]> gcc.gnu.org Git - gcc.git/blob - gcc/tree.c
re PR middle-end/41347 (ICE with -O3 or '-O2 -finline-functions')
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-inline.h"
49 #include "tree-iterator.h"
50 #include "basic-block.h"
51 #include "tree-flow.h"
52 #include "params.h"
53 #include "pointer-set.h"
54 #include "fixed-value.h"
55 #include "tree-pass.h"
56 #include "langhooks-def.h"
57 #include "diagnostic.h"
58 #include "cgraph.h"
59 #include "timevar.h"
60 #include "except.h"
61 #include "debug.h"
62
63 /* Tree code classes. */
64
65 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
66 #define END_OF_BASE_TREE_CODES tcc_exceptional,
67
68 const enum tree_code_class tree_code_type[] = {
69 #include "all-tree.def"
70 };
71
72 #undef DEFTREECODE
73 #undef END_OF_BASE_TREE_CODES
74
75 /* Table indexed by tree code giving number of expression
76 operands beyond the fixed part of the node structure.
77 Not used for types or decls. */
78
79 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
80 #define END_OF_BASE_TREE_CODES 0,
81
82 const unsigned char tree_code_length[] = {
83 #include "all-tree.def"
84 };
85
86 #undef DEFTREECODE
87 #undef END_OF_BASE_TREE_CODES
88
89 /* Names of tree components.
90 Used for printing out the tree and error messages. */
91 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
92 #define END_OF_BASE_TREE_CODES "@dummy",
93
94 const char *const tree_code_name[] = {
95 #include "all-tree.def"
96 };
97
98 #undef DEFTREECODE
99 #undef END_OF_BASE_TREE_CODES
100
101 /* Each tree code class has an associated string representation.
102 These must correspond to the tree_code_class entries. */
103
104 const char *const tree_code_class_strings[] =
105 {
106 "exceptional",
107 "constant",
108 "type",
109 "declaration",
110 "reference",
111 "comparison",
112 "unary",
113 "binary",
114 "statement",
115 "vl_exp",
116 "expression"
117 };
118
119 /* obstack.[ch] explicitly declined to prototype this. */
120 extern int _obstack_allocated_p (struct obstack *h, void *obj);
121
122 #ifdef GATHER_STATISTICS
123 /* Statistics-gathering stuff. */
124
125 int tree_node_counts[(int) all_kinds];
126 int tree_node_sizes[(int) all_kinds];
127
128 /* Keep in sync with tree.h:enum tree_node_kind. */
129 static const char * const tree_node_kind_names[] = {
130 "decls",
131 "types",
132 "blocks",
133 "stmts",
134 "refs",
135 "exprs",
136 "constants",
137 "identifiers",
138 "perm_tree_lists",
139 "temp_tree_lists",
140 "vecs",
141 "binfos",
142 "ssa names",
143 "constructors",
144 "random kinds",
145 "lang_decl kinds",
146 "lang_type kinds",
147 "omp clauses",
148 };
149 #endif /* GATHER_STATISTICS */
150
151 /* Unique id for next decl created. */
152 static GTY(()) int next_decl_uid;
153 /* Unique id for next type created. */
154 static GTY(()) int next_type_uid = 1;
155
156 /* Since we cannot rehash a type after it is in the table, we have to
157 keep the hash code. */
158
159 struct GTY(()) type_hash {
160 unsigned long hash;
161 tree type;
162 };
163
164 /* Initial size of the hash table (rounded to next prime). */
165 #define TYPE_HASH_INITIAL_SIZE 1000
166
167 /* Now here is the hash table. When recording a type, it is added to
168 the slot whose index is the hash code. Note that the hash table is
169 used for several kinds of types (function types, array types and
170 array index range types, for now). While all these live in the
171 same table, they are completely independent, and the hash code is
172 computed differently for each of these. */
173
174 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
175 htab_t type_hash_table;
176
177 /* Hash table and temporary node for larger integer const values. */
178 static GTY (()) tree int_cst_node;
179 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
180 htab_t int_cst_hash_table;
181
182 /* Hash table for optimization flags and target option flags. Use the same
183 hash table for both sets of options. Nodes for building the current
184 optimization and target option nodes. The assumption is most of the time
185 the options created will already be in the hash table, so we avoid
186 allocating and freeing up a node repeatably. */
187 static GTY (()) tree cl_optimization_node;
188 static GTY (()) tree cl_target_option_node;
189 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
190 htab_t cl_option_hash_table;
191
192 /* General tree->tree mapping structure for use in hash tables. */
193
194
195 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
196 htab_t debug_expr_for_decl;
197
198 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
199 htab_t value_expr_for_decl;
200
201 static GTY ((if_marked ("tree_priority_map_marked_p"),
202 param_is (struct tree_priority_map)))
203 htab_t init_priority_for_decl;
204
205 static void set_type_quals (tree, int);
206 static int type_hash_eq (const void *, const void *);
207 static hashval_t type_hash_hash (const void *);
208 static hashval_t int_cst_hash_hash (const void *);
209 static int int_cst_hash_eq (const void *, const void *);
210 static hashval_t cl_option_hash_hash (const void *);
211 static int cl_option_hash_eq (const void *, const void *);
212 static void print_type_hash_statistics (void);
213 static void print_debug_expr_statistics (void);
214 static void print_value_expr_statistics (void);
215 static int type_hash_marked_p (const void *);
216 static unsigned int type_hash_list (const_tree, hashval_t);
217 static unsigned int attribute_hash_list (const_tree, hashval_t);
218
219 tree global_trees[TI_MAX];
220 tree integer_types[itk_none];
221
222 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
223
224 /* Number of operands for each OpenMP clause. */
225 unsigned const char omp_clause_num_ops[] =
226 {
227 0, /* OMP_CLAUSE_ERROR */
228 1, /* OMP_CLAUSE_PRIVATE */
229 1, /* OMP_CLAUSE_SHARED */
230 1, /* OMP_CLAUSE_FIRSTPRIVATE */
231 2, /* OMP_CLAUSE_LASTPRIVATE */
232 4, /* OMP_CLAUSE_REDUCTION */
233 1, /* OMP_CLAUSE_COPYIN */
234 1, /* OMP_CLAUSE_COPYPRIVATE */
235 1, /* OMP_CLAUSE_IF */
236 1, /* OMP_CLAUSE_NUM_THREADS */
237 1, /* OMP_CLAUSE_SCHEDULE */
238 0, /* OMP_CLAUSE_NOWAIT */
239 0, /* OMP_CLAUSE_ORDERED */
240 0, /* OMP_CLAUSE_DEFAULT */
241 3, /* OMP_CLAUSE_COLLAPSE */
242 0 /* OMP_CLAUSE_UNTIED */
243 };
244
245 const char * const omp_clause_code_name[] =
246 {
247 "error_clause",
248 "private",
249 "shared",
250 "firstprivate",
251 "lastprivate",
252 "reduction",
253 "copyin",
254 "copyprivate",
255 "if",
256 "num_threads",
257 "schedule",
258 "nowait",
259 "ordered",
260 "default",
261 "collapse",
262 "untied"
263 };
264
265
266 /* Return the tree node structure used by tree code CODE. */
267
268 static inline enum tree_node_structure_enum
269 tree_node_structure_for_code (enum tree_code code)
270 {
271 switch (TREE_CODE_CLASS (code))
272 {
273 case tcc_declaration:
274 {
275 switch (code)
276 {
277 case FIELD_DECL:
278 return TS_FIELD_DECL;
279 case PARM_DECL:
280 return TS_PARM_DECL;
281 case VAR_DECL:
282 return TS_VAR_DECL;
283 case LABEL_DECL:
284 return TS_LABEL_DECL;
285 case RESULT_DECL:
286 return TS_RESULT_DECL;
287 case CONST_DECL:
288 return TS_CONST_DECL;
289 case TYPE_DECL:
290 return TS_TYPE_DECL;
291 case FUNCTION_DECL:
292 return TS_FUNCTION_DECL;
293 default:
294 return TS_DECL_NON_COMMON;
295 }
296 }
297 case tcc_type:
298 return TS_TYPE;
299 case tcc_reference:
300 case tcc_comparison:
301 case tcc_unary:
302 case tcc_binary:
303 case tcc_expression:
304 case tcc_statement:
305 case tcc_vl_exp:
306 return TS_EXP;
307 default: /* tcc_constant and tcc_exceptional */
308 break;
309 }
310 switch (code)
311 {
312 /* tcc_constant cases. */
313 case INTEGER_CST: return TS_INT_CST;
314 case REAL_CST: return TS_REAL_CST;
315 case FIXED_CST: return TS_FIXED_CST;
316 case COMPLEX_CST: return TS_COMPLEX;
317 case VECTOR_CST: return TS_VECTOR;
318 case STRING_CST: return TS_STRING;
319 /* tcc_exceptional cases. */
320 case ERROR_MARK: return TS_COMMON;
321 case IDENTIFIER_NODE: return TS_IDENTIFIER;
322 case TREE_LIST: return TS_LIST;
323 case TREE_VEC: return TS_VEC;
324 case SSA_NAME: return TS_SSA_NAME;
325 case PLACEHOLDER_EXPR: return TS_COMMON;
326 case STATEMENT_LIST: return TS_STATEMENT_LIST;
327 case BLOCK: return TS_BLOCK;
328 case CONSTRUCTOR: return TS_CONSTRUCTOR;
329 case TREE_BINFO: return TS_BINFO;
330 case OMP_CLAUSE: return TS_OMP_CLAUSE;
331 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
332 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
333
334 default:
335 gcc_unreachable ();
336 }
337 }
338
339
340 /* Initialize tree_contains_struct to describe the hierarchy of tree
341 nodes. */
342
343 static void
344 initialize_tree_contains_struct (void)
345 {
346 unsigned i;
347
348 #define MARK_TS_BASE(C) \
349 do { \
350 tree_contains_struct[C][TS_BASE] = 1; \
351 } while (0)
352
353 #define MARK_TS_COMMON(C) \
354 do { \
355 MARK_TS_BASE (C); \
356 tree_contains_struct[C][TS_COMMON] = 1; \
357 } while (0)
358
359 #define MARK_TS_DECL_MINIMAL(C) \
360 do { \
361 MARK_TS_COMMON (C); \
362 tree_contains_struct[C][TS_DECL_MINIMAL] = 1; \
363 } while (0)
364
365 #define MARK_TS_DECL_COMMON(C) \
366 do { \
367 MARK_TS_DECL_MINIMAL (C); \
368 tree_contains_struct[C][TS_DECL_COMMON] = 1; \
369 } while (0)
370
371 #define MARK_TS_DECL_WRTL(C) \
372 do { \
373 MARK_TS_DECL_COMMON (C); \
374 tree_contains_struct[C][TS_DECL_WRTL] = 1; \
375 } while (0)
376
377 #define MARK_TS_DECL_WITH_VIS(C) \
378 do { \
379 MARK_TS_DECL_WRTL (C); \
380 tree_contains_struct[C][TS_DECL_WITH_VIS] = 1; \
381 } while (0)
382
383 #define MARK_TS_DECL_NON_COMMON(C) \
384 do { \
385 MARK_TS_DECL_WITH_VIS (C); \
386 tree_contains_struct[C][TS_DECL_NON_COMMON] = 1; \
387 } while (0)
388
389 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
390 {
391 enum tree_code code;
392 enum tree_node_structure_enum ts_code;
393
394 code = (enum tree_code) i;
395 ts_code = tree_node_structure_for_code (code);
396
397 /* Mark the TS structure itself. */
398 tree_contains_struct[code][ts_code] = 1;
399
400 /* Mark all the structures that TS is derived from. */
401 switch (ts_code)
402 {
403 case TS_COMMON:
404 MARK_TS_BASE (code);
405 break;
406
407 case TS_INT_CST:
408 case TS_REAL_CST:
409 case TS_FIXED_CST:
410 case TS_VECTOR:
411 case TS_STRING:
412 case TS_COMPLEX:
413 case TS_IDENTIFIER:
414 case TS_DECL_MINIMAL:
415 case TS_TYPE:
416 case TS_LIST:
417 case TS_VEC:
418 case TS_EXP:
419 case TS_SSA_NAME:
420 case TS_BLOCK:
421 case TS_BINFO:
422 case TS_STATEMENT_LIST:
423 case TS_CONSTRUCTOR:
424 case TS_OMP_CLAUSE:
425 case TS_OPTIMIZATION:
426 case TS_TARGET_OPTION:
427 MARK_TS_COMMON (code);
428 break;
429
430 case TS_DECL_COMMON:
431 MARK_TS_DECL_MINIMAL (code);
432 break;
433
434 case TS_DECL_WRTL:
435 MARK_TS_DECL_COMMON (code);
436 break;
437
438 case TS_DECL_NON_COMMON:
439 MARK_TS_DECL_WITH_VIS (code);
440 break;
441
442 case TS_DECL_WITH_VIS:
443 case TS_PARM_DECL:
444 case TS_LABEL_DECL:
445 case TS_RESULT_DECL:
446 case TS_CONST_DECL:
447 MARK_TS_DECL_WRTL (code);
448 break;
449
450 case TS_FIELD_DECL:
451 MARK_TS_DECL_COMMON (code);
452 break;
453
454 case TS_VAR_DECL:
455 MARK_TS_DECL_WITH_VIS (code);
456 break;
457
458 case TS_TYPE_DECL:
459 case TS_FUNCTION_DECL:
460 MARK_TS_DECL_NON_COMMON (code);
461 break;
462
463 default:
464 gcc_unreachable ();
465 }
466 }
467
468 /* Basic consistency checks for attributes used in fold. */
469 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
470 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON]);
471 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
472 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
473 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
474 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
475 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
476 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
477 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
478 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
479 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
480 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
481 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_WRTL]);
482 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
483 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
484 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
485 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
486 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
487 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
488 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
489 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
490 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
491 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
492 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
493 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
494 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
495 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
496 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
497 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
498 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
499 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS]);
500 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
501 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
502 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
503 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
504 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
505 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
506 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
507 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
508 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
509 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
510
511 #undef MARK_TS_BASE
512 #undef MARK_TS_COMMON
513 #undef MARK_TS_DECL_MINIMAL
514 #undef MARK_TS_DECL_COMMON
515 #undef MARK_TS_DECL_WRTL
516 #undef MARK_TS_DECL_WITH_VIS
517 #undef MARK_TS_DECL_NON_COMMON
518 }
519
520
521 /* Init tree.c. */
522
523 void
524 init_ttree (void)
525 {
526 /* Initialize the hash table of types. */
527 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
528 type_hash_eq, 0);
529
530 debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
531 tree_map_eq, 0);
532
533 value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
534 tree_map_eq, 0);
535 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
536 tree_priority_map_eq, 0);
537
538 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
539 int_cst_hash_eq, NULL);
540
541 int_cst_node = make_node (INTEGER_CST);
542
543 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
544 cl_option_hash_eq, NULL);
545
546 cl_optimization_node = make_node (OPTIMIZATION_NODE);
547 cl_target_option_node = make_node (TARGET_OPTION_NODE);
548
549 /* Initialize the tree_contains_struct array. */
550 initialize_tree_contains_struct ();
551 lang_hooks.init_ts ();
552 }
553
554 \f
555 /* The name of the object as the assembler will see it (but before any
556 translations made by ASM_OUTPUT_LABELREF). Often this is the same
557 as DECL_NAME. It is an IDENTIFIER_NODE. */
558 tree
559 decl_assembler_name (tree decl)
560 {
561 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
562 lang_hooks.set_decl_assembler_name (decl);
563 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
564 }
565
566 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
567
568 bool
569 decl_assembler_name_equal (tree decl, const_tree asmname)
570 {
571 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
572 const char *decl_str;
573 const char *asmname_str;
574 bool test = false;
575
576 if (decl_asmname == asmname)
577 return true;
578
579 decl_str = IDENTIFIER_POINTER (decl_asmname);
580 asmname_str = IDENTIFIER_POINTER (asmname);
581
582
583 /* If the target assembler name was set by the user, things are trickier.
584 We have a leading '*' to begin with. After that, it's arguable what
585 is the correct thing to do with -fleading-underscore. Arguably, we've
586 historically been doing the wrong thing in assemble_alias by always
587 printing the leading underscore. Since we're not changing that, make
588 sure user_label_prefix follows the '*' before matching. */
589 if (decl_str[0] == '*')
590 {
591 size_t ulp_len = strlen (user_label_prefix);
592
593 decl_str ++;
594
595 if (ulp_len == 0)
596 test = true;
597 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
598 decl_str += ulp_len, test=true;
599 else
600 decl_str --;
601 }
602 if (asmname_str[0] == '*')
603 {
604 size_t ulp_len = strlen (user_label_prefix);
605
606 asmname_str ++;
607
608 if (ulp_len == 0)
609 test = true;
610 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
611 asmname_str += ulp_len, test=true;
612 else
613 asmname_str --;
614 }
615
616 if (!test)
617 return false;
618 return strcmp (decl_str, asmname_str) == 0;
619 }
620
621 /* Hash asmnames ignoring the user specified marks. */
622
623 hashval_t
624 decl_assembler_name_hash (const_tree asmname)
625 {
626 if (IDENTIFIER_POINTER (asmname)[0] == '*')
627 {
628 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
629 size_t ulp_len = strlen (user_label_prefix);
630
631 if (ulp_len == 0)
632 ;
633 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
634 decl_str += ulp_len;
635
636 return htab_hash_string (decl_str);
637 }
638
639 return htab_hash_string (IDENTIFIER_POINTER (asmname));
640 }
641
642 /* Compute the number of bytes occupied by a tree with code CODE.
643 This function cannot be used for nodes that have variable sizes,
644 including TREE_VEC, STRING_CST, and CALL_EXPR. */
645 size_t
646 tree_code_size (enum tree_code code)
647 {
648 switch (TREE_CODE_CLASS (code))
649 {
650 case tcc_declaration: /* A decl node */
651 {
652 switch (code)
653 {
654 case FIELD_DECL:
655 return sizeof (struct tree_field_decl);
656 case PARM_DECL:
657 return sizeof (struct tree_parm_decl);
658 case VAR_DECL:
659 return sizeof (struct tree_var_decl);
660 case LABEL_DECL:
661 return sizeof (struct tree_label_decl);
662 case RESULT_DECL:
663 return sizeof (struct tree_result_decl);
664 case CONST_DECL:
665 return sizeof (struct tree_const_decl);
666 case TYPE_DECL:
667 return sizeof (struct tree_type_decl);
668 case FUNCTION_DECL:
669 return sizeof (struct tree_function_decl);
670 default:
671 return sizeof (struct tree_decl_non_common);
672 }
673 }
674
675 case tcc_type: /* a type node */
676 return sizeof (struct tree_type);
677
678 case tcc_reference: /* a reference */
679 case tcc_expression: /* an expression */
680 case tcc_statement: /* an expression with side effects */
681 case tcc_comparison: /* a comparison expression */
682 case tcc_unary: /* a unary arithmetic expression */
683 case tcc_binary: /* a binary arithmetic expression */
684 return (sizeof (struct tree_exp)
685 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
686
687 case tcc_constant: /* a constant */
688 switch (code)
689 {
690 case INTEGER_CST: return sizeof (struct tree_int_cst);
691 case REAL_CST: return sizeof (struct tree_real_cst);
692 case FIXED_CST: return sizeof (struct tree_fixed_cst);
693 case COMPLEX_CST: return sizeof (struct tree_complex);
694 case VECTOR_CST: return sizeof (struct tree_vector);
695 case STRING_CST: gcc_unreachable ();
696 default:
697 return lang_hooks.tree_size (code);
698 }
699
700 case tcc_exceptional: /* something random, like an identifier. */
701 switch (code)
702 {
703 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
704 case TREE_LIST: return sizeof (struct tree_list);
705
706 case ERROR_MARK:
707 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
708
709 case TREE_VEC:
710 case OMP_CLAUSE: gcc_unreachable ();
711
712 case SSA_NAME: return sizeof (struct tree_ssa_name);
713
714 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
715 case BLOCK: return sizeof (struct tree_block);
716 case CONSTRUCTOR: return sizeof (struct tree_constructor);
717 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
718 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
719
720 default:
721 return lang_hooks.tree_size (code);
722 }
723
724 default:
725 gcc_unreachable ();
726 }
727 }
728
729 /* Compute the number of bytes occupied by NODE. This routine only
730 looks at TREE_CODE, except for those nodes that have variable sizes. */
731 size_t
732 tree_size (const_tree node)
733 {
734 const enum tree_code code = TREE_CODE (node);
735 switch (code)
736 {
737 case TREE_BINFO:
738 return (offsetof (struct tree_binfo, base_binfos)
739 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
740
741 case TREE_VEC:
742 return (sizeof (struct tree_vec)
743 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
744
745 case STRING_CST:
746 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
747
748 case OMP_CLAUSE:
749 return (sizeof (struct tree_omp_clause)
750 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
751 * sizeof (tree));
752
753 default:
754 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
755 return (sizeof (struct tree_exp)
756 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
757 else
758 return tree_code_size (code);
759 }
760 }
761
762 /* Return a newly allocated node of code CODE. For decl and type
763 nodes, some other fields are initialized. The rest of the node is
764 initialized to zero. This function cannot be used for TREE_VEC or
765 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
766
767 Achoo! I got a code in the node. */
768
769 tree
770 make_node_stat (enum tree_code code MEM_STAT_DECL)
771 {
772 tree t;
773 enum tree_code_class type = TREE_CODE_CLASS (code);
774 size_t length = tree_code_size (code);
775 #ifdef GATHER_STATISTICS
776 tree_node_kind kind;
777
778 switch (type)
779 {
780 case tcc_declaration: /* A decl node */
781 kind = d_kind;
782 break;
783
784 case tcc_type: /* a type node */
785 kind = t_kind;
786 break;
787
788 case tcc_statement: /* an expression with side effects */
789 kind = s_kind;
790 break;
791
792 case tcc_reference: /* a reference */
793 kind = r_kind;
794 break;
795
796 case tcc_expression: /* an expression */
797 case tcc_comparison: /* a comparison expression */
798 case tcc_unary: /* a unary arithmetic expression */
799 case tcc_binary: /* a binary arithmetic expression */
800 kind = e_kind;
801 break;
802
803 case tcc_constant: /* a constant */
804 kind = c_kind;
805 break;
806
807 case tcc_exceptional: /* something random, like an identifier. */
808 switch (code)
809 {
810 case IDENTIFIER_NODE:
811 kind = id_kind;
812 break;
813
814 case TREE_VEC:
815 kind = vec_kind;
816 break;
817
818 case TREE_BINFO:
819 kind = binfo_kind;
820 break;
821
822 case SSA_NAME:
823 kind = ssa_name_kind;
824 break;
825
826 case BLOCK:
827 kind = b_kind;
828 break;
829
830 case CONSTRUCTOR:
831 kind = constr_kind;
832 break;
833
834 default:
835 kind = x_kind;
836 break;
837 }
838 break;
839
840 default:
841 gcc_unreachable ();
842 }
843
844 tree_node_counts[(int) kind]++;
845 tree_node_sizes[(int) kind] += length;
846 #endif
847
848 if (code == IDENTIFIER_NODE)
849 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_id_zone);
850 else
851 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
852
853 memset (t, 0, length);
854
855 TREE_SET_CODE (t, code);
856
857 switch (type)
858 {
859 case tcc_statement:
860 TREE_SIDE_EFFECTS (t) = 1;
861 break;
862
863 case tcc_declaration:
864 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
865 {
866 if (code == FUNCTION_DECL)
867 {
868 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
869 DECL_MODE (t) = FUNCTION_MODE;
870 }
871 else
872 DECL_ALIGN (t) = 1;
873 }
874 DECL_SOURCE_LOCATION (t) = input_location;
875 DECL_UID (t) = next_decl_uid++;
876 if (TREE_CODE (t) == LABEL_DECL)
877 LABEL_DECL_UID (t) = -1;
878
879 break;
880
881 case tcc_type:
882 TYPE_UID (t) = next_type_uid++;
883 TYPE_ALIGN (t) = BITS_PER_UNIT;
884 TYPE_USER_ALIGN (t) = 0;
885 TYPE_MAIN_VARIANT (t) = t;
886 TYPE_CANONICAL (t) = t;
887
888 /* Default to no attributes for type, but let target change that. */
889 TYPE_ATTRIBUTES (t) = NULL_TREE;
890 targetm.set_default_type_attributes (t);
891
892 /* We have not yet computed the alias set for this type. */
893 TYPE_ALIAS_SET (t) = -1;
894 break;
895
896 case tcc_constant:
897 TREE_CONSTANT (t) = 1;
898 break;
899
900 case tcc_expression:
901 switch (code)
902 {
903 case INIT_EXPR:
904 case MODIFY_EXPR:
905 case VA_ARG_EXPR:
906 case PREDECREMENT_EXPR:
907 case PREINCREMENT_EXPR:
908 case POSTDECREMENT_EXPR:
909 case POSTINCREMENT_EXPR:
910 /* All of these have side-effects, no matter what their
911 operands are. */
912 TREE_SIDE_EFFECTS (t) = 1;
913 break;
914
915 default:
916 break;
917 }
918 break;
919
920 default:
921 /* Other classes need no special treatment. */
922 break;
923 }
924
925 return t;
926 }
927 \f
928 /* Return a new node with the same contents as NODE except that its
929 TREE_CHAIN is zero and it has a fresh uid. */
930
931 tree
932 copy_node_stat (tree node MEM_STAT_DECL)
933 {
934 tree t;
935 enum tree_code code = TREE_CODE (node);
936 size_t length;
937
938 gcc_assert (code != STATEMENT_LIST);
939
940 length = tree_size (node);
941 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
942 memcpy (t, node, length);
943
944 TREE_CHAIN (t) = 0;
945 TREE_ASM_WRITTEN (t) = 0;
946 TREE_VISITED (t) = 0;
947 t->base.ann = 0;
948
949 if (TREE_CODE_CLASS (code) == tcc_declaration)
950 {
951 DECL_UID (t) = next_decl_uid++;
952 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
953 && DECL_HAS_VALUE_EXPR_P (node))
954 {
955 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
956 DECL_HAS_VALUE_EXPR_P (t) = 1;
957 }
958 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
959 {
960 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
961 DECL_HAS_INIT_PRIORITY_P (t) = 1;
962 }
963 }
964 else if (TREE_CODE_CLASS (code) == tcc_type)
965 {
966 TYPE_UID (t) = next_type_uid++;
967 /* The following is so that the debug code for
968 the copy is different from the original type.
969 The two statements usually duplicate each other
970 (because they clear fields of the same union),
971 but the optimizer should catch that. */
972 TYPE_SYMTAB_POINTER (t) = 0;
973 TYPE_SYMTAB_ADDRESS (t) = 0;
974
975 /* Do not copy the values cache. */
976 if (TYPE_CACHED_VALUES_P(t))
977 {
978 TYPE_CACHED_VALUES_P (t) = 0;
979 TYPE_CACHED_VALUES (t) = NULL_TREE;
980 }
981 }
982
983 return t;
984 }
985
986 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
987 For example, this can copy a list made of TREE_LIST nodes. */
988
989 tree
990 copy_list (tree list)
991 {
992 tree head;
993 tree prev, next;
994
995 if (list == 0)
996 return 0;
997
998 head = prev = copy_node (list);
999 next = TREE_CHAIN (list);
1000 while (next)
1001 {
1002 TREE_CHAIN (prev) = copy_node (next);
1003 prev = TREE_CHAIN (prev);
1004 next = TREE_CHAIN (next);
1005 }
1006 return head;
1007 }
1008
1009 \f
1010 /* Create an INT_CST node with a LOW value sign extended. */
1011
1012 tree
1013 build_int_cst (tree type, HOST_WIDE_INT low)
1014 {
1015 /* Support legacy code. */
1016 if (!type)
1017 type = integer_type_node;
1018
1019 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
1020 }
1021
1022 /* Create an INT_CST node with a LOW value zero extended. */
1023
1024 tree
1025 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
1026 {
1027 return build_int_cst_wide (type, low, 0);
1028 }
1029
1030 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
1031 if it is negative. This function is similar to build_int_cst, but
1032 the extra bits outside of the type precision are cleared. Constants
1033 with these extra bits may confuse the fold so that it detects overflows
1034 even in cases when they do not occur, and in general should be avoided.
1035 We cannot however make this a default behavior of build_int_cst without
1036 more intrusive changes, since there are parts of gcc that rely on the extra
1037 precision of the integer constants. */
1038
1039 tree
1040 build_int_cst_type (tree type, HOST_WIDE_INT low)
1041 {
1042 unsigned HOST_WIDE_INT low1;
1043 HOST_WIDE_INT hi;
1044
1045 gcc_assert (type);
1046
1047 fit_double_type (low, low < 0 ? -1 : 0, &low1, &hi, type);
1048
1049 return build_int_cst_wide (type, low1, hi);
1050 }
1051
1052 /* Create an INT_CST node of TYPE and value HI:LOW. The value is truncated
1053 and sign extended according to the value range of TYPE. */
1054
1055 tree
1056 build_int_cst_wide_type (tree type,
1057 unsigned HOST_WIDE_INT low, HOST_WIDE_INT high)
1058 {
1059 fit_double_type (low, high, &low, &high, type);
1060 return build_int_cst_wide (type, low, high);
1061 }
1062
1063 /* These are the hash table functions for the hash table of INTEGER_CST
1064 nodes of a sizetype. */
1065
1066 /* Return the hash code code X, an INTEGER_CST. */
1067
1068 static hashval_t
1069 int_cst_hash_hash (const void *x)
1070 {
1071 const_tree const t = (const_tree) x;
1072
1073 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1074 ^ htab_hash_pointer (TREE_TYPE (t)));
1075 }
1076
1077 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1078 is the same as that given by *Y, which is the same. */
1079
1080 static int
1081 int_cst_hash_eq (const void *x, const void *y)
1082 {
1083 const_tree const xt = (const_tree) x;
1084 const_tree const yt = (const_tree) y;
1085
1086 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1087 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1088 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1089 }
1090
1091 /* Create an INT_CST node of TYPE and value HI:LOW.
1092 The returned node is always shared. For small integers we use a
1093 per-type vector cache, for larger ones we use a single hash table. */
1094
1095 tree
1096 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1097 {
1098 tree t;
1099 int ix = -1;
1100 int limit = 0;
1101
1102 gcc_assert (type);
1103
1104 switch (TREE_CODE (type))
1105 {
1106 case POINTER_TYPE:
1107 case REFERENCE_TYPE:
1108 /* Cache NULL pointer. */
1109 if (!hi && !low)
1110 {
1111 limit = 1;
1112 ix = 0;
1113 }
1114 break;
1115
1116 case BOOLEAN_TYPE:
1117 /* Cache false or true. */
1118 limit = 2;
1119 if (!hi && low < 2)
1120 ix = low;
1121 break;
1122
1123 case INTEGER_TYPE:
1124 case OFFSET_TYPE:
1125 if (TYPE_UNSIGNED (type))
1126 {
1127 /* Cache 0..N */
1128 limit = INTEGER_SHARE_LIMIT;
1129 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1130 ix = low;
1131 }
1132 else
1133 {
1134 /* Cache -1..N */
1135 limit = INTEGER_SHARE_LIMIT + 1;
1136 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1137 ix = low + 1;
1138 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1139 ix = 0;
1140 }
1141 break;
1142
1143 case ENUMERAL_TYPE:
1144 break;
1145
1146 default:
1147 gcc_unreachable ();
1148 }
1149
1150 if (ix >= 0)
1151 {
1152 /* Look for it in the type's vector of small shared ints. */
1153 if (!TYPE_CACHED_VALUES_P (type))
1154 {
1155 TYPE_CACHED_VALUES_P (type) = 1;
1156 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1157 }
1158
1159 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1160 if (t)
1161 {
1162 /* Make sure no one is clobbering the shared constant. */
1163 gcc_assert (TREE_TYPE (t) == type);
1164 gcc_assert (TREE_INT_CST_LOW (t) == low);
1165 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1166 }
1167 else
1168 {
1169 /* Create a new shared int. */
1170 t = make_node (INTEGER_CST);
1171
1172 TREE_INT_CST_LOW (t) = low;
1173 TREE_INT_CST_HIGH (t) = hi;
1174 TREE_TYPE (t) = type;
1175
1176 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1177 }
1178 }
1179 else
1180 {
1181 /* Use the cache of larger shared ints. */
1182 void **slot;
1183
1184 TREE_INT_CST_LOW (int_cst_node) = low;
1185 TREE_INT_CST_HIGH (int_cst_node) = hi;
1186 TREE_TYPE (int_cst_node) = type;
1187
1188 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1189 t = (tree) *slot;
1190 if (!t)
1191 {
1192 /* Insert this one into the hash table. */
1193 t = int_cst_node;
1194 *slot = t;
1195 /* Make a new node for next time round. */
1196 int_cst_node = make_node (INTEGER_CST);
1197 }
1198 }
1199
1200 return t;
1201 }
1202
1203 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1204 and the rest are zeros. */
1205
1206 tree
1207 build_low_bits_mask (tree type, unsigned bits)
1208 {
1209 unsigned HOST_WIDE_INT low;
1210 HOST_WIDE_INT high;
1211 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
1212
1213 gcc_assert (bits <= TYPE_PRECISION (type));
1214
1215 if (bits == TYPE_PRECISION (type)
1216 && !TYPE_UNSIGNED (type))
1217 {
1218 /* Sign extended all-ones mask. */
1219 low = all_ones;
1220 high = -1;
1221 }
1222 else if (bits <= HOST_BITS_PER_WIDE_INT)
1223 {
1224 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
1225 high = 0;
1226 }
1227 else
1228 {
1229 bits -= HOST_BITS_PER_WIDE_INT;
1230 low = all_ones;
1231 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
1232 }
1233
1234 return build_int_cst_wide (type, low, high);
1235 }
1236
1237 /* Checks that X is integer constant that can be expressed in (unsigned)
1238 HOST_WIDE_INT without loss of precision. */
1239
1240 bool
1241 cst_and_fits_in_hwi (const_tree x)
1242 {
1243 if (TREE_CODE (x) != INTEGER_CST)
1244 return false;
1245
1246 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1247 return false;
1248
1249 return (TREE_INT_CST_HIGH (x) == 0
1250 || TREE_INT_CST_HIGH (x) == -1);
1251 }
1252
1253 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1254 are in a list pointed to by VALS. */
1255
1256 tree
1257 build_vector (tree type, tree vals)
1258 {
1259 tree v = make_node (VECTOR_CST);
1260 int over = 0;
1261 tree link;
1262
1263 TREE_VECTOR_CST_ELTS (v) = vals;
1264 TREE_TYPE (v) = type;
1265
1266 /* Iterate through elements and check for overflow. */
1267 for (link = vals; link; link = TREE_CHAIN (link))
1268 {
1269 tree value = TREE_VALUE (link);
1270
1271 /* Don't crash if we get an address constant. */
1272 if (!CONSTANT_CLASS_P (value))
1273 continue;
1274
1275 over |= TREE_OVERFLOW (value);
1276 }
1277
1278 TREE_OVERFLOW (v) = over;
1279 return v;
1280 }
1281
1282 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1283 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1284
1285 tree
1286 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1287 {
1288 tree list = NULL_TREE;
1289 unsigned HOST_WIDE_INT idx;
1290 tree value;
1291
1292 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1293 list = tree_cons (NULL_TREE, value, list);
1294 return build_vector (type, nreverse (list));
1295 }
1296
1297 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1298 are in the VEC pointed to by VALS. */
1299 tree
1300 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1301 {
1302 tree c = make_node (CONSTRUCTOR);
1303 TREE_TYPE (c) = type;
1304 CONSTRUCTOR_ELTS (c) = vals;
1305 return c;
1306 }
1307
1308 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1309 INDEX and VALUE. */
1310 tree
1311 build_constructor_single (tree type, tree index, tree value)
1312 {
1313 VEC(constructor_elt,gc) *v;
1314 constructor_elt *elt;
1315 tree t;
1316
1317 v = VEC_alloc (constructor_elt, gc, 1);
1318 elt = VEC_quick_push (constructor_elt, v, NULL);
1319 elt->index = index;
1320 elt->value = value;
1321
1322 t = build_constructor (type, v);
1323 TREE_CONSTANT (t) = TREE_CONSTANT (value);
1324 return t;
1325 }
1326
1327
1328 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1329 are in a list pointed to by VALS. */
1330 tree
1331 build_constructor_from_list (tree type, tree vals)
1332 {
1333 tree t, val;
1334 VEC(constructor_elt,gc) *v = NULL;
1335 bool constant_p = true;
1336
1337 if (vals)
1338 {
1339 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1340 for (t = vals; t; t = TREE_CHAIN (t))
1341 {
1342 constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
1343 val = TREE_VALUE (t);
1344 elt->index = TREE_PURPOSE (t);
1345 elt->value = val;
1346 if (!TREE_CONSTANT (val))
1347 constant_p = false;
1348 }
1349 }
1350
1351 t = build_constructor (type, v);
1352 TREE_CONSTANT (t) = constant_p;
1353 return t;
1354 }
1355
1356 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1357
1358 tree
1359 build_fixed (tree type, FIXED_VALUE_TYPE f)
1360 {
1361 tree v;
1362 FIXED_VALUE_TYPE *fp;
1363
1364 v = make_node (FIXED_CST);
1365 fp = GGC_NEW (FIXED_VALUE_TYPE);
1366 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1367
1368 TREE_TYPE (v) = type;
1369 TREE_FIXED_CST_PTR (v) = fp;
1370 return v;
1371 }
1372
1373 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1374
1375 tree
1376 build_real (tree type, REAL_VALUE_TYPE d)
1377 {
1378 tree v;
1379 REAL_VALUE_TYPE *dp;
1380 int overflow = 0;
1381
1382 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1383 Consider doing it via real_convert now. */
1384
1385 v = make_node (REAL_CST);
1386 dp = GGC_NEW (REAL_VALUE_TYPE);
1387 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1388
1389 TREE_TYPE (v) = type;
1390 TREE_REAL_CST_PTR (v) = dp;
1391 TREE_OVERFLOW (v) = overflow;
1392 return v;
1393 }
1394
1395 /* Return a new REAL_CST node whose type is TYPE
1396 and whose value is the integer value of the INTEGER_CST node I. */
1397
1398 REAL_VALUE_TYPE
1399 real_value_from_int_cst (const_tree type, const_tree i)
1400 {
1401 REAL_VALUE_TYPE d;
1402
1403 /* Clear all bits of the real value type so that we can later do
1404 bitwise comparisons to see if two values are the same. */
1405 memset (&d, 0, sizeof d);
1406
1407 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1408 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1409 TYPE_UNSIGNED (TREE_TYPE (i)));
1410 return d;
1411 }
1412
1413 /* Given a tree representing an integer constant I, return a tree
1414 representing the same value as a floating-point constant of type TYPE. */
1415
1416 tree
1417 build_real_from_int_cst (tree type, const_tree i)
1418 {
1419 tree v;
1420 int overflow = TREE_OVERFLOW (i);
1421
1422 v = build_real (type, real_value_from_int_cst (type, i));
1423
1424 TREE_OVERFLOW (v) |= overflow;
1425 return v;
1426 }
1427
1428 /* Return a newly constructed STRING_CST node whose value is
1429 the LEN characters at STR.
1430 The TREE_TYPE is not initialized. */
1431
1432 tree
1433 build_string (int len, const char *str)
1434 {
1435 tree s;
1436 size_t length;
1437
1438 /* Do not waste bytes provided by padding of struct tree_string. */
1439 length = len + offsetof (struct tree_string, str) + 1;
1440
1441 #ifdef GATHER_STATISTICS
1442 tree_node_counts[(int) c_kind]++;
1443 tree_node_sizes[(int) c_kind] += length;
1444 #endif
1445
1446 s = ggc_alloc_tree (length);
1447
1448 memset (s, 0, sizeof (struct tree_common));
1449 TREE_SET_CODE (s, STRING_CST);
1450 TREE_CONSTANT (s) = 1;
1451 TREE_STRING_LENGTH (s) = len;
1452 memcpy (s->string.str, str, len);
1453 s->string.str[len] = '\0';
1454
1455 return s;
1456 }
1457
1458 /* Return a newly constructed COMPLEX_CST node whose value is
1459 specified by the real and imaginary parts REAL and IMAG.
1460 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1461 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1462
1463 tree
1464 build_complex (tree type, tree real, tree imag)
1465 {
1466 tree t = make_node (COMPLEX_CST);
1467
1468 TREE_REALPART (t) = real;
1469 TREE_IMAGPART (t) = imag;
1470 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1471 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1472 return t;
1473 }
1474
1475 /* Return a constant of arithmetic type TYPE which is the
1476 multiplicative identity of the set TYPE. */
1477
1478 tree
1479 build_one_cst (tree type)
1480 {
1481 switch (TREE_CODE (type))
1482 {
1483 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1484 case POINTER_TYPE: case REFERENCE_TYPE:
1485 case OFFSET_TYPE:
1486 return build_int_cst (type, 1);
1487
1488 case REAL_TYPE:
1489 return build_real (type, dconst1);
1490
1491 case FIXED_POINT_TYPE:
1492 /* We can only generate 1 for accum types. */
1493 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1494 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1495
1496 case VECTOR_TYPE:
1497 {
1498 tree scalar, cst;
1499 int i;
1500
1501 scalar = build_one_cst (TREE_TYPE (type));
1502
1503 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1504 cst = NULL_TREE;
1505 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1506 cst = tree_cons (NULL_TREE, scalar, cst);
1507
1508 return build_vector (type, cst);
1509 }
1510
1511 case COMPLEX_TYPE:
1512 return build_complex (type,
1513 build_one_cst (TREE_TYPE (type)),
1514 fold_convert (TREE_TYPE (type), integer_zero_node));
1515
1516 default:
1517 gcc_unreachable ();
1518 }
1519 }
1520
1521 /* Build a BINFO with LEN language slots. */
1522
1523 tree
1524 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1525 {
1526 tree t;
1527 size_t length = (offsetof (struct tree_binfo, base_binfos)
1528 + VEC_embedded_size (tree, base_binfos));
1529
1530 #ifdef GATHER_STATISTICS
1531 tree_node_counts[(int) binfo_kind]++;
1532 tree_node_sizes[(int) binfo_kind] += length;
1533 #endif
1534
1535 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
1536
1537 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1538
1539 TREE_SET_CODE (t, TREE_BINFO);
1540
1541 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1542
1543 return t;
1544 }
1545
1546
1547 /* Build a newly constructed TREE_VEC node of length LEN. */
1548
1549 tree
1550 make_tree_vec_stat (int len MEM_STAT_DECL)
1551 {
1552 tree t;
1553 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1554
1555 #ifdef GATHER_STATISTICS
1556 tree_node_counts[(int) vec_kind]++;
1557 tree_node_sizes[(int) vec_kind] += length;
1558 #endif
1559
1560 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
1561
1562 memset (t, 0, length);
1563
1564 TREE_SET_CODE (t, TREE_VEC);
1565 TREE_VEC_LENGTH (t) = len;
1566
1567 return t;
1568 }
1569 \f
1570 /* Return 1 if EXPR is the integer constant zero or a complex constant
1571 of zero. */
1572
1573 int
1574 integer_zerop (const_tree expr)
1575 {
1576 STRIP_NOPS (expr);
1577
1578 return ((TREE_CODE (expr) == INTEGER_CST
1579 && TREE_INT_CST_LOW (expr) == 0
1580 && TREE_INT_CST_HIGH (expr) == 0)
1581 || (TREE_CODE (expr) == COMPLEX_CST
1582 && integer_zerop (TREE_REALPART (expr))
1583 && integer_zerop (TREE_IMAGPART (expr))));
1584 }
1585
1586 /* Return 1 if EXPR is the integer constant one or the corresponding
1587 complex constant. */
1588
1589 int
1590 integer_onep (const_tree expr)
1591 {
1592 STRIP_NOPS (expr);
1593
1594 return ((TREE_CODE (expr) == INTEGER_CST
1595 && TREE_INT_CST_LOW (expr) == 1
1596 && TREE_INT_CST_HIGH (expr) == 0)
1597 || (TREE_CODE (expr) == COMPLEX_CST
1598 && integer_onep (TREE_REALPART (expr))
1599 && integer_zerop (TREE_IMAGPART (expr))));
1600 }
1601
1602 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1603 it contains. Likewise for the corresponding complex constant. */
1604
1605 int
1606 integer_all_onesp (const_tree expr)
1607 {
1608 int prec;
1609 int uns;
1610
1611 STRIP_NOPS (expr);
1612
1613 if (TREE_CODE (expr) == COMPLEX_CST
1614 && integer_all_onesp (TREE_REALPART (expr))
1615 && integer_zerop (TREE_IMAGPART (expr)))
1616 return 1;
1617
1618 else if (TREE_CODE (expr) != INTEGER_CST)
1619 return 0;
1620
1621 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1622 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1623 && TREE_INT_CST_HIGH (expr) == -1)
1624 return 1;
1625 if (!uns)
1626 return 0;
1627
1628 /* Note that using TYPE_PRECISION here is wrong. We care about the
1629 actual bits, not the (arbitrary) range of the type. */
1630 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1631 if (prec >= HOST_BITS_PER_WIDE_INT)
1632 {
1633 HOST_WIDE_INT high_value;
1634 int shift_amount;
1635
1636 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1637
1638 /* Can not handle precisions greater than twice the host int size. */
1639 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1640 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1641 /* Shifting by the host word size is undefined according to the ANSI
1642 standard, so we must handle this as a special case. */
1643 high_value = -1;
1644 else
1645 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1646
1647 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1648 && TREE_INT_CST_HIGH (expr) == high_value);
1649 }
1650 else
1651 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1652 }
1653
1654 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1655 one bit on). */
1656
1657 int
1658 integer_pow2p (const_tree expr)
1659 {
1660 int prec;
1661 HOST_WIDE_INT high, low;
1662
1663 STRIP_NOPS (expr);
1664
1665 if (TREE_CODE (expr) == COMPLEX_CST
1666 && integer_pow2p (TREE_REALPART (expr))
1667 && integer_zerop (TREE_IMAGPART (expr)))
1668 return 1;
1669
1670 if (TREE_CODE (expr) != INTEGER_CST)
1671 return 0;
1672
1673 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1674 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1675 high = TREE_INT_CST_HIGH (expr);
1676 low = TREE_INT_CST_LOW (expr);
1677
1678 /* First clear all bits that are beyond the type's precision in case
1679 we've been sign extended. */
1680
1681 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1682 ;
1683 else if (prec > HOST_BITS_PER_WIDE_INT)
1684 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1685 else
1686 {
1687 high = 0;
1688 if (prec < HOST_BITS_PER_WIDE_INT)
1689 low &= ~((HOST_WIDE_INT) (-1) << prec);
1690 }
1691
1692 if (high == 0 && low == 0)
1693 return 0;
1694
1695 return ((high == 0 && (low & (low - 1)) == 0)
1696 || (low == 0 && (high & (high - 1)) == 0));
1697 }
1698
1699 /* Return 1 if EXPR is an integer constant other than zero or a
1700 complex constant other than zero. */
1701
1702 int
1703 integer_nonzerop (const_tree expr)
1704 {
1705 STRIP_NOPS (expr);
1706
1707 return ((TREE_CODE (expr) == INTEGER_CST
1708 && (TREE_INT_CST_LOW (expr) != 0
1709 || TREE_INT_CST_HIGH (expr) != 0))
1710 || (TREE_CODE (expr) == COMPLEX_CST
1711 && (integer_nonzerop (TREE_REALPART (expr))
1712 || integer_nonzerop (TREE_IMAGPART (expr)))));
1713 }
1714
1715 /* Return 1 if EXPR is the fixed-point constant zero. */
1716
1717 int
1718 fixed_zerop (const_tree expr)
1719 {
1720 return (TREE_CODE (expr) == FIXED_CST
1721 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1722 }
1723
1724 /* Return the power of two represented by a tree node known to be a
1725 power of two. */
1726
1727 int
1728 tree_log2 (const_tree expr)
1729 {
1730 int prec;
1731 HOST_WIDE_INT high, low;
1732
1733 STRIP_NOPS (expr);
1734
1735 if (TREE_CODE (expr) == COMPLEX_CST)
1736 return tree_log2 (TREE_REALPART (expr));
1737
1738 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1739 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1740
1741 high = TREE_INT_CST_HIGH (expr);
1742 low = TREE_INT_CST_LOW (expr);
1743
1744 /* First clear all bits that are beyond the type's precision in case
1745 we've been sign extended. */
1746
1747 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1748 ;
1749 else if (prec > HOST_BITS_PER_WIDE_INT)
1750 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1751 else
1752 {
1753 high = 0;
1754 if (prec < HOST_BITS_PER_WIDE_INT)
1755 low &= ~((HOST_WIDE_INT) (-1) << prec);
1756 }
1757
1758 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1759 : exact_log2 (low));
1760 }
1761
1762 /* Similar, but return the largest integer Y such that 2 ** Y is less
1763 than or equal to EXPR. */
1764
1765 int
1766 tree_floor_log2 (const_tree expr)
1767 {
1768 int prec;
1769 HOST_WIDE_INT high, low;
1770
1771 STRIP_NOPS (expr);
1772
1773 if (TREE_CODE (expr) == COMPLEX_CST)
1774 return tree_log2 (TREE_REALPART (expr));
1775
1776 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1777 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1778
1779 high = TREE_INT_CST_HIGH (expr);
1780 low = TREE_INT_CST_LOW (expr);
1781
1782 /* First clear all bits that are beyond the type's precision in case
1783 we've been sign extended. Ignore if type's precision hasn't been set
1784 since what we are doing is setting it. */
1785
1786 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1787 ;
1788 else if (prec > HOST_BITS_PER_WIDE_INT)
1789 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1790 else
1791 {
1792 high = 0;
1793 if (prec < HOST_BITS_PER_WIDE_INT)
1794 low &= ~((HOST_WIDE_INT) (-1) << prec);
1795 }
1796
1797 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1798 : floor_log2 (low));
1799 }
1800
1801 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1802 decimal float constants, so don't return 1 for them. */
1803
1804 int
1805 real_zerop (const_tree expr)
1806 {
1807 STRIP_NOPS (expr);
1808
1809 return ((TREE_CODE (expr) == REAL_CST
1810 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1811 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1812 || (TREE_CODE (expr) == COMPLEX_CST
1813 && real_zerop (TREE_REALPART (expr))
1814 && real_zerop (TREE_IMAGPART (expr))));
1815 }
1816
1817 /* Return 1 if EXPR is the real constant one in real or complex form.
1818 Trailing zeroes matter for decimal float constants, so don't return
1819 1 for them. */
1820
1821 int
1822 real_onep (const_tree expr)
1823 {
1824 STRIP_NOPS (expr);
1825
1826 return ((TREE_CODE (expr) == REAL_CST
1827 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
1828 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1829 || (TREE_CODE (expr) == COMPLEX_CST
1830 && real_onep (TREE_REALPART (expr))
1831 && real_zerop (TREE_IMAGPART (expr))));
1832 }
1833
1834 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
1835 for decimal float constants, so don't return 1 for them. */
1836
1837 int
1838 real_twop (const_tree expr)
1839 {
1840 STRIP_NOPS (expr);
1841
1842 return ((TREE_CODE (expr) == REAL_CST
1843 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
1844 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1845 || (TREE_CODE (expr) == COMPLEX_CST
1846 && real_twop (TREE_REALPART (expr))
1847 && real_zerop (TREE_IMAGPART (expr))));
1848 }
1849
1850 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
1851 matter for decimal float constants, so don't return 1 for them. */
1852
1853 int
1854 real_minus_onep (const_tree expr)
1855 {
1856 STRIP_NOPS (expr);
1857
1858 return ((TREE_CODE (expr) == REAL_CST
1859 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
1860 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1861 || (TREE_CODE (expr) == COMPLEX_CST
1862 && real_minus_onep (TREE_REALPART (expr))
1863 && real_zerop (TREE_IMAGPART (expr))));
1864 }
1865
1866 /* Nonzero if EXP is a constant or a cast of a constant. */
1867
1868 int
1869 really_constant_p (const_tree exp)
1870 {
1871 /* This is not quite the same as STRIP_NOPS. It does more. */
1872 while (CONVERT_EXPR_P (exp)
1873 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1874 exp = TREE_OPERAND (exp, 0);
1875 return TREE_CONSTANT (exp);
1876 }
1877 \f
1878 /* Return first list element whose TREE_VALUE is ELEM.
1879 Return 0 if ELEM is not in LIST. */
1880
1881 tree
1882 value_member (tree elem, tree list)
1883 {
1884 while (list)
1885 {
1886 if (elem == TREE_VALUE (list))
1887 return list;
1888 list = TREE_CHAIN (list);
1889 }
1890 return NULL_TREE;
1891 }
1892
1893 /* Return first list element whose TREE_PURPOSE is ELEM.
1894 Return 0 if ELEM is not in LIST. */
1895
1896 tree
1897 purpose_member (const_tree elem, tree list)
1898 {
1899 while (list)
1900 {
1901 if (elem == TREE_PURPOSE (list))
1902 return list;
1903 list = TREE_CHAIN (list);
1904 }
1905 return NULL_TREE;
1906 }
1907
1908 /* Returns element number IDX (zero-origin) of chain CHAIN, or
1909 NULL_TREE. */
1910
1911 tree
1912 chain_index (int idx, tree chain)
1913 {
1914 for (; chain && idx > 0; --idx)
1915 chain = TREE_CHAIN (chain);
1916 return chain;
1917 }
1918
1919 /* Return nonzero if ELEM is part of the chain CHAIN. */
1920
1921 int
1922 chain_member (const_tree elem, const_tree chain)
1923 {
1924 while (chain)
1925 {
1926 if (elem == chain)
1927 return 1;
1928 chain = TREE_CHAIN (chain);
1929 }
1930
1931 return 0;
1932 }
1933
1934 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1935 We expect a null pointer to mark the end of the chain.
1936 This is the Lisp primitive `length'. */
1937
1938 int
1939 list_length (const_tree t)
1940 {
1941 const_tree p = t;
1942 #ifdef ENABLE_TREE_CHECKING
1943 const_tree q = t;
1944 #endif
1945 int len = 0;
1946
1947 while (p)
1948 {
1949 p = TREE_CHAIN (p);
1950 #ifdef ENABLE_TREE_CHECKING
1951 if (len % 2)
1952 q = TREE_CHAIN (q);
1953 gcc_assert (p != q);
1954 #endif
1955 len++;
1956 }
1957
1958 return len;
1959 }
1960
1961 /* Returns the number of FIELD_DECLs in TYPE. */
1962
1963 int
1964 fields_length (const_tree type)
1965 {
1966 tree t = TYPE_FIELDS (type);
1967 int count = 0;
1968
1969 for (; t; t = TREE_CHAIN (t))
1970 if (TREE_CODE (t) == FIELD_DECL)
1971 ++count;
1972
1973 return count;
1974 }
1975
1976 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1977 by modifying the last node in chain 1 to point to chain 2.
1978 This is the Lisp primitive `nconc'. */
1979
1980 tree
1981 chainon (tree op1, tree op2)
1982 {
1983 tree t1;
1984
1985 if (!op1)
1986 return op2;
1987 if (!op2)
1988 return op1;
1989
1990 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1991 continue;
1992 TREE_CHAIN (t1) = op2;
1993
1994 #ifdef ENABLE_TREE_CHECKING
1995 {
1996 tree t2;
1997 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1998 gcc_assert (t2 != t1);
1999 }
2000 #endif
2001
2002 return op1;
2003 }
2004
2005 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2006
2007 tree
2008 tree_last (tree chain)
2009 {
2010 tree next;
2011 if (chain)
2012 while ((next = TREE_CHAIN (chain)))
2013 chain = next;
2014 return chain;
2015 }
2016
2017 /* Reverse the order of elements in the chain T,
2018 and return the new head of the chain (old last element). */
2019
2020 tree
2021 nreverse (tree t)
2022 {
2023 tree prev = 0, decl, next;
2024 for (decl = t; decl; decl = next)
2025 {
2026 next = TREE_CHAIN (decl);
2027 TREE_CHAIN (decl) = prev;
2028 prev = decl;
2029 }
2030 return prev;
2031 }
2032 \f
2033 /* Return a newly created TREE_LIST node whose
2034 purpose and value fields are PARM and VALUE. */
2035
2036 tree
2037 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2038 {
2039 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2040 TREE_PURPOSE (t) = parm;
2041 TREE_VALUE (t) = value;
2042 return t;
2043 }
2044
2045 /* Build a chain of TREE_LIST nodes from a vector. */
2046
2047 tree
2048 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2049 {
2050 tree ret = NULL_TREE;
2051 tree *pp = &ret;
2052 unsigned int i;
2053 tree t;
2054 for (i = 0; VEC_iterate (tree, vec, i, t); ++i)
2055 {
2056 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2057 pp = &TREE_CHAIN (*pp);
2058 }
2059 return ret;
2060 }
2061
2062 /* Return a newly created TREE_LIST node whose
2063 purpose and value fields are PURPOSE and VALUE
2064 and whose TREE_CHAIN is CHAIN. */
2065
2066 tree
2067 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2068 {
2069 tree node;
2070
2071 node = (tree) ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
2072
2073 memset (node, 0, sizeof (struct tree_common));
2074
2075 #ifdef GATHER_STATISTICS
2076 tree_node_counts[(int) x_kind]++;
2077 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
2078 #endif
2079
2080 TREE_SET_CODE (node, TREE_LIST);
2081 TREE_CHAIN (node) = chain;
2082 TREE_PURPOSE (node) = purpose;
2083 TREE_VALUE (node) = value;
2084 return node;
2085 }
2086
2087 /* Return the elements of a CONSTRUCTOR as a TREE_LIST. */
2088
2089 tree
2090 ctor_to_list (tree ctor)
2091 {
2092 tree list = NULL_TREE;
2093 tree *p = &list;
2094 unsigned ix;
2095 tree purpose, val;
2096
2097 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), ix, purpose, val)
2098 {
2099 *p = build_tree_list (purpose, val);
2100 p = &TREE_CHAIN (*p);
2101 }
2102
2103 return list;
2104 }
2105
2106 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2107 trees. */
2108
2109 VEC(tree,gc) *
2110 ctor_to_vec (tree ctor)
2111 {
2112 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2113 unsigned int ix;
2114 tree val;
2115
2116 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2117 VEC_quick_push (tree, vec, val);
2118
2119 return vec;
2120 }
2121 \f
2122 /* Return the size nominally occupied by an object of type TYPE
2123 when it resides in memory. The value is measured in units of bytes,
2124 and its data type is that normally used for type sizes
2125 (which is the first type created by make_signed_type or
2126 make_unsigned_type). */
2127
2128 tree
2129 size_in_bytes (const_tree type)
2130 {
2131 tree t;
2132
2133 if (type == error_mark_node)
2134 return integer_zero_node;
2135
2136 type = TYPE_MAIN_VARIANT (type);
2137 t = TYPE_SIZE_UNIT (type);
2138
2139 if (t == 0)
2140 {
2141 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2142 return size_zero_node;
2143 }
2144
2145 return t;
2146 }
2147
2148 /* Return the size of TYPE (in bytes) as a wide integer
2149 or return -1 if the size can vary or is larger than an integer. */
2150
2151 HOST_WIDE_INT
2152 int_size_in_bytes (const_tree type)
2153 {
2154 tree t;
2155
2156 if (type == error_mark_node)
2157 return 0;
2158
2159 type = TYPE_MAIN_VARIANT (type);
2160 t = TYPE_SIZE_UNIT (type);
2161 if (t == 0
2162 || TREE_CODE (t) != INTEGER_CST
2163 || TREE_INT_CST_HIGH (t) != 0
2164 /* If the result would appear negative, it's too big to represent. */
2165 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2166 return -1;
2167
2168 return TREE_INT_CST_LOW (t);
2169 }
2170
2171 /* Return the maximum size of TYPE (in bytes) as a wide integer
2172 or return -1 if the size can vary or is larger than an integer. */
2173
2174 HOST_WIDE_INT
2175 max_int_size_in_bytes (const_tree type)
2176 {
2177 HOST_WIDE_INT size = -1;
2178 tree size_tree;
2179
2180 /* If this is an array type, check for a possible MAX_SIZE attached. */
2181
2182 if (TREE_CODE (type) == ARRAY_TYPE)
2183 {
2184 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2185
2186 if (size_tree && host_integerp (size_tree, 1))
2187 size = tree_low_cst (size_tree, 1);
2188 }
2189
2190 /* If we still haven't been able to get a size, see if the language
2191 can compute a maximum size. */
2192
2193 if (size == -1)
2194 {
2195 size_tree = lang_hooks.types.max_size (type);
2196
2197 if (size_tree && host_integerp (size_tree, 1))
2198 size = tree_low_cst (size_tree, 1);
2199 }
2200
2201 return size;
2202 }
2203
2204 /* Returns a tree for the size of EXP in bytes. */
2205
2206 tree
2207 tree_expr_size (const_tree exp)
2208 {
2209 if (DECL_P (exp)
2210 && DECL_SIZE_UNIT (exp) != 0)
2211 return DECL_SIZE_UNIT (exp);
2212 else
2213 return size_in_bytes (TREE_TYPE (exp));
2214 }
2215 \f
2216 /* Return the bit position of FIELD, in bits from the start of the record.
2217 This is a tree of type bitsizetype. */
2218
2219 tree
2220 bit_position (const_tree field)
2221 {
2222 return bit_from_pos (DECL_FIELD_OFFSET (field),
2223 DECL_FIELD_BIT_OFFSET (field));
2224 }
2225
2226 /* Likewise, but return as an integer. It must be representable in
2227 that way (since it could be a signed value, we don't have the
2228 option of returning -1 like int_size_in_byte can. */
2229
2230 HOST_WIDE_INT
2231 int_bit_position (const_tree field)
2232 {
2233 return tree_low_cst (bit_position (field), 0);
2234 }
2235 \f
2236 /* Return the byte position of FIELD, in bytes from the start of the record.
2237 This is a tree of type sizetype. */
2238
2239 tree
2240 byte_position (const_tree field)
2241 {
2242 return byte_from_pos (DECL_FIELD_OFFSET (field),
2243 DECL_FIELD_BIT_OFFSET (field));
2244 }
2245
2246 /* Likewise, but return as an integer. It must be representable in
2247 that way (since it could be a signed value, we don't have the
2248 option of returning -1 like int_size_in_byte can. */
2249
2250 HOST_WIDE_INT
2251 int_byte_position (const_tree field)
2252 {
2253 return tree_low_cst (byte_position (field), 0);
2254 }
2255 \f
2256 /* Return the strictest alignment, in bits, that T is known to have. */
2257
2258 unsigned int
2259 expr_align (const_tree t)
2260 {
2261 unsigned int align0, align1;
2262
2263 switch (TREE_CODE (t))
2264 {
2265 CASE_CONVERT: case NON_LVALUE_EXPR:
2266 /* If we have conversions, we know that the alignment of the
2267 object must meet each of the alignments of the types. */
2268 align0 = expr_align (TREE_OPERAND (t, 0));
2269 align1 = TYPE_ALIGN (TREE_TYPE (t));
2270 return MAX (align0, align1);
2271
2272 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2273 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2274 case CLEANUP_POINT_EXPR:
2275 /* These don't change the alignment of an object. */
2276 return expr_align (TREE_OPERAND (t, 0));
2277
2278 case COND_EXPR:
2279 /* The best we can do is say that the alignment is the least aligned
2280 of the two arms. */
2281 align0 = expr_align (TREE_OPERAND (t, 1));
2282 align1 = expr_align (TREE_OPERAND (t, 2));
2283 return MIN (align0, align1);
2284
2285 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2286 meaningfully, it's always 1. */
2287 case LABEL_DECL: case CONST_DECL:
2288 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2289 case FUNCTION_DECL:
2290 gcc_assert (DECL_ALIGN (t) != 0);
2291 return DECL_ALIGN (t);
2292
2293 default:
2294 break;
2295 }
2296
2297 /* Otherwise take the alignment from that of the type. */
2298 return TYPE_ALIGN (TREE_TYPE (t));
2299 }
2300 \f
2301 /* Return, as a tree node, the number of elements for TYPE (which is an
2302 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2303
2304 tree
2305 array_type_nelts (const_tree type)
2306 {
2307 tree index_type, min, max;
2308
2309 /* If they did it with unspecified bounds, then we should have already
2310 given an error about it before we got here. */
2311 if (! TYPE_DOMAIN (type))
2312 return error_mark_node;
2313
2314 index_type = TYPE_DOMAIN (type);
2315 min = TYPE_MIN_VALUE (index_type);
2316 max = TYPE_MAX_VALUE (index_type);
2317
2318 return (integer_zerop (min)
2319 ? max
2320 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2321 }
2322 \f
2323 /* If arg is static -- a reference to an object in static storage -- then
2324 return the object. This is not the same as the C meaning of `static'.
2325 If arg isn't static, return NULL. */
2326
2327 tree
2328 staticp (tree arg)
2329 {
2330 switch (TREE_CODE (arg))
2331 {
2332 case FUNCTION_DECL:
2333 /* Nested functions are static, even though taking their address will
2334 involve a trampoline as we unnest the nested function and create
2335 the trampoline on the tree level. */
2336 return arg;
2337
2338 case VAR_DECL:
2339 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2340 && ! DECL_THREAD_LOCAL_P (arg)
2341 && ! DECL_DLLIMPORT_P (arg)
2342 ? arg : NULL);
2343
2344 case CONST_DECL:
2345 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2346 ? arg : NULL);
2347
2348 case CONSTRUCTOR:
2349 return TREE_STATIC (arg) ? arg : NULL;
2350
2351 case LABEL_DECL:
2352 case STRING_CST:
2353 return arg;
2354
2355 case COMPONENT_REF:
2356 /* If the thing being referenced is not a field, then it is
2357 something language specific. */
2358 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2359
2360 /* If we are referencing a bitfield, we can't evaluate an
2361 ADDR_EXPR at compile time and so it isn't a constant. */
2362 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2363 return NULL;
2364
2365 return staticp (TREE_OPERAND (arg, 0));
2366
2367 case BIT_FIELD_REF:
2368 return NULL;
2369
2370 case MISALIGNED_INDIRECT_REF:
2371 case ALIGN_INDIRECT_REF:
2372 case INDIRECT_REF:
2373 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2374
2375 case ARRAY_REF:
2376 case ARRAY_RANGE_REF:
2377 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2378 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2379 return staticp (TREE_OPERAND (arg, 0));
2380 else
2381 return NULL;
2382
2383 case COMPOUND_LITERAL_EXPR:
2384 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2385
2386 default:
2387 return NULL;
2388 }
2389 }
2390
2391 \f
2392
2393
2394 /* Return whether OP is a DECL whose address is function-invariant. */
2395
2396 bool
2397 decl_address_invariant_p (const_tree op)
2398 {
2399 /* The conditions below are slightly less strict than the one in
2400 staticp. */
2401
2402 switch (TREE_CODE (op))
2403 {
2404 case PARM_DECL:
2405 case RESULT_DECL:
2406 case LABEL_DECL:
2407 case FUNCTION_DECL:
2408 return true;
2409
2410 case VAR_DECL:
2411 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2412 && !DECL_DLLIMPORT_P (op))
2413 || DECL_THREAD_LOCAL_P (op)
2414 || DECL_CONTEXT (op) == current_function_decl
2415 || decl_function_context (op) == current_function_decl)
2416 return true;
2417 break;
2418
2419 case CONST_DECL:
2420 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2421 || decl_function_context (op) == current_function_decl)
2422 return true;
2423 break;
2424
2425 default:
2426 break;
2427 }
2428
2429 return false;
2430 }
2431
2432 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2433
2434 bool
2435 decl_address_ip_invariant_p (const_tree op)
2436 {
2437 /* The conditions below are slightly less strict than the one in
2438 staticp. */
2439
2440 switch (TREE_CODE (op))
2441 {
2442 case LABEL_DECL:
2443 case FUNCTION_DECL:
2444 case STRING_CST:
2445 return true;
2446
2447 case VAR_DECL:
2448 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2449 && !DECL_DLLIMPORT_P (op))
2450 || DECL_THREAD_LOCAL_P (op))
2451 return true;
2452 break;
2453
2454 case CONST_DECL:
2455 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2456 return true;
2457 break;
2458
2459 default:
2460 break;
2461 }
2462
2463 return false;
2464 }
2465
2466
2467 /* Return true if T is function-invariant (internal function, does
2468 not handle arithmetic; that's handled in skip_simple_arithmetic and
2469 tree_invariant_p). */
2470
2471 static bool tree_invariant_p (tree t);
2472
2473 static bool
2474 tree_invariant_p_1 (tree t)
2475 {
2476 tree op;
2477
2478 if (TREE_CONSTANT (t)
2479 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2480 return true;
2481
2482 switch (TREE_CODE (t))
2483 {
2484 case SAVE_EXPR:
2485 return true;
2486
2487 case ADDR_EXPR:
2488 op = TREE_OPERAND (t, 0);
2489 while (handled_component_p (op))
2490 {
2491 switch (TREE_CODE (op))
2492 {
2493 case ARRAY_REF:
2494 case ARRAY_RANGE_REF:
2495 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2496 || TREE_OPERAND (op, 2) != NULL_TREE
2497 || TREE_OPERAND (op, 3) != NULL_TREE)
2498 return false;
2499 break;
2500
2501 case COMPONENT_REF:
2502 if (TREE_OPERAND (op, 2) != NULL_TREE)
2503 return false;
2504 break;
2505
2506 default:;
2507 }
2508 op = TREE_OPERAND (op, 0);
2509 }
2510
2511 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2512
2513 default:
2514 break;
2515 }
2516
2517 return false;
2518 }
2519
2520 /* Return true if T is function-invariant. */
2521
2522 static bool
2523 tree_invariant_p (tree t)
2524 {
2525 tree inner = skip_simple_arithmetic (t);
2526 return tree_invariant_p_1 (inner);
2527 }
2528
2529 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2530 Do this to any expression which may be used in more than one place,
2531 but must be evaluated only once.
2532
2533 Normally, expand_expr would reevaluate the expression each time.
2534 Calling save_expr produces something that is evaluated and recorded
2535 the first time expand_expr is called on it. Subsequent calls to
2536 expand_expr just reuse the recorded value.
2537
2538 The call to expand_expr that generates code that actually computes
2539 the value is the first call *at compile time*. Subsequent calls
2540 *at compile time* generate code to use the saved value.
2541 This produces correct result provided that *at run time* control
2542 always flows through the insns made by the first expand_expr
2543 before reaching the other places where the save_expr was evaluated.
2544 You, the caller of save_expr, must make sure this is so.
2545
2546 Constants, and certain read-only nodes, are returned with no
2547 SAVE_EXPR because that is safe. Expressions containing placeholders
2548 are not touched; see tree.def for an explanation of what these
2549 are used for. */
2550
2551 tree
2552 save_expr (tree expr)
2553 {
2554 tree t = fold (expr);
2555 tree inner;
2556
2557 /* If the tree evaluates to a constant, then we don't want to hide that
2558 fact (i.e. this allows further folding, and direct checks for constants).
2559 However, a read-only object that has side effects cannot be bypassed.
2560 Since it is no problem to reevaluate literals, we just return the
2561 literal node. */
2562 inner = skip_simple_arithmetic (t);
2563 if (TREE_CODE (inner) == ERROR_MARK)
2564 return inner;
2565
2566 if (tree_invariant_p_1 (inner))
2567 return t;
2568
2569 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2570 it means that the size or offset of some field of an object depends on
2571 the value within another field.
2572
2573 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2574 and some variable since it would then need to be both evaluated once and
2575 evaluated more than once. Front-ends must assure this case cannot
2576 happen by surrounding any such subexpressions in their own SAVE_EXPR
2577 and forcing evaluation at the proper time. */
2578 if (contains_placeholder_p (inner))
2579 return t;
2580
2581 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2582 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2583
2584 /* This expression might be placed ahead of a jump to ensure that the
2585 value was computed on both sides of the jump. So make sure it isn't
2586 eliminated as dead. */
2587 TREE_SIDE_EFFECTS (t) = 1;
2588 return t;
2589 }
2590
2591 /* Look inside EXPR and into any simple arithmetic operations. Return
2592 the innermost non-arithmetic node. */
2593
2594 tree
2595 skip_simple_arithmetic (tree expr)
2596 {
2597 tree inner;
2598
2599 /* We don't care about whether this can be used as an lvalue in this
2600 context. */
2601 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2602 expr = TREE_OPERAND (expr, 0);
2603
2604 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2605 a constant, it will be more efficient to not make another SAVE_EXPR since
2606 it will allow better simplification and GCSE will be able to merge the
2607 computations if they actually occur. */
2608 inner = expr;
2609 while (1)
2610 {
2611 if (UNARY_CLASS_P (inner))
2612 inner = TREE_OPERAND (inner, 0);
2613 else if (BINARY_CLASS_P (inner))
2614 {
2615 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2616 inner = TREE_OPERAND (inner, 0);
2617 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2618 inner = TREE_OPERAND (inner, 1);
2619 else
2620 break;
2621 }
2622 else
2623 break;
2624 }
2625
2626 return inner;
2627 }
2628
2629
2630 /* Return which tree structure is used by T. */
2631
2632 enum tree_node_structure_enum
2633 tree_node_structure (const_tree t)
2634 {
2635 const enum tree_code code = TREE_CODE (t);
2636 return tree_node_structure_for_code (code);
2637 }
2638
2639 /* Set various status flags when building a CALL_EXPR object T. */
2640
2641 static void
2642 process_call_operands (tree t)
2643 {
2644 bool side_effects = TREE_SIDE_EFFECTS (t);
2645 bool read_only = false;
2646 int i = call_expr_flags (t);
2647
2648 /* Calls have side-effects, except those to const or pure functions. */
2649 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2650 side_effects = true;
2651 /* Propagate TREE_READONLY of arguments for const functions. */
2652 if (i & ECF_CONST)
2653 read_only = true;
2654
2655 if (!side_effects || read_only)
2656 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2657 {
2658 tree op = TREE_OPERAND (t, i);
2659 if (op && TREE_SIDE_EFFECTS (op))
2660 side_effects = true;
2661 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2662 read_only = false;
2663 }
2664
2665 TREE_SIDE_EFFECTS (t) = side_effects;
2666 TREE_READONLY (t) = read_only;
2667 }
2668 \f
2669 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2670 or offset that depends on a field within a record. */
2671
2672 bool
2673 contains_placeholder_p (const_tree exp)
2674 {
2675 enum tree_code code;
2676
2677 if (!exp)
2678 return 0;
2679
2680 code = TREE_CODE (exp);
2681 if (code == PLACEHOLDER_EXPR)
2682 return 1;
2683
2684 switch (TREE_CODE_CLASS (code))
2685 {
2686 case tcc_reference:
2687 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2688 position computations since they will be converted into a
2689 WITH_RECORD_EXPR involving the reference, which will assume
2690 here will be valid. */
2691 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2692
2693 case tcc_exceptional:
2694 if (code == TREE_LIST)
2695 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2696 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2697 break;
2698
2699 case tcc_unary:
2700 case tcc_binary:
2701 case tcc_comparison:
2702 case tcc_expression:
2703 switch (code)
2704 {
2705 case COMPOUND_EXPR:
2706 /* Ignoring the first operand isn't quite right, but works best. */
2707 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2708
2709 case COND_EXPR:
2710 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2711 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2712 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2713
2714 case SAVE_EXPR:
2715 /* The save_expr function never wraps anything containing
2716 a PLACEHOLDER_EXPR. */
2717 return 0;
2718
2719 default:
2720 break;
2721 }
2722
2723 switch (TREE_CODE_LENGTH (code))
2724 {
2725 case 1:
2726 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2727 case 2:
2728 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2729 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2730 default:
2731 return 0;
2732 }
2733
2734 case tcc_vl_exp:
2735 switch (code)
2736 {
2737 case CALL_EXPR:
2738 {
2739 const_tree arg;
2740 const_call_expr_arg_iterator iter;
2741 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2742 if (CONTAINS_PLACEHOLDER_P (arg))
2743 return 1;
2744 return 0;
2745 }
2746 default:
2747 return 0;
2748 }
2749
2750 default:
2751 return 0;
2752 }
2753 return 0;
2754 }
2755
2756 /* Return true if any part of the computation of TYPE involves a
2757 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2758 (for QUAL_UNION_TYPE) and field positions. */
2759
2760 static bool
2761 type_contains_placeholder_1 (const_tree type)
2762 {
2763 /* If the size contains a placeholder or the parent type (component type in
2764 the case of arrays) type involves a placeholder, this type does. */
2765 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2766 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2767 || (TREE_TYPE (type) != 0
2768 && type_contains_placeholder_p (TREE_TYPE (type))))
2769 return true;
2770
2771 /* Now do type-specific checks. Note that the last part of the check above
2772 greatly limits what we have to do below. */
2773 switch (TREE_CODE (type))
2774 {
2775 case VOID_TYPE:
2776 case COMPLEX_TYPE:
2777 case ENUMERAL_TYPE:
2778 case BOOLEAN_TYPE:
2779 case POINTER_TYPE:
2780 case OFFSET_TYPE:
2781 case REFERENCE_TYPE:
2782 case METHOD_TYPE:
2783 case FUNCTION_TYPE:
2784 case VECTOR_TYPE:
2785 return false;
2786
2787 case INTEGER_TYPE:
2788 case REAL_TYPE:
2789 case FIXED_POINT_TYPE:
2790 /* Here we just check the bounds. */
2791 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2792 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2793
2794 case ARRAY_TYPE:
2795 /* We're already checked the component type (TREE_TYPE), so just check
2796 the index type. */
2797 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2798
2799 case RECORD_TYPE:
2800 case UNION_TYPE:
2801 case QUAL_UNION_TYPE:
2802 {
2803 tree field;
2804
2805 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2806 if (TREE_CODE (field) == FIELD_DECL
2807 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2808 || (TREE_CODE (type) == QUAL_UNION_TYPE
2809 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2810 || type_contains_placeholder_p (TREE_TYPE (field))))
2811 return true;
2812
2813 return false;
2814 }
2815
2816 default:
2817 gcc_unreachable ();
2818 }
2819 }
2820
2821 bool
2822 type_contains_placeholder_p (tree type)
2823 {
2824 bool result;
2825
2826 /* If the contains_placeholder_bits field has been initialized,
2827 then we know the answer. */
2828 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2829 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2830
2831 /* Indicate that we've seen this type node, and the answer is false.
2832 This is what we want to return if we run into recursion via fields. */
2833 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2834
2835 /* Compute the real value. */
2836 result = type_contains_placeholder_1 (type);
2837
2838 /* Store the real value. */
2839 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2840
2841 return result;
2842 }
2843 \f
2844 /* Push tree EXP onto vector QUEUE if it is not already present. */
2845
2846 static void
2847 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
2848 {
2849 unsigned int i;
2850 tree iter;
2851
2852 for (i = 0; VEC_iterate (tree, *queue, i, iter); i++)
2853 if (simple_cst_equal (iter, exp) == 1)
2854 break;
2855
2856 if (!iter)
2857 VEC_safe_push (tree, heap, *queue, exp);
2858 }
2859
2860 /* Given a tree EXP, find all occurences of references to fields
2861 in a PLACEHOLDER_EXPR and place them in vector REFS without
2862 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
2863 we assume here that EXP contains only arithmetic expressions
2864 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
2865 argument list. */
2866
2867 void
2868 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
2869 {
2870 enum tree_code code = TREE_CODE (exp);
2871 tree inner;
2872 int i;
2873
2874 /* We handle TREE_LIST and COMPONENT_REF separately. */
2875 if (code == TREE_LIST)
2876 {
2877 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
2878 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
2879 }
2880 else if (code == COMPONENT_REF)
2881 {
2882 for (inner = TREE_OPERAND (exp, 0);
2883 REFERENCE_CLASS_P (inner);
2884 inner = TREE_OPERAND (inner, 0))
2885 ;
2886
2887 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
2888 push_without_duplicates (exp, refs);
2889 else
2890 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
2891 }
2892 else
2893 switch (TREE_CODE_CLASS (code))
2894 {
2895 case tcc_constant:
2896 break;
2897
2898 case tcc_declaration:
2899 /* Variables allocated to static storage can stay. */
2900 if (!TREE_STATIC (exp))
2901 push_without_duplicates (exp, refs);
2902 break;
2903
2904 case tcc_expression:
2905 /* This is the pattern built in ada/make_aligning_type. */
2906 if (code == ADDR_EXPR
2907 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
2908 {
2909 push_without_duplicates (exp, refs);
2910 break;
2911 }
2912
2913 /* Fall through... */
2914
2915 case tcc_exceptional:
2916 case tcc_unary:
2917 case tcc_binary:
2918 case tcc_comparison:
2919 case tcc_reference:
2920 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
2921 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
2922 break;
2923
2924 case tcc_vl_exp:
2925 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
2926 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
2927 break;
2928
2929 default:
2930 gcc_unreachable ();
2931 }
2932 }
2933
2934 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2935 return a tree with all occurrences of references to F in a
2936 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
2937 CONST_DECLs. Note that we assume here that EXP contains only
2938 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
2939 occurring only in their argument list. */
2940
2941 tree
2942 substitute_in_expr (tree exp, tree f, tree r)
2943 {
2944 enum tree_code code = TREE_CODE (exp);
2945 tree op0, op1, op2, op3;
2946 tree new_tree;
2947
2948 /* We handle TREE_LIST and COMPONENT_REF separately. */
2949 if (code == TREE_LIST)
2950 {
2951 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2952 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2953 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2954 return exp;
2955
2956 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2957 }
2958 else if (code == COMPONENT_REF)
2959 {
2960 tree inner;
2961
2962 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2963 and it is the right field, replace it with R. */
2964 for (inner = TREE_OPERAND (exp, 0);
2965 REFERENCE_CLASS_P (inner);
2966 inner = TREE_OPERAND (inner, 0))
2967 ;
2968
2969 /* The field. */
2970 op1 = TREE_OPERAND (exp, 1);
2971
2972 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
2973 return r;
2974
2975 /* If this expression hasn't been completed let, leave it alone. */
2976 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
2977 return exp;
2978
2979 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2980 if (op0 == TREE_OPERAND (exp, 0))
2981 return exp;
2982
2983 new_tree
2984 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
2985 }
2986 else
2987 switch (TREE_CODE_CLASS (code))
2988 {
2989 case tcc_constant:
2990 return exp;
2991
2992 case tcc_declaration:
2993 if (exp == f)
2994 return r;
2995 else
2996 return exp;
2997
2998 case tcc_expression:
2999 if (exp == f)
3000 return r;
3001
3002 /* Fall through... */
3003
3004 case tcc_exceptional:
3005 case tcc_unary:
3006 case tcc_binary:
3007 case tcc_comparison:
3008 case tcc_reference:
3009 switch (TREE_CODE_LENGTH (code))
3010 {
3011 case 0:
3012 return exp;
3013
3014 case 1:
3015 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3016 if (op0 == TREE_OPERAND (exp, 0))
3017 return exp;
3018
3019 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3020 break;
3021
3022 case 2:
3023 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3024 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3025
3026 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3027 return exp;
3028
3029 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3030 break;
3031
3032 case 3:
3033 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3034 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3035 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3036
3037 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3038 && op2 == TREE_OPERAND (exp, 2))
3039 return exp;
3040
3041 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3042 break;
3043
3044 case 4:
3045 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3046 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3047 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3048 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3049
3050 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3051 && op2 == TREE_OPERAND (exp, 2)
3052 && op3 == TREE_OPERAND (exp, 3))
3053 return exp;
3054
3055 new_tree
3056 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3057 break;
3058
3059 default:
3060 gcc_unreachable ();
3061 }
3062 break;
3063
3064 case tcc_vl_exp:
3065 {
3066 int i;
3067
3068 new_tree = NULL_TREE;
3069
3070 /* If we are trying to replace F with a constant, inline back
3071 functions which do nothing else than computing a value from
3072 the arguments they are passed. This makes it possible to
3073 fold partially or entirely the replacement expression. */
3074 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3075 {
3076 tree t = maybe_inline_call_in_expr (exp);
3077 if (t)
3078 return SUBSTITUTE_IN_EXPR (t, f, r);
3079 }
3080
3081 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3082 {
3083 tree op = TREE_OPERAND (exp, i);
3084 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3085 if (new_op != op)
3086 {
3087 if (!new_tree)
3088 new_tree = copy_node (exp);
3089 TREE_OPERAND (new_tree, i) = new_op;
3090 }
3091 }
3092
3093 if (new_tree)
3094 {
3095 new_tree = fold (new_tree);
3096 if (TREE_CODE (new_tree) == CALL_EXPR)
3097 process_call_operands (new_tree);
3098 }
3099 else
3100 return exp;
3101 }
3102 break;
3103
3104 default:
3105 gcc_unreachable ();
3106 }
3107
3108 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3109 return new_tree;
3110 }
3111
3112 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3113 for it within OBJ, a tree that is an object or a chain of references. */
3114
3115 tree
3116 substitute_placeholder_in_expr (tree exp, tree obj)
3117 {
3118 enum tree_code code = TREE_CODE (exp);
3119 tree op0, op1, op2, op3;
3120 tree new_tree;
3121
3122 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3123 in the chain of OBJ. */
3124 if (code == PLACEHOLDER_EXPR)
3125 {
3126 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3127 tree elt;
3128
3129 for (elt = obj; elt != 0;
3130 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3131 || TREE_CODE (elt) == COND_EXPR)
3132 ? TREE_OPERAND (elt, 1)
3133 : (REFERENCE_CLASS_P (elt)
3134 || UNARY_CLASS_P (elt)
3135 || BINARY_CLASS_P (elt)
3136 || VL_EXP_CLASS_P (elt)
3137 || EXPRESSION_CLASS_P (elt))
3138 ? TREE_OPERAND (elt, 0) : 0))
3139 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3140 return elt;
3141
3142 for (elt = obj; elt != 0;
3143 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3144 || TREE_CODE (elt) == COND_EXPR)
3145 ? TREE_OPERAND (elt, 1)
3146 : (REFERENCE_CLASS_P (elt)
3147 || UNARY_CLASS_P (elt)
3148 || BINARY_CLASS_P (elt)
3149 || VL_EXP_CLASS_P (elt)
3150 || EXPRESSION_CLASS_P (elt))
3151 ? TREE_OPERAND (elt, 0) : 0))
3152 if (POINTER_TYPE_P (TREE_TYPE (elt))
3153 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3154 == need_type))
3155 return fold_build1 (INDIRECT_REF, need_type, elt);
3156
3157 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3158 survives until RTL generation, there will be an error. */
3159 return exp;
3160 }
3161
3162 /* TREE_LIST is special because we need to look at TREE_VALUE
3163 and TREE_CHAIN, not TREE_OPERANDS. */
3164 else if (code == TREE_LIST)
3165 {
3166 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3167 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3168 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3169 return exp;
3170
3171 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3172 }
3173 else
3174 switch (TREE_CODE_CLASS (code))
3175 {
3176 case tcc_constant:
3177 case tcc_declaration:
3178 return exp;
3179
3180 case tcc_exceptional:
3181 case tcc_unary:
3182 case tcc_binary:
3183 case tcc_comparison:
3184 case tcc_expression:
3185 case tcc_reference:
3186 case tcc_statement:
3187 switch (TREE_CODE_LENGTH (code))
3188 {
3189 case 0:
3190 return exp;
3191
3192 case 1:
3193 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3194 if (op0 == TREE_OPERAND (exp, 0))
3195 return exp;
3196
3197 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3198 break;
3199
3200 case 2:
3201 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3202 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3203
3204 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3205 return exp;
3206
3207 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3208 break;
3209
3210 case 3:
3211 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3212 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3213 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3214
3215 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3216 && op2 == TREE_OPERAND (exp, 2))
3217 return exp;
3218
3219 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3220 break;
3221
3222 case 4:
3223 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3224 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3225 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3226 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3227
3228 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3229 && op2 == TREE_OPERAND (exp, 2)
3230 && op3 == TREE_OPERAND (exp, 3))
3231 return exp;
3232
3233 new_tree
3234 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3235 break;
3236
3237 default:
3238 gcc_unreachable ();
3239 }
3240 break;
3241
3242 case tcc_vl_exp:
3243 {
3244 int i;
3245
3246 new_tree = NULL_TREE;
3247
3248 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3249 {
3250 tree op = TREE_OPERAND (exp, i);
3251 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3252 if (new_op != op)
3253 {
3254 if (!new_tree)
3255 new_tree = copy_node (exp);
3256 TREE_OPERAND (new_tree, i) = new_op;
3257 }
3258 }
3259
3260 if (new_tree)
3261 {
3262 new_tree = fold (new_tree);
3263 if (TREE_CODE (new_tree) == CALL_EXPR)
3264 process_call_operands (new_tree);
3265 }
3266 else
3267 return exp;
3268 }
3269 break;
3270
3271 default:
3272 gcc_unreachable ();
3273 }
3274
3275 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3276 return new_tree;
3277 }
3278 \f
3279 /* Stabilize a reference so that we can use it any number of times
3280 without causing its operands to be evaluated more than once.
3281 Returns the stabilized reference. This works by means of save_expr,
3282 so see the caveats in the comments about save_expr.
3283
3284 Also allows conversion expressions whose operands are references.
3285 Any other kind of expression is returned unchanged. */
3286
3287 tree
3288 stabilize_reference (tree ref)
3289 {
3290 tree result;
3291 enum tree_code code = TREE_CODE (ref);
3292
3293 switch (code)
3294 {
3295 case VAR_DECL:
3296 case PARM_DECL:
3297 case RESULT_DECL:
3298 /* No action is needed in this case. */
3299 return ref;
3300
3301 CASE_CONVERT:
3302 case FLOAT_EXPR:
3303 case FIX_TRUNC_EXPR:
3304 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3305 break;
3306
3307 case INDIRECT_REF:
3308 result = build_nt (INDIRECT_REF,
3309 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3310 break;
3311
3312 case COMPONENT_REF:
3313 result = build_nt (COMPONENT_REF,
3314 stabilize_reference (TREE_OPERAND (ref, 0)),
3315 TREE_OPERAND (ref, 1), NULL_TREE);
3316 break;
3317
3318 case BIT_FIELD_REF:
3319 result = build_nt (BIT_FIELD_REF,
3320 stabilize_reference (TREE_OPERAND (ref, 0)),
3321 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3322 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3323 break;
3324
3325 case ARRAY_REF:
3326 result = build_nt (ARRAY_REF,
3327 stabilize_reference (TREE_OPERAND (ref, 0)),
3328 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3329 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3330 break;
3331
3332 case ARRAY_RANGE_REF:
3333 result = build_nt (ARRAY_RANGE_REF,
3334 stabilize_reference (TREE_OPERAND (ref, 0)),
3335 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3336 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3337 break;
3338
3339 case COMPOUND_EXPR:
3340 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3341 it wouldn't be ignored. This matters when dealing with
3342 volatiles. */
3343 return stabilize_reference_1 (ref);
3344
3345 /* If arg isn't a kind of lvalue we recognize, make no change.
3346 Caller should recognize the error for an invalid lvalue. */
3347 default:
3348 return ref;
3349
3350 case ERROR_MARK:
3351 return error_mark_node;
3352 }
3353
3354 TREE_TYPE (result) = TREE_TYPE (ref);
3355 TREE_READONLY (result) = TREE_READONLY (ref);
3356 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3357 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3358
3359 return result;
3360 }
3361
3362 /* Subroutine of stabilize_reference; this is called for subtrees of
3363 references. Any expression with side-effects must be put in a SAVE_EXPR
3364 to ensure that it is only evaluated once.
3365
3366 We don't put SAVE_EXPR nodes around everything, because assigning very
3367 simple expressions to temporaries causes us to miss good opportunities
3368 for optimizations. Among other things, the opportunity to fold in the
3369 addition of a constant into an addressing mode often gets lost, e.g.
3370 "y[i+1] += x;". In general, we take the approach that we should not make
3371 an assignment unless we are forced into it - i.e., that any non-side effect
3372 operator should be allowed, and that cse should take care of coalescing
3373 multiple utterances of the same expression should that prove fruitful. */
3374
3375 tree
3376 stabilize_reference_1 (tree e)
3377 {
3378 tree result;
3379 enum tree_code code = TREE_CODE (e);
3380
3381 /* We cannot ignore const expressions because it might be a reference
3382 to a const array but whose index contains side-effects. But we can
3383 ignore things that are actual constant or that already have been
3384 handled by this function. */
3385
3386 if (tree_invariant_p (e))
3387 return e;
3388
3389 switch (TREE_CODE_CLASS (code))
3390 {
3391 case tcc_exceptional:
3392 case tcc_type:
3393 case tcc_declaration:
3394 case tcc_comparison:
3395 case tcc_statement:
3396 case tcc_expression:
3397 case tcc_reference:
3398 case tcc_vl_exp:
3399 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3400 so that it will only be evaluated once. */
3401 /* The reference (r) and comparison (<) classes could be handled as
3402 below, but it is generally faster to only evaluate them once. */
3403 if (TREE_SIDE_EFFECTS (e))
3404 return save_expr (e);
3405 return e;
3406
3407 case tcc_constant:
3408 /* Constants need no processing. In fact, we should never reach
3409 here. */
3410 return e;
3411
3412 case tcc_binary:
3413 /* Division is slow and tends to be compiled with jumps,
3414 especially the division by powers of 2 that is often
3415 found inside of an array reference. So do it just once. */
3416 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3417 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3418 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3419 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3420 return save_expr (e);
3421 /* Recursively stabilize each operand. */
3422 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3423 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3424 break;
3425
3426 case tcc_unary:
3427 /* Recursively stabilize each operand. */
3428 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3429 break;
3430
3431 default:
3432 gcc_unreachable ();
3433 }
3434
3435 TREE_TYPE (result) = TREE_TYPE (e);
3436 TREE_READONLY (result) = TREE_READONLY (e);
3437 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3438 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3439
3440 return result;
3441 }
3442 \f
3443 /* Low-level constructors for expressions. */
3444
3445 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3446 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3447
3448 void
3449 recompute_tree_invariant_for_addr_expr (tree t)
3450 {
3451 tree node;
3452 bool tc = true, se = false;
3453
3454 /* We started out assuming this address is both invariant and constant, but
3455 does not have side effects. Now go down any handled components and see if
3456 any of them involve offsets that are either non-constant or non-invariant.
3457 Also check for side-effects.
3458
3459 ??? Note that this code makes no attempt to deal with the case where
3460 taking the address of something causes a copy due to misalignment. */
3461
3462 #define UPDATE_FLAGS(NODE) \
3463 do { tree _node = (NODE); \
3464 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3465 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3466
3467 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3468 node = TREE_OPERAND (node, 0))
3469 {
3470 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3471 array reference (probably made temporarily by the G++ front end),
3472 so ignore all the operands. */
3473 if ((TREE_CODE (node) == ARRAY_REF
3474 || TREE_CODE (node) == ARRAY_RANGE_REF)
3475 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3476 {
3477 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3478 if (TREE_OPERAND (node, 2))
3479 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3480 if (TREE_OPERAND (node, 3))
3481 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3482 }
3483 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3484 FIELD_DECL, apparently. The G++ front end can put something else
3485 there, at least temporarily. */
3486 else if (TREE_CODE (node) == COMPONENT_REF
3487 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3488 {
3489 if (TREE_OPERAND (node, 2))
3490 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3491 }
3492 else if (TREE_CODE (node) == BIT_FIELD_REF)
3493 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3494 }
3495
3496 node = lang_hooks.expr_to_decl (node, &tc, &se);
3497
3498 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3499 the address, since &(*a)->b is a form of addition. If it's a constant, the
3500 address is constant too. If it's a decl, its address is constant if the
3501 decl is static. Everything else is not constant and, furthermore,
3502 taking the address of a volatile variable is not volatile. */
3503 if (TREE_CODE (node) == INDIRECT_REF)
3504 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3505 else if (CONSTANT_CLASS_P (node))
3506 ;
3507 else if (DECL_P (node))
3508 tc &= (staticp (node) != NULL_TREE);
3509 else
3510 {
3511 tc = false;
3512 se |= TREE_SIDE_EFFECTS (node);
3513 }
3514
3515
3516 TREE_CONSTANT (t) = tc;
3517 TREE_SIDE_EFFECTS (t) = se;
3518 #undef UPDATE_FLAGS
3519 }
3520
3521 /* Build an expression of code CODE, data type TYPE, and operands as
3522 specified. Expressions and reference nodes can be created this way.
3523 Constants, decls, types and misc nodes cannot be.
3524
3525 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3526 enough for all extant tree codes. */
3527
3528 tree
3529 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3530 {
3531 tree t;
3532
3533 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3534
3535 t = make_node_stat (code PASS_MEM_STAT);
3536 TREE_TYPE (t) = tt;
3537
3538 return t;
3539 }
3540
3541 tree
3542 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3543 {
3544 int length = sizeof (struct tree_exp);
3545 #ifdef GATHER_STATISTICS
3546 tree_node_kind kind;
3547 #endif
3548 tree t;
3549
3550 #ifdef GATHER_STATISTICS
3551 switch (TREE_CODE_CLASS (code))
3552 {
3553 case tcc_statement: /* an expression with side effects */
3554 kind = s_kind;
3555 break;
3556 case tcc_reference: /* a reference */
3557 kind = r_kind;
3558 break;
3559 default:
3560 kind = e_kind;
3561 break;
3562 }
3563
3564 tree_node_counts[(int) kind]++;
3565 tree_node_sizes[(int) kind] += length;
3566 #endif
3567
3568 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3569
3570 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
3571
3572 memset (t, 0, sizeof (struct tree_common));
3573
3574 TREE_SET_CODE (t, code);
3575
3576 TREE_TYPE (t) = type;
3577 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3578 TREE_OPERAND (t, 0) = node;
3579 TREE_BLOCK (t) = NULL_TREE;
3580 if (node && !TYPE_P (node))
3581 {
3582 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3583 TREE_READONLY (t) = TREE_READONLY (node);
3584 }
3585
3586 if (TREE_CODE_CLASS (code) == tcc_statement)
3587 TREE_SIDE_EFFECTS (t) = 1;
3588 else switch (code)
3589 {
3590 case VA_ARG_EXPR:
3591 /* All of these have side-effects, no matter what their
3592 operands are. */
3593 TREE_SIDE_EFFECTS (t) = 1;
3594 TREE_READONLY (t) = 0;
3595 break;
3596
3597 case MISALIGNED_INDIRECT_REF:
3598 case ALIGN_INDIRECT_REF:
3599 case INDIRECT_REF:
3600 /* Whether a dereference is readonly has nothing to do with whether
3601 its operand is readonly. */
3602 TREE_READONLY (t) = 0;
3603 break;
3604
3605 case ADDR_EXPR:
3606 if (node)
3607 recompute_tree_invariant_for_addr_expr (t);
3608 break;
3609
3610 default:
3611 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3612 && node && !TYPE_P (node)
3613 && TREE_CONSTANT (node))
3614 TREE_CONSTANT (t) = 1;
3615 if (TREE_CODE_CLASS (code) == tcc_reference
3616 && node && TREE_THIS_VOLATILE (node))
3617 TREE_THIS_VOLATILE (t) = 1;
3618 break;
3619 }
3620
3621 return t;
3622 }
3623
3624 #define PROCESS_ARG(N) \
3625 do { \
3626 TREE_OPERAND (t, N) = arg##N; \
3627 if (arg##N &&!TYPE_P (arg##N)) \
3628 { \
3629 if (TREE_SIDE_EFFECTS (arg##N)) \
3630 side_effects = 1; \
3631 if (!TREE_READONLY (arg##N) \
3632 && !CONSTANT_CLASS_P (arg##N)) \
3633 read_only = 0; \
3634 if (!TREE_CONSTANT (arg##N)) \
3635 constant = 0; \
3636 } \
3637 } while (0)
3638
3639 tree
3640 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3641 {
3642 bool constant, read_only, side_effects;
3643 tree t;
3644
3645 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3646
3647 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3648 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3649 /* When sizetype precision doesn't match that of pointers
3650 we need to be able to build explicit extensions or truncations
3651 of the offset argument. */
3652 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3653 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3654 && TREE_CODE (arg1) == INTEGER_CST);
3655
3656 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3657 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3658 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3659 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3660
3661 t = make_node_stat (code PASS_MEM_STAT);
3662 TREE_TYPE (t) = tt;
3663
3664 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3665 result based on those same flags for the arguments. But if the
3666 arguments aren't really even `tree' expressions, we shouldn't be trying
3667 to do this. */
3668
3669 /* Expressions without side effects may be constant if their
3670 arguments are as well. */
3671 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3672 || TREE_CODE_CLASS (code) == tcc_binary);
3673 read_only = 1;
3674 side_effects = TREE_SIDE_EFFECTS (t);
3675
3676 PROCESS_ARG(0);
3677 PROCESS_ARG(1);
3678
3679 TREE_READONLY (t) = read_only;
3680 TREE_CONSTANT (t) = constant;
3681 TREE_SIDE_EFFECTS (t) = side_effects;
3682 TREE_THIS_VOLATILE (t)
3683 = (TREE_CODE_CLASS (code) == tcc_reference
3684 && arg0 && TREE_THIS_VOLATILE (arg0));
3685
3686 return t;
3687 }
3688
3689
3690 tree
3691 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3692 tree arg2 MEM_STAT_DECL)
3693 {
3694 bool constant, read_only, side_effects;
3695 tree t;
3696
3697 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3698 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3699
3700 t = make_node_stat (code PASS_MEM_STAT);
3701 TREE_TYPE (t) = tt;
3702
3703 read_only = 1;
3704
3705 /* As a special exception, if COND_EXPR has NULL branches, we
3706 assume that it is a gimple statement and always consider
3707 it to have side effects. */
3708 if (code == COND_EXPR
3709 && tt == void_type_node
3710 && arg1 == NULL_TREE
3711 && arg2 == NULL_TREE)
3712 side_effects = true;
3713 else
3714 side_effects = TREE_SIDE_EFFECTS (t);
3715
3716 PROCESS_ARG(0);
3717 PROCESS_ARG(1);
3718 PROCESS_ARG(2);
3719
3720 if (code == COND_EXPR)
3721 TREE_READONLY (t) = read_only;
3722
3723 TREE_SIDE_EFFECTS (t) = side_effects;
3724 TREE_THIS_VOLATILE (t)
3725 = (TREE_CODE_CLASS (code) == tcc_reference
3726 && arg0 && TREE_THIS_VOLATILE (arg0));
3727
3728 return t;
3729 }
3730
3731 tree
3732 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3733 tree arg2, tree arg3 MEM_STAT_DECL)
3734 {
3735 bool constant, read_only, side_effects;
3736 tree t;
3737
3738 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3739
3740 t = make_node_stat (code PASS_MEM_STAT);
3741 TREE_TYPE (t) = tt;
3742
3743 side_effects = TREE_SIDE_EFFECTS (t);
3744
3745 PROCESS_ARG(0);
3746 PROCESS_ARG(1);
3747 PROCESS_ARG(2);
3748 PROCESS_ARG(3);
3749
3750 TREE_SIDE_EFFECTS (t) = side_effects;
3751 TREE_THIS_VOLATILE (t)
3752 = (TREE_CODE_CLASS (code) == tcc_reference
3753 && arg0 && TREE_THIS_VOLATILE (arg0));
3754
3755 return t;
3756 }
3757
3758 tree
3759 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3760 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3761 {
3762 bool constant, read_only, side_effects;
3763 tree t;
3764
3765 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3766
3767 t = make_node_stat (code PASS_MEM_STAT);
3768 TREE_TYPE (t) = tt;
3769
3770 side_effects = TREE_SIDE_EFFECTS (t);
3771
3772 PROCESS_ARG(0);
3773 PROCESS_ARG(1);
3774 PROCESS_ARG(2);
3775 PROCESS_ARG(3);
3776 PROCESS_ARG(4);
3777
3778 TREE_SIDE_EFFECTS (t) = side_effects;
3779 TREE_THIS_VOLATILE (t)
3780 = (TREE_CODE_CLASS (code) == tcc_reference
3781 && arg0 && TREE_THIS_VOLATILE (arg0));
3782
3783 return t;
3784 }
3785
3786 tree
3787 build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3788 tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
3789 {
3790 bool constant, read_only, side_effects;
3791 tree t;
3792
3793 gcc_assert (code == TARGET_MEM_REF);
3794
3795 t = make_node_stat (code PASS_MEM_STAT);
3796 TREE_TYPE (t) = tt;
3797
3798 side_effects = TREE_SIDE_EFFECTS (t);
3799
3800 PROCESS_ARG(0);
3801 PROCESS_ARG(1);
3802 PROCESS_ARG(2);
3803 PROCESS_ARG(3);
3804 PROCESS_ARG(4);
3805 PROCESS_ARG(5);
3806
3807 TREE_SIDE_EFFECTS (t) = side_effects;
3808 TREE_THIS_VOLATILE (t) = 0;
3809
3810 return t;
3811 }
3812
3813 /* Similar except don't specify the TREE_TYPE
3814 and leave the TREE_SIDE_EFFECTS as 0.
3815 It is permissible for arguments to be null,
3816 or even garbage if their values do not matter. */
3817
3818 tree
3819 build_nt (enum tree_code code, ...)
3820 {
3821 tree t;
3822 int length;
3823 int i;
3824 va_list p;
3825
3826 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3827
3828 va_start (p, code);
3829
3830 t = make_node (code);
3831 length = TREE_CODE_LENGTH (code);
3832
3833 for (i = 0; i < length; i++)
3834 TREE_OPERAND (t, i) = va_arg (p, tree);
3835
3836 va_end (p);
3837 return t;
3838 }
3839
3840 /* Similar to build_nt, but for creating a CALL_EXPR object with
3841 ARGLIST passed as a list. */
3842
3843 tree
3844 build_nt_call_list (tree fn, tree arglist)
3845 {
3846 tree t;
3847 int i;
3848
3849 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
3850 CALL_EXPR_FN (t) = fn;
3851 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
3852 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
3853 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
3854 return t;
3855 }
3856
3857 /* Similar to build_nt, but for creating a CALL_EXPR object with a
3858 tree VEC. */
3859
3860 tree
3861 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
3862 {
3863 tree ret, t;
3864 unsigned int ix;
3865
3866 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
3867 CALL_EXPR_FN (ret) = fn;
3868 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
3869 for (ix = 0; VEC_iterate (tree, args, ix, t); ++ix)
3870 CALL_EXPR_ARG (ret, ix) = t;
3871 return ret;
3872 }
3873 \f
3874 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3875 We do NOT enter this node in any sort of symbol table.
3876
3877 LOC is the location of the decl.
3878
3879 layout_decl is used to set up the decl's storage layout.
3880 Other slots are initialized to 0 or null pointers. */
3881
3882 tree
3883 build_decl_stat (location_t loc, enum tree_code code, tree name,
3884 tree type MEM_STAT_DECL)
3885 {
3886 tree t;
3887
3888 t = make_node_stat (code PASS_MEM_STAT);
3889 DECL_SOURCE_LOCATION (t) = loc;
3890
3891 /* if (type == error_mark_node)
3892 type = integer_type_node; */
3893 /* That is not done, deliberately, so that having error_mark_node
3894 as the type can suppress useless errors in the use of this variable. */
3895
3896 DECL_NAME (t) = name;
3897 TREE_TYPE (t) = type;
3898
3899 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3900 layout_decl (t, 0);
3901
3902 return t;
3903 }
3904
3905 /* Builds and returns function declaration with NAME and TYPE. */
3906
3907 tree
3908 build_fn_decl (const char *name, tree type)
3909 {
3910 tree id = get_identifier (name);
3911 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
3912
3913 DECL_EXTERNAL (decl) = 1;
3914 TREE_PUBLIC (decl) = 1;
3915 DECL_ARTIFICIAL (decl) = 1;
3916 TREE_NOTHROW (decl) = 1;
3917
3918 return decl;
3919 }
3920
3921 \f
3922 /* BLOCK nodes are used to represent the structure of binding contours
3923 and declarations, once those contours have been exited and their contents
3924 compiled. This information is used for outputting debugging info. */
3925
3926 tree
3927 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3928 {
3929 tree block = make_node (BLOCK);
3930
3931 BLOCK_VARS (block) = vars;
3932 BLOCK_SUBBLOCKS (block) = subblocks;
3933 BLOCK_SUPERCONTEXT (block) = supercontext;
3934 BLOCK_CHAIN (block) = chain;
3935 return block;
3936 }
3937
3938 expanded_location
3939 expand_location (source_location loc)
3940 {
3941 expanded_location xloc;
3942 if (loc == 0)
3943 {
3944 xloc.file = NULL;
3945 xloc.line = 0;
3946 xloc.column = 0;
3947 xloc.sysp = 0;
3948 }
3949 else
3950 {
3951 const struct line_map *map = linemap_lookup (line_table, loc);
3952 xloc.file = map->to_file;
3953 xloc.line = SOURCE_LINE (map, loc);
3954 xloc.column = SOURCE_COLUMN (map, loc);
3955 xloc.sysp = map->sysp != 0;
3956 };
3957 return xloc;
3958 }
3959
3960 \f
3961 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
3962
3963 LOC is the location to use in tree T. */
3964
3965 void
3966 protected_set_expr_location (tree t, location_t loc)
3967 {
3968 if (t && CAN_HAVE_LOCATION_P (t))
3969 SET_EXPR_LOCATION (t, loc);
3970 }
3971 \f
3972 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3973 is ATTRIBUTE. */
3974
3975 tree
3976 build_decl_attribute_variant (tree ddecl, tree attribute)
3977 {
3978 DECL_ATTRIBUTES (ddecl) = attribute;
3979 return ddecl;
3980 }
3981
3982 /* Borrowed from hashtab.c iterative_hash implementation. */
3983 #define mix(a,b,c) \
3984 { \
3985 a -= b; a -= c; a ^= (c>>13); \
3986 b -= c; b -= a; b ^= (a<< 8); \
3987 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3988 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3989 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3990 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3991 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3992 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3993 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3994 }
3995
3996
3997 /* Produce good hash value combining VAL and VAL2. */
3998 hashval_t
3999 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4000 {
4001 /* the golden ratio; an arbitrary value. */
4002 hashval_t a = 0x9e3779b9;
4003
4004 mix (a, val, val2);
4005 return val2;
4006 }
4007
4008 /* Produce good hash value combining VAL and VAL2. */
4009 hashval_t
4010 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4011 {
4012 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4013 return iterative_hash_hashval_t (val, val2);
4014 else
4015 {
4016 hashval_t a = (hashval_t) val;
4017 /* Avoid warnings about shifting of more than the width of the type on
4018 hosts that won't execute this path. */
4019 int zero = 0;
4020 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4021 mix (a, b, val2);
4022 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4023 {
4024 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4025 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4026 mix (a, b, val2);
4027 }
4028 return val2;
4029 }
4030 }
4031
4032 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4033 is ATTRIBUTE and its qualifiers are QUALS.
4034
4035 Record such modified types already made so we don't make duplicates. */
4036
4037 tree
4038 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4039 {
4040 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4041 {
4042 hashval_t hashcode = 0;
4043 tree ntype;
4044 enum tree_code code = TREE_CODE (ttype);
4045
4046 /* Building a distinct copy of a tagged type is inappropriate; it
4047 causes breakage in code that expects there to be a one-to-one
4048 relationship between a struct and its fields.
4049 build_duplicate_type is another solution (as used in
4050 handle_transparent_union_attribute), but that doesn't play well
4051 with the stronger C++ type identity model. */
4052 if (TREE_CODE (ttype) == RECORD_TYPE
4053 || TREE_CODE (ttype) == UNION_TYPE
4054 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4055 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4056 {
4057 warning (OPT_Wattributes,
4058 "ignoring attributes applied to %qT after definition",
4059 TYPE_MAIN_VARIANT (ttype));
4060 return build_qualified_type (ttype, quals);
4061 }
4062
4063 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4064 ntype = build_distinct_type_copy (ttype);
4065
4066 TYPE_ATTRIBUTES (ntype) = attribute;
4067
4068 hashcode = iterative_hash_object (code, hashcode);
4069 if (TREE_TYPE (ntype))
4070 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4071 hashcode);
4072 hashcode = attribute_hash_list (attribute, hashcode);
4073
4074 switch (TREE_CODE (ntype))
4075 {
4076 case FUNCTION_TYPE:
4077 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4078 break;
4079 case ARRAY_TYPE:
4080 if (TYPE_DOMAIN (ntype))
4081 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4082 hashcode);
4083 break;
4084 case INTEGER_TYPE:
4085 hashcode = iterative_hash_object
4086 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4087 hashcode = iterative_hash_object
4088 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4089 break;
4090 case REAL_TYPE:
4091 case FIXED_POINT_TYPE:
4092 {
4093 unsigned int precision = TYPE_PRECISION (ntype);
4094 hashcode = iterative_hash_object (precision, hashcode);
4095 }
4096 break;
4097 default:
4098 break;
4099 }
4100
4101 ntype = type_hash_canon (hashcode, ntype);
4102
4103 /* If the target-dependent attributes make NTYPE different from
4104 its canonical type, we will need to use structural equality
4105 checks for this type. */
4106 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4107 || !targetm.comp_type_attributes (ntype, ttype))
4108 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4109 else if (TYPE_CANONICAL (ntype) == ntype)
4110 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4111
4112 ttype = build_qualified_type (ntype, quals);
4113 }
4114 else if (TYPE_QUALS (ttype) != quals)
4115 ttype = build_qualified_type (ttype, quals);
4116
4117 return ttype;
4118 }
4119
4120
4121 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4122 is ATTRIBUTE.
4123
4124 Record such modified types already made so we don't make duplicates. */
4125
4126 tree
4127 build_type_attribute_variant (tree ttype, tree attribute)
4128 {
4129 return build_type_attribute_qual_variant (ttype, attribute,
4130 TYPE_QUALS (ttype));
4131 }
4132
4133 /* Reset all language specific information still present in TYPE. */
4134
4135 static void
4136 free_lang_data_in_type (tree type)
4137 {
4138 gcc_assert (TYPE_P (type));
4139
4140 /* Fill in the alias-set. We need to at least track zeroness here
4141 for correctness. */
4142 if (lang_hooks.get_alias_set (type) == 0)
4143 TYPE_ALIAS_SET (type) = 0;
4144
4145 /* Give the FE a chance to remove its own data first. */
4146 lang_hooks.free_lang_data (type);
4147
4148 TREE_LANG_FLAG_0 (type) = 0;
4149 TREE_LANG_FLAG_1 (type) = 0;
4150 TREE_LANG_FLAG_2 (type) = 0;
4151 TREE_LANG_FLAG_3 (type) = 0;
4152 TREE_LANG_FLAG_4 (type) = 0;
4153 TREE_LANG_FLAG_5 (type) = 0;
4154 TREE_LANG_FLAG_6 (type) = 0;
4155
4156 if (TREE_CODE (type) == FUNCTION_TYPE)
4157 {
4158 /* Remove the const and volatile qualifiers from arguments. The
4159 C++ front end removes them, but the C front end does not,
4160 leading to false ODR violation errors when merging two
4161 instances of the same function signature compiled by
4162 different front ends. */
4163 tree p;
4164
4165 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4166 {
4167 tree arg_type = TREE_VALUE (p);
4168
4169 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4170 {
4171 int quals = TYPE_QUALS (arg_type)
4172 & ~TYPE_QUAL_CONST
4173 & ~TYPE_QUAL_VOLATILE;
4174 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4175 free_lang_data_in_type (TREE_VALUE (p));
4176 }
4177 }
4178 }
4179
4180 /* Remove members that are not actually FIELD_DECLs from the field
4181 list of an aggregate. These occur in C++. */
4182 if (TREE_CODE (type) == RECORD_TYPE
4183 || TREE_CODE (type) == UNION_TYPE
4184 || TREE_CODE (type) == QUAL_UNION_TYPE)
4185 {
4186 tree prev, member;
4187
4188 /* Note that TYPE_FIELDS can be shared across distinct
4189 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4190 to be removed, we cannot set its TREE_CHAIN to NULL.
4191 Otherwise, we would not be able to find all the other fields
4192 in the other instances of this TREE_TYPE.
4193
4194 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4195 prev = NULL_TREE;
4196 member = TYPE_FIELDS (type);
4197 while (member)
4198 {
4199 if (TREE_CODE (member) == FIELD_DECL)
4200 {
4201 if (prev)
4202 TREE_CHAIN (prev) = member;
4203 else
4204 TYPE_FIELDS (type) = member;
4205 prev = member;
4206 }
4207
4208 member = TREE_CHAIN (member);
4209 }
4210
4211 if (prev)
4212 TREE_CHAIN (prev) = NULL_TREE;
4213 else
4214 TYPE_FIELDS (type) = NULL_TREE;
4215
4216 TYPE_METHODS (type) = NULL_TREE;
4217 if (TYPE_BINFO (type))
4218 {
4219 tree binfo = TYPE_BINFO (type);
4220
4221 if (BINFO_VIRTUALS (binfo))
4222 {
4223 /* If the virtual function table for BINFO contains
4224 entries, these may be useful for folding OBJ_TYPE_REF
4225 expressions (see gimple_fold_obj_type_ref). In that
4226 case, we only clear the unused fields in the BINFO
4227 structure. */
4228 BINFO_OFFSET (binfo) = NULL_TREE;
4229 BINFO_VTABLE (binfo) = NULL_TREE;
4230 BINFO_VPTR_FIELD (binfo) = NULL_TREE;
4231 BINFO_BASE_ACCESSES (binfo) = NULL;
4232 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4233 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4234 BINFO_VPTR_FIELD (binfo) = NULL_TREE;
4235 }
4236 else
4237 {
4238 /* Otherwise, get rid of the whole binfo data. */
4239 TYPE_BINFO (type) = NULL_TREE;
4240 }
4241 }
4242 }
4243 else
4244 {
4245 /* For non-aggregate types, clear out the language slot (which
4246 overloads TYPE_BINFO). */
4247 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4248 }
4249
4250 TYPE_CONTEXT (type) = NULL_TREE;
4251 TYPE_STUB_DECL (type) = NULL_TREE;
4252 }
4253
4254
4255 /* Return true if DECL may need an assembler name to be set. */
4256
4257 static inline bool
4258 need_assembler_name_p (tree decl)
4259 {
4260 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4261 if (TREE_CODE (decl) != FUNCTION_DECL
4262 && TREE_CODE (decl) != VAR_DECL)
4263 return false;
4264
4265 /* If DECL already has its assembler name set, it does not need a
4266 new one. */
4267 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4268 || DECL_ASSEMBLER_NAME_SET_P (decl))
4269 return false;
4270
4271 /* For VAR_DECLs, only static, public and external symbols need an
4272 assembler name. */
4273 if (TREE_CODE (decl) == VAR_DECL
4274 && !TREE_STATIC (decl)
4275 && !TREE_PUBLIC (decl)
4276 && !DECL_EXTERNAL (decl))
4277 return false;
4278
4279 /* Do not set assembler name on builtins. Allow RTL expansion to
4280 decide whether to expand inline or via a regular call. */
4281 if (TREE_CODE (decl) == FUNCTION_DECL
4282 && DECL_BUILT_IN (decl)
4283 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4284 return false;
4285
4286 /* For FUNCTION_DECLs, only used functions and functions
4287 represented in the callgraph need an assembler name. */
4288 if (TREE_CODE (decl) == FUNCTION_DECL
4289 && cgraph_node_for_decl (decl) == NULL
4290 && !TREE_USED (decl))
4291 return false;
4292
4293 return true;
4294 }
4295
4296
4297 /* Remove all the non-variable decls from BLOCK. LOCALS is the set of
4298 variables in DECL_STRUCT_FUNCTION (FN)->local_decls. Every decl
4299 in BLOCK that is not in LOCALS is removed. */
4300
4301 static void
4302 free_lang_data_in_block (tree fn, tree block, struct pointer_set_t *locals)
4303 {
4304 tree *tp, t;
4305
4306 tp = &BLOCK_VARS (block);
4307 while (*tp)
4308 {
4309 if (!pointer_set_contains (locals, *tp))
4310 *tp = TREE_CHAIN (*tp);
4311 else
4312 tp = &TREE_CHAIN (*tp);
4313 }
4314
4315 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4316 free_lang_data_in_block (fn, t, locals);
4317 }
4318
4319
4320 /* Reset all language specific information still present in symbol
4321 DECL. */
4322
4323 static void
4324 free_lang_data_in_decl (tree decl)
4325 {
4326 gcc_assert (DECL_P (decl));
4327
4328 /* Give the FE a chance to remove its own data first. */
4329 lang_hooks.free_lang_data (decl);
4330
4331 TREE_LANG_FLAG_0 (decl) = 0;
4332 TREE_LANG_FLAG_1 (decl) = 0;
4333 TREE_LANG_FLAG_2 (decl) = 0;
4334 TREE_LANG_FLAG_3 (decl) = 0;
4335 TREE_LANG_FLAG_4 (decl) = 0;
4336 TREE_LANG_FLAG_5 (decl) = 0;
4337 TREE_LANG_FLAG_6 (decl) = 0;
4338
4339 /* Identifiers need not have a type. */
4340 if (DECL_NAME (decl))
4341 TREE_TYPE (DECL_NAME (decl)) = NULL_TREE;
4342
4343 if (TREE_CODE (decl) == CONST_DECL)
4344 DECL_CONTEXT (decl) = NULL_TREE;
4345
4346 /* Ignore any intervening types, because we are going to clear their
4347 TYPE_CONTEXT fields. */
4348 if (TREE_CODE (decl) != FIELD_DECL)
4349 DECL_CONTEXT (decl) = decl_function_context (decl);
4350
4351 if (DECL_CONTEXT (decl)
4352 && TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL)
4353 DECL_CONTEXT (decl) = NULL_TREE;
4354
4355 if (TREE_CODE (decl) == VAR_DECL)
4356 {
4357 tree context = DECL_CONTEXT (decl);
4358
4359 if (context)
4360 {
4361 enum tree_code code = TREE_CODE (context);
4362 if (code == FUNCTION_DECL && DECL_ABSTRACT (context))
4363 {
4364 /* Do not clear the decl context here, that will promote
4365 all vars to global ones. */
4366 DECL_INITIAL (decl) = NULL_TREE;
4367 }
4368
4369 if (TREE_STATIC (decl))
4370 DECL_CONTEXT (decl) = NULL_TREE;
4371 }
4372 }
4373
4374 if (TREE_CODE (decl) == PARM_DECL
4375 || TREE_CODE (decl) == FIELD_DECL
4376 || TREE_CODE (decl) == RESULT_DECL)
4377 {
4378 tree unit_size = DECL_SIZE_UNIT (decl);
4379 tree size = DECL_SIZE (decl);
4380 if ((unit_size && TREE_CODE (unit_size) != INTEGER_CST)
4381 || (size && TREE_CODE (size) != INTEGER_CST))
4382 {
4383 DECL_SIZE_UNIT (decl) = NULL_TREE;
4384 DECL_SIZE (decl) = NULL_TREE;
4385 }
4386
4387 if (TREE_CODE (decl) == FIELD_DECL
4388 && DECL_FIELD_OFFSET (decl)
4389 && TREE_CODE (DECL_FIELD_OFFSET (decl)) != INTEGER_CST)
4390 DECL_FIELD_OFFSET (decl) = NULL_TREE;
4391 }
4392 else if (TREE_CODE (decl) == FUNCTION_DECL)
4393 {
4394 if (gimple_has_body_p (decl))
4395 {
4396 tree t;
4397 struct pointer_set_t *locals;
4398
4399 /* If DECL has a gimple body, then the context for its
4400 arguments must be DECL. Otherwise, it doesn't really
4401 matter, as we will not be emitting any code for DECL. In
4402 general, there may be other instances of DECL created by
4403 the front end and since PARM_DECLs are generally shared,
4404 their DECL_CONTEXT changes as the replicas of DECL are
4405 created. The only time where DECL_CONTEXT is important
4406 is for the FUNCTION_DECLs that have a gimple body (since
4407 the PARM_DECL will be used in the function's body). */
4408 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4409 DECL_CONTEXT (t) = decl;
4410
4411 /* Collect all the symbols declared in DECL. */
4412 locals = pointer_set_create ();
4413 t = DECL_STRUCT_FUNCTION (decl)->local_decls;
4414 for (; t; t = TREE_CHAIN (t))
4415 {
4416 pointer_set_insert (locals, TREE_VALUE (t));
4417
4418 /* All the local symbols should have DECL as their
4419 context. */
4420 DECL_CONTEXT (TREE_VALUE (t)) = decl;
4421 }
4422
4423 /* Get rid of any decl not in local_decls. */
4424 free_lang_data_in_block (decl, DECL_INITIAL (decl), locals);
4425
4426 pointer_set_destroy (locals);
4427 }
4428
4429 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4430 At this point, it is not needed anymore. */
4431 DECL_SAVED_TREE (decl) = NULL_TREE;
4432 }
4433 else if (TREE_CODE (decl) == VAR_DECL)
4434 {
4435 tree expr = DECL_DEBUG_EXPR (decl);
4436 if (expr
4437 && TREE_CODE (expr) == VAR_DECL
4438 && !TREE_STATIC (expr) && !DECL_EXTERNAL (expr))
4439 SET_DECL_DEBUG_EXPR (decl, NULL_TREE);
4440
4441 if (DECL_EXTERNAL (decl))
4442 DECL_INITIAL (decl) = NULL_TREE;
4443 }
4444 else if (TREE_CODE (decl) == TYPE_DECL)
4445 {
4446 DECL_INITIAL (decl) = NULL_TREE;
4447
4448 /* DECL_CONTEXT is overloaded as DECL_FIELD_CONTEXT for
4449 FIELD_DECLs, which should be preserved. Otherwise,
4450 we shouldn't be concerned with source-level lexical
4451 nesting beyond this point. */
4452 DECL_CONTEXT (decl) = NULL_TREE;
4453 }
4454 }
4455
4456
4457 /* Data used when collecting DECLs and TYPEs for language data removal. */
4458
4459 struct free_lang_data_d
4460 {
4461 /* Worklist to avoid excessive recursion. */
4462 VEC(tree,heap) *worklist;
4463
4464 /* Set of traversed objects. Used to avoid duplicate visits. */
4465 struct pointer_set_t *pset;
4466
4467 /* Array of symbols to process with free_lang_data_in_decl. */
4468 VEC(tree,heap) *decls;
4469
4470 /* Array of types to process with free_lang_data_in_type. */
4471 VEC(tree,heap) *types;
4472 };
4473
4474
4475 /* Save all language fields needed to generate proper debug information
4476 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4477
4478 static void
4479 save_debug_info_for_decl (tree t)
4480 {
4481 /*struct saved_debug_info_d *sdi;*/
4482
4483 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4484
4485 /* FIXME. Partial implementation for saving debug info removed. */
4486 }
4487
4488
4489 /* Save all language fields needed to generate proper debug information
4490 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4491
4492 static void
4493 save_debug_info_for_type (tree t)
4494 {
4495 /*struct saved_debug_info_d *sdi;*/
4496
4497 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4498
4499 /* FIXME. Partial implementation for saving debug info removed. */
4500 }
4501
4502
4503 /* Add type or decl T to one of the list of tree nodes that need their
4504 language data removed. The lists are held inside FLD. */
4505
4506 static void
4507 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4508 {
4509 if (DECL_P (t))
4510 {
4511 VEC_safe_push (tree, heap, fld->decls, t);
4512 if (debug_info_level > DINFO_LEVEL_TERSE)
4513 save_debug_info_for_decl (t);
4514 }
4515 else if (TYPE_P (t))
4516 {
4517 VEC_safe_push (tree, heap, fld->types, t);
4518 if (debug_info_level > DINFO_LEVEL_TERSE)
4519 save_debug_info_for_type (t);
4520 }
4521 else
4522 gcc_unreachable ();
4523 }
4524
4525 #define PUSH(t) \
4526 if (t && !pointer_set_contains (fld->pset, t)) \
4527 VEC_safe_push (tree, heap, fld->worklist, (t))
4528
4529 /* Operand callback helper for free_lang_data_in_node. *TP is the
4530 subtree operand being considered. */
4531
4532 static tree
4533 find_decls_types_r (tree *tp, int *ws ATTRIBUTE_UNUSED, void *data)
4534 {
4535 tree t = *tp;
4536 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4537
4538 if (TREE_CODE (t) == TREE_LIST)
4539 return NULL_TREE;
4540
4541 if (DECL_P (t))
4542 {
4543 /* Note that walk_tree does not traverse every possible field in
4544 decls, so we have to do our own traversals here. */
4545 add_tree_to_fld_list (t, fld);
4546
4547 PUSH (DECL_NAME (t));
4548 PUSH (DECL_CONTEXT (t));
4549 PUSH (DECL_SIZE (t));
4550 PUSH (DECL_SIZE_UNIT (t));
4551 PUSH (DECL_INITIAL(t));
4552 PUSH (DECL_ATTRIBUTES (t));
4553 PUSH (DECL_ABSTRACT_ORIGIN (t));
4554
4555 if (TREE_CODE (t) == FUNCTION_DECL)
4556 {
4557 PUSH (DECL_ARGUMENTS (t));
4558 PUSH (DECL_RESULT (t));
4559 }
4560 else if (TREE_CODE (t) == TYPE_DECL)
4561 {
4562 PUSH (DECL_ARGUMENT_FLD (t));
4563 PUSH (DECL_VINDEX (t));
4564 }
4565 else if (TREE_CODE (t) == FIELD_DECL)
4566 {
4567 PUSH (DECL_FIELD_OFFSET (t));
4568 PUSH (DECL_BIT_FIELD_TYPE (t));
4569 PUSH (DECL_QUALIFIER (t));
4570 PUSH (DECL_FIELD_BIT_OFFSET (t));
4571 PUSH (DECL_FCONTEXT (t));
4572 }
4573 else if (TREE_CODE (t) == VAR_DECL)
4574 {
4575 PUSH (DECL_SECTION_NAME (t));
4576 PUSH (DECL_COMDAT_GROUP (t));
4577 }
4578
4579 PUSH (TREE_CHAIN (t));
4580 *ws = 0;
4581 }
4582 else if (TYPE_P (t))
4583 {
4584 /* Note that walk_tree does not traverse every possible field in
4585 types, so we have to do our own traversals here. */
4586 add_tree_to_fld_list (t, fld);
4587
4588 PUSH (TYPE_CACHED_VALUES (t));
4589 PUSH (TYPE_SIZE (t));
4590 PUSH (TYPE_SIZE_UNIT (t));
4591 PUSH (TYPE_ATTRIBUTES (t));
4592 PUSH (TYPE_POINTER_TO (t));
4593 PUSH (TYPE_REFERENCE_TO (t));
4594 PUSH (TYPE_NAME (t));
4595 PUSH (TYPE_MINVAL (t));
4596 PUSH (TYPE_MAXVAL (t));
4597 PUSH (TYPE_MAIN_VARIANT (t));
4598 PUSH (TYPE_NEXT_VARIANT (t));
4599 PUSH (TYPE_CONTEXT (t));
4600 PUSH (TYPE_CANONICAL (t));
4601
4602 if (RECORD_OR_UNION_TYPE_P (t)
4603 && TYPE_BINFO (t))
4604 {
4605 unsigned i;
4606 tree tem;
4607 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4608 i, tem); ++i)
4609 PUSH (TREE_TYPE (tem));
4610 }
4611
4612 PUSH (TREE_CHAIN (t));
4613 *ws = 0;
4614 }
4615
4616 PUSH (TREE_TYPE (t));
4617
4618 return NULL_TREE;
4619 }
4620
4621 #undef PUSH
4622
4623 /* Find decls and types in T. */
4624
4625 static void
4626 find_decls_types (tree t, struct free_lang_data_d *fld)
4627 {
4628 while (1)
4629 {
4630 if (!pointer_set_contains (fld->pset, t))
4631 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4632 if (VEC_empty (tree, fld->worklist))
4633 break;
4634 t = VEC_pop (tree, fld->worklist);
4635 }
4636 }
4637
4638 /* Translate all the types in LIST with the corresponding runtime
4639 types. */
4640
4641 static tree
4642 get_eh_types_for_runtime (tree list)
4643 {
4644 tree head, prev;
4645
4646 if (list == NULL_TREE)
4647 return NULL_TREE;
4648
4649 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4650 prev = head;
4651 list = TREE_CHAIN (list);
4652 while (list)
4653 {
4654 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4655 TREE_CHAIN (prev) = n;
4656 prev = TREE_CHAIN (prev);
4657 list = TREE_CHAIN (list);
4658 }
4659
4660 return head;
4661 }
4662
4663
4664 /* Find decls and types referenced in EH region R and store them in
4665 FLD->DECLS and FLD->TYPES. */
4666
4667 static void
4668 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
4669 {
4670 switch (r->type)
4671 {
4672 case ERT_CLEANUP:
4673 break;
4674
4675 case ERT_TRY:
4676 {
4677 eh_catch c;
4678
4679 /* The types referenced in each catch must first be changed to the
4680 EH types used at runtime. This removes references to FE types
4681 in the region. */
4682 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4683 {
4684 c->type_list = get_eh_types_for_runtime (c->type_list);
4685 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
4686 }
4687 }
4688 break;
4689
4690 case ERT_ALLOWED_EXCEPTIONS:
4691 r->u.allowed.type_list
4692 = get_eh_types_for_runtime (r->u.allowed.type_list);
4693 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
4694 break;
4695
4696 case ERT_MUST_NOT_THROW:
4697 walk_tree (&r->u.must_not_throw.failure_decl,
4698 find_decls_types_r, fld, fld->pset);
4699 break;
4700 }
4701 }
4702
4703
4704 /* Find decls and types referenced in cgraph node N and store them in
4705 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4706 look for *every* kind of DECL and TYPE node reachable from N,
4707 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4708 NAMESPACE_DECLs, etc). */
4709
4710 static void
4711 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
4712 {
4713 basic_block bb;
4714 struct function *fn;
4715 tree t;
4716
4717 find_decls_types (n->decl, fld);
4718
4719 if (!gimple_has_body_p (n->decl))
4720 return;
4721
4722 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
4723
4724 fn = DECL_STRUCT_FUNCTION (n->decl);
4725
4726 /* Traverse locals. */
4727 for (t = fn->local_decls; t; t = TREE_CHAIN (t))
4728 find_decls_types (TREE_VALUE (t), fld);
4729
4730 /* Traverse EH regions in FN. */
4731 {
4732 eh_region r;
4733 FOR_ALL_EH_REGION_FN (r, fn)
4734 find_decls_types_in_eh_region (r, fld);
4735 }
4736
4737 /* Traverse every statement in FN. */
4738 FOR_EACH_BB_FN (bb, fn)
4739 {
4740 gimple_stmt_iterator si;
4741 unsigned i;
4742
4743 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
4744 {
4745 gimple phi = gsi_stmt (si);
4746
4747 for (i = 0; i < gimple_phi_num_args (phi); i++)
4748 {
4749 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
4750 find_decls_types (*arg_p, fld);
4751 }
4752 }
4753
4754 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4755 {
4756 gimple stmt = gsi_stmt (si);
4757
4758 for (i = 0; i < gimple_num_ops (stmt); i++)
4759 {
4760 tree arg = gimple_op (stmt, i);
4761 find_decls_types (arg, fld);
4762 }
4763 }
4764 }
4765 }
4766
4767
4768 /* Find decls and types referenced in varpool node N and store them in
4769 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4770 look for *every* kind of DECL and TYPE node reachable from N,
4771 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4772 NAMESPACE_DECLs, etc). */
4773
4774 static void
4775 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
4776 {
4777 find_decls_types (v->decl, fld);
4778 }
4779
4780
4781 /* Free language specific information for every operand and expression
4782 in every node of the call graph. This process operates in three stages:
4783
4784 1- Every callgraph node and varpool node is traversed looking for
4785 decls and types embedded in them. This is a more exhaustive
4786 search than that done by find_referenced_vars, because it will
4787 also collect individual fields, decls embedded in types, etc.
4788
4789 2- All the decls found are sent to free_lang_data_in_decl.
4790
4791 3- All the types found are sent to free_lang_data_in_type.
4792
4793 The ordering between decls and types is important because
4794 free_lang_data_in_decl sets assembler names, which includes
4795 mangling. So types cannot be freed up until assembler names have
4796 been set up. */
4797
4798 static void
4799 free_lang_data_in_cgraph (void)
4800 {
4801 struct cgraph_node *n;
4802 struct varpool_node *v;
4803 struct free_lang_data_d fld;
4804 tree t;
4805 unsigned i;
4806 alias_pair *p;
4807
4808 /* Initialize sets and arrays to store referenced decls and types. */
4809 fld.pset = pointer_set_create ();
4810 fld.worklist = NULL;
4811 fld.decls = VEC_alloc (tree, heap, 100);
4812 fld.types = VEC_alloc (tree, heap, 100);
4813
4814 /* Find decls and types in the body of every function in the callgraph. */
4815 for (n = cgraph_nodes; n; n = n->next)
4816 find_decls_types_in_node (n, &fld);
4817
4818 for (i = 0; VEC_iterate (alias_pair, alias_pairs, i, p); i++)
4819 find_decls_types (p->decl, &fld);
4820
4821 /* Find decls and types in every varpool symbol. */
4822 for (v = varpool_nodes_queue; v; v = v->next_needed)
4823 find_decls_types_in_var (v, &fld);
4824
4825 /* Set the assembler name on every decl found. We need to do this
4826 now because free_lang_data_in_decl will invalidate data needed
4827 for mangling. This breaks mangling on interdependent decls. */
4828 for (i = 0; VEC_iterate (tree, fld.decls, i, t); i++)
4829 if (need_assembler_name_p (t))
4830 {
4831 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
4832 diagnostics that use input_location to show locus
4833 information. The problem here is that, at this point,
4834 input_location is generally anchored to the end of the file
4835 (since the parser is long gone), so we don't have a good
4836 position to pin it to.
4837
4838 To alleviate this problem, this uses the location of T's
4839 declaration. Examples of this are
4840 testsuite/g++.dg/template/cond2.C and
4841 testsuite/g++.dg/template/pr35240.C. */
4842 location_t saved_location = input_location;
4843 input_location = DECL_SOURCE_LOCATION (t);
4844
4845 decl_assembler_name (t);
4846
4847 input_location = saved_location;
4848 }
4849
4850 /* Traverse every decl found freeing its language data. */
4851 for (i = 0; VEC_iterate (tree, fld.decls, i, t); i++)
4852 free_lang_data_in_decl (t);
4853
4854 /* Traverse every type found freeing its language data. */
4855 for (i = 0; VEC_iterate (tree, fld.types, i, t); i++)
4856 free_lang_data_in_type (t);
4857
4858 pointer_set_destroy (fld.pset);
4859 VEC_free (tree, heap, fld.worklist);
4860 VEC_free (tree, heap, fld.decls);
4861 VEC_free (tree, heap, fld.types);
4862 }
4863
4864
4865 /* Free resources that are used by FE but are not needed once they are done. */
4866
4867 static unsigned
4868 free_lang_data (void)
4869 {
4870 /* Traverse the IL resetting language specific information for
4871 operands, expressions, etc. */
4872 free_lang_data_in_cgraph ();
4873
4874 /* Create gimple variants for common types. */
4875 ptrdiff_type_node = integer_type_node;
4876 fileptr_type_node = ptr_type_node;
4877 if (TREE_CODE (boolean_type_node) != BOOLEAN_TYPE
4878 || (TYPE_MODE (boolean_type_node)
4879 != mode_for_size (BOOL_TYPE_SIZE, MODE_INT, 0))
4880 || TYPE_PRECISION (boolean_type_node) != 1
4881 || !TYPE_UNSIGNED (boolean_type_node))
4882 {
4883 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
4884 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
4885 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
4886 TYPE_PRECISION (boolean_type_node) = 1;
4887 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
4888 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
4889 }
4890
4891 /* Unify char_type_node with its properly signed variant. */
4892 if (TYPE_UNSIGNED (char_type_node))
4893 unsigned_char_type_node = char_type_node;
4894 else
4895 signed_char_type_node = char_type_node;
4896
4897 /* Reset some langhooks. */
4898 lang_hooks.callgraph.analyze_expr = NULL;
4899 lang_hooks.types_compatible_p = NULL;
4900 lang_hooks.dwarf_name = lhd_dwarf_name;
4901 lang_hooks.decl_printable_name = gimple_decl_printable_name;
4902 lang_hooks.set_decl_assembler_name = lhd_set_decl_assembler_name;
4903 lang_hooks.fold_obj_type_ref = gimple_fold_obj_type_ref;
4904
4905 /* Reset diagnostic machinery. */
4906 diagnostic_starter (global_dc) = default_diagnostic_starter;
4907 diagnostic_finalizer (global_dc) = default_diagnostic_finalizer;
4908 diagnostic_format_decoder (global_dc) = default_tree_printer;
4909
4910 return 0;
4911 }
4912
4913
4914 /* Gate function for free_lang_data. */
4915
4916 static bool
4917 gate_free_lang_data (void)
4918 {
4919 /* FIXME. Remove after save_debug_info is working. */
4920 return !flag_gtoggle && debug_info_level <= DINFO_LEVEL_TERSE;
4921 }
4922
4923
4924 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
4925 {
4926 {
4927 SIMPLE_IPA_PASS,
4928 NULL, /* name */
4929 gate_free_lang_data, /* gate */
4930 free_lang_data, /* execute */
4931 NULL, /* sub */
4932 NULL, /* next */
4933 0, /* static_pass_number */
4934 TV_IPA_FREE_LANG_DATA, /* tv_id */
4935 0, /* properties_required */
4936 0, /* properties_provided */
4937 0, /* properties_destroyed */
4938 0, /* todo_flags_start */
4939 TODO_ggc_collect /* todo_flags_finish */
4940 }
4941 };
4942
4943 /* Return nonzero if IDENT is a valid name for attribute ATTR,
4944 or zero if not.
4945
4946 We try both `text' and `__text__', ATTR may be either one. */
4947 /* ??? It might be a reasonable simplification to require ATTR to be only
4948 `text'. One might then also require attribute lists to be stored in
4949 their canonicalized form. */
4950
4951 static int
4952 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
4953 {
4954 int ident_len;
4955 const char *p;
4956
4957 if (TREE_CODE (ident) != IDENTIFIER_NODE)
4958 return 0;
4959
4960 p = IDENTIFIER_POINTER (ident);
4961 ident_len = IDENTIFIER_LENGTH (ident);
4962
4963 if (ident_len == attr_len
4964 && strcmp (attr, p) == 0)
4965 return 1;
4966
4967 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
4968 if (attr[0] == '_')
4969 {
4970 gcc_assert (attr[1] == '_');
4971 gcc_assert (attr[attr_len - 2] == '_');
4972 gcc_assert (attr[attr_len - 1] == '_');
4973 if (ident_len == attr_len - 4
4974 && strncmp (attr + 2, p, attr_len - 4) == 0)
4975 return 1;
4976 }
4977 else
4978 {
4979 if (ident_len == attr_len + 4
4980 && p[0] == '_' && p[1] == '_'
4981 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
4982 && strncmp (attr, p + 2, attr_len) == 0)
4983 return 1;
4984 }
4985
4986 return 0;
4987 }
4988
4989 /* Return nonzero if IDENT is a valid name for attribute ATTR,
4990 or zero if not.
4991
4992 We try both `text' and `__text__', ATTR may be either one. */
4993
4994 int
4995 is_attribute_p (const char *attr, const_tree ident)
4996 {
4997 return is_attribute_with_length_p (attr, strlen (attr), ident);
4998 }
4999
5000 /* Given an attribute name and a list of attributes, return a pointer to the
5001 attribute's list element if the attribute is part of the list, or NULL_TREE
5002 if not found. If the attribute appears more than once, this only
5003 returns the first occurrence; the TREE_CHAIN of the return value should
5004 be passed back in if further occurrences are wanted. */
5005
5006 tree
5007 lookup_attribute (const char *attr_name, tree list)
5008 {
5009 tree l;
5010 size_t attr_len = strlen (attr_name);
5011
5012 for (l = list; l; l = TREE_CHAIN (l))
5013 {
5014 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5015 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5016 return l;
5017 }
5018 return NULL_TREE;
5019 }
5020
5021 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5022 modified list. */
5023
5024 tree
5025 remove_attribute (const char *attr_name, tree list)
5026 {
5027 tree *p;
5028 size_t attr_len = strlen (attr_name);
5029
5030 for (p = &list; *p; )
5031 {
5032 tree l = *p;
5033 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5034 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5035 *p = TREE_CHAIN (l);
5036 else
5037 p = &TREE_CHAIN (l);
5038 }
5039
5040 return list;
5041 }
5042
5043 /* Return an attribute list that is the union of a1 and a2. */
5044
5045 tree
5046 merge_attributes (tree a1, tree a2)
5047 {
5048 tree attributes;
5049
5050 /* Either one unset? Take the set one. */
5051
5052 if ((attributes = a1) == 0)
5053 attributes = a2;
5054
5055 /* One that completely contains the other? Take it. */
5056
5057 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5058 {
5059 if (attribute_list_contained (a2, a1))
5060 attributes = a2;
5061 else
5062 {
5063 /* Pick the longest list, and hang on the other list. */
5064
5065 if (list_length (a1) < list_length (a2))
5066 attributes = a2, a2 = a1;
5067
5068 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5069 {
5070 tree a;
5071 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5072 attributes);
5073 a != NULL_TREE;
5074 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5075 TREE_CHAIN (a)))
5076 {
5077 if (TREE_VALUE (a) != NULL
5078 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
5079 && TREE_VALUE (a2) != NULL
5080 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
5081 {
5082 if (simple_cst_list_equal (TREE_VALUE (a),
5083 TREE_VALUE (a2)) == 1)
5084 break;
5085 }
5086 else if (simple_cst_equal (TREE_VALUE (a),
5087 TREE_VALUE (a2)) == 1)
5088 break;
5089 }
5090 if (a == NULL_TREE)
5091 {
5092 a1 = copy_node (a2);
5093 TREE_CHAIN (a1) = attributes;
5094 attributes = a1;
5095 }
5096 }
5097 }
5098 }
5099 return attributes;
5100 }
5101
5102 /* Given types T1 and T2, merge their attributes and return
5103 the result. */
5104
5105 tree
5106 merge_type_attributes (tree t1, tree t2)
5107 {
5108 return merge_attributes (TYPE_ATTRIBUTES (t1),
5109 TYPE_ATTRIBUTES (t2));
5110 }
5111
5112 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5113 the result. */
5114
5115 tree
5116 merge_decl_attributes (tree olddecl, tree newdecl)
5117 {
5118 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5119 DECL_ATTRIBUTES (newdecl));
5120 }
5121
5122 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5123
5124 /* Specialization of merge_decl_attributes for various Windows targets.
5125
5126 This handles the following situation:
5127
5128 __declspec (dllimport) int foo;
5129 int foo;
5130
5131 The second instance of `foo' nullifies the dllimport. */
5132
5133 tree
5134 merge_dllimport_decl_attributes (tree old, tree new_tree)
5135 {
5136 tree a;
5137 int delete_dllimport_p = 1;
5138
5139 /* What we need to do here is remove from `old' dllimport if it doesn't
5140 appear in `new'. dllimport behaves like extern: if a declaration is
5141 marked dllimport and a definition appears later, then the object
5142 is not dllimport'd. We also remove a `new' dllimport if the old list
5143 contains dllexport: dllexport always overrides dllimport, regardless
5144 of the order of declaration. */
5145 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5146 delete_dllimport_p = 0;
5147 else if (DECL_DLLIMPORT_P (new_tree)
5148 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5149 {
5150 DECL_DLLIMPORT_P (new_tree) = 0;
5151 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5152 "dllimport ignored", new_tree);
5153 }
5154 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5155 {
5156 /* Warn about overriding a symbol that has already been used, e.g.:
5157 extern int __attribute__ ((dllimport)) foo;
5158 int* bar () {return &foo;}
5159 int foo;
5160 */
5161 if (TREE_USED (old))
5162 {
5163 warning (0, "%q+D redeclared without dllimport attribute "
5164 "after being referenced with dll linkage", new_tree);
5165 /* If we have used a variable's address with dllimport linkage,
5166 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5167 decl may already have had TREE_CONSTANT computed.
5168 We still remove the attribute so that assembler code refers
5169 to '&foo rather than '_imp__foo'. */
5170 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5171 DECL_DLLIMPORT_P (new_tree) = 1;
5172 }
5173
5174 /* Let an inline definition silently override the external reference,
5175 but otherwise warn about attribute inconsistency. */
5176 else if (TREE_CODE (new_tree) == VAR_DECL
5177 || !DECL_DECLARED_INLINE_P (new_tree))
5178 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5179 "previous dllimport ignored", new_tree);
5180 }
5181 else
5182 delete_dllimport_p = 0;
5183
5184 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5185
5186 if (delete_dllimport_p)
5187 {
5188 tree prev, t;
5189 const size_t attr_len = strlen ("dllimport");
5190
5191 /* Scan the list for dllimport and delete it. */
5192 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
5193 {
5194 if (is_attribute_with_length_p ("dllimport", attr_len,
5195 TREE_PURPOSE (t)))
5196 {
5197 if (prev == NULL_TREE)
5198 a = TREE_CHAIN (a);
5199 else
5200 TREE_CHAIN (prev) = TREE_CHAIN (t);
5201 break;
5202 }
5203 }
5204 }
5205
5206 return a;
5207 }
5208
5209 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5210 struct attribute_spec.handler. */
5211
5212 tree
5213 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5214 bool *no_add_attrs)
5215 {
5216 tree node = *pnode;
5217 bool is_dllimport;
5218
5219 /* These attributes may apply to structure and union types being created,
5220 but otherwise should pass to the declaration involved. */
5221 if (!DECL_P (node))
5222 {
5223 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5224 | (int) ATTR_FLAG_ARRAY_NEXT))
5225 {
5226 *no_add_attrs = true;
5227 return tree_cons (name, args, NULL_TREE);
5228 }
5229 if (TREE_CODE (node) == RECORD_TYPE
5230 || TREE_CODE (node) == UNION_TYPE)
5231 {
5232 node = TYPE_NAME (node);
5233 if (!node)
5234 return NULL_TREE;
5235 }
5236 else
5237 {
5238 warning (OPT_Wattributes, "%qE attribute ignored",
5239 name);
5240 *no_add_attrs = true;
5241 return NULL_TREE;
5242 }
5243 }
5244
5245 if (TREE_CODE (node) != FUNCTION_DECL
5246 && TREE_CODE (node) != VAR_DECL
5247 && TREE_CODE (node) != TYPE_DECL)
5248 {
5249 *no_add_attrs = true;
5250 warning (OPT_Wattributes, "%qE attribute ignored",
5251 name);
5252 return NULL_TREE;
5253 }
5254
5255 if (TREE_CODE (node) == TYPE_DECL
5256 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5257 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5258 {
5259 *no_add_attrs = true;
5260 warning (OPT_Wattributes, "%qE attribute ignored",
5261 name);
5262 return NULL_TREE;
5263 }
5264
5265 is_dllimport = is_attribute_p ("dllimport", name);
5266
5267 /* Report error on dllimport ambiguities seen now before they cause
5268 any damage. */
5269 if (is_dllimport)
5270 {
5271 /* Honor any target-specific overrides. */
5272 if (!targetm.valid_dllimport_attribute_p (node))
5273 *no_add_attrs = true;
5274
5275 else if (TREE_CODE (node) == FUNCTION_DECL
5276 && DECL_DECLARED_INLINE_P (node))
5277 {
5278 warning (OPT_Wattributes, "inline function %q+D declared as "
5279 " dllimport: attribute ignored", node);
5280 *no_add_attrs = true;
5281 }
5282 /* Like MS, treat definition of dllimported variables and
5283 non-inlined functions on declaration as syntax errors. */
5284 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5285 {
5286 error ("function %q+D definition is marked dllimport", node);
5287 *no_add_attrs = true;
5288 }
5289
5290 else if (TREE_CODE (node) == VAR_DECL)
5291 {
5292 if (DECL_INITIAL (node))
5293 {
5294 error ("variable %q+D definition is marked dllimport",
5295 node);
5296 *no_add_attrs = true;
5297 }
5298
5299 /* `extern' needn't be specified with dllimport.
5300 Specify `extern' now and hope for the best. Sigh. */
5301 DECL_EXTERNAL (node) = 1;
5302 /* Also, implicitly give dllimport'd variables declared within
5303 a function global scope, unless declared static. */
5304 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5305 TREE_PUBLIC (node) = 1;
5306 }
5307
5308 if (*no_add_attrs == false)
5309 DECL_DLLIMPORT_P (node) = 1;
5310 }
5311 else if (TREE_CODE (node) == FUNCTION_DECL
5312 && DECL_DECLARED_INLINE_P (node))
5313 /* An exported function, even if inline, must be emitted. */
5314 DECL_EXTERNAL (node) = 0;
5315
5316 /* Report error if symbol is not accessible at global scope. */
5317 if (!TREE_PUBLIC (node)
5318 && (TREE_CODE (node) == VAR_DECL
5319 || TREE_CODE (node) == FUNCTION_DECL))
5320 {
5321 error ("external linkage required for symbol %q+D because of "
5322 "%qE attribute", node, name);
5323 *no_add_attrs = true;
5324 }
5325
5326 /* A dllexport'd entity must have default visibility so that other
5327 program units (shared libraries or the main executable) can see
5328 it. A dllimport'd entity must have default visibility so that
5329 the linker knows that undefined references within this program
5330 unit can be resolved by the dynamic linker. */
5331 if (!*no_add_attrs)
5332 {
5333 if (DECL_VISIBILITY_SPECIFIED (node)
5334 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5335 error ("%qE implies default visibility, but %qD has already "
5336 "been declared with a different visibility",
5337 name, node);
5338 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5339 DECL_VISIBILITY_SPECIFIED (node) = 1;
5340 }
5341
5342 return NULL_TREE;
5343 }
5344
5345 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5346 \f
5347 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5348 of the various TYPE_QUAL values. */
5349
5350 static void
5351 set_type_quals (tree type, int type_quals)
5352 {
5353 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5354 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5355 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5356 }
5357
5358 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5359
5360 bool
5361 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5362 {
5363 return (TYPE_QUALS (cand) == type_quals
5364 && TYPE_NAME (cand) == TYPE_NAME (base)
5365 /* Apparently this is needed for Objective-C. */
5366 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5367 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5368 TYPE_ATTRIBUTES (base)));
5369 }
5370
5371 /* Return a version of the TYPE, qualified as indicated by the
5372 TYPE_QUALS, if one exists. If no qualified version exists yet,
5373 return NULL_TREE. */
5374
5375 tree
5376 get_qualified_type (tree type, int type_quals)
5377 {
5378 tree t;
5379
5380 if (TYPE_QUALS (type) == type_quals)
5381 return type;
5382
5383 /* Search the chain of variants to see if there is already one there just
5384 like the one we need to have. If so, use that existing one. We must
5385 preserve the TYPE_NAME, since there is code that depends on this. */
5386 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5387 if (check_qualified_type (t, type, type_quals))
5388 return t;
5389
5390 return NULL_TREE;
5391 }
5392
5393 /* Like get_qualified_type, but creates the type if it does not
5394 exist. This function never returns NULL_TREE. */
5395
5396 tree
5397 build_qualified_type (tree type, int type_quals)
5398 {
5399 tree t;
5400
5401 /* See if we already have the appropriate qualified variant. */
5402 t = get_qualified_type (type, type_quals);
5403
5404 /* If not, build it. */
5405 if (!t)
5406 {
5407 t = build_variant_type_copy (type);
5408 set_type_quals (t, type_quals);
5409
5410 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5411 /* Propagate structural equality. */
5412 SET_TYPE_STRUCTURAL_EQUALITY (t);
5413 else if (TYPE_CANONICAL (type) != type)
5414 /* Build the underlying canonical type, since it is different
5415 from TYPE. */
5416 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5417 type_quals);
5418 else
5419 /* T is its own canonical type. */
5420 TYPE_CANONICAL (t) = t;
5421
5422 }
5423
5424 return t;
5425 }
5426
5427 /* Create a new distinct copy of TYPE. The new type is made its own
5428 MAIN_VARIANT. If TYPE requires structural equality checks, the
5429 resulting type requires structural equality checks; otherwise, its
5430 TYPE_CANONICAL points to itself. */
5431
5432 tree
5433 build_distinct_type_copy (tree type)
5434 {
5435 tree t = copy_node (type);
5436
5437 TYPE_POINTER_TO (t) = 0;
5438 TYPE_REFERENCE_TO (t) = 0;
5439
5440 /* Set the canonical type either to a new equivalence class, or
5441 propagate the need for structural equality checks. */
5442 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5443 SET_TYPE_STRUCTURAL_EQUALITY (t);
5444 else
5445 TYPE_CANONICAL (t) = t;
5446
5447 /* Make it its own variant. */
5448 TYPE_MAIN_VARIANT (t) = t;
5449 TYPE_NEXT_VARIANT (t) = 0;
5450
5451 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5452 whose TREE_TYPE is not t. This can also happen in the Ada
5453 frontend when using subtypes. */
5454
5455 return t;
5456 }
5457
5458 /* Create a new variant of TYPE, equivalent but distinct. This is so
5459 the caller can modify it. TYPE_CANONICAL for the return type will
5460 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5461 are considered equal by the language itself (or that both types
5462 require structural equality checks). */
5463
5464 tree
5465 build_variant_type_copy (tree type)
5466 {
5467 tree t, m = TYPE_MAIN_VARIANT (type);
5468
5469 t = build_distinct_type_copy (type);
5470
5471 /* Since we're building a variant, assume that it is a non-semantic
5472 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5473 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5474
5475 /* Add the new type to the chain of variants of TYPE. */
5476 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5477 TYPE_NEXT_VARIANT (m) = t;
5478 TYPE_MAIN_VARIANT (t) = m;
5479
5480 return t;
5481 }
5482 \f
5483 /* Return true if the from tree in both tree maps are equal. */
5484
5485 int
5486 tree_map_base_eq (const void *va, const void *vb)
5487 {
5488 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5489 *const b = (const struct tree_map_base *) vb;
5490 return (a->from == b->from);
5491 }
5492
5493 /* Hash a from tree in a tree_map. */
5494
5495 unsigned int
5496 tree_map_base_hash (const void *item)
5497 {
5498 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5499 }
5500
5501 /* Return true if this tree map structure is marked for garbage collection
5502 purposes. We simply return true if the from tree is marked, so that this
5503 structure goes away when the from tree goes away. */
5504
5505 int
5506 tree_map_base_marked_p (const void *p)
5507 {
5508 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5509 }
5510
5511 unsigned int
5512 tree_map_hash (const void *item)
5513 {
5514 return (((const struct tree_map *) item)->hash);
5515 }
5516
5517 /* Return the initialization priority for DECL. */
5518
5519 priority_type
5520 decl_init_priority_lookup (tree decl)
5521 {
5522 struct tree_priority_map *h;
5523 struct tree_map_base in;
5524
5525 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5526 in.from = decl;
5527 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5528 return h ? h->init : DEFAULT_INIT_PRIORITY;
5529 }
5530
5531 /* Return the finalization priority for DECL. */
5532
5533 priority_type
5534 decl_fini_priority_lookup (tree decl)
5535 {
5536 struct tree_priority_map *h;
5537 struct tree_map_base in;
5538
5539 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5540 in.from = decl;
5541 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5542 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5543 }
5544
5545 /* Return the initialization and finalization priority information for
5546 DECL. If there is no previous priority information, a freshly
5547 allocated structure is returned. */
5548
5549 static struct tree_priority_map *
5550 decl_priority_info (tree decl)
5551 {
5552 struct tree_priority_map in;
5553 struct tree_priority_map *h;
5554 void **loc;
5555
5556 in.base.from = decl;
5557 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5558 h = (struct tree_priority_map *) *loc;
5559 if (!h)
5560 {
5561 h = GGC_CNEW (struct tree_priority_map);
5562 *loc = h;
5563 h->base.from = decl;
5564 h->init = DEFAULT_INIT_PRIORITY;
5565 h->fini = DEFAULT_INIT_PRIORITY;
5566 }
5567
5568 return h;
5569 }
5570
5571 /* Set the initialization priority for DECL to PRIORITY. */
5572
5573 void
5574 decl_init_priority_insert (tree decl, priority_type priority)
5575 {
5576 struct tree_priority_map *h;
5577
5578 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5579 h = decl_priority_info (decl);
5580 h->init = priority;
5581 }
5582
5583 /* Set the finalization priority for DECL to PRIORITY. */
5584
5585 void
5586 decl_fini_priority_insert (tree decl, priority_type priority)
5587 {
5588 struct tree_priority_map *h;
5589
5590 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5591 h = decl_priority_info (decl);
5592 h->fini = priority;
5593 }
5594
5595 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5596
5597 static void
5598 print_debug_expr_statistics (void)
5599 {
5600 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
5601 (long) htab_size (debug_expr_for_decl),
5602 (long) htab_elements (debug_expr_for_decl),
5603 htab_collisions (debug_expr_for_decl));
5604 }
5605
5606 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5607
5608 static void
5609 print_value_expr_statistics (void)
5610 {
5611 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
5612 (long) htab_size (value_expr_for_decl),
5613 (long) htab_elements (value_expr_for_decl),
5614 htab_collisions (value_expr_for_decl));
5615 }
5616
5617 /* Lookup a debug expression for FROM, and return it if we find one. */
5618
5619 tree
5620 decl_debug_expr_lookup (tree from)
5621 {
5622 struct tree_map *h, in;
5623 in.base.from = from;
5624
5625 h = (struct tree_map *) htab_find_with_hash (debug_expr_for_decl, &in,
5626 htab_hash_pointer (from));
5627 if (h)
5628 return h->to;
5629 return NULL_TREE;
5630 }
5631
5632 /* Insert a mapping FROM->TO in the debug expression hashtable. */
5633
5634 void
5635 decl_debug_expr_insert (tree from, tree to)
5636 {
5637 struct tree_map *h;
5638 void **loc;
5639
5640 h = GGC_NEW (struct tree_map);
5641 h->hash = htab_hash_pointer (from);
5642 h->base.from = from;
5643 h->to = to;
5644 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
5645 *(struct tree_map **) loc = h;
5646 }
5647
5648 /* Lookup a value expression for FROM, and return it if we find one. */
5649
5650 tree
5651 decl_value_expr_lookup (tree from)
5652 {
5653 struct tree_map *h, in;
5654 in.base.from = from;
5655
5656 h = (struct tree_map *) htab_find_with_hash (value_expr_for_decl, &in,
5657 htab_hash_pointer (from));
5658 if (h)
5659 return h->to;
5660 return NULL_TREE;
5661 }
5662
5663 /* Insert a mapping FROM->TO in the value expression hashtable. */
5664
5665 void
5666 decl_value_expr_insert (tree from, tree to)
5667 {
5668 struct tree_map *h;
5669 void **loc;
5670
5671 h = GGC_NEW (struct tree_map);
5672 h->hash = htab_hash_pointer (from);
5673 h->base.from = from;
5674 h->to = to;
5675 loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
5676 *(struct tree_map **) loc = h;
5677 }
5678
5679 /* Hashing of types so that we don't make duplicates.
5680 The entry point is `type_hash_canon'. */
5681
5682 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
5683 with types in the TREE_VALUE slots), by adding the hash codes
5684 of the individual types. */
5685
5686 static unsigned int
5687 type_hash_list (const_tree list, hashval_t hashcode)
5688 {
5689 const_tree tail;
5690
5691 for (tail = list; tail; tail = TREE_CHAIN (tail))
5692 if (TREE_VALUE (tail) != error_mark_node)
5693 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
5694 hashcode);
5695
5696 return hashcode;
5697 }
5698
5699 /* These are the Hashtable callback functions. */
5700
5701 /* Returns true iff the types are equivalent. */
5702
5703 static int
5704 type_hash_eq (const void *va, const void *vb)
5705 {
5706 const struct type_hash *const a = (const struct type_hash *) va,
5707 *const b = (const struct type_hash *) vb;
5708
5709 /* First test the things that are the same for all types. */
5710 if (a->hash != b->hash
5711 || TREE_CODE (a->type) != TREE_CODE (b->type)
5712 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
5713 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
5714 TYPE_ATTRIBUTES (b->type))
5715 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
5716 || TYPE_MODE (a->type) != TYPE_MODE (b->type)
5717 || (TREE_CODE (a->type) != COMPLEX_TYPE
5718 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
5719 return 0;
5720
5721 switch (TREE_CODE (a->type))
5722 {
5723 case VOID_TYPE:
5724 case COMPLEX_TYPE:
5725 case POINTER_TYPE:
5726 case REFERENCE_TYPE:
5727 return 1;
5728
5729 case VECTOR_TYPE:
5730 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
5731
5732 case ENUMERAL_TYPE:
5733 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
5734 && !(TYPE_VALUES (a->type)
5735 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
5736 && TYPE_VALUES (b->type)
5737 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
5738 && type_list_equal (TYPE_VALUES (a->type),
5739 TYPE_VALUES (b->type))))
5740 return 0;
5741
5742 /* ... fall through ... */
5743
5744 case INTEGER_TYPE:
5745 case REAL_TYPE:
5746 case BOOLEAN_TYPE:
5747 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
5748 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
5749 TYPE_MAX_VALUE (b->type)))
5750 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
5751 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
5752 TYPE_MIN_VALUE (b->type))));
5753
5754 case FIXED_POINT_TYPE:
5755 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
5756
5757 case OFFSET_TYPE:
5758 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
5759
5760 case METHOD_TYPE:
5761 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
5762 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5763 || (TYPE_ARG_TYPES (a->type)
5764 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5765 && TYPE_ARG_TYPES (b->type)
5766 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5767 && type_list_equal (TYPE_ARG_TYPES (a->type),
5768 TYPE_ARG_TYPES (b->type)))));
5769
5770 case ARRAY_TYPE:
5771 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
5772
5773 case RECORD_TYPE:
5774 case UNION_TYPE:
5775 case QUAL_UNION_TYPE:
5776 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
5777 || (TYPE_FIELDS (a->type)
5778 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
5779 && TYPE_FIELDS (b->type)
5780 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
5781 && type_list_equal (TYPE_FIELDS (a->type),
5782 TYPE_FIELDS (b->type))));
5783
5784 case FUNCTION_TYPE:
5785 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5786 || (TYPE_ARG_TYPES (a->type)
5787 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5788 && TYPE_ARG_TYPES (b->type)
5789 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5790 && type_list_equal (TYPE_ARG_TYPES (a->type),
5791 TYPE_ARG_TYPES (b->type))))
5792 break;
5793 return 0;
5794
5795 default:
5796 return 0;
5797 }
5798
5799 if (lang_hooks.types.type_hash_eq != NULL)
5800 return lang_hooks.types.type_hash_eq (a->type, b->type);
5801
5802 return 1;
5803 }
5804
5805 /* Return the cached hash value. */
5806
5807 static hashval_t
5808 type_hash_hash (const void *item)
5809 {
5810 return ((const struct type_hash *) item)->hash;
5811 }
5812
5813 /* Look in the type hash table for a type isomorphic to TYPE.
5814 If one is found, return it. Otherwise return 0. */
5815
5816 tree
5817 type_hash_lookup (hashval_t hashcode, tree type)
5818 {
5819 struct type_hash *h, in;
5820
5821 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
5822 must call that routine before comparing TYPE_ALIGNs. */
5823 layout_type (type);
5824
5825 in.hash = hashcode;
5826 in.type = type;
5827
5828 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
5829 hashcode);
5830 if (h)
5831 return h->type;
5832 return NULL_TREE;
5833 }
5834
5835 /* Add an entry to the type-hash-table
5836 for a type TYPE whose hash code is HASHCODE. */
5837
5838 void
5839 type_hash_add (hashval_t hashcode, tree type)
5840 {
5841 struct type_hash *h;
5842 void **loc;
5843
5844 h = GGC_NEW (struct type_hash);
5845 h->hash = hashcode;
5846 h->type = type;
5847 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
5848 *loc = (void *)h;
5849 }
5850
5851 /* Given TYPE, and HASHCODE its hash code, return the canonical
5852 object for an identical type if one already exists.
5853 Otherwise, return TYPE, and record it as the canonical object.
5854
5855 To use this function, first create a type of the sort you want.
5856 Then compute its hash code from the fields of the type that
5857 make it different from other similar types.
5858 Then call this function and use the value. */
5859
5860 tree
5861 type_hash_canon (unsigned int hashcode, tree type)
5862 {
5863 tree t1;
5864
5865 /* The hash table only contains main variants, so ensure that's what we're
5866 being passed. */
5867 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
5868
5869 if (!lang_hooks.types.hash_types)
5870 return type;
5871
5872 /* See if the type is in the hash table already. If so, return it.
5873 Otherwise, add the type. */
5874 t1 = type_hash_lookup (hashcode, type);
5875 if (t1 != 0)
5876 {
5877 #ifdef GATHER_STATISTICS
5878 tree_node_counts[(int) t_kind]--;
5879 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
5880 #endif
5881 return t1;
5882 }
5883 else
5884 {
5885 type_hash_add (hashcode, type);
5886 return type;
5887 }
5888 }
5889
5890 /* See if the data pointed to by the type hash table is marked. We consider
5891 it marked if the type is marked or if a debug type number or symbol
5892 table entry has been made for the type. This reduces the amount of
5893 debugging output and eliminates that dependency of the debug output on
5894 the number of garbage collections. */
5895
5896 static int
5897 type_hash_marked_p (const void *p)
5898 {
5899 const_tree const type = ((const struct type_hash *) p)->type;
5900
5901 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
5902 }
5903
5904 static void
5905 print_type_hash_statistics (void)
5906 {
5907 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
5908 (long) htab_size (type_hash_table),
5909 (long) htab_elements (type_hash_table),
5910 htab_collisions (type_hash_table));
5911 }
5912
5913 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
5914 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
5915 by adding the hash codes of the individual attributes. */
5916
5917 static unsigned int
5918 attribute_hash_list (const_tree list, hashval_t hashcode)
5919 {
5920 const_tree tail;
5921
5922 for (tail = list; tail; tail = TREE_CHAIN (tail))
5923 /* ??? Do we want to add in TREE_VALUE too? */
5924 hashcode = iterative_hash_object
5925 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
5926 return hashcode;
5927 }
5928
5929 /* Given two lists of attributes, return true if list l2 is
5930 equivalent to l1. */
5931
5932 int
5933 attribute_list_equal (const_tree l1, const_tree l2)
5934 {
5935 return attribute_list_contained (l1, l2)
5936 && attribute_list_contained (l2, l1);
5937 }
5938
5939 /* Given two lists of attributes, return true if list L2 is
5940 completely contained within L1. */
5941 /* ??? This would be faster if attribute names were stored in a canonicalized
5942 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
5943 must be used to show these elements are equivalent (which they are). */
5944 /* ??? It's not clear that attributes with arguments will always be handled
5945 correctly. */
5946
5947 int
5948 attribute_list_contained (const_tree l1, const_tree l2)
5949 {
5950 const_tree t1, t2;
5951
5952 /* First check the obvious, maybe the lists are identical. */
5953 if (l1 == l2)
5954 return 1;
5955
5956 /* Maybe the lists are similar. */
5957 for (t1 = l1, t2 = l2;
5958 t1 != 0 && t2 != 0
5959 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
5960 && TREE_VALUE (t1) == TREE_VALUE (t2);
5961 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
5962
5963 /* Maybe the lists are equal. */
5964 if (t1 == 0 && t2 == 0)
5965 return 1;
5966
5967 for (; t2 != 0; t2 = TREE_CHAIN (t2))
5968 {
5969 const_tree attr;
5970 /* This CONST_CAST is okay because lookup_attribute does not
5971 modify its argument and the return value is assigned to a
5972 const_tree. */
5973 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
5974 CONST_CAST_TREE(l1));
5975 attr != NULL_TREE;
5976 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
5977 TREE_CHAIN (attr)))
5978 {
5979 if (TREE_VALUE (t2) != NULL
5980 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
5981 && TREE_VALUE (attr) != NULL
5982 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
5983 {
5984 if (simple_cst_list_equal (TREE_VALUE (t2),
5985 TREE_VALUE (attr)) == 1)
5986 break;
5987 }
5988 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
5989 break;
5990 }
5991
5992 if (attr == 0)
5993 return 0;
5994 }
5995
5996 return 1;
5997 }
5998
5999 /* Given two lists of types
6000 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6001 return 1 if the lists contain the same types in the same order.
6002 Also, the TREE_PURPOSEs must match. */
6003
6004 int
6005 type_list_equal (const_tree l1, const_tree l2)
6006 {
6007 const_tree t1, t2;
6008
6009 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6010 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6011 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6012 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6013 && (TREE_TYPE (TREE_PURPOSE (t1))
6014 == TREE_TYPE (TREE_PURPOSE (t2))))))
6015 return 0;
6016
6017 return t1 == t2;
6018 }
6019
6020 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6021 given by TYPE. If the argument list accepts variable arguments,
6022 then this function counts only the ordinary arguments. */
6023
6024 int
6025 type_num_arguments (const_tree type)
6026 {
6027 int i = 0;
6028 tree t;
6029
6030 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6031 /* If the function does not take a variable number of arguments,
6032 the last element in the list will have type `void'. */
6033 if (VOID_TYPE_P (TREE_VALUE (t)))
6034 break;
6035 else
6036 ++i;
6037
6038 return i;
6039 }
6040
6041 /* Nonzero if integer constants T1 and T2
6042 represent the same constant value. */
6043
6044 int
6045 tree_int_cst_equal (const_tree t1, const_tree t2)
6046 {
6047 if (t1 == t2)
6048 return 1;
6049
6050 if (t1 == 0 || t2 == 0)
6051 return 0;
6052
6053 if (TREE_CODE (t1) == INTEGER_CST
6054 && TREE_CODE (t2) == INTEGER_CST
6055 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6056 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6057 return 1;
6058
6059 return 0;
6060 }
6061
6062 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6063 The precise way of comparison depends on their data type. */
6064
6065 int
6066 tree_int_cst_lt (const_tree t1, const_tree t2)
6067 {
6068 if (t1 == t2)
6069 return 0;
6070
6071 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6072 {
6073 int t1_sgn = tree_int_cst_sgn (t1);
6074 int t2_sgn = tree_int_cst_sgn (t2);
6075
6076 if (t1_sgn < t2_sgn)
6077 return 1;
6078 else if (t1_sgn > t2_sgn)
6079 return 0;
6080 /* Otherwise, both are non-negative, so we compare them as
6081 unsigned just in case one of them would overflow a signed
6082 type. */
6083 }
6084 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6085 return INT_CST_LT (t1, t2);
6086
6087 return INT_CST_LT_UNSIGNED (t1, t2);
6088 }
6089
6090 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6091
6092 int
6093 tree_int_cst_compare (const_tree t1, const_tree t2)
6094 {
6095 if (tree_int_cst_lt (t1, t2))
6096 return -1;
6097 else if (tree_int_cst_lt (t2, t1))
6098 return 1;
6099 else
6100 return 0;
6101 }
6102
6103 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6104 the host. If POS is zero, the value can be represented in a single
6105 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6106 be represented in a single unsigned HOST_WIDE_INT. */
6107
6108 int
6109 host_integerp (const_tree t, int pos)
6110 {
6111 if (t == NULL_TREE)
6112 return 0;
6113
6114 return (TREE_CODE (t) == INTEGER_CST
6115 && ((TREE_INT_CST_HIGH (t) == 0
6116 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6117 || (! pos && TREE_INT_CST_HIGH (t) == -1
6118 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6119 && (!TYPE_UNSIGNED (TREE_TYPE (t))
6120 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6121 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
6122 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6123 }
6124
6125 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6126 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6127 be non-negative. We must be able to satisfy the above conditions. */
6128
6129 HOST_WIDE_INT
6130 tree_low_cst (const_tree t, int pos)
6131 {
6132 gcc_assert (host_integerp (t, pos));
6133 return TREE_INT_CST_LOW (t);
6134 }
6135
6136 /* Return the most significant bit of the integer constant T. */
6137
6138 int
6139 tree_int_cst_msb (const_tree t)
6140 {
6141 int prec;
6142 HOST_WIDE_INT h;
6143 unsigned HOST_WIDE_INT l;
6144
6145 /* Note that using TYPE_PRECISION here is wrong. We care about the
6146 actual bits, not the (arbitrary) range of the type. */
6147 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
6148 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
6149 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
6150 return (l & 1) == 1;
6151 }
6152
6153 /* Return an indication of the sign of the integer constant T.
6154 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6155 Note that -1 will never be returned if T's type is unsigned. */
6156
6157 int
6158 tree_int_cst_sgn (const_tree t)
6159 {
6160 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6161 return 0;
6162 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6163 return 1;
6164 else if (TREE_INT_CST_HIGH (t) < 0)
6165 return -1;
6166 else
6167 return 1;
6168 }
6169
6170 /* Return the minimum number of bits needed to represent VALUE in a
6171 signed or unsigned type, UNSIGNEDP says which. */
6172
6173 unsigned int
6174 tree_int_cst_min_precision (tree value, bool unsignedp)
6175 {
6176 int log;
6177
6178 /* If the value is negative, compute its negative minus 1. The latter
6179 adjustment is because the absolute value of the largest negative value
6180 is one larger than the largest positive value. This is equivalent to
6181 a bit-wise negation, so use that operation instead. */
6182
6183 if (tree_int_cst_sgn (value) < 0)
6184 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6185
6186 /* Return the number of bits needed, taking into account the fact
6187 that we need one more bit for a signed than unsigned type. */
6188
6189 if (integer_zerop (value))
6190 log = 0;
6191 else
6192 log = tree_floor_log2 (value);
6193
6194 return log + 1 + !unsignedp;
6195 }
6196
6197 /* Compare two constructor-element-type constants. Return 1 if the lists
6198 are known to be equal; otherwise return 0. */
6199
6200 int
6201 simple_cst_list_equal (const_tree l1, const_tree l2)
6202 {
6203 while (l1 != NULL_TREE && l2 != NULL_TREE)
6204 {
6205 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6206 return 0;
6207
6208 l1 = TREE_CHAIN (l1);
6209 l2 = TREE_CHAIN (l2);
6210 }
6211
6212 return l1 == l2;
6213 }
6214
6215 /* Return truthvalue of whether T1 is the same tree structure as T2.
6216 Return 1 if they are the same.
6217 Return 0 if they are understandably different.
6218 Return -1 if either contains tree structure not understood by
6219 this function. */
6220
6221 int
6222 simple_cst_equal (const_tree t1, const_tree t2)
6223 {
6224 enum tree_code code1, code2;
6225 int cmp;
6226 int i;
6227
6228 if (t1 == t2)
6229 return 1;
6230 if (t1 == 0 || t2 == 0)
6231 return 0;
6232
6233 code1 = TREE_CODE (t1);
6234 code2 = TREE_CODE (t2);
6235
6236 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6237 {
6238 if (CONVERT_EXPR_CODE_P (code2)
6239 || code2 == NON_LVALUE_EXPR)
6240 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6241 else
6242 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6243 }
6244
6245 else if (CONVERT_EXPR_CODE_P (code2)
6246 || code2 == NON_LVALUE_EXPR)
6247 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6248
6249 if (code1 != code2)
6250 return 0;
6251
6252 switch (code1)
6253 {
6254 case INTEGER_CST:
6255 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6256 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6257
6258 case REAL_CST:
6259 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6260
6261 case FIXED_CST:
6262 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6263
6264 case STRING_CST:
6265 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6266 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6267 TREE_STRING_LENGTH (t1)));
6268
6269 case CONSTRUCTOR:
6270 {
6271 unsigned HOST_WIDE_INT idx;
6272 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6273 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6274
6275 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6276 return false;
6277
6278 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6279 /* ??? Should we handle also fields here? */
6280 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
6281 VEC_index (constructor_elt, v2, idx)->value))
6282 return false;
6283 return true;
6284 }
6285
6286 case SAVE_EXPR:
6287 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6288
6289 case CALL_EXPR:
6290 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6291 if (cmp <= 0)
6292 return cmp;
6293 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6294 return 0;
6295 {
6296 const_tree arg1, arg2;
6297 const_call_expr_arg_iterator iter1, iter2;
6298 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6299 arg2 = first_const_call_expr_arg (t2, &iter2);
6300 arg1 && arg2;
6301 arg1 = next_const_call_expr_arg (&iter1),
6302 arg2 = next_const_call_expr_arg (&iter2))
6303 {
6304 cmp = simple_cst_equal (arg1, arg2);
6305 if (cmp <= 0)
6306 return cmp;
6307 }
6308 return arg1 == arg2;
6309 }
6310
6311 case TARGET_EXPR:
6312 /* Special case: if either target is an unallocated VAR_DECL,
6313 it means that it's going to be unified with whatever the
6314 TARGET_EXPR is really supposed to initialize, so treat it
6315 as being equivalent to anything. */
6316 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6317 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6318 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6319 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6320 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6321 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6322 cmp = 1;
6323 else
6324 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6325
6326 if (cmp <= 0)
6327 return cmp;
6328
6329 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6330
6331 case WITH_CLEANUP_EXPR:
6332 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6333 if (cmp <= 0)
6334 return cmp;
6335
6336 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6337
6338 case COMPONENT_REF:
6339 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6340 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6341
6342 return 0;
6343
6344 case VAR_DECL:
6345 case PARM_DECL:
6346 case CONST_DECL:
6347 case FUNCTION_DECL:
6348 return 0;
6349
6350 default:
6351 break;
6352 }
6353
6354 /* This general rule works for most tree codes. All exceptions should be
6355 handled above. If this is a language-specific tree code, we can't
6356 trust what might be in the operand, so say we don't know
6357 the situation. */
6358 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6359 return -1;
6360
6361 switch (TREE_CODE_CLASS (code1))
6362 {
6363 case tcc_unary:
6364 case tcc_binary:
6365 case tcc_comparison:
6366 case tcc_expression:
6367 case tcc_reference:
6368 case tcc_statement:
6369 cmp = 1;
6370 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6371 {
6372 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6373 if (cmp <= 0)
6374 return cmp;
6375 }
6376
6377 return cmp;
6378
6379 default:
6380 return -1;
6381 }
6382 }
6383
6384 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6385 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6386 than U, respectively. */
6387
6388 int
6389 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6390 {
6391 if (tree_int_cst_sgn (t) < 0)
6392 return -1;
6393 else if (TREE_INT_CST_HIGH (t) != 0)
6394 return 1;
6395 else if (TREE_INT_CST_LOW (t) == u)
6396 return 0;
6397 else if (TREE_INT_CST_LOW (t) < u)
6398 return -1;
6399 else
6400 return 1;
6401 }
6402
6403 /* Return true if CODE represents an associative tree code. Otherwise
6404 return false. */
6405 bool
6406 associative_tree_code (enum tree_code code)
6407 {
6408 switch (code)
6409 {
6410 case BIT_IOR_EXPR:
6411 case BIT_AND_EXPR:
6412 case BIT_XOR_EXPR:
6413 case PLUS_EXPR:
6414 case MULT_EXPR:
6415 case MIN_EXPR:
6416 case MAX_EXPR:
6417 return true;
6418
6419 default:
6420 break;
6421 }
6422 return false;
6423 }
6424
6425 /* Return true if CODE represents a commutative tree code. Otherwise
6426 return false. */
6427 bool
6428 commutative_tree_code (enum tree_code code)
6429 {
6430 switch (code)
6431 {
6432 case PLUS_EXPR:
6433 case MULT_EXPR:
6434 case MIN_EXPR:
6435 case MAX_EXPR:
6436 case BIT_IOR_EXPR:
6437 case BIT_XOR_EXPR:
6438 case BIT_AND_EXPR:
6439 case NE_EXPR:
6440 case EQ_EXPR:
6441 case UNORDERED_EXPR:
6442 case ORDERED_EXPR:
6443 case UNEQ_EXPR:
6444 case LTGT_EXPR:
6445 case TRUTH_AND_EXPR:
6446 case TRUTH_XOR_EXPR:
6447 case TRUTH_OR_EXPR:
6448 return true;
6449
6450 default:
6451 break;
6452 }
6453 return false;
6454 }
6455
6456 /* Generate a hash value for an expression. This can be used iteratively
6457 by passing a previous result as the VAL argument.
6458
6459 This function is intended to produce the same hash for expressions which
6460 would compare equal using operand_equal_p. */
6461
6462 hashval_t
6463 iterative_hash_expr (const_tree t, hashval_t val)
6464 {
6465 int i;
6466 enum tree_code code;
6467 char tclass;
6468
6469 if (t == NULL_TREE)
6470 return iterative_hash_hashval_t (0, val);
6471
6472 code = TREE_CODE (t);
6473
6474 switch (code)
6475 {
6476 /* Alas, constants aren't shared, so we can't rely on pointer
6477 identity. */
6478 case INTEGER_CST:
6479 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6480 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6481 case REAL_CST:
6482 {
6483 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6484
6485 return iterative_hash_hashval_t (val2, val);
6486 }
6487 case FIXED_CST:
6488 {
6489 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
6490
6491 return iterative_hash_hashval_t (val2, val);
6492 }
6493 case STRING_CST:
6494 return iterative_hash (TREE_STRING_POINTER (t),
6495 TREE_STRING_LENGTH (t), val);
6496 case COMPLEX_CST:
6497 val = iterative_hash_expr (TREE_REALPART (t), val);
6498 return iterative_hash_expr (TREE_IMAGPART (t), val);
6499 case VECTOR_CST:
6500 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
6501
6502 case SSA_NAME:
6503 /* we can just compare by pointer. */
6504 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
6505
6506 case TREE_LIST:
6507 /* A list of expressions, for a CALL_EXPR or as the elements of a
6508 VECTOR_CST. */
6509 for (; t; t = TREE_CHAIN (t))
6510 val = iterative_hash_expr (TREE_VALUE (t), val);
6511 return val;
6512 case CONSTRUCTOR:
6513 {
6514 unsigned HOST_WIDE_INT idx;
6515 tree field, value;
6516 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
6517 {
6518 val = iterative_hash_expr (field, val);
6519 val = iterative_hash_expr (value, val);
6520 }
6521 return val;
6522 }
6523 case FUNCTION_DECL:
6524 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
6525 Otherwise nodes that compare equal according to operand_equal_p might
6526 get different hash codes. However, don't do this for machine specific
6527 or front end builtins, since the function code is overloaded in those
6528 cases. */
6529 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
6530 && built_in_decls[DECL_FUNCTION_CODE (t)])
6531 {
6532 t = built_in_decls[DECL_FUNCTION_CODE (t)];
6533 code = TREE_CODE (t);
6534 }
6535 /* FALL THROUGH */
6536 default:
6537 tclass = TREE_CODE_CLASS (code);
6538
6539 if (tclass == tcc_declaration)
6540 {
6541 /* DECL's have a unique ID */
6542 val = iterative_hash_host_wide_int (DECL_UID (t), val);
6543 }
6544 else
6545 {
6546 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
6547
6548 val = iterative_hash_object (code, val);
6549
6550 /* Don't hash the type, that can lead to having nodes which
6551 compare equal according to operand_equal_p, but which
6552 have different hash codes. */
6553 if (CONVERT_EXPR_CODE_P (code)
6554 || code == NON_LVALUE_EXPR)
6555 {
6556 /* Make sure to include signness in the hash computation. */
6557 val += TYPE_UNSIGNED (TREE_TYPE (t));
6558 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6559 }
6560
6561 else if (commutative_tree_code (code))
6562 {
6563 /* It's a commutative expression. We want to hash it the same
6564 however it appears. We do this by first hashing both operands
6565 and then rehashing based on the order of their independent
6566 hashes. */
6567 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
6568 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
6569 hashval_t t;
6570
6571 if (one > two)
6572 t = one, one = two, two = t;
6573
6574 val = iterative_hash_hashval_t (one, val);
6575 val = iterative_hash_hashval_t (two, val);
6576 }
6577 else
6578 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
6579 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
6580 }
6581 return val;
6582 break;
6583 }
6584 }
6585
6586 /* Generate a hash value for a pair of expressions. This can be used
6587 iteratively by passing a previous result as the VAL argument.
6588
6589 The same hash value is always returned for a given pair of expressions,
6590 regardless of the order in which they are presented. This is useful in
6591 hashing the operands of commutative functions. */
6592
6593 hashval_t
6594 iterative_hash_exprs_commutative (const_tree t1,
6595 const_tree t2, hashval_t val)
6596 {
6597 hashval_t one = iterative_hash_expr (t1, 0);
6598 hashval_t two = iterative_hash_expr (t2, 0);
6599 hashval_t t;
6600
6601 if (one > two)
6602 t = one, one = two, two = t;
6603 val = iterative_hash_hashval_t (one, val);
6604 val = iterative_hash_hashval_t (two, val);
6605
6606 return val;
6607 }
6608 \f
6609 /* Constructors for pointer, array and function types.
6610 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
6611 constructed by language-dependent code, not here.) */
6612
6613 /* Construct, lay out and return the type of pointers to TO_TYPE with
6614 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
6615 reference all of memory. If such a type has already been
6616 constructed, reuse it. */
6617
6618 tree
6619 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
6620 bool can_alias_all)
6621 {
6622 tree t;
6623
6624 if (to_type == error_mark_node)
6625 return error_mark_node;
6626
6627 /* If the pointed-to type has the may_alias attribute set, force
6628 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6629 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6630 can_alias_all = true;
6631
6632 /* In some cases, languages will have things that aren't a POINTER_TYPE
6633 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
6634 In that case, return that type without regard to the rest of our
6635 operands.
6636
6637 ??? This is a kludge, but consistent with the way this function has
6638 always operated and there doesn't seem to be a good way to avoid this
6639 at the moment. */
6640 if (TYPE_POINTER_TO (to_type) != 0
6641 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
6642 return TYPE_POINTER_TO (to_type);
6643
6644 /* First, if we already have a type for pointers to TO_TYPE and it's
6645 the proper mode, use it. */
6646 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
6647 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6648 return t;
6649
6650 t = make_node (POINTER_TYPE);
6651
6652 TREE_TYPE (t) = to_type;
6653 SET_TYPE_MODE (t, mode);
6654 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6655 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
6656 TYPE_POINTER_TO (to_type) = t;
6657
6658 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6659 SET_TYPE_STRUCTURAL_EQUALITY (t);
6660 else if (TYPE_CANONICAL (to_type) != to_type)
6661 TYPE_CANONICAL (t)
6662 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
6663 mode, can_alias_all);
6664
6665 /* Lay out the type. This function has many callers that are concerned
6666 with expression-construction, and this simplifies them all. */
6667 layout_type (t);
6668
6669 return t;
6670 }
6671
6672 /* By default build pointers in ptr_mode. */
6673
6674 tree
6675 build_pointer_type (tree to_type)
6676 {
6677 return build_pointer_type_for_mode (to_type, ptr_mode, false);
6678 }
6679
6680 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
6681
6682 tree
6683 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
6684 bool can_alias_all)
6685 {
6686 tree t;
6687
6688 if (to_type == error_mark_node)
6689 return error_mark_node;
6690
6691 /* If the pointed-to type has the may_alias attribute set, force
6692 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6693 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6694 can_alias_all = true;
6695
6696 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
6697 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
6698 In that case, return that type without regard to the rest of our
6699 operands.
6700
6701 ??? This is a kludge, but consistent with the way this function has
6702 always operated and there doesn't seem to be a good way to avoid this
6703 at the moment. */
6704 if (TYPE_REFERENCE_TO (to_type) != 0
6705 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
6706 return TYPE_REFERENCE_TO (to_type);
6707
6708 /* First, if we already have a type for pointers to TO_TYPE and it's
6709 the proper mode, use it. */
6710 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
6711 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6712 return t;
6713
6714 t = make_node (REFERENCE_TYPE);
6715
6716 TREE_TYPE (t) = to_type;
6717 SET_TYPE_MODE (t, mode);
6718 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6719 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
6720 TYPE_REFERENCE_TO (to_type) = t;
6721
6722 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6723 SET_TYPE_STRUCTURAL_EQUALITY (t);
6724 else if (TYPE_CANONICAL (to_type) != to_type)
6725 TYPE_CANONICAL (t)
6726 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
6727 mode, can_alias_all);
6728
6729 layout_type (t);
6730
6731 return t;
6732 }
6733
6734
6735 /* Build the node for the type of references-to-TO_TYPE by default
6736 in ptr_mode. */
6737
6738 tree
6739 build_reference_type (tree to_type)
6740 {
6741 return build_reference_type_for_mode (to_type, ptr_mode, false);
6742 }
6743
6744 /* Build a type that is compatible with t but has no cv quals anywhere
6745 in its type, thus
6746
6747 const char *const *const * -> char ***. */
6748
6749 tree
6750 build_type_no_quals (tree t)
6751 {
6752 switch (TREE_CODE (t))
6753 {
6754 case POINTER_TYPE:
6755 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6756 TYPE_MODE (t),
6757 TYPE_REF_CAN_ALIAS_ALL (t));
6758 case REFERENCE_TYPE:
6759 return
6760 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6761 TYPE_MODE (t),
6762 TYPE_REF_CAN_ALIAS_ALL (t));
6763 default:
6764 return TYPE_MAIN_VARIANT (t);
6765 }
6766 }
6767
6768 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
6769 MAXVAL should be the maximum value in the domain
6770 (one less than the length of the array).
6771
6772 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
6773 We don't enforce this limit, that is up to caller (e.g. language front end).
6774 The limit exists because the result is a signed type and we don't handle
6775 sizes that use more than one HOST_WIDE_INT. */
6776
6777 tree
6778 build_index_type (tree maxval)
6779 {
6780 tree itype = make_node (INTEGER_TYPE);
6781
6782 TREE_TYPE (itype) = sizetype;
6783 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
6784 TYPE_MIN_VALUE (itype) = size_zero_node;
6785 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
6786 SET_TYPE_MODE (itype, TYPE_MODE (sizetype));
6787 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
6788 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
6789 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
6790 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
6791
6792 if (host_integerp (maxval, 1))
6793 return type_hash_canon (tree_low_cst (maxval, 1), itype);
6794 else
6795 {
6796 /* Since we cannot hash this type, we need to compare it using
6797 structural equality checks. */
6798 SET_TYPE_STRUCTURAL_EQUALITY (itype);
6799 return itype;
6800 }
6801 }
6802
6803 /* Builds a signed or unsigned integer type of precision PRECISION.
6804 Used for C bitfields whose precision does not match that of
6805 built-in target types. */
6806 tree
6807 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
6808 int unsignedp)
6809 {
6810 tree itype = make_node (INTEGER_TYPE);
6811
6812 TYPE_PRECISION (itype) = precision;
6813
6814 if (unsignedp)
6815 fixup_unsigned_type (itype);
6816 else
6817 fixup_signed_type (itype);
6818
6819 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
6820 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
6821
6822 return itype;
6823 }
6824
6825 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
6826 ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
6827 high bound HIGHVAL. If TYPE is NULL, sizetype is used. */
6828
6829 tree
6830 build_range_type (tree type, tree lowval, tree highval)
6831 {
6832 tree itype = make_node (INTEGER_TYPE);
6833
6834 TREE_TYPE (itype) = type;
6835 if (type == NULL_TREE)
6836 type = sizetype;
6837
6838 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
6839 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
6840
6841 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
6842 SET_TYPE_MODE (itype, TYPE_MODE (type));
6843 TYPE_SIZE (itype) = TYPE_SIZE (type);
6844 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
6845 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
6846 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
6847
6848 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
6849 return type_hash_canon (tree_low_cst (highval, 0)
6850 - tree_low_cst (lowval, 0),
6851 itype);
6852 else
6853 return itype;
6854 }
6855
6856 /* Return true if the debug information for TYPE, a subtype, should be emitted
6857 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
6858 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
6859 debug info and doesn't reflect the source code. */
6860
6861 bool
6862 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
6863 {
6864 tree base_type = TREE_TYPE (type), low, high;
6865
6866 /* Subrange types have a base type which is an integral type. */
6867 if (!INTEGRAL_TYPE_P (base_type))
6868 return false;
6869
6870 /* Get the real bounds of the subtype. */
6871 if (lang_hooks.types.get_subrange_bounds)
6872 lang_hooks.types.get_subrange_bounds (type, &low, &high);
6873 else
6874 {
6875 low = TYPE_MIN_VALUE (type);
6876 high = TYPE_MAX_VALUE (type);
6877 }
6878
6879 /* If the type and its base type have the same representation and the same
6880 name, then the type is not a subrange but a copy of the base type. */
6881 if ((TREE_CODE (base_type) == INTEGER_TYPE
6882 || TREE_CODE (base_type) == BOOLEAN_TYPE)
6883 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
6884 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
6885 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
6886 {
6887 tree type_name = TYPE_NAME (type);
6888 tree base_type_name = TYPE_NAME (base_type);
6889
6890 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
6891 type_name = DECL_NAME (type_name);
6892
6893 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
6894 base_type_name = DECL_NAME (base_type_name);
6895
6896 if (type_name == base_type_name)
6897 return false;
6898 }
6899
6900 if (lowval)
6901 *lowval = low;
6902 if (highval)
6903 *highval = high;
6904 return true;
6905 }
6906
6907 /* Just like build_index_type, but takes lowval and highval instead
6908 of just highval (maxval). */
6909
6910 tree
6911 build_index_2_type (tree lowval, tree highval)
6912 {
6913 return build_range_type (sizetype, lowval, highval);
6914 }
6915
6916 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
6917 and number of elements specified by the range of values of INDEX_TYPE.
6918 If such a type has already been constructed, reuse it. */
6919
6920 tree
6921 build_array_type (tree elt_type, tree index_type)
6922 {
6923 tree t;
6924 hashval_t hashcode = 0;
6925
6926 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
6927 {
6928 error ("arrays of functions are not meaningful");
6929 elt_type = integer_type_node;
6930 }
6931
6932 t = make_node (ARRAY_TYPE);
6933 TREE_TYPE (t) = elt_type;
6934 TYPE_DOMAIN (t) = index_type;
6935 layout_type (t);
6936
6937 /* If the element type is incomplete at this point we get marked for
6938 structural equality. Do not record these types in the canonical
6939 type hashtable. */
6940 if (TYPE_STRUCTURAL_EQUALITY_P (t))
6941 return t;
6942
6943 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
6944 if (index_type)
6945 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
6946 t = type_hash_canon (hashcode, t);
6947
6948 if (TYPE_CANONICAL (t) == t)
6949 {
6950 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
6951 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
6952 SET_TYPE_STRUCTURAL_EQUALITY (t);
6953 else if (TYPE_CANONICAL (elt_type) != elt_type
6954 || (index_type && TYPE_CANONICAL (index_type) != index_type))
6955 TYPE_CANONICAL (t)
6956 = build_array_type (TYPE_CANONICAL (elt_type),
6957 index_type ? TYPE_CANONICAL (index_type) : NULL);
6958 }
6959
6960 return t;
6961 }
6962
6963 /* Recursively examines the array elements of TYPE, until a non-array
6964 element type is found. */
6965
6966 tree
6967 strip_array_types (tree type)
6968 {
6969 while (TREE_CODE (type) == ARRAY_TYPE)
6970 type = TREE_TYPE (type);
6971
6972 return type;
6973 }
6974
6975 /* Computes the canonical argument types from the argument type list
6976 ARGTYPES.
6977
6978 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
6979 on entry to this function, or if any of the ARGTYPES are
6980 structural.
6981
6982 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
6983 true on entry to this function, or if any of the ARGTYPES are
6984 non-canonical.
6985
6986 Returns a canonical argument list, which may be ARGTYPES when the
6987 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
6988 true) or would not differ from ARGTYPES. */
6989
6990 static tree
6991 maybe_canonicalize_argtypes(tree argtypes,
6992 bool *any_structural_p,
6993 bool *any_noncanonical_p)
6994 {
6995 tree arg;
6996 bool any_noncanonical_argtypes_p = false;
6997
6998 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
6999 {
7000 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7001 /* Fail gracefully by stating that the type is structural. */
7002 *any_structural_p = true;
7003 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7004 *any_structural_p = true;
7005 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7006 || TREE_PURPOSE (arg))
7007 /* If the argument has a default argument, we consider it
7008 non-canonical even though the type itself is canonical.
7009 That way, different variants of function and method types
7010 with default arguments will all point to the variant with
7011 no defaults as their canonical type. */
7012 any_noncanonical_argtypes_p = true;
7013 }
7014
7015 if (*any_structural_p)
7016 return argtypes;
7017
7018 if (any_noncanonical_argtypes_p)
7019 {
7020 /* Build the canonical list of argument types. */
7021 tree canon_argtypes = NULL_TREE;
7022 bool is_void = false;
7023
7024 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7025 {
7026 if (arg == void_list_node)
7027 is_void = true;
7028 else
7029 canon_argtypes = tree_cons (NULL_TREE,
7030 TYPE_CANONICAL (TREE_VALUE (arg)),
7031 canon_argtypes);
7032 }
7033
7034 canon_argtypes = nreverse (canon_argtypes);
7035 if (is_void)
7036 canon_argtypes = chainon (canon_argtypes, void_list_node);
7037
7038 /* There is a non-canonical type. */
7039 *any_noncanonical_p = true;
7040 return canon_argtypes;
7041 }
7042
7043 /* The canonical argument types are the same as ARGTYPES. */
7044 return argtypes;
7045 }
7046
7047 /* Construct, lay out and return
7048 the type of functions returning type VALUE_TYPE
7049 given arguments of types ARG_TYPES.
7050 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7051 are data type nodes for the arguments of the function.
7052 If such a type has already been constructed, reuse it. */
7053
7054 tree
7055 build_function_type (tree value_type, tree arg_types)
7056 {
7057 tree t;
7058 hashval_t hashcode = 0;
7059 bool any_structural_p, any_noncanonical_p;
7060 tree canon_argtypes;
7061
7062 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7063 {
7064 error ("function return type cannot be function");
7065 value_type = integer_type_node;
7066 }
7067
7068 /* Make a node of the sort we want. */
7069 t = make_node (FUNCTION_TYPE);
7070 TREE_TYPE (t) = value_type;
7071 TYPE_ARG_TYPES (t) = arg_types;
7072
7073 /* If we already have such a type, use the old one. */
7074 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7075 hashcode = type_hash_list (arg_types, hashcode);
7076 t = type_hash_canon (hashcode, t);
7077
7078 /* Set up the canonical type. */
7079 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7080 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7081 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7082 &any_structural_p,
7083 &any_noncanonical_p);
7084 if (any_structural_p)
7085 SET_TYPE_STRUCTURAL_EQUALITY (t);
7086 else if (any_noncanonical_p)
7087 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7088 canon_argtypes);
7089
7090 if (!COMPLETE_TYPE_P (t))
7091 layout_type (t);
7092 return t;
7093 }
7094
7095 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
7096
7097 tree
7098 build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
7099 {
7100 tree new_type = NULL;
7101 tree args, new_args = NULL, t;
7102 tree new_reversed;
7103 int i = 0;
7104
7105 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7106 args = TREE_CHAIN (args), i++)
7107 if (!bitmap_bit_p (args_to_skip, i))
7108 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7109
7110 new_reversed = nreverse (new_args);
7111 if (args)
7112 {
7113 if (new_reversed)
7114 TREE_CHAIN (new_args) = void_list_node;
7115 else
7116 new_reversed = void_list_node;
7117 }
7118
7119 /* Use copy_node to preserve as much as possible from original type
7120 (debug info, attribute lists etc.)
7121 Exception is METHOD_TYPEs must have THIS argument.
7122 When we are asked to remove it, we need to build new FUNCTION_TYPE
7123 instead. */
7124 if (TREE_CODE (orig_type) != METHOD_TYPE
7125 || !bitmap_bit_p (args_to_skip, 0))
7126 {
7127 new_type = copy_node (orig_type);
7128 TYPE_ARG_TYPES (new_type) = new_reversed;
7129 }
7130 else
7131 {
7132 new_type
7133 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7134 new_reversed));
7135 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7136 }
7137
7138 /* This is a new type, not a copy of an old type. Need to reassociate
7139 variants. We can handle everything except the main variant lazily. */
7140 t = TYPE_MAIN_VARIANT (orig_type);
7141 if (orig_type != t)
7142 {
7143 TYPE_MAIN_VARIANT (new_type) = t;
7144 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7145 TYPE_NEXT_VARIANT (t) = new_type;
7146 }
7147 else
7148 {
7149 TYPE_MAIN_VARIANT (new_type) = new_type;
7150 TYPE_NEXT_VARIANT (new_type) = NULL;
7151 }
7152 return new_type;
7153 }
7154
7155 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
7156
7157 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7158 linked by TREE_CHAIN directly. It is caller responsibility to eliminate
7159 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7160
7161 tree
7162 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
7163 {
7164 tree new_decl = copy_node (orig_decl);
7165 tree new_type;
7166
7167 new_type = TREE_TYPE (orig_decl);
7168 if (prototype_p (new_type))
7169 new_type = build_function_type_skip_args (new_type, args_to_skip);
7170 TREE_TYPE (new_decl) = new_type;
7171
7172 /* For declarations setting DECL_VINDEX (i.e. methods)
7173 we expect first argument to be THIS pointer. */
7174 if (bitmap_bit_p (args_to_skip, 0))
7175 DECL_VINDEX (new_decl) = NULL_TREE;
7176 return new_decl;
7177 }
7178
7179 /* Build a function type. The RETURN_TYPE is the type returned by the
7180 function. If VAARGS is set, no void_type_node is appended to the
7181 the list. ARGP muse be alway be terminated be a NULL_TREE. */
7182
7183 static tree
7184 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7185 {
7186 tree t, args, last;
7187
7188 t = va_arg (argp, tree);
7189 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7190 args = tree_cons (NULL_TREE, t, args);
7191
7192 if (vaargs)
7193 {
7194 last = args;
7195 if (args != NULL_TREE)
7196 args = nreverse (args);
7197 gcc_assert (args != NULL_TREE && last != void_list_node);
7198 }
7199 else if (args == NULL_TREE)
7200 args = void_list_node;
7201 else
7202 {
7203 last = args;
7204 args = nreverse (args);
7205 TREE_CHAIN (last) = void_list_node;
7206 }
7207 args = build_function_type (return_type, args);
7208
7209 return args;
7210 }
7211
7212 /* Build a function type. The RETURN_TYPE is the type returned by the
7213 function. If additional arguments are provided, they are
7214 additional argument types. The list of argument types must always
7215 be terminated by NULL_TREE. */
7216
7217 tree
7218 build_function_type_list (tree return_type, ...)
7219 {
7220 tree args;
7221 va_list p;
7222
7223 va_start (p, return_type);
7224 args = build_function_type_list_1 (false, return_type, p);
7225 va_end (p);
7226 return args;
7227 }
7228
7229 /* Build a variable argument function type. The RETURN_TYPE is the
7230 type returned by the function. If additional arguments are provided,
7231 they are additional argument types. The list of argument types must
7232 always be terminated by NULL_TREE. */
7233
7234 tree
7235 build_varargs_function_type_list (tree return_type, ...)
7236 {
7237 tree args;
7238 va_list p;
7239
7240 va_start (p, return_type);
7241 args = build_function_type_list_1 (true, return_type, p);
7242 va_end (p);
7243
7244 return args;
7245 }
7246
7247 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7248 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7249 for the method. An implicit additional parameter (of type
7250 pointer-to-BASETYPE) is added to the ARGTYPES. */
7251
7252 tree
7253 build_method_type_directly (tree basetype,
7254 tree rettype,
7255 tree argtypes)
7256 {
7257 tree t;
7258 tree ptype;
7259 int hashcode = 0;
7260 bool any_structural_p, any_noncanonical_p;
7261 tree canon_argtypes;
7262
7263 /* Make a node of the sort we want. */
7264 t = make_node (METHOD_TYPE);
7265
7266 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7267 TREE_TYPE (t) = rettype;
7268 ptype = build_pointer_type (basetype);
7269
7270 /* The actual arglist for this function includes a "hidden" argument
7271 which is "this". Put it into the list of argument types. */
7272 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7273 TYPE_ARG_TYPES (t) = argtypes;
7274
7275 /* If we already have such a type, use the old one. */
7276 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7277 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7278 hashcode = type_hash_list (argtypes, hashcode);
7279 t = type_hash_canon (hashcode, t);
7280
7281 /* Set up the canonical type. */
7282 any_structural_p
7283 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7284 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7285 any_noncanonical_p
7286 = (TYPE_CANONICAL (basetype) != basetype
7287 || TYPE_CANONICAL (rettype) != rettype);
7288 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7289 &any_structural_p,
7290 &any_noncanonical_p);
7291 if (any_structural_p)
7292 SET_TYPE_STRUCTURAL_EQUALITY (t);
7293 else if (any_noncanonical_p)
7294 TYPE_CANONICAL (t)
7295 = build_method_type_directly (TYPE_CANONICAL (basetype),
7296 TYPE_CANONICAL (rettype),
7297 canon_argtypes);
7298 if (!COMPLETE_TYPE_P (t))
7299 layout_type (t);
7300
7301 return t;
7302 }
7303
7304 /* Construct, lay out and return the type of methods belonging to class
7305 BASETYPE and whose arguments and values are described by TYPE.
7306 If that type exists already, reuse it.
7307 TYPE must be a FUNCTION_TYPE node. */
7308
7309 tree
7310 build_method_type (tree basetype, tree type)
7311 {
7312 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7313
7314 return build_method_type_directly (basetype,
7315 TREE_TYPE (type),
7316 TYPE_ARG_TYPES (type));
7317 }
7318
7319 /* Construct, lay out and return the type of offsets to a value
7320 of type TYPE, within an object of type BASETYPE.
7321 If a suitable offset type exists already, reuse it. */
7322
7323 tree
7324 build_offset_type (tree basetype, tree type)
7325 {
7326 tree t;
7327 hashval_t hashcode = 0;
7328
7329 /* Make a node of the sort we want. */
7330 t = make_node (OFFSET_TYPE);
7331
7332 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7333 TREE_TYPE (t) = type;
7334
7335 /* If we already have such a type, use the old one. */
7336 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7337 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7338 t = type_hash_canon (hashcode, t);
7339
7340 if (!COMPLETE_TYPE_P (t))
7341 layout_type (t);
7342
7343 if (TYPE_CANONICAL (t) == t)
7344 {
7345 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7346 || TYPE_STRUCTURAL_EQUALITY_P (type))
7347 SET_TYPE_STRUCTURAL_EQUALITY (t);
7348 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7349 || TYPE_CANONICAL (type) != type)
7350 TYPE_CANONICAL (t)
7351 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7352 TYPE_CANONICAL (type));
7353 }
7354
7355 return t;
7356 }
7357
7358 /* Create a complex type whose components are COMPONENT_TYPE. */
7359
7360 tree
7361 build_complex_type (tree component_type)
7362 {
7363 tree t;
7364 hashval_t hashcode;
7365
7366 gcc_assert (INTEGRAL_TYPE_P (component_type)
7367 || SCALAR_FLOAT_TYPE_P (component_type)
7368 || FIXED_POINT_TYPE_P (component_type));
7369
7370 /* Make a node of the sort we want. */
7371 t = make_node (COMPLEX_TYPE);
7372
7373 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
7374
7375 /* If we already have such a type, use the old one. */
7376 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
7377 t = type_hash_canon (hashcode, t);
7378
7379 if (!COMPLETE_TYPE_P (t))
7380 layout_type (t);
7381
7382 if (TYPE_CANONICAL (t) == t)
7383 {
7384 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
7385 SET_TYPE_STRUCTURAL_EQUALITY (t);
7386 else if (TYPE_CANONICAL (component_type) != component_type)
7387 TYPE_CANONICAL (t)
7388 = build_complex_type (TYPE_CANONICAL (component_type));
7389 }
7390
7391 /* We need to create a name, since complex is a fundamental type. */
7392 if (! TYPE_NAME (t))
7393 {
7394 const char *name;
7395 if (component_type == char_type_node)
7396 name = "complex char";
7397 else if (component_type == signed_char_type_node)
7398 name = "complex signed char";
7399 else if (component_type == unsigned_char_type_node)
7400 name = "complex unsigned char";
7401 else if (component_type == short_integer_type_node)
7402 name = "complex short int";
7403 else if (component_type == short_unsigned_type_node)
7404 name = "complex short unsigned int";
7405 else if (component_type == integer_type_node)
7406 name = "complex int";
7407 else if (component_type == unsigned_type_node)
7408 name = "complex unsigned int";
7409 else if (component_type == long_integer_type_node)
7410 name = "complex long int";
7411 else if (component_type == long_unsigned_type_node)
7412 name = "complex long unsigned int";
7413 else if (component_type == long_long_integer_type_node)
7414 name = "complex long long int";
7415 else if (component_type == long_long_unsigned_type_node)
7416 name = "complex long long unsigned int";
7417 else
7418 name = 0;
7419
7420 if (name != 0)
7421 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
7422 get_identifier (name), t);
7423 }
7424
7425 return build_qualified_type (t, TYPE_QUALS (component_type));
7426 }
7427
7428 /* If TYPE is a real or complex floating-point type and the target
7429 does not directly support arithmetic on TYPE then return the wider
7430 type to be used for arithmetic on TYPE. Otherwise, return
7431 NULL_TREE. */
7432
7433 tree
7434 excess_precision_type (tree type)
7435 {
7436 if (flag_excess_precision != EXCESS_PRECISION_FAST)
7437 {
7438 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
7439 switch (TREE_CODE (type))
7440 {
7441 case REAL_TYPE:
7442 switch (flt_eval_method)
7443 {
7444 case 1:
7445 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
7446 return double_type_node;
7447 break;
7448 case 2:
7449 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
7450 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
7451 return long_double_type_node;
7452 break;
7453 default:
7454 gcc_unreachable ();
7455 }
7456 break;
7457 case COMPLEX_TYPE:
7458 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
7459 return NULL_TREE;
7460 switch (flt_eval_method)
7461 {
7462 case 1:
7463 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
7464 return complex_double_type_node;
7465 break;
7466 case 2:
7467 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
7468 || (TYPE_MODE (TREE_TYPE (type))
7469 == TYPE_MODE (double_type_node)))
7470 return complex_long_double_type_node;
7471 break;
7472 default:
7473 gcc_unreachable ();
7474 }
7475 break;
7476 default:
7477 break;
7478 }
7479 }
7480 return NULL_TREE;
7481 }
7482 \f
7483 /* Return OP, stripped of any conversions to wider types as much as is safe.
7484 Converting the value back to OP's type makes a value equivalent to OP.
7485
7486 If FOR_TYPE is nonzero, we return a value which, if converted to
7487 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
7488
7489 OP must have integer, real or enumeral type. Pointers are not allowed!
7490
7491 There are some cases where the obvious value we could return
7492 would regenerate to OP if converted to OP's type,
7493 but would not extend like OP to wider types.
7494 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
7495 For example, if OP is (unsigned short)(signed char)-1,
7496 we avoid returning (signed char)-1 if FOR_TYPE is int,
7497 even though extending that to an unsigned short would regenerate OP,
7498 since the result of extending (signed char)-1 to (int)
7499 is different from (int) OP. */
7500
7501 tree
7502 get_unwidened (tree op, tree for_type)
7503 {
7504 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
7505 tree type = TREE_TYPE (op);
7506 unsigned final_prec
7507 = TYPE_PRECISION (for_type != 0 ? for_type : type);
7508 int uns
7509 = (for_type != 0 && for_type != type
7510 && final_prec > TYPE_PRECISION (type)
7511 && TYPE_UNSIGNED (type));
7512 tree win = op;
7513
7514 while (CONVERT_EXPR_P (op))
7515 {
7516 int bitschange;
7517
7518 /* TYPE_PRECISION on vector types has different meaning
7519 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
7520 so avoid them here. */
7521 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
7522 break;
7523
7524 bitschange = TYPE_PRECISION (TREE_TYPE (op))
7525 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
7526
7527 /* Truncations are many-one so cannot be removed.
7528 Unless we are later going to truncate down even farther. */
7529 if (bitschange < 0
7530 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
7531 break;
7532
7533 /* See what's inside this conversion. If we decide to strip it,
7534 we will set WIN. */
7535 op = TREE_OPERAND (op, 0);
7536
7537 /* If we have not stripped any zero-extensions (uns is 0),
7538 we can strip any kind of extension.
7539 If we have previously stripped a zero-extension,
7540 only zero-extensions can safely be stripped.
7541 Any extension can be stripped if the bits it would produce
7542 are all going to be discarded later by truncating to FOR_TYPE. */
7543
7544 if (bitschange > 0)
7545 {
7546 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
7547 win = op;
7548 /* TYPE_UNSIGNED says whether this is a zero-extension.
7549 Let's avoid computing it if it does not affect WIN
7550 and if UNS will not be needed again. */
7551 if ((uns
7552 || CONVERT_EXPR_P (op))
7553 && TYPE_UNSIGNED (TREE_TYPE (op)))
7554 {
7555 uns = 1;
7556 win = op;
7557 }
7558 }
7559 }
7560
7561 return win;
7562 }
7563 \f
7564 /* Return OP or a simpler expression for a narrower value
7565 which can be sign-extended or zero-extended to give back OP.
7566 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
7567 or 0 if the value should be sign-extended. */
7568
7569 tree
7570 get_narrower (tree op, int *unsignedp_ptr)
7571 {
7572 int uns = 0;
7573 int first = 1;
7574 tree win = op;
7575 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
7576
7577 while (TREE_CODE (op) == NOP_EXPR)
7578 {
7579 int bitschange
7580 = (TYPE_PRECISION (TREE_TYPE (op))
7581 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
7582
7583 /* Truncations are many-one so cannot be removed. */
7584 if (bitschange < 0)
7585 break;
7586
7587 /* See what's inside this conversion. If we decide to strip it,
7588 we will set WIN. */
7589
7590 if (bitschange > 0)
7591 {
7592 op = TREE_OPERAND (op, 0);
7593 /* An extension: the outermost one can be stripped,
7594 but remember whether it is zero or sign extension. */
7595 if (first)
7596 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7597 /* Otherwise, if a sign extension has been stripped,
7598 only sign extensions can now be stripped;
7599 if a zero extension has been stripped, only zero-extensions. */
7600 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
7601 break;
7602 first = 0;
7603 }
7604 else /* bitschange == 0 */
7605 {
7606 /* A change in nominal type can always be stripped, but we must
7607 preserve the unsignedness. */
7608 if (first)
7609 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7610 first = 0;
7611 op = TREE_OPERAND (op, 0);
7612 /* Keep trying to narrow, but don't assign op to win if it
7613 would turn an integral type into something else. */
7614 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
7615 continue;
7616 }
7617
7618 win = op;
7619 }
7620
7621 if (TREE_CODE (op) == COMPONENT_REF
7622 /* Since type_for_size always gives an integer type. */
7623 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
7624 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
7625 /* Ensure field is laid out already. */
7626 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
7627 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
7628 {
7629 unsigned HOST_WIDE_INT innerprec
7630 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
7631 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
7632 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
7633 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
7634
7635 /* We can get this structure field in a narrower type that fits it,
7636 but the resulting extension to its nominal type (a fullword type)
7637 must satisfy the same conditions as for other extensions.
7638
7639 Do this only for fields that are aligned (not bit-fields),
7640 because when bit-field insns will be used there is no
7641 advantage in doing this. */
7642
7643 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
7644 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
7645 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
7646 && type != 0)
7647 {
7648 if (first)
7649 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
7650 win = fold_convert (type, op);
7651 }
7652 }
7653
7654 *unsignedp_ptr = uns;
7655 return win;
7656 }
7657 \f
7658 /* Nonzero if integer constant C has a value that is permissible
7659 for type TYPE (an INTEGER_TYPE). */
7660
7661 int
7662 int_fits_type_p (const_tree c, const_tree type)
7663 {
7664 tree type_low_bound, type_high_bound;
7665 bool ok_for_low_bound, ok_for_high_bound, unsc;
7666 double_int dc, dd;
7667
7668 dc = tree_to_double_int (c);
7669 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
7670
7671 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
7672 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
7673 && unsc)
7674 /* So c is an unsigned integer whose type is sizetype and type is not.
7675 sizetype'd integers are sign extended even though they are
7676 unsigned. If the integer value fits in the lower end word of c,
7677 and if the higher end word has all its bits set to 1, that
7678 means the higher end bits are set to 1 only for sign extension.
7679 So let's convert c into an equivalent zero extended unsigned
7680 integer. */
7681 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
7682
7683 retry:
7684 type_low_bound = TYPE_MIN_VALUE (type);
7685 type_high_bound = TYPE_MAX_VALUE (type);
7686
7687 /* If at least one bound of the type is a constant integer, we can check
7688 ourselves and maybe make a decision. If no such decision is possible, but
7689 this type is a subtype, try checking against that. Otherwise, use
7690 fit_double_type, which checks against the precision.
7691
7692 Compute the status for each possibly constant bound, and return if we see
7693 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
7694 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
7695 for "constant known to fit". */
7696
7697 /* Check if c >= type_low_bound. */
7698 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
7699 {
7700 dd = tree_to_double_int (type_low_bound);
7701 if (TREE_CODE (type) == INTEGER_TYPE
7702 && TYPE_IS_SIZETYPE (type)
7703 && TYPE_UNSIGNED (type))
7704 dd = double_int_zext (dd, TYPE_PRECISION (type));
7705 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
7706 {
7707 int c_neg = (!unsc && double_int_negative_p (dc));
7708 int t_neg = (unsc && double_int_negative_p (dd));
7709
7710 if (c_neg && !t_neg)
7711 return 0;
7712 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
7713 return 0;
7714 }
7715 else if (double_int_cmp (dc, dd, unsc) < 0)
7716 return 0;
7717 ok_for_low_bound = true;
7718 }
7719 else
7720 ok_for_low_bound = false;
7721
7722 /* Check if c <= type_high_bound. */
7723 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
7724 {
7725 dd = tree_to_double_int (type_high_bound);
7726 if (TREE_CODE (type) == INTEGER_TYPE
7727 && TYPE_IS_SIZETYPE (type)
7728 && TYPE_UNSIGNED (type))
7729 dd = double_int_zext (dd, TYPE_PRECISION (type));
7730 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
7731 {
7732 int c_neg = (!unsc && double_int_negative_p (dc));
7733 int t_neg = (unsc && double_int_negative_p (dd));
7734
7735 if (t_neg && !c_neg)
7736 return 0;
7737 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
7738 return 0;
7739 }
7740 else if (double_int_cmp (dc, dd, unsc) > 0)
7741 return 0;
7742 ok_for_high_bound = true;
7743 }
7744 else
7745 ok_for_high_bound = false;
7746
7747 /* If the constant fits both bounds, the result is known. */
7748 if (ok_for_low_bound && ok_for_high_bound)
7749 return 1;
7750
7751 /* Perform some generic filtering which may allow making a decision
7752 even if the bounds are not constant. First, negative integers
7753 never fit in unsigned types, */
7754 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
7755 return 0;
7756
7757 /* Second, narrower types always fit in wider ones. */
7758 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
7759 return 1;
7760
7761 /* Third, unsigned integers with top bit set never fit signed types. */
7762 if (! TYPE_UNSIGNED (type) && unsc)
7763 {
7764 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
7765 if (prec < HOST_BITS_PER_WIDE_INT)
7766 {
7767 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
7768 return 0;
7769 }
7770 else if (((((unsigned HOST_WIDE_INT) 1)
7771 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
7772 return 0;
7773 }
7774
7775 /* If we haven't been able to decide at this point, there nothing more we
7776 can check ourselves here. Look at the base type if we have one and it
7777 has the same precision. */
7778 if (TREE_CODE (type) == INTEGER_TYPE
7779 && TREE_TYPE (type) != 0
7780 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
7781 {
7782 type = TREE_TYPE (type);
7783 goto retry;
7784 }
7785
7786 /* Or to fit_double_type, if nothing else. */
7787 return !fit_double_type (dc.low, dc.high, &dc.low, &dc.high, type);
7788 }
7789
7790 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
7791 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
7792 represented (assuming two's-complement arithmetic) within the bit
7793 precision of the type are returned instead. */
7794
7795 void
7796 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
7797 {
7798 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
7799 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
7800 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
7801 TYPE_UNSIGNED (type));
7802 else
7803 {
7804 if (TYPE_UNSIGNED (type))
7805 mpz_set_ui (min, 0);
7806 else
7807 {
7808 double_int mn;
7809 mn = double_int_mask (TYPE_PRECISION (type) - 1);
7810 mn = double_int_sext (double_int_add (mn, double_int_one),
7811 TYPE_PRECISION (type));
7812 mpz_set_double_int (min, mn, false);
7813 }
7814 }
7815
7816 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
7817 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
7818 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
7819 TYPE_UNSIGNED (type));
7820 else
7821 {
7822 if (TYPE_UNSIGNED (type))
7823 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
7824 true);
7825 else
7826 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
7827 true);
7828 }
7829 }
7830
7831 /* Return true if VAR is an automatic variable defined in function FN. */
7832
7833 bool
7834 auto_var_in_fn_p (const_tree var, const_tree fn)
7835 {
7836 return (DECL_P (var) && DECL_CONTEXT (var) == fn
7837 && (((TREE_CODE (var) == VAR_DECL || TREE_CODE (var) == PARM_DECL)
7838 && ! TREE_STATIC (var))
7839 || TREE_CODE (var) == LABEL_DECL
7840 || TREE_CODE (var) == RESULT_DECL));
7841 }
7842
7843 /* Subprogram of following function. Called by walk_tree.
7844
7845 Return *TP if it is an automatic variable or parameter of the
7846 function passed in as DATA. */
7847
7848 static tree
7849 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
7850 {
7851 tree fn = (tree) data;
7852
7853 if (TYPE_P (*tp))
7854 *walk_subtrees = 0;
7855
7856 else if (DECL_P (*tp)
7857 && auto_var_in_fn_p (*tp, fn))
7858 return *tp;
7859
7860 return NULL_TREE;
7861 }
7862
7863 /* Returns true if T is, contains, or refers to a type with variable
7864 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
7865 arguments, but not the return type. If FN is nonzero, only return
7866 true if a modifier of the type or position of FN is a variable or
7867 parameter inside FN.
7868
7869 This concept is more general than that of C99 'variably modified types':
7870 in C99, a struct type is never variably modified because a VLA may not
7871 appear as a structure member. However, in GNU C code like:
7872
7873 struct S { int i[f()]; };
7874
7875 is valid, and other languages may define similar constructs. */
7876
7877 bool
7878 variably_modified_type_p (tree type, tree fn)
7879 {
7880 tree t;
7881
7882 /* Test if T is either variable (if FN is zero) or an expression containing
7883 a variable in FN. */
7884 #define RETURN_TRUE_IF_VAR(T) \
7885 do { tree _t = (T); \
7886 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
7887 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
7888 return true; } while (0)
7889
7890 if (type == error_mark_node)
7891 return false;
7892
7893 /* If TYPE itself has variable size, it is variably modified. */
7894 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
7895 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
7896
7897 switch (TREE_CODE (type))
7898 {
7899 case POINTER_TYPE:
7900 case REFERENCE_TYPE:
7901 case VECTOR_TYPE:
7902 if (variably_modified_type_p (TREE_TYPE (type), fn))
7903 return true;
7904 break;
7905
7906 case FUNCTION_TYPE:
7907 case METHOD_TYPE:
7908 /* If TYPE is a function type, it is variably modified if the
7909 return type is variably modified. */
7910 if (variably_modified_type_p (TREE_TYPE (type), fn))
7911 return true;
7912 break;
7913
7914 case INTEGER_TYPE:
7915 case REAL_TYPE:
7916 case FIXED_POINT_TYPE:
7917 case ENUMERAL_TYPE:
7918 case BOOLEAN_TYPE:
7919 /* Scalar types are variably modified if their end points
7920 aren't constant. */
7921 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
7922 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
7923 break;
7924
7925 case RECORD_TYPE:
7926 case UNION_TYPE:
7927 case QUAL_UNION_TYPE:
7928 /* We can't see if any of the fields are variably-modified by the
7929 definition we normally use, since that would produce infinite
7930 recursion via pointers. */
7931 /* This is variably modified if some field's type is. */
7932 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
7933 if (TREE_CODE (t) == FIELD_DECL)
7934 {
7935 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
7936 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
7937 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
7938
7939 if (TREE_CODE (type) == QUAL_UNION_TYPE)
7940 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
7941 }
7942 break;
7943
7944 case ARRAY_TYPE:
7945 /* Do not call ourselves to avoid infinite recursion. This is
7946 variably modified if the element type is. */
7947 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
7948 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
7949 break;
7950
7951 default:
7952 break;
7953 }
7954
7955 /* The current language may have other cases to check, but in general,
7956 all other types are not variably modified. */
7957 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
7958
7959 #undef RETURN_TRUE_IF_VAR
7960 }
7961
7962 /* Given a DECL or TYPE, return the scope in which it was declared, or
7963 NULL_TREE if there is no containing scope. */
7964
7965 tree
7966 get_containing_scope (const_tree t)
7967 {
7968 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
7969 }
7970
7971 /* Return the innermost context enclosing DECL that is
7972 a FUNCTION_DECL, or zero if none. */
7973
7974 tree
7975 decl_function_context (const_tree decl)
7976 {
7977 tree context;
7978
7979 if (TREE_CODE (decl) == ERROR_MARK)
7980 return 0;
7981
7982 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
7983 where we look up the function at runtime. Such functions always take
7984 a first argument of type 'pointer to real context'.
7985
7986 C++ should really be fixed to use DECL_CONTEXT for the real context,
7987 and use something else for the "virtual context". */
7988 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
7989 context
7990 = TYPE_MAIN_VARIANT
7991 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
7992 else
7993 context = DECL_CONTEXT (decl);
7994
7995 while (context && TREE_CODE (context) != FUNCTION_DECL)
7996 {
7997 if (TREE_CODE (context) == BLOCK)
7998 context = BLOCK_SUPERCONTEXT (context);
7999 else
8000 context = get_containing_scope (context);
8001 }
8002
8003 return context;
8004 }
8005
8006 /* Return the innermost context enclosing DECL that is
8007 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8008 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8009
8010 tree
8011 decl_type_context (const_tree decl)
8012 {
8013 tree context = DECL_CONTEXT (decl);
8014
8015 while (context)
8016 switch (TREE_CODE (context))
8017 {
8018 case NAMESPACE_DECL:
8019 case TRANSLATION_UNIT_DECL:
8020 return NULL_TREE;
8021
8022 case RECORD_TYPE:
8023 case UNION_TYPE:
8024 case QUAL_UNION_TYPE:
8025 return context;
8026
8027 case TYPE_DECL:
8028 case FUNCTION_DECL:
8029 context = DECL_CONTEXT (context);
8030 break;
8031
8032 case BLOCK:
8033 context = BLOCK_SUPERCONTEXT (context);
8034 break;
8035
8036 default:
8037 gcc_unreachable ();
8038 }
8039
8040 return NULL_TREE;
8041 }
8042
8043 /* CALL is a CALL_EXPR. Return the declaration for the function
8044 called, or NULL_TREE if the called function cannot be
8045 determined. */
8046
8047 tree
8048 get_callee_fndecl (const_tree call)
8049 {
8050 tree addr;
8051
8052 if (call == error_mark_node)
8053 return error_mark_node;
8054
8055 /* It's invalid to call this function with anything but a
8056 CALL_EXPR. */
8057 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8058
8059 /* The first operand to the CALL is the address of the function
8060 called. */
8061 addr = CALL_EXPR_FN (call);
8062
8063 STRIP_NOPS (addr);
8064
8065 /* If this is a readonly function pointer, extract its initial value. */
8066 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8067 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8068 && DECL_INITIAL (addr))
8069 addr = DECL_INITIAL (addr);
8070
8071 /* If the address is just `&f' for some function `f', then we know
8072 that `f' is being called. */
8073 if (TREE_CODE (addr) == ADDR_EXPR
8074 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8075 return TREE_OPERAND (addr, 0);
8076
8077 /* We couldn't figure out what was being called. */
8078 return NULL_TREE;
8079 }
8080
8081 /* Print debugging information about tree nodes generated during the compile,
8082 and any language-specific information. */
8083
8084 void
8085 dump_tree_statistics (void)
8086 {
8087 #ifdef GATHER_STATISTICS
8088 int i;
8089 int total_nodes, total_bytes;
8090 #endif
8091
8092 fprintf (stderr, "\n??? tree nodes created\n\n");
8093 #ifdef GATHER_STATISTICS
8094 fprintf (stderr, "Kind Nodes Bytes\n");
8095 fprintf (stderr, "---------------------------------------\n");
8096 total_nodes = total_bytes = 0;
8097 for (i = 0; i < (int) all_kinds; i++)
8098 {
8099 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8100 tree_node_counts[i], tree_node_sizes[i]);
8101 total_nodes += tree_node_counts[i];
8102 total_bytes += tree_node_sizes[i];
8103 }
8104 fprintf (stderr, "---------------------------------------\n");
8105 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8106 fprintf (stderr, "---------------------------------------\n");
8107 ssanames_print_statistics ();
8108 phinodes_print_statistics ();
8109 #else
8110 fprintf (stderr, "(No per-node statistics)\n");
8111 #endif
8112 print_type_hash_statistics ();
8113 print_debug_expr_statistics ();
8114 print_value_expr_statistics ();
8115 lang_hooks.print_statistics ();
8116 }
8117 \f
8118 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8119
8120 /* Generate a crc32 of a string. */
8121
8122 unsigned
8123 crc32_string (unsigned chksum, const char *string)
8124 {
8125 do
8126 {
8127 unsigned value = *string << 24;
8128 unsigned ix;
8129
8130 for (ix = 8; ix--; value <<= 1)
8131 {
8132 unsigned feedback;
8133
8134 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8135 chksum <<= 1;
8136 chksum ^= feedback;
8137 }
8138 }
8139 while (*string++);
8140 return chksum;
8141 }
8142
8143 /* P is a string that will be used in a symbol. Mask out any characters
8144 that are not valid in that context. */
8145
8146 void
8147 clean_symbol_name (char *p)
8148 {
8149 for (; *p; p++)
8150 if (! (ISALNUM (*p)
8151 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8152 || *p == '$'
8153 #endif
8154 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8155 || *p == '.'
8156 #endif
8157 ))
8158 *p = '_';
8159 }
8160
8161 /* Generate a name for a special-purpose function function.
8162 The generated name may need to be unique across the whole link.
8163 TYPE is some string to identify the purpose of this function to the
8164 linker or collect2; it must start with an uppercase letter,
8165 one of:
8166 I - for constructors
8167 D - for destructors
8168 N - for C++ anonymous namespaces
8169 F - for DWARF unwind frame information. */
8170
8171 tree
8172 get_file_function_name (const char *type)
8173 {
8174 char *buf;
8175 const char *p;
8176 char *q;
8177
8178 /* If we already have a name we know to be unique, just use that. */
8179 if (first_global_object_name)
8180 p = q = ASTRDUP (first_global_object_name);
8181 /* If the target is handling the constructors/destructors, they
8182 will be local to this file and the name is only necessary for
8183 debugging purposes. */
8184 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8185 {
8186 const char *file = main_input_filename;
8187 if (! file)
8188 file = input_filename;
8189 /* Just use the file's basename, because the full pathname
8190 might be quite long. */
8191 p = strrchr (file, '/');
8192 if (p)
8193 p++;
8194 else
8195 p = file;
8196 p = q = ASTRDUP (p);
8197 }
8198 else
8199 {
8200 /* Otherwise, the name must be unique across the entire link.
8201 We don't have anything that we know to be unique to this translation
8202 unit, so use what we do have and throw in some randomness. */
8203 unsigned len;
8204 const char *name = weak_global_object_name;
8205 const char *file = main_input_filename;
8206
8207 if (! name)
8208 name = "";
8209 if (! file)
8210 file = input_filename;
8211
8212 len = strlen (file);
8213 q = (char *) alloca (9 * 2 + len + 1);
8214 memcpy (q, file, len + 1);
8215
8216 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
8217 crc32_string (0, get_random_seed (false)));
8218
8219 p = q;
8220 }
8221
8222 clean_symbol_name (q);
8223 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8224 + strlen (type));
8225
8226 /* Set up the name of the file-level functions we may need.
8227 Use a global object (which is already required to be unique over
8228 the program) rather than the file name (which imposes extra
8229 constraints). */
8230 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8231
8232 return get_identifier (buf);
8233 }
8234 \f
8235 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8236
8237 /* Complain that the tree code of NODE does not match the expected 0
8238 terminated list of trailing codes. The trailing code list can be
8239 empty, for a more vague error message. FILE, LINE, and FUNCTION
8240 are of the caller. */
8241
8242 void
8243 tree_check_failed (const_tree node, const char *file,
8244 int line, const char *function, ...)
8245 {
8246 va_list args;
8247 const char *buffer;
8248 unsigned length = 0;
8249 int code;
8250
8251 va_start (args, function);
8252 while ((code = va_arg (args, int)))
8253 length += 4 + strlen (tree_code_name[code]);
8254 va_end (args);
8255 if (length)
8256 {
8257 char *tmp;
8258 va_start (args, function);
8259 length += strlen ("expected ");
8260 buffer = tmp = (char *) alloca (length);
8261 length = 0;
8262 while ((code = va_arg (args, int)))
8263 {
8264 const char *prefix = length ? " or " : "expected ";
8265
8266 strcpy (tmp + length, prefix);
8267 length += strlen (prefix);
8268 strcpy (tmp + length, tree_code_name[code]);
8269 length += strlen (tree_code_name[code]);
8270 }
8271 va_end (args);
8272 }
8273 else
8274 buffer = "unexpected node";
8275
8276 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8277 buffer, tree_code_name[TREE_CODE (node)],
8278 function, trim_filename (file), line);
8279 }
8280
8281 /* Complain that the tree code of NODE does match the expected 0
8282 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8283 the caller. */
8284
8285 void
8286 tree_not_check_failed (const_tree node, const char *file,
8287 int line, const char *function, ...)
8288 {
8289 va_list args;
8290 char *buffer;
8291 unsigned length = 0;
8292 int code;
8293
8294 va_start (args, function);
8295 while ((code = va_arg (args, int)))
8296 length += 4 + strlen (tree_code_name[code]);
8297 va_end (args);
8298 va_start (args, function);
8299 buffer = (char *) alloca (length);
8300 length = 0;
8301 while ((code = va_arg (args, int)))
8302 {
8303 if (length)
8304 {
8305 strcpy (buffer + length, " or ");
8306 length += 4;
8307 }
8308 strcpy (buffer + length, tree_code_name[code]);
8309 length += strlen (tree_code_name[code]);
8310 }
8311 va_end (args);
8312
8313 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8314 buffer, tree_code_name[TREE_CODE (node)],
8315 function, trim_filename (file), line);
8316 }
8317
8318 /* Similar to tree_check_failed, except that we check for a class of tree
8319 code, given in CL. */
8320
8321 void
8322 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8323 const char *file, int line, const char *function)
8324 {
8325 internal_error
8326 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8327 TREE_CODE_CLASS_STRING (cl),
8328 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8329 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8330 }
8331
8332 /* Similar to tree_check_failed, except that instead of specifying a
8333 dozen codes, use the knowledge that they're all sequential. */
8334
8335 void
8336 tree_range_check_failed (const_tree node, const char *file, int line,
8337 const char *function, enum tree_code c1,
8338 enum tree_code c2)
8339 {
8340 char *buffer;
8341 unsigned length = 0;
8342 unsigned int c;
8343
8344 for (c = c1; c <= c2; ++c)
8345 length += 4 + strlen (tree_code_name[c]);
8346
8347 length += strlen ("expected ");
8348 buffer = (char *) alloca (length);
8349 length = 0;
8350
8351 for (c = c1; c <= c2; ++c)
8352 {
8353 const char *prefix = length ? " or " : "expected ";
8354
8355 strcpy (buffer + length, prefix);
8356 length += strlen (prefix);
8357 strcpy (buffer + length, tree_code_name[c]);
8358 length += strlen (tree_code_name[c]);
8359 }
8360
8361 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8362 buffer, tree_code_name[TREE_CODE (node)],
8363 function, trim_filename (file), line);
8364 }
8365
8366
8367 /* Similar to tree_check_failed, except that we check that a tree does
8368 not have the specified code, given in CL. */
8369
8370 void
8371 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
8372 const char *file, int line, const char *function)
8373 {
8374 internal_error
8375 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
8376 TREE_CODE_CLASS_STRING (cl),
8377 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8378 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8379 }
8380
8381
8382 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
8383
8384 void
8385 omp_clause_check_failed (const_tree node, const char *file, int line,
8386 const char *function, enum omp_clause_code code)
8387 {
8388 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
8389 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
8390 function, trim_filename (file), line);
8391 }
8392
8393
8394 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
8395
8396 void
8397 omp_clause_range_check_failed (const_tree node, const char *file, int line,
8398 const char *function, enum omp_clause_code c1,
8399 enum omp_clause_code c2)
8400 {
8401 char *buffer;
8402 unsigned length = 0;
8403 unsigned int c;
8404
8405 for (c = c1; c <= c2; ++c)
8406 length += 4 + strlen (omp_clause_code_name[c]);
8407
8408 length += strlen ("expected ");
8409 buffer = (char *) alloca (length);
8410 length = 0;
8411
8412 for (c = c1; c <= c2; ++c)
8413 {
8414 const char *prefix = length ? " or " : "expected ";
8415
8416 strcpy (buffer + length, prefix);
8417 length += strlen (prefix);
8418 strcpy (buffer + length, omp_clause_code_name[c]);
8419 length += strlen (omp_clause_code_name[c]);
8420 }
8421
8422 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8423 buffer, omp_clause_code_name[TREE_CODE (node)],
8424 function, trim_filename (file), line);
8425 }
8426
8427
8428 #undef DEFTREESTRUCT
8429 #define DEFTREESTRUCT(VAL, NAME) NAME,
8430
8431 static const char *ts_enum_names[] = {
8432 #include "treestruct.def"
8433 };
8434 #undef DEFTREESTRUCT
8435
8436 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
8437
8438 /* Similar to tree_class_check_failed, except that we check for
8439 whether CODE contains the tree structure identified by EN. */
8440
8441 void
8442 tree_contains_struct_check_failed (const_tree node,
8443 const enum tree_node_structure_enum en,
8444 const char *file, int line,
8445 const char *function)
8446 {
8447 internal_error
8448 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
8449 TS_ENUM_NAME(en),
8450 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8451 }
8452
8453
8454 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
8455 (dynamically sized) vector. */
8456
8457 void
8458 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
8459 const char *function)
8460 {
8461 internal_error
8462 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
8463 idx + 1, len, function, trim_filename (file), line);
8464 }
8465
8466 /* Similar to above, except that the check is for the bounds of the operand
8467 vector of an expression node EXP. */
8468
8469 void
8470 tree_operand_check_failed (int idx, const_tree exp, const char *file,
8471 int line, const char *function)
8472 {
8473 int code = TREE_CODE (exp);
8474 internal_error
8475 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
8476 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
8477 function, trim_filename (file), line);
8478 }
8479
8480 /* Similar to above, except that the check is for the number of
8481 operands of an OMP_CLAUSE node. */
8482
8483 void
8484 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
8485 int line, const char *function)
8486 {
8487 internal_error
8488 ("tree check: accessed operand %d of omp_clause %s with %d operands "
8489 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
8490 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
8491 trim_filename (file), line);
8492 }
8493 #endif /* ENABLE_TREE_CHECKING */
8494 \f
8495 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
8496 and mapped to the machine mode MODE. Initialize its fields and build
8497 the information necessary for debugging output. */
8498
8499 static tree
8500 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
8501 {
8502 tree t;
8503 hashval_t hashcode = 0;
8504
8505 t = make_node (VECTOR_TYPE);
8506 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
8507 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
8508 SET_TYPE_MODE (t, mode);
8509
8510 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
8511 SET_TYPE_STRUCTURAL_EQUALITY (t);
8512 else if (TYPE_CANONICAL (innertype) != innertype
8513 || mode != VOIDmode)
8514 TYPE_CANONICAL (t)
8515 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
8516
8517 layout_type (t);
8518
8519 {
8520 tree index = build_int_cst (NULL_TREE, nunits - 1);
8521 tree array = build_array_type (TYPE_MAIN_VARIANT (innertype),
8522 build_index_type (index));
8523 tree rt = make_node (RECORD_TYPE);
8524
8525 TYPE_FIELDS (rt) = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
8526 get_identifier ("f"), array);
8527 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
8528 layout_type (rt);
8529 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
8530 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
8531 the representation type, and we want to find that die when looking up
8532 the vector type. This is most easily achieved by making the TYPE_UID
8533 numbers equal. */
8534 TYPE_UID (rt) = TYPE_UID (t);
8535 }
8536
8537 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
8538 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
8539 hashcode = iterative_hash_host_wide_int (mode, hashcode);
8540 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
8541 t = type_hash_canon (hashcode, t);
8542
8543 /* We have built a main variant, based on the main variant of the
8544 inner type. Use it to build the variant we return. */
8545 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
8546 && TREE_TYPE (t) != innertype)
8547 return build_type_attribute_qual_variant (t,
8548 TYPE_ATTRIBUTES (innertype),
8549 TYPE_QUALS (innertype));
8550
8551 return t;
8552 }
8553
8554 static tree
8555 make_or_reuse_type (unsigned size, int unsignedp)
8556 {
8557 if (size == INT_TYPE_SIZE)
8558 return unsignedp ? unsigned_type_node : integer_type_node;
8559 if (size == CHAR_TYPE_SIZE)
8560 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
8561 if (size == SHORT_TYPE_SIZE)
8562 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
8563 if (size == LONG_TYPE_SIZE)
8564 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
8565 if (size == LONG_LONG_TYPE_SIZE)
8566 return (unsignedp ? long_long_unsigned_type_node
8567 : long_long_integer_type_node);
8568
8569 if (unsignedp)
8570 return make_unsigned_type (size);
8571 else
8572 return make_signed_type (size);
8573 }
8574
8575 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
8576
8577 static tree
8578 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
8579 {
8580 if (satp)
8581 {
8582 if (size == SHORT_FRACT_TYPE_SIZE)
8583 return unsignedp ? sat_unsigned_short_fract_type_node
8584 : sat_short_fract_type_node;
8585 if (size == FRACT_TYPE_SIZE)
8586 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
8587 if (size == LONG_FRACT_TYPE_SIZE)
8588 return unsignedp ? sat_unsigned_long_fract_type_node
8589 : sat_long_fract_type_node;
8590 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8591 return unsignedp ? sat_unsigned_long_long_fract_type_node
8592 : sat_long_long_fract_type_node;
8593 }
8594 else
8595 {
8596 if (size == SHORT_FRACT_TYPE_SIZE)
8597 return unsignedp ? unsigned_short_fract_type_node
8598 : short_fract_type_node;
8599 if (size == FRACT_TYPE_SIZE)
8600 return unsignedp ? unsigned_fract_type_node : fract_type_node;
8601 if (size == LONG_FRACT_TYPE_SIZE)
8602 return unsignedp ? unsigned_long_fract_type_node
8603 : long_fract_type_node;
8604 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8605 return unsignedp ? unsigned_long_long_fract_type_node
8606 : long_long_fract_type_node;
8607 }
8608
8609 return make_fract_type (size, unsignedp, satp);
8610 }
8611
8612 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
8613
8614 static tree
8615 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
8616 {
8617 if (satp)
8618 {
8619 if (size == SHORT_ACCUM_TYPE_SIZE)
8620 return unsignedp ? sat_unsigned_short_accum_type_node
8621 : sat_short_accum_type_node;
8622 if (size == ACCUM_TYPE_SIZE)
8623 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
8624 if (size == LONG_ACCUM_TYPE_SIZE)
8625 return unsignedp ? sat_unsigned_long_accum_type_node
8626 : sat_long_accum_type_node;
8627 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8628 return unsignedp ? sat_unsigned_long_long_accum_type_node
8629 : sat_long_long_accum_type_node;
8630 }
8631 else
8632 {
8633 if (size == SHORT_ACCUM_TYPE_SIZE)
8634 return unsignedp ? unsigned_short_accum_type_node
8635 : short_accum_type_node;
8636 if (size == ACCUM_TYPE_SIZE)
8637 return unsignedp ? unsigned_accum_type_node : accum_type_node;
8638 if (size == LONG_ACCUM_TYPE_SIZE)
8639 return unsignedp ? unsigned_long_accum_type_node
8640 : long_accum_type_node;
8641 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8642 return unsignedp ? unsigned_long_long_accum_type_node
8643 : long_long_accum_type_node;
8644 }
8645
8646 return make_accum_type (size, unsignedp, satp);
8647 }
8648
8649 /* Create nodes for all integer types (and error_mark_node) using the sizes
8650 of C datatypes. The caller should call set_sizetype soon after calling
8651 this function to select one of the types as sizetype. */
8652
8653 void
8654 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
8655 {
8656 error_mark_node = make_node (ERROR_MARK);
8657 TREE_TYPE (error_mark_node) = error_mark_node;
8658
8659 initialize_sizetypes (signed_sizetype);
8660
8661 /* Define both `signed char' and `unsigned char'. */
8662 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
8663 TYPE_STRING_FLAG (signed_char_type_node) = 1;
8664 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
8665 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
8666
8667 /* Define `char', which is like either `signed char' or `unsigned char'
8668 but not the same as either. */
8669 char_type_node
8670 = (signed_char
8671 ? make_signed_type (CHAR_TYPE_SIZE)
8672 : make_unsigned_type (CHAR_TYPE_SIZE));
8673 TYPE_STRING_FLAG (char_type_node) = 1;
8674
8675 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
8676 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
8677 integer_type_node = make_signed_type (INT_TYPE_SIZE);
8678 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
8679 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
8680 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
8681 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
8682 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
8683
8684 /* Define a boolean type. This type only represents boolean values but
8685 may be larger than char depending on the value of BOOL_TYPE_SIZE.
8686 Front ends which want to override this size (i.e. Java) can redefine
8687 boolean_type_node before calling build_common_tree_nodes_2. */
8688 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
8689 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
8690 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
8691 TYPE_PRECISION (boolean_type_node) = 1;
8692
8693 /* Fill in the rest of the sized types. Reuse existing type nodes
8694 when possible. */
8695 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
8696 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
8697 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
8698 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
8699 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
8700
8701 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
8702 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
8703 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
8704 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
8705 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
8706
8707 access_public_node = get_identifier ("public");
8708 access_protected_node = get_identifier ("protected");
8709 access_private_node = get_identifier ("private");
8710 }
8711
8712 /* Call this function after calling build_common_tree_nodes and set_sizetype.
8713 It will create several other common tree nodes. */
8714
8715 void
8716 build_common_tree_nodes_2 (int short_double)
8717 {
8718 /* Define these next since types below may used them. */
8719 integer_zero_node = build_int_cst (NULL_TREE, 0);
8720 integer_one_node = build_int_cst (NULL_TREE, 1);
8721 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
8722
8723 size_zero_node = size_int (0);
8724 size_one_node = size_int (1);
8725 bitsize_zero_node = bitsize_int (0);
8726 bitsize_one_node = bitsize_int (1);
8727 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
8728
8729 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
8730 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
8731
8732 void_type_node = make_node (VOID_TYPE);
8733 layout_type (void_type_node);
8734
8735 /* We are not going to have real types in C with less than byte alignment,
8736 so we might as well not have any types that claim to have it. */
8737 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
8738 TYPE_USER_ALIGN (void_type_node) = 0;
8739
8740 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
8741 layout_type (TREE_TYPE (null_pointer_node));
8742
8743 ptr_type_node = build_pointer_type (void_type_node);
8744 const_ptr_type_node
8745 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
8746 fileptr_type_node = ptr_type_node;
8747
8748 float_type_node = make_node (REAL_TYPE);
8749 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
8750 layout_type (float_type_node);
8751
8752 double_type_node = make_node (REAL_TYPE);
8753 if (short_double)
8754 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
8755 else
8756 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
8757 layout_type (double_type_node);
8758
8759 long_double_type_node = make_node (REAL_TYPE);
8760 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
8761 layout_type (long_double_type_node);
8762
8763 float_ptr_type_node = build_pointer_type (float_type_node);
8764 double_ptr_type_node = build_pointer_type (double_type_node);
8765 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
8766 integer_ptr_type_node = build_pointer_type (integer_type_node);
8767
8768 /* Fixed size integer types. */
8769 uint32_type_node = build_nonstandard_integer_type (32, true);
8770 uint64_type_node = build_nonstandard_integer_type (64, true);
8771
8772 /* Decimal float types. */
8773 dfloat32_type_node = make_node (REAL_TYPE);
8774 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
8775 layout_type (dfloat32_type_node);
8776 SET_TYPE_MODE (dfloat32_type_node, SDmode);
8777 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
8778
8779 dfloat64_type_node = make_node (REAL_TYPE);
8780 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
8781 layout_type (dfloat64_type_node);
8782 SET_TYPE_MODE (dfloat64_type_node, DDmode);
8783 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
8784
8785 dfloat128_type_node = make_node (REAL_TYPE);
8786 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
8787 layout_type (dfloat128_type_node);
8788 SET_TYPE_MODE (dfloat128_type_node, TDmode);
8789 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
8790
8791 complex_integer_type_node = build_complex_type (integer_type_node);
8792 complex_float_type_node = build_complex_type (float_type_node);
8793 complex_double_type_node = build_complex_type (double_type_node);
8794 complex_long_double_type_node = build_complex_type (long_double_type_node);
8795
8796 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
8797 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
8798 sat_ ## KIND ## _type_node = \
8799 make_sat_signed_ ## KIND ## _type (SIZE); \
8800 sat_unsigned_ ## KIND ## _type_node = \
8801 make_sat_unsigned_ ## KIND ## _type (SIZE); \
8802 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
8803 unsigned_ ## KIND ## _type_node = \
8804 make_unsigned_ ## KIND ## _type (SIZE);
8805
8806 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
8807 sat_ ## WIDTH ## KIND ## _type_node = \
8808 make_sat_signed_ ## KIND ## _type (SIZE); \
8809 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
8810 make_sat_unsigned_ ## KIND ## _type (SIZE); \
8811 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
8812 unsigned_ ## WIDTH ## KIND ## _type_node = \
8813 make_unsigned_ ## KIND ## _type (SIZE);
8814
8815 /* Make fixed-point type nodes based on four different widths. */
8816 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
8817 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
8818 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
8819 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
8820 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
8821
8822 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
8823 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
8824 NAME ## _type_node = \
8825 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
8826 u ## NAME ## _type_node = \
8827 make_or_reuse_unsigned_ ## KIND ## _type \
8828 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
8829 sat_ ## NAME ## _type_node = \
8830 make_or_reuse_sat_signed_ ## KIND ## _type \
8831 (GET_MODE_BITSIZE (MODE ## mode)); \
8832 sat_u ## NAME ## _type_node = \
8833 make_or_reuse_sat_unsigned_ ## KIND ## _type \
8834 (GET_MODE_BITSIZE (U ## MODE ## mode));
8835
8836 /* Fixed-point type and mode nodes. */
8837 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
8838 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
8839 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
8840 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
8841 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
8842 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
8843 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
8844 MAKE_FIXED_MODE_NODE (accum, ha, HA)
8845 MAKE_FIXED_MODE_NODE (accum, sa, SA)
8846 MAKE_FIXED_MODE_NODE (accum, da, DA)
8847 MAKE_FIXED_MODE_NODE (accum, ta, TA)
8848
8849 {
8850 tree t = targetm.build_builtin_va_list ();
8851
8852 /* Many back-ends define record types without setting TYPE_NAME.
8853 If we copied the record type here, we'd keep the original
8854 record type without a name. This breaks name mangling. So,
8855 don't copy record types and let c_common_nodes_and_builtins()
8856 declare the type to be __builtin_va_list. */
8857 if (TREE_CODE (t) != RECORD_TYPE)
8858 t = build_variant_type_copy (t);
8859
8860 va_list_type_node = t;
8861 }
8862 }
8863
8864 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
8865
8866 static void
8867 local_define_builtin (const char *name, tree type, enum built_in_function code,
8868 const char *library_name, int ecf_flags)
8869 {
8870 tree decl;
8871
8872 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
8873 library_name, NULL_TREE);
8874 if (ecf_flags & ECF_CONST)
8875 TREE_READONLY (decl) = 1;
8876 if (ecf_flags & ECF_PURE)
8877 DECL_PURE_P (decl) = 1;
8878 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
8879 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
8880 if (ecf_flags & ECF_NORETURN)
8881 TREE_THIS_VOLATILE (decl) = 1;
8882 if (ecf_flags & ECF_NOTHROW)
8883 TREE_NOTHROW (decl) = 1;
8884 if (ecf_flags & ECF_MALLOC)
8885 DECL_IS_MALLOC (decl) = 1;
8886
8887 built_in_decls[code] = decl;
8888 implicit_built_in_decls[code] = decl;
8889 }
8890
8891 /* Call this function after instantiating all builtins that the language
8892 front end cares about. This will build the rest of the builtins that
8893 are relied upon by the tree optimizers and the middle-end.
8894
8895 ENABLE_CXA_END_CLEANUP should be true for C++ and Java, where the ARM
8896 EABI requires a slightly different implementation of _Unwind_Resume. */
8897
8898 void
8899 build_common_builtin_nodes (bool enable_cxa_end_cleanup)
8900 {
8901 tree tmp, tmp2, ftype;
8902
8903 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
8904 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
8905 {
8906 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
8907 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
8908 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
8909 ftype = build_function_type (ptr_type_node, tmp);
8910
8911 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
8912 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
8913 "memcpy", ECF_NOTHROW);
8914 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
8915 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
8916 "memmove", ECF_NOTHROW);
8917 }
8918
8919 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
8920 {
8921 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
8922 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
8923 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
8924 ftype = build_function_type (integer_type_node, tmp);
8925 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
8926 "memcmp", ECF_PURE | ECF_NOTHROW);
8927 }
8928
8929 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
8930 {
8931 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
8932 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
8933 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
8934 ftype = build_function_type (ptr_type_node, tmp);
8935 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
8936 "memset", ECF_NOTHROW);
8937 }
8938
8939 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
8940 {
8941 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
8942 ftype = build_function_type (ptr_type_node, tmp);
8943 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
8944 "alloca", ECF_NOTHROW | ECF_MALLOC);
8945 }
8946
8947 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
8948 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
8949 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
8950 ftype = build_function_type (void_type_node, tmp);
8951 local_define_builtin ("__builtin_init_trampoline", ftype,
8952 BUILT_IN_INIT_TRAMPOLINE,
8953 "__builtin_init_trampoline", ECF_NOTHROW);
8954
8955 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
8956 ftype = build_function_type (ptr_type_node, tmp);
8957 local_define_builtin ("__builtin_adjust_trampoline", ftype,
8958 BUILT_IN_ADJUST_TRAMPOLINE,
8959 "__builtin_adjust_trampoline",
8960 ECF_CONST | ECF_NOTHROW);
8961
8962 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
8963 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
8964 ftype = build_function_type (void_type_node, tmp);
8965 local_define_builtin ("__builtin_nonlocal_goto", ftype,
8966 BUILT_IN_NONLOCAL_GOTO,
8967 "__builtin_nonlocal_goto",
8968 ECF_NORETURN | ECF_NOTHROW);
8969
8970 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
8971 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
8972 ftype = build_function_type (void_type_node, tmp);
8973 local_define_builtin ("__builtin_setjmp_setup", ftype,
8974 BUILT_IN_SETJMP_SETUP,
8975 "__builtin_setjmp_setup", ECF_NOTHROW);
8976
8977 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
8978 ftype = build_function_type (ptr_type_node, tmp);
8979 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
8980 BUILT_IN_SETJMP_DISPATCHER,
8981 "__builtin_setjmp_dispatcher",
8982 ECF_PURE | ECF_NOTHROW);
8983
8984 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
8985 ftype = build_function_type (void_type_node, tmp);
8986 local_define_builtin ("__builtin_setjmp_receiver", ftype,
8987 BUILT_IN_SETJMP_RECEIVER,
8988 "__builtin_setjmp_receiver", ECF_NOTHROW);
8989
8990 ftype = build_function_type (ptr_type_node, void_list_node);
8991 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
8992 "__builtin_stack_save", ECF_NOTHROW);
8993
8994 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
8995 ftype = build_function_type (void_type_node, tmp);
8996 local_define_builtin ("__builtin_stack_restore", ftype,
8997 BUILT_IN_STACK_RESTORE,
8998 "__builtin_stack_restore", ECF_NOTHROW);
8999
9000 ftype = build_function_type (void_type_node, void_list_node);
9001 local_define_builtin ("__builtin_profile_func_enter", ftype,
9002 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
9003 local_define_builtin ("__builtin_profile_func_exit", ftype,
9004 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
9005
9006 if (enable_cxa_end_cleanup && targetm.arm_eabi_unwinder)
9007 {
9008 ftype = build_function_type (void_type_node, void_list_node);
9009 local_define_builtin ("__builtin_unwind_resume", ftype,
9010 BUILT_IN_UNWIND_RESUME,
9011 "__cxa_end_cleanup", ECF_NORETURN);
9012 }
9013 else
9014 {
9015 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9016 ftype = build_function_type (void_type_node, tmp);
9017 local_define_builtin ("__builtin_unwind_resume", ftype,
9018 BUILT_IN_UNWIND_RESUME,
9019 (USING_SJLJ_EXCEPTIONS
9020 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9021 ECF_NORETURN);
9022 }
9023
9024 /* The exception object and filter values from the runtime. The argument
9025 must be zero before exception lowering, i.e. from the front end. After
9026 exception lowering, it will be the region number for the exception
9027 landing pad. These functions are PURE instead of CONST to prevent
9028 them from being hoisted past the exception edge that will initialize
9029 its value in the landing pad. */
9030 tmp = tree_cons (NULL_TREE, integer_type_node, void_list_node);
9031 ftype = build_function_type (ptr_type_node, tmp);
9032 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9033 "__builtin_eh_pointer", ECF_PURE | ECF_NOTHROW);
9034
9035 tmp2 = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9036 ftype = build_function_type (tmp2, tmp);
9037 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9038 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW);
9039
9040 tmp = tree_cons (NULL_TREE, integer_type_node, void_list_node);
9041 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
9042 ftype = build_function_type (void_type_node, tmp);
9043 local_define_builtin ("__builtin_eh_copy_values", ftype,
9044 BUILT_IN_EH_COPY_VALUES,
9045 "__builtin_eh_copy_values", ECF_NOTHROW);
9046
9047 /* Complex multiplication and division. These are handled as builtins
9048 rather than optabs because emit_library_call_value doesn't support
9049 complex. Further, we can do slightly better with folding these
9050 beasties if the real and complex parts of the arguments are separate. */
9051 {
9052 int mode;
9053
9054 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9055 {
9056 char mode_name_buf[4], *q;
9057 const char *p;
9058 enum built_in_function mcode, dcode;
9059 tree type, inner_type;
9060
9061 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9062 if (type == NULL)
9063 continue;
9064 inner_type = TREE_TYPE (type);
9065
9066 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
9067 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9068 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9069 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9070 ftype = build_function_type (type, tmp);
9071
9072 mcode = ((enum built_in_function)
9073 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9074 dcode = ((enum built_in_function)
9075 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9076
9077 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9078 *q = TOLOWER (*p);
9079 *q = '\0';
9080
9081 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
9082 local_define_builtin (built_in_names[mcode], ftype, mcode,
9083 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
9084
9085 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
9086 local_define_builtin (built_in_names[dcode], ftype, dcode,
9087 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
9088 }
9089 }
9090 }
9091
9092 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9093 better way.
9094
9095 If we requested a pointer to a vector, build up the pointers that
9096 we stripped off while looking for the inner type. Similarly for
9097 return values from functions.
9098
9099 The argument TYPE is the top of the chain, and BOTTOM is the
9100 new type which we will point to. */
9101
9102 tree
9103 reconstruct_complex_type (tree type, tree bottom)
9104 {
9105 tree inner, outer;
9106
9107 if (TREE_CODE (type) == POINTER_TYPE)
9108 {
9109 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9110 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9111 TYPE_REF_CAN_ALIAS_ALL (type));
9112 }
9113 else if (TREE_CODE (type) == REFERENCE_TYPE)
9114 {
9115 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9116 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9117 TYPE_REF_CAN_ALIAS_ALL (type));
9118 }
9119 else if (TREE_CODE (type) == ARRAY_TYPE)
9120 {
9121 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9122 outer = build_array_type (inner, TYPE_DOMAIN (type));
9123 }
9124 else if (TREE_CODE (type) == FUNCTION_TYPE)
9125 {
9126 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9127 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9128 }
9129 else if (TREE_CODE (type) == METHOD_TYPE)
9130 {
9131 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9132 /* The build_method_type_directly() routine prepends 'this' to argument list,
9133 so we must compensate by getting rid of it. */
9134 outer
9135 = build_method_type_directly
9136 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9137 inner,
9138 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9139 }
9140 else if (TREE_CODE (type) == OFFSET_TYPE)
9141 {
9142 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9143 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9144 }
9145 else
9146 return bottom;
9147
9148 return build_qualified_type (outer, TYPE_QUALS (type));
9149 }
9150
9151 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9152 the inner type. */
9153 tree
9154 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9155 {
9156 int nunits;
9157
9158 switch (GET_MODE_CLASS (mode))
9159 {
9160 case MODE_VECTOR_INT:
9161 case MODE_VECTOR_FLOAT:
9162 case MODE_VECTOR_FRACT:
9163 case MODE_VECTOR_UFRACT:
9164 case MODE_VECTOR_ACCUM:
9165 case MODE_VECTOR_UACCUM:
9166 nunits = GET_MODE_NUNITS (mode);
9167 break;
9168
9169 case MODE_INT:
9170 /* Check that there are no leftover bits. */
9171 gcc_assert (GET_MODE_BITSIZE (mode)
9172 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9173
9174 nunits = GET_MODE_BITSIZE (mode)
9175 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9176 break;
9177
9178 default:
9179 gcc_unreachable ();
9180 }
9181
9182 return make_vector_type (innertype, nunits, mode);
9183 }
9184
9185 /* Similarly, but takes the inner type and number of units, which must be
9186 a power of two. */
9187
9188 tree
9189 build_vector_type (tree innertype, int nunits)
9190 {
9191 return make_vector_type (innertype, nunits, VOIDmode);
9192 }
9193
9194 /* Similarly, but takes the inner type and number of units, which must be
9195 a power of two. */
9196
9197 tree
9198 build_opaque_vector_type (tree innertype, int nunits)
9199 {
9200 tree t;
9201 innertype = build_distinct_type_copy (innertype);
9202 t = make_vector_type (innertype, nunits, VOIDmode);
9203 TYPE_VECTOR_OPAQUE (t) = true;
9204 return t;
9205 }
9206
9207
9208 /* Given an initializer INIT, return TRUE if INIT is zero or some
9209 aggregate of zeros. Otherwise return FALSE. */
9210 bool
9211 initializer_zerop (const_tree init)
9212 {
9213 tree elt;
9214
9215 STRIP_NOPS (init);
9216
9217 switch (TREE_CODE (init))
9218 {
9219 case INTEGER_CST:
9220 return integer_zerop (init);
9221
9222 case REAL_CST:
9223 /* ??? Note that this is not correct for C4X float formats. There,
9224 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9225 negative exponent. */
9226 return real_zerop (init)
9227 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9228
9229 case FIXED_CST:
9230 return fixed_zerop (init);
9231
9232 case COMPLEX_CST:
9233 return integer_zerop (init)
9234 || (real_zerop (init)
9235 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9236 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9237
9238 case VECTOR_CST:
9239 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
9240 if (!initializer_zerop (TREE_VALUE (elt)))
9241 return false;
9242 return true;
9243
9244 case CONSTRUCTOR:
9245 {
9246 unsigned HOST_WIDE_INT idx;
9247
9248 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9249 if (!initializer_zerop (elt))
9250 return false;
9251 return true;
9252 }
9253
9254 default:
9255 return false;
9256 }
9257 }
9258
9259 /* Build an empty statement at location LOC. */
9260
9261 tree
9262 build_empty_stmt (location_t loc)
9263 {
9264 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
9265 SET_EXPR_LOCATION (t, loc);
9266 return t;
9267 }
9268
9269
9270 /* Build an OpenMP clause with code CODE. LOC is the location of the
9271 clause. */
9272
9273 tree
9274 build_omp_clause (location_t loc, enum omp_clause_code code)
9275 {
9276 tree t;
9277 int size, length;
9278
9279 length = omp_clause_num_ops[code];
9280 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
9281
9282 t = GGC_NEWVAR (union tree_node, size);
9283 memset (t, 0, size);
9284 TREE_SET_CODE (t, OMP_CLAUSE);
9285 OMP_CLAUSE_SET_CODE (t, code);
9286 OMP_CLAUSE_LOCATION (t) = loc;
9287
9288 #ifdef GATHER_STATISTICS
9289 tree_node_counts[(int) omp_clause_kind]++;
9290 tree_node_sizes[(int) omp_clause_kind] += size;
9291 #endif
9292
9293 return t;
9294 }
9295
9296 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
9297 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
9298 Except for the CODE and operand count field, other storage for the
9299 object is initialized to zeros. */
9300
9301 tree
9302 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
9303 {
9304 tree t;
9305 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
9306
9307 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
9308 gcc_assert (len >= 1);
9309
9310 #ifdef GATHER_STATISTICS
9311 tree_node_counts[(int) e_kind]++;
9312 tree_node_sizes[(int) e_kind] += length;
9313 #endif
9314
9315 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
9316
9317 memset (t, 0, length);
9318
9319 TREE_SET_CODE (t, code);
9320
9321 /* Can't use TREE_OPERAND to store the length because if checking is
9322 enabled, it will try to check the length before we store it. :-P */
9323 t->exp.operands[0] = build_int_cst (sizetype, len);
9324
9325 return t;
9326 }
9327
9328
9329 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE
9330 and FN and a null static chain slot. ARGLIST is a TREE_LIST of the
9331 arguments. */
9332
9333 tree
9334 build_call_list (tree return_type, tree fn, tree arglist)
9335 {
9336 tree t;
9337 int i;
9338
9339 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
9340 TREE_TYPE (t) = return_type;
9341 CALL_EXPR_FN (t) = fn;
9342 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9343 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
9344 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
9345 process_call_operands (t);
9346 return t;
9347 }
9348
9349 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9350 FN and a null static chain slot. NARGS is the number of call arguments
9351 which are specified as "..." arguments. */
9352
9353 tree
9354 build_call_nary (tree return_type, tree fn, int nargs, ...)
9355 {
9356 tree ret;
9357 va_list args;
9358 va_start (args, nargs);
9359 ret = build_call_valist (return_type, fn, nargs, args);
9360 va_end (args);
9361 return ret;
9362 }
9363
9364 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9365 FN and a null static chain slot. NARGS is the number of call arguments
9366 which are specified as a va_list ARGS. */
9367
9368 tree
9369 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
9370 {
9371 tree t;
9372 int i;
9373
9374 t = build_vl_exp (CALL_EXPR, nargs + 3);
9375 TREE_TYPE (t) = return_type;
9376 CALL_EXPR_FN (t) = fn;
9377 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9378 for (i = 0; i < nargs; i++)
9379 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
9380 process_call_operands (t);
9381 return t;
9382 }
9383
9384 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9385 FN and a null static chain slot. NARGS is the number of call arguments
9386 which are specified as a tree array ARGS. */
9387
9388 tree
9389 build_call_array_loc (location_t loc, tree return_type, tree fn,
9390 int nargs, const tree *args)
9391 {
9392 tree t;
9393 int i;
9394
9395 t = build_vl_exp (CALL_EXPR, nargs + 3);
9396 TREE_TYPE (t) = return_type;
9397 CALL_EXPR_FN (t) = fn;
9398 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9399 for (i = 0; i < nargs; i++)
9400 CALL_EXPR_ARG (t, i) = args[i];
9401 process_call_operands (t);
9402 SET_EXPR_LOCATION (t, loc);
9403 return t;
9404 }
9405
9406 /* Like build_call_array, but takes a VEC. */
9407
9408 tree
9409 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
9410 {
9411 tree ret, t;
9412 unsigned int ix;
9413
9414 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
9415 TREE_TYPE (ret) = return_type;
9416 CALL_EXPR_FN (ret) = fn;
9417 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
9418 for (ix = 0; VEC_iterate (tree, args, ix, t); ++ix)
9419 CALL_EXPR_ARG (ret, ix) = t;
9420 process_call_operands (ret);
9421 return ret;
9422 }
9423
9424
9425 /* Returns true if it is possible to prove that the index of
9426 an array access REF (an ARRAY_REF expression) falls into the
9427 array bounds. */
9428
9429 bool
9430 in_array_bounds_p (tree ref)
9431 {
9432 tree idx = TREE_OPERAND (ref, 1);
9433 tree min, max;
9434
9435 if (TREE_CODE (idx) != INTEGER_CST)
9436 return false;
9437
9438 min = array_ref_low_bound (ref);
9439 max = array_ref_up_bound (ref);
9440 if (!min
9441 || !max
9442 || TREE_CODE (min) != INTEGER_CST
9443 || TREE_CODE (max) != INTEGER_CST)
9444 return false;
9445
9446 if (tree_int_cst_lt (idx, min)
9447 || tree_int_cst_lt (max, idx))
9448 return false;
9449
9450 return true;
9451 }
9452
9453 /* Returns true if it is possible to prove that the range of
9454 an array access REF (an ARRAY_RANGE_REF expression) falls
9455 into the array bounds. */
9456
9457 bool
9458 range_in_array_bounds_p (tree ref)
9459 {
9460 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
9461 tree range_min, range_max, min, max;
9462
9463 range_min = TYPE_MIN_VALUE (domain_type);
9464 range_max = TYPE_MAX_VALUE (domain_type);
9465 if (!range_min
9466 || !range_max
9467 || TREE_CODE (range_min) != INTEGER_CST
9468 || TREE_CODE (range_max) != INTEGER_CST)
9469 return false;
9470
9471 min = array_ref_low_bound (ref);
9472 max = array_ref_up_bound (ref);
9473 if (!min
9474 || !max
9475 || TREE_CODE (min) != INTEGER_CST
9476 || TREE_CODE (max) != INTEGER_CST)
9477 return false;
9478
9479 if (tree_int_cst_lt (range_min, min)
9480 || tree_int_cst_lt (max, range_max))
9481 return false;
9482
9483 return true;
9484 }
9485
9486 /* Return true if T (assumed to be a DECL) must be assigned a memory
9487 location. */
9488
9489 bool
9490 needs_to_live_in_memory (const_tree t)
9491 {
9492 if (TREE_CODE (t) == SSA_NAME)
9493 t = SSA_NAME_VAR (t);
9494
9495 return (TREE_ADDRESSABLE (t)
9496 || is_global_var (t)
9497 || (TREE_CODE (t) == RESULT_DECL
9498 && aggregate_value_p (t, current_function_decl)));
9499 }
9500
9501 /* There are situations in which a language considers record types
9502 compatible which have different field lists. Decide if two fields
9503 are compatible. It is assumed that the parent records are compatible. */
9504
9505 bool
9506 fields_compatible_p (const_tree f1, const_tree f2)
9507 {
9508 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
9509 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
9510 return false;
9511
9512 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
9513 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
9514 return false;
9515
9516 if (!types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
9517 return false;
9518
9519 return true;
9520 }
9521
9522 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
9523
9524 tree
9525 find_compatible_field (tree record, tree orig_field)
9526 {
9527 tree f;
9528
9529 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
9530 if (TREE_CODE (f) == FIELD_DECL
9531 && fields_compatible_p (f, orig_field))
9532 return f;
9533
9534 /* ??? Why isn't this on the main fields list? */
9535 f = TYPE_VFIELD (record);
9536 if (f && TREE_CODE (f) == FIELD_DECL
9537 && fields_compatible_p (f, orig_field))
9538 return f;
9539
9540 /* ??? We should abort here, but Java appears to do Bad Things
9541 with inherited fields. */
9542 return orig_field;
9543 }
9544
9545 /* Return value of a constant X and sign-extend it. */
9546
9547 HOST_WIDE_INT
9548 int_cst_value (const_tree x)
9549 {
9550 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9551 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
9552
9553 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9554 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9555 || TREE_INT_CST_HIGH (x) == -1);
9556
9557 if (bits < HOST_BITS_PER_WIDE_INT)
9558 {
9559 bool negative = ((val >> (bits - 1)) & 1) != 0;
9560 if (negative)
9561 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
9562 else
9563 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
9564 }
9565
9566 return val;
9567 }
9568
9569 /* Return value of a constant X and sign-extend it. */
9570
9571 HOST_WIDEST_INT
9572 widest_int_cst_value (const_tree x)
9573 {
9574 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9575 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
9576
9577 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
9578 gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
9579 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
9580 << HOST_BITS_PER_WIDE_INT);
9581 #else
9582 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9583 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9584 || TREE_INT_CST_HIGH (x) == -1);
9585 #endif
9586
9587 if (bits < HOST_BITS_PER_WIDEST_INT)
9588 {
9589 bool negative = ((val >> (bits - 1)) & 1) != 0;
9590 if (negative)
9591 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
9592 else
9593 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
9594 }
9595
9596 return val;
9597 }
9598
9599 /* If TYPE is an integral type, return an equivalent type which is
9600 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
9601 return TYPE itself. */
9602
9603 tree
9604 signed_or_unsigned_type_for (int unsignedp, tree type)
9605 {
9606 tree t = type;
9607 if (POINTER_TYPE_P (type))
9608 t = size_type_node;
9609
9610 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
9611 return t;
9612
9613 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9614 }
9615
9616 /* Returns unsigned variant of TYPE. */
9617
9618 tree
9619 unsigned_type_for (tree type)
9620 {
9621 return signed_or_unsigned_type_for (1, type);
9622 }
9623
9624 /* Returns signed variant of TYPE. */
9625
9626 tree
9627 signed_type_for (tree type)
9628 {
9629 return signed_or_unsigned_type_for (0, type);
9630 }
9631
9632 /* Returns the largest value obtainable by casting something in INNER type to
9633 OUTER type. */
9634
9635 tree
9636 upper_bound_in_type (tree outer, tree inner)
9637 {
9638 unsigned HOST_WIDE_INT lo, hi;
9639 unsigned int det = 0;
9640 unsigned oprec = TYPE_PRECISION (outer);
9641 unsigned iprec = TYPE_PRECISION (inner);
9642 unsigned prec;
9643
9644 /* Compute a unique number for every combination. */
9645 det |= (oprec > iprec) ? 4 : 0;
9646 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
9647 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
9648
9649 /* Determine the exponent to use. */
9650 switch (det)
9651 {
9652 case 0:
9653 case 1:
9654 /* oprec <= iprec, outer: signed, inner: don't care. */
9655 prec = oprec - 1;
9656 break;
9657 case 2:
9658 case 3:
9659 /* oprec <= iprec, outer: unsigned, inner: don't care. */
9660 prec = oprec;
9661 break;
9662 case 4:
9663 /* oprec > iprec, outer: signed, inner: signed. */
9664 prec = iprec - 1;
9665 break;
9666 case 5:
9667 /* oprec > iprec, outer: signed, inner: unsigned. */
9668 prec = iprec;
9669 break;
9670 case 6:
9671 /* oprec > iprec, outer: unsigned, inner: signed. */
9672 prec = oprec;
9673 break;
9674 case 7:
9675 /* oprec > iprec, outer: unsigned, inner: unsigned. */
9676 prec = iprec;
9677 break;
9678 default:
9679 gcc_unreachable ();
9680 }
9681
9682 /* Compute 2^^prec - 1. */
9683 if (prec <= HOST_BITS_PER_WIDE_INT)
9684 {
9685 hi = 0;
9686 lo = ((~(unsigned HOST_WIDE_INT) 0)
9687 >> (HOST_BITS_PER_WIDE_INT - prec));
9688 }
9689 else
9690 {
9691 hi = ((~(unsigned HOST_WIDE_INT) 0)
9692 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
9693 lo = ~(unsigned HOST_WIDE_INT) 0;
9694 }
9695
9696 return build_int_cst_wide (outer, lo, hi);
9697 }
9698
9699 /* Returns the smallest value obtainable by casting something in INNER type to
9700 OUTER type. */
9701
9702 tree
9703 lower_bound_in_type (tree outer, tree inner)
9704 {
9705 unsigned HOST_WIDE_INT lo, hi;
9706 unsigned oprec = TYPE_PRECISION (outer);
9707 unsigned iprec = TYPE_PRECISION (inner);
9708
9709 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
9710 and obtain 0. */
9711 if (TYPE_UNSIGNED (outer)
9712 /* If we are widening something of an unsigned type, OUTER type
9713 contains all values of INNER type. In particular, both INNER
9714 and OUTER types have zero in common. */
9715 || (oprec > iprec && TYPE_UNSIGNED (inner)))
9716 lo = hi = 0;
9717 else
9718 {
9719 /* If we are widening a signed type to another signed type, we
9720 want to obtain -2^^(iprec-1). If we are keeping the
9721 precision or narrowing to a signed type, we want to obtain
9722 -2^(oprec-1). */
9723 unsigned prec = oprec > iprec ? iprec : oprec;
9724
9725 if (prec <= HOST_BITS_PER_WIDE_INT)
9726 {
9727 hi = ~(unsigned HOST_WIDE_INT) 0;
9728 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
9729 }
9730 else
9731 {
9732 hi = ((~(unsigned HOST_WIDE_INT) 0)
9733 << (prec - HOST_BITS_PER_WIDE_INT - 1));
9734 lo = 0;
9735 }
9736 }
9737
9738 return build_int_cst_wide (outer, lo, hi);
9739 }
9740
9741 /* Return nonzero if two operands that are suitable for PHI nodes are
9742 necessarily equal. Specifically, both ARG0 and ARG1 must be either
9743 SSA_NAME or invariant. Note that this is strictly an optimization.
9744 That is, callers of this function can directly call operand_equal_p
9745 and get the same result, only slower. */
9746
9747 int
9748 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
9749 {
9750 if (arg0 == arg1)
9751 return 1;
9752 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
9753 return 0;
9754 return operand_equal_p (arg0, arg1, 0);
9755 }
9756
9757 /* Returns number of zeros at the end of binary representation of X.
9758
9759 ??? Use ffs if available? */
9760
9761 tree
9762 num_ending_zeros (const_tree x)
9763 {
9764 unsigned HOST_WIDE_INT fr, nfr;
9765 unsigned num, abits;
9766 tree type = TREE_TYPE (x);
9767
9768 if (TREE_INT_CST_LOW (x) == 0)
9769 {
9770 num = HOST_BITS_PER_WIDE_INT;
9771 fr = TREE_INT_CST_HIGH (x);
9772 }
9773 else
9774 {
9775 num = 0;
9776 fr = TREE_INT_CST_LOW (x);
9777 }
9778
9779 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
9780 {
9781 nfr = fr >> abits;
9782 if (nfr << abits == fr)
9783 {
9784 num += abits;
9785 fr = nfr;
9786 }
9787 }
9788
9789 if (num > TYPE_PRECISION (type))
9790 num = TYPE_PRECISION (type);
9791
9792 return build_int_cst_type (type, num);
9793 }
9794
9795
9796 #define WALK_SUBTREE(NODE) \
9797 do \
9798 { \
9799 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
9800 if (result) \
9801 return result; \
9802 } \
9803 while (0)
9804
9805 /* This is a subroutine of walk_tree that walks field of TYPE that are to
9806 be walked whenever a type is seen in the tree. Rest of operands and return
9807 value are as for walk_tree. */
9808
9809 static tree
9810 walk_type_fields (tree type, walk_tree_fn func, void *data,
9811 struct pointer_set_t *pset, walk_tree_lh lh)
9812 {
9813 tree result = NULL_TREE;
9814
9815 switch (TREE_CODE (type))
9816 {
9817 case POINTER_TYPE:
9818 case REFERENCE_TYPE:
9819 /* We have to worry about mutually recursive pointers. These can't
9820 be written in C. They can in Ada. It's pathological, but
9821 there's an ACATS test (c38102a) that checks it. Deal with this
9822 by checking if we're pointing to another pointer, that one
9823 points to another pointer, that one does too, and we have no htab.
9824 If so, get a hash table. We check three levels deep to avoid
9825 the cost of the hash table if we don't need one. */
9826 if (POINTER_TYPE_P (TREE_TYPE (type))
9827 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
9828 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
9829 && !pset)
9830 {
9831 result = walk_tree_without_duplicates (&TREE_TYPE (type),
9832 func, data);
9833 if (result)
9834 return result;
9835
9836 break;
9837 }
9838
9839 /* ... fall through ... */
9840
9841 case COMPLEX_TYPE:
9842 WALK_SUBTREE (TREE_TYPE (type));
9843 break;
9844
9845 case METHOD_TYPE:
9846 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
9847
9848 /* Fall through. */
9849
9850 case FUNCTION_TYPE:
9851 WALK_SUBTREE (TREE_TYPE (type));
9852 {
9853 tree arg;
9854
9855 /* We never want to walk into default arguments. */
9856 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
9857 WALK_SUBTREE (TREE_VALUE (arg));
9858 }
9859 break;
9860
9861 case ARRAY_TYPE:
9862 /* Don't follow this nodes's type if a pointer for fear that
9863 we'll have infinite recursion. If we have a PSET, then we
9864 need not fear. */
9865 if (pset
9866 || (!POINTER_TYPE_P (TREE_TYPE (type))
9867 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
9868 WALK_SUBTREE (TREE_TYPE (type));
9869 WALK_SUBTREE (TYPE_DOMAIN (type));
9870 break;
9871
9872 case OFFSET_TYPE:
9873 WALK_SUBTREE (TREE_TYPE (type));
9874 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
9875 break;
9876
9877 default:
9878 break;
9879 }
9880
9881 return NULL_TREE;
9882 }
9883
9884 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
9885 called with the DATA and the address of each sub-tree. If FUNC returns a
9886 non-NULL value, the traversal is stopped, and the value returned by FUNC
9887 is returned. If PSET is non-NULL it is used to record the nodes visited,
9888 and to avoid visiting a node more than once. */
9889
9890 tree
9891 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
9892 struct pointer_set_t *pset, walk_tree_lh lh)
9893 {
9894 enum tree_code code;
9895 int walk_subtrees;
9896 tree result;
9897
9898 #define WALK_SUBTREE_TAIL(NODE) \
9899 do \
9900 { \
9901 tp = & (NODE); \
9902 goto tail_recurse; \
9903 } \
9904 while (0)
9905
9906 tail_recurse:
9907 /* Skip empty subtrees. */
9908 if (!*tp)
9909 return NULL_TREE;
9910
9911 /* Don't walk the same tree twice, if the user has requested
9912 that we avoid doing so. */
9913 if (pset && pointer_set_insert (pset, *tp))
9914 return NULL_TREE;
9915
9916 /* Call the function. */
9917 walk_subtrees = 1;
9918 result = (*func) (tp, &walk_subtrees, data);
9919
9920 /* If we found something, return it. */
9921 if (result)
9922 return result;
9923
9924 code = TREE_CODE (*tp);
9925
9926 /* Even if we didn't, FUNC may have decided that there was nothing
9927 interesting below this point in the tree. */
9928 if (!walk_subtrees)
9929 {
9930 /* But we still need to check our siblings. */
9931 if (code == TREE_LIST)
9932 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
9933 else if (code == OMP_CLAUSE)
9934 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
9935 else
9936 return NULL_TREE;
9937 }
9938
9939 if (lh)
9940 {
9941 result = (*lh) (tp, &walk_subtrees, func, data, pset);
9942 if (result || !walk_subtrees)
9943 return result;
9944 }
9945
9946 switch (code)
9947 {
9948 case ERROR_MARK:
9949 case IDENTIFIER_NODE:
9950 case INTEGER_CST:
9951 case REAL_CST:
9952 case FIXED_CST:
9953 case VECTOR_CST:
9954 case STRING_CST:
9955 case BLOCK:
9956 case PLACEHOLDER_EXPR:
9957 case SSA_NAME:
9958 case FIELD_DECL:
9959 case RESULT_DECL:
9960 /* None of these have subtrees other than those already walked
9961 above. */
9962 break;
9963
9964 case TREE_LIST:
9965 WALK_SUBTREE (TREE_VALUE (*tp));
9966 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
9967 break;
9968
9969 case TREE_VEC:
9970 {
9971 int len = TREE_VEC_LENGTH (*tp);
9972
9973 if (len == 0)
9974 break;
9975
9976 /* Walk all elements but the first. */
9977 while (--len)
9978 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
9979
9980 /* Now walk the first one as a tail call. */
9981 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
9982 }
9983
9984 case COMPLEX_CST:
9985 WALK_SUBTREE (TREE_REALPART (*tp));
9986 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
9987
9988 case CONSTRUCTOR:
9989 {
9990 unsigned HOST_WIDE_INT idx;
9991 constructor_elt *ce;
9992
9993 for (idx = 0;
9994 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
9995 idx++)
9996 WALK_SUBTREE (ce->value);
9997 }
9998 break;
9999
10000 case SAVE_EXPR:
10001 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10002
10003 case BIND_EXPR:
10004 {
10005 tree decl;
10006 for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
10007 {
10008 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10009 into declarations that are just mentioned, rather than
10010 declared; they don't really belong to this part of the tree.
10011 And, we can see cycles: the initializer for a declaration
10012 can refer to the declaration itself. */
10013 WALK_SUBTREE (DECL_INITIAL (decl));
10014 WALK_SUBTREE (DECL_SIZE (decl));
10015 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10016 }
10017 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10018 }
10019
10020 case STATEMENT_LIST:
10021 {
10022 tree_stmt_iterator i;
10023 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10024 WALK_SUBTREE (*tsi_stmt_ptr (i));
10025 }
10026 break;
10027
10028 case OMP_CLAUSE:
10029 switch (OMP_CLAUSE_CODE (*tp))
10030 {
10031 case OMP_CLAUSE_PRIVATE:
10032 case OMP_CLAUSE_SHARED:
10033 case OMP_CLAUSE_FIRSTPRIVATE:
10034 case OMP_CLAUSE_COPYIN:
10035 case OMP_CLAUSE_COPYPRIVATE:
10036 case OMP_CLAUSE_IF:
10037 case OMP_CLAUSE_NUM_THREADS:
10038 case OMP_CLAUSE_SCHEDULE:
10039 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10040 /* FALLTHRU */
10041
10042 case OMP_CLAUSE_NOWAIT:
10043 case OMP_CLAUSE_ORDERED:
10044 case OMP_CLAUSE_DEFAULT:
10045 case OMP_CLAUSE_UNTIED:
10046 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10047
10048 case OMP_CLAUSE_LASTPRIVATE:
10049 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10050 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10051 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10052
10053 case OMP_CLAUSE_COLLAPSE:
10054 {
10055 int i;
10056 for (i = 0; i < 3; i++)
10057 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10058 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10059 }
10060
10061 case OMP_CLAUSE_REDUCTION:
10062 {
10063 int i;
10064 for (i = 0; i < 4; i++)
10065 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10066 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10067 }
10068
10069 default:
10070 gcc_unreachable ();
10071 }
10072 break;
10073
10074 case TARGET_EXPR:
10075 {
10076 int i, len;
10077
10078 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10079 But, we only want to walk once. */
10080 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10081 for (i = 0; i < len; ++i)
10082 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10083 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10084 }
10085
10086 case DECL_EXPR:
10087 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10088 defining. We only want to walk into these fields of a type in this
10089 case and not in the general case of a mere reference to the type.
10090
10091 The criterion is as follows: if the field can be an expression, it
10092 must be walked only here. This should be in keeping with the fields
10093 that are directly gimplified in gimplify_type_sizes in order for the
10094 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10095 variable-sized types.
10096
10097 Note that DECLs get walked as part of processing the BIND_EXPR. */
10098 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10099 {
10100 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10101 if (TREE_CODE (*type_p) == ERROR_MARK)
10102 return NULL_TREE;
10103
10104 /* Call the function for the type. See if it returns anything or
10105 doesn't want us to continue. If we are to continue, walk both
10106 the normal fields and those for the declaration case. */
10107 result = (*func) (type_p, &walk_subtrees, data);
10108 if (result || !walk_subtrees)
10109 return result;
10110
10111 result = walk_type_fields (*type_p, func, data, pset, lh);
10112 if (result)
10113 return result;
10114
10115 /* If this is a record type, also walk the fields. */
10116 if (TREE_CODE (*type_p) == RECORD_TYPE
10117 || TREE_CODE (*type_p) == UNION_TYPE
10118 || TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10119 {
10120 tree field;
10121
10122 for (field = TYPE_FIELDS (*type_p); field;
10123 field = TREE_CHAIN (field))
10124 {
10125 /* We'd like to look at the type of the field, but we can
10126 easily get infinite recursion. So assume it's pointed
10127 to elsewhere in the tree. Also, ignore things that
10128 aren't fields. */
10129 if (TREE_CODE (field) != FIELD_DECL)
10130 continue;
10131
10132 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10133 WALK_SUBTREE (DECL_SIZE (field));
10134 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10135 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10136 WALK_SUBTREE (DECL_QUALIFIER (field));
10137 }
10138 }
10139
10140 /* Same for scalar types. */
10141 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10142 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10143 || TREE_CODE (*type_p) == INTEGER_TYPE
10144 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10145 || TREE_CODE (*type_p) == REAL_TYPE)
10146 {
10147 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10148 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10149 }
10150
10151 WALK_SUBTREE (TYPE_SIZE (*type_p));
10152 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10153 }
10154 /* FALLTHRU */
10155
10156 default:
10157 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10158 {
10159 int i, len;
10160
10161 /* Walk over all the sub-trees of this operand. */
10162 len = TREE_OPERAND_LENGTH (*tp);
10163
10164 /* Go through the subtrees. We need to do this in forward order so
10165 that the scope of a FOR_EXPR is handled properly. */
10166 if (len)
10167 {
10168 for (i = 0; i < len - 1; ++i)
10169 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10170 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10171 }
10172 }
10173 /* If this is a type, walk the needed fields in the type. */
10174 else if (TYPE_P (*tp))
10175 return walk_type_fields (*tp, func, data, pset, lh);
10176 break;
10177 }
10178
10179 /* We didn't find what we were looking for. */
10180 return NULL_TREE;
10181
10182 #undef WALK_SUBTREE_TAIL
10183 }
10184 #undef WALK_SUBTREE
10185
10186 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10187
10188 tree
10189 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10190 walk_tree_lh lh)
10191 {
10192 tree result;
10193 struct pointer_set_t *pset;
10194
10195 pset = pointer_set_create ();
10196 result = walk_tree_1 (tp, func, data, pset, lh);
10197 pointer_set_destroy (pset);
10198 return result;
10199 }
10200
10201
10202 tree *
10203 tree_block (tree t)
10204 {
10205 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10206
10207 if (IS_EXPR_CODE_CLASS (c))
10208 return &t->exp.block;
10209 gcc_unreachable ();
10210 return NULL;
10211 }
10212
10213 /* Build and return a TREE_LIST of arguments in the CALL_EXPR exp.
10214 FIXME: don't use this function. It exists for compatibility with
10215 the old representation of CALL_EXPRs where a list was used to hold the
10216 arguments. Places that currently extract the arglist from a CALL_EXPR
10217 ought to be rewritten to use the CALL_EXPR itself. */
10218 tree
10219 call_expr_arglist (tree exp)
10220 {
10221 tree arglist = NULL_TREE;
10222 int i;
10223 for (i = call_expr_nargs (exp) - 1; i >= 0; i--)
10224 arglist = tree_cons (NULL_TREE, CALL_EXPR_ARG (exp, i), arglist);
10225 return arglist;
10226 }
10227
10228
10229 /* Create a nameless artificial label and put it in the current
10230 function context. The label has a location of LOC. Returns the
10231 newly created label. */
10232
10233 tree
10234 create_artificial_label (location_t loc)
10235 {
10236 tree lab = build_decl (loc,
10237 LABEL_DECL, NULL_TREE, void_type_node);
10238
10239 DECL_ARTIFICIAL (lab) = 1;
10240 DECL_IGNORED_P (lab) = 1;
10241 DECL_CONTEXT (lab) = current_function_decl;
10242 return lab;
10243 }
10244
10245 /* Given a tree, try to return a useful variable name that we can use
10246 to prefix a temporary that is being assigned the value of the tree.
10247 I.E. given <temp> = &A, return A. */
10248
10249 const char *
10250 get_name (tree t)
10251 {
10252 tree stripped_decl;
10253
10254 stripped_decl = t;
10255 STRIP_NOPS (stripped_decl);
10256 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10257 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10258 else
10259 {
10260 switch (TREE_CODE (stripped_decl))
10261 {
10262 case ADDR_EXPR:
10263 return get_name (TREE_OPERAND (stripped_decl, 0));
10264 default:
10265 return NULL;
10266 }
10267 }
10268 }
10269
10270 /* Return true if TYPE has a variable argument list. */
10271
10272 bool
10273 stdarg_p (tree fntype)
10274 {
10275 function_args_iterator args_iter;
10276 tree n = NULL_TREE, t;
10277
10278 if (!fntype)
10279 return false;
10280
10281 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
10282 {
10283 n = t;
10284 }
10285
10286 return n != NULL_TREE && n != void_type_node;
10287 }
10288
10289 /* Return true if TYPE has a prototype. */
10290
10291 bool
10292 prototype_p (tree fntype)
10293 {
10294 tree t;
10295
10296 gcc_assert (fntype != NULL_TREE);
10297
10298 t = TYPE_ARG_TYPES (fntype);
10299 return (t != NULL_TREE);
10300 }
10301
10302 /* If BLOCK is inlined from an __attribute__((__artificial__))
10303 routine, return pointer to location from where it has been
10304 called. */
10305 location_t *
10306 block_nonartificial_location (tree block)
10307 {
10308 location_t *ret = NULL;
10309
10310 while (block && TREE_CODE (block) == BLOCK
10311 && BLOCK_ABSTRACT_ORIGIN (block))
10312 {
10313 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
10314
10315 while (TREE_CODE (ao) == BLOCK
10316 && BLOCK_ABSTRACT_ORIGIN (ao)
10317 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
10318 ao = BLOCK_ABSTRACT_ORIGIN (ao);
10319
10320 if (TREE_CODE (ao) == FUNCTION_DECL)
10321 {
10322 /* If AO is an artificial inline, point RET to the
10323 call site locus at which it has been inlined and continue
10324 the loop, in case AO's caller is also an artificial
10325 inline. */
10326 if (DECL_DECLARED_INLINE_P (ao)
10327 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
10328 ret = &BLOCK_SOURCE_LOCATION (block);
10329 else
10330 break;
10331 }
10332 else if (TREE_CODE (ao) != BLOCK)
10333 break;
10334
10335 block = BLOCK_SUPERCONTEXT (block);
10336 }
10337 return ret;
10338 }
10339
10340
10341 /* If EXP is inlined from an __attribute__((__artificial__))
10342 function, return the location of the original call expression. */
10343
10344 location_t
10345 tree_nonartificial_location (tree exp)
10346 {
10347 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
10348
10349 if (loc)
10350 return *loc;
10351 else
10352 return EXPR_LOCATION (exp);
10353 }
10354
10355
10356 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
10357 nodes. */
10358
10359 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
10360
10361 static hashval_t
10362 cl_option_hash_hash (const void *x)
10363 {
10364 const_tree const t = (const_tree) x;
10365 const char *p;
10366 size_t i;
10367 size_t len = 0;
10368 hashval_t hash = 0;
10369
10370 if (TREE_CODE (t) == OPTIMIZATION_NODE)
10371 {
10372 p = (const char *)TREE_OPTIMIZATION (t);
10373 len = sizeof (struct cl_optimization);
10374 }
10375
10376 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
10377 {
10378 p = (const char *)TREE_TARGET_OPTION (t);
10379 len = sizeof (struct cl_target_option);
10380 }
10381
10382 else
10383 gcc_unreachable ();
10384
10385 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
10386 something else. */
10387 for (i = 0; i < len; i++)
10388 if (p[i])
10389 hash = (hash << 4) ^ ((i << 2) | p[i]);
10390
10391 return hash;
10392 }
10393
10394 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
10395 TARGET_OPTION tree node) is the same as that given by *Y, which is the
10396 same. */
10397
10398 static int
10399 cl_option_hash_eq (const void *x, const void *y)
10400 {
10401 const_tree const xt = (const_tree) x;
10402 const_tree const yt = (const_tree) y;
10403 const char *xp;
10404 const char *yp;
10405 size_t len;
10406
10407 if (TREE_CODE (xt) != TREE_CODE (yt))
10408 return 0;
10409
10410 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
10411 {
10412 xp = (const char *)TREE_OPTIMIZATION (xt);
10413 yp = (const char *)TREE_OPTIMIZATION (yt);
10414 len = sizeof (struct cl_optimization);
10415 }
10416
10417 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
10418 {
10419 xp = (const char *)TREE_TARGET_OPTION (xt);
10420 yp = (const char *)TREE_TARGET_OPTION (yt);
10421 len = sizeof (struct cl_target_option);
10422 }
10423
10424 else
10425 gcc_unreachable ();
10426
10427 return (memcmp (xp, yp, len) == 0);
10428 }
10429
10430 /* Build an OPTIMIZATION_NODE based on the current options. */
10431
10432 tree
10433 build_optimization_node (void)
10434 {
10435 tree t;
10436 void **slot;
10437
10438 /* Use the cache of optimization nodes. */
10439
10440 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node));
10441
10442 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
10443 t = (tree) *slot;
10444 if (!t)
10445 {
10446 /* Insert this one into the hash table. */
10447 t = cl_optimization_node;
10448 *slot = t;
10449
10450 /* Make a new node for next time round. */
10451 cl_optimization_node = make_node (OPTIMIZATION_NODE);
10452 }
10453
10454 return t;
10455 }
10456
10457 /* Build a TARGET_OPTION_NODE based on the current options. */
10458
10459 tree
10460 build_target_option_node (void)
10461 {
10462 tree t;
10463 void **slot;
10464
10465 /* Use the cache of optimization nodes. */
10466
10467 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node));
10468
10469 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
10470 t = (tree) *slot;
10471 if (!t)
10472 {
10473 /* Insert this one into the hash table. */
10474 t = cl_target_option_node;
10475 *slot = t;
10476
10477 /* Make a new node for next time round. */
10478 cl_target_option_node = make_node (TARGET_OPTION_NODE);
10479 }
10480
10481 return t;
10482 }
10483
10484 /* Determine the "ultimate origin" of a block. The block may be an inlined
10485 instance of an inlined instance of a block which is local to an inline
10486 function, so we have to trace all of the way back through the origin chain
10487 to find out what sort of node actually served as the original seed for the
10488 given block. */
10489
10490 tree
10491 block_ultimate_origin (const_tree block)
10492 {
10493 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
10494
10495 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
10496 nodes in the function to point to themselves; ignore that if
10497 we're trying to output the abstract instance of this function. */
10498 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
10499 return NULL_TREE;
10500
10501 if (immediate_origin == NULL_TREE)
10502 return NULL_TREE;
10503 else
10504 {
10505 tree ret_val;
10506 tree lookahead = immediate_origin;
10507
10508 do
10509 {
10510 ret_val = lookahead;
10511 lookahead = (TREE_CODE (ret_val) == BLOCK
10512 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
10513 }
10514 while (lookahead != NULL && lookahead != ret_val);
10515
10516 /* The block's abstract origin chain may not be the *ultimate* origin of
10517 the block. It could lead to a DECL that has an abstract origin set.
10518 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
10519 will give us if it has one). Note that DECL's abstract origins are
10520 supposed to be the most distant ancestor (or so decl_ultimate_origin
10521 claims), so we don't need to loop following the DECL origins. */
10522 if (DECL_P (ret_val))
10523 return DECL_ORIGIN (ret_val);
10524
10525 return ret_val;
10526 }
10527 }
10528
10529 /* Return true if T1 and T2 are equivalent lists. */
10530
10531 bool
10532 list_equal_p (const_tree t1, const_tree t2)
10533 {
10534 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
10535 if (TREE_VALUE (t1) != TREE_VALUE (t2))
10536 return false;
10537 return !t1 && !t2;
10538 }
10539
10540 /* Return true iff conversion in EXP generates no instruction. Mark
10541 it inline so that we fully inline into the stripping functions even
10542 though we have two uses of this function. */
10543
10544 static inline bool
10545 tree_nop_conversion (const_tree exp)
10546 {
10547 tree outer_type, inner_type;
10548
10549 if (!CONVERT_EXPR_P (exp)
10550 && TREE_CODE (exp) != NON_LVALUE_EXPR)
10551 return false;
10552 if (TREE_OPERAND (exp, 0) == error_mark_node)
10553 return false;
10554
10555 outer_type = TREE_TYPE (exp);
10556 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10557
10558 /* Use precision rather then machine mode when we can, which gives
10559 the correct answer even for submode (bit-field) types. */
10560 if ((INTEGRAL_TYPE_P (outer_type)
10561 || POINTER_TYPE_P (outer_type)
10562 || TREE_CODE (outer_type) == OFFSET_TYPE)
10563 && (INTEGRAL_TYPE_P (inner_type)
10564 || POINTER_TYPE_P (inner_type)
10565 || TREE_CODE (inner_type) == OFFSET_TYPE))
10566 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
10567
10568 /* Otherwise fall back on comparing machine modes (e.g. for
10569 aggregate types, floats). */
10570 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
10571 }
10572
10573 /* Return true iff conversion in EXP generates no instruction. Don't
10574 consider conversions changing the signedness. */
10575
10576 static bool
10577 tree_sign_nop_conversion (const_tree exp)
10578 {
10579 tree outer_type, inner_type;
10580
10581 if (!tree_nop_conversion (exp))
10582 return false;
10583
10584 outer_type = TREE_TYPE (exp);
10585 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10586
10587 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
10588 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
10589 }
10590
10591 /* Strip conversions from EXP according to tree_nop_conversion and
10592 return the resulting expression. */
10593
10594 tree
10595 tree_strip_nop_conversions (tree exp)
10596 {
10597 while (tree_nop_conversion (exp))
10598 exp = TREE_OPERAND (exp, 0);
10599 return exp;
10600 }
10601
10602 /* Strip conversions from EXP according to tree_sign_nop_conversion
10603 and return the resulting expression. */
10604
10605 tree
10606 tree_strip_sign_nop_conversions (tree exp)
10607 {
10608 while (tree_sign_nop_conversion (exp))
10609 exp = TREE_OPERAND (exp, 0);
10610 return exp;
10611 }
10612
10613 static GTY(()) tree gcc_eh_personality_decl;
10614
10615 /* Return the GCC personality function decl. */
10616
10617 tree
10618 lhd_gcc_personality (void)
10619 {
10620 if (!gcc_eh_personality_decl)
10621 gcc_eh_personality_decl
10622 = build_personality_function (USING_SJLJ_EXCEPTIONS
10623 ? "__gcc_personality_sj0"
10624 : "__gcc_personality_v0");
10625
10626 return gcc_eh_personality_decl;
10627 }
10628
10629 #include "gt-tree.h"
This page took 0.465377 seconds and 6 git commands to generate.