints with top bit set never fit signed types. */
4653 && ! (TREE_INT_CST_HIGH (c) < 0
4654 && TREE_UNSIGNED (TREE_TYPE (c))));
4655 }
4656
4657 /* Return the innermost context enclosing DECL that is
4658 a FUNCTION_DECL, or zero if none. */
4659
4660 tree
4661 decl_function_context (decl)
4662 tree decl;
4663 {
4664 tree context;
4665
4666 if (TREE_CODE (decl) == ERROR_MARK)
4667 return 0;
4668
4669 if (TREE_CODE (decl) == SAVE_EXPR)
4670 context = SAVE_EXPR_CONTEXT (decl);
4671 else
4672 context = DECL_CONTEXT (decl);
4673
4674 while (context && TREE_CODE (context) != FUNCTION_DECL)
4675 {
4676 if (TREE_CODE_CLASS (TREE_CODE (context)) == 't')
4677 context = TYPE_CONTEXT (context);
4678 else if (TREE_CODE_CLASS (TREE_CODE (context)) == 'd')
4679 context = DECL_CONTEXT (context);
4680 else if (TREE_CODE (context) == BLOCK)
4681 context = BLOCK_SUPERCONTEXT (context);
4682 else
4683 /* Unhandled CONTEXT !? */
4684 abort ();
4685 }
4686
4687 return context;
4688 }
4689
4690 /* Return the innermost context enclosing DECL that is
4691 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4692 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4693
4694 tree
4695 decl_type_context (decl)
4696 tree decl;
4697 {
4698 tree context = DECL_CONTEXT (decl);
4699
4700 while (context)
4701 {
4702 if (TREE_CODE (context) == RECORD_TYPE
4703 || TREE_CODE (context) == UNION_TYPE
4704 || TREE_CODE (context) == QUAL_UNION_TYPE)
4705 return context;
4706 if (TREE_CODE (context) == TYPE_DECL
4707 || TREE_CODE (context) == FUNCTION_DECL)
4708 context = DECL_CONTEXT (context);
4709 else if (TREE_CODE (context) == BLOCK)
4710 context = BLOCK_SUPERCONTEXT (context);
4711 else
4712 /* Unhandled CONTEXT!? */
4713 abort ();
4714 }
4715 return NULL_TREE;
4716 }
4717
4718 /* Print debugging information about the size of the
4719 toplev_inline_obstacks. */
4720
4721 void
4722 print_inline_obstack_statistics ()
4723 {
4724 struct simple_obstack_stack *current = toplev_inline_obstacks;
4725 int n_obstacks = 0;
4726 int n_alloc = 0;
4727 int n_chunks = 0;
4728
4729 for (; current; current = current->next, ++n_obstacks)
4730 {
4731 struct obstack *o = current->obstack;
4732 struct _obstack_chunk *chunk = o->chunk;
4733
4734 n_alloc += o->next_free - chunk->contents;
4735 chunk = chunk->prev;
4736 ++n_chunks;
4737 for (; chunk; chunk = chunk->prev, ++n_chunks)
4738 n_alloc += chunk->limit - &chunk->contents[0];
4739 }
4740 fprintf (stderr, "inline obstacks: %d obstacks, %d bytes, %d chunks\n",
4741 n_obstacks, n_alloc, n_chunks);
4742 }
4743
4744 /* Print debugging information about the obstack O, named STR. */
4745
4746 void
4747 print_obstack_statistics (str, o)
4748 char *str;
4749 struct obstack *o;
4750 {
4751 struct _obstack_chunk *chunk = o->chunk;
4752 int n_chunks = 1;
4753 int n_alloc = 0;
4754
4755 n_alloc += o->next_free - chunk->contents;
4756 chunk = chunk->prev;
4757 while (chunk)
4758 {
4759 n_chunks += 1;
4760 n_alloc += chunk->limit - &chunk->contents[0];
4761 chunk = chunk->prev;
4762 }
4763 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4764 str, n_alloc, n_chunks);
4765 }
4766
4767 /* Print debugging information about tree nodes generated during the compile,
4768 and any language-specific information. */
4769
4770 void
4771 dump_tree_statistics ()
4772 {
4773 #ifdef GATHER_STATISTICS
4774 int i;
4775 int total_nodes, total_bytes;
4776 #endif
4777
4778 fprintf (stderr, "\n??? tree nodes created\n\n");
4779 #ifdef GATHER_STATISTICS
4780 fprintf (stderr, "Kind Nodes Bytes\n");
4781 fprintf (stderr, "-------------------------------------\n");
4782 total_nodes = total_bytes = 0;
4783 for (i = 0; i < (int) all_kinds; i++)
4784 {
4785 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4786 tree_node_counts[i], tree_node_sizes[i]);
4787 total_nodes += tree_node_counts[i];
4788 total_bytes += tree_node_sizes[i];
4789 }
4790 fprintf (stderr, "%-20s %9d\n", "identifier names", id_string_size);
4791 fprintf (stderr, "-------------------------------------\n");
4792 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4793 fprintf (stderr, "-------------------------------------\n");
4794 #else
4795 fprintf (stderr, "(No per-node statistics)\n");
4796 #endif
4797 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
4798 print_obstack_statistics ("maybepermanent_obstack", &maybepermanent_obstack);
4799 print_obstack_statistics ("temporary_obstack", &temporary_obstack);
4800 print_obstack_statistics ("momentary_obstack", &momentary_obstack);
4801 print_obstack_statistics ("temp_decl_obstack", &temp_decl_obstack);
4802 print_inline_obstack_statistics ();
4803 print_lang_statistics ();
4804 }
4805 \f
4806 #define FILE_FUNCTION_PREFIX_LEN 9
4807
4808 #ifndef NO_DOLLAR_IN_LABEL
4809 #define FILE_FUNCTION_FORMAT "_GLOBAL_$%s$%s"
4810 #else /* NO_DOLLAR_IN_LABEL */
4811 #ifndef NO_DOT_IN_LABEL
4812 #define FILE_FUNCTION_FORMAT "_GLOBAL_.%s.%s"
4813 #else /* NO_DOT_IN_LABEL */
4814 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4815 #endif /* NO_DOT_IN_LABEL */
4816 #endif /* NO_DOLLAR_IN_LABEL */
4817
4818 extern char * first_global_object_name;
4819 extern char * weak_global_object_name;
4820
4821 /* TYPE is some string to identify this function to the linker or
4822 collect2. */
4823
4824 tree
4825 get_file_function_name_long (type)
4826 char *type;
4827 {
4828 char *buf;
4829 register char *p;
4830
4831 if (first_global_object_name)
4832 p = first_global_object_name;
4833 else if (weak_global_object_name)
4834 p = weak_global_object_name;
4835 else if (main_input_filename)
4836 p = main_input_filename;
4837 else
4838 p = input_filename;
4839
4840 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4841 + strlen (type));
4842
4843 /* Set up the name of the file-level functions we may need. */
4844 /* Use a global object (which is already required to be unique over
4845 the program) rather than the file name (which imposes extra
4846 constraints). -- Raeburn@MIT.EDU, 10 Jan 1990. */
4847 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4848
4849 /* Don't need to pull weird characters out of global names. */
4850 if (p != first_global_object_name)
4851 {
4852 for (p = buf+11; *p; p++)
4853 if (! ((*p >= '0' && *p <= '9')
4854 #if 0 /* we always want labels, which are valid C++ identifiers (+ `$') */
4855 #ifndef ASM_IDENTIFY_GCC /* this is required if `.' is invalid -- k. raeburn */
4856 || *p == '.'
4857 #endif
4858 #endif
4859 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4860 || *p == '$'
4861 #endif
4862 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4863 || *p == '.'
4864 #endif
4865 || (*p >= 'A' && *p <= 'Z')
4866 || (*p >= 'a' && *p <= 'z')))
4867 *p = '_';
4868 }
4869
4870 return get_identifier (buf);
4871 }
4872
4873 /* If KIND=='I', return a suitable global initializer (constructor) name.
4874 If KIND=='D', return a suitable global clean-up (destructor) name. */
4875
4876 tree
4877 get_file_function_name (kind)
4878 int kind;
4879 {
4880 char p[2];
4881 p[0] = kind;
4882 p[1] = 0;
4883
4884 return get_file_function_name_long (p);
4885 }
4886
4887 \f
4888 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4889 The result is placed in BUFFER (which has length BIT_SIZE),
4890 with one bit in each char ('\000' or '\001').
4891
4892 If the constructor is constant, NULL_TREE is returned.
4893 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4894
4895 tree
4896 get_set_constructor_bits (init, buffer, bit_size)
4897 tree init;
4898 char *buffer;
4899 int bit_size;
4900 {
4901 int i;
4902 tree vals;
4903 HOST_WIDE_INT domain_min
4904 = TREE_INT_CST_LOW (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))));
4905 tree non_const_bits = NULL_TREE;
4906 for (i = 0; i < bit_size; i++)
4907 buffer[i] = 0;
4908
4909 for (vals = TREE_OPERAND (init, 1);
4910 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4911 {
4912 if (TREE_CODE (TREE_VALUE (vals)) != INTEGER_CST
4913 || (TREE_PURPOSE (vals) != NULL_TREE
4914 && TREE_CODE (TREE_PURPOSE (vals)) != INTEGER_CST))
4915 non_const_bits
4916 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4917 else if (TREE_PURPOSE (vals) != NULL_TREE)
4918 {
4919 /* Set a range of bits to ones. */
4920 HOST_WIDE_INT lo_index
4921 = TREE_INT_CST_LOW (TREE_PURPOSE (vals)) - domain_min;
4922 HOST_WIDE_INT hi_index
4923 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
4924 if (lo_index < 0 || lo_index >= bit_size
4925 || hi_index < 0 || hi_index >= bit_size)
4926 abort ();
4927 for ( ; lo_index <= hi_index; lo_index++)
4928 buffer[lo_index] = 1;
4929 }
4930 else
4931 {
4932 /* Set a single bit to one. */
4933 HOST_WIDE_INT index
4934 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
4935 if (index < 0 || index >= bit_size)
4936 {
4937 error ("invalid initializer for bit string");
4938 return NULL_TREE;
4939 }
4940 buffer[index] = 1;
4941 }
4942 }
4943 return non_const_bits;
4944 }
4945
4946 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4947 The result is placed in BUFFER (which is an array of bytes).
4948 If the constructor is constant, NULL_TREE is returned.
4949 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4950
4951 tree
4952 get_set_constructor_bytes (init, buffer, wd_size)
4953 tree init;
4954 unsigned char *buffer;
4955 int wd_size;
4956 {
4957 int i;
4958 int set_word_size = BITS_PER_UNIT;
4959 int bit_size = wd_size * set_word_size;
4960 int bit_pos = 0;
4961 unsigned char *bytep = buffer;
4962 char *bit_buffer = (char *) alloca(bit_size);
4963 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4964
4965 for (i = 0; i < wd_size; i++)
4966 buffer[i] = 0;
4967
4968 for (i = 0; i < bit_size; i++)
4969 {
4970 if (bit_buffer[i])
4971 {
4972 if (BYTES_BIG_ENDIAN)
4973 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4974 else
4975 *bytep |= 1 << bit_pos;
4976 }
4977 bit_pos++;
4978 if (bit_pos >= set_word_size)
4979 bit_pos = 0, bytep++;
4980 }
4981 return non_const_bits;
4982 }
4983 \f
4984 #ifdef ENABLE_CHECKING
4985
4986 /* Complain if the tree code does not match the expected one.
4987 NODE is the tree node in question, CODE is the expected tree code,
4988 and FILE and LINE are the filename and line number, respectively,
4989 of the line on which the check was done. If NONFATAL is nonzero,
4990 don't abort if the reference is invalid; instead, return 0.
4991 If the reference is valid, return NODE. */
4992
4993 tree
4994 tree_check (node, code, file, line, nofatal)
4995 tree node;
4996 enum tree_code code;
4997 char *file;
4998 int line;
4999 int nofatal;
5000 {
5001 if (TREE_CODE (node) == code)
5002 return node;
5003 else if (nofatal)
5004 return 0;
5005 else
5006 fatal ("%s:%d: Expect %s, have %s\n", file, line,
5007 tree_code_name[code], tree_code_name[TREE_CODE (node)]);
5008 }
5009
5010 /* Similar to above, except that we check for a class of tree
5011 code, given in CL. */
5012
5013 tree
5014 tree_class_check (node, cl, file, line, nofatal)
5015 tree node;
5016 char cl;
5017 char *file;
5018 int line;
5019 int nofatal;
5020 {
5021 if (TREE_CODE_CLASS (TREE_CODE (node)) == cl)
5022 return node;
5023 else if (nofatal)
5024 return 0;
5025 else
5026 fatal ("%s:%d: Expect '%c', have '%s'\n", file, line,
5027 cl, tree_code_name[TREE_CODE (node)]);
5028 }
5029
5030 /* Likewise, but complain if the tree node is not an expression. */
5031
5032 tree
5033 expr_check (node, ignored, file, line, nofatal)
5034 tree node;
5035 int ignored;
5036 char *file;
5037 int line;
5038 int nofatal;
5039 {
5040 switch (TREE_CODE_CLASS (TREE_CODE (node)))
5041 {
5042 case 'r':
5043 case 's':
5044 case 'e':
5045 case '<':
5046 case '1':
5047 case '2':
5048 break;
5049
5050 default:
5051 if (nofatal)
5052 return 0;
5053 else
5054 fatal ("%s:%d: Expect expression, have '%s'\n", file, line,
5055 tree_code_name[TREE_CODE (node)]);
5056 }
5057
5058 return node;
5059 }
5060 #endif
5061
5062 /* Return the alias set for T, which may be either a type or an
5063 expression. */
5064
5065 int
5066 get_alias_set (t)
5067 tree t;
5068 {
5069 if (!flag_strict_aliasing || !lang_get_alias_set)
5070 /* If we're not doing any lanaguage-specific alias analysis, just
5071 assume everything aliases everything else. */
5072 return 0;
5073 else
5074 return (*lang_get_alias_set) (t);
5075 }
5076
5077 /* Return a brand-new alias set. */
5078
5079 int
5080 new_alias_set ()
5081 {
5082 static int last_alias_set;
5083 return ++last_alias_set;
5084 }
This page took 0.247557 seconds and 6 git commands to generate.