]> gcc.gnu.org Git - gcc.git/blob - gcc/tree.c
cse.c (check_fold_consts): New static function.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 88, 92-98, 1999 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
31
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "flags.h"
39 #include "tree.h"
40 #include "except.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h"
44
45 #define obstack_chunk_alloc xmalloc
46 #define obstack_chunk_free free
47 /* obstack.[ch] explicitly declined to prototype this. */
48 extern int _obstack_allocated_p PROTO ((struct obstack *h, GENERIC_PTR obj));
49
50 /* Tree nodes of permanent duration are allocated in this obstack.
51 They are the identifier nodes, and everything outside of
52 the bodies and parameters of function definitions. */
53
54 struct obstack permanent_obstack;
55
56 /* The initial RTL, and all ..._TYPE nodes, in a function
57 are allocated in this obstack. Usually they are freed at the
58 end of the function, but if the function is inline they are saved.
59 For top-level functions, this is maybepermanent_obstack.
60 Separate obstacks are made for nested functions. */
61
62 struct obstack *function_maybepermanent_obstack;
63
64 /* This is the function_maybepermanent_obstack for top-level functions. */
65
66 struct obstack maybepermanent_obstack;
67
68 /* This is a list of function_maybepermanent_obstacks for top-level inline
69 functions that are compiled in the middle of compiling other functions. */
70
71 struct simple_obstack_stack *toplev_inline_obstacks;
72
73 /* Former elements of toplev_inline_obstacks that have been recycled. */
74
75 struct simple_obstack_stack *extra_inline_obstacks;
76
77 /* This is a list of function_maybepermanent_obstacks for inline functions
78 nested in the current function that were compiled in the middle of
79 compiling other functions. */
80
81 struct simple_obstack_stack *inline_obstacks;
82
83 /* The contents of the current function definition are allocated
84 in this obstack, and all are freed at the end of the function.
85 For top-level functions, this is temporary_obstack.
86 Separate obstacks are made for nested functions. */
87
88 struct obstack *function_obstack;
89
90 /* This is used for reading initializers of global variables. */
91
92 struct obstack temporary_obstack;
93
94 /* The tree nodes of an expression are allocated
95 in this obstack, and all are freed at the end of the expression. */
96
97 struct obstack momentary_obstack;
98
99 /* The tree nodes of a declarator are allocated
100 in this obstack, and all are freed when the declarator
101 has been parsed. */
102
103 static struct obstack temp_decl_obstack;
104
105 /* This points at either permanent_obstack
106 or the current function_maybepermanent_obstack. */
107
108 struct obstack *saveable_obstack;
109
110 /* This is same as saveable_obstack during parse and expansion phase;
111 it points to the current function's obstack during optimization.
112 This is the obstack to be used for creating rtl objects. */
113
114 struct obstack *rtl_obstack;
115
116 /* This points at either permanent_obstack or the current function_obstack. */
117
118 struct obstack *current_obstack;
119
120 /* This points at either permanent_obstack or the current function_obstack
121 or momentary_obstack. */
122
123 struct obstack *expression_obstack;
124
125 /* Stack of obstack selections for push_obstacks and pop_obstacks. */
126
127 struct obstack_stack
128 {
129 struct obstack_stack *next;
130 struct obstack *current;
131 struct obstack *saveable;
132 struct obstack *expression;
133 struct obstack *rtl;
134 };
135
136 struct obstack_stack *obstack_stack;
137
138 /* Obstack for allocating struct obstack_stack entries. */
139
140 static struct obstack obstack_stack_obstack;
141
142 /* Addresses of first objects in some obstacks.
143 This is for freeing their entire contents. */
144 char *maybepermanent_firstobj;
145 char *temporary_firstobj;
146 char *momentary_firstobj;
147 char *temp_decl_firstobj;
148
149 /* This is used to preserve objects (mainly array initializers) that need to
150 live until the end of the current function, but no further. */
151 char *momentary_function_firstobj;
152
153 /* Nonzero means all ..._TYPE nodes should be allocated permanently. */
154
155 int all_types_permanent;
156
157 /* Stack of places to restore the momentary obstack back to. */
158
159 struct momentary_level
160 {
161 /* Pointer back to previous such level. */
162 struct momentary_level *prev;
163 /* First object allocated within this level. */
164 char *base;
165 /* Value of expression_obstack saved at entry to this level. */
166 struct obstack *obstack;
167 };
168
169 struct momentary_level *momentary_stack;
170
171 /* Table indexed by tree code giving a string containing a character
172 classifying the tree code. Possibilities are
173 t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
174
175 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
176
177 char tree_code_type[MAX_TREE_CODES] = {
178 #include "tree.def"
179 };
180 #undef DEFTREECODE
181
182 /* Table indexed by tree code giving number of expression
183 operands beyond the fixed part of the node structure.
184 Not used for types or decls. */
185
186 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
187
188 int tree_code_length[MAX_TREE_CODES] = {
189 #include "tree.def"
190 };
191 #undef DEFTREECODE
192
193 /* Names of tree components.
194 Used for printing out the tree and error messages. */
195 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
196
197 char *tree_code_name[MAX_TREE_CODES] = {
198 #include "tree.def"
199 };
200 #undef DEFTREECODE
201
202 /* Statistics-gathering stuff. */
203 typedef enum
204 {
205 d_kind,
206 t_kind,
207 b_kind,
208 s_kind,
209 r_kind,
210 e_kind,
211 c_kind,
212 id_kind,
213 op_id_kind,
214 perm_list_kind,
215 temp_list_kind,
216 vec_kind,
217 x_kind,
218 lang_decl,
219 lang_type,
220 all_kinds
221 } tree_node_kind;
222
223 int tree_node_counts[(int)all_kinds];
224 int tree_node_sizes[(int)all_kinds];
225 int id_string_size = 0;
226
227 const char *tree_node_kind_names[] = {
228 "decls",
229 "types",
230 "blocks",
231 "stmts",
232 "refs",
233 "exprs",
234 "constants",
235 "identifiers",
236 "op_identifiers",
237 "perm_tree_lists",
238 "temp_tree_lists",
239 "vecs",
240 "random kinds",
241 "lang_decl kinds",
242 "lang_type kinds"
243 };
244
245 /* Hash table for uniquizing IDENTIFIER_NODEs by name. */
246
247 #define MAX_HASH_TABLE 1009
248 static tree hash_table[MAX_HASH_TABLE]; /* id hash buckets */
249
250 /* 0 while creating built-in identifiers. */
251 static int do_identifier_warnings;
252
253 /* Unique id for next decl created. */
254 static int next_decl_uid;
255 /* Unique id for next type created. */
256 static int next_type_uid = 1;
257
258 /* The language-specific function for alias analysis. If NULL, the
259 language does not do any special alias analysis. */
260 int (*lang_get_alias_set) PROTO((tree));
261
262 /* Here is how primitive or already-canonicalized types' hash
263 codes are made. */
264 #define TYPE_HASH(TYPE) ((unsigned long) (TYPE) & 0777777)
265
266 static void set_type_quals PROTO((tree, int));
267 static void append_random_chars PROTO((char *));
268 static void build_real_from_int_cst_1 PROTO((PTR));
269
270 extern char *mode_name[];
271
272 void gcc_obstack_init ();
273 \f
274 /* Init the principal obstacks. */
275
276 void
277 init_obstacks ()
278 {
279 gcc_obstack_init (&obstack_stack_obstack);
280 gcc_obstack_init (&permanent_obstack);
281
282 gcc_obstack_init (&temporary_obstack);
283 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
284 gcc_obstack_init (&momentary_obstack);
285 momentary_firstobj = (char *) obstack_alloc (&momentary_obstack, 0);
286 momentary_function_firstobj = momentary_firstobj;
287 gcc_obstack_init (&maybepermanent_obstack);
288 maybepermanent_firstobj
289 = (char *) obstack_alloc (&maybepermanent_obstack, 0);
290 gcc_obstack_init (&temp_decl_obstack);
291 temp_decl_firstobj = (char *) obstack_alloc (&temp_decl_obstack, 0);
292
293 function_obstack = &temporary_obstack;
294 function_maybepermanent_obstack = &maybepermanent_obstack;
295 current_obstack = &permanent_obstack;
296 expression_obstack = &permanent_obstack;
297 rtl_obstack = saveable_obstack = &permanent_obstack;
298
299 /* Init the hash table of identifiers. */
300 bzero ((char *) hash_table, sizeof hash_table);
301 }
302
303 void
304 gcc_obstack_init (obstack)
305 struct obstack *obstack;
306 {
307 /* Let particular systems override the size of a chunk. */
308 #ifndef OBSTACK_CHUNK_SIZE
309 #define OBSTACK_CHUNK_SIZE 0
310 #endif
311 /* Let them override the alloc and free routines too. */
312 #ifndef OBSTACK_CHUNK_ALLOC
313 #define OBSTACK_CHUNK_ALLOC xmalloc
314 #endif
315 #ifndef OBSTACK_CHUNK_FREE
316 #define OBSTACK_CHUNK_FREE free
317 #endif
318 _obstack_begin (obstack, OBSTACK_CHUNK_SIZE, 0,
319 (void *(*) ()) OBSTACK_CHUNK_ALLOC,
320 (void (*) ()) OBSTACK_CHUNK_FREE);
321 }
322
323 /* Save all variables describing the current status into the structure
324 *P. This function is called whenever we start compiling one
325 function in the midst of compiling another. For example, when
326 compiling a nested function, or, in C++, a template instantiation
327 that is required by the function we are currently compiling.
328
329 CONTEXT is the decl_function_context for the function we're about to
330 compile; if it isn't current_function_decl, we have to play some games. */
331
332 void
333 save_tree_status (p, context)
334 struct function *p;
335 tree context;
336 {
337 p->all_types_permanent = all_types_permanent;
338 p->momentary_stack = momentary_stack;
339 p->maybepermanent_firstobj = maybepermanent_firstobj;
340 p->temporary_firstobj = temporary_firstobj;
341 p->momentary_firstobj = momentary_firstobj;
342 p->momentary_function_firstobj = momentary_function_firstobj;
343 p->function_obstack = function_obstack;
344 p->function_maybepermanent_obstack = function_maybepermanent_obstack;
345 p->current_obstack = current_obstack;
346 p->expression_obstack = expression_obstack;
347 p->saveable_obstack = saveable_obstack;
348 p->rtl_obstack = rtl_obstack;
349 p->inline_obstacks = inline_obstacks;
350
351 if (current_function_decl && context == current_function_decl)
352 /* Objects that need to be saved in this function can be in the nonsaved
353 obstack of the enclosing function since they can't possibly be needed
354 once it has returned. */
355 function_maybepermanent_obstack = function_obstack;
356 else
357 {
358 /* We're compiling a function which isn't nested in the current
359 function. We need to create a new maybepermanent_obstack for this
360 function, since it can't go onto any of the existing obstacks. */
361 struct simple_obstack_stack **head;
362 struct simple_obstack_stack *current;
363
364 if (context == NULL_TREE)
365 head = &toplev_inline_obstacks;
366 else
367 {
368 struct function *f = find_function_data (context);
369 head = &f->inline_obstacks;
370 }
371
372 if (context == NULL_TREE && extra_inline_obstacks)
373 {
374 current = extra_inline_obstacks;
375 extra_inline_obstacks = current->next;
376 }
377 else
378 {
379 current = ((struct simple_obstack_stack *)
380 xmalloc (sizeof (struct simple_obstack_stack)));
381
382 current->obstack
383 = (struct obstack *) xmalloc (sizeof (struct obstack));
384 gcc_obstack_init (current->obstack);
385 }
386
387 function_maybepermanent_obstack = current->obstack;
388
389 current->next = *head;
390 *head = current;
391 }
392
393 maybepermanent_firstobj
394 = (char *) obstack_finish (function_maybepermanent_obstack);
395
396 function_obstack = (struct obstack *) xmalloc (sizeof (struct obstack));
397 gcc_obstack_init (function_obstack);
398
399 current_obstack = &permanent_obstack;
400 expression_obstack = &permanent_obstack;
401 rtl_obstack = saveable_obstack = &permanent_obstack;
402
403 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
404 momentary_firstobj = (char *) obstack_finish (&momentary_obstack);
405 momentary_function_firstobj = momentary_firstobj;
406 }
407
408 /* Restore all variables describing the current status from the structure *P.
409 This is used after a nested function. */
410
411 void
412 restore_tree_status (p, context)
413 struct function *p;
414 tree context;
415 {
416 all_types_permanent = p->all_types_permanent;
417 momentary_stack = p->momentary_stack;
418
419 obstack_free (&momentary_obstack, momentary_function_firstobj);
420
421 /* Free saveable storage used by the function just compiled and not
422 saved.
423
424 CAUTION: This is in function_obstack of the containing function.
425 So we must be sure that we never allocate from that obstack during
426 the compilation of a nested function if we expect it to survive
427 past the nested function's end. */
428 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
429
430 /* If we were compiling a toplevel function, we can free this space now. */
431 if (context == NULL_TREE)
432 {
433 obstack_free (&temporary_obstack, temporary_firstobj);
434 obstack_free (&momentary_obstack, momentary_function_firstobj);
435 }
436
437 /* If we were compiling a toplevel function that we don't actually want
438 to save anything from, return the obstack to the pool. */
439 if (context == NULL_TREE
440 && obstack_empty_p (function_maybepermanent_obstack))
441 {
442 struct simple_obstack_stack *current, **p = &toplev_inline_obstacks;
443
444 if ((*p) != NULL)
445 {
446 while ((*p)->obstack != function_maybepermanent_obstack)
447 p = &((*p)->next);
448 current = *p;
449 *p = current->next;
450
451 current->next = extra_inline_obstacks;
452 extra_inline_obstacks = current;
453 }
454 }
455
456 obstack_free (function_obstack, 0);
457 free (function_obstack);
458
459 temporary_firstobj = p->temporary_firstobj;
460 momentary_firstobj = p->momentary_firstobj;
461 momentary_function_firstobj = p->momentary_function_firstobj;
462 maybepermanent_firstobj = p->maybepermanent_firstobj;
463 function_obstack = p->function_obstack;
464 function_maybepermanent_obstack = p->function_maybepermanent_obstack;
465 current_obstack = p->current_obstack;
466 expression_obstack = p->expression_obstack;
467 saveable_obstack = p->saveable_obstack;
468 rtl_obstack = p->rtl_obstack;
469 inline_obstacks = p->inline_obstacks;
470 }
471 \f
472 /* Start allocating on the temporary (per function) obstack.
473 This is done in start_function before parsing the function body,
474 and before each initialization at top level, and to go back
475 to temporary allocation after doing permanent_allocation. */
476
477 void
478 temporary_allocation ()
479 {
480 /* Note that function_obstack at top level points to temporary_obstack.
481 But within a nested function context, it is a separate obstack. */
482 current_obstack = function_obstack;
483 expression_obstack = function_obstack;
484 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
485 momentary_stack = 0;
486 inline_obstacks = 0;
487 }
488
489 /* Start allocating on the permanent obstack but don't
490 free the temporary data. After calling this, call
491 `permanent_allocation' to fully resume permanent allocation status. */
492
493 void
494 end_temporary_allocation ()
495 {
496 current_obstack = &permanent_obstack;
497 expression_obstack = &permanent_obstack;
498 rtl_obstack = saveable_obstack = &permanent_obstack;
499 }
500
501 /* Resume allocating on the temporary obstack, undoing
502 effects of `end_temporary_allocation'. */
503
504 void
505 resume_temporary_allocation ()
506 {
507 current_obstack = function_obstack;
508 expression_obstack = function_obstack;
509 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
510 }
511
512 /* While doing temporary allocation, switch to allocating in such a
513 way as to save all nodes if the function is inlined. Call
514 resume_temporary_allocation to go back to ordinary temporary
515 allocation. */
516
517 void
518 saveable_allocation ()
519 {
520 /* Note that function_obstack at top level points to temporary_obstack.
521 But within a nested function context, it is a separate obstack. */
522 expression_obstack = current_obstack = saveable_obstack;
523 }
524
525 /* Switch to current obstack CURRENT and maybepermanent obstack SAVEABLE,
526 recording the previously current obstacks on a stack.
527 This does not free any storage in any obstack. */
528
529 void
530 push_obstacks (current, saveable)
531 struct obstack *current, *saveable;
532 {
533 struct obstack_stack *p
534 = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
535 (sizeof (struct obstack_stack)));
536
537 p->current = current_obstack;
538 p->saveable = saveable_obstack;
539 p->expression = expression_obstack;
540 p->rtl = rtl_obstack;
541 p->next = obstack_stack;
542 obstack_stack = p;
543
544 current_obstack = current;
545 expression_obstack = current;
546 rtl_obstack = saveable_obstack = saveable;
547 }
548
549 /* Save the current set of obstacks, but don't change them. */
550
551 void
552 push_obstacks_nochange ()
553 {
554 struct obstack_stack *p
555 = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
556 (sizeof (struct obstack_stack)));
557
558 p->current = current_obstack;
559 p->saveable = saveable_obstack;
560 p->expression = expression_obstack;
561 p->rtl = rtl_obstack;
562 p->next = obstack_stack;
563 obstack_stack = p;
564 }
565
566 /* Pop the obstack selection stack. */
567
568 void
569 pop_obstacks ()
570 {
571 struct obstack_stack *p = obstack_stack;
572 obstack_stack = p->next;
573
574 current_obstack = p->current;
575 saveable_obstack = p->saveable;
576 expression_obstack = p->expression;
577 rtl_obstack = p->rtl;
578
579 obstack_free (&obstack_stack_obstack, p);
580 }
581
582 /* Nonzero if temporary allocation is currently in effect.
583 Zero if currently doing permanent allocation. */
584
585 int
586 allocation_temporary_p ()
587 {
588 return current_obstack != &permanent_obstack;
589 }
590
591 /* Go back to allocating on the permanent obstack
592 and free everything in the temporary obstack.
593
594 FUNCTION_END is true only if we have just finished compiling a function.
595 In that case, we also free preserved initial values on the momentary
596 obstack. */
597
598 void
599 permanent_allocation (function_end)
600 int function_end;
601 {
602 /* Free up previous temporary obstack data */
603 obstack_free (&temporary_obstack, temporary_firstobj);
604 if (function_end)
605 {
606 obstack_free (&momentary_obstack, momentary_function_firstobj);
607 momentary_firstobj = momentary_function_firstobj;
608 }
609 else
610 obstack_free (&momentary_obstack, momentary_firstobj);
611 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
612 obstack_free (&temp_decl_obstack, temp_decl_firstobj);
613
614 /* Free up the maybepermanent_obstacks for any of our nested functions
615 which were compiled at a lower level. */
616 while (inline_obstacks)
617 {
618 struct simple_obstack_stack *current = inline_obstacks;
619 inline_obstacks = current->next;
620 obstack_free (current->obstack, 0);
621 free (current->obstack);
622 free (current);
623 }
624
625 current_obstack = &permanent_obstack;
626 expression_obstack = &permanent_obstack;
627 rtl_obstack = saveable_obstack = &permanent_obstack;
628 }
629
630 /* Save permanently everything on the maybepermanent_obstack. */
631
632 void
633 preserve_data ()
634 {
635 maybepermanent_firstobj
636 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
637 }
638
639 void
640 preserve_initializer ()
641 {
642 struct momentary_level *tem;
643 char *old_momentary;
644
645 temporary_firstobj
646 = (char *) obstack_alloc (&temporary_obstack, 0);
647 maybepermanent_firstobj
648 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
649
650 old_momentary = momentary_firstobj;
651 momentary_firstobj
652 = (char *) obstack_alloc (&momentary_obstack, 0);
653 if (momentary_firstobj != old_momentary)
654 for (tem = momentary_stack; tem; tem = tem->prev)
655 tem->base = momentary_firstobj;
656 }
657
658 /* Start allocating new rtl in current_obstack.
659 Use resume_temporary_allocation
660 to go back to allocating rtl in saveable_obstack. */
661
662 void
663 rtl_in_current_obstack ()
664 {
665 rtl_obstack = current_obstack;
666 }
667
668 /* Start allocating rtl from saveable_obstack. Intended to be used after
669 a call to push_obstacks_nochange. */
670
671 void
672 rtl_in_saveable_obstack ()
673 {
674 rtl_obstack = saveable_obstack;
675 }
676 \f
677 /* Allocate SIZE bytes in the current obstack
678 and return a pointer to them.
679 In practice the current obstack is always the temporary one. */
680
681 char *
682 oballoc (size)
683 int size;
684 {
685 return (char *) obstack_alloc (current_obstack, size);
686 }
687
688 /* Free the object PTR in the current obstack
689 as well as everything allocated since PTR.
690 In practice the current obstack is always the temporary one. */
691
692 void
693 obfree (ptr)
694 char *ptr;
695 {
696 obstack_free (current_obstack, ptr);
697 }
698
699 /* Allocate SIZE bytes in the permanent obstack
700 and return a pointer to them. */
701
702 char *
703 permalloc (size)
704 int size;
705 {
706 return (char *) obstack_alloc (&permanent_obstack, size);
707 }
708
709 /* Allocate NELEM items of SIZE bytes in the permanent obstack
710 and return a pointer to them. The storage is cleared before
711 returning the value. */
712
713 char *
714 perm_calloc (nelem, size)
715 int nelem;
716 long size;
717 {
718 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
719 bzero (rval, nelem * size);
720 return rval;
721 }
722
723 /* Allocate SIZE bytes in the saveable obstack
724 and return a pointer to them. */
725
726 char *
727 savealloc (size)
728 int size;
729 {
730 return (char *) obstack_alloc (saveable_obstack, size);
731 }
732
733 /* Allocate SIZE bytes in the expression obstack
734 and return a pointer to them. */
735
736 char *
737 expralloc (size)
738 int size;
739 {
740 return (char *) obstack_alloc (expression_obstack, size);
741 }
742 \f
743 /* Print out which obstack an object is in. */
744
745 void
746 print_obstack_name (object, file, prefix)
747 char *object;
748 FILE *file;
749 const char *prefix;
750 {
751 struct obstack *obstack = NULL;
752 const char *obstack_name = NULL;
753 struct function *p;
754
755 for (p = outer_function_chain; p; p = p->next)
756 {
757 if (_obstack_allocated_p (p->function_obstack, object))
758 {
759 obstack = p->function_obstack;
760 obstack_name = "containing function obstack";
761 }
762 if (_obstack_allocated_p (p->function_maybepermanent_obstack, object))
763 {
764 obstack = p->function_maybepermanent_obstack;
765 obstack_name = "containing function maybepermanent obstack";
766 }
767 }
768
769 if (_obstack_allocated_p (&obstack_stack_obstack, object))
770 {
771 obstack = &obstack_stack_obstack;
772 obstack_name = "obstack_stack_obstack";
773 }
774 else if (_obstack_allocated_p (function_obstack, object))
775 {
776 obstack = function_obstack;
777 obstack_name = "function obstack";
778 }
779 else if (_obstack_allocated_p (&permanent_obstack, object))
780 {
781 obstack = &permanent_obstack;
782 obstack_name = "permanent_obstack";
783 }
784 else if (_obstack_allocated_p (&momentary_obstack, object))
785 {
786 obstack = &momentary_obstack;
787 obstack_name = "momentary_obstack";
788 }
789 else if (_obstack_allocated_p (function_maybepermanent_obstack, object))
790 {
791 obstack = function_maybepermanent_obstack;
792 obstack_name = "function maybepermanent obstack";
793 }
794 else if (_obstack_allocated_p (&temp_decl_obstack, object))
795 {
796 obstack = &temp_decl_obstack;
797 obstack_name = "temp_decl_obstack";
798 }
799
800 /* Check to see if the object is in the free area of the obstack. */
801 if (obstack != NULL)
802 {
803 if (object >= obstack->next_free
804 && object < obstack->chunk_limit)
805 fprintf (file, "%s in free portion of obstack %s",
806 prefix, obstack_name);
807 else
808 fprintf (file, "%s allocated from %s", prefix, obstack_name);
809 }
810 else
811 fprintf (file, "%s not allocated from any obstack", prefix);
812 }
813
814 void
815 debug_obstack (object)
816 char *object;
817 {
818 print_obstack_name (object, stderr, "object");
819 fprintf (stderr, ".\n");
820 }
821
822 /* Return 1 if OBJ is in the permanent obstack.
823 This is slow, and should be used only for debugging.
824 Use TREE_PERMANENT for other purposes. */
825
826 int
827 object_permanent_p (obj)
828 tree obj;
829 {
830 return _obstack_allocated_p (&permanent_obstack, obj);
831 }
832 \f
833 /* Start a level of momentary allocation.
834 In C, each compound statement has its own level
835 and that level is freed at the end of each statement.
836 All expression nodes are allocated in the momentary allocation level. */
837
838 void
839 push_momentary ()
840 {
841 struct momentary_level *tem
842 = (struct momentary_level *) obstack_alloc (&momentary_obstack,
843 sizeof (struct momentary_level));
844 tem->prev = momentary_stack;
845 tem->base = (char *) obstack_base (&momentary_obstack);
846 tem->obstack = expression_obstack;
847 momentary_stack = tem;
848 expression_obstack = &momentary_obstack;
849 }
850
851 /* Set things up so the next clear_momentary will only clear memory
852 past our present position in momentary_obstack. */
853
854 void
855 preserve_momentary ()
856 {
857 momentary_stack->base = (char *) obstack_base (&momentary_obstack);
858 }
859
860 /* Free all the storage in the current momentary-allocation level.
861 In C, this happens at the end of each statement. */
862
863 void
864 clear_momentary ()
865 {
866 obstack_free (&momentary_obstack, momentary_stack->base);
867 }
868
869 /* Discard a level of momentary allocation.
870 In C, this happens at the end of each compound statement.
871 Restore the status of expression node allocation
872 that was in effect before this level was created. */
873
874 void
875 pop_momentary ()
876 {
877 struct momentary_level *tem = momentary_stack;
878 momentary_stack = tem->prev;
879 expression_obstack = tem->obstack;
880 /* We can't free TEM from the momentary_obstack, because there might
881 be objects above it which have been saved. We can free back to the
882 stack of the level we are popping off though. */
883 obstack_free (&momentary_obstack, tem->base);
884 }
885
886 /* Pop back to the previous level of momentary allocation,
887 but don't free any momentary data just yet. */
888
889 void
890 pop_momentary_nofree ()
891 {
892 struct momentary_level *tem = momentary_stack;
893 momentary_stack = tem->prev;
894 expression_obstack = tem->obstack;
895 }
896
897 /* Call when starting to parse a declaration:
898 make expressions in the declaration last the length of the function.
899 Returns an argument that should be passed to resume_momentary later. */
900
901 int
902 suspend_momentary ()
903 {
904 register int tem = expression_obstack == &momentary_obstack;
905 expression_obstack = saveable_obstack;
906 return tem;
907 }
908
909 /* Call when finished parsing a declaration:
910 restore the treatment of node-allocation that was
911 in effect before the suspension.
912 YES should be the value previously returned by suspend_momentary. */
913
914 void
915 resume_momentary (yes)
916 int yes;
917 {
918 if (yes)
919 expression_obstack = &momentary_obstack;
920 }
921 \f
922 /* Init the tables indexed by tree code.
923 Note that languages can add to these tables to define their own codes. */
924
925 void
926 init_tree_codes ()
927 {
928
929 }
930
931 /* Return a newly allocated node of code CODE.
932 Initialize the node's unique id and its TREE_PERMANENT flag.
933 For decl and type nodes, some other fields are initialized.
934 The rest of the node is initialized to zero.
935
936 Achoo! I got a code in the node. */
937
938 tree
939 make_node (code)
940 enum tree_code code;
941 {
942 register tree t;
943 register int type = TREE_CODE_CLASS (code);
944 register int length = 0;
945 register struct obstack *obstack = current_obstack;
946 #ifdef GATHER_STATISTICS
947 register tree_node_kind kind;
948 #endif
949
950 switch (type)
951 {
952 case 'd': /* A decl node */
953 #ifdef GATHER_STATISTICS
954 kind = d_kind;
955 #endif
956 length = sizeof (struct tree_decl);
957 /* All decls in an inline function need to be saved. */
958 if (obstack != &permanent_obstack)
959 obstack = saveable_obstack;
960
961 /* PARM_DECLs go on the context of the parent. If this is a nested
962 function, then we must allocate the PARM_DECL on the parent's
963 obstack, so that they will live to the end of the parent's
964 closing brace. This is necessary in case we try to inline the
965 function into its parent.
966
967 PARM_DECLs of top-level functions do not have this problem. However,
968 we allocate them where we put the FUNCTION_DECL for languages such as
969 Ada that need to consult some flags in the PARM_DECLs of the function
970 when calling it.
971
972 See comment in restore_tree_status for why we can't put this
973 in function_obstack. */
974 if (code == PARM_DECL && obstack != &permanent_obstack)
975 {
976 tree context = 0;
977 if (current_function_decl)
978 context = decl_function_context (current_function_decl);
979
980 if (context)
981 obstack
982 = find_function_data (context)->function_maybepermanent_obstack;
983 }
984 break;
985
986 case 't': /* a type node */
987 #ifdef GATHER_STATISTICS
988 kind = t_kind;
989 #endif
990 length = sizeof (struct tree_type);
991 /* All data types are put where we can preserve them if nec. */
992 if (obstack != &permanent_obstack)
993 obstack = all_types_permanent ? &permanent_obstack : saveable_obstack;
994 break;
995
996 case 'b': /* a lexical block */
997 #ifdef GATHER_STATISTICS
998 kind = b_kind;
999 #endif
1000 length = sizeof (struct tree_block);
1001 /* All BLOCK nodes are put where we can preserve them if nec. */
1002 if (obstack != &permanent_obstack)
1003 obstack = saveable_obstack;
1004 break;
1005
1006 case 's': /* an expression with side effects */
1007 #ifdef GATHER_STATISTICS
1008 kind = s_kind;
1009 goto usual_kind;
1010 #endif
1011 case 'r': /* a reference */
1012 #ifdef GATHER_STATISTICS
1013 kind = r_kind;
1014 goto usual_kind;
1015 #endif
1016 case 'e': /* an expression */
1017 case '<': /* a comparison expression */
1018 case '1': /* a unary arithmetic expression */
1019 case '2': /* a binary arithmetic expression */
1020 #ifdef GATHER_STATISTICS
1021 kind = e_kind;
1022 usual_kind:
1023 #endif
1024 obstack = expression_obstack;
1025 /* All BIND_EXPR nodes are put where we can preserve them if nec. */
1026 if (code == BIND_EXPR && obstack != &permanent_obstack)
1027 obstack = saveable_obstack;
1028 length = sizeof (struct tree_exp)
1029 + (tree_code_length[(int) code] - 1) * sizeof (char *);
1030 break;
1031
1032 case 'c': /* a constant */
1033 #ifdef GATHER_STATISTICS
1034 kind = c_kind;
1035 #endif
1036 obstack = expression_obstack;
1037
1038 /* We can't use tree_code_length for INTEGER_CST, since the number of
1039 words is machine-dependent due to varying length of HOST_WIDE_INT,
1040 which might be wider than a pointer (e.g., long long). Similarly
1041 for REAL_CST, since the number of words is machine-dependent due
1042 to varying size and alignment of `double'. */
1043
1044 if (code == INTEGER_CST)
1045 length = sizeof (struct tree_int_cst);
1046 else if (code == REAL_CST)
1047 length = sizeof (struct tree_real_cst);
1048 else
1049 length = sizeof (struct tree_common)
1050 + tree_code_length[(int) code] * sizeof (char *);
1051 break;
1052
1053 case 'x': /* something random, like an identifier. */
1054 #ifdef GATHER_STATISTICS
1055 if (code == IDENTIFIER_NODE)
1056 kind = id_kind;
1057 else if (code == OP_IDENTIFIER)
1058 kind = op_id_kind;
1059 else if (code == TREE_VEC)
1060 kind = vec_kind;
1061 else
1062 kind = x_kind;
1063 #endif
1064 length = sizeof (struct tree_common)
1065 + tree_code_length[(int) code] * sizeof (char *);
1066 /* Identifier nodes are always permanent since they are
1067 unique in a compiler run. */
1068 if (code == IDENTIFIER_NODE) obstack = &permanent_obstack;
1069 break;
1070
1071 default:
1072 abort ();
1073 }
1074
1075 t = (tree) obstack_alloc (obstack, length);
1076 bzero ((PTR) t, length);
1077
1078 #ifdef GATHER_STATISTICS
1079 tree_node_counts[(int)kind]++;
1080 tree_node_sizes[(int)kind] += length;
1081 #endif
1082
1083 TREE_SET_CODE (t, code);
1084 if (obstack == &permanent_obstack)
1085 TREE_PERMANENT (t) = 1;
1086
1087 switch (type)
1088 {
1089 case 's':
1090 TREE_SIDE_EFFECTS (t) = 1;
1091 TREE_TYPE (t) = void_type_node;
1092 break;
1093
1094 case 'd':
1095 if (code != FUNCTION_DECL)
1096 DECL_ALIGN (t) = 1;
1097 DECL_IN_SYSTEM_HEADER (t)
1098 = in_system_header && (obstack == &permanent_obstack);
1099 DECL_SOURCE_LINE (t) = lineno;
1100 DECL_SOURCE_FILE (t) = (input_filename) ? input_filename : "<built-in>";
1101 DECL_UID (t) = next_decl_uid++;
1102 /* Note that we have not yet computed the alias set for this
1103 declaration. */
1104 DECL_POINTER_ALIAS_SET (t) = -1;
1105 break;
1106
1107 case 't':
1108 TYPE_UID (t) = next_type_uid++;
1109 TYPE_ALIGN (t) = 1;
1110 TYPE_MAIN_VARIANT (t) = t;
1111 TYPE_OBSTACK (t) = obstack;
1112 TYPE_ATTRIBUTES (t) = NULL_TREE;
1113 #ifdef SET_DEFAULT_TYPE_ATTRIBUTES
1114 SET_DEFAULT_TYPE_ATTRIBUTES (t);
1115 #endif
1116 /* Note that we have not yet computed the alias set for this
1117 type. */
1118 TYPE_ALIAS_SET (t) = -1;
1119 break;
1120
1121 case 'c':
1122 TREE_CONSTANT (t) = 1;
1123 break;
1124 }
1125
1126 return t;
1127 }
1128 \f
1129 /* Return a new node with the same contents as NODE
1130 except that its TREE_CHAIN is zero and it has a fresh uid. */
1131
1132 tree
1133 copy_node (node)
1134 tree node;
1135 {
1136 register tree t;
1137 register enum tree_code code = TREE_CODE (node);
1138 register int length = 0;
1139
1140 switch (TREE_CODE_CLASS (code))
1141 {
1142 case 'd': /* A decl node */
1143 length = sizeof (struct tree_decl);
1144 break;
1145
1146 case 't': /* a type node */
1147 length = sizeof (struct tree_type);
1148 break;
1149
1150 case 'b': /* a lexical block node */
1151 length = sizeof (struct tree_block);
1152 break;
1153
1154 case 'r': /* a reference */
1155 case 'e': /* an expression */
1156 case 's': /* an expression with side effects */
1157 case '<': /* a comparison expression */
1158 case '1': /* a unary arithmetic expression */
1159 case '2': /* a binary arithmetic expression */
1160 length = sizeof (struct tree_exp)
1161 + (tree_code_length[(int) code] - 1) * sizeof (char *);
1162 break;
1163
1164 case 'c': /* a constant */
1165 /* We can't use tree_code_length for INTEGER_CST, since the number of
1166 words is machine-dependent due to varying length of HOST_WIDE_INT,
1167 which might be wider than a pointer (e.g., long long). Similarly
1168 for REAL_CST, since the number of words is machine-dependent due
1169 to varying size and alignment of `double'. */
1170 if (code == INTEGER_CST)
1171 length = sizeof (struct tree_int_cst);
1172 else if (code == REAL_CST)
1173 length = sizeof (struct tree_real_cst);
1174 else
1175 length = (sizeof (struct tree_common)
1176 + tree_code_length[(int) code] * sizeof (char *));
1177 break;
1178
1179 case 'x': /* something random, like an identifier. */
1180 length = sizeof (struct tree_common)
1181 + tree_code_length[(int) code] * sizeof (char *);
1182 if (code == TREE_VEC)
1183 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
1184 }
1185
1186 t = (tree) obstack_alloc (current_obstack, length);
1187 memcpy (t, node, length);
1188
1189 /* EXPR_WITH_FILE_LOCATION must keep filename info stored in TREE_CHAIN */
1190 if (TREE_CODE (node) != EXPR_WITH_FILE_LOCATION)
1191 TREE_CHAIN (t) = 0;
1192 TREE_ASM_WRITTEN (t) = 0;
1193
1194 if (TREE_CODE_CLASS (code) == 'd')
1195 DECL_UID (t) = next_decl_uid++;
1196 else if (TREE_CODE_CLASS (code) == 't')
1197 {
1198 TYPE_UID (t) = next_type_uid++;
1199 TYPE_OBSTACK (t) = current_obstack;
1200
1201 /* The following is so that the debug code for
1202 the copy is different from the original type.
1203 The two statements usually duplicate each other
1204 (because they clear fields of the same union),
1205 but the optimizer should catch that. */
1206 TYPE_SYMTAB_POINTER (t) = 0;
1207 TYPE_SYMTAB_ADDRESS (t) = 0;
1208 }
1209
1210 TREE_PERMANENT (t) = (current_obstack == &permanent_obstack);
1211
1212 return t;
1213 }
1214
1215 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1216 For example, this can copy a list made of TREE_LIST nodes. */
1217
1218 tree
1219 copy_list (list)
1220 tree list;
1221 {
1222 tree head;
1223 register tree prev, next;
1224
1225 if (list == 0)
1226 return 0;
1227
1228 head = prev = copy_node (list);
1229 next = TREE_CHAIN (list);
1230 while (next)
1231 {
1232 TREE_CHAIN (prev) = copy_node (next);
1233 prev = TREE_CHAIN (prev);
1234 next = TREE_CHAIN (next);
1235 }
1236 return head;
1237 }
1238 \f
1239 #define HASHBITS 30
1240
1241 /* Return an IDENTIFIER_NODE whose name is TEXT (a null-terminated string).
1242 If an identifier with that name has previously been referred to,
1243 the same node is returned this time. */
1244
1245 tree
1246 get_identifier (text)
1247 register const char *text;
1248 {
1249 register int hi;
1250 register int i;
1251 register tree idp;
1252 register int len, hash_len;
1253
1254 /* Compute length of text in len. */
1255 len = strlen (text);
1256
1257 /* Decide how much of that length to hash on */
1258 hash_len = len;
1259 if (warn_id_clash && (unsigned)len > id_clash_len)
1260 hash_len = id_clash_len;
1261
1262 /* Compute hash code */
1263 hi = hash_len * 613 + (unsigned) text[0];
1264 for (i = 1; i < hash_len; i += 2)
1265 hi = ((hi * 613) + (unsigned) (text[i]));
1266
1267 hi &= (1 << HASHBITS) - 1;
1268 hi %= MAX_HASH_TABLE;
1269
1270 /* Search table for identifier */
1271 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1272 if (IDENTIFIER_LENGTH (idp) == len
1273 && IDENTIFIER_POINTER (idp)[0] == text[0]
1274 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1275 return idp; /* <-- return if found */
1276
1277 /* Not found; optionally warn about a similar identifier */
1278 if (warn_id_clash && do_identifier_warnings && (unsigned)len >= id_clash_len)
1279 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1280 if (!strncmp (IDENTIFIER_POINTER (idp), text, id_clash_len))
1281 {
1282 warning ("`%s' and `%s' identical in first %d characters",
1283 IDENTIFIER_POINTER (idp), text, id_clash_len);
1284 break;
1285 }
1286
1287 if (tree_code_length[(int) IDENTIFIER_NODE] < 0)
1288 abort (); /* set_identifier_size hasn't been called. */
1289
1290 /* Not found, create one, add to chain */
1291 idp = make_node (IDENTIFIER_NODE);
1292 IDENTIFIER_LENGTH (idp) = len;
1293 #ifdef GATHER_STATISTICS
1294 id_string_size += len;
1295 #endif
1296
1297 IDENTIFIER_POINTER (idp) = obstack_copy0 (&permanent_obstack, text, len);
1298
1299 TREE_CHAIN (idp) = hash_table[hi];
1300 hash_table[hi] = idp;
1301 return idp; /* <-- return if created */
1302 }
1303
1304 /* If an identifier with the name TEXT (a null-terminated string) has
1305 previously been referred to, return that node; otherwise return
1306 NULL_TREE. */
1307
1308 tree
1309 maybe_get_identifier (text)
1310 register const char *text;
1311 {
1312 register int hi;
1313 register int i;
1314 register tree idp;
1315 register int len, hash_len;
1316
1317 /* Compute length of text in len. */
1318 len = strlen (text);
1319
1320 /* Decide how much of that length to hash on */
1321 hash_len = len;
1322 if (warn_id_clash && (unsigned)len > id_clash_len)
1323 hash_len = id_clash_len;
1324
1325 /* Compute hash code */
1326 hi = hash_len * 613 + (unsigned) text[0];
1327 for (i = 1; i < hash_len; i += 2)
1328 hi = ((hi * 613) + (unsigned) (text[i]));
1329
1330 hi &= (1 << HASHBITS) - 1;
1331 hi %= MAX_HASH_TABLE;
1332
1333 /* Search table for identifier */
1334 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1335 if (IDENTIFIER_LENGTH (idp) == len
1336 && IDENTIFIER_POINTER (idp)[0] == text[0]
1337 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1338 return idp; /* <-- return if found */
1339
1340 return NULL_TREE;
1341 }
1342
1343 /* Enable warnings on similar identifiers (if requested).
1344 Done after the built-in identifiers are created. */
1345
1346 void
1347 start_identifier_warnings ()
1348 {
1349 do_identifier_warnings = 1;
1350 }
1351
1352 /* Record the size of an identifier node for the language in use.
1353 SIZE is the total size in bytes.
1354 This is called by the language-specific files. This must be
1355 called before allocating any identifiers. */
1356
1357 void
1358 set_identifier_size (size)
1359 int size;
1360 {
1361 tree_code_length[(int) IDENTIFIER_NODE]
1362 = (size - sizeof (struct tree_common)) / sizeof (tree);
1363 }
1364 \f
1365 /* Return a newly constructed INTEGER_CST node whose constant value
1366 is specified by the two ints LOW and HI.
1367 The TREE_TYPE is set to `int'.
1368
1369 This function should be used via the `build_int_2' macro. */
1370
1371 tree
1372 build_int_2_wide (low, hi)
1373 HOST_WIDE_INT low, hi;
1374 {
1375 register tree t = make_node (INTEGER_CST);
1376 TREE_INT_CST_LOW (t) = low;
1377 TREE_INT_CST_HIGH (t) = hi;
1378 TREE_TYPE (t) = integer_type_node;
1379 return t;
1380 }
1381
1382 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1383
1384 tree
1385 build_real (type, d)
1386 tree type;
1387 REAL_VALUE_TYPE d;
1388 {
1389 tree v;
1390 int overflow = 0;
1391
1392 /* Check for valid float value for this type on this target machine;
1393 if not, can print error message and store a valid value in D. */
1394 #ifdef CHECK_FLOAT_VALUE
1395 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1396 #endif
1397
1398 v = make_node (REAL_CST);
1399 TREE_TYPE (v) = type;
1400 TREE_REAL_CST (v) = d;
1401 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1402 return v;
1403 }
1404
1405 /* Return a new REAL_CST node whose type is TYPE
1406 and whose value is the integer value of the INTEGER_CST node I. */
1407
1408 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1409
1410 REAL_VALUE_TYPE
1411 real_value_from_int_cst (type, i)
1412 tree type, i;
1413 {
1414 REAL_VALUE_TYPE d;
1415
1416 #ifdef REAL_ARITHMETIC
1417 if (! TREE_UNSIGNED (TREE_TYPE (i)))
1418 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1419 TYPE_MODE (type));
1420 else
1421 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
1422 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
1423 #else /* not REAL_ARITHMETIC */
1424 /* Some 386 compilers mishandle unsigned int to float conversions,
1425 so introduce a temporary variable E to avoid those bugs. */
1426 if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
1427 {
1428 REAL_VALUE_TYPE e;
1429
1430 d = (double) (~ TREE_INT_CST_HIGH (i));
1431 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1432 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1433 d *= e;
1434 e = (double) (unsigned HOST_WIDE_INT) (~ TREE_INT_CST_LOW (i));
1435 d += e;
1436 d = (- d - 1.0);
1437 }
1438 else
1439 {
1440 REAL_VALUE_TYPE e;
1441
1442 d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
1443 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1444 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1445 d *= e;
1446 e = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (i);
1447 d += e;
1448 }
1449 #endif /* not REAL_ARITHMETIC */
1450 return d;
1451 }
1452
1453 struct brfic_args
1454 {
1455 /* Input */
1456 tree type, i;
1457 /* Output */
1458 REAL_VALUE_TYPE d;
1459 };
1460
1461 static void
1462 build_real_from_int_cst_1 (data)
1463 PTR data;
1464 {
1465 struct brfic_args * args = (struct brfic_args *) data;
1466
1467 #ifdef REAL_ARITHMETIC
1468 args->d = real_value_from_int_cst (args->type, args->i);
1469 #else
1470 args->d =
1471 REAL_VALUE_TRUNCATE (TYPE_MODE (args->type),
1472 real_value_from_int_cst (args->type, args->i));
1473 #endif
1474 }
1475
1476 /* This function can't be implemented if we can't do arithmetic
1477 on the float representation. */
1478
1479 tree
1480 build_real_from_int_cst (type, i)
1481 tree type;
1482 tree i;
1483 {
1484 tree v;
1485 int overflow = TREE_OVERFLOW (i);
1486 REAL_VALUE_TYPE d;
1487 struct brfic_args args;
1488
1489 v = make_node (REAL_CST);
1490 TREE_TYPE (v) = type;
1491
1492 /* Setup input for build_real_from_int_cst_1() */
1493 args.type = type;
1494 args.i = i;
1495
1496 if (do_float_handler (build_real_from_int_cst_1, (PTR) &args))
1497 {
1498 /* Receive output from build_real_from_int_cst_1() */
1499 d = args.d;
1500 }
1501 else
1502 {
1503 /* We got an exception from build_real_from_int_cst_1() */
1504 d = dconst0;
1505 overflow = 1;
1506 }
1507
1508 /* Check for valid float value for this type on this target machine. */
1509
1510 #ifdef CHECK_FLOAT_VALUE
1511 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1512 #endif
1513
1514 TREE_REAL_CST (v) = d;
1515 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1516 return v;
1517 }
1518
1519 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1520
1521 /* Return a newly constructed STRING_CST node whose value is
1522 the LEN characters at STR.
1523 The TREE_TYPE is not initialized. */
1524
1525 tree
1526 build_string (len, str)
1527 int len;
1528 const char *str;
1529 {
1530 /* Put the string in saveable_obstack since it will be placed in the RTL
1531 for an "asm" statement and will also be kept around a while if
1532 deferring constant output in varasm.c. */
1533
1534 register tree s = make_node (STRING_CST);
1535 TREE_STRING_LENGTH (s) = len;
1536 TREE_STRING_POINTER (s) = obstack_copy0 (saveable_obstack, str, len);
1537 return s;
1538 }
1539
1540 /* Return a newly constructed COMPLEX_CST node whose value is
1541 specified by the real and imaginary parts REAL and IMAG.
1542 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1543 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1544
1545 tree
1546 build_complex (type, real, imag)
1547 tree type;
1548 tree real, imag;
1549 {
1550 register tree t = make_node (COMPLEX_CST);
1551
1552 TREE_REALPART (t) = real;
1553 TREE_IMAGPART (t) = imag;
1554 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1555 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1556 TREE_CONSTANT_OVERFLOW (t)
1557 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
1558 return t;
1559 }
1560
1561 /* Build a newly constructed TREE_VEC node of length LEN. */
1562
1563 tree
1564 make_tree_vec (len)
1565 int len;
1566 {
1567 register tree t;
1568 register int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
1569 register struct obstack *obstack = current_obstack;
1570
1571 #ifdef GATHER_STATISTICS
1572 tree_node_counts[(int)vec_kind]++;
1573 tree_node_sizes[(int)vec_kind] += length;
1574 #endif
1575
1576 t = (tree) obstack_alloc (obstack, length);
1577 bzero ((PTR) t, length);
1578
1579 TREE_SET_CODE (t, TREE_VEC);
1580 TREE_VEC_LENGTH (t) = len;
1581 if (obstack == &permanent_obstack)
1582 TREE_PERMANENT (t) = 1;
1583
1584 return t;
1585 }
1586 \f
1587 /* Return 1 if EXPR is the integer constant zero or a complex constant
1588 of zero. */
1589
1590 int
1591 integer_zerop (expr)
1592 tree expr;
1593 {
1594 STRIP_NOPS (expr);
1595
1596 return ((TREE_CODE (expr) == INTEGER_CST
1597 && ! TREE_CONSTANT_OVERFLOW (expr)
1598 && TREE_INT_CST_LOW (expr) == 0
1599 && TREE_INT_CST_HIGH (expr) == 0)
1600 || (TREE_CODE (expr) == COMPLEX_CST
1601 && integer_zerop (TREE_REALPART (expr))
1602 && integer_zerop (TREE_IMAGPART (expr))));
1603 }
1604
1605 /* Return 1 if EXPR is the integer constant one or the corresponding
1606 complex constant. */
1607
1608 int
1609 integer_onep (expr)
1610 tree expr;
1611 {
1612 STRIP_NOPS (expr);
1613
1614 return ((TREE_CODE (expr) == INTEGER_CST
1615 && ! TREE_CONSTANT_OVERFLOW (expr)
1616 && TREE_INT_CST_LOW (expr) == 1
1617 && TREE_INT_CST_HIGH (expr) == 0)
1618 || (TREE_CODE (expr) == COMPLEX_CST
1619 && integer_onep (TREE_REALPART (expr))
1620 && integer_zerop (TREE_IMAGPART (expr))));
1621 }
1622
1623 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1624 it contains. Likewise for the corresponding complex constant. */
1625
1626 int
1627 integer_all_onesp (expr)
1628 tree expr;
1629 {
1630 register int prec;
1631 register int uns;
1632
1633 STRIP_NOPS (expr);
1634
1635 if (TREE_CODE (expr) == COMPLEX_CST
1636 && integer_all_onesp (TREE_REALPART (expr))
1637 && integer_zerop (TREE_IMAGPART (expr)))
1638 return 1;
1639
1640 else if (TREE_CODE (expr) != INTEGER_CST
1641 || TREE_CONSTANT_OVERFLOW (expr))
1642 return 0;
1643
1644 uns = TREE_UNSIGNED (TREE_TYPE (expr));
1645 if (!uns)
1646 return TREE_INT_CST_LOW (expr) == -1 && TREE_INT_CST_HIGH (expr) == -1;
1647
1648 /* Note that using TYPE_PRECISION here is wrong. We care about the
1649 actual bits, not the (arbitrary) range of the type. */
1650 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1651 if (prec >= HOST_BITS_PER_WIDE_INT)
1652 {
1653 int high_value, shift_amount;
1654
1655 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1656
1657 if (shift_amount > HOST_BITS_PER_WIDE_INT)
1658 /* Can not handle precisions greater than twice the host int size. */
1659 abort ();
1660 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
1661 /* Shifting by the host word size is undefined according to the ANSI
1662 standard, so we must handle this as a special case. */
1663 high_value = -1;
1664 else
1665 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1666
1667 return TREE_INT_CST_LOW (expr) == -1
1668 && TREE_INT_CST_HIGH (expr) == high_value;
1669 }
1670 else
1671 return TREE_INT_CST_LOW (expr) == ((HOST_WIDE_INT) 1 << prec) - 1;
1672 }
1673
1674 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1675 one bit on). */
1676
1677 int
1678 integer_pow2p (expr)
1679 tree expr;
1680 {
1681 int prec;
1682 HOST_WIDE_INT high, low;
1683
1684 STRIP_NOPS (expr);
1685
1686 if (TREE_CODE (expr) == COMPLEX_CST
1687 && integer_pow2p (TREE_REALPART (expr))
1688 && integer_zerop (TREE_IMAGPART (expr)))
1689 return 1;
1690
1691 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
1692 return 0;
1693
1694 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1695 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1696 high = TREE_INT_CST_HIGH (expr);
1697 low = TREE_INT_CST_LOW (expr);
1698
1699 /* First clear all bits that are beyond the type's precision in case
1700 we've been sign extended. */
1701
1702 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1703 ;
1704 else if (prec > HOST_BITS_PER_WIDE_INT)
1705 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1706 else
1707 {
1708 high = 0;
1709 if (prec < HOST_BITS_PER_WIDE_INT)
1710 low &= ~((HOST_WIDE_INT) (-1) << prec);
1711 }
1712
1713 if (high == 0 && low == 0)
1714 return 0;
1715
1716 return ((high == 0 && (low & (low - 1)) == 0)
1717 || (low == 0 && (high & (high - 1)) == 0));
1718 }
1719
1720 /* Return the power of two represented by a tree node known to be a
1721 power of two. */
1722
1723 int
1724 tree_log2 (expr)
1725 tree expr;
1726 {
1727 int prec;
1728 HOST_WIDE_INT high, low;
1729
1730 STRIP_NOPS (expr);
1731
1732 if (TREE_CODE (expr) == COMPLEX_CST)
1733 return tree_log2 (TREE_REALPART (expr));
1734
1735 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1736 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1737
1738 high = TREE_INT_CST_HIGH (expr);
1739 low = TREE_INT_CST_LOW (expr);
1740
1741 /* First clear all bits that are beyond the type's precision in case
1742 we've been sign extended. */
1743
1744 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1745 ;
1746 else if (prec > HOST_BITS_PER_WIDE_INT)
1747 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1748 else
1749 {
1750 high = 0;
1751 if (prec < HOST_BITS_PER_WIDE_INT)
1752 low &= ~((HOST_WIDE_INT) (-1) << prec);
1753 }
1754
1755 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1756 : exact_log2 (low));
1757 }
1758
1759 /* Return 1 if EXPR is the real constant zero. */
1760
1761 int
1762 real_zerop (expr)
1763 tree expr;
1764 {
1765 STRIP_NOPS (expr);
1766
1767 return ((TREE_CODE (expr) == REAL_CST
1768 && ! TREE_CONSTANT_OVERFLOW (expr)
1769 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1770 || (TREE_CODE (expr) == COMPLEX_CST
1771 && real_zerop (TREE_REALPART (expr))
1772 && real_zerop (TREE_IMAGPART (expr))));
1773 }
1774
1775 /* Return 1 if EXPR is the real constant one in real or complex form. */
1776
1777 int
1778 real_onep (expr)
1779 tree expr;
1780 {
1781 STRIP_NOPS (expr);
1782
1783 return ((TREE_CODE (expr) == REAL_CST
1784 && ! TREE_CONSTANT_OVERFLOW (expr)
1785 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1786 || (TREE_CODE (expr) == COMPLEX_CST
1787 && real_onep (TREE_REALPART (expr))
1788 && real_zerop (TREE_IMAGPART (expr))));
1789 }
1790
1791 /* Return 1 if EXPR is the real constant two. */
1792
1793 int
1794 real_twop (expr)
1795 tree expr;
1796 {
1797 STRIP_NOPS (expr);
1798
1799 return ((TREE_CODE (expr) == REAL_CST
1800 && ! TREE_CONSTANT_OVERFLOW (expr)
1801 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1802 || (TREE_CODE (expr) == COMPLEX_CST
1803 && real_twop (TREE_REALPART (expr))
1804 && real_zerop (TREE_IMAGPART (expr))));
1805 }
1806
1807 /* Nonzero if EXP is a constant or a cast of a constant. */
1808
1809 int
1810 really_constant_p (exp)
1811 tree exp;
1812 {
1813 /* This is not quite the same as STRIP_NOPS. It does more. */
1814 while (TREE_CODE (exp) == NOP_EXPR
1815 || TREE_CODE (exp) == CONVERT_EXPR
1816 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1817 exp = TREE_OPERAND (exp, 0);
1818 return TREE_CONSTANT (exp);
1819 }
1820 \f
1821 /* Return first list element whose TREE_VALUE is ELEM.
1822 Return 0 if ELEM is not in LIST. */
1823
1824 tree
1825 value_member (elem, list)
1826 tree elem, list;
1827 {
1828 while (list)
1829 {
1830 if (elem == TREE_VALUE (list))
1831 return list;
1832 list = TREE_CHAIN (list);
1833 }
1834 return NULL_TREE;
1835 }
1836
1837 /* Return first list element whose TREE_PURPOSE is ELEM.
1838 Return 0 if ELEM is not in LIST. */
1839
1840 tree
1841 purpose_member (elem, list)
1842 tree elem, list;
1843 {
1844 while (list)
1845 {
1846 if (elem == TREE_PURPOSE (list))
1847 return list;
1848 list = TREE_CHAIN (list);
1849 }
1850 return NULL_TREE;
1851 }
1852
1853 /* Return first list element whose BINFO_TYPE is ELEM.
1854 Return 0 if ELEM is not in LIST. */
1855
1856 tree
1857 binfo_member (elem, list)
1858 tree elem, list;
1859 {
1860 while (list)
1861 {
1862 if (elem == BINFO_TYPE (list))
1863 return list;
1864 list = TREE_CHAIN (list);
1865 }
1866 return NULL_TREE;
1867 }
1868
1869 /* Return nonzero if ELEM is part of the chain CHAIN. */
1870
1871 int
1872 chain_member (elem, chain)
1873 tree elem, chain;
1874 {
1875 while (chain)
1876 {
1877 if (elem == chain)
1878 return 1;
1879 chain = TREE_CHAIN (chain);
1880 }
1881
1882 return 0;
1883 }
1884
1885 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
1886 chain CHAIN. */
1887 /* ??? This function was added for machine specific attributes but is no
1888 longer used. It could be deleted if we could confirm all front ends
1889 don't use it. */
1890
1891 int
1892 chain_member_value (elem, chain)
1893 tree elem, chain;
1894 {
1895 while (chain)
1896 {
1897 if (elem == TREE_VALUE (chain))
1898 return 1;
1899 chain = TREE_CHAIN (chain);
1900 }
1901
1902 return 0;
1903 }
1904
1905 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1906 for any piece of chain CHAIN. */
1907 /* ??? This function was added for machine specific attributes but is no
1908 longer used. It could be deleted if we could confirm all front ends
1909 don't use it. */
1910
1911 int
1912 chain_member_purpose (elem, chain)
1913 tree elem, chain;
1914 {
1915 while (chain)
1916 {
1917 if (elem == TREE_PURPOSE (chain))
1918 return 1;
1919 chain = TREE_CHAIN (chain);
1920 }
1921
1922 return 0;
1923 }
1924
1925 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1926 We expect a null pointer to mark the end of the chain.
1927 This is the Lisp primitive `length'. */
1928
1929 int
1930 list_length (t)
1931 tree t;
1932 {
1933 register tree tail;
1934 register int len = 0;
1935
1936 for (tail = t; tail; tail = TREE_CHAIN (tail))
1937 len++;
1938
1939 return len;
1940 }
1941
1942 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1943 by modifying the last node in chain 1 to point to chain 2.
1944 This is the Lisp primitive `nconc'. */
1945
1946 tree
1947 chainon (op1, op2)
1948 tree op1, op2;
1949 {
1950
1951 if (op1)
1952 {
1953 register tree t1;
1954 register tree t2;
1955
1956 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1957 ;
1958 TREE_CHAIN (t1) = op2;
1959 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1960 if (t2 == t1)
1961 abort (); /* Circularity created. */
1962 return op1;
1963 }
1964 else return op2;
1965 }
1966
1967 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1968
1969 tree
1970 tree_last (chain)
1971 register tree chain;
1972 {
1973 register tree next;
1974 if (chain)
1975 while ((next = TREE_CHAIN (chain)))
1976 chain = next;
1977 return chain;
1978 }
1979
1980 /* Reverse the order of elements in the chain T,
1981 and return the new head of the chain (old last element). */
1982
1983 tree
1984 nreverse (t)
1985 tree t;
1986 {
1987 register tree prev = 0, decl, next;
1988 for (decl = t; decl; decl = next)
1989 {
1990 next = TREE_CHAIN (decl);
1991 TREE_CHAIN (decl) = prev;
1992 prev = decl;
1993 }
1994 return prev;
1995 }
1996
1997 /* Given a chain CHAIN of tree nodes,
1998 construct and return a list of those nodes. */
1999
2000 tree
2001 listify (chain)
2002 tree chain;
2003 {
2004 tree result = NULL_TREE;
2005 tree in_tail = chain;
2006 tree out_tail = NULL_TREE;
2007
2008 while (in_tail)
2009 {
2010 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
2011 if (out_tail)
2012 TREE_CHAIN (out_tail) = next;
2013 else
2014 result = next;
2015 out_tail = next;
2016 in_tail = TREE_CHAIN (in_tail);
2017 }
2018
2019 return result;
2020 }
2021 \f
2022 /* Return a newly created TREE_LIST node whose
2023 purpose and value fields are PARM and VALUE. */
2024
2025 tree
2026 build_tree_list (parm, value)
2027 tree parm, value;
2028 {
2029 register tree t = make_node (TREE_LIST);
2030 TREE_PURPOSE (t) = parm;
2031 TREE_VALUE (t) = value;
2032 return t;
2033 }
2034
2035 /* Similar, but build on the temp_decl_obstack. */
2036
2037 tree
2038 build_decl_list (parm, value)
2039 tree parm, value;
2040 {
2041 register tree node;
2042 register struct obstack *ambient_obstack = current_obstack;
2043 current_obstack = &temp_decl_obstack;
2044 node = build_tree_list (parm, value);
2045 current_obstack = ambient_obstack;
2046 return node;
2047 }
2048
2049 /* Similar, but build on the expression_obstack. */
2050
2051 tree
2052 build_expr_list (parm, value)
2053 tree parm, value;
2054 {
2055 register tree node;
2056 register struct obstack *ambient_obstack = current_obstack;
2057 current_obstack = expression_obstack;
2058 node = build_tree_list (parm, value);
2059 current_obstack = ambient_obstack;
2060 return node;
2061 }
2062
2063 /* Return a newly created TREE_LIST node whose
2064 purpose and value fields are PARM and VALUE
2065 and whose TREE_CHAIN is CHAIN. */
2066
2067 tree
2068 tree_cons (purpose, value, chain)
2069 tree purpose, value, chain;
2070 {
2071 #if 0
2072 register tree node = make_node (TREE_LIST);
2073 #else
2074 register int i;
2075 register tree node = (tree) obstack_alloc (current_obstack, sizeof (struct tree_list));
2076 #ifdef GATHER_STATISTICS
2077 tree_node_counts[(int)x_kind]++;
2078 tree_node_sizes[(int)x_kind] += sizeof (struct tree_list);
2079 #endif
2080
2081 for (i = (sizeof (struct tree_common) / sizeof (int)) - 1; i >= 0; i--)
2082 ((int *) node)[i] = 0;
2083
2084 TREE_SET_CODE (node, TREE_LIST);
2085 if (current_obstack == &permanent_obstack)
2086 TREE_PERMANENT (node) = 1;
2087 #endif
2088
2089 TREE_CHAIN (node) = chain;
2090 TREE_PURPOSE (node) = purpose;
2091 TREE_VALUE (node) = value;
2092 return node;
2093 }
2094
2095 /* Similar, but build on the temp_decl_obstack. */
2096
2097 tree
2098 decl_tree_cons (purpose, value, chain)
2099 tree purpose, value, chain;
2100 {
2101 register tree node;
2102 register struct obstack *ambient_obstack = current_obstack;
2103 current_obstack = &temp_decl_obstack;
2104 node = tree_cons (purpose, value, chain);
2105 current_obstack = ambient_obstack;
2106 return node;
2107 }
2108
2109 /* Similar, but build on the expression_obstack. */
2110
2111 tree
2112 expr_tree_cons (purpose, value, chain)
2113 tree purpose, value, chain;
2114 {
2115 register tree node;
2116 register struct obstack *ambient_obstack = current_obstack;
2117 current_obstack = expression_obstack;
2118 node = tree_cons (purpose, value, chain);
2119 current_obstack = ambient_obstack;
2120 return node;
2121 }
2122
2123 /* Same as `tree_cons' but make a permanent object. */
2124
2125 tree
2126 perm_tree_cons (purpose, value, chain)
2127 tree purpose, value, chain;
2128 {
2129 register tree node;
2130 register struct obstack *ambient_obstack = current_obstack;
2131 current_obstack = &permanent_obstack;
2132
2133 node = tree_cons (purpose, value, chain);
2134 current_obstack = ambient_obstack;
2135 return node;
2136 }
2137
2138 /* Same as `tree_cons', but make this node temporary, regardless. */
2139
2140 tree
2141 temp_tree_cons (purpose, value, chain)
2142 tree purpose, value, chain;
2143 {
2144 register tree node;
2145 register struct obstack *ambient_obstack = current_obstack;
2146 current_obstack = &temporary_obstack;
2147
2148 node = tree_cons (purpose, value, chain);
2149 current_obstack = ambient_obstack;
2150 return node;
2151 }
2152
2153 /* Same as `tree_cons', but save this node if the function's RTL is saved. */
2154
2155 tree
2156 saveable_tree_cons (purpose, value, chain)
2157 tree purpose, value, chain;
2158 {
2159 register tree node;
2160 register struct obstack *ambient_obstack = current_obstack;
2161 current_obstack = saveable_obstack;
2162
2163 node = tree_cons (purpose, value, chain);
2164 current_obstack = ambient_obstack;
2165 return node;
2166 }
2167 \f
2168 /* Return the size nominally occupied by an object of type TYPE
2169 when it resides in memory. The value is measured in units of bytes,
2170 and its data type is that normally used for type sizes
2171 (which is the first type created by make_signed_type or
2172 make_unsigned_type). */
2173
2174 tree
2175 size_in_bytes (type)
2176 tree type;
2177 {
2178 tree t;
2179
2180 if (type == error_mark_node)
2181 return integer_zero_node;
2182
2183 type = TYPE_MAIN_VARIANT (type);
2184 t = TYPE_SIZE_UNIT (type);
2185 if (t == 0)
2186 {
2187 incomplete_type_error (NULL_TREE, type);
2188 return integer_zero_node;
2189 }
2190 if (TREE_CODE (t) == INTEGER_CST)
2191 force_fit_type (t, 0);
2192
2193 return t;
2194 }
2195
2196 /* Return the size of TYPE (in bytes) as a wide integer
2197 or return -1 if the size can vary or is larger than an integer. */
2198
2199 HOST_WIDE_INT
2200 int_size_in_bytes (type)
2201 tree type;
2202 {
2203 tree t;
2204
2205 if (type == error_mark_node)
2206 return 0;
2207
2208 type = TYPE_MAIN_VARIANT (type);
2209 t = TYPE_SIZE_UNIT (type);
2210 if (t == 0
2211 || TREE_CODE (t) != INTEGER_CST
2212 || TREE_INT_CST_HIGH (t) != 0)
2213 return -1;
2214
2215 return TREE_INT_CST_LOW (t);
2216 }
2217 \f
2218 /* Return, as a tree node, the number of elements for TYPE (which is an
2219 ARRAY_TYPE) minus one. This counts only elements of the top array.
2220
2221 Don't let any SAVE_EXPRs escape; if we are called as part of a cleanup
2222 action, they would get unsaved. */
2223
2224 tree
2225 array_type_nelts (type)
2226 tree type;
2227 {
2228 tree index_type, min, max;
2229
2230 /* If they did it with unspecified bounds, then we should have already
2231 given an error about it before we got here. */
2232 if (! TYPE_DOMAIN (type))
2233 return error_mark_node;
2234
2235 index_type = TYPE_DOMAIN (type);
2236 min = TYPE_MIN_VALUE (index_type);
2237 max = TYPE_MAX_VALUE (index_type);
2238
2239 if (! TREE_CONSTANT (min))
2240 {
2241 STRIP_NOPS (min);
2242 if (TREE_CODE (min) == SAVE_EXPR)
2243 min = build (RTL_EXPR, TREE_TYPE (TYPE_MIN_VALUE (index_type)), 0,
2244 SAVE_EXPR_RTL (min));
2245 else
2246 min = TYPE_MIN_VALUE (index_type);
2247 }
2248
2249 if (! TREE_CONSTANT (max))
2250 {
2251 STRIP_NOPS (max);
2252 if (TREE_CODE (max) == SAVE_EXPR)
2253 max = build (RTL_EXPR, TREE_TYPE (TYPE_MAX_VALUE (index_type)), 0,
2254 SAVE_EXPR_RTL (max));
2255 else
2256 max = TYPE_MAX_VALUE (index_type);
2257 }
2258
2259 return (integer_zerop (min)
2260 ? max
2261 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
2262 }
2263 \f
2264 /* Return nonzero if arg is static -- a reference to an object in
2265 static storage. This is not the same as the C meaning of `static'. */
2266
2267 int
2268 staticp (arg)
2269 tree arg;
2270 {
2271 switch (TREE_CODE (arg))
2272 {
2273 case FUNCTION_DECL:
2274 /* Nested functions aren't static, since taking their address
2275 involves a trampoline. */
2276 return (decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
2277 && ! DECL_NON_ADDR_CONST_P (arg);
2278
2279 case VAR_DECL:
2280 return (TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2281 && ! DECL_NON_ADDR_CONST_P (arg);
2282
2283 case CONSTRUCTOR:
2284 return TREE_STATIC (arg);
2285
2286 case STRING_CST:
2287 return 1;
2288
2289 /* If we are referencing a bitfield, we can't evaluate an
2290 ADDR_EXPR at compile time and so it isn't a constant. */
2291 case COMPONENT_REF:
2292 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
2293 && staticp (TREE_OPERAND (arg, 0)));
2294
2295 case BIT_FIELD_REF:
2296 return 0;
2297
2298 #if 0
2299 /* This case is technically correct, but results in setting
2300 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
2301 compile time. */
2302 case INDIRECT_REF:
2303 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
2304 #endif
2305
2306 case ARRAY_REF:
2307 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2308 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2309 return staticp (TREE_OPERAND (arg, 0));
2310
2311 default:
2312 return 0;
2313 }
2314 }
2315 \f
2316 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2317 Do this to any expression which may be used in more than one place,
2318 but must be evaluated only once.
2319
2320 Normally, expand_expr would reevaluate the expression each time.
2321 Calling save_expr produces something that is evaluated and recorded
2322 the first time expand_expr is called on it. Subsequent calls to
2323 expand_expr just reuse the recorded value.
2324
2325 The call to expand_expr that generates code that actually computes
2326 the value is the first call *at compile time*. Subsequent calls
2327 *at compile time* generate code to use the saved value.
2328 This produces correct result provided that *at run time* control
2329 always flows through the insns made by the first expand_expr
2330 before reaching the other places where the save_expr was evaluated.
2331 You, the caller of save_expr, must make sure this is so.
2332
2333 Constants, and certain read-only nodes, are returned with no
2334 SAVE_EXPR because that is safe. Expressions containing placeholders
2335 are not touched; see tree.def for an explanation of what these
2336 are used for. */
2337
2338 tree
2339 save_expr (expr)
2340 tree expr;
2341 {
2342 register tree t = fold (expr);
2343
2344 /* We don't care about whether this can be used as an lvalue in this
2345 context. */
2346 while (TREE_CODE (t) == NON_LVALUE_EXPR)
2347 t = TREE_OPERAND (t, 0);
2348
2349 /* If the tree evaluates to a constant, then we don't want to hide that
2350 fact (i.e. this allows further folding, and direct checks for constants).
2351 However, a read-only object that has side effects cannot be bypassed.
2352 Since it is no problem to reevaluate literals, we just return the
2353 literal node. */
2354
2355 if (TREE_CONSTANT (t) || (TREE_READONLY (t) && ! TREE_SIDE_EFFECTS (t))
2356 || TREE_CODE (t) == SAVE_EXPR || TREE_CODE (t) == ERROR_MARK)
2357 return t;
2358
2359 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2360 it means that the size or offset of some field of an object depends on
2361 the value within another field.
2362
2363 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2364 and some variable since it would then need to be both evaluated once and
2365 evaluated more than once. Front-ends must assure this case cannot
2366 happen by surrounding any such subexpressions in their own SAVE_EXPR
2367 and forcing evaluation at the proper time. */
2368 if (contains_placeholder_p (t))
2369 return t;
2370
2371 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
2372
2373 /* This expression might be placed ahead of a jump to ensure that the
2374 value was computed on both sides of the jump. So make sure it isn't
2375 eliminated as dead. */
2376 TREE_SIDE_EFFECTS (t) = 1;
2377 return t;
2378 }
2379
2380 /* Arrange for an expression to be expanded multiple independent
2381 times. This is useful for cleanup actions, as the backend can
2382 expand them multiple times in different places. */
2383
2384 tree
2385 unsave_expr (expr)
2386 tree expr;
2387 {
2388 tree t;
2389
2390 /* If this is already protected, no sense in protecting it again. */
2391 if (TREE_CODE (expr) == UNSAVE_EXPR)
2392 return expr;
2393
2394 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
2395 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
2396 return t;
2397 }
2398
2399 /* Returns the index of the first non-tree operand for CODE, or the number
2400 of operands if all are trees. */
2401
2402 int
2403 first_rtl_op (code)
2404 enum tree_code code;
2405 {
2406 switch (code)
2407 {
2408 case SAVE_EXPR:
2409 return 2;
2410 case RTL_EXPR:
2411 return 0;
2412 case CALL_EXPR:
2413 return 2;
2414 case WITH_CLEANUP_EXPR:
2415 /* Should be defined to be 2. */
2416 return 1;
2417 case METHOD_CALL_EXPR:
2418 return 3;
2419 default:
2420 return tree_code_length [(int) code];
2421 }
2422 }
2423
2424 /* Modify a tree in place so that all the evaluate only once things
2425 are cleared out. Return the EXPR given. */
2426
2427 tree
2428 unsave_expr_now (expr)
2429 tree expr;
2430 {
2431 enum tree_code code;
2432 register int i;
2433 int first_rtl;
2434
2435 if (expr == NULL_TREE)
2436 return expr;
2437
2438 code = TREE_CODE (expr);
2439 first_rtl = first_rtl_op (code);
2440 switch (code)
2441 {
2442 case SAVE_EXPR:
2443 SAVE_EXPR_RTL (expr) = 0;
2444 break;
2445
2446 case TARGET_EXPR:
2447 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
2448 TREE_OPERAND (expr, 3) = NULL_TREE;
2449 break;
2450
2451 case RTL_EXPR:
2452 /* I don't yet know how to emit a sequence multiple times. */
2453 if (RTL_EXPR_SEQUENCE (expr) != 0)
2454 abort ();
2455 break;
2456
2457 case CALL_EXPR:
2458 CALL_EXPR_RTL (expr) = 0;
2459 if (TREE_OPERAND (expr, 1)
2460 && TREE_CODE (TREE_OPERAND (expr, 1)) == TREE_LIST)
2461 {
2462 tree exp = TREE_OPERAND (expr, 1);
2463 while (exp)
2464 {
2465 unsave_expr_now (TREE_VALUE (exp));
2466 exp = TREE_CHAIN (exp);
2467 }
2468 }
2469 break;
2470
2471 default:
2472 break;
2473 }
2474
2475 switch (TREE_CODE_CLASS (code))
2476 {
2477 case 'c': /* a constant */
2478 case 't': /* a type node */
2479 case 'x': /* something random, like an identifier or an ERROR_MARK. */
2480 case 'd': /* A decl node */
2481 case 'b': /* A block node */
2482 return expr;
2483
2484 case 'e': /* an expression */
2485 case 'r': /* a reference */
2486 case 's': /* an expression with side effects */
2487 case '<': /* a comparison expression */
2488 case '2': /* a binary arithmetic expression */
2489 case '1': /* a unary arithmetic expression */
2490 for (i = first_rtl - 1; i >= 0; i--)
2491 unsave_expr_now (TREE_OPERAND (expr, i));
2492 return expr;
2493
2494 default:
2495 abort ();
2496 }
2497 }
2498 \f
2499 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2500 or offset that depends on a field within a record. */
2501
2502 int
2503 contains_placeholder_p (exp)
2504 tree exp;
2505 {
2506 register enum tree_code code = TREE_CODE (exp);
2507 int result;
2508
2509 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
2510 in it since it is supplying a value for it. */
2511 if (code == WITH_RECORD_EXPR)
2512 return 0;
2513 else if (code == PLACEHOLDER_EXPR)
2514 return 1;
2515
2516 switch (TREE_CODE_CLASS (code))
2517 {
2518 case 'r':
2519 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2520 position computations since they will be converted into a
2521 WITH_RECORD_EXPR involving the reference, which will assume
2522 here will be valid. */
2523 return contains_placeholder_p (TREE_OPERAND (exp, 0));
2524
2525 case 'x':
2526 if (code == TREE_LIST)
2527 return (contains_placeholder_p (TREE_VALUE (exp))
2528 || (TREE_CHAIN (exp) != 0
2529 && contains_placeholder_p (TREE_CHAIN (exp))));
2530 break;
2531
2532 case '1':
2533 case '2': case '<':
2534 case 'e':
2535 switch (code)
2536 {
2537 case COMPOUND_EXPR:
2538 /* Ignoring the first operand isn't quite right, but works best. */
2539 return contains_placeholder_p (TREE_OPERAND (exp, 1));
2540
2541 case RTL_EXPR:
2542 case CONSTRUCTOR:
2543 return 0;
2544
2545 case COND_EXPR:
2546 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
2547 || contains_placeholder_p (TREE_OPERAND (exp, 1))
2548 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
2549
2550 case SAVE_EXPR:
2551 /* If we already know this doesn't have a placeholder, don't
2552 check again. */
2553 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
2554 return 0;
2555
2556 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
2557 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
2558 if (result)
2559 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
2560
2561 return result;
2562
2563 case CALL_EXPR:
2564 return (TREE_OPERAND (exp, 1) != 0
2565 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
2566
2567 default:
2568 break;
2569 }
2570
2571 switch (tree_code_length[(int) code])
2572 {
2573 case 1:
2574 return contains_placeholder_p (TREE_OPERAND (exp, 0));
2575 case 2:
2576 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
2577 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
2578 default:
2579 return 0;
2580 }
2581
2582 default:
2583 return 0;
2584 }
2585 return 0;
2586 }
2587
2588 /* Return 1 if EXP contains any expressions that produce cleanups for an
2589 outer scope to deal with. Used by fold. */
2590
2591 int
2592 has_cleanups (exp)
2593 tree exp;
2594 {
2595 int i, nops, cmp;
2596
2597 if (! TREE_SIDE_EFFECTS (exp))
2598 return 0;
2599
2600 switch (TREE_CODE (exp))
2601 {
2602 case TARGET_EXPR:
2603 case WITH_CLEANUP_EXPR:
2604 return 1;
2605
2606 case CLEANUP_POINT_EXPR:
2607 return 0;
2608
2609 case CALL_EXPR:
2610 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
2611 {
2612 cmp = has_cleanups (TREE_VALUE (exp));
2613 if (cmp)
2614 return cmp;
2615 }
2616 return 0;
2617
2618 default:
2619 break;
2620 }
2621
2622 /* This general rule works for most tree codes. All exceptions should be
2623 handled above. If this is a language-specific tree code, we can't
2624 trust what might be in the operand, so say we don't know
2625 the situation. */
2626 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
2627 return -1;
2628
2629 nops = first_rtl_op (TREE_CODE (exp));
2630 for (i = 0; i < nops; i++)
2631 if (TREE_OPERAND (exp, i) != 0)
2632 {
2633 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
2634 if (type == 'e' || type == '<' || type == '1' || type == '2'
2635 || type == 'r' || type == 's')
2636 {
2637 cmp = has_cleanups (TREE_OPERAND (exp, i));
2638 if (cmp)
2639 return cmp;
2640 }
2641 }
2642
2643 return 0;
2644 }
2645 \f
2646 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2647 return a tree with all occurrences of references to F in a
2648 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2649 contains only arithmetic expressions or a CALL_EXPR with a
2650 PLACEHOLDER_EXPR occurring only in its arglist. */
2651
2652 tree
2653 substitute_in_expr (exp, f, r)
2654 tree exp;
2655 tree f;
2656 tree r;
2657 {
2658 enum tree_code code = TREE_CODE (exp);
2659 tree op0, op1, op2;
2660 tree new;
2661 tree inner;
2662
2663 switch (TREE_CODE_CLASS (code))
2664 {
2665 case 'c':
2666 case 'd':
2667 return exp;
2668
2669 case 'x':
2670 if (code == PLACEHOLDER_EXPR)
2671 return exp;
2672 else if (code == TREE_LIST)
2673 {
2674 op0 = (TREE_CHAIN (exp) == 0
2675 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
2676 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
2677 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2678 return exp;
2679
2680 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2681 }
2682
2683 abort ();
2684
2685 case '1':
2686 case '2':
2687 case '<':
2688 case 'e':
2689 switch (tree_code_length[(int) code])
2690 {
2691 case 1:
2692 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2693 if (op0 == TREE_OPERAND (exp, 0))
2694 return exp;
2695
2696 new = fold (build1 (code, TREE_TYPE (exp), op0));
2697 break;
2698
2699 case 2:
2700 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
2701 could, but we don't support it. */
2702 if (code == RTL_EXPR)
2703 return exp;
2704 else if (code == CONSTRUCTOR)
2705 abort ();
2706
2707 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2708 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2709 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2710 return exp;
2711
2712 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2713 break;
2714
2715 case 3:
2716 /* It cannot be that anything inside a SAVE_EXPR contains a
2717 PLACEHOLDER_EXPR. */
2718 if (code == SAVE_EXPR)
2719 return exp;
2720
2721 else if (code == CALL_EXPR)
2722 {
2723 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2724 if (op1 == TREE_OPERAND (exp, 1))
2725 return exp;
2726
2727 return build (code, TREE_TYPE (exp),
2728 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2729 }
2730
2731 else if (code != COND_EXPR)
2732 abort ();
2733
2734 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2735 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2736 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2737 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2738 && op2 == TREE_OPERAND (exp, 2))
2739 return exp;
2740
2741 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2742 break;
2743
2744 default:
2745 abort ();
2746 }
2747
2748 break;
2749
2750 case 'r':
2751 switch (code)
2752 {
2753 case COMPONENT_REF:
2754 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2755 and it is the right field, replace it with R. */
2756 for (inner = TREE_OPERAND (exp, 0);
2757 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2758 inner = TREE_OPERAND (inner, 0))
2759 ;
2760 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2761 && TREE_OPERAND (exp, 1) == f)
2762 return r;
2763
2764 /* If this expression hasn't been completed let, leave it
2765 alone. */
2766 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2767 && TREE_TYPE (inner) == 0)
2768 return exp;
2769
2770 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2771 if (op0 == TREE_OPERAND (exp, 0))
2772 return exp;
2773
2774 new = fold (build (code, TREE_TYPE (exp), op0,
2775 TREE_OPERAND (exp, 1)));
2776 break;
2777
2778 case BIT_FIELD_REF:
2779 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2780 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2781 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2782 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2783 && op2 == TREE_OPERAND (exp, 2))
2784 return exp;
2785
2786 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2787 break;
2788
2789 case INDIRECT_REF:
2790 case BUFFER_REF:
2791 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2792 if (op0 == TREE_OPERAND (exp, 0))
2793 return exp;
2794
2795 new = fold (build1 (code, TREE_TYPE (exp), op0));
2796 break;
2797
2798 default:
2799 abort ();
2800 }
2801 break;
2802
2803 default:
2804 abort ();
2805 }
2806
2807 TREE_READONLY (new) = TREE_READONLY (exp);
2808 return new;
2809 }
2810 \f
2811 /* Stabilize a reference so that we can use it any number of times
2812 without causing its operands to be evaluated more than once.
2813 Returns the stabilized reference. This works by means of save_expr,
2814 so see the caveats in the comments about save_expr.
2815
2816 Also allows conversion expressions whose operands are references.
2817 Any other kind of expression is returned unchanged. */
2818
2819 tree
2820 stabilize_reference (ref)
2821 tree ref;
2822 {
2823 register tree result;
2824 register enum tree_code code = TREE_CODE (ref);
2825
2826 switch (code)
2827 {
2828 case VAR_DECL:
2829 case PARM_DECL:
2830 case RESULT_DECL:
2831 /* No action is needed in this case. */
2832 return ref;
2833
2834 case NOP_EXPR:
2835 case CONVERT_EXPR:
2836 case FLOAT_EXPR:
2837 case FIX_TRUNC_EXPR:
2838 case FIX_FLOOR_EXPR:
2839 case FIX_ROUND_EXPR:
2840 case FIX_CEIL_EXPR:
2841 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2842 break;
2843
2844 case INDIRECT_REF:
2845 result = build_nt (INDIRECT_REF,
2846 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2847 break;
2848
2849 case COMPONENT_REF:
2850 result = build_nt (COMPONENT_REF,
2851 stabilize_reference (TREE_OPERAND (ref, 0)),
2852 TREE_OPERAND (ref, 1));
2853 break;
2854
2855 case BIT_FIELD_REF:
2856 result = build_nt (BIT_FIELD_REF,
2857 stabilize_reference (TREE_OPERAND (ref, 0)),
2858 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2859 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2860 break;
2861
2862 case ARRAY_REF:
2863 result = build_nt (ARRAY_REF,
2864 stabilize_reference (TREE_OPERAND (ref, 0)),
2865 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2866 break;
2867
2868 case COMPOUND_EXPR:
2869 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2870 it wouldn't be ignored. This matters when dealing with
2871 volatiles. */
2872 return stabilize_reference_1 (ref);
2873
2874 case RTL_EXPR:
2875 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2876 save_expr (build1 (ADDR_EXPR,
2877 build_pointer_type (TREE_TYPE (ref)),
2878 ref)));
2879 break;
2880
2881
2882 /* If arg isn't a kind of lvalue we recognize, make no change.
2883 Caller should recognize the error for an invalid lvalue. */
2884 default:
2885 return ref;
2886
2887 case ERROR_MARK:
2888 return error_mark_node;
2889 }
2890
2891 TREE_TYPE (result) = TREE_TYPE (ref);
2892 TREE_READONLY (result) = TREE_READONLY (ref);
2893 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2894 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2895 TREE_RAISES (result) = TREE_RAISES (ref);
2896
2897 return result;
2898 }
2899
2900 /* Subroutine of stabilize_reference; this is called for subtrees of
2901 references. Any expression with side-effects must be put in a SAVE_EXPR
2902 to ensure that it is only evaluated once.
2903
2904 We don't put SAVE_EXPR nodes around everything, because assigning very
2905 simple expressions to temporaries causes us to miss good opportunities
2906 for optimizations. Among other things, the opportunity to fold in the
2907 addition of a constant into an addressing mode often gets lost, e.g.
2908 "y[i+1] += x;". In general, we take the approach that we should not make
2909 an assignment unless we are forced into it - i.e., that any non-side effect
2910 operator should be allowed, and that cse should take care of coalescing
2911 multiple utterances of the same expression should that prove fruitful. */
2912
2913 tree
2914 stabilize_reference_1 (e)
2915 tree e;
2916 {
2917 register tree result;
2918 register enum tree_code code = TREE_CODE (e);
2919
2920 /* We cannot ignore const expressions because it might be a reference
2921 to a const array but whose index contains side-effects. But we can
2922 ignore things that are actual constant or that already have been
2923 handled by this function. */
2924
2925 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2926 return e;
2927
2928 switch (TREE_CODE_CLASS (code))
2929 {
2930 case 'x':
2931 case 't':
2932 case 'd':
2933 case 'b':
2934 case '<':
2935 case 's':
2936 case 'e':
2937 case 'r':
2938 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2939 so that it will only be evaluated once. */
2940 /* The reference (r) and comparison (<) classes could be handled as
2941 below, but it is generally faster to only evaluate them once. */
2942 if (TREE_SIDE_EFFECTS (e))
2943 return save_expr (e);
2944 return e;
2945
2946 case 'c':
2947 /* Constants need no processing. In fact, we should never reach
2948 here. */
2949 return e;
2950
2951 case '2':
2952 /* Division is slow and tends to be compiled with jumps,
2953 especially the division by powers of 2 that is often
2954 found inside of an array reference. So do it just once. */
2955 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2956 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2957 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2958 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2959 return save_expr (e);
2960 /* Recursively stabilize each operand. */
2961 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2962 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2963 break;
2964
2965 case '1':
2966 /* Recursively stabilize each operand. */
2967 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2968 break;
2969
2970 default:
2971 abort ();
2972 }
2973
2974 TREE_TYPE (result) = TREE_TYPE (e);
2975 TREE_READONLY (result) = TREE_READONLY (e);
2976 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2977 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2978 TREE_RAISES (result) = TREE_RAISES (e);
2979
2980 return result;
2981 }
2982 \f
2983 /* Low-level constructors for expressions. */
2984
2985 /* Build an expression of code CODE, data type TYPE,
2986 and operands as specified by the arguments ARG1 and following arguments.
2987 Expressions and reference nodes can be created this way.
2988 Constants, decls, types and misc nodes cannot be. */
2989
2990 tree
2991 build VPROTO((enum tree_code code, tree tt, ...))
2992 {
2993 #ifndef ANSI_PROTOTYPES
2994 enum tree_code code;
2995 tree tt;
2996 #endif
2997 va_list p;
2998 register tree t;
2999 register int length;
3000 register int i;
3001
3002 VA_START (p, tt);
3003
3004 #ifndef ANSI_PROTOTYPES
3005 code = va_arg (p, enum tree_code);
3006 tt = va_arg (p, tree);
3007 #endif
3008
3009 t = make_node (code);
3010 length = tree_code_length[(int) code];
3011 TREE_TYPE (t) = tt;
3012
3013 if (length == 2)
3014 {
3015 /* This is equivalent to the loop below, but faster. */
3016 register tree arg0 = va_arg (p, tree);
3017 register tree arg1 = va_arg (p, tree);
3018 TREE_OPERAND (t, 0) = arg0;
3019 TREE_OPERAND (t, 1) = arg1;
3020 if ((arg0 && TREE_SIDE_EFFECTS (arg0))
3021 || (arg1 && TREE_SIDE_EFFECTS (arg1)))
3022 TREE_SIDE_EFFECTS (t) = 1;
3023 TREE_RAISES (t)
3024 = (arg0 && TREE_RAISES (arg0)) || (arg1 && TREE_RAISES (arg1));
3025 }
3026 else if (length == 1)
3027 {
3028 register tree arg0 = va_arg (p, tree);
3029
3030 /* Call build1 for this! */
3031 if (TREE_CODE_CLASS (code) != 's')
3032 abort ();
3033 TREE_OPERAND (t, 0) = arg0;
3034 if (arg0 && TREE_SIDE_EFFECTS (arg0))
3035 TREE_SIDE_EFFECTS (t) = 1;
3036 TREE_RAISES (t) = (arg0 && TREE_RAISES (arg0));
3037 }
3038 else
3039 {
3040 for (i = 0; i < length; i++)
3041 {
3042 register tree operand = va_arg (p, tree);
3043 TREE_OPERAND (t, i) = operand;
3044 if (operand)
3045 {
3046 if (TREE_SIDE_EFFECTS (operand))
3047 TREE_SIDE_EFFECTS (t) = 1;
3048 if (TREE_RAISES (operand))
3049 TREE_RAISES (t) = 1;
3050 }
3051 }
3052 }
3053 va_end (p);
3054 return t;
3055 }
3056
3057 /* Same as above, but only builds for unary operators.
3058 Saves lions share of calls to `build'; cuts down use
3059 of varargs, which is expensive for RISC machines. */
3060
3061 tree
3062 build1 (code, type, node)
3063 enum tree_code code;
3064 tree type;
3065 tree node;
3066 {
3067 register struct obstack *obstack = expression_obstack;
3068 register int length;
3069 #ifdef GATHER_STATISTICS
3070 register tree_node_kind kind;
3071 #endif
3072 register tree t;
3073
3074 #ifdef GATHER_STATISTICS
3075 if (TREE_CODE_CLASS (code) == 'r')
3076 kind = r_kind;
3077 else
3078 kind = e_kind;
3079 #endif
3080
3081 length = sizeof (struct tree_exp);
3082
3083 t = (tree) obstack_alloc (obstack, length);
3084 bzero ((PTR) t, length);
3085
3086 #ifdef GATHER_STATISTICS
3087 tree_node_counts[(int)kind]++;
3088 tree_node_sizes[(int)kind] += length;
3089 #endif
3090
3091 TREE_TYPE (t) = type;
3092 TREE_SET_CODE (t, code);
3093
3094 if (obstack == &permanent_obstack)
3095 TREE_PERMANENT (t) = 1;
3096
3097 TREE_OPERAND (t, 0) = node;
3098 if (node)
3099 {
3100 if (TREE_SIDE_EFFECTS (node))
3101 TREE_SIDE_EFFECTS (t) = 1;
3102 if (TREE_RAISES (node))
3103 TREE_RAISES (t) = 1;
3104 }
3105
3106 return t;
3107 }
3108
3109 /* Similar except don't specify the TREE_TYPE
3110 and leave the TREE_SIDE_EFFECTS as 0.
3111 It is permissible for arguments to be null,
3112 or even garbage if their values do not matter. */
3113
3114 tree
3115 build_nt VPROTO((enum tree_code code, ...))
3116 {
3117 #ifndef ANSI_PROTOTYPES
3118 enum tree_code code;
3119 #endif
3120 va_list p;
3121 register tree t;
3122 register int length;
3123 register int i;
3124
3125 VA_START (p, code);
3126
3127 #ifndef ANSI_PROTOTYPES
3128 code = va_arg (p, enum tree_code);
3129 #endif
3130
3131 t = make_node (code);
3132 length = tree_code_length[(int) code];
3133
3134 for (i = 0; i < length; i++)
3135 TREE_OPERAND (t, i) = va_arg (p, tree);
3136
3137 va_end (p);
3138 return t;
3139 }
3140
3141 /* Similar to `build_nt', except we build
3142 on the temp_decl_obstack, regardless. */
3143
3144 tree
3145 build_parse_node VPROTO((enum tree_code code, ...))
3146 {
3147 #ifndef ANSI_PROTOTYPES
3148 enum tree_code code;
3149 #endif
3150 register struct obstack *ambient_obstack = expression_obstack;
3151 va_list p;
3152 register tree t;
3153 register int length;
3154 register int i;
3155
3156 VA_START (p, code);
3157
3158 #ifndef ANSI_PROTOTYPES
3159 code = va_arg (p, enum tree_code);
3160 #endif
3161
3162 expression_obstack = &temp_decl_obstack;
3163
3164 t = make_node (code);
3165 length = tree_code_length[(int) code];
3166
3167 for (i = 0; i < length; i++)
3168 TREE_OPERAND (t, i) = va_arg (p, tree);
3169
3170 va_end (p);
3171 expression_obstack = ambient_obstack;
3172 return t;
3173 }
3174
3175 #if 0
3176 /* Commented out because this wants to be done very
3177 differently. See cp-lex.c. */
3178 tree
3179 build_op_identifier (op1, op2)
3180 tree op1, op2;
3181 {
3182 register tree t = make_node (OP_IDENTIFIER);
3183 TREE_PURPOSE (t) = op1;
3184 TREE_VALUE (t) = op2;
3185 return t;
3186 }
3187 #endif
3188 \f
3189 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3190 We do NOT enter this node in any sort of symbol table.
3191
3192 layout_decl is used to set up the decl's storage layout.
3193 Other slots are initialized to 0 or null pointers. */
3194
3195 tree
3196 build_decl (code, name, type)
3197 enum tree_code code;
3198 tree name, type;
3199 {
3200 register tree t;
3201
3202 t = make_node (code);
3203
3204 /* if (type == error_mark_node)
3205 type = integer_type_node; */
3206 /* That is not done, deliberately, so that having error_mark_node
3207 as the type can suppress useless errors in the use of this variable. */
3208
3209 DECL_NAME (t) = name;
3210 DECL_ASSEMBLER_NAME (t) = name;
3211 TREE_TYPE (t) = type;
3212
3213 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3214 layout_decl (t, 0);
3215 else if (code == FUNCTION_DECL)
3216 DECL_MODE (t) = FUNCTION_MODE;
3217
3218 return t;
3219 }
3220 \f
3221 /* BLOCK nodes are used to represent the structure of binding contours
3222 and declarations, once those contours have been exited and their contents
3223 compiled. This information is used for outputting debugging info. */
3224
3225 tree
3226 build_block (vars, tags, subblocks, supercontext, chain)
3227 tree vars, tags, subblocks, supercontext, chain;
3228 {
3229 register tree block = make_node (BLOCK);
3230 BLOCK_VARS (block) = vars;
3231 BLOCK_TYPE_TAGS (block) = tags;
3232 BLOCK_SUBBLOCKS (block) = subblocks;
3233 BLOCK_SUPERCONTEXT (block) = supercontext;
3234 BLOCK_CHAIN (block) = chain;
3235 return block;
3236 }
3237
3238 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
3239 location where an expression or an identifier were encountered. It
3240 is necessary for languages where the frontend parser will handle
3241 recursively more than one file (Java is one of them). */
3242
3243 tree
3244 build_expr_wfl (node, file, line, col)
3245 tree node;
3246 const char *file;
3247 int line, col;
3248 {
3249 static const char *last_file = 0;
3250 static tree last_filenode = NULL_TREE;
3251 register tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
3252
3253 EXPR_WFL_NODE (wfl) = node;
3254 EXPR_WFL_SET_LINECOL (wfl, line, col);
3255 if (file != last_file)
3256 {
3257 last_file = file;
3258 last_filenode = file ? get_identifier (file) : NULL_TREE;
3259 }
3260 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
3261 if (node)
3262 {
3263 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
3264 TREE_TYPE (wfl) = TREE_TYPE (node);
3265 }
3266 return wfl;
3267 }
3268 \f
3269 /* Return a declaration like DDECL except that its DECL_MACHINE_ATTRIBUTE
3270 is ATTRIBUTE. */
3271
3272 tree
3273 build_decl_attribute_variant (ddecl, attribute)
3274 tree ddecl, attribute;
3275 {
3276 DECL_MACHINE_ATTRIBUTES (ddecl) = attribute;
3277 return ddecl;
3278 }
3279
3280 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3281 is ATTRIBUTE.
3282
3283 Record such modified types already made so we don't make duplicates. */
3284
3285 tree
3286 build_type_attribute_variant (ttype, attribute)
3287 tree ttype, attribute;
3288 {
3289 if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3290 {
3291 register int hashcode;
3292 register struct obstack *ambient_obstack = current_obstack;
3293 tree ntype;
3294
3295 if (ambient_obstack != &permanent_obstack)
3296 current_obstack = TYPE_OBSTACK (ttype);
3297
3298 ntype = copy_node (ttype);
3299 current_obstack = ambient_obstack;
3300
3301 TYPE_POINTER_TO (ntype) = 0;
3302 TYPE_REFERENCE_TO (ntype) = 0;
3303 TYPE_ATTRIBUTES (ntype) = attribute;
3304
3305 /* Create a new main variant of TYPE. */
3306 TYPE_MAIN_VARIANT (ntype) = ntype;
3307 TYPE_NEXT_VARIANT (ntype) = 0;
3308 set_type_quals (ntype, TYPE_UNQUALIFIED);
3309
3310 hashcode = TYPE_HASH (TREE_CODE (ntype))
3311 + TYPE_HASH (TREE_TYPE (ntype))
3312 + attribute_hash_list (attribute);
3313
3314 switch (TREE_CODE (ntype))
3315 {
3316 case FUNCTION_TYPE:
3317 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
3318 break;
3319 case ARRAY_TYPE:
3320 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
3321 break;
3322 case INTEGER_TYPE:
3323 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
3324 break;
3325 case REAL_TYPE:
3326 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
3327 break;
3328 default:
3329 break;
3330 }
3331
3332 ntype = type_hash_canon (hashcode, ntype);
3333 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
3334 }
3335
3336 return ttype;
3337 }
3338
3339 /* Return a 1 if ATTR_NAME and ATTR_ARGS is valid for either declaration DECL
3340 or type TYPE and 0 otherwise. Validity is determined the configuration
3341 macros VALID_MACHINE_DECL_ATTRIBUTE and VALID_MACHINE_TYPE_ATTRIBUTE. */
3342
3343 int
3344 valid_machine_attribute (attr_name, attr_args, decl, type)
3345 tree attr_name;
3346 tree attr_args ATTRIBUTE_UNUSED;
3347 tree decl ATTRIBUTE_UNUSED;
3348 tree type ATTRIBUTE_UNUSED;
3349 {
3350 int validated = 0;
3351 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
3352 tree decl_attr_list = decl != 0 ? DECL_MACHINE_ATTRIBUTES (decl) : 0;
3353 #endif
3354 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
3355 tree type_attr_list = TYPE_ATTRIBUTES (type);
3356 #endif
3357
3358 if (TREE_CODE (attr_name) != IDENTIFIER_NODE)
3359 abort ();
3360
3361 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
3362 if (decl != 0
3363 && VALID_MACHINE_DECL_ATTRIBUTE (decl, decl_attr_list, attr_name, attr_args))
3364 {
3365 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3366 decl_attr_list);
3367
3368 if (attr != NULL_TREE)
3369 {
3370 /* Override existing arguments. Declarations are unique so we can
3371 modify this in place. */
3372 TREE_VALUE (attr) = attr_args;
3373 }
3374 else
3375 {
3376 decl_attr_list = tree_cons (attr_name, attr_args, decl_attr_list);
3377 decl = build_decl_attribute_variant (decl, decl_attr_list);
3378 }
3379
3380 validated = 1;
3381 }
3382 #endif
3383
3384 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
3385 if (validated)
3386 /* Don't apply the attribute to both the decl and the type. */;
3387 else if (VALID_MACHINE_TYPE_ATTRIBUTE (type, type_attr_list, attr_name,
3388 attr_args))
3389 {
3390 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3391 type_attr_list);
3392
3393 if (attr != NULL_TREE)
3394 {
3395 /* Override existing arguments.
3396 ??? This currently works since attribute arguments are not
3397 included in `attribute_hash_list'. Something more complicated
3398 may be needed in the future. */
3399 TREE_VALUE (attr) = attr_args;
3400 }
3401 else
3402 {
3403 /* If this is part of a declaration, create a type variant,
3404 otherwise, this is part of a type definition, so add it
3405 to the base type. */
3406 type_attr_list = tree_cons (attr_name, attr_args, type_attr_list);
3407 if (decl != 0)
3408 type = build_type_attribute_variant (type, type_attr_list);
3409 else
3410 TYPE_ATTRIBUTES (type) = type_attr_list;
3411 }
3412 if (decl != 0)
3413 TREE_TYPE (decl) = type;
3414 validated = 1;
3415 }
3416
3417 /* Handle putting a type attribute on pointer-to-function-type by putting
3418 the attribute on the function type. */
3419 else if (POINTER_TYPE_P (type)
3420 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3421 && VALID_MACHINE_TYPE_ATTRIBUTE (TREE_TYPE (type), type_attr_list,
3422 attr_name, attr_args))
3423 {
3424 tree inner_type = TREE_TYPE (type);
3425 tree inner_attr_list = TYPE_ATTRIBUTES (inner_type);
3426 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3427 type_attr_list);
3428
3429 if (attr != NULL_TREE)
3430 TREE_VALUE (attr) = attr_args;
3431 else
3432 {
3433 inner_attr_list = tree_cons (attr_name, attr_args, inner_attr_list);
3434 inner_type = build_type_attribute_variant (inner_type,
3435 inner_attr_list);
3436 }
3437
3438 if (decl != 0)
3439 TREE_TYPE (decl) = build_pointer_type (inner_type);
3440
3441 validated = 1;
3442 }
3443 #endif
3444
3445 return validated;
3446 }
3447
3448 /* Return non-zero if IDENT is a valid name for attribute ATTR,
3449 or zero if not.
3450
3451 We try both `text' and `__text__', ATTR may be either one. */
3452 /* ??? It might be a reasonable simplification to require ATTR to be only
3453 `text'. One might then also require attribute lists to be stored in
3454 their canonicalized form. */
3455
3456 int
3457 is_attribute_p (attr, ident)
3458 const char *attr;
3459 tree ident;
3460 {
3461 int ident_len, attr_len;
3462 char *p;
3463
3464 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3465 return 0;
3466
3467 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
3468 return 1;
3469
3470 p = IDENTIFIER_POINTER (ident);
3471 ident_len = strlen (p);
3472 attr_len = strlen (attr);
3473
3474 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3475 if (attr[0] == '_')
3476 {
3477 if (attr[1] != '_'
3478 || attr[attr_len - 2] != '_'
3479 || attr[attr_len - 1] != '_')
3480 abort ();
3481 if (ident_len == attr_len - 4
3482 && strncmp (attr + 2, p, attr_len - 4) == 0)
3483 return 1;
3484 }
3485 else
3486 {
3487 if (ident_len == attr_len + 4
3488 && p[0] == '_' && p[1] == '_'
3489 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3490 && strncmp (attr, p + 2, attr_len) == 0)
3491 return 1;
3492 }
3493
3494 return 0;
3495 }
3496
3497 /* Given an attribute name and a list of attributes, return a pointer to the
3498 attribute's list element if the attribute is part of the list, or NULL_TREE
3499 if not found. */
3500
3501 tree
3502 lookup_attribute (attr_name, list)
3503 const char *attr_name;
3504 tree list;
3505 {
3506 tree l;
3507
3508 for (l = list; l; l = TREE_CHAIN (l))
3509 {
3510 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
3511 abort ();
3512 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
3513 return l;
3514 }
3515
3516 return NULL_TREE;
3517 }
3518
3519 /* Return an attribute list that is the union of a1 and a2. */
3520
3521 tree
3522 merge_attributes (a1, a2)
3523 register tree a1, a2;
3524 {
3525 tree attributes;
3526
3527 /* Either one unset? Take the set one. */
3528
3529 if (! (attributes = a1))
3530 attributes = a2;
3531
3532 /* One that completely contains the other? Take it. */
3533
3534 else if (a2 && ! attribute_list_contained (a1, a2))
3535 {
3536 if (attribute_list_contained (a2, a1))
3537 attributes = a2;
3538 else
3539 {
3540 /* Pick the longest list, and hang on the other list. */
3541 /* ??? For the moment we punt on the issue of attrs with args. */
3542
3543 if (list_length (a1) < list_length (a2))
3544 attributes = a2, a2 = a1;
3545
3546 for (; a2; a2 = TREE_CHAIN (a2))
3547 if (lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3548 attributes) == NULL_TREE)
3549 {
3550 a1 = copy_node (a2);
3551 TREE_CHAIN (a1) = attributes;
3552 attributes = a1;
3553 }
3554 }
3555 }
3556 return attributes;
3557 }
3558
3559 /* Given types T1 and T2, merge their attributes and return
3560 the result. */
3561
3562 tree
3563 merge_machine_type_attributes (t1, t2)
3564 tree t1, t2;
3565 {
3566 #ifdef MERGE_MACHINE_TYPE_ATTRIBUTES
3567 return MERGE_MACHINE_TYPE_ATTRIBUTES (t1, t2);
3568 #else
3569 return merge_attributes (TYPE_ATTRIBUTES (t1),
3570 TYPE_ATTRIBUTES (t2));
3571 #endif
3572 }
3573
3574 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3575 the result. */
3576
3577 tree
3578 merge_machine_decl_attributes (olddecl, newdecl)
3579 tree olddecl, newdecl;
3580 {
3581 #ifdef MERGE_MACHINE_DECL_ATTRIBUTES
3582 return MERGE_MACHINE_DECL_ATTRIBUTES (olddecl, newdecl);
3583 #else
3584 return merge_attributes (DECL_MACHINE_ATTRIBUTES (olddecl),
3585 DECL_MACHINE_ATTRIBUTES (newdecl));
3586 #endif
3587 }
3588 \f
3589 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3590 of the various TYPE_QUAL values. */
3591
3592 static void
3593 set_type_quals (type, type_quals)
3594 tree type;
3595 int type_quals;
3596 {
3597 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3598 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3599 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3600 }
3601
3602 /* Given a type node TYPE and a TYPE_QUALIFIER_SET, return a type for
3603 the same kind of data as TYPE describes. Variants point to the
3604 "main variant" (which has no qualifiers set) via TYPE_MAIN_VARIANT,
3605 and it points to a chain of other variants so that duplicate
3606 variants are never made. Only main variants should ever appear as
3607 types of expressions. */
3608
3609 tree
3610 build_qualified_type (type, type_quals)
3611 tree type;
3612 int type_quals;
3613 {
3614 register tree t;
3615
3616 /* Search the chain of variants to see if there is already one there just
3617 like the one we need to have. If so, use that existing one. We must
3618 preserve the TYPE_NAME, since there is code that depends on this. */
3619
3620 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3621 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type))
3622 return t;
3623
3624 /* We need a new one. */
3625 t = build_type_copy (type);
3626 set_type_quals (t, type_quals);
3627 return t;
3628 }
3629
3630 /* Create a new variant of TYPE, equivalent but distinct.
3631 This is so the caller can modify it. */
3632
3633 tree
3634 build_type_copy (type)
3635 tree type;
3636 {
3637 register tree t, m = TYPE_MAIN_VARIANT (type);
3638 register struct obstack *ambient_obstack = current_obstack;
3639
3640 current_obstack = TYPE_OBSTACK (type);
3641 t = copy_node (type);
3642 current_obstack = ambient_obstack;
3643
3644 TYPE_POINTER_TO (t) = 0;
3645 TYPE_REFERENCE_TO (t) = 0;
3646
3647 /* Add this type to the chain of variants of TYPE. */
3648 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3649 TYPE_NEXT_VARIANT (m) = t;
3650
3651 return t;
3652 }
3653 \f
3654 /* Hashing of types so that we don't make duplicates.
3655 The entry point is `type_hash_canon'. */
3656
3657 /* Each hash table slot is a bucket containing a chain
3658 of these structures. */
3659
3660 struct type_hash
3661 {
3662 struct type_hash *next; /* Next structure in the bucket. */
3663 int hashcode; /* Hash code of this type. */
3664 tree type; /* The type recorded here. */
3665 };
3666
3667 /* Now here is the hash table. When recording a type, it is added
3668 to the slot whose index is the hash code mod the table size.
3669 Note that the hash table is used for several kinds of types
3670 (function types, array types and array index range types, for now).
3671 While all these live in the same table, they are completely independent,
3672 and the hash code is computed differently for each of these. */
3673
3674 #define TYPE_HASH_SIZE 59
3675 struct type_hash *type_hash_table[TYPE_HASH_SIZE];
3676
3677 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3678 with types in the TREE_VALUE slots), by adding the hash codes
3679 of the individual types. */
3680
3681 int
3682 type_hash_list (list)
3683 tree list;
3684 {
3685 register int hashcode;
3686 register tree tail;
3687 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3688 hashcode += TYPE_HASH (TREE_VALUE (tail));
3689 return hashcode;
3690 }
3691
3692 /* Look in the type hash table for a type isomorphic to TYPE.
3693 If one is found, return it. Otherwise return 0. */
3694
3695 tree
3696 type_hash_lookup (hashcode, type)
3697 int hashcode;
3698 tree type;
3699 {
3700 register struct type_hash *h;
3701 for (h = type_hash_table[hashcode % TYPE_HASH_SIZE]; h; h = h->next)
3702 if (h->hashcode == hashcode
3703 && TREE_CODE (h->type) == TREE_CODE (type)
3704 && TREE_TYPE (h->type) == TREE_TYPE (type)
3705 && attribute_list_equal (TYPE_ATTRIBUTES (h->type),
3706 TYPE_ATTRIBUTES (type))
3707 && (TYPE_MAX_VALUE (h->type) == TYPE_MAX_VALUE (type)
3708 || tree_int_cst_equal (TYPE_MAX_VALUE (h->type),
3709 TYPE_MAX_VALUE (type)))
3710 && (TYPE_MIN_VALUE (h->type) == TYPE_MIN_VALUE (type)
3711 || tree_int_cst_equal (TYPE_MIN_VALUE (h->type),
3712 TYPE_MIN_VALUE (type)))
3713 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3714 && (TYPE_DOMAIN (h->type) == TYPE_DOMAIN (type)
3715 || (TYPE_DOMAIN (h->type)
3716 && TREE_CODE (TYPE_DOMAIN (h->type)) == TREE_LIST
3717 && TYPE_DOMAIN (type)
3718 && TREE_CODE (TYPE_DOMAIN (type)) == TREE_LIST
3719 && type_list_equal (TYPE_DOMAIN (h->type),
3720 TYPE_DOMAIN (type)))))
3721 return h->type;
3722 return 0;
3723 }
3724
3725 /* Add an entry to the type-hash-table
3726 for a type TYPE whose hash code is HASHCODE. */
3727
3728 void
3729 type_hash_add (hashcode, type)
3730 int hashcode;
3731 tree type;
3732 {
3733 register struct type_hash *h;
3734
3735 h = (struct type_hash *) oballoc (sizeof (struct type_hash));
3736 h->hashcode = hashcode;
3737 h->type = type;
3738 h->next = type_hash_table[hashcode % TYPE_HASH_SIZE];
3739 type_hash_table[hashcode % TYPE_HASH_SIZE] = h;
3740 }
3741
3742 /* Given TYPE, and HASHCODE its hash code, return the canonical
3743 object for an identical type if one already exists.
3744 Otherwise, return TYPE, and record it as the canonical object
3745 if it is a permanent object.
3746
3747 To use this function, first create a type of the sort you want.
3748 Then compute its hash code from the fields of the type that
3749 make it different from other similar types.
3750 Then call this function and use the value.
3751 This function frees the type you pass in if it is a duplicate. */
3752
3753 /* Set to 1 to debug without canonicalization. Never set by program. */
3754 int debug_no_type_hash = 0;
3755
3756 tree
3757 type_hash_canon (hashcode, type)
3758 int hashcode;
3759 tree type;
3760 {
3761 tree t1;
3762
3763 if (debug_no_type_hash)
3764 return type;
3765
3766 t1 = type_hash_lookup (hashcode, type);
3767 if (t1 != 0)
3768 {
3769 obstack_free (TYPE_OBSTACK (type), type);
3770 #ifdef GATHER_STATISTICS
3771 tree_node_counts[(int)t_kind]--;
3772 tree_node_sizes[(int)t_kind] -= sizeof (struct tree_type);
3773 #endif
3774 return t1;
3775 }
3776
3777 /* If this is a permanent type, record it for later reuse. */
3778 if (TREE_PERMANENT (type))
3779 type_hash_add (hashcode, type);
3780
3781 return type;
3782 }
3783
3784 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3785 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3786 by adding the hash codes of the individual attributes. */
3787
3788 int
3789 attribute_hash_list (list)
3790 tree list;
3791 {
3792 register int hashcode;
3793 register tree tail;
3794 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3795 /* ??? Do we want to add in TREE_VALUE too? */
3796 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3797 return hashcode;
3798 }
3799
3800 /* Given two lists of attributes, return true if list l2 is
3801 equivalent to l1. */
3802
3803 int
3804 attribute_list_equal (l1, l2)
3805 tree l1, l2;
3806 {
3807 return attribute_list_contained (l1, l2)
3808 && attribute_list_contained (l2, l1);
3809 }
3810
3811 /* Given two lists of attributes, return true if list L2 is
3812 completely contained within L1. */
3813 /* ??? This would be faster if attribute names were stored in a canonicalized
3814 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3815 must be used to show these elements are equivalent (which they are). */
3816 /* ??? It's not clear that attributes with arguments will always be handled
3817 correctly. */
3818
3819 int
3820 attribute_list_contained (l1, l2)
3821 tree l1, l2;
3822 {
3823 register tree t1, t2;
3824
3825 /* First check the obvious, maybe the lists are identical. */
3826 if (l1 == l2)
3827 return 1;
3828
3829 /* Maybe the lists are similar. */
3830 for (t1 = l1, t2 = l2;
3831 t1 && t2
3832 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3833 && TREE_VALUE (t1) == TREE_VALUE (t2);
3834 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3835
3836 /* Maybe the lists are equal. */
3837 if (t1 == 0 && t2 == 0)
3838 return 1;
3839
3840 for (; t2; t2 = TREE_CHAIN (t2))
3841 {
3842 tree attr
3843 = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3844
3845 if (attr == NULL_TREE)
3846 return 0;
3847 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3848 return 0;
3849 }
3850
3851 return 1;
3852 }
3853
3854 /* Given two lists of types
3855 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3856 return 1 if the lists contain the same types in the same order.
3857 Also, the TREE_PURPOSEs must match. */
3858
3859 int
3860 type_list_equal (l1, l2)
3861 tree l1, l2;
3862 {
3863 register tree t1, t2;
3864
3865 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3866 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3867 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3868 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3869 && (TREE_TYPE (TREE_PURPOSE (t1))
3870 == TREE_TYPE (TREE_PURPOSE (t2))))))
3871 return 0;
3872
3873 return t1 == t2;
3874 }
3875
3876 /* Nonzero if integer constants T1 and T2
3877 represent the same constant value. */
3878
3879 int
3880 tree_int_cst_equal (t1, t2)
3881 tree t1, t2;
3882 {
3883 if (t1 == t2)
3884 return 1;
3885 if (t1 == 0 || t2 == 0)
3886 return 0;
3887 if (TREE_CODE (t1) == INTEGER_CST
3888 && TREE_CODE (t2) == INTEGER_CST
3889 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3890 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3891 return 1;
3892 return 0;
3893 }
3894
3895 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3896 The precise way of comparison depends on their data type. */
3897
3898 int
3899 tree_int_cst_lt (t1, t2)
3900 tree t1, t2;
3901 {
3902 if (t1 == t2)
3903 return 0;
3904
3905 if (!TREE_UNSIGNED (TREE_TYPE (t1)))
3906 return INT_CST_LT (t1, t2);
3907 return INT_CST_LT_UNSIGNED (t1, t2);
3908 }
3909
3910 /* Return an indication of the sign of the integer constant T.
3911 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3912 Note that -1 will never be returned it T's type is unsigned. */
3913
3914 int
3915 tree_int_cst_sgn (t)
3916 tree t;
3917 {
3918 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3919 return 0;
3920 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3921 return 1;
3922 else if (TREE_INT_CST_HIGH (t) < 0)
3923 return -1;
3924 else
3925 return 1;
3926 }
3927
3928 /* Compare two constructor-element-type constants. Return 1 if the lists
3929 are known to be equal; otherwise return 0. */
3930
3931 int
3932 simple_cst_list_equal (l1, l2)
3933 tree l1, l2;
3934 {
3935 while (l1 != NULL_TREE && l2 != NULL_TREE)
3936 {
3937 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3938 return 0;
3939
3940 l1 = TREE_CHAIN (l1);
3941 l2 = TREE_CHAIN (l2);
3942 }
3943
3944 return (l1 == l2);
3945 }
3946
3947 /* Return truthvalue of whether T1 is the same tree structure as T2.
3948 Return 1 if they are the same.
3949 Return 0 if they are understandably different.
3950 Return -1 if either contains tree structure not understood by
3951 this function. */
3952
3953 int
3954 simple_cst_equal (t1, t2)
3955 tree t1, t2;
3956 {
3957 register enum tree_code code1, code2;
3958 int cmp;
3959
3960 if (t1 == t2)
3961 return 1;
3962 if (t1 == 0 || t2 == 0)
3963 return 0;
3964
3965 code1 = TREE_CODE (t1);
3966 code2 = TREE_CODE (t2);
3967
3968 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3969 {
3970 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3971 || code2 == NON_LVALUE_EXPR)
3972 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3973 else
3974 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3975 }
3976 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3977 || code2 == NON_LVALUE_EXPR)
3978 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3979
3980 if (code1 != code2)
3981 return 0;
3982
3983 switch (code1)
3984 {
3985 case INTEGER_CST:
3986 return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3987 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
3988
3989 case REAL_CST:
3990 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3991
3992 case STRING_CST:
3993 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3994 && !bcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3995 TREE_STRING_LENGTH (t1));
3996
3997 case CONSTRUCTOR:
3998 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3999 return 1;
4000 else
4001 abort ();
4002
4003 case SAVE_EXPR:
4004 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4005
4006 case CALL_EXPR:
4007 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4008 if (cmp <= 0)
4009 return cmp;
4010 return simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4011
4012 case TARGET_EXPR:
4013 /* Special case: if either target is an unallocated VAR_DECL,
4014 it means that it's going to be unified with whatever the
4015 TARGET_EXPR is really supposed to initialize, so treat it
4016 as being equivalent to anything. */
4017 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
4018 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
4019 && DECL_RTL (TREE_OPERAND (t1, 0)) == 0)
4020 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
4021 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
4022 && DECL_RTL (TREE_OPERAND (t2, 0)) == 0))
4023 cmp = 1;
4024 else
4025 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4026 if (cmp <= 0)
4027 return cmp;
4028 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4029
4030 case WITH_CLEANUP_EXPR:
4031 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4032 if (cmp <= 0)
4033 return cmp;
4034 return simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t1, 2));
4035
4036 case COMPONENT_REF:
4037 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
4038 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4039 return 0;
4040
4041 case VAR_DECL:
4042 case PARM_DECL:
4043 case CONST_DECL:
4044 case FUNCTION_DECL:
4045 return 0;
4046
4047 default:
4048 break;
4049 }
4050
4051 /* This general rule works for most tree codes. All exceptions should be
4052 handled above. If this is a language-specific tree code, we can't
4053 trust what might be in the operand, so say we don't know
4054 the situation. */
4055 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
4056 return -1;
4057
4058 switch (TREE_CODE_CLASS (code1))
4059 {
4060 int i;
4061 case '1':
4062 case '2':
4063 case '<':
4064 case 'e':
4065 case 'r':
4066 case 's':
4067 cmp = 1;
4068 for (i=0; i<tree_code_length[(int) code1]; ++i)
4069 {
4070 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
4071 if (cmp <= 0)
4072 return cmp;
4073 }
4074 return cmp;
4075
4076 default:
4077 return -1;
4078 }
4079 }
4080 \f
4081 /* Constructors for pointer, array and function types.
4082 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4083 constructed by language-dependent code, not here.) */
4084
4085 /* Construct, lay out and return the type of pointers to TO_TYPE.
4086 If such a type has already been constructed, reuse it. */
4087
4088 tree
4089 build_pointer_type (to_type)
4090 tree to_type;
4091 {
4092 register tree t = TYPE_POINTER_TO (to_type);
4093
4094 /* First, if we already have a type for pointers to TO_TYPE, use it. */
4095
4096 if (t)
4097 return t;
4098
4099 /* We need a new one. Put this in the same obstack as TO_TYPE. */
4100 push_obstacks (TYPE_OBSTACK (to_type), TYPE_OBSTACK (to_type));
4101 t = make_node (POINTER_TYPE);
4102 pop_obstacks ();
4103
4104 TREE_TYPE (t) = to_type;
4105
4106 /* Record this type as the pointer to TO_TYPE. */
4107 TYPE_POINTER_TO (to_type) = t;
4108
4109 /* Lay out the type. This function has many callers that are concerned
4110 with expression-construction, and this simplifies them all.
4111 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
4112 layout_type (t);
4113
4114 return t;
4115 }
4116
4117 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
4118 MAXVAL should be the maximum value in the domain
4119 (one less than the length of the array).
4120
4121 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
4122 We don't enforce this limit, that is up to caller (e.g. language front end).
4123 The limit exists because the result is a signed type and we don't handle
4124 sizes that use more than one HOST_WIDE_INT. */
4125
4126 tree
4127 build_index_type (maxval)
4128 tree maxval;
4129 {
4130 register tree itype = make_node (INTEGER_TYPE);
4131
4132 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
4133 TYPE_MIN_VALUE (itype) = size_zero_node;
4134
4135 push_obstacks (TYPE_OBSTACK (itype), TYPE_OBSTACK (itype));
4136 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
4137 pop_obstacks ();
4138
4139 TYPE_MODE (itype) = TYPE_MODE (sizetype);
4140 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
4141 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
4142 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
4143 if (TREE_CODE (maxval) == INTEGER_CST)
4144 {
4145 int maxint = (int) TREE_INT_CST_LOW (maxval);
4146 /* If the domain should be empty, make sure the maxval
4147 remains -1 and is not spoiled by truncation. */
4148 if (INT_CST_LT (maxval, integer_zero_node))
4149 {
4150 TYPE_MAX_VALUE (itype) = build_int_2 (-1, -1);
4151 TREE_TYPE (TYPE_MAX_VALUE (itype)) = sizetype;
4152 }
4153 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
4154 }
4155 else
4156 return itype;
4157 }
4158
4159 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4160 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4161 low bound LOWVAL and high bound HIGHVAL.
4162 if TYPE==NULL_TREE, sizetype is used. */
4163
4164 tree
4165 build_range_type (type, lowval, highval)
4166 tree type, lowval, highval;
4167 {
4168 register tree itype = make_node (INTEGER_TYPE);
4169
4170 TREE_TYPE (itype) = type;
4171 if (type == NULL_TREE)
4172 type = sizetype;
4173
4174 push_obstacks (TYPE_OBSTACK (itype), TYPE_OBSTACK (itype));
4175 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4176 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
4177 pop_obstacks ();
4178
4179 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4180 TYPE_MODE (itype) = TYPE_MODE (type);
4181 TYPE_SIZE (itype) = TYPE_SIZE (type);
4182 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
4183 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4184 if (TREE_CODE (lowval) == INTEGER_CST)
4185 {
4186 HOST_WIDE_INT lowint, highint;
4187 int maxint;
4188
4189 lowint = TREE_INT_CST_LOW (lowval);
4190 if (highval && TREE_CODE (highval) == INTEGER_CST)
4191 highint = TREE_INT_CST_LOW (highval);
4192 else
4193 highint = (~(unsigned HOST_WIDE_INT)0) >> 1;
4194
4195 maxint = (int) (highint - lowint);
4196 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
4197 }
4198 else
4199 return itype;
4200 }
4201
4202 /* Just like build_index_type, but takes lowval and highval instead
4203 of just highval (maxval). */
4204
4205 tree
4206 build_index_2_type (lowval,highval)
4207 tree lowval, highval;
4208 {
4209 return build_range_type (NULL_TREE, lowval, highval);
4210 }
4211
4212 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
4213 Needed because when index types are not hashed, equal index types
4214 built at different times appear distinct, even though structurally,
4215 they are not. */
4216
4217 int
4218 index_type_equal (itype1, itype2)
4219 tree itype1, itype2;
4220 {
4221 if (TREE_CODE (itype1) != TREE_CODE (itype2))
4222 return 0;
4223 if (TREE_CODE (itype1) == INTEGER_TYPE)
4224 {
4225 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
4226 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
4227 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
4228 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
4229 return 0;
4230 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
4231 TYPE_MIN_VALUE (itype2))
4232 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
4233 TYPE_MAX_VALUE (itype2)))
4234 return 1;
4235 }
4236
4237 return 0;
4238 }
4239
4240 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4241 and number of elements specified by the range of values of INDEX_TYPE.
4242 If such a type has already been constructed, reuse it. */
4243
4244 tree
4245 build_array_type (elt_type, index_type)
4246 tree elt_type, index_type;
4247 {
4248 register tree t;
4249 int hashcode;
4250
4251 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4252 {
4253 error ("arrays of functions are not meaningful");
4254 elt_type = integer_type_node;
4255 }
4256
4257 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
4258 build_pointer_type (elt_type);
4259
4260 /* Allocate the array after the pointer type,
4261 in case we free it in type_hash_canon. */
4262 t = make_node (ARRAY_TYPE);
4263 TREE_TYPE (t) = elt_type;
4264 TYPE_DOMAIN (t) = index_type;
4265
4266 if (index_type == 0)
4267 {
4268 return t;
4269 }
4270
4271 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
4272 t = type_hash_canon (hashcode, t);
4273
4274 if (TYPE_SIZE (t) == 0)
4275 layout_type (t);
4276 return t;
4277 }
4278
4279 /* Return the TYPE of the elements comprising
4280 the innermost dimension of ARRAY. */
4281
4282 tree
4283 get_inner_array_type (array)
4284 tree array;
4285 {
4286 tree type = TREE_TYPE (array);
4287
4288 while (TREE_CODE (type) == ARRAY_TYPE)
4289 type = TREE_TYPE (type);
4290
4291 return type;
4292 }
4293
4294 /* Construct, lay out and return
4295 the type of functions returning type VALUE_TYPE
4296 given arguments of types ARG_TYPES.
4297 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4298 are data type nodes for the arguments of the function.
4299 If such a type has already been constructed, reuse it. */
4300
4301 tree
4302 build_function_type (value_type, arg_types)
4303 tree value_type, arg_types;
4304 {
4305 register tree t;
4306 int hashcode;
4307
4308 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4309 {
4310 error ("function return type cannot be function");
4311 value_type = integer_type_node;
4312 }
4313
4314 /* Make a node of the sort we want. */
4315 t = make_node (FUNCTION_TYPE);
4316 TREE_TYPE (t) = value_type;
4317 TYPE_ARG_TYPES (t) = arg_types;
4318
4319 /* If we already have such a type, use the old one and free this one. */
4320 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
4321 t = type_hash_canon (hashcode, t);
4322
4323 if (TYPE_SIZE (t) == 0)
4324 layout_type (t);
4325 return t;
4326 }
4327
4328 /* Build the node for the type of references-to-TO_TYPE. */
4329
4330 tree
4331 build_reference_type (to_type)
4332 tree to_type;
4333 {
4334 register tree t = TYPE_REFERENCE_TO (to_type);
4335
4336 /* First, if we already have a type for pointers to TO_TYPE, use it. */
4337
4338 if (t)
4339 return t;
4340
4341 /* We need a new one. Put this in the same obstack as TO_TYPE. */
4342 push_obstacks (TYPE_OBSTACK (to_type), TYPE_OBSTACK (to_type));
4343 t = make_node (REFERENCE_TYPE);
4344 pop_obstacks ();
4345
4346 TREE_TYPE (t) = to_type;
4347
4348 /* Record this type as the pointer to TO_TYPE. */
4349 TYPE_REFERENCE_TO (to_type) = t;
4350
4351 layout_type (t);
4352
4353 return t;
4354 }
4355
4356 /* Construct, lay out and return the type of methods belonging to class
4357 BASETYPE and whose arguments and values are described by TYPE.
4358 If that type exists already, reuse it.
4359 TYPE must be a FUNCTION_TYPE node. */
4360
4361 tree
4362 build_method_type (basetype, type)
4363 tree basetype, type;
4364 {
4365 register tree t;
4366 int hashcode;
4367
4368 /* Make a node of the sort we want. */
4369 t = make_node (METHOD_TYPE);
4370
4371 if (TREE_CODE (type) != FUNCTION_TYPE)
4372 abort ();
4373
4374 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4375 TREE_TYPE (t) = TREE_TYPE (type);
4376
4377 /* The actual arglist for this function includes a "hidden" argument
4378 which is "this". Put it into the list of argument types. */
4379
4380 TYPE_ARG_TYPES (t)
4381 = tree_cons (NULL_TREE,
4382 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
4383
4384 /* If we already have such a type, use the old one and free this one. */
4385 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4386 t = type_hash_canon (hashcode, t);
4387
4388 if (TYPE_SIZE (t) == 0)
4389 layout_type (t);
4390
4391 return t;
4392 }
4393
4394 /* Construct, lay out and return the type of offsets to a value
4395 of type TYPE, within an object of type BASETYPE.
4396 If a suitable offset type exists already, reuse it. */
4397
4398 tree
4399 build_offset_type (basetype, type)
4400 tree basetype, type;
4401 {
4402 register tree t;
4403 int hashcode;
4404
4405 /* Make a node of the sort we want. */
4406 t = make_node (OFFSET_TYPE);
4407
4408 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4409 TREE_TYPE (t) = type;
4410
4411 /* If we already have such a type, use the old one and free this one. */
4412 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4413 t = type_hash_canon (hashcode, t);
4414
4415 if (TYPE_SIZE (t) == 0)
4416 layout_type (t);
4417
4418 return t;
4419 }
4420
4421 /* Create a complex type whose components are COMPONENT_TYPE. */
4422
4423 tree
4424 build_complex_type (component_type)
4425 tree component_type;
4426 {
4427 register tree t;
4428 int hashcode;
4429
4430 /* Make a node of the sort we want. */
4431 t = make_node (COMPLEX_TYPE);
4432
4433 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4434 set_type_quals (t, TYPE_QUALS (component_type));
4435
4436 /* If we already have such a type, use the old one and free this one. */
4437 hashcode = TYPE_HASH (component_type);
4438 t = type_hash_canon (hashcode, t);
4439
4440 if (TYPE_SIZE (t) == 0)
4441 layout_type (t);
4442
4443 return t;
4444 }
4445 \f
4446 /* Return OP, stripped of any conversions to wider types as much as is safe.
4447 Converting the value back to OP's type makes a value equivalent to OP.
4448
4449 If FOR_TYPE is nonzero, we return a value which, if converted to
4450 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4451
4452 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4453 narrowest type that can hold the value, even if they don't exactly fit.
4454 Otherwise, bit-field references are changed to a narrower type
4455 only if they can be fetched directly from memory in that type.
4456
4457 OP must have integer, real or enumeral type. Pointers are not allowed!
4458
4459 There are some cases where the obvious value we could return
4460 would regenerate to OP if converted to OP's type,
4461 but would not extend like OP to wider types.
4462 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4463 For example, if OP is (unsigned short)(signed char)-1,
4464 we avoid returning (signed char)-1 if FOR_TYPE is int,
4465 even though extending that to an unsigned short would regenerate OP,
4466 since the result of extending (signed char)-1 to (int)
4467 is different from (int) OP. */
4468
4469 tree
4470 get_unwidened (op, for_type)
4471 register tree op;
4472 tree for_type;
4473 {
4474 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4475 register tree type = TREE_TYPE (op);
4476 register unsigned final_prec
4477 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4478 register int uns
4479 = (for_type != 0 && for_type != type
4480 && final_prec > TYPE_PRECISION (type)
4481 && TREE_UNSIGNED (type));
4482 register tree win = op;
4483
4484 while (TREE_CODE (op) == NOP_EXPR)
4485 {
4486 register int bitschange
4487 = TYPE_PRECISION (TREE_TYPE (op))
4488 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4489
4490 /* Truncations are many-one so cannot be removed.
4491 Unless we are later going to truncate down even farther. */
4492 if (bitschange < 0
4493 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4494 break;
4495
4496 /* See what's inside this conversion. If we decide to strip it,
4497 we will set WIN. */
4498 op = TREE_OPERAND (op, 0);
4499
4500 /* If we have not stripped any zero-extensions (uns is 0),
4501 we can strip any kind of extension.
4502 If we have previously stripped a zero-extension,
4503 only zero-extensions can safely be stripped.
4504 Any extension can be stripped if the bits it would produce
4505 are all going to be discarded later by truncating to FOR_TYPE. */
4506
4507 if (bitschange > 0)
4508 {
4509 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4510 win = op;
4511 /* TREE_UNSIGNED says whether this is a zero-extension.
4512 Let's avoid computing it if it does not affect WIN
4513 and if UNS will not be needed again. */
4514 if ((uns || TREE_CODE (op) == NOP_EXPR)
4515 && TREE_UNSIGNED (TREE_TYPE (op)))
4516 {
4517 uns = 1;
4518 win = op;
4519 }
4520 }
4521 }
4522
4523 if (TREE_CODE (op) == COMPONENT_REF
4524 /* Since type_for_size always gives an integer type. */
4525 && TREE_CODE (type) != REAL_TYPE
4526 /* Don't crash if field not laid out yet. */
4527 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4528 {
4529 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4530 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
4531
4532 /* We can get this structure field in the narrowest type it fits in.
4533 If FOR_TYPE is 0, do this only for a field that matches the
4534 narrower type exactly and is aligned for it
4535 The resulting extension to its nominal type (a fullword type)
4536 must fit the same conditions as for other extensions. */
4537
4538 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4539 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4540 && (! uns || final_prec <= innerprec
4541 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4542 && type != 0)
4543 {
4544 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4545 TREE_OPERAND (op, 1));
4546 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4547 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4548 TREE_RAISES (win) = TREE_RAISES (op);
4549 }
4550 }
4551 return win;
4552 }
4553 \f
4554 /* Return OP or a simpler expression for a narrower value
4555 which can be sign-extended or zero-extended to give back OP.
4556 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4557 or 0 if the value should be sign-extended. */
4558
4559 tree
4560 get_narrower (op, unsignedp_ptr)
4561 register tree op;
4562 int *unsignedp_ptr;
4563 {
4564 register int uns = 0;
4565 int first = 1;
4566 register tree win = op;
4567
4568 while (TREE_CODE (op) == NOP_EXPR)
4569 {
4570 register int bitschange
4571 = TYPE_PRECISION (TREE_TYPE (op))
4572 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4573
4574 /* Truncations are many-one so cannot be removed. */
4575 if (bitschange < 0)
4576 break;
4577
4578 /* See what's inside this conversion. If we decide to strip it,
4579 we will set WIN. */
4580 op = TREE_OPERAND (op, 0);
4581
4582 if (bitschange > 0)
4583 {
4584 /* An extension: the outermost one can be stripped,
4585 but remember whether it is zero or sign extension. */
4586 if (first)
4587 uns = TREE_UNSIGNED (TREE_TYPE (op));
4588 /* Otherwise, if a sign extension has been stripped,
4589 only sign extensions can now be stripped;
4590 if a zero extension has been stripped, only zero-extensions. */
4591 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4592 break;
4593 first = 0;
4594 }
4595 else /* bitschange == 0 */
4596 {
4597 /* A change in nominal type can always be stripped, but we must
4598 preserve the unsignedness. */
4599 if (first)
4600 uns = TREE_UNSIGNED (TREE_TYPE (op));
4601 first = 0;
4602 }
4603
4604 win = op;
4605 }
4606
4607 if (TREE_CODE (op) == COMPONENT_REF
4608 /* Since type_for_size always gives an integer type. */
4609 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE)
4610 {
4611 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4612 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
4613
4614 /* We can get this structure field in a narrower type that fits it,
4615 but the resulting extension to its nominal type (a fullword type)
4616 must satisfy the same conditions as for other extensions.
4617
4618 Do this only for fields that are aligned (not bit-fields),
4619 because when bit-field insns will be used there is no
4620 advantage in doing this. */
4621
4622 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4623 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4624 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4625 && type != 0)
4626 {
4627 if (first)
4628 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4629 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4630 TREE_OPERAND (op, 1));
4631 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4632 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4633 TREE_RAISES (win) = TREE_RAISES (op);
4634 }
4635 }
4636 *unsignedp_ptr = uns;
4637 return win;
4638 }
4639 \f
4640 /* Nonzero if integer constant C has a value that is permissible
4641 for type TYPE (an INTEGER_TYPE). */
4642
4643 int
4644 int_fits_type_p (c, type)
4645 tree c, type;
4646 {
4647 if (TREE_UNSIGNED (type))
4648 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4649 && INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c))
4650 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
4651 && INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type)))
4652 /* Negative ints never fit unsigned types. */
4653 && ! (TREE_INT_CST_HIGH (c) < 0
4654 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4655 else
4656 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4657 && INT_CST_LT (TYPE_MAX_VALUE (type), c))
4658 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
4659 && INT_CST_LT (c, TYPE_MIN_VALUE (type)))
4660 /* Unsigned ints with top bit set never fit signed types. */
4661 && ! (TREE_INT_CST_HIGH (c) < 0
4662 && TREE_UNSIGNED (TREE_TYPE (c))));
4663 }
4664
4665 /* Return the innermost context enclosing DECL that is
4666 a FUNCTION_DECL, or zero if none. */
4667
4668 tree
4669 decl_function_context (decl)
4670 tree decl;
4671 {
4672 tree context;
4673
4674 if (TREE_CODE (decl) == ERROR_MARK)
4675 return 0;
4676
4677 if (TREE_CODE (decl) == SAVE_EXPR)
4678 context = SAVE_EXPR_CONTEXT (decl);
4679 else
4680 context = DECL_CONTEXT (decl);
4681
4682 while (context && TREE_CODE (context) != FUNCTION_DECL)
4683 {
4684 if (TREE_CODE_CLASS (TREE_CODE (context)) == 't')
4685 context = TYPE_CONTEXT (context);
4686 else if (TREE_CODE_CLASS (TREE_CODE (context)) == 'd')
4687 context = DECL_CONTEXT (context);
4688 else if (TREE_CODE (context) == BLOCK)
4689 context = BLOCK_SUPERCONTEXT (context);
4690 else
4691 /* Unhandled CONTEXT !? */
4692 abort ();
4693 }
4694
4695 return context;
4696 }
4697
4698 /* Return the innermost context enclosing DECL that is
4699 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4700 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4701
4702 tree
4703 decl_type_context (decl)
4704 tree decl;
4705 {
4706 tree context = DECL_CONTEXT (decl);
4707
4708 while (context)
4709 {
4710 if (TREE_CODE (context) == RECORD_TYPE
4711 || TREE_CODE (context) == UNION_TYPE
4712 || TREE_CODE (context) == QUAL_UNION_TYPE)
4713 return context;
4714 if (TREE_CODE (context) == TYPE_DECL
4715 || TREE_CODE (context) == FUNCTION_DECL)
4716 context = DECL_CONTEXT (context);
4717 else if (TREE_CODE (context) == BLOCK)
4718 context = BLOCK_SUPERCONTEXT (context);
4719 else
4720 /* Unhandled CONTEXT!? */
4721 abort ();
4722 }
4723 return NULL_TREE;
4724 }
4725
4726 /* Print debugging information about the size of the
4727 toplev_inline_obstacks. */
4728
4729 void
4730 print_inline_obstack_statistics ()
4731 {
4732 struct simple_obstack_stack *current = toplev_inline_obstacks;
4733 int n_obstacks = 0;
4734 int n_alloc = 0;
4735 int n_chunks = 0;
4736
4737 for (; current; current = current->next, ++n_obstacks)
4738 {
4739 struct obstack *o = current->obstack;
4740 struct _obstack_chunk *chunk = o->chunk;
4741
4742 n_alloc += o->next_free - chunk->contents;
4743 chunk = chunk->prev;
4744 ++n_chunks;
4745 for (; chunk; chunk = chunk->prev, ++n_chunks)
4746 n_alloc += chunk->limit - &chunk->contents[0];
4747 }
4748 fprintf (stderr, "inline obstacks: %d obstacks, %d bytes, %d chunks\n",
4749 n_obstacks, n_alloc, n_chunks);
4750 }
4751
4752 /* Print debugging information about the obstack O, named STR. */
4753
4754 void
4755 print_obstack_statistics (str, o)
4756 const char *str;
4757 struct obstack *o;
4758 {
4759 struct _obstack_chunk *chunk = o->chunk;
4760 int n_chunks = 1;
4761 int n_alloc = 0;
4762
4763 n_alloc += o->next_free - chunk->contents;
4764 chunk = chunk->prev;
4765 while (chunk)
4766 {
4767 n_chunks += 1;
4768 n_alloc += chunk->limit - &chunk->contents[0];
4769 chunk = chunk->prev;
4770 }
4771 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4772 str, n_alloc, n_chunks);
4773 }
4774
4775 /* Print debugging information about tree nodes generated during the compile,
4776 and any language-specific information. */
4777
4778 void
4779 dump_tree_statistics ()
4780 {
4781 #ifdef GATHER_STATISTICS
4782 int i;
4783 int total_nodes, total_bytes;
4784 #endif
4785
4786 fprintf (stderr, "\n??? tree nodes created\n\n");
4787 #ifdef GATHER_STATISTICS
4788 fprintf (stderr, "Kind Nodes Bytes\n");
4789 fprintf (stderr, "-------------------------------------\n");
4790 total_nodes = total_bytes = 0;
4791 for (i = 0; i < (int) all_kinds; i++)
4792 {
4793 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4794 tree_node_counts[i], tree_node_sizes[i]);
4795 total_nodes += tree_node_counts[i];
4796 total_bytes += tree_node_sizes[i];
4797 }
4798 fprintf (stderr, "%-20s %9d\n", "identifier names", id_string_size);
4799 fprintf (stderr, "-------------------------------------\n");
4800 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4801 fprintf (stderr, "-------------------------------------\n");
4802 #else
4803 fprintf (stderr, "(No per-node statistics)\n");
4804 #endif
4805 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
4806 print_obstack_statistics ("maybepermanent_obstack", &maybepermanent_obstack);
4807 print_obstack_statistics ("temporary_obstack", &temporary_obstack);
4808 print_obstack_statistics ("momentary_obstack", &momentary_obstack);
4809 print_obstack_statistics ("temp_decl_obstack", &temp_decl_obstack);
4810 print_inline_obstack_statistics ();
4811 print_lang_statistics ();
4812 }
4813 \f
4814 #define FILE_FUNCTION_PREFIX_LEN 9
4815
4816 #ifndef NO_DOLLAR_IN_LABEL
4817 #define FILE_FUNCTION_FORMAT "_GLOBAL_$%s$%s"
4818 #else /* NO_DOLLAR_IN_LABEL */
4819 #ifndef NO_DOT_IN_LABEL
4820 #define FILE_FUNCTION_FORMAT "_GLOBAL_.%s.%s"
4821 #else /* NO_DOT_IN_LABEL */
4822 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4823 #endif /* NO_DOT_IN_LABEL */
4824 #endif /* NO_DOLLAR_IN_LABEL */
4825
4826 extern char * first_global_object_name;
4827 extern char * weak_global_object_name;
4828
4829 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4830 clashes in cases where we can't reliably choose a unique name.
4831
4832 Derived from mkstemp.c in libiberty. */
4833
4834 static void
4835 append_random_chars (template)
4836 char *template;
4837 {
4838 static const char letters[]
4839 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4840 static unsigned HOST_WIDE_INT value;
4841 unsigned HOST_WIDE_INT v;
4842
4843 #ifdef HAVE_GETTIMEOFDAY
4844 struct timeval tv;
4845 #endif
4846
4847 template += strlen (template);
4848
4849 #ifdef HAVE_GETTIMEOFDAY
4850 /* Get some more or less random data. */
4851 gettimeofday (&tv, NULL);
4852 value += ((unsigned HOST_WIDE_INT) tv.tv_usec << 16) ^ tv.tv_sec ^ getpid ();
4853 #else
4854 value += getpid ();
4855 #endif
4856
4857 v = value;
4858
4859 /* Fill in the random bits. */
4860 template[0] = letters[v % 62];
4861 v /= 62;
4862 template[1] = letters[v % 62];
4863 v /= 62;
4864 template[2] = letters[v % 62];
4865 v /= 62;
4866 template[3] = letters[v % 62];
4867 v /= 62;
4868 template[4] = letters[v % 62];
4869 v /= 62;
4870 template[5] = letters[v % 62];
4871
4872 template[6] = '\0';
4873 }
4874
4875 /* Generate a name for a function unique to this translation unit.
4876 TYPE is some string to identify the purpose of this function to the
4877 linker or collect2. */
4878
4879 tree
4880 get_file_function_name_long (type)
4881 const char *type;
4882 {
4883 char *buf;
4884 register char *p;
4885
4886 if (first_global_object_name)
4887 p = first_global_object_name;
4888 else
4889 {
4890 /* We don't have anything that we know to be unique to this translation
4891 unit, so use what we do have and throw in some randomness. */
4892
4893 const char *name = weak_global_object_name;
4894 const char *file = main_input_filename;
4895
4896 if (! name)
4897 name = "";
4898 if (! file)
4899 file = input_filename;
4900
4901 p = (char *) alloca (7 + strlen (name) + strlen (file));
4902
4903 sprintf (p, "%s%s", name, file);
4904 append_random_chars (p);
4905 }
4906
4907 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4908 + strlen (type));
4909
4910 /* Set up the name of the file-level functions we may need. */
4911 /* Use a global object (which is already required to be unique over
4912 the program) rather than the file name (which imposes extra
4913 constraints). -- Raeburn@MIT.EDU, 10 Jan 1990. */
4914 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4915
4916 /* Don't need to pull weird characters out of global names. */
4917 if (p != first_global_object_name)
4918 {
4919 for (p = buf+11; *p; p++)
4920 if (! ((*p >= '0' && *p <= '9')
4921 #if 0 /* we always want labels, which are valid C++ identifiers (+ `$') */
4922 #ifndef ASM_IDENTIFY_GCC /* this is required if `.' is invalid -- k. raeburn */
4923 || *p == '.'
4924 #endif
4925 #endif
4926 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4927 || *p == '$'
4928 #endif
4929 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4930 || *p == '.'
4931 #endif
4932 || (*p >= 'A' && *p <= 'Z')
4933 || (*p >= 'a' && *p <= 'z')))
4934 *p = '_';
4935 }
4936
4937 return get_identifier (buf);
4938 }
4939
4940 /* If KIND=='I', return a suitable global initializer (constructor) name.
4941 If KIND=='D', return a suitable global clean-up (destructor) name. */
4942
4943 tree
4944 get_file_function_name (kind)
4945 int kind;
4946 {
4947 char p[2];
4948 p[0] = kind;
4949 p[1] = 0;
4950
4951 return get_file_function_name_long (p);
4952 }
4953
4954 \f
4955 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4956 The result is placed in BUFFER (which has length BIT_SIZE),
4957 with one bit in each char ('\000' or '\001').
4958
4959 If the constructor is constant, NULL_TREE is returned.
4960 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4961
4962 tree
4963 get_set_constructor_bits (init, buffer, bit_size)
4964 tree init;
4965 char *buffer;
4966 int bit_size;
4967 {
4968 int i;
4969 tree vals;
4970 HOST_WIDE_INT domain_min
4971 = TREE_INT_CST_LOW (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))));
4972 tree non_const_bits = NULL_TREE;
4973 for (i = 0; i < bit_size; i++)
4974 buffer[i] = 0;
4975
4976 for (vals = TREE_OPERAND (init, 1);
4977 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4978 {
4979 if (TREE_CODE (TREE_VALUE (vals)) != INTEGER_CST
4980 || (TREE_PURPOSE (vals) != NULL_TREE
4981 && TREE_CODE (TREE_PURPOSE (vals)) != INTEGER_CST))
4982 non_const_bits
4983 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4984 else if (TREE_PURPOSE (vals) != NULL_TREE)
4985 {
4986 /* Set a range of bits to ones. */
4987 HOST_WIDE_INT lo_index
4988 = TREE_INT_CST_LOW (TREE_PURPOSE (vals)) - domain_min;
4989 HOST_WIDE_INT hi_index
4990 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
4991 if (lo_index < 0 || lo_index >= bit_size
4992 || hi_index < 0 || hi_index >= bit_size)
4993 abort ();
4994 for ( ; lo_index <= hi_index; lo_index++)
4995 buffer[lo_index] = 1;
4996 }
4997 else
4998 {
4999 /* Set a single bit to one. */
5000 HOST_WIDE_INT index
5001 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
5002 if (index < 0 || index >= bit_size)
5003 {
5004 error ("invalid initializer for bit string");
5005 return NULL_TREE;
5006 }
5007 buffer[index] = 1;
5008 }
5009 }
5010 return non_const_bits;
5011 }
5012
5013 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5014 The result is placed in BUFFER (which is an array of bytes).
5015 If the constructor is constant, NULL_TREE is returned.
5016 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5017
5018 tree
5019 get_set_constructor_bytes (init, buffer, wd_size)
5020 tree init;
5021 unsigned char *buffer;
5022 int wd_size;
5023 {
5024 int i;
5025 int set_word_size = BITS_PER_UNIT;
5026 int bit_size = wd_size * set_word_size;
5027 int bit_pos = 0;
5028 unsigned char *bytep = buffer;
5029 char *bit_buffer = (char *) alloca(bit_size);
5030 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
5031
5032 for (i = 0; i < wd_size; i++)
5033 buffer[i] = 0;
5034
5035 for (i = 0; i < bit_size; i++)
5036 {
5037 if (bit_buffer[i])
5038 {
5039 if (BYTES_BIG_ENDIAN)
5040 *bytep |= (1 << (set_word_size - 1 - bit_pos));
5041 else
5042 *bytep |= 1 << bit_pos;
5043 }
5044 bit_pos++;
5045 if (bit_pos >= set_word_size)
5046 bit_pos = 0, bytep++;
5047 }
5048 return non_const_bits;
5049 }
5050 \f
5051 #ifdef ENABLE_CHECKING
5052
5053 /* Complain if the tree code does not match the expected one.
5054 NODE is the tree node in question, CODE is the expected tree code,
5055 and FILE and LINE are the filename and line number, respectively,
5056 of the line on which the check was done. If NONFATAL is nonzero,
5057 don't abort if the reference is invalid; instead, return 0.
5058 If the reference is valid, return NODE. */
5059
5060 tree
5061 tree_check (node, code, file, line, nofatal)
5062 tree node;
5063 enum tree_code code;
5064 const char *file;
5065 int line;
5066 int nofatal;
5067 {
5068 if (TREE_CODE (node) == code)
5069 return node;
5070 else if (nofatal)
5071 return 0;
5072 else
5073 fatal ("%s:%d: Expect %s, have %s\n", file, line,
5074 tree_code_name[code], tree_code_name[TREE_CODE (node)]);
5075 }
5076
5077 /* Similar to above, except that we check for a class of tree
5078 code, given in CL. */
5079
5080 tree
5081 tree_class_check (node, cl, file, line, nofatal)
5082 tree node;
5083 char cl;
5084 const char *file;
5085 int line;
5086 int nofatal;
5087 {
5088 if (TREE_CODE_CLASS (TREE_CODE (node)) == cl)
5089 return node;
5090 else if (nofatal)
5091 return 0;
5092 else
5093 fatal ("%s:%d: Expect '%c', have '%s'\n", file, line,
5094 cl, tree_code_name[TREE_CODE (node)]);
5095 }
5096
5097 /* Likewise, but complain if the tree node is not an expression. */
5098
5099 tree
5100 expr_check (node, ignored, file, line, nofatal)
5101 tree node;
5102 int ignored;
5103 const char *file;
5104 int line;
5105 int nofatal;
5106 {
5107 switch (TREE_CODE_CLASS (TREE_CODE (node)))
5108 {
5109 case 'r':
5110 case 's':
5111 case 'e':
5112 case '<':
5113 case '1':
5114 case '2':
5115 break;
5116
5117 default:
5118 if (nofatal)
5119 return 0;
5120 else
5121 fatal ("%s:%d: Expect expression, have '%s'\n", file, line,
5122 tree_code_name[TREE_CODE (node)]);
5123 }
5124
5125 return node;
5126 }
5127 #endif
5128
5129 /* Return the alias set for T, which may be either a type or an
5130 expression. */
5131
5132 int
5133 get_alias_set (t)
5134 tree t;
5135 {
5136 if (!flag_strict_aliasing || !lang_get_alias_set)
5137 /* If we're not doing any lanaguage-specific alias analysis, just
5138 assume everything aliases everything else. */
5139 return 0;
5140 else
5141 return (*lang_get_alias_set) (t);
5142 }
5143
5144 /* Return a brand-new alias set. */
5145
5146 int
5147 new_alias_set ()
5148 {
5149 static int last_alias_set;
5150 if (flag_strict_aliasing)
5151 return ++last_alias_set;
5152 else
5153 return 0;
5154 }
This page took 0.261363 seconds and 6 git commands to generate.