]> gcc.gnu.org Git - gcc.git/blob - gcc/tree.c
tree.c (build_int_cst_type): Take sign of the value into account when deciding whethe...
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52
53 /* Each tree code class has an associated string representation.
54 These must correspond to the tree_code_class entries. */
55
56 const char *const tree_code_class_strings[] =
57 {
58 "exceptional",
59 "constant",
60 "type",
61 "declaration",
62 "reference",
63 "comparison",
64 "unary",
65 "binary",
66 "statement",
67 "expression",
68 };
69
70 /* obstack.[ch] explicitly declined to prototype this. */
71 extern int _obstack_allocated_p (struct obstack *h, void *obj);
72
73 #ifdef GATHER_STATISTICS
74 /* Statistics-gathering stuff. */
75
76 int tree_node_counts[(int) all_kinds];
77 int tree_node_sizes[(int) all_kinds];
78
79 /* Keep in sync with tree.h:enum tree_node_kind. */
80 static const char * const tree_node_kind_names[] = {
81 "decls",
82 "types",
83 "blocks",
84 "stmts",
85 "refs",
86 "exprs",
87 "constants",
88 "identifiers",
89 "perm_tree_lists",
90 "temp_tree_lists",
91 "vecs",
92 "binfos",
93 "phi_nodes",
94 "ssa names",
95 "random kinds",
96 "lang_decl kinds",
97 "lang_type kinds"
98 };
99 #endif /* GATHER_STATISTICS */
100
101 /* Unique id for next decl created. */
102 static GTY(()) int next_decl_uid;
103 /* Unique id for next type created. */
104 static GTY(()) int next_type_uid = 1;
105
106 /* Since we cannot rehash a type after it is in the table, we have to
107 keep the hash code. */
108
109 struct type_hash GTY(())
110 {
111 unsigned long hash;
112 tree type;
113 };
114
115 /* Initial size of the hash table (rounded to next prime). */
116 #define TYPE_HASH_INITIAL_SIZE 1000
117
118 /* Now here is the hash table. When recording a type, it is added to
119 the slot whose index is the hash code. Note that the hash table is
120 used for several kinds of types (function types, array types and
121 array index range types, for now). While all these live in the
122 same table, they are completely independent, and the hash code is
123 computed differently for each of these. */
124
125 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
126 htab_t type_hash_table;
127
128 /* Hash table and temporary node for larger integer const values. */
129 static GTY (()) tree int_cst_node;
130 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
131 htab_t int_cst_hash_table;
132
133 static void set_type_quals (tree, int);
134 static int type_hash_eq (const void *, const void *);
135 static hashval_t type_hash_hash (const void *);
136 static hashval_t int_cst_hash_hash (const void *);
137 static int int_cst_hash_eq (const void *, const void *);
138 static void print_type_hash_statistics (void);
139 static tree make_vector_type (tree, int, enum machine_mode);
140 static int type_hash_marked_p (const void *);
141 static unsigned int type_hash_list (tree, hashval_t);
142 static unsigned int attribute_hash_list (tree, hashval_t);
143
144 tree global_trees[TI_MAX];
145 tree integer_types[itk_none];
146 \f
147 /* Init tree.c. */
148
149 void
150 init_ttree (void)
151 {
152 /* Initialize the hash table of types. */
153 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
154 type_hash_eq, 0);
155 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
156 int_cst_hash_eq, NULL);
157 int_cst_node = make_node (INTEGER_CST);
158 }
159
160 \f
161 /* The name of the object as the assembler will see it (but before any
162 translations made by ASM_OUTPUT_LABELREF). Often this is the same
163 as DECL_NAME. It is an IDENTIFIER_NODE. */
164 tree
165 decl_assembler_name (tree decl)
166 {
167 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
168 lang_hooks.set_decl_assembler_name (decl);
169 return DECL_CHECK (decl)->decl.assembler_name;
170 }
171
172 /* Compute the number of bytes occupied by a tree with code CODE.
173 This function cannot be used for TREE_VEC, PHI_NODE, or STRING_CST
174 codes, which are of variable length. */
175 size_t
176 tree_code_size (enum tree_code code)
177 {
178 switch (TREE_CODE_CLASS (code))
179 {
180 case tcc_declaration: /* A decl node */
181 return sizeof (struct tree_decl);
182
183 case tcc_type: /* a type node */
184 return sizeof (struct tree_type);
185
186 case tcc_reference: /* a reference */
187 case tcc_expression: /* an expression */
188 case tcc_statement: /* an expression with side effects */
189 case tcc_comparison: /* a comparison expression */
190 case tcc_unary: /* a unary arithmetic expression */
191 case tcc_binary: /* a binary arithmetic expression */
192 return (sizeof (struct tree_exp)
193 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
194
195 case tcc_constant: /* a constant */
196 switch (code)
197 {
198 case INTEGER_CST: return sizeof (struct tree_int_cst);
199 case REAL_CST: return sizeof (struct tree_real_cst);
200 case COMPLEX_CST: return sizeof (struct tree_complex);
201 case VECTOR_CST: return sizeof (struct tree_vector);
202 case STRING_CST: gcc_unreachable ();
203 default:
204 return lang_hooks.tree_size (code);
205 }
206
207 case tcc_exceptional: /* something random, like an identifier. */
208 switch (code)
209 {
210 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
211 case TREE_LIST: return sizeof (struct tree_list);
212
213 case ERROR_MARK:
214 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
215
216 case TREE_VEC:
217 case PHI_NODE: gcc_unreachable ();
218
219 case SSA_NAME: return sizeof (struct tree_ssa_name);
220
221 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
222 case BLOCK: return sizeof (struct tree_block);
223 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
224
225 default:
226 return lang_hooks.tree_size (code);
227 }
228
229 default:
230 gcc_unreachable ();
231 }
232 }
233
234 /* Compute the number of bytes occupied by NODE. This routine only
235 looks at TREE_CODE, except for PHI_NODE and TREE_VEC nodes. */
236 size_t
237 tree_size (tree node)
238 {
239 enum tree_code code = TREE_CODE (node);
240 switch (code)
241 {
242 case PHI_NODE:
243 return (sizeof (struct tree_phi_node)
244 + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
245
246 case TREE_VEC:
247 return (sizeof (struct tree_vec)
248 + (TREE_VEC_LENGTH (node) - 1) * sizeof(char *));
249
250 case STRING_CST:
251 return sizeof (struct tree_string) + TREE_STRING_LENGTH (node) - 1;
252
253 default:
254 return tree_code_size (code);
255 }
256 }
257
258 /* Return a newly allocated node of code CODE. For decl and type
259 nodes, some other fields are initialized. The rest of the node is
260 initialized to zero. This function cannot be used for PHI_NODE or
261 TREE_VEC nodes, which is enforced by asserts in tree_code_size.
262
263 Achoo! I got a code in the node. */
264
265 tree
266 make_node_stat (enum tree_code code MEM_STAT_DECL)
267 {
268 tree t;
269 enum tree_code_class type = TREE_CODE_CLASS (code);
270 size_t length = tree_code_size (code);
271 #ifdef GATHER_STATISTICS
272 tree_node_kind kind;
273
274 switch (type)
275 {
276 case tcc_declaration: /* A decl node */
277 kind = d_kind;
278 break;
279
280 case tcc_type: /* a type node */
281 kind = t_kind;
282 break;
283
284 case tcc_statement: /* an expression with side effects */
285 kind = s_kind;
286 break;
287
288 case tcc_reference: /* a reference */
289 kind = r_kind;
290 break;
291
292 case tcc_expression: /* an expression */
293 case tcc_comparison: /* a comparison expression */
294 case tcc_unary: /* a unary arithmetic expression */
295 case tcc_binary: /* a binary arithmetic expression */
296 kind = e_kind;
297 break;
298
299 case tcc_constant: /* a constant */
300 kind = c_kind;
301 break;
302
303 case tcc_exceptional: /* something random, like an identifier. */
304 switch (code)
305 {
306 case IDENTIFIER_NODE:
307 kind = id_kind;
308 break;
309
310 case TREE_VEC:;
311 kind = vec_kind;
312 break;
313
314 case TREE_BINFO:
315 kind = binfo_kind;
316 break;
317
318 case PHI_NODE:
319 kind = phi_kind;
320 break;
321
322 case SSA_NAME:
323 kind = ssa_name_kind;
324 break;
325
326 case BLOCK:
327 kind = b_kind;
328 break;
329
330 default:
331 kind = x_kind;
332 break;
333 }
334 break;
335
336 default:
337 gcc_unreachable ();
338 }
339
340 tree_node_counts[(int) kind]++;
341 tree_node_sizes[(int) kind] += length;
342 #endif
343
344 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
345
346 memset (t, 0, length);
347
348 TREE_SET_CODE (t, code);
349
350 switch (type)
351 {
352 case tcc_statement:
353 TREE_SIDE_EFFECTS (t) = 1;
354 break;
355
356 case tcc_declaration:
357 if (code != FUNCTION_DECL)
358 DECL_ALIGN (t) = 1;
359 DECL_USER_ALIGN (t) = 0;
360 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
361 DECL_SOURCE_LOCATION (t) = input_location;
362 DECL_UID (t) = next_decl_uid++;
363
364 /* We have not yet computed the alias set for this declaration. */
365 DECL_POINTER_ALIAS_SET (t) = -1;
366 break;
367
368 case tcc_type:
369 TYPE_UID (t) = next_type_uid++;
370 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
371 TYPE_USER_ALIGN (t) = 0;
372 TYPE_MAIN_VARIANT (t) = t;
373
374 /* Default to no attributes for type, but let target change that. */
375 TYPE_ATTRIBUTES (t) = NULL_TREE;
376 targetm.set_default_type_attributes (t);
377
378 /* We have not yet computed the alias set for this type. */
379 TYPE_ALIAS_SET (t) = -1;
380 break;
381
382 case tcc_constant:
383 TREE_CONSTANT (t) = 1;
384 TREE_INVARIANT (t) = 1;
385 break;
386
387 case tcc_expression:
388 switch (code)
389 {
390 case INIT_EXPR:
391 case MODIFY_EXPR:
392 case VA_ARG_EXPR:
393 case PREDECREMENT_EXPR:
394 case PREINCREMENT_EXPR:
395 case POSTDECREMENT_EXPR:
396 case POSTINCREMENT_EXPR:
397 /* All of these have side-effects, no matter what their
398 operands are. */
399 TREE_SIDE_EFFECTS (t) = 1;
400 break;
401
402 default:
403 break;
404 }
405 break;
406
407 default:
408 /* Other classes need no special treatment. */
409 break;
410 }
411
412 return t;
413 }
414 \f
415 /* Return a new node with the same contents as NODE except that its
416 TREE_CHAIN is zero and it has a fresh uid. */
417
418 tree
419 copy_node_stat (tree node MEM_STAT_DECL)
420 {
421 tree t;
422 enum tree_code code = TREE_CODE (node);
423 size_t length;
424
425 gcc_assert (code != STATEMENT_LIST);
426
427 length = tree_size (node);
428 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
429 memcpy (t, node, length);
430
431 TREE_CHAIN (t) = 0;
432 TREE_ASM_WRITTEN (t) = 0;
433 TREE_VISITED (t) = 0;
434 t->common.ann = 0;
435
436 if (TREE_CODE_CLASS (code) == tcc_declaration)
437 DECL_UID (t) = next_decl_uid++;
438 else if (TREE_CODE_CLASS (code) == tcc_type)
439 {
440 TYPE_UID (t) = next_type_uid++;
441 /* The following is so that the debug code for
442 the copy is different from the original type.
443 The two statements usually duplicate each other
444 (because they clear fields of the same union),
445 but the optimizer should catch that. */
446 TYPE_SYMTAB_POINTER (t) = 0;
447 TYPE_SYMTAB_ADDRESS (t) = 0;
448
449 /* Do not copy the values cache. */
450 if (TYPE_CACHED_VALUES_P(t))
451 {
452 TYPE_CACHED_VALUES_P (t) = 0;
453 TYPE_CACHED_VALUES (t) = NULL_TREE;
454 }
455 }
456
457 return t;
458 }
459
460 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
461 For example, this can copy a list made of TREE_LIST nodes. */
462
463 tree
464 copy_list (tree list)
465 {
466 tree head;
467 tree prev, next;
468
469 if (list == 0)
470 return 0;
471
472 head = prev = copy_node (list);
473 next = TREE_CHAIN (list);
474 while (next)
475 {
476 TREE_CHAIN (prev) = copy_node (next);
477 prev = TREE_CHAIN (prev);
478 next = TREE_CHAIN (next);
479 }
480 return head;
481 }
482
483 \f
484 /* Create an INT_CST node with a LOW value sign extended. */
485
486 tree
487 build_int_cst (tree type, HOST_WIDE_INT low)
488 {
489 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
490 }
491
492 /* Create an INT_CST node with a LOW value zero extended. */
493
494 tree
495 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
496 {
497 return build_int_cst_wide (type, low, 0);
498 }
499
500 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
501 if it is negative. This function is similar to build_int_cst, but
502 the extra bits outside of the type precision are cleared. Constants
503 with these extra bits may confuse the fold so that it detects overflows
504 even in cases when they do not occur, and in general should be avoided.
505 We cannot however make this a default behavior of build_int_cst without
506 more intrusive changes, since there are parts of gcc that rely on the extra
507 precision of the integer constants. */
508
509 tree
510 build_int_cst_type (tree type, HOST_WIDE_INT low)
511 {
512 unsigned HOST_WIDE_INT val = (unsigned HOST_WIDE_INT) low;
513 unsigned HOST_WIDE_INT hi;
514 unsigned bits;
515 bool signed_p;
516 bool negative;
517
518 if (!type)
519 type = integer_type_node;
520
521 bits = TYPE_PRECISION (type);
522 signed_p = !TYPE_UNSIGNED (type);
523
524 if (bits >= HOST_BITS_PER_WIDE_INT)
525 negative = (low < 0);
526 else
527 {
528 /* If the sign bit is inside precision of LOW, use it to determine
529 the sign of the constant. */
530 negative = ((val >> (bits - 1)) & 1) != 0;
531
532 /* Mask out the bits outside of the precision of the constant. */
533 if (signed_p && negative)
534 val = val | ((~(unsigned HOST_WIDE_INT) 0) << bits);
535 else
536 val = val & ~((~(unsigned HOST_WIDE_INT) 0) << bits);
537 }
538
539 /* Determine the high bits. */
540 hi = (negative ? ~(unsigned HOST_WIDE_INT) 0 : 0);
541
542 /* For unsigned type we need to mask out the bits outside of the type
543 precision. */
544 if (!signed_p)
545 {
546 if (bits <= HOST_BITS_PER_WIDE_INT)
547 hi = 0;
548 else
549 {
550 bits -= HOST_BITS_PER_WIDE_INT;
551 hi = hi & ~((~(unsigned HOST_WIDE_INT) 0) << bits);
552 }
553 }
554
555 return build_int_cst_wide (type, val, hi);
556 }
557
558 /* These are the hash table functions for the hash table of INTEGER_CST
559 nodes of a sizetype. */
560
561 /* Return the hash code code X, an INTEGER_CST. */
562
563 static hashval_t
564 int_cst_hash_hash (const void *x)
565 {
566 tree t = (tree) x;
567
568 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
569 ^ htab_hash_pointer (TREE_TYPE (t)));
570 }
571
572 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
573 is the same as that given by *Y, which is the same. */
574
575 static int
576 int_cst_hash_eq (const void *x, const void *y)
577 {
578 tree xt = (tree) x;
579 tree yt = (tree) y;
580
581 return (TREE_TYPE (xt) == TREE_TYPE (yt)
582 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
583 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
584 }
585
586 /* Create an INT_CST node of TYPE and value HI:LOW. If TYPE is NULL,
587 integer_type_node is used. The returned node is always shared.
588 For small integers we use a per-type vector cache, for larger ones
589 we use a single hash table. */
590
591 tree
592 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
593 {
594 tree t;
595 int ix = -1;
596 int limit = 0;
597
598 if (!type)
599 type = integer_type_node;
600
601 switch (TREE_CODE (type))
602 {
603 case POINTER_TYPE:
604 case REFERENCE_TYPE:
605 /* Cache NULL pointer. */
606 if (!hi && !low)
607 {
608 limit = 1;
609 ix = 0;
610 }
611 break;
612
613 case BOOLEAN_TYPE:
614 /* Cache false or true. */
615 limit = 2;
616 if (!hi && low < 2)
617 ix = low;
618 break;
619
620 case INTEGER_TYPE:
621 case CHAR_TYPE:
622 case OFFSET_TYPE:
623 if (TYPE_UNSIGNED (type))
624 {
625 /* Cache 0..N */
626 limit = INTEGER_SHARE_LIMIT;
627 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
628 ix = low;
629 }
630 else
631 {
632 /* Cache -1..N */
633 limit = INTEGER_SHARE_LIMIT + 1;
634 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
635 ix = low + 1;
636 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
637 ix = 0;
638 }
639 break;
640 default:
641 break;
642 }
643
644 if (ix >= 0)
645 {
646 /* Look for it in the type's vector of small shared ints. */
647 if (!TYPE_CACHED_VALUES_P (type))
648 {
649 TYPE_CACHED_VALUES_P (type) = 1;
650 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
651 }
652
653 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
654 if (t)
655 {
656 /* Make sure no one is clobbering the shared constant. */
657 gcc_assert (TREE_TYPE (t) == type);
658 gcc_assert (TREE_INT_CST_LOW (t) == low);
659 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
660 }
661 else
662 {
663 /* Create a new shared int. */
664 t = make_node (INTEGER_CST);
665
666 TREE_INT_CST_LOW (t) = low;
667 TREE_INT_CST_HIGH (t) = hi;
668 TREE_TYPE (t) = type;
669
670 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
671 }
672 }
673 else
674 {
675 /* Use the cache of larger shared ints. */
676 void **slot;
677
678 TREE_INT_CST_LOW (int_cst_node) = low;
679 TREE_INT_CST_HIGH (int_cst_node) = hi;
680 TREE_TYPE (int_cst_node) = type;
681
682 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
683 t = *slot;
684 if (!t)
685 {
686 /* Insert this one into the hash table. */
687 t = int_cst_node;
688 *slot = t;
689 /* Make a new node for next time round. */
690 int_cst_node = make_node (INTEGER_CST);
691 }
692 }
693
694 return t;
695 }
696
697 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
698 and the rest are zeros. */
699
700 tree
701 build_low_bits_mask (tree type, unsigned bits)
702 {
703 unsigned HOST_WIDE_INT low;
704 HOST_WIDE_INT high;
705 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
706
707 gcc_assert (bits <= TYPE_PRECISION (type));
708
709 if (bits == TYPE_PRECISION (type)
710 && !TYPE_UNSIGNED (type))
711 {
712 /* Sign extended all-ones mask. */
713 low = all_ones;
714 high = -1;
715 }
716 else if (bits <= HOST_BITS_PER_WIDE_INT)
717 {
718 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
719 high = 0;
720 }
721 else
722 {
723 bits -= HOST_BITS_PER_WIDE_INT;
724 low = all_ones;
725 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
726 }
727
728 return build_int_cst_wide (type, low, high);
729 }
730
731 /* Checks that X is integer constant that can be expressed in (unsigned)
732 HOST_WIDE_INT without loss of precision. */
733
734 bool
735 cst_and_fits_in_hwi (tree x)
736 {
737 if (TREE_CODE (x) != INTEGER_CST)
738 return false;
739
740 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
741 return false;
742
743 return (TREE_INT_CST_HIGH (x) == 0
744 || TREE_INT_CST_HIGH (x) == -1);
745 }
746
747 /* Return a new VECTOR_CST node whose type is TYPE and whose values
748 are in a list pointed by VALS. */
749
750 tree
751 build_vector (tree type, tree vals)
752 {
753 tree v = make_node (VECTOR_CST);
754 int over1 = 0, over2 = 0;
755 tree link;
756
757 TREE_VECTOR_CST_ELTS (v) = vals;
758 TREE_TYPE (v) = type;
759
760 /* Iterate through elements and check for overflow. */
761 for (link = vals; link; link = TREE_CHAIN (link))
762 {
763 tree value = TREE_VALUE (link);
764
765 over1 |= TREE_OVERFLOW (value);
766 over2 |= TREE_CONSTANT_OVERFLOW (value);
767 }
768
769 TREE_OVERFLOW (v) = over1;
770 TREE_CONSTANT_OVERFLOW (v) = over2;
771
772 return v;
773 }
774
775 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
776 are in a list pointed to by VALS. */
777 tree
778 build_constructor (tree type, tree vals)
779 {
780 tree c = make_node (CONSTRUCTOR);
781 TREE_TYPE (c) = type;
782 CONSTRUCTOR_ELTS (c) = vals;
783
784 /* ??? May not be necessary. Mirrors what build does. */
785 if (vals)
786 {
787 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
788 TREE_READONLY (c) = TREE_READONLY (vals);
789 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
790 TREE_INVARIANT (c) = TREE_INVARIANT (vals);
791 }
792
793 return c;
794 }
795
796 /* Return a new REAL_CST node whose type is TYPE and value is D. */
797
798 tree
799 build_real (tree type, REAL_VALUE_TYPE d)
800 {
801 tree v;
802 REAL_VALUE_TYPE *dp;
803 int overflow = 0;
804
805 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
806 Consider doing it via real_convert now. */
807
808 v = make_node (REAL_CST);
809 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
810 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
811
812 TREE_TYPE (v) = type;
813 TREE_REAL_CST_PTR (v) = dp;
814 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
815 return v;
816 }
817
818 /* Return a new REAL_CST node whose type is TYPE
819 and whose value is the integer value of the INTEGER_CST node I. */
820
821 REAL_VALUE_TYPE
822 real_value_from_int_cst (tree type, tree i)
823 {
824 REAL_VALUE_TYPE d;
825
826 /* Clear all bits of the real value type so that we can later do
827 bitwise comparisons to see if two values are the same. */
828 memset (&d, 0, sizeof d);
829
830 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
831 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
832 TYPE_UNSIGNED (TREE_TYPE (i)));
833 return d;
834 }
835
836 /* Given a tree representing an integer constant I, return a tree
837 representing the same value as a floating-point constant of type TYPE. */
838
839 tree
840 build_real_from_int_cst (tree type, tree i)
841 {
842 tree v;
843 int overflow = TREE_OVERFLOW (i);
844
845 v = build_real (type, real_value_from_int_cst (type, i));
846
847 TREE_OVERFLOW (v) |= overflow;
848 TREE_CONSTANT_OVERFLOW (v) |= overflow;
849 return v;
850 }
851
852 /* Return a newly constructed STRING_CST node whose value is
853 the LEN characters at STR.
854 The TREE_TYPE is not initialized. */
855
856 tree
857 build_string (int len, const char *str)
858 {
859 tree s;
860 size_t length;
861
862 length = len + sizeof (struct tree_string);
863
864 #ifdef GATHER_STATISTICS
865 tree_node_counts[(int) c_kind]++;
866 tree_node_sizes[(int) c_kind] += length;
867 #endif
868
869 s = ggc_alloc_tree (length);
870
871 memset (s, 0, sizeof (struct tree_common));
872 TREE_SET_CODE (s, STRING_CST);
873 TREE_STRING_LENGTH (s) = len;
874 memcpy ((char *) TREE_STRING_POINTER (s), str, len);
875 ((char *) TREE_STRING_POINTER (s))[len] = '\0';
876
877 return s;
878 }
879
880 /* Return a newly constructed COMPLEX_CST node whose value is
881 specified by the real and imaginary parts REAL and IMAG.
882 Both REAL and IMAG should be constant nodes. TYPE, if specified,
883 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
884
885 tree
886 build_complex (tree type, tree real, tree imag)
887 {
888 tree t = make_node (COMPLEX_CST);
889
890 TREE_REALPART (t) = real;
891 TREE_IMAGPART (t) = imag;
892 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
893 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
894 TREE_CONSTANT_OVERFLOW (t)
895 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
896 return t;
897 }
898
899 /* Build a BINFO with LEN language slots. */
900
901 tree
902 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
903 {
904 tree t;
905 size_t length = (offsetof (struct tree_binfo, base_binfos)
906 + VEC_embedded_size (tree, base_binfos));
907
908 #ifdef GATHER_STATISTICS
909 tree_node_counts[(int) binfo_kind]++;
910 tree_node_sizes[(int) binfo_kind] += length;
911 #endif
912
913 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
914
915 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
916
917 TREE_SET_CODE (t, TREE_BINFO);
918
919 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
920
921 return t;
922 }
923
924
925 /* Build a newly constructed TREE_VEC node of length LEN. */
926
927 tree
928 make_tree_vec_stat (int len MEM_STAT_DECL)
929 {
930 tree t;
931 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
932
933 #ifdef GATHER_STATISTICS
934 tree_node_counts[(int) vec_kind]++;
935 tree_node_sizes[(int) vec_kind] += length;
936 #endif
937
938 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
939
940 memset (t, 0, length);
941
942 TREE_SET_CODE (t, TREE_VEC);
943 TREE_VEC_LENGTH (t) = len;
944
945 return t;
946 }
947 \f
948 /* Return 1 if EXPR is the integer constant zero or a complex constant
949 of zero. */
950
951 int
952 integer_zerop (tree expr)
953 {
954 STRIP_NOPS (expr);
955
956 return ((TREE_CODE (expr) == INTEGER_CST
957 && ! TREE_CONSTANT_OVERFLOW (expr)
958 && TREE_INT_CST_LOW (expr) == 0
959 && TREE_INT_CST_HIGH (expr) == 0)
960 || (TREE_CODE (expr) == COMPLEX_CST
961 && integer_zerop (TREE_REALPART (expr))
962 && integer_zerop (TREE_IMAGPART (expr))));
963 }
964
965 /* Return 1 if EXPR is the integer constant one or the corresponding
966 complex constant. */
967
968 int
969 integer_onep (tree expr)
970 {
971 STRIP_NOPS (expr);
972
973 return ((TREE_CODE (expr) == INTEGER_CST
974 && ! TREE_CONSTANT_OVERFLOW (expr)
975 && TREE_INT_CST_LOW (expr) == 1
976 && TREE_INT_CST_HIGH (expr) == 0)
977 || (TREE_CODE (expr) == COMPLEX_CST
978 && integer_onep (TREE_REALPART (expr))
979 && integer_zerop (TREE_IMAGPART (expr))));
980 }
981
982 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
983 it contains. Likewise for the corresponding complex constant. */
984
985 int
986 integer_all_onesp (tree expr)
987 {
988 int prec;
989 int uns;
990
991 STRIP_NOPS (expr);
992
993 if (TREE_CODE (expr) == COMPLEX_CST
994 && integer_all_onesp (TREE_REALPART (expr))
995 && integer_zerop (TREE_IMAGPART (expr)))
996 return 1;
997
998 else if (TREE_CODE (expr) != INTEGER_CST
999 || TREE_CONSTANT_OVERFLOW (expr))
1000 return 0;
1001
1002 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1003 if (!uns)
1004 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1005 && TREE_INT_CST_HIGH (expr) == -1);
1006
1007 /* Note that using TYPE_PRECISION here is wrong. We care about the
1008 actual bits, not the (arbitrary) range of the type. */
1009 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1010 if (prec >= HOST_BITS_PER_WIDE_INT)
1011 {
1012 HOST_WIDE_INT high_value;
1013 int shift_amount;
1014
1015 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1016
1017 /* Can not handle precisions greater than twice the host int size. */
1018 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1019 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1020 /* Shifting by the host word size is undefined according to the ANSI
1021 standard, so we must handle this as a special case. */
1022 high_value = -1;
1023 else
1024 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1025
1026 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1027 && TREE_INT_CST_HIGH (expr) == high_value);
1028 }
1029 else
1030 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1031 }
1032
1033 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1034 one bit on). */
1035
1036 int
1037 integer_pow2p (tree expr)
1038 {
1039 int prec;
1040 HOST_WIDE_INT high, low;
1041
1042 STRIP_NOPS (expr);
1043
1044 if (TREE_CODE (expr) == COMPLEX_CST
1045 && integer_pow2p (TREE_REALPART (expr))
1046 && integer_zerop (TREE_IMAGPART (expr)))
1047 return 1;
1048
1049 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
1050 return 0;
1051
1052 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1053 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1054 high = TREE_INT_CST_HIGH (expr);
1055 low = TREE_INT_CST_LOW (expr);
1056
1057 /* First clear all bits that are beyond the type's precision in case
1058 we've been sign extended. */
1059
1060 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1061 ;
1062 else if (prec > HOST_BITS_PER_WIDE_INT)
1063 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1064 else
1065 {
1066 high = 0;
1067 if (prec < HOST_BITS_PER_WIDE_INT)
1068 low &= ~((HOST_WIDE_INT) (-1) << prec);
1069 }
1070
1071 if (high == 0 && low == 0)
1072 return 0;
1073
1074 return ((high == 0 && (low & (low - 1)) == 0)
1075 || (low == 0 && (high & (high - 1)) == 0));
1076 }
1077
1078 /* Return 1 if EXPR is an integer constant other than zero or a
1079 complex constant other than zero. */
1080
1081 int
1082 integer_nonzerop (tree expr)
1083 {
1084 STRIP_NOPS (expr);
1085
1086 return ((TREE_CODE (expr) == INTEGER_CST
1087 && ! TREE_CONSTANT_OVERFLOW (expr)
1088 && (TREE_INT_CST_LOW (expr) != 0
1089 || TREE_INT_CST_HIGH (expr) != 0))
1090 || (TREE_CODE (expr) == COMPLEX_CST
1091 && (integer_nonzerop (TREE_REALPART (expr))
1092 || integer_nonzerop (TREE_IMAGPART (expr)))));
1093 }
1094
1095 /* Return the power of two represented by a tree node known to be a
1096 power of two. */
1097
1098 int
1099 tree_log2 (tree expr)
1100 {
1101 int prec;
1102 HOST_WIDE_INT high, low;
1103
1104 STRIP_NOPS (expr);
1105
1106 if (TREE_CODE (expr) == COMPLEX_CST)
1107 return tree_log2 (TREE_REALPART (expr));
1108
1109 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1110 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1111
1112 high = TREE_INT_CST_HIGH (expr);
1113 low = TREE_INT_CST_LOW (expr);
1114
1115 /* First clear all bits that are beyond the type's precision in case
1116 we've been sign extended. */
1117
1118 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1119 ;
1120 else if (prec > HOST_BITS_PER_WIDE_INT)
1121 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1122 else
1123 {
1124 high = 0;
1125 if (prec < HOST_BITS_PER_WIDE_INT)
1126 low &= ~((HOST_WIDE_INT) (-1) << prec);
1127 }
1128
1129 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1130 : exact_log2 (low));
1131 }
1132
1133 /* Similar, but return the largest integer Y such that 2 ** Y is less
1134 than or equal to EXPR. */
1135
1136 int
1137 tree_floor_log2 (tree expr)
1138 {
1139 int prec;
1140 HOST_WIDE_INT high, low;
1141
1142 STRIP_NOPS (expr);
1143
1144 if (TREE_CODE (expr) == COMPLEX_CST)
1145 return tree_log2 (TREE_REALPART (expr));
1146
1147 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1148 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1149
1150 high = TREE_INT_CST_HIGH (expr);
1151 low = TREE_INT_CST_LOW (expr);
1152
1153 /* First clear all bits that are beyond the type's precision in case
1154 we've been sign extended. Ignore if type's precision hasn't been set
1155 since what we are doing is setting it. */
1156
1157 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1158 ;
1159 else if (prec > HOST_BITS_PER_WIDE_INT)
1160 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1161 else
1162 {
1163 high = 0;
1164 if (prec < HOST_BITS_PER_WIDE_INT)
1165 low &= ~((HOST_WIDE_INT) (-1) << prec);
1166 }
1167
1168 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1169 : floor_log2 (low));
1170 }
1171
1172 /* Return 1 if EXPR is the real constant zero. */
1173
1174 int
1175 real_zerop (tree expr)
1176 {
1177 STRIP_NOPS (expr);
1178
1179 return ((TREE_CODE (expr) == REAL_CST
1180 && ! TREE_CONSTANT_OVERFLOW (expr)
1181 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1182 || (TREE_CODE (expr) == COMPLEX_CST
1183 && real_zerop (TREE_REALPART (expr))
1184 && real_zerop (TREE_IMAGPART (expr))));
1185 }
1186
1187 /* Return 1 if EXPR is the real constant one in real or complex form. */
1188
1189 int
1190 real_onep (tree expr)
1191 {
1192 STRIP_NOPS (expr);
1193
1194 return ((TREE_CODE (expr) == REAL_CST
1195 && ! TREE_CONSTANT_OVERFLOW (expr)
1196 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1197 || (TREE_CODE (expr) == COMPLEX_CST
1198 && real_onep (TREE_REALPART (expr))
1199 && real_zerop (TREE_IMAGPART (expr))));
1200 }
1201
1202 /* Return 1 if EXPR is the real constant two. */
1203
1204 int
1205 real_twop (tree expr)
1206 {
1207 STRIP_NOPS (expr);
1208
1209 return ((TREE_CODE (expr) == REAL_CST
1210 && ! TREE_CONSTANT_OVERFLOW (expr)
1211 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1212 || (TREE_CODE (expr) == COMPLEX_CST
1213 && real_twop (TREE_REALPART (expr))
1214 && real_zerop (TREE_IMAGPART (expr))));
1215 }
1216
1217 /* Return 1 if EXPR is the real constant minus one. */
1218
1219 int
1220 real_minus_onep (tree expr)
1221 {
1222 STRIP_NOPS (expr);
1223
1224 return ((TREE_CODE (expr) == REAL_CST
1225 && ! TREE_CONSTANT_OVERFLOW (expr)
1226 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1227 || (TREE_CODE (expr) == COMPLEX_CST
1228 && real_minus_onep (TREE_REALPART (expr))
1229 && real_zerop (TREE_IMAGPART (expr))));
1230 }
1231
1232 /* Nonzero if EXP is a constant or a cast of a constant. */
1233
1234 int
1235 really_constant_p (tree exp)
1236 {
1237 /* This is not quite the same as STRIP_NOPS. It does more. */
1238 while (TREE_CODE (exp) == NOP_EXPR
1239 || TREE_CODE (exp) == CONVERT_EXPR
1240 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1241 exp = TREE_OPERAND (exp, 0);
1242 return TREE_CONSTANT (exp);
1243 }
1244 \f
1245 /* Return first list element whose TREE_VALUE is ELEM.
1246 Return 0 if ELEM is not in LIST. */
1247
1248 tree
1249 value_member (tree elem, tree list)
1250 {
1251 while (list)
1252 {
1253 if (elem == TREE_VALUE (list))
1254 return list;
1255 list = TREE_CHAIN (list);
1256 }
1257 return NULL_TREE;
1258 }
1259
1260 /* Return first list element whose TREE_PURPOSE is ELEM.
1261 Return 0 if ELEM is not in LIST. */
1262
1263 tree
1264 purpose_member (tree elem, tree list)
1265 {
1266 while (list)
1267 {
1268 if (elem == TREE_PURPOSE (list))
1269 return list;
1270 list = TREE_CHAIN (list);
1271 }
1272 return NULL_TREE;
1273 }
1274
1275 /* Return nonzero if ELEM is part of the chain CHAIN. */
1276
1277 int
1278 chain_member (tree elem, tree chain)
1279 {
1280 while (chain)
1281 {
1282 if (elem == chain)
1283 return 1;
1284 chain = TREE_CHAIN (chain);
1285 }
1286
1287 return 0;
1288 }
1289
1290 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1291 We expect a null pointer to mark the end of the chain.
1292 This is the Lisp primitive `length'. */
1293
1294 int
1295 list_length (tree t)
1296 {
1297 tree p = t;
1298 #ifdef ENABLE_TREE_CHECKING
1299 tree q = t;
1300 #endif
1301 int len = 0;
1302
1303 while (p)
1304 {
1305 p = TREE_CHAIN (p);
1306 #ifdef ENABLE_TREE_CHECKING
1307 if (len % 2)
1308 q = TREE_CHAIN (q);
1309 gcc_assert (p != q);
1310 #endif
1311 len++;
1312 }
1313
1314 return len;
1315 }
1316
1317 /* Returns the number of FIELD_DECLs in TYPE. */
1318
1319 int
1320 fields_length (tree type)
1321 {
1322 tree t = TYPE_FIELDS (type);
1323 int count = 0;
1324
1325 for (; t; t = TREE_CHAIN (t))
1326 if (TREE_CODE (t) == FIELD_DECL)
1327 ++count;
1328
1329 return count;
1330 }
1331
1332 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1333 by modifying the last node in chain 1 to point to chain 2.
1334 This is the Lisp primitive `nconc'. */
1335
1336 tree
1337 chainon (tree op1, tree op2)
1338 {
1339 tree t1;
1340
1341 if (!op1)
1342 return op2;
1343 if (!op2)
1344 return op1;
1345
1346 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1347 continue;
1348 TREE_CHAIN (t1) = op2;
1349
1350 #ifdef ENABLE_TREE_CHECKING
1351 {
1352 tree t2;
1353 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1354 gcc_assert (t2 != t1);
1355 }
1356 #endif
1357
1358 return op1;
1359 }
1360
1361 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1362
1363 tree
1364 tree_last (tree chain)
1365 {
1366 tree next;
1367 if (chain)
1368 while ((next = TREE_CHAIN (chain)))
1369 chain = next;
1370 return chain;
1371 }
1372
1373 /* Reverse the order of elements in the chain T,
1374 and return the new head of the chain (old last element). */
1375
1376 tree
1377 nreverse (tree t)
1378 {
1379 tree prev = 0, decl, next;
1380 for (decl = t; decl; decl = next)
1381 {
1382 next = TREE_CHAIN (decl);
1383 TREE_CHAIN (decl) = prev;
1384 prev = decl;
1385 }
1386 return prev;
1387 }
1388 \f
1389 /* Return a newly created TREE_LIST node whose
1390 purpose and value fields are PARM and VALUE. */
1391
1392 tree
1393 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1394 {
1395 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1396 TREE_PURPOSE (t) = parm;
1397 TREE_VALUE (t) = value;
1398 return t;
1399 }
1400
1401 /* Return a newly created TREE_LIST node whose
1402 purpose and value fields are PURPOSE and VALUE
1403 and whose TREE_CHAIN is CHAIN. */
1404
1405 tree
1406 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1407 {
1408 tree node;
1409
1410 node = ggc_alloc_zone_stat (sizeof (struct tree_list),
1411 tree_zone PASS_MEM_STAT);
1412
1413 memset (node, 0, sizeof (struct tree_common));
1414
1415 #ifdef GATHER_STATISTICS
1416 tree_node_counts[(int) x_kind]++;
1417 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1418 #endif
1419
1420 TREE_SET_CODE (node, TREE_LIST);
1421 TREE_CHAIN (node) = chain;
1422 TREE_PURPOSE (node) = purpose;
1423 TREE_VALUE (node) = value;
1424 return node;
1425 }
1426
1427 \f
1428 /* Return the size nominally occupied by an object of type TYPE
1429 when it resides in memory. The value is measured in units of bytes,
1430 and its data type is that normally used for type sizes
1431 (which is the first type created by make_signed_type or
1432 make_unsigned_type). */
1433
1434 tree
1435 size_in_bytes (tree type)
1436 {
1437 tree t;
1438
1439 if (type == error_mark_node)
1440 return integer_zero_node;
1441
1442 type = TYPE_MAIN_VARIANT (type);
1443 t = TYPE_SIZE_UNIT (type);
1444
1445 if (t == 0)
1446 {
1447 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1448 return size_zero_node;
1449 }
1450
1451 if (TREE_CODE (t) == INTEGER_CST)
1452 t = force_fit_type (t, 0, false, false);
1453
1454 return t;
1455 }
1456
1457 /* Return the size of TYPE (in bytes) as a wide integer
1458 or return -1 if the size can vary or is larger than an integer. */
1459
1460 HOST_WIDE_INT
1461 int_size_in_bytes (tree type)
1462 {
1463 tree t;
1464
1465 if (type == error_mark_node)
1466 return 0;
1467
1468 type = TYPE_MAIN_VARIANT (type);
1469 t = TYPE_SIZE_UNIT (type);
1470 if (t == 0
1471 || TREE_CODE (t) != INTEGER_CST
1472 || TREE_OVERFLOW (t)
1473 || TREE_INT_CST_HIGH (t) != 0
1474 /* If the result would appear negative, it's too big to represent. */
1475 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1476 return -1;
1477
1478 return TREE_INT_CST_LOW (t);
1479 }
1480 \f
1481 /* Return the bit position of FIELD, in bits from the start of the record.
1482 This is a tree of type bitsizetype. */
1483
1484 tree
1485 bit_position (tree field)
1486 {
1487 return bit_from_pos (DECL_FIELD_OFFSET (field),
1488 DECL_FIELD_BIT_OFFSET (field));
1489 }
1490
1491 /* Likewise, but return as an integer. Abort if it cannot be represented
1492 in that way (since it could be a signed value, we don't have the option
1493 of returning -1 like int_size_in_byte can. */
1494
1495 HOST_WIDE_INT
1496 int_bit_position (tree field)
1497 {
1498 return tree_low_cst (bit_position (field), 0);
1499 }
1500 \f
1501 /* Return the byte position of FIELD, in bytes from the start of the record.
1502 This is a tree of type sizetype. */
1503
1504 tree
1505 byte_position (tree field)
1506 {
1507 return byte_from_pos (DECL_FIELD_OFFSET (field),
1508 DECL_FIELD_BIT_OFFSET (field));
1509 }
1510
1511 /* Likewise, but return as an integer. Abort if it cannot be represented
1512 in that way (since it could be a signed value, we don't have the option
1513 of returning -1 like int_size_in_byte can. */
1514
1515 HOST_WIDE_INT
1516 int_byte_position (tree field)
1517 {
1518 return tree_low_cst (byte_position (field), 0);
1519 }
1520 \f
1521 /* Return the strictest alignment, in bits, that T is known to have. */
1522
1523 unsigned int
1524 expr_align (tree t)
1525 {
1526 unsigned int align0, align1;
1527
1528 switch (TREE_CODE (t))
1529 {
1530 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1531 /* If we have conversions, we know that the alignment of the
1532 object must meet each of the alignments of the types. */
1533 align0 = expr_align (TREE_OPERAND (t, 0));
1534 align1 = TYPE_ALIGN (TREE_TYPE (t));
1535 return MAX (align0, align1);
1536
1537 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1538 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1539 case CLEANUP_POINT_EXPR:
1540 /* These don't change the alignment of an object. */
1541 return expr_align (TREE_OPERAND (t, 0));
1542
1543 case COND_EXPR:
1544 /* The best we can do is say that the alignment is the least aligned
1545 of the two arms. */
1546 align0 = expr_align (TREE_OPERAND (t, 1));
1547 align1 = expr_align (TREE_OPERAND (t, 2));
1548 return MIN (align0, align1);
1549
1550 case LABEL_DECL: case CONST_DECL:
1551 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1552 if (DECL_ALIGN (t) != 0)
1553 return DECL_ALIGN (t);
1554 break;
1555
1556 case FUNCTION_DECL:
1557 return FUNCTION_BOUNDARY;
1558
1559 default:
1560 break;
1561 }
1562
1563 /* Otherwise take the alignment from that of the type. */
1564 return TYPE_ALIGN (TREE_TYPE (t));
1565 }
1566 \f
1567 /* Return, as a tree node, the number of elements for TYPE (which is an
1568 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1569
1570 tree
1571 array_type_nelts (tree type)
1572 {
1573 tree index_type, min, max;
1574
1575 /* If they did it with unspecified bounds, then we should have already
1576 given an error about it before we got here. */
1577 if (! TYPE_DOMAIN (type))
1578 return error_mark_node;
1579
1580 index_type = TYPE_DOMAIN (type);
1581 min = TYPE_MIN_VALUE (index_type);
1582 max = TYPE_MAX_VALUE (index_type);
1583
1584 return (integer_zerop (min)
1585 ? max
1586 : fold (build2 (MINUS_EXPR, TREE_TYPE (max), max, min)));
1587 }
1588 \f
1589 /* If arg is static -- a reference to an object in static storage -- then
1590 return the object. This is not the same as the C meaning of `static'.
1591 If arg isn't static, return NULL. */
1592
1593 tree
1594 staticp (tree arg)
1595 {
1596 switch (TREE_CODE (arg))
1597 {
1598 case FUNCTION_DECL:
1599 /* Nested functions are static, even though taking their address will
1600 involve a trampoline as we unnest the nested function and create
1601 the trampoline on the tree level. */
1602 return arg;
1603
1604 case VAR_DECL:
1605 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1606 && ! DECL_THREAD_LOCAL (arg)
1607 && ! DECL_NON_ADDR_CONST_P (arg)
1608 ? arg : NULL);
1609
1610 case CONST_DECL:
1611 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1612 ? arg : NULL);
1613
1614 case CONSTRUCTOR:
1615 return TREE_STATIC (arg) ? arg : NULL;
1616
1617 case LABEL_DECL:
1618 case STRING_CST:
1619 return arg;
1620
1621 case COMPONENT_REF:
1622 /* If the thing being referenced is not a field, then it is
1623 something language specific. */
1624 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1625 return (*lang_hooks.staticp) (arg);
1626
1627 /* If we are referencing a bitfield, we can't evaluate an
1628 ADDR_EXPR at compile time and so it isn't a constant. */
1629 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
1630 return NULL;
1631
1632 return staticp (TREE_OPERAND (arg, 0));
1633
1634 case BIT_FIELD_REF:
1635 return NULL;
1636
1637 case MISALIGNED_INDIRECT_REF:
1638 case ALIGN_INDIRECT_REF:
1639 case INDIRECT_REF:
1640 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
1641
1642 case ARRAY_REF:
1643 case ARRAY_RANGE_REF:
1644 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1645 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1646 return staticp (TREE_OPERAND (arg, 0));
1647 else
1648 return false;
1649
1650 default:
1651 if ((unsigned int) TREE_CODE (arg)
1652 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1653 return lang_hooks.staticp (arg);
1654 else
1655 return NULL;
1656 }
1657 }
1658 \f
1659 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1660 Do this to any expression which may be used in more than one place,
1661 but must be evaluated only once.
1662
1663 Normally, expand_expr would reevaluate the expression each time.
1664 Calling save_expr produces something that is evaluated and recorded
1665 the first time expand_expr is called on it. Subsequent calls to
1666 expand_expr just reuse the recorded value.
1667
1668 The call to expand_expr that generates code that actually computes
1669 the value is the first call *at compile time*. Subsequent calls
1670 *at compile time* generate code to use the saved value.
1671 This produces correct result provided that *at run time* control
1672 always flows through the insns made by the first expand_expr
1673 before reaching the other places where the save_expr was evaluated.
1674 You, the caller of save_expr, must make sure this is so.
1675
1676 Constants, and certain read-only nodes, are returned with no
1677 SAVE_EXPR because that is safe. Expressions containing placeholders
1678 are not touched; see tree.def for an explanation of what these
1679 are used for. */
1680
1681 tree
1682 save_expr (tree expr)
1683 {
1684 tree t = fold (expr);
1685 tree inner;
1686
1687 /* If the tree evaluates to a constant, then we don't want to hide that
1688 fact (i.e. this allows further folding, and direct checks for constants).
1689 However, a read-only object that has side effects cannot be bypassed.
1690 Since it is no problem to reevaluate literals, we just return the
1691 literal node. */
1692 inner = skip_simple_arithmetic (t);
1693
1694 if (TREE_INVARIANT (inner)
1695 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1696 || TREE_CODE (inner) == SAVE_EXPR
1697 || TREE_CODE (inner) == ERROR_MARK)
1698 return t;
1699
1700 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1701 it means that the size or offset of some field of an object depends on
1702 the value within another field.
1703
1704 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1705 and some variable since it would then need to be both evaluated once and
1706 evaluated more than once. Front-ends must assure this case cannot
1707 happen by surrounding any such subexpressions in their own SAVE_EXPR
1708 and forcing evaluation at the proper time. */
1709 if (contains_placeholder_p (inner))
1710 return t;
1711
1712 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
1713
1714 /* This expression might be placed ahead of a jump to ensure that the
1715 value was computed on both sides of the jump. So make sure it isn't
1716 eliminated as dead. */
1717 TREE_SIDE_EFFECTS (t) = 1;
1718 TREE_INVARIANT (t) = 1;
1719 return t;
1720 }
1721
1722 /* Look inside EXPR and into any simple arithmetic operations. Return
1723 the innermost non-arithmetic node. */
1724
1725 tree
1726 skip_simple_arithmetic (tree expr)
1727 {
1728 tree inner;
1729
1730 /* We don't care about whether this can be used as an lvalue in this
1731 context. */
1732 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1733 expr = TREE_OPERAND (expr, 0);
1734
1735 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1736 a constant, it will be more efficient to not make another SAVE_EXPR since
1737 it will allow better simplification and GCSE will be able to merge the
1738 computations if they actually occur. */
1739 inner = expr;
1740 while (1)
1741 {
1742 if (UNARY_CLASS_P (inner))
1743 inner = TREE_OPERAND (inner, 0);
1744 else if (BINARY_CLASS_P (inner))
1745 {
1746 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
1747 inner = TREE_OPERAND (inner, 0);
1748 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
1749 inner = TREE_OPERAND (inner, 1);
1750 else
1751 break;
1752 }
1753 else
1754 break;
1755 }
1756
1757 return inner;
1758 }
1759
1760 /* Return which tree structure is used by T. */
1761
1762 enum tree_node_structure_enum
1763 tree_node_structure (tree t)
1764 {
1765 enum tree_code code = TREE_CODE (t);
1766
1767 switch (TREE_CODE_CLASS (code))
1768 {
1769 case tcc_declaration:
1770 return TS_DECL;
1771 case tcc_type:
1772 return TS_TYPE;
1773 case tcc_reference:
1774 case tcc_comparison:
1775 case tcc_unary:
1776 case tcc_binary:
1777 case tcc_expression:
1778 case tcc_statement:
1779 return TS_EXP;
1780 default: /* tcc_constant and tcc_exceptional */
1781 break;
1782 }
1783 switch (code)
1784 {
1785 /* tcc_constant cases. */
1786 case INTEGER_CST: return TS_INT_CST;
1787 case REAL_CST: return TS_REAL_CST;
1788 case COMPLEX_CST: return TS_COMPLEX;
1789 case VECTOR_CST: return TS_VECTOR;
1790 case STRING_CST: return TS_STRING;
1791 /* tcc_exceptional cases. */
1792 case ERROR_MARK: return TS_COMMON;
1793 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1794 case TREE_LIST: return TS_LIST;
1795 case TREE_VEC: return TS_VEC;
1796 case PHI_NODE: return TS_PHI_NODE;
1797 case SSA_NAME: return TS_SSA_NAME;
1798 case PLACEHOLDER_EXPR: return TS_COMMON;
1799 case STATEMENT_LIST: return TS_STATEMENT_LIST;
1800 case BLOCK: return TS_BLOCK;
1801 case TREE_BINFO: return TS_BINFO;
1802 case VALUE_HANDLE: return TS_VALUE_HANDLE;
1803
1804 default:
1805 gcc_unreachable ();
1806 }
1807 }
1808 \f
1809 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1810 or offset that depends on a field within a record. */
1811
1812 bool
1813 contains_placeholder_p (tree exp)
1814 {
1815 enum tree_code code;
1816
1817 if (!exp)
1818 return 0;
1819
1820 code = TREE_CODE (exp);
1821 if (code == PLACEHOLDER_EXPR)
1822 return 1;
1823
1824 switch (TREE_CODE_CLASS (code))
1825 {
1826 case tcc_reference:
1827 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1828 position computations since they will be converted into a
1829 WITH_RECORD_EXPR involving the reference, which will assume
1830 here will be valid. */
1831 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1832
1833 case tcc_exceptional:
1834 if (code == TREE_LIST)
1835 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
1836 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
1837 break;
1838
1839 case tcc_unary:
1840 case tcc_binary:
1841 case tcc_comparison:
1842 case tcc_expression:
1843 switch (code)
1844 {
1845 case COMPOUND_EXPR:
1846 /* Ignoring the first operand isn't quite right, but works best. */
1847 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1848
1849 case COND_EXPR:
1850 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1851 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
1852 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
1853
1854 default:
1855 break;
1856 }
1857
1858 switch (TREE_CODE_LENGTH (code))
1859 {
1860 case 1:
1861 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1862 case 2:
1863 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1864 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
1865 default:
1866 return 0;
1867 }
1868
1869 default:
1870 return 0;
1871 }
1872 return 0;
1873 }
1874
1875 /* Return true if any part of the computation of TYPE involves a
1876 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
1877 (for QUAL_UNION_TYPE) and field positions. */
1878
1879 static bool
1880 type_contains_placeholder_1 (tree type)
1881 {
1882 /* If the size contains a placeholder or the parent type (component type in
1883 the case of arrays) type involves a placeholder, this type does. */
1884 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
1885 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
1886 || (TREE_TYPE (type) != 0
1887 && type_contains_placeholder_p (TREE_TYPE (type))))
1888 return true;
1889
1890 /* Now do type-specific checks. Note that the last part of the check above
1891 greatly limits what we have to do below. */
1892 switch (TREE_CODE (type))
1893 {
1894 case VOID_TYPE:
1895 case COMPLEX_TYPE:
1896 case ENUMERAL_TYPE:
1897 case BOOLEAN_TYPE:
1898 case CHAR_TYPE:
1899 case POINTER_TYPE:
1900 case OFFSET_TYPE:
1901 case REFERENCE_TYPE:
1902 case METHOD_TYPE:
1903 case FILE_TYPE:
1904 case FUNCTION_TYPE:
1905 case VECTOR_TYPE:
1906 return false;
1907
1908 case INTEGER_TYPE:
1909 case REAL_TYPE:
1910 /* Here we just check the bounds. */
1911 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
1912 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
1913
1914 case ARRAY_TYPE:
1915 /* We're already checked the component type (TREE_TYPE), so just check
1916 the index type. */
1917 return type_contains_placeholder_p (TYPE_DOMAIN (type));
1918
1919 case RECORD_TYPE:
1920 case UNION_TYPE:
1921 case QUAL_UNION_TYPE:
1922 {
1923 tree field;
1924
1925 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1926 if (TREE_CODE (field) == FIELD_DECL
1927 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
1928 || (TREE_CODE (type) == QUAL_UNION_TYPE
1929 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
1930 || type_contains_placeholder_p (TREE_TYPE (field))))
1931 return true;
1932
1933 return false;
1934 }
1935
1936 default:
1937 gcc_unreachable ();
1938 }
1939 }
1940
1941 bool
1942 type_contains_placeholder_p (tree type)
1943 {
1944 bool result;
1945
1946 /* If the contains_placeholder_bits field has been initialized,
1947 then we know the answer. */
1948 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
1949 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
1950
1951 /* Indicate that we've seen this type node, and the answer is false.
1952 This is what we want to return if we run into recursion via fields. */
1953 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
1954
1955 /* Compute the real value. */
1956 result = type_contains_placeholder_1 (type);
1957
1958 /* Store the real value. */
1959 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
1960
1961 return result;
1962 }
1963 \f
1964 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1965 return a tree with all occurrences of references to F in a
1966 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1967 contains only arithmetic expressions or a CALL_EXPR with a
1968 PLACEHOLDER_EXPR occurring only in its arglist. */
1969
1970 tree
1971 substitute_in_expr (tree exp, tree f, tree r)
1972 {
1973 enum tree_code code = TREE_CODE (exp);
1974 tree op0, op1, op2;
1975 tree new;
1976 tree inner;
1977
1978 /* We handle TREE_LIST and COMPONENT_REF separately. */
1979 if (code == TREE_LIST)
1980 {
1981 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
1982 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
1983 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1984 return exp;
1985
1986 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1987 }
1988 else if (code == COMPONENT_REF)
1989 {
1990 /* If this expression is getting a value from a PLACEHOLDER_EXPR
1991 and it is the right field, replace it with R. */
1992 for (inner = TREE_OPERAND (exp, 0);
1993 REFERENCE_CLASS_P (inner);
1994 inner = TREE_OPERAND (inner, 0))
1995 ;
1996 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1997 && TREE_OPERAND (exp, 1) == f)
1998 return r;
1999
2000 /* If this expression hasn't been completed let, leave it alone. */
2001 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
2002 return exp;
2003
2004 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2005 if (op0 == TREE_OPERAND (exp, 0))
2006 return exp;
2007
2008 new = fold (build3 (COMPONENT_REF, TREE_TYPE (exp),
2009 op0, TREE_OPERAND (exp, 1), NULL_TREE));
2010 }
2011 else
2012 switch (TREE_CODE_CLASS (code))
2013 {
2014 case tcc_constant:
2015 case tcc_declaration:
2016 return exp;
2017
2018 case tcc_exceptional:
2019 case tcc_unary:
2020 case tcc_binary:
2021 case tcc_comparison:
2022 case tcc_expression:
2023 case tcc_reference:
2024 switch (TREE_CODE_LENGTH (code))
2025 {
2026 case 0:
2027 return exp;
2028
2029 case 1:
2030 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2031 if (op0 == TREE_OPERAND (exp, 0))
2032 return exp;
2033
2034 new = fold (build1 (code, TREE_TYPE (exp), op0));
2035 break;
2036
2037 case 2:
2038 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2039 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2040
2041 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2042 return exp;
2043
2044 new = fold (build2 (code, TREE_TYPE (exp), op0, op1));
2045 break;
2046
2047 case 3:
2048 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2049 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2050 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2051
2052 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2053 && op2 == TREE_OPERAND (exp, 2))
2054 return exp;
2055
2056 new = fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
2057 break;
2058
2059 default:
2060 gcc_unreachable ();
2061 }
2062 break;
2063
2064 default:
2065 gcc_unreachable ();
2066 }
2067
2068 TREE_READONLY (new) = TREE_READONLY (exp);
2069 return new;
2070 }
2071
2072 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2073 for it within OBJ, a tree that is an object or a chain of references. */
2074
2075 tree
2076 substitute_placeholder_in_expr (tree exp, tree obj)
2077 {
2078 enum tree_code code = TREE_CODE (exp);
2079 tree op0, op1, op2, op3;
2080
2081 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2082 in the chain of OBJ. */
2083 if (code == PLACEHOLDER_EXPR)
2084 {
2085 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2086 tree elt;
2087
2088 for (elt = obj; elt != 0;
2089 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2090 || TREE_CODE (elt) == COND_EXPR)
2091 ? TREE_OPERAND (elt, 1)
2092 : (REFERENCE_CLASS_P (elt)
2093 || UNARY_CLASS_P (elt)
2094 || BINARY_CLASS_P (elt)
2095 || EXPRESSION_CLASS_P (elt))
2096 ? TREE_OPERAND (elt, 0) : 0))
2097 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2098 return elt;
2099
2100 for (elt = obj; elt != 0;
2101 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2102 || TREE_CODE (elt) == COND_EXPR)
2103 ? TREE_OPERAND (elt, 1)
2104 : (REFERENCE_CLASS_P (elt)
2105 || UNARY_CLASS_P (elt)
2106 || BINARY_CLASS_P (elt)
2107 || EXPRESSION_CLASS_P (elt))
2108 ? TREE_OPERAND (elt, 0) : 0))
2109 if (POINTER_TYPE_P (TREE_TYPE (elt))
2110 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2111 == need_type))
2112 return fold (build1 (INDIRECT_REF, need_type, elt));
2113
2114 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2115 survives until RTL generation, there will be an error. */
2116 return exp;
2117 }
2118
2119 /* TREE_LIST is special because we need to look at TREE_VALUE
2120 and TREE_CHAIN, not TREE_OPERANDS. */
2121 else if (code == TREE_LIST)
2122 {
2123 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2124 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2125 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2126 return exp;
2127
2128 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2129 }
2130 else
2131 switch (TREE_CODE_CLASS (code))
2132 {
2133 case tcc_constant:
2134 case tcc_declaration:
2135 return exp;
2136
2137 case tcc_exceptional:
2138 case tcc_unary:
2139 case tcc_binary:
2140 case tcc_comparison:
2141 case tcc_expression:
2142 case tcc_reference:
2143 case tcc_statement:
2144 switch (TREE_CODE_LENGTH (code))
2145 {
2146 case 0:
2147 return exp;
2148
2149 case 1:
2150 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2151 if (op0 == TREE_OPERAND (exp, 0))
2152 return exp;
2153 else
2154 return fold (build1 (code, TREE_TYPE (exp), op0));
2155
2156 case 2:
2157 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2158 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2159
2160 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2161 return exp;
2162 else
2163 return fold (build2 (code, TREE_TYPE (exp), op0, op1));
2164
2165 case 3:
2166 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2167 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2168 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2169
2170 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2171 && op2 == TREE_OPERAND (exp, 2))
2172 return exp;
2173 else
2174 return fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
2175
2176 case 4:
2177 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2178 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2179 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2180 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2181
2182 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2183 && op2 == TREE_OPERAND (exp, 2)
2184 && op3 == TREE_OPERAND (exp, 3))
2185 return exp;
2186 else
2187 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2188
2189 default:
2190 gcc_unreachable ();
2191 }
2192 break;
2193
2194 default:
2195 gcc_unreachable ();
2196 }
2197 }
2198 \f
2199 /* Stabilize a reference so that we can use it any number of times
2200 without causing its operands to be evaluated more than once.
2201 Returns the stabilized reference. This works by means of save_expr,
2202 so see the caveats in the comments about save_expr.
2203
2204 Also allows conversion expressions whose operands are references.
2205 Any other kind of expression is returned unchanged. */
2206
2207 tree
2208 stabilize_reference (tree ref)
2209 {
2210 tree result;
2211 enum tree_code code = TREE_CODE (ref);
2212
2213 switch (code)
2214 {
2215 case VAR_DECL:
2216 case PARM_DECL:
2217 case RESULT_DECL:
2218 /* No action is needed in this case. */
2219 return ref;
2220
2221 case NOP_EXPR:
2222 case CONVERT_EXPR:
2223 case FLOAT_EXPR:
2224 case FIX_TRUNC_EXPR:
2225 case FIX_FLOOR_EXPR:
2226 case FIX_ROUND_EXPR:
2227 case FIX_CEIL_EXPR:
2228 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2229 break;
2230
2231 case INDIRECT_REF:
2232 result = build_nt (INDIRECT_REF,
2233 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2234 break;
2235
2236 case COMPONENT_REF:
2237 result = build_nt (COMPONENT_REF,
2238 stabilize_reference (TREE_OPERAND (ref, 0)),
2239 TREE_OPERAND (ref, 1), NULL_TREE);
2240 break;
2241
2242 case BIT_FIELD_REF:
2243 result = build_nt (BIT_FIELD_REF,
2244 stabilize_reference (TREE_OPERAND (ref, 0)),
2245 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2246 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2247 break;
2248
2249 case ARRAY_REF:
2250 result = build_nt (ARRAY_REF,
2251 stabilize_reference (TREE_OPERAND (ref, 0)),
2252 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2253 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2254 break;
2255
2256 case ARRAY_RANGE_REF:
2257 result = build_nt (ARRAY_RANGE_REF,
2258 stabilize_reference (TREE_OPERAND (ref, 0)),
2259 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2260 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2261 break;
2262
2263 case COMPOUND_EXPR:
2264 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2265 it wouldn't be ignored. This matters when dealing with
2266 volatiles. */
2267 return stabilize_reference_1 (ref);
2268
2269 /* If arg isn't a kind of lvalue we recognize, make no change.
2270 Caller should recognize the error for an invalid lvalue. */
2271 default:
2272 return ref;
2273
2274 case ERROR_MARK:
2275 return error_mark_node;
2276 }
2277
2278 TREE_TYPE (result) = TREE_TYPE (ref);
2279 TREE_READONLY (result) = TREE_READONLY (ref);
2280 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2281 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2282
2283 return result;
2284 }
2285
2286 /* Subroutine of stabilize_reference; this is called for subtrees of
2287 references. Any expression with side-effects must be put in a SAVE_EXPR
2288 to ensure that it is only evaluated once.
2289
2290 We don't put SAVE_EXPR nodes around everything, because assigning very
2291 simple expressions to temporaries causes us to miss good opportunities
2292 for optimizations. Among other things, the opportunity to fold in the
2293 addition of a constant into an addressing mode often gets lost, e.g.
2294 "y[i+1] += x;". In general, we take the approach that we should not make
2295 an assignment unless we are forced into it - i.e., that any non-side effect
2296 operator should be allowed, and that cse should take care of coalescing
2297 multiple utterances of the same expression should that prove fruitful. */
2298
2299 tree
2300 stabilize_reference_1 (tree e)
2301 {
2302 tree result;
2303 enum tree_code code = TREE_CODE (e);
2304
2305 /* We cannot ignore const expressions because it might be a reference
2306 to a const array but whose index contains side-effects. But we can
2307 ignore things that are actual constant or that already have been
2308 handled by this function. */
2309
2310 if (TREE_INVARIANT (e))
2311 return e;
2312
2313 switch (TREE_CODE_CLASS (code))
2314 {
2315 case tcc_exceptional:
2316 case tcc_type:
2317 case tcc_declaration:
2318 case tcc_comparison:
2319 case tcc_statement:
2320 case tcc_expression:
2321 case tcc_reference:
2322 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2323 so that it will only be evaluated once. */
2324 /* The reference (r) and comparison (<) classes could be handled as
2325 below, but it is generally faster to only evaluate them once. */
2326 if (TREE_SIDE_EFFECTS (e))
2327 return save_expr (e);
2328 return e;
2329
2330 case tcc_constant:
2331 /* Constants need no processing. In fact, we should never reach
2332 here. */
2333 return e;
2334
2335 case tcc_binary:
2336 /* Division is slow and tends to be compiled with jumps,
2337 especially the division by powers of 2 that is often
2338 found inside of an array reference. So do it just once. */
2339 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2340 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2341 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2342 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2343 return save_expr (e);
2344 /* Recursively stabilize each operand. */
2345 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2346 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2347 break;
2348
2349 case tcc_unary:
2350 /* Recursively stabilize each operand. */
2351 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2352 break;
2353
2354 default:
2355 gcc_unreachable ();
2356 }
2357
2358 TREE_TYPE (result) = TREE_TYPE (e);
2359 TREE_READONLY (result) = TREE_READONLY (e);
2360 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2361 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2362 TREE_INVARIANT (result) = 1;
2363
2364 return result;
2365 }
2366 \f
2367 /* Low-level constructors for expressions. */
2368
2369 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2370 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2371
2372 void
2373 recompute_tree_invarant_for_addr_expr (tree t)
2374 {
2375 tree node;
2376 bool tc = true, ti = true, se = false;
2377
2378 /* We started out assuming this address is both invariant and constant, but
2379 does not have side effects. Now go down any handled components and see if
2380 any of them involve offsets that are either non-constant or non-invariant.
2381 Also check for side-effects.
2382
2383 ??? Note that this code makes no attempt to deal with the case where
2384 taking the address of something causes a copy due to misalignment. */
2385
2386 #define UPDATE_TITCSE(NODE) \
2387 do { tree _node = (NODE); \
2388 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2389 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2390 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2391
2392 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2393 node = TREE_OPERAND (node, 0))
2394 {
2395 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2396 array reference (probably made temporarily by the G++ front end),
2397 so ignore all the operands. */
2398 if ((TREE_CODE (node) == ARRAY_REF
2399 || TREE_CODE (node) == ARRAY_RANGE_REF)
2400 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2401 {
2402 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2403 if (TREE_OPERAND (node, 2))
2404 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2405 if (TREE_OPERAND (node, 3))
2406 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2407 }
2408 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2409 FIELD_DECL, apparently. The G++ front end can put something else
2410 there, at least temporarily. */
2411 else if (TREE_CODE (node) == COMPONENT_REF
2412 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2413 {
2414 if (TREE_OPERAND (node, 2))
2415 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2416 }
2417 else if (TREE_CODE (node) == BIT_FIELD_REF)
2418 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2419 }
2420
2421 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2422 the address, since &(*a)->b is a form of addition. If it's a decl, it's
2423 invariant and constant if the decl is static. It's also invariant if it's
2424 a decl in the current function. Taking the address of a volatile variable
2425 is not volatile. If it's a constant, the address is both invariant and
2426 constant. Otherwise it's neither. */
2427 if (TREE_CODE (node) == INDIRECT_REF)
2428 UPDATE_TITCSE (TREE_OPERAND (node, 0));
2429 else if (DECL_P (node))
2430 {
2431 if (staticp (node))
2432 ;
2433 else if (decl_function_context (node) == current_function_decl
2434 /* Addresses of thread-local variables are invariant. */
2435 || (TREE_CODE (node) == VAR_DECL && DECL_THREAD_LOCAL (node)))
2436 tc = false;
2437 else
2438 ti = tc = false;
2439 }
2440 else if (CONSTANT_CLASS_P (node))
2441 ;
2442 else
2443 {
2444 ti = tc = false;
2445 se |= TREE_SIDE_EFFECTS (node);
2446 }
2447
2448 TREE_CONSTANT (t) = tc;
2449 TREE_INVARIANT (t) = ti;
2450 TREE_SIDE_EFFECTS (t) = se;
2451 #undef UPDATE_TITCSE
2452 }
2453
2454 /* Build an expression of code CODE, data type TYPE, and operands as
2455 specified. Expressions and reference nodes can be created this way.
2456 Constants, decls, types and misc nodes cannot be.
2457
2458 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2459 enough for all extant tree codes. These functions can be called
2460 directly (preferably!), but can also be obtained via GCC preprocessor
2461 magic within the build macro. */
2462
2463 tree
2464 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2465 {
2466 tree t;
2467
2468 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2469
2470 t = make_node_stat (code PASS_MEM_STAT);
2471 TREE_TYPE (t) = tt;
2472
2473 return t;
2474 }
2475
2476 tree
2477 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2478 {
2479 int length = sizeof (struct tree_exp);
2480 #ifdef GATHER_STATISTICS
2481 tree_node_kind kind;
2482 #endif
2483 tree t;
2484
2485 #ifdef GATHER_STATISTICS
2486 switch (TREE_CODE_CLASS (code))
2487 {
2488 case tcc_statement: /* an expression with side effects */
2489 kind = s_kind;
2490 break;
2491 case tcc_reference: /* a reference */
2492 kind = r_kind;
2493 break;
2494 default:
2495 kind = e_kind;
2496 break;
2497 }
2498
2499 tree_node_counts[(int) kind]++;
2500 tree_node_sizes[(int) kind] += length;
2501 #endif
2502
2503 gcc_assert (TREE_CODE_LENGTH (code) == 1);
2504
2505 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
2506
2507 memset (t, 0, sizeof (struct tree_common));
2508
2509 TREE_SET_CODE (t, code);
2510
2511 TREE_TYPE (t) = type;
2512 #ifdef USE_MAPPED_LOCATION
2513 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2514 #else
2515 SET_EXPR_LOCUS (t, NULL);
2516 #endif
2517 TREE_COMPLEXITY (t) = 0;
2518 TREE_OPERAND (t, 0) = node;
2519 TREE_BLOCK (t) = NULL_TREE;
2520 if (node && !TYPE_P (node))
2521 {
2522 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2523 TREE_READONLY (t) = TREE_READONLY (node);
2524 }
2525
2526 if (TREE_CODE_CLASS (code) == tcc_statement)
2527 TREE_SIDE_EFFECTS (t) = 1;
2528 else switch (code)
2529 {
2530 case INIT_EXPR:
2531 case MODIFY_EXPR:
2532 case VA_ARG_EXPR:
2533 case PREDECREMENT_EXPR:
2534 case PREINCREMENT_EXPR:
2535 case POSTDECREMENT_EXPR:
2536 case POSTINCREMENT_EXPR:
2537 /* All of these have side-effects, no matter what their
2538 operands are. */
2539 TREE_SIDE_EFFECTS (t) = 1;
2540 TREE_READONLY (t) = 0;
2541 break;
2542
2543 case MISALIGNED_INDIRECT_REF:
2544 case ALIGN_INDIRECT_REF:
2545 case INDIRECT_REF:
2546 /* Whether a dereference is readonly has nothing to do with whether
2547 its operand is readonly. */
2548 TREE_READONLY (t) = 0;
2549 break;
2550
2551 case ADDR_EXPR:
2552 if (node)
2553 recompute_tree_invarant_for_addr_expr (t);
2554 break;
2555
2556 default:
2557 if (TREE_CODE_CLASS (code) == tcc_unary
2558 && node && !TYPE_P (node)
2559 && TREE_CONSTANT (node))
2560 TREE_CONSTANT (t) = 1;
2561 if (TREE_CODE_CLASS (code) == tcc_unary
2562 && node && TREE_INVARIANT (node))
2563 TREE_INVARIANT (t) = 1;
2564 if (TREE_CODE_CLASS (code) == tcc_reference
2565 && node && TREE_THIS_VOLATILE (node))
2566 TREE_THIS_VOLATILE (t) = 1;
2567 break;
2568 }
2569
2570 return t;
2571 }
2572
2573 #define PROCESS_ARG(N) \
2574 do { \
2575 TREE_OPERAND (t, N) = arg##N; \
2576 if (arg##N &&!TYPE_P (arg##N)) \
2577 { \
2578 if (TREE_SIDE_EFFECTS (arg##N)) \
2579 side_effects = 1; \
2580 if (!TREE_READONLY (arg##N)) \
2581 read_only = 0; \
2582 if (!TREE_CONSTANT (arg##N)) \
2583 constant = 0; \
2584 if (!TREE_INVARIANT (arg##N)) \
2585 invariant = 0; \
2586 } \
2587 } while (0)
2588
2589 tree
2590 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2591 {
2592 bool constant, read_only, side_effects, invariant;
2593 tree t;
2594
2595 gcc_assert (TREE_CODE_LENGTH (code) == 2);
2596
2597 t = make_node_stat (code PASS_MEM_STAT);
2598 TREE_TYPE (t) = tt;
2599
2600 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2601 result based on those same flags for the arguments. But if the
2602 arguments aren't really even `tree' expressions, we shouldn't be trying
2603 to do this. */
2604
2605 /* Expressions without side effects may be constant if their
2606 arguments are as well. */
2607 constant = (TREE_CODE_CLASS (code) == tcc_comparison
2608 || TREE_CODE_CLASS (code) == tcc_binary);
2609 read_only = 1;
2610 side_effects = TREE_SIDE_EFFECTS (t);
2611 invariant = constant;
2612
2613 PROCESS_ARG(0);
2614 PROCESS_ARG(1);
2615
2616 TREE_READONLY (t) = read_only;
2617 TREE_CONSTANT (t) = constant;
2618 TREE_INVARIANT (t) = invariant;
2619 TREE_SIDE_EFFECTS (t) = side_effects;
2620 TREE_THIS_VOLATILE (t)
2621 = (TREE_CODE_CLASS (code) == tcc_reference
2622 && arg0 && TREE_THIS_VOLATILE (arg0));
2623
2624 return t;
2625 }
2626
2627 tree
2628 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2629 tree arg2 MEM_STAT_DECL)
2630 {
2631 bool constant, read_only, side_effects, invariant;
2632 tree t;
2633
2634 gcc_assert (TREE_CODE_LENGTH (code) == 3);
2635
2636 t = make_node_stat (code PASS_MEM_STAT);
2637 TREE_TYPE (t) = tt;
2638
2639 side_effects = TREE_SIDE_EFFECTS (t);
2640
2641 PROCESS_ARG(0);
2642 PROCESS_ARG(1);
2643 PROCESS_ARG(2);
2644
2645 if (code == CALL_EXPR && !side_effects)
2646 {
2647 tree node;
2648 int i;
2649
2650 /* Calls have side-effects, except those to const or
2651 pure functions. */
2652 i = call_expr_flags (t);
2653 if (!(i & (ECF_CONST | ECF_PURE)))
2654 side_effects = 1;
2655
2656 /* And even those have side-effects if their arguments do. */
2657 else for (node = arg1; node; node = TREE_CHAIN (node))
2658 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
2659 {
2660 side_effects = 1;
2661 break;
2662 }
2663 }
2664
2665 TREE_SIDE_EFFECTS (t) = side_effects;
2666 TREE_THIS_VOLATILE (t)
2667 = (TREE_CODE_CLASS (code) == tcc_reference
2668 && arg0 && TREE_THIS_VOLATILE (arg0));
2669
2670 return t;
2671 }
2672
2673 tree
2674 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2675 tree arg2, tree arg3 MEM_STAT_DECL)
2676 {
2677 bool constant, read_only, side_effects, invariant;
2678 tree t;
2679
2680 gcc_assert (TREE_CODE_LENGTH (code) == 4);
2681
2682 t = make_node_stat (code PASS_MEM_STAT);
2683 TREE_TYPE (t) = tt;
2684
2685 side_effects = TREE_SIDE_EFFECTS (t);
2686
2687 PROCESS_ARG(0);
2688 PROCESS_ARG(1);
2689 PROCESS_ARG(2);
2690 PROCESS_ARG(3);
2691
2692 TREE_SIDE_EFFECTS (t) = side_effects;
2693 TREE_THIS_VOLATILE (t)
2694 = (TREE_CODE_CLASS (code) == tcc_reference
2695 && arg0 && TREE_THIS_VOLATILE (arg0));
2696
2697 return t;
2698 }
2699
2700 /* Backup definition for non-gcc build compilers. */
2701
2702 tree
2703 (build) (enum tree_code code, tree tt, ...)
2704 {
2705 tree t, arg0, arg1, arg2, arg3;
2706 int length = TREE_CODE_LENGTH (code);
2707 va_list p;
2708
2709 va_start (p, tt);
2710 switch (length)
2711 {
2712 case 0:
2713 t = build0 (code, tt);
2714 break;
2715 case 1:
2716 arg0 = va_arg (p, tree);
2717 t = build1 (code, tt, arg0);
2718 break;
2719 case 2:
2720 arg0 = va_arg (p, tree);
2721 arg1 = va_arg (p, tree);
2722 t = build2 (code, tt, arg0, arg1);
2723 break;
2724 case 3:
2725 arg0 = va_arg (p, tree);
2726 arg1 = va_arg (p, tree);
2727 arg2 = va_arg (p, tree);
2728 t = build3 (code, tt, arg0, arg1, arg2);
2729 break;
2730 case 4:
2731 arg0 = va_arg (p, tree);
2732 arg1 = va_arg (p, tree);
2733 arg2 = va_arg (p, tree);
2734 arg3 = va_arg (p, tree);
2735 t = build4 (code, tt, arg0, arg1, arg2, arg3);
2736 break;
2737 default:
2738 gcc_unreachable ();
2739 }
2740 va_end (p);
2741
2742 return t;
2743 }
2744
2745 /* Similar except don't specify the TREE_TYPE
2746 and leave the TREE_SIDE_EFFECTS as 0.
2747 It is permissible for arguments to be null,
2748 or even garbage if their values do not matter. */
2749
2750 tree
2751 build_nt (enum tree_code code, ...)
2752 {
2753 tree t;
2754 int length;
2755 int i;
2756 va_list p;
2757
2758 va_start (p, code);
2759
2760 t = make_node (code);
2761 length = TREE_CODE_LENGTH (code);
2762
2763 for (i = 0; i < length; i++)
2764 TREE_OPERAND (t, i) = va_arg (p, tree);
2765
2766 va_end (p);
2767 return t;
2768 }
2769 \f
2770 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2771 We do NOT enter this node in any sort of symbol table.
2772
2773 layout_decl is used to set up the decl's storage layout.
2774 Other slots are initialized to 0 or null pointers. */
2775
2776 tree
2777 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
2778 {
2779 tree t;
2780
2781 t = make_node_stat (code PASS_MEM_STAT);
2782
2783 /* if (type == error_mark_node)
2784 type = integer_type_node; */
2785 /* That is not done, deliberately, so that having error_mark_node
2786 as the type can suppress useless errors in the use of this variable. */
2787
2788 DECL_NAME (t) = name;
2789 TREE_TYPE (t) = type;
2790
2791 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2792 layout_decl (t, 0);
2793 else if (code == FUNCTION_DECL)
2794 DECL_MODE (t) = FUNCTION_MODE;
2795
2796 /* Set default visibility to whatever the user supplied with
2797 visibility_specified depending on #pragma GCC visibility. */
2798 DECL_VISIBILITY (t) = default_visibility;
2799 DECL_VISIBILITY_SPECIFIED (t) = visibility_options.inpragma;
2800
2801 return t;
2802 }
2803 \f
2804 /* BLOCK nodes are used to represent the structure of binding contours
2805 and declarations, once those contours have been exited and their contents
2806 compiled. This information is used for outputting debugging info. */
2807
2808 tree
2809 build_block (tree vars, tree tags ATTRIBUTE_UNUSED, tree subblocks,
2810 tree supercontext, tree chain)
2811 {
2812 tree block = make_node (BLOCK);
2813
2814 BLOCK_VARS (block) = vars;
2815 BLOCK_SUBBLOCKS (block) = subblocks;
2816 BLOCK_SUPERCONTEXT (block) = supercontext;
2817 BLOCK_CHAIN (block) = chain;
2818 return block;
2819 }
2820
2821 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
2822 /* ??? gengtype doesn't handle conditionals */
2823 static GTY(()) tree last_annotated_node;
2824 #endif
2825
2826 #ifdef USE_MAPPED_LOCATION
2827
2828 expanded_location
2829 expand_location (source_location loc)
2830 {
2831 expanded_location xloc;
2832 if (loc == 0) { xloc.file = NULL; xloc.line = 0; xloc.column = 0; }
2833 else
2834 {
2835 const struct line_map *map = linemap_lookup (&line_table, loc);
2836 xloc.file = map->to_file;
2837 xloc.line = SOURCE_LINE (map, loc);
2838 xloc.column = SOURCE_COLUMN (map, loc);
2839 };
2840 return xloc;
2841 }
2842
2843 #else
2844
2845 /* Record the exact location where an expression or an identifier were
2846 encountered. */
2847
2848 void
2849 annotate_with_file_line (tree node, const char *file, int line)
2850 {
2851 /* Roughly one percent of the calls to this function are to annotate
2852 a node with the same information already attached to that node!
2853 Just return instead of wasting memory. */
2854 if (EXPR_LOCUS (node)
2855 && (EXPR_FILENAME (node) == file
2856 || ! strcmp (EXPR_FILENAME (node), file))
2857 && EXPR_LINENO (node) == line)
2858 {
2859 last_annotated_node = node;
2860 return;
2861 }
2862
2863 /* In heavily macroized code (such as GCC itself) this single
2864 entry cache can reduce the number of allocations by more
2865 than half. */
2866 if (last_annotated_node
2867 && EXPR_LOCUS (last_annotated_node)
2868 && (EXPR_FILENAME (last_annotated_node) == file
2869 || ! strcmp (EXPR_FILENAME (last_annotated_node), file))
2870 && EXPR_LINENO (last_annotated_node) == line)
2871 {
2872 SET_EXPR_LOCUS (node, EXPR_LOCUS (last_annotated_node));
2873 return;
2874 }
2875
2876 SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
2877 EXPR_LINENO (node) = line;
2878 EXPR_FILENAME (node) = file;
2879 last_annotated_node = node;
2880 }
2881
2882 void
2883 annotate_with_locus (tree node, location_t locus)
2884 {
2885 annotate_with_file_line (node, locus.file, locus.line);
2886 }
2887 #endif
2888 \f
2889 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2890 is ATTRIBUTE. */
2891
2892 tree
2893 build_decl_attribute_variant (tree ddecl, tree attribute)
2894 {
2895 DECL_ATTRIBUTES (ddecl) = attribute;
2896 return ddecl;
2897 }
2898
2899 /* Borrowed from hashtab.c iterative_hash implementation. */
2900 #define mix(a,b,c) \
2901 { \
2902 a -= b; a -= c; a ^= (c>>13); \
2903 b -= c; b -= a; b ^= (a<< 8); \
2904 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
2905 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
2906 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
2907 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
2908 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
2909 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
2910 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
2911 }
2912
2913
2914 /* Produce good hash value combining VAL and VAL2. */
2915 static inline hashval_t
2916 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
2917 {
2918 /* the golden ratio; an arbitrary value. */
2919 hashval_t a = 0x9e3779b9;
2920
2921 mix (a, val, val2);
2922 return val2;
2923 }
2924
2925 /* Produce good hash value combining PTR and VAL2. */
2926 static inline hashval_t
2927 iterative_hash_pointer (void *ptr, hashval_t val2)
2928 {
2929 if (sizeof (ptr) == sizeof (hashval_t))
2930 return iterative_hash_hashval_t ((size_t) ptr, val2);
2931 else
2932 {
2933 hashval_t a = (hashval_t) (size_t) ptr;
2934 /* Avoid warnings about shifting of more than the width of the type on
2935 hosts that won't execute this path. */
2936 int zero = 0;
2937 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
2938 mix (a, b, val2);
2939 return val2;
2940 }
2941 }
2942
2943 /* Produce good hash value combining VAL and VAL2. */
2944 static inline hashval_t
2945 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
2946 {
2947 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
2948 return iterative_hash_hashval_t (val, val2);
2949 else
2950 {
2951 hashval_t a = (hashval_t) val;
2952 /* Avoid warnings about shifting of more than the width of the type on
2953 hosts that won't execute this path. */
2954 int zero = 0;
2955 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
2956 mix (a, b, val2);
2957 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
2958 {
2959 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
2960 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
2961 mix (a, b, val2);
2962 }
2963 return val2;
2964 }
2965 }
2966
2967 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2968 is ATTRIBUTE.
2969
2970 Record such modified types already made so we don't make duplicates. */
2971
2972 tree
2973 build_type_attribute_variant (tree ttype, tree attribute)
2974 {
2975 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2976 {
2977 hashval_t hashcode = 0;
2978 tree ntype;
2979 enum tree_code code = TREE_CODE (ttype);
2980
2981 ntype = copy_node (ttype);
2982
2983 TYPE_POINTER_TO (ntype) = 0;
2984 TYPE_REFERENCE_TO (ntype) = 0;
2985 TYPE_ATTRIBUTES (ntype) = attribute;
2986
2987 /* Create a new main variant of TYPE. */
2988 TYPE_MAIN_VARIANT (ntype) = ntype;
2989 TYPE_NEXT_VARIANT (ntype) = 0;
2990 set_type_quals (ntype, TYPE_UNQUALIFIED);
2991
2992 hashcode = iterative_hash_object (code, hashcode);
2993 if (TREE_TYPE (ntype))
2994 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
2995 hashcode);
2996 hashcode = attribute_hash_list (attribute, hashcode);
2997
2998 switch (TREE_CODE (ntype))
2999 {
3000 case FUNCTION_TYPE:
3001 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3002 break;
3003 case ARRAY_TYPE:
3004 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3005 hashcode);
3006 break;
3007 case INTEGER_TYPE:
3008 hashcode = iterative_hash_object
3009 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3010 hashcode = iterative_hash_object
3011 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3012 break;
3013 case REAL_TYPE:
3014 {
3015 unsigned int precision = TYPE_PRECISION (ntype);
3016 hashcode = iterative_hash_object (precision, hashcode);
3017 }
3018 break;
3019 default:
3020 break;
3021 }
3022
3023 ntype = type_hash_canon (hashcode, ntype);
3024 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
3025 }
3026
3027 return ttype;
3028 }
3029
3030
3031 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3032 or zero if not.
3033
3034 We try both `text' and `__text__', ATTR may be either one. */
3035 /* ??? It might be a reasonable simplification to require ATTR to be only
3036 `text'. One might then also require attribute lists to be stored in
3037 their canonicalized form. */
3038
3039 static int
3040 is_attribute_with_length_p (const char *attr, int attr_len, tree ident)
3041 {
3042 int ident_len;
3043 const char *p;
3044
3045 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3046 return 0;
3047
3048 p = IDENTIFIER_POINTER (ident);
3049 ident_len = IDENTIFIER_LENGTH (ident);
3050
3051 if (ident_len == attr_len
3052 && strcmp (attr, p) == 0)
3053 return 1;
3054
3055 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3056 if (attr[0] == '_')
3057 {
3058 gcc_assert (attr[1] == '_');
3059 gcc_assert (attr[attr_len - 2] == '_');
3060 gcc_assert (attr[attr_len - 1] == '_');
3061 gcc_assert (attr[1] == '_');
3062 if (ident_len == attr_len - 4
3063 && strncmp (attr + 2, p, attr_len - 4) == 0)
3064 return 1;
3065 }
3066 else
3067 {
3068 if (ident_len == attr_len + 4
3069 && p[0] == '_' && p[1] == '_'
3070 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3071 && strncmp (attr, p + 2, attr_len) == 0)
3072 return 1;
3073 }
3074
3075 return 0;
3076 }
3077
3078 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3079 or zero if not.
3080
3081 We try both `text' and `__text__', ATTR may be either one. */
3082
3083 int
3084 is_attribute_p (const char *attr, tree ident)
3085 {
3086 return is_attribute_with_length_p (attr, strlen (attr), ident);
3087 }
3088
3089 /* Given an attribute name and a list of attributes, return a pointer to the
3090 attribute's list element if the attribute is part of the list, or NULL_TREE
3091 if not found. If the attribute appears more than once, this only
3092 returns the first occurrence; the TREE_CHAIN of the return value should
3093 be passed back in if further occurrences are wanted. */
3094
3095 tree
3096 lookup_attribute (const char *attr_name, tree list)
3097 {
3098 tree l;
3099 size_t attr_len = strlen (attr_name);
3100
3101 for (l = list; l; l = TREE_CHAIN (l))
3102 {
3103 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3104 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3105 return l;
3106 }
3107
3108 return NULL_TREE;
3109 }
3110
3111 /* Return an attribute list that is the union of a1 and a2. */
3112
3113 tree
3114 merge_attributes (tree a1, tree a2)
3115 {
3116 tree attributes;
3117
3118 /* Either one unset? Take the set one. */
3119
3120 if ((attributes = a1) == 0)
3121 attributes = a2;
3122
3123 /* One that completely contains the other? Take it. */
3124
3125 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3126 {
3127 if (attribute_list_contained (a2, a1))
3128 attributes = a2;
3129 else
3130 {
3131 /* Pick the longest list, and hang on the other list. */
3132
3133 if (list_length (a1) < list_length (a2))
3134 attributes = a2, a2 = a1;
3135
3136 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3137 {
3138 tree a;
3139 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3140 attributes);
3141 a != NULL_TREE;
3142 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3143 TREE_CHAIN (a)))
3144 {
3145 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
3146 break;
3147 }
3148 if (a == NULL_TREE)
3149 {
3150 a1 = copy_node (a2);
3151 TREE_CHAIN (a1) = attributes;
3152 attributes = a1;
3153 }
3154 }
3155 }
3156 }
3157 return attributes;
3158 }
3159
3160 /* Given types T1 and T2, merge their attributes and return
3161 the result. */
3162
3163 tree
3164 merge_type_attributes (tree t1, tree t2)
3165 {
3166 return merge_attributes (TYPE_ATTRIBUTES (t1),
3167 TYPE_ATTRIBUTES (t2));
3168 }
3169
3170 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3171 the result. */
3172
3173 tree
3174 merge_decl_attributes (tree olddecl, tree newdecl)
3175 {
3176 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3177 DECL_ATTRIBUTES (newdecl));
3178 }
3179
3180 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3181
3182 /* Specialization of merge_decl_attributes for various Windows targets.
3183
3184 This handles the following situation:
3185
3186 __declspec (dllimport) int foo;
3187 int foo;
3188
3189 The second instance of `foo' nullifies the dllimport. */
3190
3191 tree
3192 merge_dllimport_decl_attributes (tree old, tree new)
3193 {
3194 tree a;
3195 int delete_dllimport_p;
3196
3197 old = DECL_ATTRIBUTES (old);
3198 new = DECL_ATTRIBUTES (new);
3199
3200 /* What we need to do here is remove from `old' dllimport if it doesn't
3201 appear in `new'. dllimport behaves like extern: if a declaration is
3202 marked dllimport and a definition appears later, then the object
3203 is not dllimport'd. */
3204 if (lookup_attribute ("dllimport", old) != NULL_TREE
3205 && lookup_attribute ("dllimport", new) == NULL_TREE)
3206 delete_dllimport_p = 1;
3207 else
3208 delete_dllimport_p = 0;
3209
3210 a = merge_attributes (old, new);
3211
3212 if (delete_dllimport_p)
3213 {
3214 tree prev, t;
3215
3216 /* Scan the list for dllimport and delete it. */
3217 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3218 {
3219 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
3220 {
3221 if (prev == NULL_TREE)
3222 a = TREE_CHAIN (a);
3223 else
3224 TREE_CHAIN (prev) = TREE_CHAIN (t);
3225 break;
3226 }
3227 }
3228 }
3229
3230 return a;
3231 }
3232
3233 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
3234 struct attribute_spec.handler. */
3235
3236 tree
3237 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3238 bool *no_add_attrs)
3239 {
3240 tree node = *pnode;
3241
3242 /* These attributes may apply to structure and union types being created,
3243 but otherwise should pass to the declaration involved. */
3244 if (!DECL_P (node))
3245 {
3246 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3247 | (int) ATTR_FLAG_ARRAY_NEXT))
3248 {
3249 *no_add_attrs = true;
3250 return tree_cons (name, args, NULL_TREE);
3251 }
3252 if (TREE_CODE (node) != RECORD_TYPE && TREE_CODE (node) != UNION_TYPE)
3253 {
3254 warning ("%qs attribute ignored", IDENTIFIER_POINTER (name));
3255 *no_add_attrs = true;
3256 }
3257
3258 return NULL_TREE;
3259 }
3260
3261 /* Report error on dllimport ambiguities seen now before they cause
3262 any damage. */
3263 if (is_attribute_p ("dllimport", name))
3264 {
3265 /* Like MS, treat definition of dllimported variables and
3266 non-inlined functions on declaration as syntax errors. We
3267 allow the attribute for function definitions if declared
3268 inline. */
3269 if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node)
3270 && !DECL_DECLARED_INLINE_P (node))
3271 {
3272 error ("%Jfunction %qD definition is marked dllimport.", node, node);
3273 *no_add_attrs = true;
3274 }
3275
3276 else if (TREE_CODE (node) == VAR_DECL)
3277 {
3278 if (DECL_INITIAL (node))
3279 {
3280 error ("%Jvariable %qD definition is marked dllimport.",
3281 node, node);
3282 *no_add_attrs = true;
3283 }
3284
3285 /* `extern' needn't be specified with dllimport.
3286 Specify `extern' now and hope for the best. Sigh. */
3287 DECL_EXTERNAL (node) = 1;
3288 /* Also, implicitly give dllimport'd variables declared within
3289 a function global scope, unless declared static. */
3290 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
3291 TREE_PUBLIC (node) = 1;
3292 }
3293 }
3294
3295 /* Report error if symbol is not accessible at global scope. */
3296 if (!TREE_PUBLIC (node)
3297 && (TREE_CODE (node) == VAR_DECL
3298 || TREE_CODE (node) == FUNCTION_DECL))
3299 {
3300 error ("%Jexternal linkage required for symbol %qD because of "
3301 "%qs attribute.", node, node, IDENTIFIER_POINTER (name));
3302 *no_add_attrs = true;
3303 }
3304
3305 return NULL_TREE;
3306 }
3307
3308 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
3309 \f
3310 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3311 of the various TYPE_QUAL values. */
3312
3313 static void
3314 set_type_quals (tree type, int type_quals)
3315 {
3316 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3317 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3318 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3319 }
3320
3321 /* Returns true iff cand is equivalent to base with type_quals. */
3322
3323 bool
3324 check_qualified_type (tree cand, tree base, int type_quals)
3325 {
3326 return (TYPE_QUALS (cand) == type_quals
3327 && TYPE_NAME (cand) == TYPE_NAME (base)
3328 /* Apparently this is needed for Objective-C. */
3329 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
3330 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
3331 TYPE_ATTRIBUTES (base)));
3332 }
3333
3334 /* Return a version of the TYPE, qualified as indicated by the
3335 TYPE_QUALS, if one exists. If no qualified version exists yet,
3336 return NULL_TREE. */
3337
3338 tree
3339 get_qualified_type (tree type, int type_quals)
3340 {
3341 tree t;
3342
3343 if (TYPE_QUALS (type) == type_quals)
3344 return type;
3345
3346 /* Search the chain of variants to see if there is already one there just
3347 like the one we need to have. If so, use that existing one. We must
3348 preserve the TYPE_NAME, since there is code that depends on this. */
3349 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3350 if (check_qualified_type (t, type, type_quals))
3351 return t;
3352
3353 return NULL_TREE;
3354 }
3355
3356 /* Like get_qualified_type, but creates the type if it does not
3357 exist. This function never returns NULL_TREE. */
3358
3359 tree
3360 build_qualified_type (tree type, int type_quals)
3361 {
3362 tree t;
3363
3364 /* See if we already have the appropriate qualified variant. */
3365 t = get_qualified_type (type, type_quals);
3366
3367 /* If not, build it. */
3368 if (!t)
3369 {
3370 t = build_variant_type_copy (type);
3371 set_type_quals (t, type_quals);
3372 }
3373
3374 return t;
3375 }
3376
3377 /* Create a new distinct copy of TYPE. The new type is made its own
3378 MAIN_VARIANT. */
3379
3380 tree
3381 build_distinct_type_copy (tree type)
3382 {
3383 tree t = copy_node (type);
3384
3385 TYPE_POINTER_TO (t) = 0;
3386 TYPE_REFERENCE_TO (t) = 0;
3387
3388 /* Make it its own variant. */
3389 TYPE_MAIN_VARIANT (t) = t;
3390 TYPE_NEXT_VARIANT (t) = 0;
3391
3392 return t;
3393 }
3394
3395 /* Create a new variant of TYPE, equivalent but distinct.
3396 This is so the caller can modify it. */
3397
3398 tree
3399 build_variant_type_copy (tree type)
3400 {
3401 tree t, m = TYPE_MAIN_VARIANT (type);
3402
3403 t = build_distinct_type_copy (type);
3404
3405 /* Add the new type to the chain of variants of TYPE. */
3406 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3407 TYPE_NEXT_VARIANT (m) = t;
3408 TYPE_MAIN_VARIANT (t) = m;
3409
3410 return t;
3411 }
3412 \f
3413 /* Hashing of types so that we don't make duplicates.
3414 The entry point is `type_hash_canon'. */
3415
3416 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3417 with types in the TREE_VALUE slots), by adding the hash codes
3418 of the individual types. */
3419
3420 unsigned int
3421 type_hash_list (tree list, hashval_t hashcode)
3422 {
3423 tree tail;
3424
3425 for (tail = list; tail; tail = TREE_CHAIN (tail))
3426 if (TREE_VALUE (tail) != error_mark_node)
3427 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
3428 hashcode);
3429
3430 return hashcode;
3431 }
3432
3433 /* These are the Hashtable callback functions. */
3434
3435 /* Returns true iff the types are equivalent. */
3436
3437 static int
3438 type_hash_eq (const void *va, const void *vb)
3439 {
3440 const struct type_hash *a = va, *b = vb;
3441
3442 /* First test the things that are the same for all types. */
3443 if (a->hash != b->hash
3444 || TREE_CODE (a->type) != TREE_CODE (b->type)
3445 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
3446 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3447 TYPE_ATTRIBUTES (b->type))
3448 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
3449 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
3450 return 0;
3451
3452 switch (TREE_CODE (a->type))
3453 {
3454 case VOID_TYPE:
3455 case COMPLEX_TYPE:
3456 case POINTER_TYPE:
3457 case REFERENCE_TYPE:
3458 return 1;
3459
3460 case VECTOR_TYPE:
3461 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
3462
3463 case ENUMERAL_TYPE:
3464 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
3465 && !(TYPE_VALUES (a->type)
3466 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
3467 && TYPE_VALUES (b->type)
3468 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
3469 && type_list_equal (TYPE_VALUES (a->type),
3470 TYPE_VALUES (b->type))))
3471 return 0;
3472
3473 /* ... fall through ... */
3474
3475 case INTEGER_TYPE:
3476 case REAL_TYPE:
3477 case BOOLEAN_TYPE:
3478 case CHAR_TYPE:
3479 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3480 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3481 TYPE_MAX_VALUE (b->type)))
3482 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3483 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3484 TYPE_MIN_VALUE (b->type))));
3485
3486 case OFFSET_TYPE:
3487 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
3488
3489 case METHOD_TYPE:
3490 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
3491 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3492 || (TYPE_ARG_TYPES (a->type)
3493 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3494 && TYPE_ARG_TYPES (b->type)
3495 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3496 && type_list_equal (TYPE_ARG_TYPES (a->type),
3497 TYPE_ARG_TYPES (b->type)))));
3498
3499 case ARRAY_TYPE:
3500 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
3501
3502 case RECORD_TYPE:
3503 case UNION_TYPE:
3504 case QUAL_UNION_TYPE:
3505 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
3506 || (TYPE_FIELDS (a->type)
3507 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
3508 && TYPE_FIELDS (b->type)
3509 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
3510 && type_list_equal (TYPE_FIELDS (a->type),
3511 TYPE_FIELDS (b->type))));
3512
3513 case FUNCTION_TYPE:
3514 return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3515 || (TYPE_ARG_TYPES (a->type)
3516 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3517 && TYPE_ARG_TYPES (b->type)
3518 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3519 && type_list_equal (TYPE_ARG_TYPES (a->type),
3520 TYPE_ARG_TYPES (b->type))));
3521
3522 default:
3523 return 0;
3524 }
3525 }
3526
3527 /* Return the cached hash value. */
3528
3529 static hashval_t
3530 type_hash_hash (const void *item)
3531 {
3532 return ((const struct type_hash *) item)->hash;
3533 }
3534
3535 /* Look in the type hash table for a type isomorphic to TYPE.
3536 If one is found, return it. Otherwise return 0. */
3537
3538 tree
3539 type_hash_lookup (hashval_t hashcode, tree type)
3540 {
3541 struct type_hash *h, in;
3542
3543 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3544 must call that routine before comparing TYPE_ALIGNs. */
3545 layout_type (type);
3546
3547 in.hash = hashcode;
3548 in.type = type;
3549
3550 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3551 if (h)
3552 return h->type;
3553 return NULL_TREE;
3554 }
3555
3556 /* Add an entry to the type-hash-table
3557 for a type TYPE whose hash code is HASHCODE. */
3558
3559 void
3560 type_hash_add (hashval_t hashcode, tree type)
3561 {
3562 struct type_hash *h;
3563 void **loc;
3564
3565 h = ggc_alloc (sizeof (struct type_hash));
3566 h->hash = hashcode;
3567 h->type = type;
3568 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3569 *(struct type_hash **) loc = h;
3570 }
3571
3572 /* Given TYPE, and HASHCODE its hash code, return the canonical
3573 object for an identical type if one already exists.
3574 Otherwise, return TYPE, and record it as the canonical object.
3575
3576 To use this function, first create a type of the sort you want.
3577 Then compute its hash code from the fields of the type that
3578 make it different from other similar types.
3579 Then call this function and use the value. */
3580
3581 tree
3582 type_hash_canon (unsigned int hashcode, tree type)
3583 {
3584 tree t1;
3585
3586 /* The hash table only contains main variants, so ensure that's what we're
3587 being passed. */
3588 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
3589
3590 if (!lang_hooks.types.hash_types)
3591 return type;
3592
3593 /* See if the type is in the hash table already. If so, return it.
3594 Otherwise, add the type. */
3595 t1 = type_hash_lookup (hashcode, type);
3596 if (t1 != 0)
3597 {
3598 #ifdef GATHER_STATISTICS
3599 tree_node_counts[(int) t_kind]--;
3600 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3601 #endif
3602 return t1;
3603 }
3604 else
3605 {
3606 type_hash_add (hashcode, type);
3607 return type;
3608 }
3609 }
3610
3611 /* See if the data pointed to by the type hash table is marked. We consider
3612 it marked if the type is marked or if a debug type number or symbol
3613 table entry has been made for the type. This reduces the amount of
3614 debugging output and eliminates that dependency of the debug output on
3615 the number of garbage collections. */
3616
3617 static int
3618 type_hash_marked_p (const void *p)
3619 {
3620 tree type = ((struct type_hash *) p)->type;
3621
3622 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3623 }
3624
3625 static void
3626 print_type_hash_statistics (void)
3627 {
3628 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3629 (long) htab_size (type_hash_table),
3630 (long) htab_elements (type_hash_table),
3631 htab_collisions (type_hash_table));
3632 }
3633
3634 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3635 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3636 by adding the hash codes of the individual attributes. */
3637
3638 unsigned int
3639 attribute_hash_list (tree list, hashval_t hashcode)
3640 {
3641 tree tail;
3642
3643 for (tail = list; tail; tail = TREE_CHAIN (tail))
3644 /* ??? Do we want to add in TREE_VALUE too? */
3645 hashcode = iterative_hash_object
3646 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
3647 return hashcode;
3648 }
3649
3650 /* Given two lists of attributes, return true if list l2 is
3651 equivalent to l1. */
3652
3653 int
3654 attribute_list_equal (tree l1, tree l2)
3655 {
3656 return attribute_list_contained (l1, l2)
3657 && attribute_list_contained (l2, l1);
3658 }
3659
3660 /* Given two lists of attributes, return true if list L2 is
3661 completely contained within L1. */
3662 /* ??? This would be faster if attribute names were stored in a canonicalized
3663 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3664 must be used to show these elements are equivalent (which they are). */
3665 /* ??? It's not clear that attributes with arguments will always be handled
3666 correctly. */
3667
3668 int
3669 attribute_list_contained (tree l1, tree l2)
3670 {
3671 tree t1, t2;
3672
3673 /* First check the obvious, maybe the lists are identical. */
3674 if (l1 == l2)
3675 return 1;
3676
3677 /* Maybe the lists are similar. */
3678 for (t1 = l1, t2 = l2;
3679 t1 != 0 && t2 != 0
3680 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3681 && TREE_VALUE (t1) == TREE_VALUE (t2);
3682 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3683
3684 /* Maybe the lists are equal. */
3685 if (t1 == 0 && t2 == 0)
3686 return 1;
3687
3688 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3689 {
3690 tree attr;
3691 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3692 attr != NULL_TREE;
3693 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3694 TREE_CHAIN (attr)))
3695 {
3696 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3697 break;
3698 }
3699
3700 if (attr == 0)
3701 return 0;
3702
3703 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3704 return 0;
3705 }
3706
3707 return 1;
3708 }
3709
3710 /* Given two lists of types
3711 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3712 return 1 if the lists contain the same types in the same order.
3713 Also, the TREE_PURPOSEs must match. */
3714
3715 int
3716 type_list_equal (tree l1, tree l2)
3717 {
3718 tree t1, t2;
3719
3720 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3721 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3722 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3723 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3724 && (TREE_TYPE (TREE_PURPOSE (t1))
3725 == TREE_TYPE (TREE_PURPOSE (t2))))))
3726 return 0;
3727
3728 return t1 == t2;
3729 }
3730
3731 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3732 given by TYPE. If the argument list accepts variable arguments,
3733 then this function counts only the ordinary arguments. */
3734
3735 int
3736 type_num_arguments (tree type)
3737 {
3738 int i = 0;
3739 tree t;
3740
3741 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3742 /* If the function does not take a variable number of arguments,
3743 the last element in the list will have type `void'. */
3744 if (VOID_TYPE_P (TREE_VALUE (t)))
3745 break;
3746 else
3747 ++i;
3748
3749 return i;
3750 }
3751
3752 /* Nonzero if integer constants T1 and T2
3753 represent the same constant value. */
3754
3755 int
3756 tree_int_cst_equal (tree t1, tree t2)
3757 {
3758 if (t1 == t2)
3759 return 1;
3760
3761 if (t1 == 0 || t2 == 0)
3762 return 0;
3763
3764 if (TREE_CODE (t1) == INTEGER_CST
3765 && TREE_CODE (t2) == INTEGER_CST
3766 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3767 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3768 return 1;
3769
3770 return 0;
3771 }
3772
3773 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3774 The precise way of comparison depends on their data type. */
3775
3776 int
3777 tree_int_cst_lt (tree t1, tree t2)
3778 {
3779 if (t1 == t2)
3780 return 0;
3781
3782 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
3783 {
3784 int t1_sgn = tree_int_cst_sgn (t1);
3785 int t2_sgn = tree_int_cst_sgn (t2);
3786
3787 if (t1_sgn < t2_sgn)
3788 return 1;
3789 else if (t1_sgn > t2_sgn)
3790 return 0;
3791 /* Otherwise, both are non-negative, so we compare them as
3792 unsigned just in case one of them would overflow a signed
3793 type. */
3794 }
3795 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
3796 return INT_CST_LT (t1, t2);
3797
3798 return INT_CST_LT_UNSIGNED (t1, t2);
3799 }
3800
3801 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3802
3803 int
3804 tree_int_cst_compare (tree t1, tree t2)
3805 {
3806 if (tree_int_cst_lt (t1, t2))
3807 return -1;
3808 else if (tree_int_cst_lt (t2, t1))
3809 return 1;
3810 else
3811 return 0;
3812 }
3813
3814 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3815 the host. If POS is zero, the value can be represented in a single
3816 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3817 be represented in a single unsigned HOST_WIDE_INT. */
3818
3819 int
3820 host_integerp (tree t, int pos)
3821 {
3822 return (TREE_CODE (t) == INTEGER_CST
3823 && ! TREE_OVERFLOW (t)
3824 && ((TREE_INT_CST_HIGH (t) == 0
3825 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3826 || (! pos && TREE_INT_CST_HIGH (t) == -1
3827 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3828 && !TYPE_UNSIGNED (TREE_TYPE (t)))
3829 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3830 }
3831
3832 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3833 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3834 be positive. Abort if we cannot satisfy the above conditions. */
3835
3836 HOST_WIDE_INT
3837 tree_low_cst (tree t, int pos)
3838 {
3839 gcc_assert (host_integerp (t, pos));
3840 return TREE_INT_CST_LOW (t);
3841 }
3842
3843 /* Return the most significant bit of the integer constant T. */
3844
3845 int
3846 tree_int_cst_msb (tree t)
3847 {
3848 int prec;
3849 HOST_WIDE_INT h;
3850 unsigned HOST_WIDE_INT l;
3851
3852 /* Note that using TYPE_PRECISION here is wrong. We care about the
3853 actual bits, not the (arbitrary) range of the type. */
3854 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3855 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3856 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3857 return (l & 1) == 1;
3858 }
3859
3860 /* Return an indication of the sign of the integer constant T.
3861 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3862 Note that -1 will never be returned it T's type is unsigned. */
3863
3864 int
3865 tree_int_cst_sgn (tree t)
3866 {
3867 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3868 return 0;
3869 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
3870 return 1;
3871 else if (TREE_INT_CST_HIGH (t) < 0)
3872 return -1;
3873 else
3874 return 1;
3875 }
3876
3877 /* Compare two constructor-element-type constants. Return 1 if the lists
3878 are known to be equal; otherwise return 0. */
3879
3880 int
3881 simple_cst_list_equal (tree l1, tree l2)
3882 {
3883 while (l1 != NULL_TREE && l2 != NULL_TREE)
3884 {
3885 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3886 return 0;
3887
3888 l1 = TREE_CHAIN (l1);
3889 l2 = TREE_CHAIN (l2);
3890 }
3891
3892 return l1 == l2;
3893 }
3894
3895 /* Return truthvalue of whether T1 is the same tree structure as T2.
3896 Return 1 if they are the same.
3897 Return 0 if they are understandably different.
3898 Return -1 if either contains tree structure not understood by
3899 this function. */
3900
3901 int
3902 simple_cst_equal (tree t1, tree t2)
3903 {
3904 enum tree_code code1, code2;
3905 int cmp;
3906 int i;
3907
3908 if (t1 == t2)
3909 return 1;
3910 if (t1 == 0 || t2 == 0)
3911 return 0;
3912
3913 code1 = TREE_CODE (t1);
3914 code2 = TREE_CODE (t2);
3915
3916 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3917 {
3918 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3919 || code2 == NON_LVALUE_EXPR)
3920 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3921 else
3922 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3923 }
3924
3925 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3926 || code2 == NON_LVALUE_EXPR)
3927 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3928
3929 if (code1 != code2)
3930 return 0;
3931
3932 switch (code1)
3933 {
3934 case INTEGER_CST:
3935 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3936 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3937
3938 case REAL_CST:
3939 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3940
3941 case STRING_CST:
3942 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3943 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3944 TREE_STRING_LENGTH (t1)));
3945
3946 case CONSTRUCTOR:
3947 return simple_cst_list_equal (CONSTRUCTOR_ELTS (t1),
3948 CONSTRUCTOR_ELTS (t2));
3949
3950 case SAVE_EXPR:
3951 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3952
3953 case CALL_EXPR:
3954 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3955 if (cmp <= 0)
3956 return cmp;
3957 return
3958 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3959
3960 case TARGET_EXPR:
3961 /* Special case: if either target is an unallocated VAR_DECL,
3962 it means that it's going to be unified with whatever the
3963 TARGET_EXPR is really supposed to initialize, so treat it
3964 as being equivalent to anything. */
3965 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3966 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3967 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3968 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3969 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3970 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3971 cmp = 1;
3972 else
3973 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3974
3975 if (cmp <= 0)
3976 return cmp;
3977
3978 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3979
3980 case WITH_CLEANUP_EXPR:
3981 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3982 if (cmp <= 0)
3983 return cmp;
3984
3985 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3986
3987 case COMPONENT_REF:
3988 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3989 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3990
3991 return 0;
3992
3993 case VAR_DECL:
3994 case PARM_DECL:
3995 case CONST_DECL:
3996 case FUNCTION_DECL:
3997 return 0;
3998
3999 default:
4000 break;
4001 }
4002
4003 /* This general rule works for most tree codes. All exceptions should be
4004 handled above. If this is a language-specific tree code, we can't
4005 trust what might be in the operand, so say we don't know
4006 the situation. */
4007 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
4008 return -1;
4009
4010 switch (TREE_CODE_CLASS (code1))
4011 {
4012 case tcc_unary:
4013 case tcc_binary:
4014 case tcc_comparison:
4015 case tcc_expression:
4016 case tcc_reference:
4017 case tcc_statement:
4018 cmp = 1;
4019 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
4020 {
4021 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
4022 if (cmp <= 0)
4023 return cmp;
4024 }
4025
4026 return cmp;
4027
4028 default:
4029 return -1;
4030 }
4031 }
4032
4033 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
4034 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
4035 than U, respectively. */
4036
4037 int
4038 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
4039 {
4040 if (tree_int_cst_sgn (t) < 0)
4041 return -1;
4042 else if (TREE_INT_CST_HIGH (t) != 0)
4043 return 1;
4044 else if (TREE_INT_CST_LOW (t) == u)
4045 return 0;
4046 else if (TREE_INT_CST_LOW (t) < u)
4047 return -1;
4048 else
4049 return 1;
4050 }
4051
4052 /* Return true if CODE represents an associative tree code. Otherwise
4053 return false. */
4054 bool
4055 associative_tree_code (enum tree_code code)
4056 {
4057 switch (code)
4058 {
4059 case BIT_IOR_EXPR:
4060 case BIT_AND_EXPR:
4061 case BIT_XOR_EXPR:
4062 case PLUS_EXPR:
4063 case MULT_EXPR:
4064 case MIN_EXPR:
4065 case MAX_EXPR:
4066 return true;
4067
4068 default:
4069 break;
4070 }
4071 return false;
4072 }
4073
4074 /* Return true if CODE represents a commutative tree code. Otherwise
4075 return false. */
4076 bool
4077 commutative_tree_code (enum tree_code code)
4078 {
4079 switch (code)
4080 {
4081 case PLUS_EXPR:
4082 case MULT_EXPR:
4083 case MIN_EXPR:
4084 case MAX_EXPR:
4085 case BIT_IOR_EXPR:
4086 case BIT_XOR_EXPR:
4087 case BIT_AND_EXPR:
4088 case NE_EXPR:
4089 case EQ_EXPR:
4090 case UNORDERED_EXPR:
4091 case ORDERED_EXPR:
4092 case UNEQ_EXPR:
4093 case LTGT_EXPR:
4094 case TRUTH_AND_EXPR:
4095 case TRUTH_XOR_EXPR:
4096 case TRUTH_OR_EXPR:
4097 return true;
4098
4099 default:
4100 break;
4101 }
4102 return false;
4103 }
4104
4105 /* Generate a hash value for an expression. This can be used iteratively
4106 by passing a previous result as the "val" argument.
4107
4108 This function is intended to produce the same hash for expressions which
4109 would compare equal using operand_equal_p. */
4110
4111 hashval_t
4112 iterative_hash_expr (tree t, hashval_t val)
4113 {
4114 int i;
4115 enum tree_code code;
4116 char class;
4117
4118 if (t == NULL_TREE)
4119 return iterative_hash_pointer (t, val);
4120
4121 code = TREE_CODE (t);
4122
4123 switch (code)
4124 {
4125 /* Alas, constants aren't shared, so we can't rely on pointer
4126 identity. */
4127 case INTEGER_CST:
4128 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
4129 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
4130 case REAL_CST:
4131 {
4132 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
4133
4134 return iterative_hash_hashval_t (val2, val);
4135 }
4136 case STRING_CST:
4137 return iterative_hash (TREE_STRING_POINTER (t),
4138 TREE_STRING_LENGTH (t), val);
4139 case COMPLEX_CST:
4140 val = iterative_hash_expr (TREE_REALPART (t), val);
4141 return iterative_hash_expr (TREE_IMAGPART (t), val);
4142 case VECTOR_CST:
4143 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
4144
4145 case SSA_NAME:
4146 case VALUE_HANDLE:
4147 /* we can just compare by pointer. */
4148 return iterative_hash_pointer (t, val);
4149
4150 case TREE_LIST:
4151 /* A list of expressions, for a CALL_EXPR or as the elements of a
4152 VECTOR_CST. */
4153 for (; t; t = TREE_CHAIN (t))
4154 val = iterative_hash_expr (TREE_VALUE (t), val);
4155 return val;
4156 case FUNCTION_DECL:
4157 /* When referring to a built-in FUNCTION_DECL, use the
4158 __builtin__ form. Otherwise nodes that compare equal
4159 according to operand_equal_p might get different
4160 hash codes. */
4161 if (DECL_BUILT_IN (t))
4162 {
4163 val = iterative_hash_pointer (built_in_decls[DECL_FUNCTION_CODE (t)],
4164 val);
4165 return val;
4166 }
4167 /* else FALL THROUGH */
4168 default:
4169 class = TREE_CODE_CLASS (code);
4170
4171 if (class == tcc_declaration)
4172 {
4173 /* Otherwise, we can just compare decls by pointer. */
4174 val = iterative_hash_pointer (t, val);
4175 }
4176 else
4177 {
4178 gcc_assert (IS_EXPR_CODE_CLASS (class));
4179
4180 val = iterative_hash_object (code, val);
4181
4182 /* Don't hash the type, that can lead to having nodes which
4183 compare equal according to operand_equal_p, but which
4184 have different hash codes. */
4185 if (code == NOP_EXPR
4186 || code == CONVERT_EXPR
4187 || code == NON_LVALUE_EXPR)
4188 {
4189 /* Make sure to include signness in the hash computation. */
4190 val += TYPE_UNSIGNED (TREE_TYPE (t));
4191 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
4192 }
4193
4194 else if (commutative_tree_code (code))
4195 {
4196 /* It's a commutative expression. We want to hash it the same
4197 however it appears. We do this by first hashing both operands
4198 and then rehashing based on the order of their independent
4199 hashes. */
4200 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
4201 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
4202 hashval_t t;
4203
4204 if (one > two)
4205 t = one, one = two, two = t;
4206
4207 val = iterative_hash_hashval_t (one, val);
4208 val = iterative_hash_hashval_t (two, val);
4209 }
4210 else
4211 for (i = TREE_CODE_LENGTH (code) - 1; i >= 0; --i)
4212 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
4213 }
4214 return val;
4215 break;
4216 }
4217 }
4218 \f
4219 /* Constructors for pointer, array and function types.
4220 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4221 constructed by language-dependent code, not here.) */
4222
4223 /* Construct, lay out and return the type of pointers to TO_TYPE with
4224 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
4225 reference all of memory. If such a type has already been
4226 constructed, reuse it. */
4227
4228 tree
4229 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
4230 bool can_alias_all)
4231 {
4232 tree t;
4233
4234 /* In some cases, languages will have things that aren't a POINTER_TYPE
4235 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
4236 In that case, return that type without regard to the rest of our
4237 operands.
4238
4239 ??? This is a kludge, but consistent with the way this function has
4240 always operated and there doesn't seem to be a good way to avoid this
4241 at the moment. */
4242 if (TYPE_POINTER_TO (to_type) != 0
4243 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
4244 return TYPE_POINTER_TO (to_type);
4245
4246 /* First, if we already have a type for pointers to TO_TYPE and it's
4247 the proper mode, use it. */
4248 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
4249 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4250 return t;
4251
4252 t = make_node (POINTER_TYPE);
4253
4254 TREE_TYPE (t) = to_type;
4255 TYPE_MODE (t) = mode;
4256 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4257 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
4258 TYPE_POINTER_TO (to_type) = t;
4259
4260 /* Lay out the type. This function has many callers that are concerned
4261 with expression-construction, and this simplifies them all. */
4262 layout_type (t);
4263
4264 return t;
4265 }
4266
4267 /* By default build pointers in ptr_mode. */
4268
4269 tree
4270 build_pointer_type (tree to_type)
4271 {
4272 return build_pointer_type_for_mode (to_type, ptr_mode, false);
4273 }
4274
4275 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
4276
4277 tree
4278 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
4279 bool can_alias_all)
4280 {
4281 tree t;
4282
4283 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
4284 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
4285 In that case, return that type without regard to the rest of our
4286 operands.
4287
4288 ??? This is a kludge, but consistent with the way this function has
4289 always operated and there doesn't seem to be a good way to avoid this
4290 at the moment. */
4291 if (TYPE_REFERENCE_TO (to_type) != 0
4292 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
4293 return TYPE_REFERENCE_TO (to_type);
4294
4295 /* First, if we already have a type for pointers to TO_TYPE and it's
4296 the proper mode, use it. */
4297 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
4298 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4299 return t;
4300
4301 t = make_node (REFERENCE_TYPE);
4302
4303 TREE_TYPE (t) = to_type;
4304 TYPE_MODE (t) = mode;
4305 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4306 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
4307 TYPE_REFERENCE_TO (to_type) = t;
4308
4309 layout_type (t);
4310
4311 return t;
4312 }
4313
4314
4315 /* Build the node for the type of references-to-TO_TYPE by default
4316 in ptr_mode. */
4317
4318 tree
4319 build_reference_type (tree to_type)
4320 {
4321 return build_reference_type_for_mode (to_type, ptr_mode, false);
4322 }
4323
4324 /* Build a type that is compatible with t but has no cv quals anywhere
4325 in its type, thus
4326
4327 const char *const *const * -> char ***. */
4328
4329 tree
4330 build_type_no_quals (tree t)
4331 {
4332 switch (TREE_CODE (t))
4333 {
4334 case POINTER_TYPE:
4335 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4336 TYPE_MODE (t),
4337 TYPE_REF_CAN_ALIAS_ALL (t));
4338 case REFERENCE_TYPE:
4339 return
4340 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4341 TYPE_MODE (t),
4342 TYPE_REF_CAN_ALIAS_ALL (t));
4343 default:
4344 return TYPE_MAIN_VARIANT (t);
4345 }
4346 }
4347
4348 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
4349 MAXVAL should be the maximum value in the domain
4350 (one less than the length of the array).
4351
4352 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
4353 We don't enforce this limit, that is up to caller (e.g. language front end).
4354 The limit exists because the result is a signed type and we don't handle
4355 sizes that use more than one HOST_WIDE_INT. */
4356
4357 tree
4358 build_index_type (tree maxval)
4359 {
4360 tree itype = make_node (INTEGER_TYPE);
4361
4362 TREE_TYPE (itype) = sizetype;
4363 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
4364 TYPE_MIN_VALUE (itype) = size_zero_node;
4365 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
4366 TYPE_MODE (itype) = TYPE_MODE (sizetype);
4367 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
4368 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
4369 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
4370 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
4371
4372 if (host_integerp (maxval, 1))
4373 return type_hash_canon (tree_low_cst (maxval, 1), itype);
4374 else
4375 return itype;
4376 }
4377
4378 /* Builds a signed or unsigned integer type of precision PRECISION.
4379 Used for C bitfields whose precision does not match that of
4380 built-in target types. */
4381 tree
4382 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
4383 int unsignedp)
4384 {
4385 tree itype = make_node (INTEGER_TYPE);
4386
4387 TYPE_PRECISION (itype) = precision;
4388
4389 if (unsignedp)
4390 fixup_unsigned_type (itype);
4391 else
4392 fixup_signed_type (itype);
4393
4394 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
4395 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
4396
4397 return itype;
4398 }
4399
4400 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4401 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4402 low bound LOWVAL and high bound HIGHVAL.
4403 if TYPE==NULL_TREE, sizetype is used. */
4404
4405 tree
4406 build_range_type (tree type, tree lowval, tree highval)
4407 {
4408 tree itype = make_node (INTEGER_TYPE);
4409
4410 TREE_TYPE (itype) = type;
4411 if (type == NULL_TREE)
4412 type = sizetype;
4413
4414 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4415 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
4416
4417 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4418 TYPE_MODE (itype) = TYPE_MODE (type);
4419 TYPE_SIZE (itype) = TYPE_SIZE (type);
4420 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
4421 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4422 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
4423
4424 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
4425 return type_hash_canon (tree_low_cst (highval, 0)
4426 - tree_low_cst (lowval, 0),
4427 itype);
4428 else
4429 return itype;
4430 }
4431
4432 /* Just like build_index_type, but takes lowval and highval instead
4433 of just highval (maxval). */
4434
4435 tree
4436 build_index_2_type (tree lowval, tree highval)
4437 {
4438 return build_range_type (sizetype, lowval, highval);
4439 }
4440
4441 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4442 and number of elements specified by the range of values of INDEX_TYPE.
4443 If such a type has already been constructed, reuse it. */
4444
4445 tree
4446 build_array_type (tree elt_type, tree index_type)
4447 {
4448 tree t;
4449 hashval_t hashcode = 0;
4450
4451 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4452 {
4453 error ("arrays of functions are not meaningful");
4454 elt_type = integer_type_node;
4455 }
4456
4457 t = make_node (ARRAY_TYPE);
4458 TREE_TYPE (t) = elt_type;
4459 TYPE_DOMAIN (t) = index_type;
4460
4461 if (index_type == 0)
4462 {
4463 layout_type (t);
4464 return t;
4465 }
4466
4467 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
4468 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
4469 t = type_hash_canon (hashcode, t);
4470
4471 if (!COMPLETE_TYPE_P (t))
4472 layout_type (t);
4473 return t;
4474 }
4475
4476 /* Return the TYPE of the elements comprising
4477 the innermost dimension of ARRAY. */
4478
4479 tree
4480 get_inner_array_type (tree array)
4481 {
4482 tree type = TREE_TYPE (array);
4483
4484 while (TREE_CODE (type) == ARRAY_TYPE)
4485 type = TREE_TYPE (type);
4486
4487 return type;
4488 }
4489
4490 /* Construct, lay out and return
4491 the type of functions returning type VALUE_TYPE
4492 given arguments of types ARG_TYPES.
4493 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4494 are data type nodes for the arguments of the function.
4495 If such a type has already been constructed, reuse it. */
4496
4497 tree
4498 build_function_type (tree value_type, tree arg_types)
4499 {
4500 tree t;
4501 hashval_t hashcode = 0;
4502
4503 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4504 {
4505 error ("function return type cannot be function");
4506 value_type = integer_type_node;
4507 }
4508
4509 /* Make a node of the sort we want. */
4510 t = make_node (FUNCTION_TYPE);
4511 TREE_TYPE (t) = value_type;
4512 TYPE_ARG_TYPES (t) = arg_types;
4513
4514 /* If we already have such a type, use the old one. */
4515 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
4516 hashcode = type_hash_list (arg_types, hashcode);
4517 t = type_hash_canon (hashcode, t);
4518
4519 if (!COMPLETE_TYPE_P (t))
4520 layout_type (t);
4521 return t;
4522 }
4523
4524 /* Build a function type. The RETURN_TYPE is the type returned by the
4525 function. If additional arguments are provided, they are
4526 additional argument types. The list of argument types must always
4527 be terminated by NULL_TREE. */
4528
4529 tree
4530 build_function_type_list (tree return_type, ...)
4531 {
4532 tree t, args, last;
4533 va_list p;
4534
4535 va_start (p, return_type);
4536
4537 t = va_arg (p, tree);
4538 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
4539 args = tree_cons (NULL_TREE, t, args);
4540
4541 last = args;
4542 args = nreverse (args);
4543 TREE_CHAIN (last) = void_list_node;
4544 args = build_function_type (return_type, args);
4545
4546 va_end (p);
4547 return args;
4548 }
4549
4550 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
4551 and ARGTYPES (a TREE_LIST) are the return type and arguments types
4552 for the method. An implicit additional parameter (of type
4553 pointer-to-BASETYPE) is added to the ARGTYPES. */
4554
4555 tree
4556 build_method_type_directly (tree basetype,
4557 tree rettype,
4558 tree argtypes)
4559 {
4560 tree t;
4561 tree ptype;
4562 int hashcode = 0;
4563
4564 /* Make a node of the sort we want. */
4565 t = make_node (METHOD_TYPE);
4566
4567 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4568 TREE_TYPE (t) = rettype;
4569 ptype = build_pointer_type (basetype);
4570
4571 /* The actual arglist for this function includes a "hidden" argument
4572 which is "this". Put it into the list of argument types. */
4573 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
4574 TYPE_ARG_TYPES (t) = argtypes;
4575
4576 /* If we already have such a type, use the old one. */
4577 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4578 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
4579 hashcode = type_hash_list (argtypes, hashcode);
4580 t = type_hash_canon (hashcode, t);
4581
4582 if (!COMPLETE_TYPE_P (t))
4583 layout_type (t);
4584
4585 return t;
4586 }
4587
4588 /* Construct, lay out and return the type of methods belonging to class
4589 BASETYPE and whose arguments and values are described by TYPE.
4590 If that type exists already, reuse it.
4591 TYPE must be a FUNCTION_TYPE node. */
4592
4593 tree
4594 build_method_type (tree basetype, tree type)
4595 {
4596 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
4597
4598 return build_method_type_directly (basetype,
4599 TREE_TYPE (type),
4600 TYPE_ARG_TYPES (type));
4601 }
4602
4603 /* Construct, lay out and return the type of offsets to a value
4604 of type TYPE, within an object of type BASETYPE.
4605 If a suitable offset type exists already, reuse it. */
4606
4607 tree
4608 build_offset_type (tree basetype, tree type)
4609 {
4610 tree t;
4611 hashval_t hashcode = 0;
4612
4613 /* Make a node of the sort we want. */
4614 t = make_node (OFFSET_TYPE);
4615
4616 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4617 TREE_TYPE (t) = type;
4618
4619 /* If we already have such a type, use the old one. */
4620 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4621 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
4622 t = type_hash_canon (hashcode, t);
4623
4624 if (!COMPLETE_TYPE_P (t))
4625 layout_type (t);
4626
4627 return t;
4628 }
4629
4630 /* Create a complex type whose components are COMPONENT_TYPE. */
4631
4632 tree
4633 build_complex_type (tree component_type)
4634 {
4635 tree t;
4636 hashval_t hashcode;
4637
4638 /* Make a node of the sort we want. */
4639 t = make_node (COMPLEX_TYPE);
4640
4641 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4642
4643 /* If we already have such a type, use the old one. */
4644 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
4645 t = type_hash_canon (hashcode, t);
4646
4647 if (!COMPLETE_TYPE_P (t))
4648 layout_type (t);
4649
4650 /* If we are writing Dwarf2 output we need to create a name,
4651 since complex is a fundamental type. */
4652 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
4653 && ! TYPE_NAME (t))
4654 {
4655 const char *name;
4656 if (component_type == char_type_node)
4657 name = "complex char";
4658 else if (component_type == signed_char_type_node)
4659 name = "complex signed char";
4660 else if (component_type == unsigned_char_type_node)
4661 name = "complex unsigned char";
4662 else if (component_type == short_integer_type_node)
4663 name = "complex short int";
4664 else if (component_type == short_unsigned_type_node)
4665 name = "complex short unsigned int";
4666 else if (component_type == integer_type_node)
4667 name = "complex int";
4668 else if (component_type == unsigned_type_node)
4669 name = "complex unsigned int";
4670 else if (component_type == long_integer_type_node)
4671 name = "complex long int";
4672 else if (component_type == long_unsigned_type_node)
4673 name = "complex long unsigned int";
4674 else if (component_type == long_long_integer_type_node)
4675 name = "complex long long int";
4676 else if (component_type == long_long_unsigned_type_node)
4677 name = "complex long long unsigned int";
4678 else
4679 name = 0;
4680
4681 if (name != 0)
4682 TYPE_NAME (t) = get_identifier (name);
4683 }
4684
4685 return build_qualified_type (t, TYPE_QUALS (component_type));
4686 }
4687 \f
4688 /* Return OP, stripped of any conversions to wider types as much as is safe.
4689 Converting the value back to OP's type makes a value equivalent to OP.
4690
4691 If FOR_TYPE is nonzero, we return a value which, if converted to
4692 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4693
4694 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4695 narrowest type that can hold the value, even if they don't exactly fit.
4696 Otherwise, bit-field references are changed to a narrower type
4697 only if they can be fetched directly from memory in that type.
4698
4699 OP must have integer, real or enumeral type. Pointers are not allowed!
4700
4701 There are some cases where the obvious value we could return
4702 would regenerate to OP if converted to OP's type,
4703 but would not extend like OP to wider types.
4704 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4705 For example, if OP is (unsigned short)(signed char)-1,
4706 we avoid returning (signed char)-1 if FOR_TYPE is int,
4707 even though extending that to an unsigned short would regenerate OP,
4708 since the result of extending (signed char)-1 to (int)
4709 is different from (int) OP. */
4710
4711 tree
4712 get_unwidened (tree op, tree for_type)
4713 {
4714 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4715 tree type = TREE_TYPE (op);
4716 unsigned final_prec
4717 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4718 int uns
4719 = (for_type != 0 && for_type != type
4720 && final_prec > TYPE_PRECISION (type)
4721 && TYPE_UNSIGNED (type));
4722 tree win = op;
4723
4724 while (TREE_CODE (op) == NOP_EXPR)
4725 {
4726 int bitschange
4727 = TYPE_PRECISION (TREE_TYPE (op))
4728 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4729
4730 /* Truncations are many-one so cannot be removed.
4731 Unless we are later going to truncate down even farther. */
4732 if (bitschange < 0
4733 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4734 break;
4735
4736 /* See what's inside this conversion. If we decide to strip it,
4737 we will set WIN. */
4738 op = TREE_OPERAND (op, 0);
4739
4740 /* If we have not stripped any zero-extensions (uns is 0),
4741 we can strip any kind of extension.
4742 If we have previously stripped a zero-extension,
4743 only zero-extensions can safely be stripped.
4744 Any extension can be stripped if the bits it would produce
4745 are all going to be discarded later by truncating to FOR_TYPE. */
4746
4747 if (bitschange > 0)
4748 {
4749 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4750 win = op;
4751 /* TYPE_UNSIGNED says whether this is a zero-extension.
4752 Let's avoid computing it if it does not affect WIN
4753 and if UNS will not be needed again. */
4754 if ((uns || TREE_CODE (op) == NOP_EXPR)
4755 && TYPE_UNSIGNED (TREE_TYPE (op)))
4756 {
4757 uns = 1;
4758 win = op;
4759 }
4760 }
4761 }
4762
4763 if (TREE_CODE (op) == COMPONENT_REF
4764 /* Since type_for_size always gives an integer type. */
4765 && TREE_CODE (type) != REAL_TYPE
4766 /* Don't crash if field not laid out yet. */
4767 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4768 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4769 {
4770 unsigned int innerprec
4771 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4772 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4773 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4774 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4775
4776 /* We can get this structure field in the narrowest type it fits in.
4777 If FOR_TYPE is 0, do this only for a field that matches the
4778 narrower type exactly and is aligned for it
4779 The resulting extension to its nominal type (a fullword type)
4780 must fit the same conditions as for other extensions. */
4781
4782 if (type != 0
4783 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
4784 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4785 && (! uns || final_prec <= innerprec || unsignedp))
4786 {
4787 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4788 TREE_OPERAND (op, 1), NULL_TREE);
4789 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4790 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4791 }
4792 }
4793
4794 return win;
4795 }
4796 \f
4797 /* Return OP or a simpler expression for a narrower value
4798 which can be sign-extended or zero-extended to give back OP.
4799 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4800 or 0 if the value should be sign-extended. */
4801
4802 tree
4803 get_narrower (tree op, int *unsignedp_ptr)
4804 {
4805 int uns = 0;
4806 int first = 1;
4807 tree win = op;
4808 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
4809
4810 while (TREE_CODE (op) == NOP_EXPR)
4811 {
4812 int bitschange
4813 = (TYPE_PRECISION (TREE_TYPE (op))
4814 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4815
4816 /* Truncations are many-one so cannot be removed. */
4817 if (bitschange < 0)
4818 break;
4819
4820 /* See what's inside this conversion. If we decide to strip it,
4821 we will set WIN. */
4822
4823 if (bitschange > 0)
4824 {
4825 op = TREE_OPERAND (op, 0);
4826 /* An extension: the outermost one can be stripped,
4827 but remember whether it is zero or sign extension. */
4828 if (first)
4829 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4830 /* Otherwise, if a sign extension has been stripped,
4831 only sign extensions can now be stripped;
4832 if a zero extension has been stripped, only zero-extensions. */
4833 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
4834 break;
4835 first = 0;
4836 }
4837 else /* bitschange == 0 */
4838 {
4839 /* A change in nominal type can always be stripped, but we must
4840 preserve the unsignedness. */
4841 if (first)
4842 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4843 first = 0;
4844 op = TREE_OPERAND (op, 0);
4845 /* Keep trying to narrow, but don't assign op to win if it
4846 would turn an integral type into something else. */
4847 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
4848 continue;
4849 }
4850
4851 win = op;
4852 }
4853
4854 if (TREE_CODE (op) == COMPONENT_REF
4855 /* Since type_for_size always gives an integer type. */
4856 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4857 /* Ensure field is laid out already. */
4858 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4859 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4860 {
4861 unsigned HOST_WIDE_INT innerprec
4862 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4863 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4864 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4865 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4866
4867 /* We can get this structure field in a narrower type that fits it,
4868 but the resulting extension to its nominal type (a fullword type)
4869 must satisfy the same conditions as for other extensions.
4870
4871 Do this only for fields that are aligned (not bit-fields),
4872 because when bit-field insns will be used there is no
4873 advantage in doing this. */
4874
4875 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4876 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4877 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
4878 && type != 0)
4879 {
4880 if (first)
4881 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
4882 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4883 TREE_OPERAND (op, 1), NULL_TREE);
4884 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4885 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4886 }
4887 }
4888 *unsignedp_ptr = uns;
4889 return win;
4890 }
4891 \f
4892 /* Nonzero if integer constant C has a value that is permissible
4893 for type TYPE (an INTEGER_TYPE). */
4894
4895 int
4896 int_fits_type_p (tree c, tree type)
4897 {
4898 tree type_low_bound = TYPE_MIN_VALUE (type);
4899 tree type_high_bound = TYPE_MAX_VALUE (type);
4900 bool ok_for_low_bound, ok_for_high_bound;
4901 tree tmp;
4902
4903 /* If at least one bound of the type is a constant integer, we can check
4904 ourselves and maybe make a decision. If no such decision is possible, but
4905 this type is a subtype, try checking against that. Otherwise, use
4906 force_fit_type, which checks against the precision.
4907
4908 Compute the status for each possibly constant bound, and return if we see
4909 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4910 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4911 for "constant known to fit". */
4912
4913 /* Check if C >= type_low_bound. */
4914 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4915 {
4916 if (tree_int_cst_lt (c, type_low_bound))
4917 return 0;
4918 ok_for_low_bound = true;
4919 }
4920 else
4921 ok_for_low_bound = false;
4922
4923 /* Check if c <= type_high_bound. */
4924 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4925 {
4926 if (tree_int_cst_lt (type_high_bound, c))
4927 return 0;
4928 ok_for_high_bound = true;
4929 }
4930 else
4931 ok_for_high_bound = false;
4932
4933 /* If the constant fits both bounds, the result is known. */
4934 if (ok_for_low_bound && ok_for_high_bound)
4935 return 1;
4936
4937 /* Perform some generic filtering which may allow making a decision
4938 even if the bounds are not constant. First, negative integers
4939 never fit in unsigned types, */
4940 if (TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4941 return 0;
4942
4943 /* Second, narrower types always fit in wider ones. */
4944 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
4945 return 1;
4946
4947 /* Third, unsigned integers with top bit set never fit signed types. */
4948 if (! TYPE_UNSIGNED (type)
4949 && TYPE_UNSIGNED (TREE_TYPE (c))
4950 && tree_int_cst_msb (c))
4951 return 0;
4952
4953 /* If we haven't been able to decide at this point, there nothing more we
4954 can check ourselves here. Look at the base type if we have one. */
4955 if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4956 return int_fits_type_p (c, TREE_TYPE (type));
4957
4958 /* Or to force_fit_type, if nothing else. */
4959 tmp = copy_node (c);
4960 TREE_TYPE (tmp) = type;
4961 tmp = force_fit_type (tmp, -1, false, false);
4962 return TREE_INT_CST_HIGH (tmp) == TREE_INT_CST_HIGH (c)
4963 && TREE_INT_CST_LOW (tmp) == TREE_INT_CST_LOW (c);
4964 }
4965
4966 /* Subprogram of following function. Called by walk_tree.
4967
4968 Return *TP if it is an automatic variable or parameter of the
4969 function passed in as DATA. */
4970
4971 static tree
4972 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
4973 {
4974 tree fn = (tree) data;
4975
4976 if (TYPE_P (*tp))
4977 *walk_subtrees = 0;
4978
4979 else if (DECL_P (*tp)
4980 && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
4981 return *tp;
4982
4983 return NULL_TREE;
4984 }
4985
4986 /* Returns true if T is, contains, or refers to a type with variable
4987 size. If FN is nonzero, only return true if a modifier of the type
4988 or position of FN is a variable or parameter inside FN.
4989
4990 This concept is more general than that of C99 'variably modified types':
4991 in C99, a struct type is never variably modified because a VLA may not
4992 appear as a structure member. However, in GNU C code like:
4993
4994 struct S { int i[f()]; };
4995
4996 is valid, and other languages may define similar constructs. */
4997
4998 bool
4999 variably_modified_type_p (tree type, tree fn)
5000 {
5001 tree t;
5002
5003 /* Test if T is either variable (if FN is zero) or an expression containing
5004 a variable in FN. */
5005 #define RETURN_TRUE_IF_VAR(T) \
5006 do { tree _t = (T); \
5007 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
5008 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
5009 return true; } while (0)
5010
5011 if (type == error_mark_node)
5012 return false;
5013
5014 /* If TYPE itself has variable size, it is variably modified.
5015
5016 We do not yet have a representation of the C99 '[*]' syntax.
5017 When a representation is chosen, this function should be modified
5018 to test for that case as well. */
5019 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
5020 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT(type));
5021
5022 switch (TREE_CODE (type))
5023 {
5024 case POINTER_TYPE:
5025 case REFERENCE_TYPE:
5026 case ARRAY_TYPE:
5027 case VECTOR_TYPE:
5028 if (variably_modified_type_p (TREE_TYPE (type), fn))
5029 return true;
5030 break;
5031
5032 case FUNCTION_TYPE:
5033 case METHOD_TYPE:
5034 /* If TYPE is a function type, it is variably modified if any of the
5035 parameters or the return type are variably modified. */
5036 if (variably_modified_type_p (TREE_TYPE (type), fn))
5037 return true;
5038
5039 for (t = TYPE_ARG_TYPES (type);
5040 t && t != void_list_node;
5041 t = TREE_CHAIN (t))
5042 if (variably_modified_type_p (TREE_VALUE (t), fn))
5043 return true;
5044 break;
5045
5046 case INTEGER_TYPE:
5047 case REAL_TYPE:
5048 case ENUMERAL_TYPE:
5049 case BOOLEAN_TYPE:
5050 case CHAR_TYPE:
5051 /* Scalar types are variably modified if their end points
5052 aren't constant. */
5053 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
5054 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
5055 break;
5056
5057 case RECORD_TYPE:
5058 case UNION_TYPE:
5059 case QUAL_UNION_TYPE:
5060 /* We can't see if any of the field are variably-modified by the
5061 definition we normally use, since that would produce infinite
5062 recursion via pointers. */
5063 /* This is variably modified if some field's type is. */
5064 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
5065 if (TREE_CODE (t) == FIELD_DECL)
5066 {
5067 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
5068 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
5069 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
5070
5071 if (TREE_CODE (type) == QUAL_UNION_TYPE)
5072 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
5073 }
5074 break;
5075
5076 default:
5077 break;
5078 }
5079
5080 /* The current language may have other cases to check, but in general,
5081 all other types are not variably modified. */
5082 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
5083
5084 #undef RETURN_TRUE_IF_VAR
5085 }
5086
5087 /* Given a DECL or TYPE, return the scope in which it was declared, or
5088 NULL_TREE if there is no containing scope. */
5089
5090 tree
5091 get_containing_scope (tree t)
5092 {
5093 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
5094 }
5095
5096 /* Return the innermost context enclosing DECL that is
5097 a FUNCTION_DECL, or zero if none. */
5098
5099 tree
5100 decl_function_context (tree decl)
5101 {
5102 tree context;
5103
5104 if (TREE_CODE (decl) == ERROR_MARK)
5105 return 0;
5106
5107 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
5108 where we look up the function at runtime. Such functions always take
5109 a first argument of type 'pointer to real context'.
5110
5111 C++ should really be fixed to use DECL_CONTEXT for the real context,
5112 and use something else for the "virtual context". */
5113 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
5114 context
5115 = TYPE_MAIN_VARIANT
5116 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
5117 else
5118 context = DECL_CONTEXT (decl);
5119
5120 while (context && TREE_CODE (context) != FUNCTION_DECL)
5121 {
5122 if (TREE_CODE (context) == BLOCK)
5123 context = BLOCK_SUPERCONTEXT (context);
5124 else
5125 context = get_containing_scope (context);
5126 }
5127
5128 return context;
5129 }
5130
5131 /* Return the innermost context enclosing DECL that is
5132 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
5133 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
5134
5135 tree
5136 decl_type_context (tree decl)
5137 {
5138 tree context = DECL_CONTEXT (decl);
5139
5140 while (context)
5141 switch (TREE_CODE (context))
5142 {
5143 case NAMESPACE_DECL:
5144 case TRANSLATION_UNIT_DECL:
5145 return NULL_TREE;
5146
5147 case RECORD_TYPE:
5148 case UNION_TYPE:
5149 case QUAL_UNION_TYPE:
5150 return context;
5151
5152 case TYPE_DECL:
5153 case FUNCTION_DECL:
5154 context = DECL_CONTEXT (context);
5155 break;
5156
5157 case BLOCK:
5158 context = BLOCK_SUPERCONTEXT (context);
5159 break;
5160
5161 default:
5162 gcc_unreachable ();
5163 }
5164
5165 return NULL_TREE;
5166 }
5167
5168 /* CALL is a CALL_EXPR. Return the declaration for the function
5169 called, or NULL_TREE if the called function cannot be
5170 determined. */
5171
5172 tree
5173 get_callee_fndecl (tree call)
5174 {
5175 tree addr;
5176
5177 /* It's invalid to call this function with anything but a
5178 CALL_EXPR. */
5179 gcc_assert (TREE_CODE (call) == CALL_EXPR);
5180
5181 /* The first operand to the CALL is the address of the function
5182 called. */
5183 addr = TREE_OPERAND (call, 0);
5184
5185 STRIP_NOPS (addr);
5186
5187 /* If this is a readonly function pointer, extract its initial value. */
5188 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
5189 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
5190 && DECL_INITIAL (addr))
5191 addr = DECL_INITIAL (addr);
5192
5193 /* If the address is just `&f' for some function `f', then we know
5194 that `f' is being called. */
5195 if (TREE_CODE (addr) == ADDR_EXPR
5196 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
5197 return TREE_OPERAND (addr, 0);
5198
5199 /* We couldn't figure out what was being called. Maybe the front
5200 end has some idea. */
5201 return lang_hooks.lang_get_callee_fndecl (call);
5202 }
5203
5204 /* Print debugging information about tree nodes generated during the compile,
5205 and any language-specific information. */
5206
5207 void
5208 dump_tree_statistics (void)
5209 {
5210 #ifdef GATHER_STATISTICS
5211 int i;
5212 int total_nodes, total_bytes;
5213 #endif
5214
5215 fprintf (stderr, "\n??? tree nodes created\n\n");
5216 #ifdef GATHER_STATISTICS
5217 fprintf (stderr, "Kind Nodes Bytes\n");
5218 fprintf (stderr, "---------------------------------------\n");
5219 total_nodes = total_bytes = 0;
5220 for (i = 0; i < (int) all_kinds; i++)
5221 {
5222 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
5223 tree_node_counts[i], tree_node_sizes[i]);
5224 total_nodes += tree_node_counts[i];
5225 total_bytes += tree_node_sizes[i];
5226 }
5227 fprintf (stderr, "---------------------------------------\n");
5228 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
5229 fprintf (stderr, "---------------------------------------\n");
5230 ssanames_print_statistics ();
5231 phinodes_print_statistics ();
5232 #else
5233 fprintf (stderr, "(No per-node statistics)\n");
5234 #endif
5235 print_type_hash_statistics ();
5236 lang_hooks.print_statistics ();
5237 }
5238 \f
5239 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
5240
5241 /* Generate a crc32 of a string. */
5242
5243 unsigned
5244 crc32_string (unsigned chksum, const char *string)
5245 {
5246 do
5247 {
5248 unsigned value = *string << 24;
5249 unsigned ix;
5250
5251 for (ix = 8; ix--; value <<= 1)
5252 {
5253 unsigned feedback;
5254
5255 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
5256 chksum <<= 1;
5257 chksum ^= feedback;
5258 }
5259 }
5260 while (*string++);
5261 return chksum;
5262 }
5263
5264 /* P is a string that will be used in a symbol. Mask out any characters
5265 that are not valid in that context. */
5266
5267 void
5268 clean_symbol_name (char *p)
5269 {
5270 for (; *p; p++)
5271 if (! (ISALNUM (*p)
5272 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
5273 || *p == '$'
5274 #endif
5275 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
5276 || *p == '.'
5277 #endif
5278 ))
5279 *p = '_';
5280 }
5281
5282 /* Generate a name for a function unique to this translation unit.
5283 TYPE is some string to identify the purpose of this function to the
5284 linker or collect2. */
5285
5286 tree
5287 get_file_function_name_long (const char *type)
5288 {
5289 char *buf;
5290 const char *p;
5291 char *q;
5292
5293 if (first_global_object_name)
5294 p = first_global_object_name;
5295 else
5296 {
5297 /* We don't have anything that we know to be unique to this translation
5298 unit, so use what we do have and throw in some randomness. */
5299 unsigned len;
5300 const char *name = weak_global_object_name;
5301 const char *file = main_input_filename;
5302
5303 if (! name)
5304 name = "";
5305 if (! file)
5306 file = input_filename;
5307
5308 len = strlen (file);
5309 q = alloca (9 * 2 + len + 1);
5310 memcpy (q, file, len + 1);
5311 clean_symbol_name (q);
5312
5313 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
5314 crc32_string (0, flag_random_seed));
5315
5316 p = q;
5317 }
5318
5319 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
5320
5321 /* Set up the name of the file-level functions we may need.
5322 Use a global object (which is already required to be unique over
5323 the program) rather than the file name (which imposes extra
5324 constraints). */
5325 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
5326
5327 return get_identifier (buf);
5328 }
5329
5330 /* If KIND=='I', return a suitable global initializer (constructor) name.
5331 If KIND=='D', return a suitable global clean-up (destructor) name. */
5332
5333 tree
5334 get_file_function_name (int kind)
5335 {
5336 char p[2];
5337
5338 p[0] = kind;
5339 p[1] = 0;
5340
5341 return get_file_function_name_long (p);
5342 }
5343 \f
5344 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5345 The result is placed in BUFFER (which has length BIT_SIZE),
5346 with one bit in each char ('\000' or '\001').
5347
5348 If the constructor is constant, NULL_TREE is returned.
5349 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5350
5351 tree
5352 get_set_constructor_bits (tree init, char *buffer, int bit_size)
5353 {
5354 int i;
5355 tree vals;
5356 HOST_WIDE_INT domain_min
5357 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
5358 tree non_const_bits = NULL_TREE;
5359
5360 for (i = 0; i < bit_size; i++)
5361 buffer[i] = 0;
5362
5363 for (vals = TREE_OPERAND (init, 1);
5364 vals != NULL_TREE; vals = TREE_CHAIN (vals))
5365 {
5366 if (!host_integerp (TREE_VALUE (vals), 0)
5367 || (TREE_PURPOSE (vals) != NULL_TREE
5368 && !host_integerp (TREE_PURPOSE (vals), 0)))
5369 non_const_bits
5370 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
5371 else if (TREE_PURPOSE (vals) != NULL_TREE)
5372 {
5373 /* Set a range of bits to ones. */
5374 HOST_WIDE_INT lo_index
5375 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
5376 HOST_WIDE_INT hi_index
5377 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5378
5379 gcc_assert (lo_index >= 0);
5380 gcc_assert (lo_index < bit_size);
5381 gcc_assert (hi_index >= 0);
5382 gcc_assert (hi_index < bit_size);
5383 for (; lo_index <= hi_index; lo_index++)
5384 buffer[lo_index] = 1;
5385 }
5386 else
5387 {
5388 /* Set a single bit to one. */
5389 HOST_WIDE_INT index
5390 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5391 if (index < 0 || index >= bit_size)
5392 {
5393 error ("invalid initializer for bit string");
5394 return NULL_TREE;
5395 }
5396 buffer[index] = 1;
5397 }
5398 }
5399 return non_const_bits;
5400 }
5401
5402 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5403 The result is placed in BUFFER (which is an array of bytes).
5404 If the constructor is constant, NULL_TREE is returned.
5405 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5406
5407 tree
5408 get_set_constructor_bytes (tree init, unsigned char *buffer, int wd_size)
5409 {
5410 int i;
5411 int set_word_size = BITS_PER_UNIT;
5412 int bit_size = wd_size * set_word_size;
5413 int bit_pos = 0;
5414 unsigned char *bytep = buffer;
5415 char *bit_buffer = alloca (bit_size);
5416 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
5417
5418 for (i = 0; i < wd_size; i++)
5419 buffer[i] = 0;
5420
5421 for (i = 0; i < bit_size; i++)
5422 {
5423 if (bit_buffer[i])
5424 {
5425 if (BYTES_BIG_ENDIAN)
5426 *bytep |= (1 << (set_word_size - 1 - bit_pos));
5427 else
5428 *bytep |= 1 << bit_pos;
5429 }
5430 bit_pos++;
5431 if (bit_pos >= set_word_size)
5432 bit_pos = 0, bytep++;
5433 }
5434 return non_const_bits;
5435 }
5436 \f
5437 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
5438
5439 /* Complain that the tree code of NODE does not match the expected 0
5440 terminated list of trailing codes. The trailing code list can be
5441 empty, for a more vague error message. FILE, LINE, and FUNCTION
5442 are of the caller. */
5443
5444 void
5445 tree_check_failed (const tree node, const char *file,
5446 int line, const char *function, ...)
5447 {
5448 va_list args;
5449 char *buffer;
5450 unsigned length = 0;
5451 int code;
5452
5453 va_start (args, function);
5454 while ((code = va_arg (args, int)))
5455 length += 4 + strlen (tree_code_name[code]);
5456 va_end (args);
5457 if (length)
5458 {
5459 va_start (args, function);
5460 length += strlen ("expected ");
5461 buffer = alloca (length);
5462 length = 0;
5463 while ((code = va_arg (args, int)))
5464 {
5465 const char *prefix = length ? " or " : "expected ";
5466
5467 strcpy (buffer + length, prefix);
5468 length += strlen (prefix);
5469 strcpy (buffer + length, tree_code_name[code]);
5470 length += strlen (tree_code_name[code]);
5471 }
5472 va_end (args);
5473 }
5474 else
5475 buffer = (char *)"unexpected node";
5476
5477 internal_error ("tree check: %s, have %s in %s, at %s:%d",
5478 buffer, tree_code_name[TREE_CODE (node)],
5479 function, trim_filename (file), line);
5480 }
5481
5482 /* Complain that the tree code of NODE does match the expected 0
5483 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
5484 the caller. */
5485
5486 void
5487 tree_not_check_failed (const tree node, const char *file,
5488 int line, const char *function, ...)
5489 {
5490 va_list args;
5491 char *buffer;
5492 unsigned length = 0;
5493 int code;
5494
5495 va_start (args, function);
5496 while ((code = va_arg (args, int)))
5497 length += 4 + strlen (tree_code_name[code]);
5498 va_end (args);
5499 va_start (args, function);
5500 buffer = alloca (length);
5501 length = 0;
5502 while ((code = va_arg (args, int)))
5503 {
5504 if (length)
5505 {
5506 strcpy (buffer + length, " or ");
5507 length += 4;
5508 }
5509 strcpy (buffer + length, tree_code_name[code]);
5510 length += strlen (tree_code_name[code]);
5511 }
5512 va_end (args);
5513
5514 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
5515 buffer, tree_code_name[TREE_CODE (node)],
5516 function, trim_filename (file), line);
5517 }
5518
5519 /* Similar to tree_check_failed, except that we check for a class of tree
5520 code, given in CL. */
5521
5522 void
5523 tree_class_check_failed (const tree node, const enum tree_code_class cl,
5524 const char *file, int line, const char *function)
5525 {
5526 internal_error
5527 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
5528 TREE_CODE_CLASS_STRING (cl),
5529 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
5530 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
5531 }
5532
5533 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
5534 (dynamically sized) vector. */
5535
5536 void
5537 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
5538 const char *function)
5539 {
5540 internal_error
5541 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
5542 idx + 1, len, function, trim_filename (file), line);
5543 }
5544
5545 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
5546 (dynamically sized) vector. */
5547
5548 void
5549 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
5550 const char *function)
5551 {
5552 internal_error
5553 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
5554 idx + 1, len, function, trim_filename (file), line);
5555 }
5556
5557 /* Similar to above, except that the check is for the bounds of the operand
5558 vector of an expression node. */
5559
5560 void
5561 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
5562 int line, const char *function)
5563 {
5564 internal_error
5565 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
5566 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
5567 function, trim_filename (file), line);
5568 }
5569 #endif /* ENABLE_TREE_CHECKING */
5570 \f
5571 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
5572 and mapped to the machine mode MODE. Initialize its fields and build
5573 the information necessary for debugging output. */
5574
5575 static tree
5576 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
5577 {
5578 tree t = make_node (VECTOR_TYPE);
5579
5580 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
5581 TYPE_VECTOR_SUBPARTS (t) = nunits;
5582 TYPE_MODE (t) = mode;
5583 TYPE_READONLY (t) = TYPE_READONLY (innertype);
5584 TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
5585
5586 layout_type (t);
5587
5588 {
5589 tree index = build_int_cst (NULL_TREE, nunits - 1);
5590 tree array = build_array_type (innertype, build_index_type (index));
5591 tree rt = make_node (RECORD_TYPE);
5592
5593 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
5594 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
5595 layout_type (rt);
5596 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
5597 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
5598 the representation type, and we want to find that die when looking up
5599 the vector type. This is most easily achieved by making the TYPE_UID
5600 numbers equal. */
5601 TYPE_UID (rt) = TYPE_UID (t);
5602 }
5603
5604 /* Build our main variant, based on the main variant of the inner type. */
5605 if (TYPE_MAIN_VARIANT (innertype) != innertype)
5606 {
5607 tree innertype_main_variant = TYPE_MAIN_VARIANT (innertype);
5608 unsigned int hash = TYPE_HASH (innertype_main_variant);
5609 TYPE_MAIN_VARIANT (t)
5610 = type_hash_canon (hash, make_vector_type (innertype_main_variant,
5611 nunits, mode));
5612 }
5613
5614 return t;
5615 }
5616
5617 static tree
5618 make_or_reuse_type (unsigned size, int unsignedp)
5619 {
5620 if (size == INT_TYPE_SIZE)
5621 return unsignedp ? unsigned_type_node : integer_type_node;
5622 if (size == CHAR_TYPE_SIZE)
5623 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
5624 if (size == SHORT_TYPE_SIZE)
5625 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
5626 if (size == LONG_TYPE_SIZE)
5627 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
5628 if (size == LONG_LONG_TYPE_SIZE)
5629 return (unsignedp ? long_long_unsigned_type_node
5630 : long_long_integer_type_node);
5631
5632 if (unsignedp)
5633 return make_unsigned_type (size);
5634 else
5635 return make_signed_type (size);
5636 }
5637
5638 /* Create nodes for all integer types (and error_mark_node) using the sizes
5639 of C datatypes. The caller should call set_sizetype soon after calling
5640 this function to select one of the types as sizetype. */
5641
5642 void
5643 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
5644 {
5645 error_mark_node = make_node (ERROR_MARK);
5646 TREE_TYPE (error_mark_node) = error_mark_node;
5647
5648 initialize_sizetypes (signed_sizetype);
5649
5650 /* Define both `signed char' and `unsigned char'. */
5651 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
5652 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
5653
5654 /* Define `char', which is like either `signed char' or `unsigned char'
5655 but not the same as either. */
5656 char_type_node
5657 = (signed_char
5658 ? make_signed_type (CHAR_TYPE_SIZE)
5659 : make_unsigned_type (CHAR_TYPE_SIZE));
5660
5661 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
5662 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
5663 integer_type_node = make_signed_type (INT_TYPE_SIZE);
5664 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
5665 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
5666 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
5667 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
5668 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
5669
5670 /* Define a boolean type. This type only represents boolean values but
5671 may be larger than char depending on the value of BOOL_TYPE_SIZE.
5672 Front ends which want to override this size (i.e. Java) can redefine
5673 boolean_type_node before calling build_common_tree_nodes_2. */
5674 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5675 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5676 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
5677 TYPE_PRECISION (boolean_type_node) = 1;
5678
5679 /* Fill in the rest of the sized types. Reuse existing type nodes
5680 when possible. */
5681 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
5682 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
5683 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
5684 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
5685 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
5686
5687 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
5688 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
5689 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
5690 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
5691 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
5692
5693 access_public_node = get_identifier ("public");
5694 access_protected_node = get_identifier ("protected");
5695 access_private_node = get_identifier ("private");
5696 }
5697
5698 /* Call this function after calling build_common_tree_nodes and set_sizetype.
5699 It will create several other common tree nodes. */
5700
5701 void
5702 build_common_tree_nodes_2 (int short_double)
5703 {
5704 /* Define these next since types below may used them. */
5705 integer_zero_node = build_int_cst (NULL_TREE, 0);
5706 integer_one_node = build_int_cst (NULL_TREE, 1);
5707 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
5708
5709 size_zero_node = size_int (0);
5710 size_one_node = size_int (1);
5711 bitsize_zero_node = bitsize_int (0);
5712 bitsize_one_node = bitsize_int (1);
5713 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
5714
5715 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5716 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5717
5718 void_type_node = make_node (VOID_TYPE);
5719 layout_type (void_type_node);
5720
5721 /* We are not going to have real types in C with less than byte alignment,
5722 so we might as well not have any types that claim to have it. */
5723 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
5724 TYPE_USER_ALIGN (void_type_node) = 0;
5725
5726 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
5727 layout_type (TREE_TYPE (null_pointer_node));
5728
5729 ptr_type_node = build_pointer_type (void_type_node);
5730 const_ptr_type_node
5731 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
5732 fileptr_type_node = ptr_type_node;
5733
5734 float_type_node = make_node (REAL_TYPE);
5735 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
5736 layout_type (float_type_node);
5737
5738 double_type_node = make_node (REAL_TYPE);
5739 if (short_double)
5740 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
5741 else
5742 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
5743 layout_type (double_type_node);
5744
5745 long_double_type_node = make_node (REAL_TYPE);
5746 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
5747 layout_type (long_double_type_node);
5748
5749 float_ptr_type_node = build_pointer_type (float_type_node);
5750 double_ptr_type_node = build_pointer_type (double_type_node);
5751 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
5752 integer_ptr_type_node = build_pointer_type (integer_type_node);
5753
5754 complex_integer_type_node = make_node (COMPLEX_TYPE);
5755 TREE_TYPE (complex_integer_type_node) = integer_type_node;
5756 layout_type (complex_integer_type_node);
5757
5758 complex_float_type_node = make_node (COMPLEX_TYPE);
5759 TREE_TYPE (complex_float_type_node) = float_type_node;
5760 layout_type (complex_float_type_node);
5761
5762 complex_double_type_node = make_node (COMPLEX_TYPE);
5763 TREE_TYPE (complex_double_type_node) = double_type_node;
5764 layout_type (complex_double_type_node);
5765
5766 complex_long_double_type_node = make_node (COMPLEX_TYPE);
5767 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
5768 layout_type (complex_long_double_type_node);
5769
5770 {
5771 tree t = targetm.build_builtin_va_list ();
5772
5773 /* Many back-ends define record types without setting TYPE_NAME.
5774 If we copied the record type here, we'd keep the original
5775 record type without a name. This breaks name mangling. So,
5776 don't copy record types and let c_common_nodes_and_builtins()
5777 declare the type to be __builtin_va_list. */
5778 if (TREE_CODE (t) != RECORD_TYPE)
5779 t = build_variant_type_copy (t);
5780
5781 va_list_type_node = t;
5782 }
5783 }
5784
5785 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
5786 better way.
5787
5788 If we requested a pointer to a vector, build up the pointers that
5789 we stripped off while looking for the inner type. Similarly for
5790 return values from functions.
5791
5792 The argument TYPE is the top of the chain, and BOTTOM is the
5793 new type which we will point to. */
5794
5795 tree
5796 reconstruct_complex_type (tree type, tree bottom)
5797 {
5798 tree inner, outer;
5799
5800 if (POINTER_TYPE_P (type))
5801 {
5802 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5803 outer = build_pointer_type (inner);
5804 }
5805 else if (TREE_CODE (type) == ARRAY_TYPE)
5806 {
5807 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5808 outer = build_array_type (inner, TYPE_DOMAIN (type));
5809 }
5810 else if (TREE_CODE (type) == FUNCTION_TYPE)
5811 {
5812 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5813 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
5814 }
5815 else if (TREE_CODE (type) == METHOD_TYPE)
5816 {
5817 tree argtypes;
5818 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5819 /* The build_method_type_directly() routine prepends 'this' to argument list,
5820 so we must compensate by getting rid of it. */
5821 argtypes = TYPE_ARG_TYPES (type);
5822 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
5823 inner,
5824 TYPE_ARG_TYPES (type));
5825 TYPE_ARG_TYPES (outer) = argtypes;
5826 }
5827 else
5828 return bottom;
5829
5830 TYPE_READONLY (outer) = TYPE_READONLY (type);
5831 TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
5832
5833 return outer;
5834 }
5835
5836 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
5837 the inner type. */
5838 tree
5839 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
5840 {
5841 int nunits;
5842
5843 switch (GET_MODE_CLASS (mode))
5844 {
5845 case MODE_VECTOR_INT:
5846 case MODE_VECTOR_FLOAT:
5847 nunits = GET_MODE_NUNITS (mode);
5848 break;
5849
5850 case MODE_INT:
5851 /* Check that there are no leftover bits. */
5852 gcc_assert (GET_MODE_BITSIZE (mode)
5853 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
5854
5855 nunits = GET_MODE_BITSIZE (mode)
5856 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
5857 break;
5858
5859 default:
5860 gcc_unreachable ();
5861 }
5862
5863 return make_vector_type (innertype, nunits, mode);
5864 }
5865
5866 /* Similarly, but takes the inner type and number of units, which must be
5867 a power of two. */
5868
5869 tree
5870 build_vector_type (tree innertype, int nunits)
5871 {
5872 return make_vector_type (innertype, nunits, VOIDmode);
5873 }
5874
5875 /* Given an initializer INIT, return TRUE if INIT is zero or some
5876 aggregate of zeros. Otherwise return FALSE. */
5877 bool
5878 initializer_zerop (tree init)
5879 {
5880 tree elt;
5881
5882 STRIP_NOPS (init);
5883
5884 switch (TREE_CODE (init))
5885 {
5886 case INTEGER_CST:
5887 return integer_zerop (init);
5888
5889 case REAL_CST:
5890 /* ??? Note that this is not correct for C4X float formats. There,
5891 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
5892 negative exponent. */
5893 return real_zerop (init)
5894 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
5895
5896 case COMPLEX_CST:
5897 return integer_zerop (init)
5898 || (real_zerop (init)
5899 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
5900 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
5901
5902 case VECTOR_CST:
5903 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
5904 if (!initializer_zerop (TREE_VALUE (elt)))
5905 return false;
5906 return true;
5907
5908 case CONSTRUCTOR:
5909 elt = CONSTRUCTOR_ELTS (init);
5910 if (elt == NULL_TREE)
5911 return true;
5912
5913 for (; elt ; elt = TREE_CHAIN (elt))
5914 if (! initializer_zerop (TREE_VALUE (elt)))
5915 return false;
5916 return true;
5917
5918 default:
5919 return false;
5920 }
5921 }
5922
5923 void
5924 add_var_to_bind_expr (tree bind_expr, tree var)
5925 {
5926 BIND_EXPR_VARS (bind_expr)
5927 = chainon (BIND_EXPR_VARS (bind_expr), var);
5928 if (BIND_EXPR_BLOCK (bind_expr))
5929 BLOCK_VARS (BIND_EXPR_BLOCK (bind_expr))
5930 = BIND_EXPR_VARS (bind_expr);
5931 }
5932
5933 /* Build an empty statement. */
5934
5935 tree
5936 build_empty_stmt (void)
5937 {
5938 return build1 (NOP_EXPR, void_type_node, size_zero_node);
5939 }
5940
5941
5942 /* Returns true if it is possible to prove that the index of
5943 an array access REF (an ARRAY_REF expression) falls into the
5944 array bounds. */
5945
5946 bool
5947 in_array_bounds_p (tree ref)
5948 {
5949 tree idx = TREE_OPERAND (ref, 1);
5950 tree min, max;
5951
5952 if (TREE_CODE (idx) != INTEGER_CST)
5953 return false;
5954
5955 min = array_ref_low_bound (ref);
5956 max = array_ref_up_bound (ref);
5957 if (!min
5958 || !max
5959 || TREE_CODE (min) != INTEGER_CST
5960 || TREE_CODE (max) != INTEGER_CST)
5961 return false;
5962
5963 if (tree_int_cst_lt (idx, min)
5964 || tree_int_cst_lt (max, idx))
5965 return false;
5966
5967 return true;
5968 }
5969
5970 /* Return true if T (assumed to be a DECL) is a global variable. */
5971
5972 bool
5973 is_global_var (tree t)
5974 {
5975 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
5976 }
5977
5978 /* Return true if T (assumed to be a DECL) must be assigned a memory
5979 location. */
5980
5981 bool
5982 needs_to_live_in_memory (tree t)
5983 {
5984 return (TREE_ADDRESSABLE (t)
5985 || is_global_var (t)
5986 || (TREE_CODE (t) == RESULT_DECL
5987 && aggregate_value_p (t, current_function_decl)));
5988 }
5989
5990 /* There are situations in which a language considers record types
5991 compatible which have different field lists. Decide if two fields
5992 are compatible. It is assumed that the parent records are compatible. */
5993
5994 bool
5995 fields_compatible_p (tree f1, tree f2)
5996 {
5997 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
5998 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
5999 return false;
6000
6001 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
6002 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
6003 return false;
6004
6005 if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
6006 return false;
6007
6008 return true;
6009 }
6010
6011 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
6012
6013 tree
6014 find_compatible_field (tree record, tree orig_field)
6015 {
6016 tree f;
6017
6018 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
6019 if (TREE_CODE (f) == FIELD_DECL
6020 && fields_compatible_p (f, orig_field))
6021 return f;
6022
6023 /* ??? Why isn't this on the main fields list? */
6024 f = TYPE_VFIELD (record);
6025 if (f && TREE_CODE (f) == FIELD_DECL
6026 && fields_compatible_p (f, orig_field))
6027 return f;
6028
6029 /* ??? We should abort here, but Java appears to do Bad Things
6030 with inherited fields. */
6031 return orig_field;
6032 }
6033
6034 /* Return value of a constant X. */
6035
6036 HOST_WIDE_INT
6037 int_cst_value (tree x)
6038 {
6039 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
6040 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
6041 bool negative = ((val >> (bits - 1)) & 1) != 0;
6042
6043 gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
6044
6045 if (negative)
6046 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
6047 else
6048 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
6049
6050 return val;
6051 }
6052
6053 /* Returns the greatest common divisor of A and B, which must be
6054 INTEGER_CSTs. */
6055
6056 tree
6057 tree_fold_gcd (tree a, tree b)
6058 {
6059 tree a_mod_b;
6060 tree type = TREE_TYPE (a);
6061
6062 gcc_assert (TREE_CODE (a) == INTEGER_CST);
6063 gcc_assert (TREE_CODE (b) == INTEGER_CST);
6064
6065 if (integer_zerop (a))
6066 return b;
6067
6068 if (integer_zerop (b))
6069 return a;
6070
6071 if (tree_int_cst_sgn (a) == -1)
6072 a = fold (build2 (MULT_EXPR, type, a,
6073 convert (type, integer_minus_one_node)));
6074
6075 if (tree_int_cst_sgn (b) == -1)
6076 b = fold (build2 (MULT_EXPR, type, b,
6077 convert (type, integer_minus_one_node)));
6078
6079 while (1)
6080 {
6081 a_mod_b = fold (build2 (FLOOR_MOD_EXPR, type, a, b));
6082
6083 if (!TREE_INT_CST_LOW (a_mod_b)
6084 && !TREE_INT_CST_HIGH (a_mod_b))
6085 return b;
6086
6087 a = b;
6088 b = a_mod_b;
6089 }
6090 }
6091
6092 /* Returns unsigned variant of TYPE. */
6093
6094 tree
6095 unsigned_type_for (tree type)
6096 {
6097 return lang_hooks.types.unsigned_type (type);
6098 }
6099
6100 /* Returns signed variant of TYPE. */
6101
6102 tree
6103 signed_type_for (tree type)
6104 {
6105 return lang_hooks.types.signed_type (type);
6106 }
6107
6108 /* Returns the largest value obtainable by casting something in INNER type to
6109 OUTER type. */
6110
6111 tree
6112 upper_bound_in_type (tree outer, tree inner)
6113 {
6114 unsigned HOST_WIDE_INT lo, hi;
6115 unsigned bits = TYPE_PRECISION (inner);
6116
6117 if (TYPE_UNSIGNED (outer) || TYPE_UNSIGNED (inner))
6118 {
6119 /* Zero extending in these cases. */
6120 if (bits <= HOST_BITS_PER_WIDE_INT)
6121 {
6122 hi = 0;
6123 lo = (~(unsigned HOST_WIDE_INT) 0)
6124 >> (HOST_BITS_PER_WIDE_INT - bits);
6125 }
6126 else
6127 {
6128 hi = (~(unsigned HOST_WIDE_INT) 0)
6129 >> (2 * HOST_BITS_PER_WIDE_INT - bits);
6130 lo = ~(unsigned HOST_WIDE_INT) 0;
6131 }
6132 }
6133 else
6134 {
6135 /* Sign extending in these cases. */
6136 if (bits <= HOST_BITS_PER_WIDE_INT)
6137 {
6138 hi = 0;
6139 lo = (~(unsigned HOST_WIDE_INT) 0)
6140 >> (HOST_BITS_PER_WIDE_INT - bits) >> 1;
6141 }
6142 else
6143 {
6144 hi = (~(unsigned HOST_WIDE_INT) 0)
6145 >> (2 * HOST_BITS_PER_WIDE_INT - bits) >> 1;
6146 lo = ~(unsigned HOST_WIDE_INT) 0;
6147 }
6148 }
6149
6150 return fold_convert (outer,
6151 build_int_cst_wide (inner, lo, hi));
6152 }
6153
6154 /* Returns the smallest value obtainable by casting something in INNER type to
6155 OUTER type. */
6156
6157 tree
6158 lower_bound_in_type (tree outer, tree inner)
6159 {
6160 unsigned HOST_WIDE_INT lo, hi;
6161 unsigned bits = TYPE_PRECISION (inner);
6162
6163 if (TYPE_UNSIGNED (outer) || TYPE_UNSIGNED (inner))
6164 lo = hi = 0;
6165 else if (bits <= HOST_BITS_PER_WIDE_INT)
6166 {
6167 hi = ~(unsigned HOST_WIDE_INT) 0;
6168 lo = (~(unsigned HOST_WIDE_INT) 0) << (bits - 1);
6169 }
6170 else
6171 {
6172 hi = (~(unsigned HOST_WIDE_INT) 0) << (bits - HOST_BITS_PER_WIDE_INT - 1);
6173 lo = 0;
6174 }
6175
6176 return fold_convert (outer,
6177 build_int_cst_wide (inner, lo, hi));
6178 }
6179
6180 /* Return nonzero if two operands that are suitable for PHI nodes are
6181 necessarily equal. Specifically, both ARG0 and ARG1 must be either
6182 SSA_NAME or invariant. Note that this is strictly an optimization.
6183 That is, callers of this function can directly call operand_equal_p
6184 and get the same result, only slower. */
6185
6186 int
6187 operand_equal_for_phi_arg_p (tree arg0, tree arg1)
6188 {
6189 if (arg0 == arg1)
6190 return 1;
6191 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
6192 return 0;
6193 return operand_equal_p (arg0, arg1, 0);
6194 }
6195
6196 #include "gt-tree.h"
This page took 0.305273 seconds and 6 git commands to generate.