]> gcc.gnu.org Git - gcc.git/blob - gcc/tree.c
[multiple changes]
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 88, 92-98, 1999 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
31
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "flags.h"
39 #include "tree.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h"
44 #include "ggc.h"
45
46 #define obstack_chunk_alloc xmalloc
47 #define obstack_chunk_free free
48 /* obstack.[ch] explicitly declined to prototype this. */
49 extern int _obstack_allocated_p PROTO ((struct obstack *h, PTR obj));
50
51 /* Tree nodes of permanent duration are allocated in this obstack.
52 They are the identifier nodes, and everything outside of
53 the bodies and parameters of function definitions. */
54
55 struct obstack permanent_obstack;
56
57 /* The initial RTL, and all ..._TYPE nodes, in a function
58 are allocated in this obstack. Usually they are freed at the
59 end of the function, but if the function is inline they are saved.
60 For top-level functions, this is maybepermanent_obstack.
61 Separate obstacks are made for nested functions. */
62
63 struct obstack *function_maybepermanent_obstack;
64
65 /* This is the function_maybepermanent_obstack for top-level functions. */
66
67 struct obstack maybepermanent_obstack;
68
69 /* The contents of the current function definition are allocated
70 in this obstack, and all are freed at the end of the function.
71 For top-level functions, this is temporary_obstack.
72 Separate obstacks are made for nested functions. */
73
74 struct obstack *function_obstack;
75
76 /* This is used for reading initializers of global variables. */
77
78 struct obstack temporary_obstack;
79
80 /* The tree nodes of an expression are allocated
81 in this obstack, and all are freed at the end of the expression. */
82
83 struct obstack momentary_obstack;
84
85 /* The tree nodes of a declarator are allocated
86 in this obstack, and all are freed when the declarator
87 has been parsed. */
88
89 static struct obstack temp_decl_obstack;
90
91 /* This points at either permanent_obstack
92 or the current function_maybepermanent_obstack. */
93
94 struct obstack *saveable_obstack;
95
96 /* This is same as saveable_obstack during parse and expansion phase;
97 it points to the current function's obstack during optimization.
98 This is the obstack to be used for creating rtl objects. */
99
100 struct obstack *rtl_obstack;
101
102 /* This points at either permanent_obstack or the current function_obstack. */
103
104 struct obstack *current_obstack;
105
106 /* This points at either permanent_obstack or the current function_obstack
107 or momentary_obstack. */
108
109 struct obstack *expression_obstack;
110
111 /* Stack of obstack selections for push_obstacks and pop_obstacks. */
112
113 struct obstack_stack
114 {
115 struct obstack_stack *next;
116 struct obstack *current;
117 struct obstack *saveable;
118 struct obstack *expression;
119 struct obstack *rtl;
120 };
121
122 struct obstack_stack *obstack_stack;
123
124 /* Obstack for allocating struct obstack_stack entries. */
125
126 static struct obstack obstack_stack_obstack;
127
128 /* Addresses of first objects in some obstacks.
129 This is for freeing their entire contents. */
130 char *maybepermanent_firstobj;
131 char *temporary_firstobj;
132 char *momentary_firstobj;
133 char *temp_decl_firstobj;
134
135 /* This is used to preserve objects (mainly array initializers) that need to
136 live until the end of the current function, but no further. */
137 char *momentary_function_firstobj;
138
139 /* Nonzero means all ..._TYPE nodes should be allocated permanently. */
140
141 int all_types_permanent;
142
143 /* Stack of places to restore the momentary obstack back to. */
144
145 struct momentary_level
146 {
147 /* Pointer back to previous such level. */
148 struct momentary_level *prev;
149 /* First object allocated within this level. */
150 char *base;
151 /* Value of expression_obstack saved at entry to this level. */
152 struct obstack *obstack;
153 };
154
155 struct momentary_level *momentary_stack;
156
157 /* Table indexed by tree code giving a string containing a character
158 classifying the tree code. Possibilities are
159 t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
160
161 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
162
163 char tree_code_type[MAX_TREE_CODES] = {
164 #include "tree.def"
165 };
166 #undef DEFTREECODE
167
168 /* Table indexed by tree code giving number of expression
169 operands beyond the fixed part of the node structure.
170 Not used for types or decls. */
171
172 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
173
174 int tree_code_length[MAX_TREE_CODES] = {
175 #include "tree.def"
176 };
177 #undef DEFTREECODE
178
179 /* Names of tree components.
180 Used for printing out the tree and error messages. */
181 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
182
183 const char *tree_code_name[MAX_TREE_CODES] = {
184 #include "tree.def"
185 };
186 #undef DEFTREECODE
187
188 /* Statistics-gathering stuff. */
189 typedef enum
190 {
191 d_kind,
192 t_kind,
193 b_kind,
194 s_kind,
195 r_kind,
196 e_kind,
197 c_kind,
198 id_kind,
199 op_id_kind,
200 perm_list_kind,
201 temp_list_kind,
202 vec_kind,
203 x_kind,
204 lang_decl,
205 lang_type,
206 all_kinds
207 } tree_node_kind;
208
209 int tree_node_counts[(int)all_kinds];
210 int tree_node_sizes[(int)all_kinds];
211 int id_string_size = 0;
212
213 static const char * const tree_node_kind_names[] = {
214 "decls",
215 "types",
216 "blocks",
217 "stmts",
218 "refs",
219 "exprs",
220 "constants",
221 "identifiers",
222 "op_identifiers",
223 "perm_tree_lists",
224 "temp_tree_lists",
225 "vecs",
226 "random kinds",
227 "lang_decl kinds",
228 "lang_type kinds"
229 };
230
231 /* Hash table for uniquizing IDENTIFIER_NODEs by name. */
232
233 #define MAX_HASH_TABLE 1009
234 static tree hash_table[MAX_HASH_TABLE]; /* id hash buckets */
235
236 /* 0 while creating built-in identifiers. */
237 static int do_identifier_warnings;
238
239 /* Unique id for next decl created. */
240 static int next_decl_uid;
241 /* Unique id for next type created. */
242 static int next_type_uid = 1;
243
244 /* The language-specific function for alias analysis. If NULL, the
245 language does not do any special alias analysis. */
246 int (*lang_get_alias_set) PROTO((tree));
247
248 /* Here is how primitive or already-canonicalized types' hash
249 codes are made. */
250 #define TYPE_HASH(TYPE) ((unsigned long) (TYPE) & 0777777)
251
252 /* Each hash table slot is a bucket containing a chain
253 of these structures. */
254
255 struct type_hash
256 {
257 struct type_hash *next; /* Next structure in the bucket. */
258 int hashcode; /* Hash code of this type. */
259 tree type; /* The type recorded here. */
260 };
261
262 /* Now here is the hash table. When recording a type, it is added
263 to the slot whose index is the hash code mod the table size.
264 Note that the hash table is used for several kinds of types
265 (function types, array types and array index range types, for now).
266 While all these live in the same table, they are completely independent,
267 and the hash code is computed differently for each of these. */
268
269 #define TYPE_HASH_SIZE 59
270 struct type_hash *type_hash_table[TYPE_HASH_SIZE];
271
272 static void set_type_quals PROTO((tree, int));
273 static void append_random_chars PROTO((char *));
274 static void build_real_from_int_cst_1 PROTO((PTR));
275 static void mark_type_hash PROTO ((void *));
276 static void fix_sizetype PROTO ((tree));
277
278 /* If non-null, a language specific helper for unsave_expr_now. */
279
280 void (*lang_unsave_expr_now) PROTO((tree));
281
282 /* The string used as a placeholder instead of a source file name for
283 built-in tree nodes. The variable, which is dynamically allocated,
284 should be used; the macro is only used to initialize it. */
285
286 static char *built_in_filename;
287 #define BUILT_IN_FILENAME ("<built-in>")
288 \f
289 tree global_trees[TI_MAX];
290 \f
291 /* Init the principal obstacks. */
292
293 void
294 init_obstacks ()
295 {
296 gcc_obstack_init (&obstack_stack_obstack);
297 gcc_obstack_init (&permanent_obstack);
298
299 gcc_obstack_init (&temporary_obstack);
300 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
301 gcc_obstack_init (&momentary_obstack);
302 momentary_firstobj = (char *) obstack_alloc (&momentary_obstack, 0);
303 momentary_function_firstobj = momentary_firstobj;
304 gcc_obstack_init (&maybepermanent_obstack);
305 maybepermanent_firstobj
306 = (char *) obstack_alloc (&maybepermanent_obstack, 0);
307 gcc_obstack_init (&temp_decl_obstack);
308 temp_decl_firstobj = (char *) obstack_alloc (&temp_decl_obstack, 0);
309
310 function_obstack = &temporary_obstack;
311 function_maybepermanent_obstack = &maybepermanent_obstack;
312 current_obstack = &permanent_obstack;
313 expression_obstack = &permanent_obstack;
314 rtl_obstack = saveable_obstack = &permanent_obstack;
315
316 /* Init the hash table of identifiers. */
317 bzero ((char *) hash_table, sizeof hash_table);
318
319 ggc_add_tree_root (hash_table, MAX_HASH_TABLE);
320 ggc_add_root (type_hash_table, TYPE_HASH_SIZE,
321 sizeof(struct type_hash *),
322 mark_type_hash);
323 ggc_add_tree_root (global_trees, TI_MAX);
324 }
325
326 void
327 gcc_obstack_init (obstack)
328 struct obstack *obstack;
329 {
330 /* Let particular systems override the size of a chunk. */
331 #ifndef OBSTACK_CHUNK_SIZE
332 #define OBSTACK_CHUNK_SIZE 0
333 #endif
334 /* Let them override the alloc and free routines too. */
335 #ifndef OBSTACK_CHUNK_ALLOC
336 #define OBSTACK_CHUNK_ALLOC xmalloc
337 #endif
338 #ifndef OBSTACK_CHUNK_FREE
339 #define OBSTACK_CHUNK_FREE free
340 #endif
341 _obstack_begin (obstack, OBSTACK_CHUNK_SIZE, 0,
342 (void *(*) PROTO ((long))) OBSTACK_CHUNK_ALLOC,
343 (void (*) PROTO ((void *))) OBSTACK_CHUNK_FREE);
344 }
345
346 /* Save all variables describing the current status into the structure
347 *P. This function is called whenever we start compiling one
348 function in the midst of compiling another. For example, when
349 compiling a nested function, or, in C++, a template instantiation
350 that is required by the function we are currently compiling.
351
352 CONTEXT is the decl_function_context for the function we're about to
353 compile; if it isn't current_function_decl, we have to play some games. */
354
355 void
356 save_tree_status (p)
357 struct function *p;
358 {
359 p->all_types_permanent = all_types_permanent;
360 p->momentary_stack = momentary_stack;
361 p->maybepermanent_firstobj = maybepermanent_firstobj;
362 p->temporary_firstobj = temporary_firstobj;
363 p->momentary_firstobj = momentary_firstobj;
364 p->momentary_function_firstobj = momentary_function_firstobj;
365 p->function_obstack = function_obstack;
366 p->function_maybepermanent_obstack = function_maybepermanent_obstack;
367 p->current_obstack = current_obstack;
368 p->expression_obstack = expression_obstack;
369 p->saveable_obstack = saveable_obstack;
370 p->rtl_obstack = rtl_obstack;
371
372 function_maybepermanent_obstack
373 = (struct obstack *) xmalloc (sizeof (struct obstack));
374 gcc_obstack_init (function_maybepermanent_obstack);
375 maybepermanent_firstobj
376 = (char *) obstack_finish (function_maybepermanent_obstack);
377
378 function_obstack = (struct obstack *) xmalloc (sizeof (struct obstack));
379 gcc_obstack_init (function_obstack);
380
381 current_obstack = &permanent_obstack;
382 expression_obstack = &permanent_obstack;
383 rtl_obstack = saveable_obstack = &permanent_obstack;
384
385 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
386 momentary_firstobj = (char *) obstack_finish (&momentary_obstack);
387 momentary_function_firstobj = momentary_firstobj;
388 }
389
390 /* Restore all variables describing the current status from the structure *P.
391 This is used after a nested function. */
392
393 void
394 restore_tree_status (p)
395 struct function *p;
396 {
397 all_types_permanent = p->all_types_permanent;
398 momentary_stack = p->momentary_stack;
399
400 obstack_free (&momentary_obstack, momentary_function_firstobj);
401
402 /* Free saveable storage used by the function just compiled and not
403 saved. */
404 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
405 if (obstack_empty_p (function_maybepermanent_obstack))
406 {
407 obstack_free (function_maybepermanent_obstack, NULL);
408 free (function_maybepermanent_obstack);
409 }
410
411 obstack_free (&temporary_obstack, temporary_firstobj);
412 obstack_free (&momentary_obstack, momentary_function_firstobj);
413
414 obstack_free (function_obstack, NULL);
415 free (function_obstack);
416
417 temporary_firstobj = p->temporary_firstobj;
418 momentary_firstobj = p->momentary_firstobj;
419 momentary_function_firstobj = p->momentary_function_firstobj;
420 maybepermanent_firstobj = p->maybepermanent_firstobj;
421 function_obstack = p->function_obstack;
422 function_maybepermanent_obstack = p->function_maybepermanent_obstack;
423 current_obstack = p->current_obstack;
424 expression_obstack = p->expression_obstack;
425 saveable_obstack = p->saveable_obstack;
426 rtl_obstack = p->rtl_obstack;
427 }
428 \f
429 /* Start allocating on the temporary (per function) obstack.
430 This is done in start_function before parsing the function body,
431 and before each initialization at top level, and to go back
432 to temporary allocation after doing permanent_allocation. */
433
434 void
435 temporary_allocation ()
436 {
437 /* Note that function_obstack at top level points to temporary_obstack.
438 But within a nested function context, it is a separate obstack. */
439 current_obstack = function_obstack;
440 expression_obstack = function_obstack;
441 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
442 momentary_stack = 0;
443 }
444
445 /* Start allocating on the permanent obstack but don't
446 free the temporary data. After calling this, call
447 `permanent_allocation' to fully resume permanent allocation status. */
448
449 void
450 end_temporary_allocation ()
451 {
452 current_obstack = &permanent_obstack;
453 expression_obstack = &permanent_obstack;
454 rtl_obstack = saveable_obstack = &permanent_obstack;
455 }
456
457 /* Resume allocating on the temporary obstack, undoing
458 effects of `end_temporary_allocation'. */
459
460 void
461 resume_temporary_allocation ()
462 {
463 current_obstack = function_obstack;
464 expression_obstack = function_obstack;
465 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
466 }
467
468 /* While doing temporary allocation, switch to allocating in such a
469 way as to save all nodes if the function is inlined. Call
470 resume_temporary_allocation to go back to ordinary temporary
471 allocation. */
472
473 void
474 saveable_allocation ()
475 {
476 /* Note that function_obstack at top level points to temporary_obstack.
477 But within a nested function context, it is a separate obstack. */
478 expression_obstack = current_obstack = saveable_obstack;
479 }
480
481 /* Switch to current obstack CURRENT and maybepermanent obstack SAVEABLE,
482 recording the previously current obstacks on a stack.
483 This does not free any storage in any obstack. */
484
485 void
486 push_obstacks (current, saveable)
487 struct obstack *current, *saveable;
488 {
489 struct obstack_stack *p;
490
491 p = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
492 (sizeof (struct obstack_stack)));
493
494 p->current = current_obstack;
495 p->saveable = saveable_obstack;
496 p->expression = expression_obstack;
497 p->rtl = rtl_obstack;
498 p->next = obstack_stack;
499 obstack_stack = p;
500
501 current_obstack = current;
502 expression_obstack = current;
503 rtl_obstack = saveable_obstack = saveable;
504 }
505
506 /* Save the current set of obstacks, but don't change them. */
507
508 void
509 push_obstacks_nochange ()
510 {
511 struct obstack_stack *p;
512
513 p = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
514 (sizeof (struct obstack_stack)));
515
516 p->current = current_obstack;
517 p->saveable = saveable_obstack;
518 p->expression = expression_obstack;
519 p->rtl = rtl_obstack;
520 p->next = obstack_stack;
521 obstack_stack = p;
522 }
523
524 /* Pop the obstack selection stack. */
525
526 void
527 pop_obstacks ()
528 {
529 struct obstack_stack *p;
530
531 p = obstack_stack;
532 obstack_stack = p->next;
533
534 current_obstack = p->current;
535 saveable_obstack = p->saveable;
536 expression_obstack = p->expression;
537 rtl_obstack = p->rtl;
538
539 obstack_free (&obstack_stack_obstack, p);
540 }
541
542 /* Nonzero if temporary allocation is currently in effect.
543 Zero if currently doing permanent allocation. */
544
545 int
546 allocation_temporary_p ()
547 {
548 return current_obstack != &permanent_obstack;
549 }
550
551 /* Go back to allocating on the permanent obstack
552 and free everything in the temporary obstack.
553
554 FUNCTION_END is true only if we have just finished compiling a function.
555 In that case, we also free preserved initial values on the momentary
556 obstack. */
557
558 void
559 permanent_allocation (function_end)
560 int function_end;
561 {
562 /* Free up previous temporary obstack data */
563 obstack_free (&temporary_obstack, temporary_firstobj);
564 if (function_end)
565 {
566 obstack_free (&momentary_obstack, momentary_function_firstobj);
567 momentary_firstobj = momentary_function_firstobj;
568 }
569 else
570 obstack_free (&momentary_obstack, momentary_firstobj);
571 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
572 obstack_free (&temp_decl_obstack, temp_decl_firstobj);
573
574 current_obstack = &permanent_obstack;
575 expression_obstack = &permanent_obstack;
576 rtl_obstack = saveable_obstack = &permanent_obstack;
577 }
578
579 /* Save permanently everything on the maybepermanent_obstack. */
580
581 void
582 preserve_data ()
583 {
584 maybepermanent_firstobj
585 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
586 }
587
588 void
589 preserve_initializer ()
590 {
591 struct momentary_level *tem;
592 char *old_momentary;
593
594 temporary_firstobj
595 = (char *) obstack_alloc (&temporary_obstack, 0);
596 maybepermanent_firstobj
597 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
598
599 old_momentary = momentary_firstobj;
600 momentary_firstobj
601 = (char *) obstack_alloc (&momentary_obstack, 0);
602 if (momentary_firstobj != old_momentary)
603 for (tem = momentary_stack; tem; tem = tem->prev)
604 tem->base = momentary_firstobj;
605 }
606
607 /* Start allocating new rtl in current_obstack.
608 Use resume_temporary_allocation
609 to go back to allocating rtl in saveable_obstack. */
610
611 void
612 rtl_in_current_obstack ()
613 {
614 rtl_obstack = current_obstack;
615 }
616
617 /* Start allocating rtl from saveable_obstack. Intended to be used after
618 a call to push_obstacks_nochange. */
619
620 void
621 rtl_in_saveable_obstack ()
622 {
623 rtl_obstack = saveable_obstack;
624 }
625 \f
626 /* Allocate SIZE bytes in the current obstack
627 and return a pointer to them.
628 In practice the current obstack is always the temporary one. */
629
630 char *
631 oballoc (size)
632 int size;
633 {
634 return (char *) obstack_alloc (current_obstack, size);
635 }
636
637 /* Free the object PTR in the current obstack
638 as well as everything allocated since PTR.
639 In practice the current obstack is always the temporary one. */
640
641 void
642 obfree (ptr)
643 char *ptr;
644 {
645 obstack_free (current_obstack, ptr);
646 }
647
648 /* Allocate SIZE bytes in the permanent obstack
649 and return a pointer to them. */
650
651 char *
652 permalloc (size)
653 int size;
654 {
655 return (char *) obstack_alloc (&permanent_obstack, size);
656 }
657
658 /* Allocate NELEM items of SIZE bytes in the permanent obstack
659 and return a pointer to them. The storage is cleared before
660 returning the value. */
661
662 char *
663 perm_calloc (nelem, size)
664 int nelem;
665 long size;
666 {
667 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
668 bzero (rval, nelem * size);
669 return rval;
670 }
671
672 /* Allocate SIZE bytes in the saveable obstack
673 and return a pointer to them. */
674
675 char *
676 savealloc (size)
677 int size;
678 {
679 return (char *) obstack_alloc (saveable_obstack, size);
680 }
681
682 /* Allocate SIZE bytes in the expression obstack
683 and return a pointer to them. */
684
685 char *
686 expralloc (size)
687 int size;
688 {
689 return (char *) obstack_alloc (expression_obstack, size);
690 }
691 \f
692 /* Print out which obstack an object is in. */
693
694 void
695 print_obstack_name (object, file, prefix)
696 char *object;
697 FILE *file;
698 const char *prefix;
699 {
700 struct obstack *obstack = NULL;
701 const char *obstack_name = NULL;
702 struct function *p;
703
704 for (p = outer_function_chain; p; p = p->next)
705 {
706 if (_obstack_allocated_p (p->function_obstack, object))
707 {
708 obstack = p->function_obstack;
709 obstack_name = "containing function obstack";
710 }
711 if (_obstack_allocated_p (p->function_maybepermanent_obstack, object))
712 {
713 obstack = p->function_maybepermanent_obstack;
714 obstack_name = "containing function maybepermanent obstack";
715 }
716 }
717
718 if (_obstack_allocated_p (&obstack_stack_obstack, object))
719 {
720 obstack = &obstack_stack_obstack;
721 obstack_name = "obstack_stack_obstack";
722 }
723 else if (_obstack_allocated_p (function_obstack, object))
724 {
725 obstack = function_obstack;
726 obstack_name = "function obstack";
727 }
728 else if (_obstack_allocated_p (&permanent_obstack, object))
729 {
730 obstack = &permanent_obstack;
731 obstack_name = "permanent_obstack";
732 }
733 else if (_obstack_allocated_p (&momentary_obstack, object))
734 {
735 obstack = &momentary_obstack;
736 obstack_name = "momentary_obstack";
737 }
738 else if (_obstack_allocated_p (function_maybepermanent_obstack, object))
739 {
740 obstack = function_maybepermanent_obstack;
741 obstack_name = "function maybepermanent obstack";
742 }
743 else if (_obstack_allocated_p (&temp_decl_obstack, object))
744 {
745 obstack = &temp_decl_obstack;
746 obstack_name = "temp_decl_obstack";
747 }
748
749 /* Check to see if the object is in the free area of the obstack. */
750 if (obstack != NULL)
751 {
752 if (object >= obstack->next_free
753 && object < obstack->chunk_limit)
754 fprintf (file, "%s in free portion of obstack %s",
755 prefix, obstack_name);
756 else
757 fprintf (file, "%s allocated from %s", prefix, obstack_name);
758 }
759 else
760 fprintf (file, "%s not allocated from any obstack", prefix);
761 }
762
763 void
764 debug_obstack (object)
765 char *object;
766 {
767 print_obstack_name (object, stderr, "object");
768 fprintf (stderr, ".\n");
769 }
770
771 /* Return 1 if OBJ is in the permanent obstack.
772 This is slow, and should be used only for debugging.
773 Use TREE_PERMANENT for other purposes. */
774
775 int
776 object_permanent_p (obj)
777 tree obj;
778 {
779 return _obstack_allocated_p (&permanent_obstack, obj);
780 }
781 \f
782 /* Start a level of momentary allocation.
783 In C, each compound statement has its own level
784 and that level is freed at the end of each statement.
785 All expression nodes are allocated in the momentary allocation level. */
786
787 void
788 push_momentary ()
789 {
790 struct momentary_level *tem
791 = (struct momentary_level *) obstack_alloc (&momentary_obstack,
792 sizeof (struct momentary_level));
793 tem->prev = momentary_stack;
794 tem->base = (char *) obstack_base (&momentary_obstack);
795 tem->obstack = expression_obstack;
796 momentary_stack = tem;
797 expression_obstack = &momentary_obstack;
798 }
799
800 /* Set things up so the next clear_momentary will only clear memory
801 past our present position in momentary_obstack. */
802
803 void
804 preserve_momentary ()
805 {
806 momentary_stack->base = (char *) obstack_base (&momentary_obstack);
807 }
808
809 /* Free all the storage in the current momentary-allocation level.
810 In C, this happens at the end of each statement. */
811
812 void
813 clear_momentary ()
814 {
815 obstack_free (&momentary_obstack, momentary_stack->base);
816 }
817
818 /* Discard a level of momentary allocation.
819 In C, this happens at the end of each compound statement.
820 Restore the status of expression node allocation
821 that was in effect before this level was created. */
822
823 void
824 pop_momentary ()
825 {
826 struct momentary_level *tem = momentary_stack;
827 momentary_stack = tem->prev;
828 expression_obstack = tem->obstack;
829 /* We can't free TEM from the momentary_obstack, because there might
830 be objects above it which have been saved. We can free back to the
831 stack of the level we are popping off though. */
832 obstack_free (&momentary_obstack, tem->base);
833 }
834
835 /* Pop back to the previous level of momentary allocation,
836 but don't free any momentary data just yet. */
837
838 void
839 pop_momentary_nofree ()
840 {
841 struct momentary_level *tem = momentary_stack;
842 momentary_stack = tem->prev;
843 expression_obstack = tem->obstack;
844 }
845
846 /* Call when starting to parse a declaration:
847 make expressions in the declaration last the length of the function.
848 Returns an argument that should be passed to resume_momentary later. */
849
850 int
851 suspend_momentary ()
852 {
853 register int tem = expression_obstack == &momentary_obstack;
854 expression_obstack = saveable_obstack;
855 return tem;
856 }
857
858 /* Call when finished parsing a declaration:
859 restore the treatment of node-allocation that was
860 in effect before the suspension.
861 YES should be the value previously returned by suspend_momentary. */
862
863 void
864 resume_momentary (yes)
865 int yes;
866 {
867 if (yes)
868 expression_obstack = &momentary_obstack;
869 }
870 \f
871 /* Init the tables indexed by tree code.
872 Note that languages can add to these tables to define their own codes. */
873
874 void
875 init_tree_codes ()
876 {
877 built_in_filename =
878 ggc_alloc_string (BUILT_IN_FILENAME, sizeof (BUILT_IN_FILENAME));
879 ggc_add_string_root (&built_in_filename, 1);
880 }
881
882 /* Return a newly allocated node of code CODE.
883 Initialize the node's unique id and its TREE_PERMANENT flag.
884 For decl and type nodes, some other fields are initialized.
885 The rest of the node is initialized to zero.
886
887 Achoo! I got a code in the node. */
888
889 tree
890 make_node (code)
891 enum tree_code code;
892 {
893 register tree t;
894 register int type = TREE_CODE_CLASS (code);
895 register int length = 0;
896 register struct obstack *obstack = current_obstack;
897 #ifdef GATHER_STATISTICS
898 register tree_node_kind kind;
899 #endif
900
901 switch (type)
902 {
903 case 'd': /* A decl node */
904 #ifdef GATHER_STATISTICS
905 kind = d_kind;
906 #endif
907 length = sizeof (struct tree_decl);
908 /* All decls in an inline function need to be saved. */
909 if (obstack != &permanent_obstack)
910 obstack = saveable_obstack;
911
912 /* PARM_DECLs go on the context of the parent. If this is a nested
913 function, then we must allocate the PARM_DECL on the parent's
914 obstack, so that they will live to the end of the parent's
915 closing brace. This is necessary in case we try to inline the
916 function into its parent.
917
918 PARM_DECLs of top-level functions do not have this problem. However,
919 we allocate them where we put the FUNCTION_DECL for languages such as
920 Ada that need to consult some flags in the PARM_DECLs of the function
921 when calling it.
922
923 See comment in restore_tree_status for why we can't put this
924 in function_obstack. */
925 if (code == PARM_DECL && obstack != &permanent_obstack)
926 {
927 tree context = 0;
928 if (current_function_decl)
929 context = decl_function_context (current_function_decl);
930
931 if (context)
932 obstack
933 = find_function_data (context)->function_maybepermanent_obstack;
934 }
935 break;
936
937 case 't': /* a type node */
938 #ifdef GATHER_STATISTICS
939 kind = t_kind;
940 #endif
941 length = sizeof (struct tree_type);
942 /* All data types are put where we can preserve them if nec. */
943 if (obstack != &permanent_obstack)
944 obstack = all_types_permanent ? &permanent_obstack : saveable_obstack;
945 break;
946
947 case 'b': /* a lexical block */
948 #ifdef GATHER_STATISTICS
949 kind = b_kind;
950 #endif
951 length = sizeof (struct tree_block);
952 /* All BLOCK nodes are put where we can preserve them if nec. */
953 if (obstack != &permanent_obstack)
954 obstack = saveable_obstack;
955 break;
956
957 case 's': /* an expression with side effects */
958 #ifdef GATHER_STATISTICS
959 kind = s_kind;
960 goto usual_kind;
961 #endif
962 case 'r': /* a reference */
963 #ifdef GATHER_STATISTICS
964 kind = r_kind;
965 goto usual_kind;
966 #endif
967 case 'e': /* an expression */
968 case '<': /* a comparison expression */
969 case '1': /* a unary arithmetic expression */
970 case '2': /* a binary arithmetic expression */
971 #ifdef GATHER_STATISTICS
972 kind = e_kind;
973 usual_kind:
974 #endif
975 obstack = expression_obstack;
976 /* All BIND_EXPR nodes are put where we can preserve them if nec. */
977 if (code == BIND_EXPR && obstack != &permanent_obstack)
978 obstack = saveable_obstack;
979 length = sizeof (struct tree_exp)
980 + (tree_code_length[(int) code] - 1) * sizeof (char *);
981 break;
982
983 case 'c': /* a constant */
984 #ifdef GATHER_STATISTICS
985 kind = c_kind;
986 #endif
987 obstack = expression_obstack;
988
989 /* We can't use tree_code_length for INTEGER_CST, since the number of
990 words is machine-dependent due to varying length of HOST_WIDE_INT,
991 which might be wider than a pointer (e.g., long long). Similarly
992 for REAL_CST, since the number of words is machine-dependent due
993 to varying size and alignment of `double'. */
994
995 if (code == INTEGER_CST)
996 length = sizeof (struct tree_int_cst);
997 else if (code == REAL_CST)
998 length = sizeof (struct tree_real_cst);
999 else
1000 length = sizeof (struct tree_common)
1001 + tree_code_length[(int) code] * sizeof (char *);
1002 break;
1003
1004 case 'x': /* something random, like an identifier. */
1005 #ifdef GATHER_STATISTICS
1006 if (code == IDENTIFIER_NODE)
1007 kind = id_kind;
1008 else if (code == OP_IDENTIFIER)
1009 kind = op_id_kind;
1010 else if (code == TREE_VEC)
1011 kind = vec_kind;
1012 else
1013 kind = x_kind;
1014 #endif
1015 length = sizeof (struct tree_common)
1016 + tree_code_length[(int) code] * sizeof (char *);
1017 /* Identifier nodes are always permanent since they are
1018 unique in a compiler run. */
1019 if (code == IDENTIFIER_NODE) obstack = &permanent_obstack;
1020 break;
1021
1022 default:
1023 abort ();
1024 }
1025
1026 if (ggc_p)
1027 t = ggc_alloc_tree (length);
1028 else
1029 {
1030 t = (tree) obstack_alloc (obstack, length);
1031 memset ((PTR) t, 0, length);
1032 }
1033
1034 #ifdef GATHER_STATISTICS
1035 tree_node_counts[(int)kind]++;
1036 tree_node_sizes[(int)kind] += length;
1037 #endif
1038
1039 TREE_SET_CODE (t, code);
1040 if (obstack == &permanent_obstack)
1041 TREE_PERMANENT (t) = 1;
1042
1043 switch (type)
1044 {
1045 case 's':
1046 TREE_SIDE_EFFECTS (t) = 1;
1047 TREE_TYPE (t) = void_type_node;
1048 break;
1049
1050 case 'd':
1051 if (code != FUNCTION_DECL)
1052 DECL_ALIGN (t) = 1;
1053 DECL_IN_SYSTEM_HEADER (t)
1054 = in_system_header && (obstack == &permanent_obstack);
1055 DECL_SOURCE_LINE (t) = lineno;
1056 DECL_SOURCE_FILE (t) =
1057 (input_filename) ? input_filename : built_in_filename;
1058 DECL_UID (t) = next_decl_uid++;
1059 /* Note that we have not yet computed the alias set for this
1060 declaration. */
1061 DECL_POINTER_ALIAS_SET (t) = -1;
1062 break;
1063
1064 case 't':
1065 TYPE_UID (t) = next_type_uid++;
1066 TYPE_ALIGN (t) = 1;
1067 TYPE_MAIN_VARIANT (t) = t;
1068 TYPE_OBSTACK (t) = obstack;
1069 TYPE_ATTRIBUTES (t) = NULL_TREE;
1070 #ifdef SET_DEFAULT_TYPE_ATTRIBUTES
1071 SET_DEFAULT_TYPE_ATTRIBUTES (t);
1072 #endif
1073 /* Note that we have not yet computed the alias set for this
1074 type. */
1075 TYPE_ALIAS_SET (t) = -1;
1076 break;
1077
1078 case 'c':
1079 TREE_CONSTANT (t) = 1;
1080 break;
1081
1082 case 'e':
1083 switch (code)
1084 {
1085 case INIT_EXPR:
1086 case MODIFY_EXPR:
1087 case VA_ARG_EXPR:
1088 case RTL_EXPR:
1089 case PREDECREMENT_EXPR:
1090 case PREINCREMENT_EXPR:
1091 case POSTDECREMENT_EXPR:
1092 case POSTINCREMENT_EXPR:
1093 /* All of these have side-effects, no matter what their
1094 operands are. */
1095 TREE_SIDE_EFFECTS (t) = 1;
1096 break;
1097
1098 default:
1099 break;
1100 }
1101 break;
1102 }
1103
1104 return t;
1105 }
1106
1107 /* A front-end can reset this to an appropriate function if types need
1108 special handling. */
1109
1110 tree (*make_lang_type_fn) PROTO((enum tree_code)) = make_node;
1111
1112 /* Return a new type (with the indicated CODE), doing whatever
1113 language-specific processing is required. */
1114
1115 tree
1116 make_lang_type (code)
1117 enum tree_code code;
1118 {
1119 return (*make_lang_type_fn) (code);
1120 }
1121 \f
1122 /* Return a new node with the same contents as NODE except that its
1123 TREE_CHAIN is zero and it has a fresh uid. Unlike make_node, this
1124 function always performs the allocation on the CURRENT_OBSTACK;
1125 it's up to the caller to pick the right obstack before calling this
1126 function. */
1127
1128 tree
1129 copy_node (node)
1130 tree node;
1131 {
1132 register tree t;
1133 register enum tree_code code = TREE_CODE (node);
1134 register int length = 0;
1135
1136 switch (TREE_CODE_CLASS (code))
1137 {
1138 case 'd': /* A decl node */
1139 length = sizeof (struct tree_decl);
1140 break;
1141
1142 case 't': /* a type node */
1143 length = sizeof (struct tree_type);
1144 break;
1145
1146 case 'b': /* a lexical block node */
1147 length = sizeof (struct tree_block);
1148 break;
1149
1150 case 'r': /* a reference */
1151 case 'e': /* an expression */
1152 case 's': /* an expression with side effects */
1153 case '<': /* a comparison expression */
1154 case '1': /* a unary arithmetic expression */
1155 case '2': /* a binary arithmetic expression */
1156 length = sizeof (struct tree_exp)
1157 + (tree_code_length[(int) code] - 1) * sizeof (char *);
1158 break;
1159
1160 case 'c': /* a constant */
1161 /* We can't use tree_code_length for INTEGER_CST, since the number of
1162 words is machine-dependent due to varying length of HOST_WIDE_INT,
1163 which might be wider than a pointer (e.g., long long). Similarly
1164 for REAL_CST, since the number of words is machine-dependent due
1165 to varying size and alignment of `double'. */
1166 if (code == INTEGER_CST)
1167 length = sizeof (struct tree_int_cst);
1168 else if (code == REAL_CST)
1169 length = sizeof (struct tree_real_cst);
1170 else
1171 length = (sizeof (struct tree_common)
1172 + tree_code_length[(int) code] * sizeof (char *));
1173 break;
1174
1175 case 'x': /* something random, like an identifier. */
1176 length = sizeof (struct tree_common)
1177 + tree_code_length[(int) code] * sizeof (char *);
1178 if (code == TREE_VEC)
1179 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
1180 }
1181
1182 if (ggc_p)
1183 t = ggc_alloc_tree (length);
1184 else
1185 t = (tree) obstack_alloc (current_obstack, length);
1186 memcpy (t, node, length);
1187
1188 /* EXPR_WITH_FILE_LOCATION must keep filename info stored in TREE_CHAIN */
1189 if (TREE_CODE (node) != EXPR_WITH_FILE_LOCATION)
1190 TREE_CHAIN (t) = 0;
1191 TREE_ASM_WRITTEN (t) = 0;
1192
1193 if (TREE_CODE_CLASS (code) == 'd')
1194 DECL_UID (t) = next_decl_uid++;
1195 else if (TREE_CODE_CLASS (code) == 't')
1196 {
1197 TYPE_UID (t) = next_type_uid++;
1198 TYPE_OBSTACK (t) = current_obstack;
1199
1200 /* The following is so that the debug code for
1201 the copy is different from the original type.
1202 The two statements usually duplicate each other
1203 (because they clear fields of the same union),
1204 but the optimizer should catch that. */
1205 TYPE_SYMTAB_POINTER (t) = 0;
1206 TYPE_SYMTAB_ADDRESS (t) = 0;
1207 }
1208
1209 TREE_PERMANENT (t) = (current_obstack == &permanent_obstack);
1210
1211 return t;
1212 }
1213
1214 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1215 For example, this can copy a list made of TREE_LIST nodes. */
1216
1217 tree
1218 copy_list (list)
1219 tree list;
1220 {
1221 tree head;
1222 register tree prev, next;
1223
1224 if (list == 0)
1225 return 0;
1226
1227 head = prev = copy_node (list);
1228 next = TREE_CHAIN (list);
1229 while (next)
1230 {
1231 TREE_CHAIN (prev) = copy_node (next);
1232 prev = TREE_CHAIN (prev);
1233 next = TREE_CHAIN (next);
1234 }
1235 return head;
1236 }
1237 \f
1238 #define HASHBITS 30
1239
1240 /* Return an IDENTIFIER_NODE whose name is TEXT (a null-terminated string).
1241 If an identifier with that name has previously been referred to,
1242 the same node is returned this time. */
1243
1244 tree
1245 get_identifier (text)
1246 register const char *text;
1247 {
1248 register int hi;
1249 register int i;
1250 register tree idp;
1251 register int len, hash_len;
1252
1253 /* Compute length of text in len. */
1254 len = strlen (text);
1255
1256 /* Decide how much of that length to hash on */
1257 hash_len = len;
1258 if (warn_id_clash && (unsigned)len > id_clash_len)
1259 hash_len = id_clash_len;
1260
1261 /* Compute hash code */
1262 hi = hash_len * 613 + (unsigned) text[0];
1263 for (i = 1; i < hash_len; i += 2)
1264 hi = ((hi * 613) + (unsigned) (text[i]));
1265
1266 hi &= (1 << HASHBITS) - 1;
1267 hi %= MAX_HASH_TABLE;
1268
1269 /* Search table for identifier */
1270 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1271 if (IDENTIFIER_LENGTH (idp) == len
1272 && IDENTIFIER_POINTER (idp)[0] == text[0]
1273 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1274 return idp; /* <-- return if found */
1275
1276 /* Not found; optionally warn about a similar identifier */
1277 if (warn_id_clash && do_identifier_warnings && (unsigned)len >= id_clash_len)
1278 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1279 if (!strncmp (IDENTIFIER_POINTER (idp), text, id_clash_len))
1280 {
1281 warning ("`%s' and `%s' identical in first %d characters",
1282 IDENTIFIER_POINTER (idp), text, id_clash_len);
1283 break;
1284 }
1285
1286 if (tree_code_length[(int) IDENTIFIER_NODE] < 0)
1287 abort (); /* set_identifier_size hasn't been called. */
1288
1289 /* Not found, create one, add to chain */
1290 idp = make_node (IDENTIFIER_NODE);
1291 IDENTIFIER_LENGTH (idp) = len;
1292 #ifdef GATHER_STATISTICS
1293 id_string_size += len;
1294 #endif
1295
1296 if (ggc_p)
1297 IDENTIFIER_POINTER (idp) = ggc_alloc_string (text, len);
1298 else
1299 IDENTIFIER_POINTER (idp) = obstack_copy0 (&permanent_obstack, text, len);
1300
1301 TREE_CHAIN (idp) = hash_table[hi];
1302 hash_table[hi] = idp;
1303 return idp; /* <-- return if created */
1304 }
1305
1306 /* If an identifier with the name TEXT (a null-terminated string) has
1307 previously been referred to, return that node; otherwise return
1308 NULL_TREE. */
1309
1310 tree
1311 maybe_get_identifier (text)
1312 register const char *text;
1313 {
1314 register int hi;
1315 register int i;
1316 register tree idp;
1317 register int len, hash_len;
1318
1319 /* Compute length of text in len. */
1320 len = strlen (text);
1321
1322 /* Decide how much of that length to hash on */
1323 hash_len = len;
1324 if (warn_id_clash && (unsigned)len > id_clash_len)
1325 hash_len = id_clash_len;
1326
1327 /* Compute hash code */
1328 hi = hash_len * 613 + (unsigned) text[0];
1329 for (i = 1; i < hash_len; i += 2)
1330 hi = ((hi * 613) + (unsigned) (text[i]));
1331
1332 hi &= (1 << HASHBITS) - 1;
1333 hi %= MAX_HASH_TABLE;
1334
1335 /* Search table for identifier */
1336 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1337 if (IDENTIFIER_LENGTH (idp) == len
1338 && IDENTIFIER_POINTER (idp)[0] == text[0]
1339 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1340 return idp; /* <-- return if found */
1341
1342 return NULL_TREE;
1343 }
1344
1345 /* Enable warnings on similar identifiers (if requested).
1346 Done after the built-in identifiers are created. */
1347
1348 void
1349 start_identifier_warnings ()
1350 {
1351 do_identifier_warnings = 1;
1352 }
1353
1354 /* Record the size of an identifier node for the language in use.
1355 SIZE is the total size in bytes.
1356 This is called by the language-specific files. This must be
1357 called before allocating any identifiers. */
1358
1359 void
1360 set_identifier_size (size)
1361 int size;
1362 {
1363 tree_code_length[(int) IDENTIFIER_NODE]
1364 = (size - sizeof (struct tree_common)) / sizeof (tree);
1365 }
1366 \f
1367 /* Return a newly constructed INTEGER_CST node whose constant value
1368 is specified by the two ints LOW and HI.
1369 The TREE_TYPE is set to `int'.
1370
1371 This function should be used via the `build_int_2' macro. */
1372
1373 tree
1374 build_int_2_wide (low, hi)
1375 HOST_WIDE_INT low, hi;
1376 {
1377 register tree t = make_node (INTEGER_CST);
1378 TREE_INT_CST_LOW (t) = low;
1379 TREE_INT_CST_HIGH (t) = hi;
1380 TREE_TYPE (t) = integer_type_node;
1381 return t;
1382 }
1383
1384 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1385
1386 tree
1387 build_real (type, d)
1388 tree type;
1389 REAL_VALUE_TYPE d;
1390 {
1391 tree v;
1392 int overflow = 0;
1393
1394 /* Check for valid float value for this type on this target machine;
1395 if not, can print error message and store a valid value in D. */
1396 #ifdef CHECK_FLOAT_VALUE
1397 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1398 #endif
1399
1400 v = make_node (REAL_CST);
1401 TREE_TYPE (v) = type;
1402 TREE_REAL_CST (v) = d;
1403 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1404 return v;
1405 }
1406
1407 /* Return a new REAL_CST node whose type is TYPE
1408 and whose value is the integer value of the INTEGER_CST node I. */
1409
1410 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1411
1412 REAL_VALUE_TYPE
1413 real_value_from_int_cst (type, i)
1414 tree type, i;
1415 {
1416 REAL_VALUE_TYPE d;
1417
1418 #ifdef REAL_ARITHMETIC
1419 if (! TREE_UNSIGNED (TREE_TYPE (i)))
1420 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1421 TYPE_MODE (type));
1422 else
1423 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
1424 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
1425 #else /* not REAL_ARITHMETIC */
1426 /* Some 386 compilers mishandle unsigned int to float conversions,
1427 so introduce a temporary variable E to avoid those bugs. */
1428 if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
1429 {
1430 REAL_VALUE_TYPE e;
1431
1432 d = (double) (~ TREE_INT_CST_HIGH (i));
1433 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1434 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1435 d *= e;
1436 e = (double) (unsigned HOST_WIDE_INT) (~ TREE_INT_CST_LOW (i));
1437 d += e;
1438 d = (- d - 1.0);
1439 }
1440 else
1441 {
1442 REAL_VALUE_TYPE e;
1443
1444 d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
1445 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1446 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1447 d *= e;
1448 e = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (i);
1449 d += e;
1450 }
1451 #endif /* not REAL_ARITHMETIC */
1452 return d;
1453 }
1454
1455 struct brfic_args
1456 {
1457 /* Input */
1458 tree type, i;
1459 /* Output */
1460 REAL_VALUE_TYPE d;
1461 };
1462
1463 static void
1464 build_real_from_int_cst_1 (data)
1465 PTR data;
1466 {
1467 struct brfic_args * args = (struct brfic_args *) data;
1468
1469 #ifdef REAL_ARITHMETIC
1470 args->d = real_value_from_int_cst (args->type, args->i);
1471 #else
1472 args->d =
1473 REAL_VALUE_TRUNCATE (TYPE_MODE (args->type),
1474 real_value_from_int_cst (args->type, args->i));
1475 #endif
1476 }
1477
1478 /* This function can't be implemented if we can't do arithmetic
1479 on the float representation. */
1480
1481 tree
1482 build_real_from_int_cst (type, i)
1483 tree type;
1484 tree i;
1485 {
1486 tree v;
1487 int overflow = TREE_OVERFLOW (i);
1488 REAL_VALUE_TYPE d;
1489 struct brfic_args args;
1490
1491 v = make_node (REAL_CST);
1492 TREE_TYPE (v) = type;
1493
1494 /* Setup input for build_real_from_int_cst_1() */
1495 args.type = type;
1496 args.i = i;
1497
1498 if (do_float_handler (build_real_from_int_cst_1, (PTR) &args))
1499 {
1500 /* Receive output from build_real_from_int_cst_1() */
1501 d = args.d;
1502 }
1503 else
1504 {
1505 /* We got an exception from build_real_from_int_cst_1() */
1506 d = dconst0;
1507 overflow = 1;
1508 }
1509
1510 /* Check for valid float value for this type on this target machine. */
1511
1512 #ifdef CHECK_FLOAT_VALUE
1513 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1514 #endif
1515
1516 TREE_REAL_CST (v) = d;
1517 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1518 return v;
1519 }
1520
1521 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1522
1523 /* Return a newly constructed STRING_CST node whose value is
1524 the LEN characters at STR.
1525 The TREE_TYPE is not initialized. */
1526
1527 tree
1528 build_string (len, str)
1529 int len;
1530 const char *str;
1531 {
1532 /* Put the string in saveable_obstack since it will be placed in the RTL
1533 for an "asm" statement and will also be kept around a while if
1534 deferring constant output in varasm.c. */
1535
1536 register tree s = make_node (STRING_CST);
1537 TREE_STRING_LENGTH (s) = len;
1538 if (ggc_p)
1539 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
1540 else
1541 TREE_STRING_POINTER (s) = obstack_copy0 (saveable_obstack, str, len);
1542 return s;
1543 }
1544
1545 /* Return a newly constructed COMPLEX_CST node whose value is
1546 specified by the real and imaginary parts REAL and IMAG.
1547 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1548 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1549
1550 tree
1551 build_complex (type, real, imag)
1552 tree type;
1553 tree real, imag;
1554 {
1555 register tree t = make_node (COMPLEX_CST);
1556
1557 TREE_REALPART (t) = real;
1558 TREE_IMAGPART (t) = imag;
1559 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1560 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1561 TREE_CONSTANT_OVERFLOW (t)
1562 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
1563 return t;
1564 }
1565
1566 /* Build a newly constructed TREE_VEC node of length LEN. */
1567
1568 tree
1569 make_tree_vec (len)
1570 int len;
1571 {
1572 register tree t;
1573 register int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
1574 register struct obstack *obstack = current_obstack;
1575
1576 #ifdef GATHER_STATISTICS
1577 tree_node_counts[(int)vec_kind]++;
1578 tree_node_sizes[(int)vec_kind] += length;
1579 #endif
1580
1581 if (ggc_p)
1582 t = ggc_alloc_tree (length);
1583 else
1584 {
1585 t = (tree) obstack_alloc (obstack, length);
1586 bzero ((PTR) t, length);
1587 }
1588
1589 TREE_SET_CODE (t, TREE_VEC);
1590 TREE_VEC_LENGTH (t) = len;
1591 if (obstack == &permanent_obstack)
1592 TREE_PERMANENT (t) = 1;
1593
1594 return t;
1595 }
1596 \f
1597 /* Return 1 if EXPR is the integer constant zero or a complex constant
1598 of zero. */
1599
1600 int
1601 integer_zerop (expr)
1602 tree expr;
1603 {
1604 STRIP_NOPS (expr);
1605
1606 return ((TREE_CODE (expr) == INTEGER_CST
1607 && ! TREE_CONSTANT_OVERFLOW (expr)
1608 && TREE_INT_CST_LOW (expr) == 0
1609 && TREE_INT_CST_HIGH (expr) == 0)
1610 || (TREE_CODE (expr) == COMPLEX_CST
1611 && integer_zerop (TREE_REALPART (expr))
1612 && integer_zerop (TREE_IMAGPART (expr))));
1613 }
1614
1615 /* Return 1 if EXPR is the integer constant one or the corresponding
1616 complex constant. */
1617
1618 int
1619 integer_onep (expr)
1620 tree expr;
1621 {
1622 STRIP_NOPS (expr);
1623
1624 return ((TREE_CODE (expr) == INTEGER_CST
1625 && ! TREE_CONSTANT_OVERFLOW (expr)
1626 && TREE_INT_CST_LOW (expr) == 1
1627 && TREE_INT_CST_HIGH (expr) == 0)
1628 || (TREE_CODE (expr) == COMPLEX_CST
1629 && integer_onep (TREE_REALPART (expr))
1630 && integer_zerop (TREE_IMAGPART (expr))));
1631 }
1632
1633 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1634 it contains. Likewise for the corresponding complex constant. */
1635
1636 int
1637 integer_all_onesp (expr)
1638 tree expr;
1639 {
1640 register int prec;
1641 register int uns;
1642
1643 STRIP_NOPS (expr);
1644
1645 if (TREE_CODE (expr) == COMPLEX_CST
1646 && integer_all_onesp (TREE_REALPART (expr))
1647 && integer_zerop (TREE_IMAGPART (expr)))
1648 return 1;
1649
1650 else if (TREE_CODE (expr) != INTEGER_CST
1651 || TREE_CONSTANT_OVERFLOW (expr))
1652 return 0;
1653
1654 uns = TREE_UNSIGNED (TREE_TYPE (expr));
1655 if (!uns)
1656 return TREE_INT_CST_LOW (expr) == -1 && TREE_INT_CST_HIGH (expr) == -1;
1657
1658 /* Note that using TYPE_PRECISION here is wrong. We care about the
1659 actual bits, not the (arbitrary) range of the type. */
1660 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1661 if (prec >= HOST_BITS_PER_WIDE_INT)
1662 {
1663 int high_value, shift_amount;
1664
1665 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1666
1667 if (shift_amount > HOST_BITS_PER_WIDE_INT)
1668 /* Can not handle precisions greater than twice the host int size. */
1669 abort ();
1670 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
1671 /* Shifting by the host word size is undefined according to the ANSI
1672 standard, so we must handle this as a special case. */
1673 high_value = -1;
1674 else
1675 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1676
1677 return TREE_INT_CST_LOW (expr) == -1
1678 && TREE_INT_CST_HIGH (expr) == high_value;
1679 }
1680 else
1681 return TREE_INT_CST_LOW (expr) == ((HOST_WIDE_INT) 1 << prec) - 1;
1682 }
1683
1684 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1685 one bit on). */
1686
1687 int
1688 integer_pow2p (expr)
1689 tree expr;
1690 {
1691 int prec;
1692 HOST_WIDE_INT high, low;
1693
1694 STRIP_NOPS (expr);
1695
1696 if (TREE_CODE (expr) == COMPLEX_CST
1697 && integer_pow2p (TREE_REALPART (expr))
1698 && integer_zerop (TREE_IMAGPART (expr)))
1699 return 1;
1700
1701 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
1702 return 0;
1703
1704 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1705 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1706 high = TREE_INT_CST_HIGH (expr);
1707 low = TREE_INT_CST_LOW (expr);
1708
1709 /* First clear all bits that are beyond the type's precision in case
1710 we've been sign extended. */
1711
1712 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1713 ;
1714 else if (prec > HOST_BITS_PER_WIDE_INT)
1715 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1716 else
1717 {
1718 high = 0;
1719 if (prec < HOST_BITS_PER_WIDE_INT)
1720 low &= ~((HOST_WIDE_INT) (-1) << prec);
1721 }
1722
1723 if (high == 0 && low == 0)
1724 return 0;
1725
1726 return ((high == 0 && (low & (low - 1)) == 0)
1727 || (low == 0 && (high & (high - 1)) == 0));
1728 }
1729
1730 /* Return the power of two represented by a tree node known to be a
1731 power of two. */
1732
1733 int
1734 tree_log2 (expr)
1735 tree expr;
1736 {
1737 int prec;
1738 HOST_WIDE_INT high, low;
1739
1740 STRIP_NOPS (expr);
1741
1742 if (TREE_CODE (expr) == COMPLEX_CST)
1743 return tree_log2 (TREE_REALPART (expr));
1744
1745 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1746 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1747
1748 high = TREE_INT_CST_HIGH (expr);
1749 low = TREE_INT_CST_LOW (expr);
1750
1751 /* First clear all bits that are beyond the type's precision in case
1752 we've been sign extended. */
1753
1754 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1755 ;
1756 else if (prec > HOST_BITS_PER_WIDE_INT)
1757 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1758 else
1759 {
1760 high = 0;
1761 if (prec < HOST_BITS_PER_WIDE_INT)
1762 low &= ~((HOST_WIDE_INT) (-1) << prec);
1763 }
1764
1765 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1766 : exact_log2 (low));
1767 }
1768
1769 /* Return 1 if EXPR is the real constant zero. */
1770
1771 int
1772 real_zerop (expr)
1773 tree expr;
1774 {
1775 STRIP_NOPS (expr);
1776
1777 return ((TREE_CODE (expr) == REAL_CST
1778 && ! TREE_CONSTANT_OVERFLOW (expr)
1779 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1780 || (TREE_CODE (expr) == COMPLEX_CST
1781 && real_zerop (TREE_REALPART (expr))
1782 && real_zerop (TREE_IMAGPART (expr))));
1783 }
1784
1785 /* Return 1 if EXPR is the real constant one in real or complex form. */
1786
1787 int
1788 real_onep (expr)
1789 tree expr;
1790 {
1791 STRIP_NOPS (expr);
1792
1793 return ((TREE_CODE (expr) == REAL_CST
1794 && ! TREE_CONSTANT_OVERFLOW (expr)
1795 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1796 || (TREE_CODE (expr) == COMPLEX_CST
1797 && real_onep (TREE_REALPART (expr))
1798 && real_zerop (TREE_IMAGPART (expr))));
1799 }
1800
1801 /* Return 1 if EXPR is the real constant two. */
1802
1803 int
1804 real_twop (expr)
1805 tree expr;
1806 {
1807 STRIP_NOPS (expr);
1808
1809 return ((TREE_CODE (expr) == REAL_CST
1810 && ! TREE_CONSTANT_OVERFLOW (expr)
1811 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1812 || (TREE_CODE (expr) == COMPLEX_CST
1813 && real_twop (TREE_REALPART (expr))
1814 && real_zerop (TREE_IMAGPART (expr))));
1815 }
1816
1817 /* Nonzero if EXP is a constant or a cast of a constant. */
1818
1819 int
1820 really_constant_p (exp)
1821 tree exp;
1822 {
1823 /* This is not quite the same as STRIP_NOPS. It does more. */
1824 while (TREE_CODE (exp) == NOP_EXPR
1825 || TREE_CODE (exp) == CONVERT_EXPR
1826 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1827 exp = TREE_OPERAND (exp, 0);
1828 return TREE_CONSTANT (exp);
1829 }
1830 \f
1831 /* Return first list element whose TREE_VALUE is ELEM.
1832 Return 0 if ELEM is not in LIST. */
1833
1834 tree
1835 value_member (elem, list)
1836 tree elem, list;
1837 {
1838 while (list)
1839 {
1840 if (elem == TREE_VALUE (list))
1841 return list;
1842 list = TREE_CHAIN (list);
1843 }
1844 return NULL_TREE;
1845 }
1846
1847 /* Return first list element whose TREE_PURPOSE is ELEM.
1848 Return 0 if ELEM is not in LIST. */
1849
1850 tree
1851 purpose_member (elem, list)
1852 tree elem, list;
1853 {
1854 while (list)
1855 {
1856 if (elem == TREE_PURPOSE (list))
1857 return list;
1858 list = TREE_CHAIN (list);
1859 }
1860 return NULL_TREE;
1861 }
1862
1863 /* Return first list element whose BINFO_TYPE is ELEM.
1864 Return 0 if ELEM is not in LIST. */
1865
1866 tree
1867 binfo_member (elem, list)
1868 tree elem, list;
1869 {
1870 while (list)
1871 {
1872 if (elem == BINFO_TYPE (list))
1873 return list;
1874 list = TREE_CHAIN (list);
1875 }
1876 return NULL_TREE;
1877 }
1878
1879 /* Return nonzero if ELEM is part of the chain CHAIN. */
1880
1881 int
1882 chain_member (elem, chain)
1883 tree elem, chain;
1884 {
1885 while (chain)
1886 {
1887 if (elem == chain)
1888 return 1;
1889 chain = TREE_CHAIN (chain);
1890 }
1891
1892 return 0;
1893 }
1894
1895 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
1896 chain CHAIN. */
1897 /* ??? This function was added for machine specific attributes but is no
1898 longer used. It could be deleted if we could confirm all front ends
1899 don't use it. */
1900
1901 int
1902 chain_member_value (elem, chain)
1903 tree elem, chain;
1904 {
1905 while (chain)
1906 {
1907 if (elem == TREE_VALUE (chain))
1908 return 1;
1909 chain = TREE_CHAIN (chain);
1910 }
1911
1912 return 0;
1913 }
1914
1915 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1916 for any piece of chain CHAIN. */
1917 /* ??? This function was added for machine specific attributes but is no
1918 longer used. It could be deleted if we could confirm all front ends
1919 don't use it. */
1920
1921 int
1922 chain_member_purpose (elem, chain)
1923 tree elem, chain;
1924 {
1925 while (chain)
1926 {
1927 if (elem == TREE_PURPOSE (chain))
1928 return 1;
1929 chain = TREE_CHAIN (chain);
1930 }
1931
1932 return 0;
1933 }
1934
1935 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1936 We expect a null pointer to mark the end of the chain.
1937 This is the Lisp primitive `length'. */
1938
1939 int
1940 list_length (t)
1941 tree t;
1942 {
1943 register tree tail;
1944 register int len = 0;
1945
1946 for (tail = t; tail; tail = TREE_CHAIN (tail))
1947 len++;
1948
1949 return len;
1950 }
1951
1952 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1953 by modifying the last node in chain 1 to point to chain 2.
1954 This is the Lisp primitive `nconc'. */
1955
1956 tree
1957 chainon (op1, op2)
1958 tree op1, op2;
1959 {
1960
1961 if (op1)
1962 {
1963 register tree t1;
1964 #ifdef ENABLE_CHECKING
1965 register tree t2;
1966 #endif
1967
1968 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1969 ;
1970 TREE_CHAIN (t1) = op2;
1971 #ifdef ENABLE_CHECKING
1972 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1973 if (t2 == t1)
1974 abort (); /* Circularity created. */
1975 #endif
1976 return op1;
1977 }
1978 else return op2;
1979 }
1980
1981 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1982
1983 tree
1984 tree_last (chain)
1985 register tree chain;
1986 {
1987 register tree next;
1988 if (chain)
1989 while ((next = TREE_CHAIN (chain)))
1990 chain = next;
1991 return chain;
1992 }
1993
1994 /* Reverse the order of elements in the chain T,
1995 and return the new head of the chain (old last element). */
1996
1997 tree
1998 nreverse (t)
1999 tree t;
2000 {
2001 register tree prev = 0, decl, next;
2002 for (decl = t; decl; decl = next)
2003 {
2004 next = TREE_CHAIN (decl);
2005 TREE_CHAIN (decl) = prev;
2006 prev = decl;
2007 }
2008 return prev;
2009 }
2010
2011 /* Given a chain CHAIN of tree nodes,
2012 construct and return a list of those nodes. */
2013
2014 tree
2015 listify (chain)
2016 tree chain;
2017 {
2018 tree result = NULL_TREE;
2019 tree in_tail = chain;
2020 tree out_tail = NULL_TREE;
2021
2022 while (in_tail)
2023 {
2024 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
2025 if (out_tail)
2026 TREE_CHAIN (out_tail) = next;
2027 else
2028 result = next;
2029 out_tail = next;
2030 in_tail = TREE_CHAIN (in_tail);
2031 }
2032
2033 return result;
2034 }
2035 \f
2036 /* Return a newly created TREE_LIST node whose
2037 purpose and value fields are PARM and VALUE. */
2038
2039 tree
2040 build_tree_list (parm, value)
2041 tree parm, value;
2042 {
2043 register tree t = make_node (TREE_LIST);
2044 TREE_PURPOSE (t) = parm;
2045 TREE_VALUE (t) = value;
2046 return t;
2047 }
2048
2049 /* Similar, but build on the temp_decl_obstack. */
2050
2051 tree
2052 build_decl_list (parm, value)
2053 tree parm, value;
2054 {
2055 register tree node;
2056 register struct obstack *ambient_obstack = current_obstack;
2057 current_obstack = &temp_decl_obstack;
2058 node = build_tree_list (parm, value);
2059 current_obstack = ambient_obstack;
2060 return node;
2061 }
2062
2063 /* Similar, but build on the expression_obstack. */
2064
2065 tree
2066 build_expr_list (parm, value)
2067 tree parm, value;
2068 {
2069 register tree node;
2070 register struct obstack *ambient_obstack = current_obstack;
2071 current_obstack = expression_obstack;
2072 node = build_tree_list (parm, value);
2073 current_obstack = ambient_obstack;
2074 return node;
2075 }
2076
2077 /* Return a newly created TREE_LIST node whose
2078 purpose and value fields are PARM and VALUE
2079 and whose TREE_CHAIN is CHAIN. */
2080
2081 tree
2082 tree_cons (purpose, value, chain)
2083 tree purpose, value, chain;
2084 {
2085 #if 0
2086 register tree node = make_node (TREE_LIST);
2087 #else
2088 register tree node;
2089
2090 if (ggc_p)
2091 node = ggc_alloc_tree (sizeof (struct tree_list));
2092 else
2093 {
2094 node = (tree) obstack_alloc (current_obstack, sizeof (struct tree_list));
2095 memset (node, 0, sizeof (struct tree_common));
2096 }
2097
2098 #ifdef GATHER_STATISTICS
2099 tree_node_counts[(int)x_kind]++;
2100 tree_node_sizes[(int)x_kind] += sizeof (struct tree_list);
2101 #endif
2102
2103
2104 TREE_SET_CODE (node, TREE_LIST);
2105 if (current_obstack == &permanent_obstack)
2106 TREE_PERMANENT (node) = 1;
2107 #endif
2108
2109 TREE_CHAIN (node) = chain;
2110 TREE_PURPOSE (node) = purpose;
2111 TREE_VALUE (node) = value;
2112 return node;
2113 }
2114
2115 /* Similar, but build on the temp_decl_obstack. */
2116
2117 tree
2118 decl_tree_cons (purpose, value, chain)
2119 tree purpose, value, chain;
2120 {
2121 register tree node;
2122 register struct obstack *ambient_obstack = current_obstack;
2123 current_obstack = &temp_decl_obstack;
2124 node = tree_cons (purpose, value, chain);
2125 current_obstack = ambient_obstack;
2126 return node;
2127 }
2128
2129 /* Similar, but build on the expression_obstack. */
2130
2131 tree
2132 expr_tree_cons (purpose, value, chain)
2133 tree purpose, value, chain;
2134 {
2135 register tree node;
2136 register struct obstack *ambient_obstack = current_obstack;
2137 current_obstack = expression_obstack;
2138 node = tree_cons (purpose, value, chain);
2139 current_obstack = ambient_obstack;
2140 return node;
2141 }
2142
2143 /* Same as `tree_cons' but make a permanent object. */
2144
2145 tree
2146 perm_tree_cons (purpose, value, chain)
2147 tree purpose, value, chain;
2148 {
2149 register tree node;
2150 register struct obstack *ambient_obstack = current_obstack;
2151 current_obstack = &permanent_obstack;
2152
2153 node = tree_cons (purpose, value, chain);
2154 current_obstack = ambient_obstack;
2155 return node;
2156 }
2157
2158 /* Same as `tree_cons', but make this node temporary, regardless. */
2159
2160 tree
2161 temp_tree_cons (purpose, value, chain)
2162 tree purpose, value, chain;
2163 {
2164 register tree node;
2165 register struct obstack *ambient_obstack = current_obstack;
2166 current_obstack = &temporary_obstack;
2167
2168 node = tree_cons (purpose, value, chain);
2169 current_obstack = ambient_obstack;
2170 return node;
2171 }
2172
2173 /* Same as `tree_cons', but save this node if the function's RTL is saved. */
2174
2175 tree
2176 saveable_tree_cons (purpose, value, chain)
2177 tree purpose, value, chain;
2178 {
2179 register tree node;
2180 register struct obstack *ambient_obstack = current_obstack;
2181 current_obstack = saveable_obstack;
2182
2183 node = tree_cons (purpose, value, chain);
2184 current_obstack = ambient_obstack;
2185 return node;
2186 }
2187 \f
2188 /* Return the size nominally occupied by an object of type TYPE
2189 when it resides in memory. The value is measured in units of bytes,
2190 and its data type is that normally used for type sizes
2191 (which is the first type created by make_signed_type or
2192 make_unsigned_type). */
2193
2194 tree
2195 size_in_bytes (type)
2196 tree type;
2197 {
2198 tree t;
2199
2200 if (type == error_mark_node)
2201 return integer_zero_node;
2202
2203 type = TYPE_MAIN_VARIANT (type);
2204 t = TYPE_SIZE_UNIT (type);
2205 if (t == 0)
2206 {
2207 incomplete_type_error (NULL_TREE, type);
2208 return integer_zero_node;
2209 }
2210 if (TREE_CODE (t) == INTEGER_CST)
2211 force_fit_type (t, 0);
2212
2213 return t;
2214 }
2215
2216 /* Return the size of TYPE (in bytes) as a wide integer
2217 or return -1 if the size can vary or is larger than an integer. */
2218
2219 HOST_WIDE_INT
2220 int_size_in_bytes (type)
2221 tree type;
2222 {
2223 tree t;
2224
2225 if (type == error_mark_node)
2226 return 0;
2227
2228 type = TYPE_MAIN_VARIANT (type);
2229 t = TYPE_SIZE_UNIT (type);
2230 if (t == 0
2231 || TREE_CODE (t) != INTEGER_CST
2232 || TREE_INT_CST_HIGH (t) != 0)
2233 return -1;
2234
2235 return TREE_INT_CST_LOW (t);
2236 }
2237 \f
2238 /* Return, as a tree node, the number of elements for TYPE (which is an
2239 ARRAY_TYPE) minus one. This counts only elements of the top array.
2240
2241 Don't let any SAVE_EXPRs escape; if we are called as part of a cleanup
2242 action, they would get unsaved. */
2243
2244 tree
2245 array_type_nelts (type)
2246 tree type;
2247 {
2248 tree index_type, min, max;
2249
2250 /* If they did it with unspecified bounds, then we should have already
2251 given an error about it before we got here. */
2252 if (! TYPE_DOMAIN (type))
2253 return error_mark_node;
2254
2255 index_type = TYPE_DOMAIN (type);
2256 min = TYPE_MIN_VALUE (index_type);
2257 max = TYPE_MAX_VALUE (index_type);
2258
2259 if (! TREE_CONSTANT (min))
2260 {
2261 STRIP_NOPS (min);
2262 if (TREE_CODE (min) == SAVE_EXPR && SAVE_EXPR_RTL (min))
2263 min = build (RTL_EXPR, TREE_TYPE (TYPE_MIN_VALUE (index_type)), 0,
2264 SAVE_EXPR_RTL (min));
2265 else
2266 min = TYPE_MIN_VALUE (index_type);
2267 }
2268
2269 if (! TREE_CONSTANT (max))
2270 {
2271 STRIP_NOPS (max);
2272 if (TREE_CODE (max) == SAVE_EXPR && SAVE_EXPR_RTL (max))
2273 max = build (RTL_EXPR, TREE_TYPE (TYPE_MAX_VALUE (index_type)), 0,
2274 SAVE_EXPR_RTL (max));
2275 else
2276 max = TYPE_MAX_VALUE (index_type);
2277 }
2278
2279 return (integer_zerop (min)
2280 ? max
2281 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
2282 }
2283 \f
2284 /* Return nonzero if arg is static -- a reference to an object in
2285 static storage. This is not the same as the C meaning of `static'. */
2286
2287 int
2288 staticp (arg)
2289 tree arg;
2290 {
2291 switch (TREE_CODE (arg))
2292 {
2293 case FUNCTION_DECL:
2294 /* Nested functions aren't static, since taking their address
2295 involves a trampoline. */
2296 return (decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
2297 && ! DECL_NON_ADDR_CONST_P (arg);
2298
2299 case VAR_DECL:
2300 return (TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2301 && ! DECL_NON_ADDR_CONST_P (arg);
2302
2303 case CONSTRUCTOR:
2304 return TREE_STATIC (arg);
2305
2306 case STRING_CST:
2307 return 1;
2308
2309 /* If we are referencing a bitfield, we can't evaluate an
2310 ADDR_EXPR at compile time and so it isn't a constant. */
2311 case COMPONENT_REF:
2312 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
2313 && staticp (TREE_OPERAND (arg, 0)));
2314
2315 case BIT_FIELD_REF:
2316 return 0;
2317
2318 #if 0
2319 /* This case is technically correct, but results in setting
2320 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
2321 compile time. */
2322 case INDIRECT_REF:
2323 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
2324 #endif
2325
2326 case ARRAY_REF:
2327 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2328 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2329 return staticp (TREE_OPERAND (arg, 0));
2330
2331 default:
2332 return 0;
2333 }
2334 }
2335 \f
2336 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2337 Do this to any expression which may be used in more than one place,
2338 but must be evaluated only once.
2339
2340 Normally, expand_expr would reevaluate the expression each time.
2341 Calling save_expr produces something that is evaluated and recorded
2342 the first time expand_expr is called on it. Subsequent calls to
2343 expand_expr just reuse the recorded value.
2344
2345 The call to expand_expr that generates code that actually computes
2346 the value is the first call *at compile time*. Subsequent calls
2347 *at compile time* generate code to use the saved value.
2348 This produces correct result provided that *at run time* control
2349 always flows through the insns made by the first expand_expr
2350 before reaching the other places where the save_expr was evaluated.
2351 You, the caller of save_expr, must make sure this is so.
2352
2353 Constants, and certain read-only nodes, are returned with no
2354 SAVE_EXPR because that is safe. Expressions containing placeholders
2355 are not touched; see tree.def for an explanation of what these
2356 are used for. */
2357
2358 tree
2359 save_expr (expr)
2360 tree expr;
2361 {
2362 register tree t = fold (expr);
2363
2364 /* We don't care about whether this can be used as an lvalue in this
2365 context. */
2366 while (TREE_CODE (t) == NON_LVALUE_EXPR)
2367 t = TREE_OPERAND (t, 0);
2368
2369 /* If the tree evaluates to a constant, then we don't want to hide that
2370 fact (i.e. this allows further folding, and direct checks for constants).
2371 However, a read-only object that has side effects cannot be bypassed.
2372 Since it is no problem to reevaluate literals, we just return the
2373 literal node. */
2374
2375 if (TREE_CONSTANT (t) || (TREE_READONLY (t) && ! TREE_SIDE_EFFECTS (t))
2376 || TREE_CODE (t) == SAVE_EXPR || TREE_CODE (t) == ERROR_MARK)
2377 return t;
2378
2379 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2380 it means that the size or offset of some field of an object depends on
2381 the value within another field.
2382
2383 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2384 and some variable since it would then need to be both evaluated once and
2385 evaluated more than once. Front-ends must assure this case cannot
2386 happen by surrounding any such subexpressions in their own SAVE_EXPR
2387 and forcing evaluation at the proper time. */
2388 if (contains_placeholder_p (t))
2389 return t;
2390
2391 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
2392
2393 /* This expression might be placed ahead of a jump to ensure that the
2394 value was computed on both sides of the jump. So make sure it isn't
2395 eliminated as dead. */
2396 TREE_SIDE_EFFECTS (t) = 1;
2397 return t;
2398 }
2399
2400 /* Arrange for an expression to be expanded multiple independent
2401 times. This is useful for cleanup actions, as the backend can
2402 expand them multiple times in different places. */
2403
2404 tree
2405 unsave_expr (expr)
2406 tree expr;
2407 {
2408 tree t;
2409
2410 /* If this is already protected, no sense in protecting it again. */
2411 if (TREE_CODE (expr) == UNSAVE_EXPR)
2412 return expr;
2413
2414 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
2415 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
2416 return t;
2417 }
2418
2419 /* Returns the index of the first non-tree operand for CODE, or the number
2420 of operands if all are trees. */
2421
2422 int
2423 first_rtl_op (code)
2424 enum tree_code code;
2425 {
2426 switch (code)
2427 {
2428 case SAVE_EXPR:
2429 return 2;
2430 case GOTO_SUBROUTINE_EXPR:
2431 case RTL_EXPR:
2432 return 0;
2433 case CALL_EXPR:
2434 return 2;
2435 case WITH_CLEANUP_EXPR:
2436 /* Should be defined to be 2. */
2437 return 1;
2438 case METHOD_CALL_EXPR:
2439 return 3;
2440 default:
2441 return tree_code_length [(int) code];
2442 }
2443 }
2444
2445 /* Modify a tree in place so that all the evaluate only once things
2446 are cleared out. Return the EXPR given.
2447
2448 LANG_UNSAVE_EXPR_NOW, if set, is a pointer to a function to handle
2449 language specific nodes.
2450 */
2451
2452 tree
2453 unsave_expr_now (expr)
2454 tree expr;
2455 {
2456 enum tree_code code;
2457 register int i;
2458 int first_rtl;
2459
2460 if (expr == NULL_TREE)
2461 return expr;
2462
2463 code = TREE_CODE (expr);
2464 first_rtl = first_rtl_op (code);
2465 switch (code)
2466 {
2467 case SAVE_EXPR:
2468 SAVE_EXPR_RTL (expr) = 0;
2469 break;
2470
2471 case TARGET_EXPR:
2472 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
2473 TREE_OPERAND (expr, 3) = NULL_TREE;
2474 break;
2475
2476 case RTL_EXPR:
2477 /* I don't yet know how to emit a sequence multiple times. */
2478 if (RTL_EXPR_SEQUENCE (expr) != 0)
2479 abort ();
2480 break;
2481
2482 case CALL_EXPR:
2483 CALL_EXPR_RTL (expr) = 0;
2484 if (TREE_OPERAND (expr, 1)
2485 && TREE_CODE (TREE_OPERAND (expr, 1)) == TREE_LIST)
2486 {
2487 tree exp = TREE_OPERAND (expr, 1);
2488 while (exp)
2489 {
2490 unsave_expr_now (TREE_VALUE (exp));
2491 exp = TREE_CHAIN (exp);
2492 }
2493 }
2494 break;
2495
2496 default:
2497 if (lang_unsave_expr_now)
2498 (*lang_unsave_expr_now) (expr);
2499 break;
2500 }
2501
2502 switch (TREE_CODE_CLASS (code))
2503 {
2504 case 'c': /* a constant */
2505 case 't': /* a type node */
2506 case 'x': /* something random, like an identifier or an ERROR_MARK. */
2507 case 'd': /* A decl node */
2508 case 'b': /* A block node */
2509 return expr;
2510
2511 case 'e': /* an expression */
2512 case 'r': /* a reference */
2513 case 's': /* an expression with side effects */
2514 case '<': /* a comparison expression */
2515 case '2': /* a binary arithmetic expression */
2516 case '1': /* a unary arithmetic expression */
2517 for (i = first_rtl - 1; i >= 0; i--)
2518 unsave_expr_now (TREE_OPERAND (expr, i));
2519 return expr;
2520
2521 default:
2522 abort ();
2523 }
2524 }
2525 \f
2526 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2527 or offset that depends on a field within a record. */
2528
2529 int
2530 contains_placeholder_p (exp)
2531 tree exp;
2532 {
2533 register enum tree_code code = TREE_CODE (exp);
2534 int result;
2535
2536 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
2537 in it since it is supplying a value for it. */
2538 if (code == WITH_RECORD_EXPR)
2539 return 0;
2540 else if (code == PLACEHOLDER_EXPR)
2541 return 1;
2542
2543 switch (TREE_CODE_CLASS (code))
2544 {
2545 case 'r':
2546 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2547 position computations since they will be converted into a
2548 WITH_RECORD_EXPR involving the reference, which will assume
2549 here will be valid. */
2550 return contains_placeholder_p (TREE_OPERAND (exp, 0));
2551
2552 case 'x':
2553 if (code == TREE_LIST)
2554 return (contains_placeholder_p (TREE_VALUE (exp))
2555 || (TREE_CHAIN (exp) != 0
2556 && contains_placeholder_p (TREE_CHAIN (exp))));
2557 break;
2558
2559 case '1':
2560 case '2': case '<':
2561 case 'e':
2562 switch (code)
2563 {
2564 case COMPOUND_EXPR:
2565 /* Ignoring the first operand isn't quite right, but works best. */
2566 return contains_placeholder_p (TREE_OPERAND (exp, 1));
2567
2568 case RTL_EXPR:
2569 case CONSTRUCTOR:
2570 return 0;
2571
2572 case COND_EXPR:
2573 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
2574 || contains_placeholder_p (TREE_OPERAND (exp, 1))
2575 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
2576
2577 case SAVE_EXPR:
2578 /* If we already know this doesn't have a placeholder, don't
2579 check again. */
2580 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
2581 return 0;
2582
2583 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
2584 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
2585 if (result)
2586 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
2587
2588 return result;
2589
2590 case CALL_EXPR:
2591 return (TREE_OPERAND (exp, 1) != 0
2592 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
2593
2594 default:
2595 break;
2596 }
2597
2598 switch (tree_code_length[(int) code])
2599 {
2600 case 1:
2601 return contains_placeholder_p (TREE_OPERAND (exp, 0));
2602 case 2:
2603 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
2604 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
2605 default:
2606 return 0;
2607 }
2608
2609 default:
2610 return 0;
2611 }
2612 return 0;
2613 }
2614
2615 /* Return 1 if EXP contains any expressions that produce cleanups for an
2616 outer scope to deal with. Used by fold. */
2617
2618 int
2619 has_cleanups (exp)
2620 tree exp;
2621 {
2622 int i, nops, cmp;
2623
2624 if (! TREE_SIDE_EFFECTS (exp))
2625 return 0;
2626
2627 switch (TREE_CODE (exp))
2628 {
2629 case TARGET_EXPR:
2630 case GOTO_SUBROUTINE_EXPR:
2631 case WITH_CLEANUP_EXPR:
2632 return 1;
2633
2634 case CLEANUP_POINT_EXPR:
2635 return 0;
2636
2637 case CALL_EXPR:
2638 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
2639 {
2640 cmp = has_cleanups (TREE_VALUE (exp));
2641 if (cmp)
2642 return cmp;
2643 }
2644 return 0;
2645
2646 default:
2647 break;
2648 }
2649
2650 /* This general rule works for most tree codes. All exceptions should be
2651 handled above. If this is a language-specific tree code, we can't
2652 trust what might be in the operand, so say we don't know
2653 the situation. */
2654 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
2655 return -1;
2656
2657 nops = first_rtl_op (TREE_CODE (exp));
2658 for (i = 0; i < nops; i++)
2659 if (TREE_OPERAND (exp, i) != 0)
2660 {
2661 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
2662 if (type == 'e' || type == '<' || type == '1' || type == '2'
2663 || type == 'r' || type == 's')
2664 {
2665 cmp = has_cleanups (TREE_OPERAND (exp, i));
2666 if (cmp)
2667 return cmp;
2668 }
2669 }
2670
2671 return 0;
2672 }
2673 \f
2674 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2675 return a tree with all occurrences of references to F in a
2676 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2677 contains only arithmetic expressions or a CALL_EXPR with a
2678 PLACEHOLDER_EXPR occurring only in its arglist. */
2679
2680 tree
2681 substitute_in_expr (exp, f, r)
2682 tree exp;
2683 tree f;
2684 tree r;
2685 {
2686 enum tree_code code = TREE_CODE (exp);
2687 tree op0, op1, op2;
2688 tree new;
2689 tree inner;
2690
2691 switch (TREE_CODE_CLASS (code))
2692 {
2693 case 'c':
2694 case 'd':
2695 return exp;
2696
2697 case 'x':
2698 if (code == PLACEHOLDER_EXPR)
2699 return exp;
2700 else if (code == TREE_LIST)
2701 {
2702 op0 = (TREE_CHAIN (exp) == 0
2703 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
2704 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
2705 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2706 return exp;
2707
2708 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2709 }
2710
2711 abort ();
2712
2713 case '1':
2714 case '2':
2715 case '<':
2716 case 'e':
2717 switch (tree_code_length[(int) code])
2718 {
2719 case 1:
2720 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2721 if (op0 == TREE_OPERAND (exp, 0))
2722 return exp;
2723
2724 new = fold (build1 (code, TREE_TYPE (exp), op0));
2725 break;
2726
2727 case 2:
2728 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
2729 could, but we don't support it. */
2730 if (code == RTL_EXPR)
2731 return exp;
2732 else if (code == CONSTRUCTOR)
2733 abort ();
2734
2735 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2736 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2737 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2738 return exp;
2739
2740 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2741 break;
2742
2743 case 3:
2744 /* It cannot be that anything inside a SAVE_EXPR contains a
2745 PLACEHOLDER_EXPR. */
2746 if (code == SAVE_EXPR)
2747 return exp;
2748
2749 else if (code == CALL_EXPR)
2750 {
2751 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2752 if (op1 == TREE_OPERAND (exp, 1))
2753 return exp;
2754
2755 return build (code, TREE_TYPE (exp),
2756 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2757 }
2758
2759 else if (code != COND_EXPR)
2760 abort ();
2761
2762 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2763 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2764 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2765 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2766 && op2 == TREE_OPERAND (exp, 2))
2767 return exp;
2768
2769 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2770 break;
2771
2772 default:
2773 abort ();
2774 }
2775
2776 break;
2777
2778 case 'r':
2779 switch (code)
2780 {
2781 case COMPONENT_REF:
2782 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2783 and it is the right field, replace it with R. */
2784 for (inner = TREE_OPERAND (exp, 0);
2785 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2786 inner = TREE_OPERAND (inner, 0))
2787 ;
2788 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2789 && TREE_OPERAND (exp, 1) == f)
2790 return r;
2791
2792 /* If this expression hasn't been completed let, leave it
2793 alone. */
2794 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2795 && TREE_TYPE (inner) == 0)
2796 return exp;
2797
2798 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2799 if (op0 == TREE_OPERAND (exp, 0))
2800 return exp;
2801
2802 new = fold (build (code, TREE_TYPE (exp), op0,
2803 TREE_OPERAND (exp, 1)));
2804 break;
2805
2806 case BIT_FIELD_REF:
2807 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2808 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2809 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2810 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2811 && op2 == TREE_OPERAND (exp, 2))
2812 return exp;
2813
2814 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2815 break;
2816
2817 case INDIRECT_REF:
2818 case BUFFER_REF:
2819 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2820 if (op0 == TREE_OPERAND (exp, 0))
2821 return exp;
2822
2823 new = fold (build1 (code, TREE_TYPE (exp), op0));
2824 break;
2825
2826 default:
2827 abort ();
2828 }
2829 break;
2830
2831 default:
2832 abort ();
2833 }
2834
2835 TREE_READONLY (new) = TREE_READONLY (exp);
2836 return new;
2837 }
2838 \f
2839 /* Stabilize a reference so that we can use it any number of times
2840 without causing its operands to be evaluated more than once.
2841 Returns the stabilized reference. This works by means of save_expr,
2842 so see the caveats in the comments about save_expr.
2843
2844 Also allows conversion expressions whose operands are references.
2845 Any other kind of expression is returned unchanged. */
2846
2847 tree
2848 stabilize_reference (ref)
2849 tree ref;
2850 {
2851 register tree result;
2852 register enum tree_code code = TREE_CODE (ref);
2853
2854 switch (code)
2855 {
2856 case VAR_DECL:
2857 case PARM_DECL:
2858 case RESULT_DECL:
2859 /* No action is needed in this case. */
2860 return ref;
2861
2862 case NOP_EXPR:
2863 case CONVERT_EXPR:
2864 case FLOAT_EXPR:
2865 case FIX_TRUNC_EXPR:
2866 case FIX_FLOOR_EXPR:
2867 case FIX_ROUND_EXPR:
2868 case FIX_CEIL_EXPR:
2869 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2870 break;
2871
2872 case INDIRECT_REF:
2873 result = build_nt (INDIRECT_REF,
2874 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2875 break;
2876
2877 case COMPONENT_REF:
2878 result = build_nt (COMPONENT_REF,
2879 stabilize_reference (TREE_OPERAND (ref, 0)),
2880 TREE_OPERAND (ref, 1));
2881 break;
2882
2883 case BIT_FIELD_REF:
2884 result = build_nt (BIT_FIELD_REF,
2885 stabilize_reference (TREE_OPERAND (ref, 0)),
2886 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2887 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2888 break;
2889
2890 case ARRAY_REF:
2891 result = build_nt (ARRAY_REF,
2892 stabilize_reference (TREE_OPERAND (ref, 0)),
2893 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2894 break;
2895
2896 case COMPOUND_EXPR:
2897 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2898 it wouldn't be ignored. This matters when dealing with
2899 volatiles. */
2900 return stabilize_reference_1 (ref);
2901
2902 case RTL_EXPR:
2903 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2904 save_expr (build1 (ADDR_EXPR,
2905 build_pointer_type (TREE_TYPE (ref)),
2906 ref)));
2907 break;
2908
2909
2910 /* If arg isn't a kind of lvalue we recognize, make no change.
2911 Caller should recognize the error for an invalid lvalue. */
2912 default:
2913 return ref;
2914
2915 case ERROR_MARK:
2916 return error_mark_node;
2917 }
2918
2919 TREE_TYPE (result) = TREE_TYPE (ref);
2920 TREE_READONLY (result) = TREE_READONLY (ref);
2921 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2922 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2923 TREE_RAISES (result) = TREE_RAISES (ref);
2924
2925 return result;
2926 }
2927
2928 /* Subroutine of stabilize_reference; this is called for subtrees of
2929 references. Any expression with side-effects must be put in a SAVE_EXPR
2930 to ensure that it is only evaluated once.
2931
2932 We don't put SAVE_EXPR nodes around everything, because assigning very
2933 simple expressions to temporaries causes us to miss good opportunities
2934 for optimizations. Among other things, the opportunity to fold in the
2935 addition of a constant into an addressing mode often gets lost, e.g.
2936 "y[i+1] += x;". In general, we take the approach that we should not make
2937 an assignment unless we are forced into it - i.e., that any non-side effect
2938 operator should be allowed, and that cse should take care of coalescing
2939 multiple utterances of the same expression should that prove fruitful. */
2940
2941 tree
2942 stabilize_reference_1 (e)
2943 tree e;
2944 {
2945 register tree result;
2946 register enum tree_code code = TREE_CODE (e);
2947
2948 /* We cannot ignore const expressions because it might be a reference
2949 to a const array but whose index contains side-effects. But we can
2950 ignore things that are actual constant or that already have been
2951 handled by this function. */
2952
2953 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2954 return e;
2955
2956 switch (TREE_CODE_CLASS (code))
2957 {
2958 case 'x':
2959 case 't':
2960 case 'd':
2961 case 'b':
2962 case '<':
2963 case 's':
2964 case 'e':
2965 case 'r':
2966 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2967 so that it will only be evaluated once. */
2968 /* The reference (r) and comparison (<) classes could be handled as
2969 below, but it is generally faster to only evaluate them once. */
2970 if (TREE_SIDE_EFFECTS (e))
2971 return save_expr (e);
2972 return e;
2973
2974 case 'c':
2975 /* Constants need no processing. In fact, we should never reach
2976 here. */
2977 return e;
2978
2979 case '2':
2980 /* Division is slow and tends to be compiled with jumps,
2981 especially the division by powers of 2 that is often
2982 found inside of an array reference. So do it just once. */
2983 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2984 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2985 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2986 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2987 return save_expr (e);
2988 /* Recursively stabilize each operand. */
2989 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2990 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2991 break;
2992
2993 case '1':
2994 /* Recursively stabilize each operand. */
2995 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2996 break;
2997
2998 default:
2999 abort ();
3000 }
3001
3002 TREE_TYPE (result) = TREE_TYPE (e);
3003 TREE_READONLY (result) = TREE_READONLY (e);
3004 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3005 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3006 TREE_RAISES (result) = TREE_RAISES (e);
3007
3008 return result;
3009 }
3010 \f
3011 /* Low-level constructors for expressions. */
3012
3013 /* Build an expression of code CODE, data type TYPE,
3014 and operands as specified by the arguments ARG1 and following arguments.
3015 Expressions and reference nodes can be created this way.
3016 Constants, decls, types and misc nodes cannot be. */
3017
3018 tree
3019 build VPROTO((enum tree_code code, tree tt, ...))
3020 {
3021 #ifndef ANSI_PROTOTYPES
3022 enum tree_code code;
3023 tree tt;
3024 #endif
3025 va_list p;
3026 register tree t;
3027 register int length;
3028 register int i;
3029 int fro;
3030
3031 VA_START (p, tt);
3032
3033 #ifndef ANSI_PROTOTYPES
3034 code = va_arg (p, enum tree_code);
3035 tt = va_arg (p, tree);
3036 #endif
3037
3038 t = make_node (code);
3039 length = tree_code_length[(int) code];
3040 TREE_TYPE (t) = tt;
3041
3042 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_RAISED for
3043 the result based on those same flags for the arguments. But, if
3044 the arguments aren't really even `tree' expressions, we shouldn't
3045 be trying to do this. */
3046 fro = first_rtl_op (code);
3047
3048 if (length == 2)
3049 {
3050 /* This is equivalent to the loop below, but faster. */
3051 register tree arg0 = va_arg (p, tree);
3052 register tree arg1 = va_arg (p, tree);
3053 TREE_OPERAND (t, 0) = arg0;
3054 TREE_OPERAND (t, 1) = arg1;
3055 if (arg0 && fro > 0)
3056 {
3057 if (TREE_SIDE_EFFECTS (arg0))
3058 TREE_SIDE_EFFECTS (t) = 1;
3059 if (TREE_RAISES (arg0))
3060 TREE_RAISES (t) = 1;
3061 }
3062 if (arg1 && fro > 1)
3063 {
3064 if (TREE_SIDE_EFFECTS (arg1))
3065 TREE_SIDE_EFFECTS (t) = 1;
3066 if (TREE_RAISES (arg1))
3067 TREE_RAISES (t) = 1;
3068 }
3069 }
3070 else if (length == 1)
3071 {
3072 register tree arg0 = va_arg (p, tree);
3073
3074 /* Call build1 for this! */
3075 if (TREE_CODE_CLASS (code) != 's')
3076 abort ();
3077 TREE_OPERAND (t, 0) = arg0;
3078 if (fro > 0)
3079 {
3080 if (arg0 && TREE_SIDE_EFFECTS (arg0))
3081 TREE_SIDE_EFFECTS (t) = 1;
3082 TREE_RAISES (t) = (arg0 && TREE_RAISES (arg0));
3083 }
3084 }
3085 else
3086 {
3087 for (i = 0; i < length; i++)
3088 {
3089 register tree operand = va_arg (p, tree);
3090 TREE_OPERAND (t, i) = operand;
3091 if (operand && fro > i)
3092 {
3093 if (TREE_SIDE_EFFECTS (operand))
3094 TREE_SIDE_EFFECTS (t) = 1;
3095 if (TREE_RAISES (operand))
3096 TREE_RAISES (t) = 1;
3097 }
3098 }
3099 }
3100 va_end (p);
3101 return t;
3102 }
3103
3104 /* Same as above, but only builds for unary operators.
3105 Saves lions share of calls to `build'; cuts down use
3106 of varargs, which is expensive for RISC machines. */
3107
3108 tree
3109 build1 (code, type, node)
3110 enum tree_code code;
3111 tree type;
3112 tree node;
3113 {
3114 register struct obstack *obstack = expression_obstack;
3115 register int length;
3116 #ifdef GATHER_STATISTICS
3117 register tree_node_kind kind;
3118 #endif
3119 register tree t;
3120
3121 #ifdef GATHER_STATISTICS
3122 if (TREE_CODE_CLASS (code) == 'r')
3123 kind = r_kind;
3124 else
3125 kind = e_kind;
3126 #endif
3127
3128 length = sizeof (struct tree_exp);
3129
3130 if (ggc_p)
3131 t = ggc_alloc_tree (length);
3132 else
3133 {
3134 t = (tree) obstack_alloc (obstack, length);
3135 memset ((PTR) t, 0, length);
3136 }
3137
3138 #ifdef GATHER_STATISTICS
3139 tree_node_counts[(int)kind]++;
3140 tree_node_sizes[(int)kind] += length;
3141 #endif
3142
3143 TREE_TYPE (t) = type;
3144 TREE_SET_CODE (t, code);
3145
3146 if (obstack == &permanent_obstack)
3147 TREE_PERMANENT (t) = 1;
3148
3149 TREE_OPERAND (t, 0) = node;
3150 if (node && first_rtl_op (code) != 0)
3151 {
3152 if (TREE_SIDE_EFFECTS (node))
3153 TREE_SIDE_EFFECTS (t) = 1;
3154 if (TREE_RAISES (node))
3155 TREE_RAISES (t) = 1;
3156 }
3157
3158 switch (code)
3159 {
3160 case INIT_EXPR:
3161 case MODIFY_EXPR:
3162 case VA_ARG_EXPR:
3163 case RTL_EXPR:
3164 case PREDECREMENT_EXPR:
3165 case PREINCREMENT_EXPR:
3166 case POSTDECREMENT_EXPR:
3167 case POSTINCREMENT_EXPR:
3168 /* All of these have side-effects, no matter what their
3169 operands are. */
3170 TREE_SIDE_EFFECTS (t) = 1;
3171 break;
3172
3173 default:
3174 break;
3175 }
3176
3177 return t;
3178 }
3179
3180 /* Similar except don't specify the TREE_TYPE
3181 and leave the TREE_SIDE_EFFECTS as 0.
3182 It is permissible for arguments to be null,
3183 or even garbage if their values do not matter. */
3184
3185 tree
3186 build_nt VPROTO((enum tree_code code, ...))
3187 {
3188 #ifndef ANSI_PROTOTYPES
3189 enum tree_code code;
3190 #endif
3191 va_list p;
3192 register tree t;
3193 register int length;
3194 register int i;
3195
3196 VA_START (p, code);
3197
3198 #ifndef ANSI_PROTOTYPES
3199 code = va_arg (p, enum tree_code);
3200 #endif
3201
3202 t = make_node (code);
3203 length = tree_code_length[(int) code];
3204
3205 for (i = 0; i < length; i++)
3206 TREE_OPERAND (t, i) = va_arg (p, tree);
3207
3208 va_end (p);
3209 return t;
3210 }
3211
3212 /* Similar to `build_nt', except we build
3213 on the temp_decl_obstack, regardless. */
3214
3215 tree
3216 build_parse_node VPROTO((enum tree_code code, ...))
3217 {
3218 #ifndef ANSI_PROTOTYPES
3219 enum tree_code code;
3220 #endif
3221 register struct obstack *ambient_obstack = expression_obstack;
3222 va_list p;
3223 register tree t;
3224 register int length;
3225 register int i;
3226
3227 VA_START (p, code);
3228
3229 #ifndef ANSI_PROTOTYPES
3230 code = va_arg (p, enum tree_code);
3231 #endif
3232
3233 expression_obstack = &temp_decl_obstack;
3234
3235 t = make_node (code);
3236 length = tree_code_length[(int) code];
3237
3238 for (i = 0; i < length; i++)
3239 TREE_OPERAND (t, i) = va_arg (p, tree);
3240
3241 va_end (p);
3242 expression_obstack = ambient_obstack;
3243 return t;
3244 }
3245
3246 #if 0
3247 /* Commented out because this wants to be done very
3248 differently. See cp-lex.c. */
3249 tree
3250 build_op_identifier (op1, op2)
3251 tree op1, op2;
3252 {
3253 register tree t = make_node (OP_IDENTIFIER);
3254 TREE_PURPOSE (t) = op1;
3255 TREE_VALUE (t) = op2;
3256 return t;
3257 }
3258 #endif
3259 \f
3260 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3261 We do NOT enter this node in any sort of symbol table.
3262
3263 layout_decl is used to set up the decl's storage layout.
3264 Other slots are initialized to 0 or null pointers. */
3265
3266 tree
3267 build_decl (code, name, type)
3268 enum tree_code code;
3269 tree name, type;
3270 {
3271 register tree t;
3272
3273 t = make_node (code);
3274
3275 /* if (type == error_mark_node)
3276 type = integer_type_node; */
3277 /* That is not done, deliberately, so that having error_mark_node
3278 as the type can suppress useless errors in the use of this variable. */
3279
3280 DECL_NAME (t) = name;
3281 DECL_ASSEMBLER_NAME (t) = name;
3282 TREE_TYPE (t) = type;
3283
3284 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3285 layout_decl (t, 0);
3286 else if (code == FUNCTION_DECL)
3287 DECL_MODE (t) = FUNCTION_MODE;
3288
3289 return t;
3290 }
3291 \f
3292 /* BLOCK nodes are used to represent the structure of binding contours
3293 and declarations, once those contours have been exited and their contents
3294 compiled. This information is used for outputting debugging info. */
3295
3296 tree
3297 build_block (vars, tags, subblocks, supercontext, chain)
3298 tree vars, tags, subblocks, supercontext, chain;
3299 {
3300 register tree block = make_node (BLOCK);
3301 BLOCK_VARS (block) = vars;
3302 BLOCK_SUBBLOCKS (block) = subblocks;
3303 BLOCK_SUPERCONTEXT (block) = supercontext;
3304 BLOCK_CHAIN (block) = chain;
3305 return block;
3306 }
3307
3308 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
3309 location where an expression or an identifier were encountered. It
3310 is necessary for languages where the frontend parser will handle
3311 recursively more than one file (Java is one of them). */
3312
3313 tree
3314 build_expr_wfl (node, file, line, col)
3315 tree node;
3316 const char *file;
3317 int line, col;
3318 {
3319 static const char *last_file = 0;
3320 static tree last_filenode = NULL_TREE;
3321 register tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
3322
3323 EXPR_WFL_NODE (wfl) = node;
3324 EXPR_WFL_SET_LINECOL (wfl, line, col);
3325 if (file != last_file)
3326 {
3327 last_file = file;
3328 last_filenode = file ? get_identifier (file) : NULL_TREE;
3329 }
3330 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
3331 if (node)
3332 {
3333 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
3334 TREE_TYPE (wfl) = TREE_TYPE (node);
3335 }
3336 return wfl;
3337 }
3338 \f
3339 /* Return a declaration like DDECL except that its DECL_MACHINE_ATTRIBUTE
3340 is ATTRIBUTE. */
3341
3342 tree
3343 build_decl_attribute_variant (ddecl, attribute)
3344 tree ddecl, attribute;
3345 {
3346 DECL_MACHINE_ATTRIBUTES (ddecl) = attribute;
3347 return ddecl;
3348 }
3349
3350 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3351 is ATTRIBUTE.
3352
3353 Record such modified types already made so we don't make duplicates. */
3354
3355 tree
3356 build_type_attribute_variant (ttype, attribute)
3357 tree ttype, attribute;
3358 {
3359 if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3360 {
3361 register int hashcode;
3362 tree ntype;
3363
3364 push_obstacks (TYPE_OBSTACK (ttype), TYPE_OBSTACK (ttype));
3365 ntype = copy_node (ttype);
3366
3367 TYPE_POINTER_TO (ntype) = 0;
3368 TYPE_REFERENCE_TO (ntype) = 0;
3369 TYPE_ATTRIBUTES (ntype) = attribute;
3370
3371 /* Create a new main variant of TYPE. */
3372 TYPE_MAIN_VARIANT (ntype) = ntype;
3373 TYPE_NEXT_VARIANT (ntype) = 0;
3374 set_type_quals (ntype, TYPE_UNQUALIFIED);
3375
3376 hashcode = TYPE_HASH (TREE_CODE (ntype))
3377 + TYPE_HASH (TREE_TYPE (ntype))
3378 + attribute_hash_list (attribute);
3379
3380 switch (TREE_CODE (ntype))
3381 {
3382 case FUNCTION_TYPE:
3383 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
3384 break;
3385 case ARRAY_TYPE:
3386 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
3387 break;
3388 case INTEGER_TYPE:
3389 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
3390 break;
3391 case REAL_TYPE:
3392 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
3393 break;
3394 default:
3395 break;
3396 }
3397
3398 ntype = type_hash_canon (hashcode, ntype);
3399 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
3400 pop_obstacks ();
3401 }
3402
3403 return ttype;
3404 }
3405
3406 /* Return a 1 if ATTR_NAME and ATTR_ARGS is valid for either declaration DECL
3407 or type TYPE and 0 otherwise. Validity is determined the configuration
3408 macros VALID_MACHINE_DECL_ATTRIBUTE and VALID_MACHINE_TYPE_ATTRIBUTE. */
3409
3410 int
3411 valid_machine_attribute (attr_name, attr_args, decl, type)
3412 tree attr_name;
3413 tree attr_args ATTRIBUTE_UNUSED;
3414 tree decl ATTRIBUTE_UNUSED;
3415 tree type ATTRIBUTE_UNUSED;
3416 {
3417 int validated = 0;
3418 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
3419 tree decl_attr_list = decl != 0 ? DECL_MACHINE_ATTRIBUTES (decl) : 0;
3420 #endif
3421 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
3422 tree type_attr_list = TYPE_ATTRIBUTES (type);
3423 #endif
3424
3425 if (TREE_CODE (attr_name) != IDENTIFIER_NODE)
3426 abort ();
3427
3428 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
3429 if (decl != 0
3430 && VALID_MACHINE_DECL_ATTRIBUTE (decl, decl_attr_list, attr_name, attr_args))
3431 {
3432 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3433 decl_attr_list);
3434
3435 if (attr != NULL_TREE)
3436 {
3437 /* Override existing arguments. Declarations are unique so we can
3438 modify this in place. */
3439 TREE_VALUE (attr) = attr_args;
3440 }
3441 else
3442 {
3443 decl_attr_list = tree_cons (attr_name, attr_args, decl_attr_list);
3444 decl = build_decl_attribute_variant (decl, decl_attr_list);
3445 }
3446
3447 validated = 1;
3448 }
3449 #endif
3450
3451 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
3452 if (validated)
3453 /* Don't apply the attribute to both the decl and the type. */;
3454 else if (VALID_MACHINE_TYPE_ATTRIBUTE (type, type_attr_list, attr_name,
3455 attr_args))
3456 {
3457 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3458 type_attr_list);
3459
3460 if (attr != NULL_TREE)
3461 {
3462 /* Override existing arguments.
3463 ??? This currently works since attribute arguments are not
3464 included in `attribute_hash_list'. Something more complicated
3465 may be needed in the future. */
3466 TREE_VALUE (attr) = attr_args;
3467 }
3468 else
3469 {
3470 /* If this is part of a declaration, create a type variant,
3471 otherwise, this is part of a type definition, so add it
3472 to the base type. */
3473 type_attr_list = tree_cons (attr_name, attr_args, type_attr_list);
3474 if (decl != 0)
3475 type = build_type_attribute_variant (type, type_attr_list);
3476 else
3477 TYPE_ATTRIBUTES (type) = type_attr_list;
3478 }
3479 if (decl != 0)
3480 TREE_TYPE (decl) = type;
3481 validated = 1;
3482 }
3483
3484 /* Handle putting a type attribute on pointer-to-function-type by putting
3485 the attribute on the function type. */
3486 else if (POINTER_TYPE_P (type)
3487 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3488 && VALID_MACHINE_TYPE_ATTRIBUTE (TREE_TYPE (type), type_attr_list,
3489 attr_name, attr_args))
3490 {
3491 tree inner_type = TREE_TYPE (type);
3492 tree inner_attr_list = TYPE_ATTRIBUTES (inner_type);
3493 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3494 type_attr_list);
3495
3496 if (attr != NULL_TREE)
3497 TREE_VALUE (attr) = attr_args;
3498 else
3499 {
3500 inner_attr_list = tree_cons (attr_name, attr_args, inner_attr_list);
3501 inner_type = build_type_attribute_variant (inner_type,
3502 inner_attr_list);
3503 }
3504
3505 if (decl != 0)
3506 TREE_TYPE (decl) = build_pointer_type (inner_type);
3507 else
3508 {
3509 /* Clear TYPE_POINTER_TO for the old inner type, since
3510 `type' won't be pointing to it anymore. */
3511 TYPE_POINTER_TO (TREE_TYPE (type)) = NULL_TREE;
3512 TREE_TYPE (type) = inner_type;
3513 }
3514
3515 validated = 1;
3516 }
3517 #endif
3518
3519 return validated;
3520 }
3521
3522 /* Return non-zero if IDENT is a valid name for attribute ATTR,
3523 or zero if not.
3524
3525 We try both `text' and `__text__', ATTR may be either one. */
3526 /* ??? It might be a reasonable simplification to require ATTR to be only
3527 `text'. One might then also require attribute lists to be stored in
3528 their canonicalized form. */
3529
3530 int
3531 is_attribute_p (attr, ident)
3532 const char *attr;
3533 tree ident;
3534 {
3535 int ident_len, attr_len;
3536 char *p;
3537
3538 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3539 return 0;
3540
3541 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
3542 return 1;
3543
3544 p = IDENTIFIER_POINTER (ident);
3545 ident_len = strlen (p);
3546 attr_len = strlen (attr);
3547
3548 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3549 if (attr[0] == '_')
3550 {
3551 if (attr[1] != '_'
3552 || attr[attr_len - 2] != '_'
3553 || attr[attr_len - 1] != '_')
3554 abort ();
3555 if (ident_len == attr_len - 4
3556 && strncmp (attr + 2, p, attr_len - 4) == 0)
3557 return 1;
3558 }
3559 else
3560 {
3561 if (ident_len == attr_len + 4
3562 && p[0] == '_' && p[1] == '_'
3563 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3564 && strncmp (attr, p + 2, attr_len) == 0)
3565 return 1;
3566 }
3567
3568 return 0;
3569 }
3570
3571 /* Given an attribute name and a list of attributes, return a pointer to the
3572 attribute's list element if the attribute is part of the list, or NULL_TREE
3573 if not found. */
3574
3575 tree
3576 lookup_attribute (attr_name, list)
3577 const char *attr_name;
3578 tree list;
3579 {
3580 tree l;
3581
3582 for (l = list; l; l = TREE_CHAIN (l))
3583 {
3584 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
3585 abort ();
3586 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
3587 return l;
3588 }
3589
3590 return NULL_TREE;
3591 }
3592
3593 /* Return an attribute list that is the union of a1 and a2. */
3594
3595 tree
3596 merge_attributes (a1, a2)
3597 register tree a1, a2;
3598 {
3599 tree attributes;
3600
3601 /* Either one unset? Take the set one. */
3602
3603 if (! (attributes = a1))
3604 attributes = a2;
3605
3606 /* One that completely contains the other? Take it. */
3607
3608 else if (a2 && ! attribute_list_contained (a1, a2))
3609 {
3610 if (attribute_list_contained (a2, a1))
3611 attributes = a2;
3612 else
3613 {
3614 /* Pick the longest list, and hang on the other list. */
3615 /* ??? For the moment we punt on the issue of attrs with args. */
3616
3617 if (list_length (a1) < list_length (a2))
3618 attributes = a2, a2 = a1;
3619
3620 for (; a2; a2 = TREE_CHAIN (a2))
3621 if (lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3622 attributes) == NULL_TREE)
3623 {
3624 a1 = copy_node (a2);
3625 TREE_CHAIN (a1) = attributes;
3626 attributes = a1;
3627 }
3628 }
3629 }
3630 return attributes;
3631 }
3632
3633 /* Given types T1 and T2, merge their attributes and return
3634 the result. */
3635
3636 tree
3637 merge_machine_type_attributes (t1, t2)
3638 tree t1, t2;
3639 {
3640 #ifdef MERGE_MACHINE_TYPE_ATTRIBUTES
3641 return MERGE_MACHINE_TYPE_ATTRIBUTES (t1, t2);
3642 #else
3643 return merge_attributes (TYPE_ATTRIBUTES (t1),
3644 TYPE_ATTRIBUTES (t2));
3645 #endif
3646 }
3647
3648 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3649 the result. */
3650
3651 tree
3652 merge_machine_decl_attributes (olddecl, newdecl)
3653 tree olddecl, newdecl;
3654 {
3655 #ifdef MERGE_MACHINE_DECL_ATTRIBUTES
3656 return MERGE_MACHINE_DECL_ATTRIBUTES (olddecl, newdecl);
3657 #else
3658 return merge_attributes (DECL_MACHINE_ATTRIBUTES (olddecl),
3659 DECL_MACHINE_ATTRIBUTES (newdecl));
3660 #endif
3661 }
3662 \f
3663 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3664 of the various TYPE_QUAL values. */
3665
3666 static void
3667 set_type_quals (type, type_quals)
3668 tree type;
3669 int type_quals;
3670 {
3671 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3672 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3673 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3674 }
3675
3676 /* Given a type node TYPE and a TYPE_QUALIFIER_SET, return a type for
3677 the same kind of data as TYPE describes. Variants point to the
3678 "main variant" (which has no qualifiers set) via TYPE_MAIN_VARIANT,
3679 and it points to a chain of other variants so that duplicate
3680 variants are never made. Only main variants should ever appear as
3681 types of expressions. */
3682
3683 tree
3684 build_qualified_type (type, type_quals)
3685 tree type;
3686 int type_quals;
3687 {
3688 register tree t;
3689
3690 /* Search the chain of variants to see if there is already one there just
3691 like the one we need to have. If so, use that existing one. We must
3692 preserve the TYPE_NAME, since there is code that depends on this. */
3693
3694 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3695 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type))
3696 return t;
3697
3698 /* We need a new one. */
3699 t = build_type_copy (type);
3700 set_type_quals (t, type_quals);
3701 return t;
3702 }
3703
3704 /* Create a new variant of TYPE, equivalent but distinct.
3705 This is so the caller can modify it. */
3706
3707 tree
3708 build_type_copy (type)
3709 tree type;
3710 {
3711 register tree t, m = TYPE_MAIN_VARIANT (type);
3712 register struct obstack *ambient_obstack = current_obstack;
3713
3714 current_obstack = TYPE_OBSTACK (type);
3715 t = copy_node (type);
3716 current_obstack = ambient_obstack;
3717
3718 TYPE_POINTER_TO (t) = 0;
3719 TYPE_REFERENCE_TO (t) = 0;
3720
3721 /* Add this type to the chain of variants of TYPE. */
3722 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3723 TYPE_NEXT_VARIANT (m) = t;
3724
3725 return t;
3726 }
3727 \f
3728 /* Hashing of types so that we don't make duplicates.
3729 The entry point is `type_hash_canon'. */
3730
3731 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3732 with types in the TREE_VALUE slots), by adding the hash codes
3733 of the individual types. */
3734
3735 int
3736 type_hash_list (list)
3737 tree list;
3738 {
3739 register int hashcode;
3740 register tree tail;
3741 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3742 hashcode += TYPE_HASH (TREE_VALUE (tail));
3743 return hashcode;
3744 }
3745
3746 /* Look in the type hash table for a type isomorphic to TYPE.
3747 If one is found, return it. Otherwise return 0. */
3748
3749 tree
3750 type_hash_lookup (hashcode, type)
3751 int hashcode;
3752 tree type;
3753 {
3754 register struct type_hash *h;
3755
3756 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3757 must call that routine before comparing TYPE_ALIGNs. */
3758 layout_type (type);
3759
3760 for (h = type_hash_table[hashcode % TYPE_HASH_SIZE]; h; h = h->next)
3761 if (h->hashcode == hashcode
3762 && TREE_CODE (h->type) == TREE_CODE (type)
3763 && TREE_TYPE (h->type) == TREE_TYPE (type)
3764 && attribute_list_equal (TYPE_ATTRIBUTES (h->type),
3765 TYPE_ATTRIBUTES (type))
3766 && TYPE_ALIGN (h->type) == TYPE_ALIGN (type)
3767 && (TYPE_MAX_VALUE (h->type) == TYPE_MAX_VALUE (type)
3768 || tree_int_cst_equal (TYPE_MAX_VALUE (h->type),
3769 TYPE_MAX_VALUE (type)))
3770 && (TYPE_MIN_VALUE (h->type) == TYPE_MIN_VALUE (type)
3771 || tree_int_cst_equal (TYPE_MIN_VALUE (h->type),
3772 TYPE_MIN_VALUE (type)))
3773 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3774 && (TYPE_DOMAIN (h->type) == TYPE_DOMAIN (type)
3775 || (TYPE_DOMAIN (h->type)
3776 && TREE_CODE (TYPE_DOMAIN (h->type)) == TREE_LIST
3777 && TYPE_DOMAIN (type)
3778 && TREE_CODE (TYPE_DOMAIN (type)) == TREE_LIST
3779 && type_list_equal (TYPE_DOMAIN (h->type),
3780 TYPE_DOMAIN (type)))))
3781 return h->type;
3782 return 0;
3783 }
3784
3785 /* Add an entry to the type-hash-table
3786 for a type TYPE whose hash code is HASHCODE. */
3787
3788 void
3789 type_hash_add (hashcode, type)
3790 int hashcode;
3791 tree type;
3792 {
3793 register struct type_hash *h;
3794
3795 h = (struct type_hash *) permalloc (sizeof (struct type_hash));
3796 h->hashcode = hashcode;
3797 h->type = type;
3798 h->next = type_hash_table[hashcode % TYPE_HASH_SIZE];
3799 type_hash_table[hashcode % TYPE_HASH_SIZE] = h;
3800 }
3801
3802 /* Given TYPE, and HASHCODE its hash code, return the canonical
3803 object for an identical type if one already exists.
3804 Otherwise, return TYPE, and record it as the canonical object
3805 if it is a permanent object.
3806
3807 To use this function, first create a type of the sort you want.
3808 Then compute its hash code from the fields of the type that
3809 make it different from other similar types.
3810 Then call this function and use the value.
3811 This function frees the type you pass in if it is a duplicate. */
3812
3813 /* Set to 1 to debug without canonicalization. Never set by program. */
3814 int debug_no_type_hash = 0;
3815
3816 tree
3817 type_hash_canon (hashcode, type)
3818 int hashcode;
3819 tree type;
3820 {
3821 tree t1;
3822
3823 if (debug_no_type_hash)
3824 return type;
3825
3826 t1 = type_hash_lookup (hashcode, type);
3827 if (t1 != 0)
3828 {
3829 if (!ggc_p)
3830 obstack_free (TYPE_OBSTACK (type), type);
3831 #ifdef GATHER_STATISTICS
3832 tree_node_counts[(int)t_kind]--;
3833 tree_node_sizes[(int)t_kind] -= sizeof (struct tree_type);
3834 #endif
3835 return t1;
3836 }
3837
3838 /* If this is a permanent type, record it for later reuse. */
3839 if (ggc_p || TREE_PERMANENT (type))
3840 type_hash_add (hashcode, type);
3841
3842 return type;
3843 }
3844
3845 /* Mark ARG (which is really a struct type_hash **) for GC. */
3846
3847 static void
3848 mark_type_hash (arg)
3849 void *arg;
3850 {
3851 struct type_hash *t = *(struct type_hash **) arg;
3852
3853 while (t)
3854 {
3855 ggc_mark_tree (t->type);
3856 t = t->next;
3857 }
3858 }
3859
3860 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3861 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3862 by adding the hash codes of the individual attributes. */
3863
3864 int
3865 attribute_hash_list (list)
3866 tree list;
3867 {
3868 register int hashcode;
3869 register tree tail;
3870 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3871 /* ??? Do we want to add in TREE_VALUE too? */
3872 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3873 return hashcode;
3874 }
3875
3876 /* Given two lists of attributes, return true if list l2 is
3877 equivalent to l1. */
3878
3879 int
3880 attribute_list_equal (l1, l2)
3881 tree l1, l2;
3882 {
3883 return attribute_list_contained (l1, l2)
3884 && attribute_list_contained (l2, l1);
3885 }
3886
3887 /* Given two lists of attributes, return true if list L2 is
3888 completely contained within L1. */
3889 /* ??? This would be faster if attribute names were stored in a canonicalized
3890 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3891 must be used to show these elements are equivalent (which they are). */
3892 /* ??? It's not clear that attributes with arguments will always be handled
3893 correctly. */
3894
3895 int
3896 attribute_list_contained (l1, l2)
3897 tree l1, l2;
3898 {
3899 register tree t1, t2;
3900
3901 /* First check the obvious, maybe the lists are identical. */
3902 if (l1 == l2)
3903 return 1;
3904
3905 /* Maybe the lists are similar. */
3906 for (t1 = l1, t2 = l2;
3907 t1 && t2
3908 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3909 && TREE_VALUE (t1) == TREE_VALUE (t2);
3910 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3911
3912 /* Maybe the lists are equal. */
3913 if (t1 == 0 && t2 == 0)
3914 return 1;
3915
3916 for (; t2; t2 = TREE_CHAIN (t2))
3917 {
3918 tree attr
3919 = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3920
3921 if (attr == NULL_TREE)
3922 return 0;
3923 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3924 return 0;
3925 }
3926
3927 return 1;
3928 }
3929
3930 /* Given two lists of types
3931 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3932 return 1 if the lists contain the same types in the same order.
3933 Also, the TREE_PURPOSEs must match. */
3934
3935 int
3936 type_list_equal (l1, l2)
3937 tree l1, l2;
3938 {
3939 register tree t1, t2;
3940
3941 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3942 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3943 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3944 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3945 && (TREE_TYPE (TREE_PURPOSE (t1))
3946 == TREE_TYPE (TREE_PURPOSE (t2))))))
3947 return 0;
3948
3949 return t1 == t2;
3950 }
3951
3952 /* Nonzero if integer constants T1 and T2
3953 represent the same constant value. */
3954
3955 int
3956 tree_int_cst_equal (t1, t2)
3957 tree t1, t2;
3958 {
3959 if (t1 == t2)
3960 return 1;
3961 if (t1 == 0 || t2 == 0)
3962 return 0;
3963 if (TREE_CODE (t1) == INTEGER_CST
3964 && TREE_CODE (t2) == INTEGER_CST
3965 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3966 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3967 return 1;
3968 return 0;
3969 }
3970
3971 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3972 The precise way of comparison depends on their data type. */
3973
3974 int
3975 tree_int_cst_lt (t1, t2)
3976 tree t1, t2;
3977 {
3978 if (t1 == t2)
3979 return 0;
3980
3981 if (!TREE_UNSIGNED (TREE_TYPE (t1)))
3982 return INT_CST_LT (t1, t2);
3983 return INT_CST_LT_UNSIGNED (t1, t2);
3984 }
3985
3986 /* Return an indication of the sign of the integer constant T.
3987 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3988 Note that -1 will never be returned it T's type is unsigned. */
3989
3990 int
3991 tree_int_cst_sgn (t)
3992 tree t;
3993 {
3994 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3995 return 0;
3996 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3997 return 1;
3998 else if (TREE_INT_CST_HIGH (t) < 0)
3999 return -1;
4000 else
4001 return 1;
4002 }
4003
4004 /* Compare two constructor-element-type constants. Return 1 if the lists
4005 are known to be equal; otherwise return 0. */
4006
4007 int
4008 simple_cst_list_equal (l1, l2)
4009 tree l1, l2;
4010 {
4011 while (l1 != NULL_TREE && l2 != NULL_TREE)
4012 {
4013 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4014 return 0;
4015
4016 l1 = TREE_CHAIN (l1);
4017 l2 = TREE_CHAIN (l2);
4018 }
4019
4020 return (l1 == l2);
4021 }
4022
4023 /* Return truthvalue of whether T1 is the same tree structure as T2.
4024 Return 1 if they are the same.
4025 Return 0 if they are understandably different.
4026 Return -1 if either contains tree structure not understood by
4027 this function. */
4028
4029 int
4030 simple_cst_equal (t1, t2)
4031 tree t1, t2;
4032 {
4033 register enum tree_code code1, code2;
4034 int cmp;
4035
4036 if (t1 == t2)
4037 return 1;
4038 if (t1 == 0 || t2 == 0)
4039 return 0;
4040
4041 code1 = TREE_CODE (t1);
4042 code2 = TREE_CODE (t2);
4043
4044 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
4045 {
4046 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4047 || code2 == NON_LVALUE_EXPR)
4048 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4049 else
4050 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
4051 }
4052 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4053 || code2 == NON_LVALUE_EXPR)
4054 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
4055
4056 if (code1 != code2)
4057 return 0;
4058
4059 switch (code1)
4060 {
4061 case INTEGER_CST:
4062 return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4063 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
4064
4065 case REAL_CST:
4066 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
4067
4068 case STRING_CST:
4069 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
4070 && !bcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
4071 TREE_STRING_LENGTH (t1));
4072
4073 case CONSTRUCTOR:
4074 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
4075 return 1;
4076 else
4077 abort ();
4078
4079 case SAVE_EXPR:
4080 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4081
4082 case CALL_EXPR:
4083 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4084 if (cmp <= 0)
4085 return cmp;
4086 return simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4087
4088 case TARGET_EXPR:
4089 /* Special case: if either target is an unallocated VAR_DECL,
4090 it means that it's going to be unified with whatever the
4091 TARGET_EXPR is really supposed to initialize, so treat it
4092 as being equivalent to anything. */
4093 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
4094 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
4095 && DECL_RTL (TREE_OPERAND (t1, 0)) == 0)
4096 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
4097 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
4098 && DECL_RTL (TREE_OPERAND (t2, 0)) == 0))
4099 cmp = 1;
4100 else
4101 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4102 if (cmp <= 0)
4103 return cmp;
4104 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4105
4106 case WITH_CLEANUP_EXPR:
4107 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4108 if (cmp <= 0)
4109 return cmp;
4110 return simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t1, 2));
4111
4112 case COMPONENT_REF:
4113 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
4114 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4115 return 0;
4116
4117 case VAR_DECL:
4118 case PARM_DECL:
4119 case CONST_DECL:
4120 case FUNCTION_DECL:
4121 return 0;
4122
4123 default:
4124 break;
4125 }
4126
4127 /* This general rule works for most tree codes. All exceptions should be
4128 handled above. If this is a language-specific tree code, we can't
4129 trust what might be in the operand, so say we don't know
4130 the situation. */
4131 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
4132 return -1;
4133
4134 switch (TREE_CODE_CLASS (code1))
4135 {
4136 int i;
4137 case '1':
4138 case '2':
4139 case '<':
4140 case 'e':
4141 case 'r':
4142 case 's':
4143 cmp = 1;
4144 for (i=0; i<tree_code_length[(int) code1]; ++i)
4145 {
4146 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
4147 if (cmp <= 0)
4148 return cmp;
4149 }
4150 return cmp;
4151
4152 default:
4153 return -1;
4154 }
4155 }
4156 \f
4157 /* Constructors for pointer, array and function types.
4158 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4159 constructed by language-dependent code, not here.) */
4160
4161 /* Construct, lay out and return the type of pointers to TO_TYPE.
4162 If such a type has already been constructed, reuse it. */
4163
4164 tree
4165 build_pointer_type (to_type)
4166 tree to_type;
4167 {
4168 register tree t = TYPE_POINTER_TO (to_type);
4169
4170 /* First, if we already have a type for pointers to TO_TYPE, use it. */
4171
4172 if (t)
4173 return t;
4174
4175 /* We need a new one. Put this in the same obstack as TO_TYPE. */
4176 push_obstacks (TYPE_OBSTACK (to_type), TYPE_OBSTACK (to_type));
4177 t = make_node (POINTER_TYPE);
4178 pop_obstacks ();
4179
4180 TREE_TYPE (t) = to_type;
4181
4182 /* Record this type as the pointer to TO_TYPE. */
4183 TYPE_POINTER_TO (to_type) = t;
4184
4185 /* Lay out the type. This function has many callers that are concerned
4186 with expression-construction, and this simplifies them all.
4187 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
4188 layout_type (t);
4189
4190 return t;
4191 }
4192
4193 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
4194 MAXVAL should be the maximum value in the domain
4195 (one less than the length of the array).
4196
4197 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
4198 We don't enforce this limit, that is up to caller (e.g. language front end).
4199 The limit exists because the result is a signed type and we don't handle
4200 sizes that use more than one HOST_WIDE_INT. */
4201
4202 tree
4203 build_index_type (maxval)
4204 tree maxval;
4205 {
4206 register tree itype = make_node (INTEGER_TYPE);
4207
4208 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
4209 TYPE_MIN_VALUE (itype) = size_zero_node;
4210
4211 push_obstacks (TYPE_OBSTACK (itype), TYPE_OBSTACK (itype));
4212 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
4213 pop_obstacks ();
4214
4215 TYPE_MODE (itype) = TYPE_MODE (sizetype);
4216 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
4217 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
4218 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
4219 if (TREE_CODE (maxval) == INTEGER_CST)
4220 {
4221 int maxint = (int) TREE_INT_CST_LOW (maxval);
4222 /* If the domain should be empty, make sure the maxval
4223 remains -1 and is not spoiled by truncation. */
4224 if (INT_CST_LT (maxval, integer_zero_node))
4225 {
4226 TYPE_MAX_VALUE (itype) = build_int_2 (-1, -1);
4227 TREE_TYPE (TYPE_MAX_VALUE (itype)) = sizetype;
4228 }
4229 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
4230 }
4231 else
4232 return itype;
4233 }
4234
4235 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4236 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4237 low bound LOWVAL and high bound HIGHVAL.
4238 if TYPE==NULL_TREE, sizetype is used. */
4239
4240 tree
4241 build_range_type (type, lowval, highval)
4242 tree type, lowval, highval;
4243 {
4244 register tree itype = make_node (INTEGER_TYPE);
4245
4246 TREE_TYPE (itype) = type;
4247 if (type == NULL_TREE)
4248 type = sizetype;
4249
4250 push_obstacks (TYPE_OBSTACK (itype), TYPE_OBSTACK (itype));
4251 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4252 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
4253 pop_obstacks ();
4254
4255 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4256 TYPE_MODE (itype) = TYPE_MODE (type);
4257 TYPE_SIZE (itype) = TYPE_SIZE (type);
4258 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
4259 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4260 if (TREE_CODE (lowval) == INTEGER_CST)
4261 {
4262 HOST_WIDE_INT lowint, highint;
4263 int maxint;
4264
4265 lowint = TREE_INT_CST_LOW (lowval);
4266 if (highval && TREE_CODE (highval) == INTEGER_CST)
4267 highint = TREE_INT_CST_LOW (highval);
4268 else
4269 highint = (~(unsigned HOST_WIDE_INT)0) >> 1;
4270
4271 maxint = (int) (highint - lowint);
4272 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
4273 }
4274 else
4275 return itype;
4276 }
4277
4278 /* Just like build_index_type, but takes lowval and highval instead
4279 of just highval (maxval). */
4280
4281 tree
4282 build_index_2_type (lowval,highval)
4283 tree lowval, highval;
4284 {
4285 return build_range_type (NULL_TREE, lowval, highval);
4286 }
4287
4288 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
4289 Needed because when index types are not hashed, equal index types
4290 built at different times appear distinct, even though structurally,
4291 they are not. */
4292
4293 int
4294 index_type_equal (itype1, itype2)
4295 tree itype1, itype2;
4296 {
4297 if (TREE_CODE (itype1) != TREE_CODE (itype2))
4298 return 0;
4299 if (TREE_CODE (itype1) == INTEGER_TYPE)
4300 {
4301 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
4302 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
4303 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
4304 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
4305 return 0;
4306 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
4307 TYPE_MIN_VALUE (itype2))
4308 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
4309 TYPE_MAX_VALUE (itype2)))
4310 return 1;
4311 }
4312
4313 return 0;
4314 }
4315
4316 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4317 and number of elements specified by the range of values of INDEX_TYPE.
4318 If such a type has already been constructed, reuse it. */
4319
4320 tree
4321 build_array_type (elt_type, index_type)
4322 tree elt_type, index_type;
4323 {
4324 register tree t;
4325 int hashcode;
4326
4327 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4328 {
4329 error ("arrays of functions are not meaningful");
4330 elt_type = integer_type_node;
4331 }
4332
4333 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
4334 build_pointer_type (elt_type);
4335
4336 /* Allocate the array after the pointer type,
4337 in case we free it in type_hash_canon. */
4338 t = make_node (ARRAY_TYPE);
4339 TREE_TYPE (t) = elt_type;
4340 TYPE_DOMAIN (t) = index_type;
4341
4342 if (index_type == 0)
4343 {
4344 return t;
4345 }
4346
4347 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
4348 t = type_hash_canon (hashcode, t);
4349
4350 if (TYPE_SIZE (t) == 0)
4351 layout_type (t);
4352 return t;
4353 }
4354
4355 /* Return the TYPE of the elements comprising
4356 the innermost dimension of ARRAY. */
4357
4358 tree
4359 get_inner_array_type (array)
4360 tree array;
4361 {
4362 tree type = TREE_TYPE (array);
4363
4364 while (TREE_CODE (type) == ARRAY_TYPE)
4365 type = TREE_TYPE (type);
4366
4367 return type;
4368 }
4369
4370 /* Construct, lay out and return
4371 the type of functions returning type VALUE_TYPE
4372 given arguments of types ARG_TYPES.
4373 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4374 are data type nodes for the arguments of the function.
4375 If such a type has already been constructed, reuse it. */
4376
4377 tree
4378 build_function_type (value_type, arg_types)
4379 tree value_type, arg_types;
4380 {
4381 register tree t;
4382 int hashcode;
4383
4384 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4385 {
4386 error ("function return type cannot be function");
4387 value_type = integer_type_node;
4388 }
4389
4390 /* Make a node of the sort we want. */
4391 t = make_node (FUNCTION_TYPE);
4392 TREE_TYPE (t) = value_type;
4393 TYPE_ARG_TYPES (t) = arg_types;
4394
4395 /* If we already have such a type, use the old one and free this one. */
4396 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
4397 t = type_hash_canon (hashcode, t);
4398
4399 if (TYPE_SIZE (t) == 0)
4400 layout_type (t);
4401 return t;
4402 }
4403
4404 /* Build the node for the type of references-to-TO_TYPE. */
4405
4406 tree
4407 build_reference_type (to_type)
4408 tree to_type;
4409 {
4410 register tree t = TYPE_REFERENCE_TO (to_type);
4411
4412 /* First, if we already have a type for pointers to TO_TYPE, use it. */
4413
4414 if (t)
4415 return t;
4416
4417 /* We need a new one. Put this in the same obstack as TO_TYPE. */
4418 push_obstacks (TYPE_OBSTACK (to_type), TYPE_OBSTACK (to_type));
4419 t = make_node (REFERENCE_TYPE);
4420 pop_obstacks ();
4421
4422 TREE_TYPE (t) = to_type;
4423
4424 /* Record this type as the pointer to TO_TYPE. */
4425 TYPE_REFERENCE_TO (to_type) = t;
4426
4427 layout_type (t);
4428
4429 return t;
4430 }
4431
4432 /* Construct, lay out and return the type of methods belonging to class
4433 BASETYPE and whose arguments and values are described by TYPE.
4434 If that type exists already, reuse it.
4435 TYPE must be a FUNCTION_TYPE node. */
4436
4437 tree
4438 build_method_type (basetype, type)
4439 tree basetype, type;
4440 {
4441 register tree t;
4442 int hashcode;
4443
4444 /* Make a node of the sort we want. */
4445 t = make_node (METHOD_TYPE);
4446
4447 if (TREE_CODE (type) != FUNCTION_TYPE)
4448 abort ();
4449
4450 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4451 TREE_TYPE (t) = TREE_TYPE (type);
4452
4453 /* The actual arglist for this function includes a "hidden" argument
4454 which is "this". Put it into the list of argument types. */
4455
4456 TYPE_ARG_TYPES (t)
4457 = tree_cons (NULL_TREE,
4458 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
4459
4460 /* If we already have such a type, use the old one and free this one. */
4461 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4462 t = type_hash_canon (hashcode, t);
4463
4464 if (TYPE_SIZE (t) == 0)
4465 layout_type (t);
4466
4467 return t;
4468 }
4469
4470 /* Construct, lay out and return the type of offsets to a value
4471 of type TYPE, within an object of type BASETYPE.
4472 If a suitable offset type exists already, reuse it. */
4473
4474 tree
4475 build_offset_type (basetype, type)
4476 tree basetype, type;
4477 {
4478 register tree t;
4479 int hashcode;
4480
4481 /* Make a node of the sort we want. */
4482 t = make_node (OFFSET_TYPE);
4483
4484 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4485 TREE_TYPE (t) = type;
4486
4487 /* If we already have such a type, use the old one and free this one. */
4488 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4489 t = type_hash_canon (hashcode, t);
4490
4491 if (TYPE_SIZE (t) == 0)
4492 layout_type (t);
4493
4494 return t;
4495 }
4496
4497 /* Create a complex type whose components are COMPONENT_TYPE. */
4498
4499 tree
4500 build_complex_type (component_type)
4501 tree component_type;
4502 {
4503 register tree t;
4504 int hashcode;
4505
4506 /* Make a node of the sort we want. */
4507 t = make_node (COMPLEX_TYPE);
4508
4509 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4510 set_type_quals (t, TYPE_QUALS (component_type));
4511
4512 /* If we already have such a type, use the old one and free this one. */
4513 hashcode = TYPE_HASH (component_type);
4514 t = type_hash_canon (hashcode, t);
4515
4516 if (TYPE_SIZE (t) == 0)
4517 layout_type (t);
4518
4519 /* If we are writing Dwarf2 output we need to create a name,
4520 since complex is a fundamental type. */
4521 if (write_symbols == DWARF2_DEBUG && ! TYPE_NAME (t))
4522 {
4523 const char *name;
4524 if (component_type == char_type_node)
4525 name = "complex char";
4526 else if (component_type == signed_char_type_node)
4527 name = "complex signed char";
4528 else if (component_type == unsigned_char_type_node)
4529 name = "complex unsigned char";
4530 else if (component_type == short_integer_type_node)
4531 name = "complex short int";
4532 else if (component_type == short_unsigned_type_node)
4533 name = "complex short unsigned int";
4534 else if (component_type == integer_type_node)
4535 name = "complex int";
4536 else if (component_type == unsigned_type_node)
4537 name = "complex unsigned int";
4538 else if (component_type == long_integer_type_node)
4539 name = "complex long int";
4540 else if (component_type == long_unsigned_type_node)
4541 name = "complex long unsigned int";
4542 else if (component_type == long_long_integer_type_node)
4543 name = "complex long long int";
4544 else if (component_type == long_long_unsigned_type_node)
4545 name = "complex long long unsigned int";
4546 else
4547 name = (char *)0;
4548
4549 if (name)
4550 TYPE_NAME (t) = get_identifier (name);
4551 }
4552
4553 return t;
4554 }
4555 \f
4556 /* Return OP, stripped of any conversions to wider types as much as is safe.
4557 Converting the value back to OP's type makes a value equivalent to OP.
4558
4559 If FOR_TYPE is nonzero, we return a value which, if converted to
4560 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4561
4562 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4563 narrowest type that can hold the value, even if they don't exactly fit.
4564 Otherwise, bit-field references are changed to a narrower type
4565 only if they can be fetched directly from memory in that type.
4566
4567 OP must have integer, real or enumeral type. Pointers are not allowed!
4568
4569 There are some cases where the obvious value we could return
4570 would regenerate to OP if converted to OP's type,
4571 but would not extend like OP to wider types.
4572 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4573 For example, if OP is (unsigned short)(signed char)-1,
4574 we avoid returning (signed char)-1 if FOR_TYPE is int,
4575 even though extending that to an unsigned short would regenerate OP,
4576 since the result of extending (signed char)-1 to (int)
4577 is different from (int) OP. */
4578
4579 tree
4580 get_unwidened (op, for_type)
4581 register tree op;
4582 tree for_type;
4583 {
4584 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4585 register tree type = TREE_TYPE (op);
4586 register unsigned final_prec
4587 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4588 register int uns
4589 = (for_type != 0 && for_type != type
4590 && final_prec > TYPE_PRECISION (type)
4591 && TREE_UNSIGNED (type));
4592 register tree win = op;
4593
4594 while (TREE_CODE (op) == NOP_EXPR)
4595 {
4596 register int bitschange
4597 = TYPE_PRECISION (TREE_TYPE (op))
4598 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4599
4600 /* Truncations are many-one so cannot be removed.
4601 Unless we are later going to truncate down even farther. */
4602 if (bitschange < 0
4603 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4604 break;
4605
4606 /* See what's inside this conversion. If we decide to strip it,
4607 we will set WIN. */
4608 op = TREE_OPERAND (op, 0);
4609
4610 /* If we have not stripped any zero-extensions (uns is 0),
4611 we can strip any kind of extension.
4612 If we have previously stripped a zero-extension,
4613 only zero-extensions can safely be stripped.
4614 Any extension can be stripped if the bits it would produce
4615 are all going to be discarded later by truncating to FOR_TYPE. */
4616
4617 if (bitschange > 0)
4618 {
4619 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4620 win = op;
4621 /* TREE_UNSIGNED says whether this is a zero-extension.
4622 Let's avoid computing it if it does not affect WIN
4623 and if UNS will not be needed again. */
4624 if ((uns || TREE_CODE (op) == NOP_EXPR)
4625 && TREE_UNSIGNED (TREE_TYPE (op)))
4626 {
4627 uns = 1;
4628 win = op;
4629 }
4630 }
4631 }
4632
4633 if (TREE_CODE (op) == COMPONENT_REF
4634 /* Since type_for_size always gives an integer type. */
4635 && TREE_CODE (type) != REAL_TYPE
4636 /* Don't crash if field not laid out yet. */
4637 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4638 {
4639 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4640 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
4641
4642 /* We can get this structure field in the narrowest type it fits in.
4643 If FOR_TYPE is 0, do this only for a field that matches the
4644 narrower type exactly and is aligned for it
4645 The resulting extension to its nominal type (a fullword type)
4646 must fit the same conditions as for other extensions. */
4647
4648 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4649 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4650 && (! uns || final_prec <= innerprec
4651 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4652 && type != 0)
4653 {
4654 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4655 TREE_OPERAND (op, 1));
4656 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4657 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4658 TREE_RAISES (win) = TREE_RAISES (op);
4659 }
4660 }
4661 return win;
4662 }
4663 \f
4664 /* Return OP or a simpler expression for a narrower value
4665 which can be sign-extended or zero-extended to give back OP.
4666 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4667 or 0 if the value should be sign-extended. */
4668
4669 tree
4670 get_narrower (op, unsignedp_ptr)
4671 register tree op;
4672 int *unsignedp_ptr;
4673 {
4674 register int uns = 0;
4675 int first = 1;
4676 register tree win = op;
4677
4678 while (TREE_CODE (op) == NOP_EXPR)
4679 {
4680 register int bitschange
4681 = TYPE_PRECISION (TREE_TYPE (op))
4682 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4683
4684 /* Truncations are many-one so cannot be removed. */
4685 if (bitschange < 0)
4686 break;
4687
4688 /* See what's inside this conversion. If we decide to strip it,
4689 we will set WIN. */
4690 op = TREE_OPERAND (op, 0);
4691
4692 if (bitschange > 0)
4693 {
4694 /* An extension: the outermost one can be stripped,
4695 but remember whether it is zero or sign extension. */
4696 if (first)
4697 uns = TREE_UNSIGNED (TREE_TYPE (op));
4698 /* Otherwise, if a sign extension has been stripped,
4699 only sign extensions can now be stripped;
4700 if a zero extension has been stripped, only zero-extensions. */
4701 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4702 break;
4703 first = 0;
4704 }
4705 else /* bitschange == 0 */
4706 {
4707 /* A change in nominal type can always be stripped, but we must
4708 preserve the unsignedness. */
4709 if (first)
4710 uns = TREE_UNSIGNED (TREE_TYPE (op));
4711 first = 0;
4712 }
4713
4714 win = op;
4715 }
4716
4717 if (TREE_CODE (op) == COMPONENT_REF
4718 /* Since type_for_size always gives an integer type. */
4719 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE)
4720 {
4721 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4722 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
4723
4724 /* We can get this structure field in a narrower type that fits it,
4725 but the resulting extension to its nominal type (a fullword type)
4726 must satisfy the same conditions as for other extensions.
4727
4728 Do this only for fields that are aligned (not bit-fields),
4729 because when bit-field insns will be used there is no
4730 advantage in doing this. */
4731
4732 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4733 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4734 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4735 && type != 0)
4736 {
4737 if (first)
4738 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4739 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4740 TREE_OPERAND (op, 1));
4741 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4742 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4743 TREE_RAISES (win) = TREE_RAISES (op);
4744 }
4745 }
4746 *unsignedp_ptr = uns;
4747 return win;
4748 }
4749 \f
4750 /* Nonzero if integer constant C has a value that is permissible
4751 for type TYPE (an INTEGER_TYPE). */
4752
4753 int
4754 int_fits_type_p (c, type)
4755 tree c, type;
4756 {
4757 if (TREE_UNSIGNED (type))
4758 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4759 && INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c))
4760 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
4761 && INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type)))
4762 /* Negative ints never fit unsigned types. */
4763 && ! (TREE_INT_CST_HIGH (c) < 0
4764 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4765 else
4766 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4767 && INT_CST_LT (TYPE_MAX_VALUE (type), c))
4768 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
4769 && INT_CST_LT (c, TYPE_MIN_VALUE (type)))
4770 /* Unsigned ints with top bit set never fit signed types. */
4771 && ! (TREE_INT_CST_HIGH (c) < 0
4772 && TREE_UNSIGNED (TREE_TYPE (c))));
4773 }
4774
4775 /* Return the innermost context enclosing DECL that is
4776 a FUNCTION_DECL, or zero if none. */
4777
4778 tree
4779 decl_function_context (decl)
4780 tree decl;
4781 {
4782 tree context;
4783
4784 if (TREE_CODE (decl) == ERROR_MARK)
4785 return 0;
4786
4787 if (TREE_CODE (decl) == SAVE_EXPR)
4788 context = SAVE_EXPR_CONTEXT (decl);
4789 else
4790 context = DECL_CONTEXT (decl);
4791
4792 while (context && TREE_CODE (context) != FUNCTION_DECL)
4793 {
4794 if (TREE_CODE_CLASS (TREE_CODE (context)) == 't')
4795 context = TYPE_CONTEXT (context);
4796 else if (TREE_CODE_CLASS (TREE_CODE (context)) == 'd')
4797 context = DECL_CONTEXT (context);
4798 else if (TREE_CODE (context) == BLOCK)
4799 context = BLOCK_SUPERCONTEXT (context);
4800 else
4801 /* Unhandled CONTEXT !? */
4802 abort ();
4803 }
4804
4805 return context;
4806 }
4807
4808 /* Return the innermost context enclosing DECL that is
4809 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4810 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4811
4812 tree
4813 decl_type_context (decl)
4814 tree decl;
4815 {
4816 tree context = DECL_CONTEXT (decl);
4817
4818 while (context)
4819 {
4820 if (TREE_CODE (context) == RECORD_TYPE
4821 || TREE_CODE (context) == UNION_TYPE
4822 || TREE_CODE (context) == QUAL_UNION_TYPE)
4823 return context;
4824 if (TREE_CODE (context) == TYPE_DECL
4825 || TREE_CODE (context) == FUNCTION_DECL)
4826 context = DECL_CONTEXT (context);
4827 else if (TREE_CODE (context) == BLOCK)
4828 context = BLOCK_SUPERCONTEXT (context);
4829 else
4830 /* Unhandled CONTEXT!? */
4831 abort ();
4832 }
4833 return NULL_TREE;
4834 }
4835
4836 /* Print debugging information about the obstack O, named STR. */
4837
4838 void
4839 print_obstack_statistics (str, o)
4840 const char *str;
4841 struct obstack *o;
4842 {
4843 struct _obstack_chunk *chunk = o->chunk;
4844 int n_chunks = 1;
4845 int n_alloc = 0;
4846
4847 n_alloc += o->next_free - chunk->contents;
4848 chunk = chunk->prev;
4849 while (chunk)
4850 {
4851 n_chunks += 1;
4852 n_alloc += chunk->limit - &chunk->contents[0];
4853 chunk = chunk->prev;
4854 }
4855 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4856 str, n_alloc, n_chunks);
4857 }
4858
4859 /* Print debugging information about tree nodes generated during the compile,
4860 and any language-specific information. */
4861
4862 void
4863 dump_tree_statistics ()
4864 {
4865 #ifdef GATHER_STATISTICS
4866 int i;
4867 int total_nodes, total_bytes;
4868 #endif
4869
4870 fprintf (stderr, "\n??? tree nodes created\n\n");
4871 #ifdef GATHER_STATISTICS
4872 fprintf (stderr, "Kind Nodes Bytes\n");
4873 fprintf (stderr, "-------------------------------------\n");
4874 total_nodes = total_bytes = 0;
4875 for (i = 0; i < (int) all_kinds; i++)
4876 {
4877 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4878 tree_node_counts[i], tree_node_sizes[i]);
4879 total_nodes += tree_node_counts[i];
4880 total_bytes += tree_node_sizes[i];
4881 }
4882 fprintf (stderr, "%-20s %9d\n", "identifier names", id_string_size);
4883 fprintf (stderr, "-------------------------------------\n");
4884 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4885 fprintf (stderr, "-------------------------------------\n");
4886 #else
4887 fprintf (stderr, "(No per-node statistics)\n");
4888 #endif
4889 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
4890 print_obstack_statistics ("maybepermanent_obstack", &maybepermanent_obstack);
4891 print_obstack_statistics ("temporary_obstack", &temporary_obstack);
4892 print_obstack_statistics ("momentary_obstack", &momentary_obstack);
4893 print_obstack_statistics ("temp_decl_obstack", &temp_decl_obstack);
4894 print_lang_statistics ();
4895 }
4896 \f
4897 #define FILE_FUNCTION_PREFIX_LEN 9
4898
4899 #ifndef NO_DOLLAR_IN_LABEL
4900 #define FILE_FUNCTION_FORMAT "_GLOBAL_$%s$%s"
4901 #else /* NO_DOLLAR_IN_LABEL */
4902 #ifndef NO_DOT_IN_LABEL
4903 #define FILE_FUNCTION_FORMAT "_GLOBAL_.%s.%s"
4904 #else /* NO_DOT_IN_LABEL */
4905 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4906 #endif /* NO_DOT_IN_LABEL */
4907 #endif /* NO_DOLLAR_IN_LABEL */
4908
4909 extern char * first_global_object_name;
4910 extern char * weak_global_object_name;
4911
4912 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4913 clashes in cases where we can't reliably choose a unique name.
4914
4915 Derived from mkstemp.c in libiberty. */
4916
4917 static void
4918 append_random_chars (template)
4919 char *template;
4920 {
4921 static const char letters[]
4922 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4923 static unsigned HOST_WIDE_INT value;
4924 unsigned HOST_WIDE_INT v;
4925
4926 #ifdef HAVE_GETTIMEOFDAY
4927 struct timeval tv;
4928 #endif
4929
4930 template += strlen (template);
4931
4932 #ifdef HAVE_GETTIMEOFDAY
4933 /* Get some more or less random data. */
4934 gettimeofday (&tv, NULL);
4935 value += ((unsigned HOST_WIDE_INT) tv.tv_usec << 16) ^ tv.tv_sec ^ getpid ();
4936 #else
4937 value += getpid ();
4938 #endif
4939
4940 v = value;
4941
4942 /* Fill in the random bits. */
4943 template[0] = letters[v % 62];
4944 v /= 62;
4945 template[1] = letters[v % 62];
4946 v /= 62;
4947 template[2] = letters[v % 62];
4948 v /= 62;
4949 template[3] = letters[v % 62];
4950 v /= 62;
4951 template[4] = letters[v % 62];
4952 v /= 62;
4953 template[5] = letters[v % 62];
4954
4955 template[6] = '\0';
4956 }
4957
4958 /* Generate a name for a function unique to this translation unit.
4959 TYPE is some string to identify the purpose of this function to the
4960 linker or collect2. */
4961
4962 tree
4963 get_file_function_name_long (type)
4964 const char *type;
4965 {
4966 char *buf;
4967 register char *p;
4968
4969 if (first_global_object_name)
4970 p = first_global_object_name;
4971 else
4972 {
4973 /* We don't have anything that we know to be unique to this translation
4974 unit, so use what we do have and throw in some randomness. */
4975
4976 const char *name = weak_global_object_name;
4977 const char *file = main_input_filename;
4978
4979 if (! name)
4980 name = "";
4981 if (! file)
4982 file = input_filename;
4983
4984 p = (char *) alloca (7 + strlen (name) + strlen (file));
4985
4986 sprintf (p, "%s%s", name, file);
4987 append_random_chars (p);
4988 }
4989
4990 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4991 + strlen (type));
4992
4993 /* Set up the name of the file-level functions we may need. */
4994 /* Use a global object (which is already required to be unique over
4995 the program) rather than the file name (which imposes extra
4996 constraints). -- Raeburn@MIT.EDU, 10 Jan 1990. */
4997 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4998
4999 /* Don't need to pull weird characters out of global names. */
5000 if (p != first_global_object_name)
5001 {
5002 for (p = buf+11; *p; p++)
5003 if (! ( ISDIGIT(*p)
5004 #if 0 /* we always want labels, which are valid C++ identifiers (+ `$') */
5005 #ifndef ASM_IDENTIFY_GCC /* this is required if `.' is invalid -- k. raeburn */
5006 || *p == '.'
5007 #endif
5008 #endif
5009 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
5010 || *p == '$'
5011 #endif
5012 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
5013 || *p == '.'
5014 #endif
5015 || ISUPPER(*p)
5016 || ISLOWER(*p)))
5017 *p = '_';
5018 }
5019
5020 return get_identifier (buf);
5021 }
5022
5023 /* If KIND=='I', return a suitable global initializer (constructor) name.
5024 If KIND=='D', return a suitable global clean-up (destructor) name. */
5025
5026 tree
5027 get_file_function_name (kind)
5028 int kind;
5029 {
5030 char p[2];
5031 p[0] = kind;
5032 p[1] = 0;
5033
5034 return get_file_function_name_long (p);
5035 }
5036
5037 \f
5038 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5039 The result is placed in BUFFER (which has length BIT_SIZE),
5040 with one bit in each char ('\000' or '\001').
5041
5042 If the constructor is constant, NULL_TREE is returned.
5043 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5044
5045 tree
5046 get_set_constructor_bits (init, buffer, bit_size)
5047 tree init;
5048 char *buffer;
5049 int bit_size;
5050 {
5051 int i;
5052 tree vals;
5053 HOST_WIDE_INT domain_min
5054 = TREE_INT_CST_LOW (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))));
5055 tree non_const_bits = NULL_TREE;
5056 for (i = 0; i < bit_size; i++)
5057 buffer[i] = 0;
5058
5059 for (vals = TREE_OPERAND (init, 1);
5060 vals != NULL_TREE; vals = TREE_CHAIN (vals))
5061 {
5062 if (TREE_CODE (TREE_VALUE (vals)) != INTEGER_CST
5063 || (TREE_PURPOSE (vals) != NULL_TREE
5064 && TREE_CODE (TREE_PURPOSE (vals)) != INTEGER_CST))
5065 non_const_bits
5066 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
5067 else if (TREE_PURPOSE (vals) != NULL_TREE)
5068 {
5069 /* Set a range of bits to ones. */
5070 HOST_WIDE_INT lo_index
5071 = TREE_INT_CST_LOW (TREE_PURPOSE (vals)) - domain_min;
5072 HOST_WIDE_INT hi_index
5073 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
5074 if (lo_index < 0 || lo_index >= bit_size
5075 || hi_index < 0 || hi_index >= bit_size)
5076 abort ();
5077 for ( ; lo_index <= hi_index; lo_index++)
5078 buffer[lo_index] = 1;
5079 }
5080 else
5081 {
5082 /* Set a single bit to one. */
5083 HOST_WIDE_INT index
5084 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
5085 if (index < 0 || index >= bit_size)
5086 {
5087 error ("invalid initializer for bit string");
5088 return NULL_TREE;
5089 }
5090 buffer[index] = 1;
5091 }
5092 }
5093 return non_const_bits;
5094 }
5095
5096 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5097 The result is placed in BUFFER (which is an array of bytes).
5098 If the constructor is constant, NULL_TREE is returned.
5099 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5100
5101 tree
5102 get_set_constructor_bytes (init, buffer, wd_size)
5103 tree init;
5104 unsigned char *buffer;
5105 int wd_size;
5106 {
5107 int i;
5108 int set_word_size = BITS_PER_UNIT;
5109 int bit_size = wd_size * set_word_size;
5110 int bit_pos = 0;
5111 unsigned char *bytep = buffer;
5112 char *bit_buffer = (char *) alloca(bit_size);
5113 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
5114
5115 for (i = 0; i < wd_size; i++)
5116 buffer[i] = 0;
5117
5118 for (i = 0; i < bit_size; i++)
5119 {
5120 if (bit_buffer[i])
5121 {
5122 if (BYTES_BIG_ENDIAN)
5123 *bytep |= (1 << (set_word_size - 1 - bit_pos));
5124 else
5125 *bytep |= 1 << bit_pos;
5126 }
5127 bit_pos++;
5128 if (bit_pos >= set_word_size)
5129 bit_pos = 0, bytep++;
5130 }
5131 return non_const_bits;
5132 }
5133 \f
5134 #if defined ENABLE_CHECKING && HAVE_GCC_VERSION(2,7)
5135 /* Complain that the tree code of NODE does not match the expected CODE.
5136 FILE, LINE, and FUNCTION are of the caller. */
5137 void
5138 tree_check_failed (node, code, file, line, function)
5139 const tree node;
5140 enum tree_code code;
5141 const char *file;
5142 int line;
5143 const char *function;
5144 {
5145 error ("Tree check: expected %s, have %s",
5146 tree_code_name[code], tree_code_name[TREE_CODE (node)]);
5147 fancy_abort (file, line, function);
5148 }
5149
5150 /* Similar to above, except that we check for a class of tree
5151 code, given in CL. */
5152 void
5153 tree_class_check_failed (node, cl, file, line, function)
5154 const tree node;
5155 char cl;
5156 const char *file;
5157 int line;
5158 const char *function;
5159 {
5160 error ("Tree check: expected class '%c', have '%c' (%s)",
5161 cl, TREE_CODE_CLASS (TREE_CODE (node)),
5162 tree_code_name[TREE_CODE (node)]);
5163 fancy_abort (file, line, function);
5164 }
5165
5166 #endif /* ENABLE_CHECKING */
5167
5168 /* Return the alias set for T, which may be either a type or an
5169 expression. */
5170
5171 int
5172 get_alias_set (t)
5173 tree t;
5174 {
5175 if (!flag_strict_aliasing || !lang_get_alias_set)
5176 /* If we're not doing any lanaguage-specific alias analysis, just
5177 assume everything aliases everything else. */
5178 return 0;
5179 else
5180 return (*lang_get_alias_set) (t);
5181 }
5182
5183 /* Return a brand-new alias set. */
5184
5185 int
5186 new_alias_set ()
5187 {
5188 static int last_alias_set;
5189 if (flag_strict_aliasing)
5190 return ++last_alias_set;
5191 else
5192 return 0;
5193 }
5194 \f
5195 #ifndef CHAR_TYPE_SIZE
5196 #define CHAR_TYPE_SIZE BITS_PER_UNIT
5197 #endif
5198
5199 #ifndef SHORT_TYPE_SIZE
5200 #define SHORT_TYPE_SIZE (BITS_PER_UNIT * MIN ((UNITS_PER_WORD + 1) / 2, 2))
5201 #endif
5202
5203 #ifndef INT_TYPE_SIZE
5204 #define INT_TYPE_SIZE BITS_PER_WORD
5205 #endif
5206
5207 #ifndef LONG_TYPE_SIZE
5208 #define LONG_TYPE_SIZE BITS_PER_WORD
5209 #endif
5210
5211 #ifndef LONG_LONG_TYPE_SIZE
5212 #define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2)
5213 #endif
5214
5215 #ifndef FLOAT_TYPE_SIZE
5216 #define FLOAT_TYPE_SIZE BITS_PER_WORD
5217 #endif
5218
5219 #ifndef DOUBLE_TYPE_SIZE
5220 #define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
5221 #endif
5222
5223 #ifndef LONG_DOUBLE_TYPE_SIZE
5224 #define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
5225 #endif
5226
5227 /* Create nodes for all integer types (and error_mark_node) using the sizes
5228 of C datatypes. The caller should call set_sizetype soon after calling
5229 this function to select one of the types as sizetype. */
5230
5231 void
5232 build_common_tree_nodes (signed_char)
5233 int signed_char;
5234 {
5235 error_mark_node = make_node (ERROR_MARK);
5236 TREE_TYPE (error_mark_node) = error_mark_node;
5237
5238 /* Define both `signed char' and `unsigned char'. */
5239 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
5240 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
5241
5242 /* Define `char', which is like either `signed char' or `unsigned char'
5243 but not the same as either. */
5244 char_type_node
5245 = (signed_char
5246 ? make_signed_type (CHAR_TYPE_SIZE)
5247 : make_unsigned_type (CHAR_TYPE_SIZE));
5248
5249 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
5250 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
5251 integer_type_node = make_signed_type (INT_TYPE_SIZE);
5252 /* Define an unsigned integer first. make_unsigned_type and make_signed_type
5253 both call set_sizetype for the first type that we create, and we want this
5254 to be large enough to hold the sizes of various types until we switch to
5255 the real sizetype. */
5256 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
5257 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
5258 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
5259 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
5260 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
5261
5262 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
5263 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
5264 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
5265 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
5266 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
5267
5268 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
5269 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
5270 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
5271 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
5272 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
5273 }
5274
5275 /* For type TYPE, fill in the proper type for TYPE_SIZE and
5276 TYPE_SIZE_UNIT. */
5277 static void
5278 fix_sizetype (type)
5279 tree type;
5280 {
5281 TREE_TYPE (TYPE_SIZE (type)) = bitsizetype;
5282 TREE_TYPE (TYPE_SIZE_UNIT (type)) = sizetype;
5283 }
5284
5285 /* Call this function after calling build_common_tree_nodes and set_sizetype.
5286 It will fix the previously made nodes to have proper references to
5287 sizetype, and it will create several other common tree nodes. */
5288 void
5289 build_common_tree_nodes_2 (short_double)
5290 int short_double;
5291 {
5292 fix_sizetype (signed_char_type_node);
5293 fix_sizetype (unsigned_char_type_node);
5294 fix_sizetype (char_type_node);
5295 fix_sizetype (short_integer_type_node);
5296 fix_sizetype (short_unsigned_type_node);
5297 fix_sizetype (integer_type_node);
5298 fix_sizetype (unsigned_type_node);
5299 fix_sizetype (long_unsigned_type_node);
5300 fix_sizetype (long_integer_type_node);
5301 fix_sizetype (long_long_integer_type_node);
5302 fix_sizetype (long_long_unsigned_type_node);
5303
5304 fix_sizetype (intQI_type_node);
5305 fix_sizetype (intHI_type_node);
5306 fix_sizetype (intSI_type_node);
5307 fix_sizetype (intDI_type_node);
5308 fix_sizetype (intTI_type_node);
5309 fix_sizetype (unsigned_intQI_type_node);
5310 fix_sizetype (unsigned_intHI_type_node);
5311 fix_sizetype (unsigned_intSI_type_node);
5312 fix_sizetype (unsigned_intDI_type_node);
5313 fix_sizetype (unsigned_intTI_type_node);
5314
5315 integer_zero_node = build_int_2 (0, 0);
5316 TREE_TYPE (integer_zero_node) = integer_type_node;
5317 integer_one_node = build_int_2 (1, 0);
5318 TREE_TYPE (integer_one_node) = integer_type_node;
5319
5320 size_zero_node = build_int_2 (0, 0);
5321 TREE_TYPE (size_zero_node) = sizetype;
5322 size_one_node = build_int_2 (1, 0);
5323 TREE_TYPE (size_one_node) = sizetype;
5324
5325 void_type_node = make_node (VOID_TYPE);
5326 layout_type (void_type_node); /* Uses size_zero_node */
5327 /* We are not going to have real types in C with less than byte alignment,
5328 so we might as well not have any types that claim to have it. */
5329 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
5330
5331 null_pointer_node = build_int_2 (0, 0);
5332 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
5333 layout_type (TREE_TYPE (null_pointer_node));
5334
5335 ptr_type_node = build_pointer_type (void_type_node);
5336 const_ptr_type_node
5337 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
5338
5339 float_type_node = make_node (REAL_TYPE);
5340 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
5341 layout_type (float_type_node);
5342
5343 double_type_node = make_node (REAL_TYPE);
5344 if (short_double)
5345 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
5346 else
5347 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
5348 layout_type (double_type_node);
5349
5350 long_double_type_node = make_node (REAL_TYPE);
5351 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
5352 layout_type (long_double_type_node);
5353
5354 complex_integer_type_node = make_node (COMPLEX_TYPE);
5355 TREE_TYPE (complex_integer_type_node) = integer_type_node;
5356 layout_type (complex_integer_type_node);
5357
5358 complex_float_type_node = make_node (COMPLEX_TYPE);
5359 TREE_TYPE (complex_float_type_node) = float_type_node;
5360 layout_type (complex_float_type_node);
5361
5362 complex_double_type_node = make_node (COMPLEX_TYPE);
5363 TREE_TYPE (complex_double_type_node) = double_type_node;
5364 layout_type (complex_double_type_node);
5365
5366 complex_long_double_type_node = make_node (COMPLEX_TYPE);
5367 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
5368 layout_type (complex_long_double_type_node);
5369
5370 #ifdef BUILD_VA_LIST_TYPE
5371 BUILD_VA_LIST_TYPE(va_list_type_node);
5372 #else
5373 va_list_type_node = ptr_type_node;
5374 #endif
5375 }
This page took 0.243506 seconds and 6 git commands to generate.