]> gcc.gnu.org Git - gcc.git/blob - gcc/tree.c
re PR middle-end/17885 (gimplifing of volatile &a->)
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52
53 /* Each tree code class has an associated string representation.
54 These must correspond to the tree_code_class entries. */
55
56 const char *const tree_code_class_strings[] =
57 {
58 "exceptional",
59 "constant",
60 "type",
61 "declaration",
62 "reference",
63 "comparison",
64 "unary",
65 "binary",
66 "statement",
67 "expression",
68 };
69
70 /* obstack.[ch] explicitly declined to prototype this. */
71 extern int _obstack_allocated_p (struct obstack *h, void *obj);
72
73 #ifdef GATHER_STATISTICS
74 /* Statistics-gathering stuff. */
75
76 int tree_node_counts[(int) all_kinds];
77 int tree_node_sizes[(int) all_kinds];
78
79 /* Keep in sync with tree.h:enum tree_node_kind. */
80 static const char * const tree_node_kind_names[] = {
81 "decls",
82 "types",
83 "blocks",
84 "stmts",
85 "refs",
86 "exprs",
87 "constants",
88 "identifiers",
89 "perm_tree_lists",
90 "temp_tree_lists",
91 "vecs",
92 "binfos",
93 "phi_nodes",
94 "ssa names",
95 "random kinds",
96 "lang_decl kinds",
97 "lang_type kinds"
98 };
99 #endif /* GATHER_STATISTICS */
100
101 /* Unique id for next decl created. */
102 static GTY(()) int next_decl_uid;
103 /* Unique id for next type created. */
104 static GTY(()) int next_type_uid = 1;
105
106 /* Since we cannot rehash a type after it is in the table, we have to
107 keep the hash code. */
108
109 struct type_hash GTY(())
110 {
111 unsigned long hash;
112 tree type;
113 };
114
115 /* Initial size of the hash table (rounded to next prime). */
116 #define TYPE_HASH_INITIAL_SIZE 1000
117
118 /* Now here is the hash table. When recording a type, it is added to
119 the slot whose index is the hash code. Note that the hash table is
120 used for several kinds of types (function types, array types and
121 array index range types, for now). While all these live in the
122 same table, they are completely independent, and the hash code is
123 computed differently for each of these. */
124
125 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
126 htab_t type_hash_table;
127
128 static void set_type_quals (tree, int);
129 static int type_hash_eq (const void *, const void *);
130 static hashval_t type_hash_hash (const void *);
131 static void print_type_hash_statistics (void);
132 static tree make_vector_type (tree, int, enum machine_mode);
133 static int type_hash_marked_p (const void *);
134 static unsigned int type_hash_list (tree, hashval_t);
135 static unsigned int attribute_hash_list (tree, hashval_t);
136
137 tree global_trees[TI_MAX];
138 tree integer_types[itk_none];
139 \f
140 /* Init tree.c. */
141
142 void
143 init_ttree (void)
144 {
145 /* Initialize the hash table of types. */
146 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
147 type_hash_eq, 0);
148 }
149
150 \f
151 /* The name of the object as the assembler will see it (but before any
152 translations made by ASM_OUTPUT_LABELREF). Often this is the same
153 as DECL_NAME. It is an IDENTIFIER_NODE. */
154 tree
155 decl_assembler_name (tree decl)
156 {
157 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
158 lang_hooks.set_decl_assembler_name (decl);
159 return DECL_CHECK (decl)->decl.assembler_name;
160 }
161
162 /* Compute the number of bytes occupied by a tree with code CODE.
163 This function cannot be used for TREE_VEC, PHI_NODE, or STRING_CST
164 codes, which are of variable length. */
165 size_t
166 tree_code_size (enum tree_code code)
167 {
168 switch (TREE_CODE_CLASS (code))
169 {
170 case tcc_declaration: /* A decl node */
171 return sizeof (struct tree_decl);
172
173 case tcc_type: /* a type node */
174 return sizeof (struct tree_type);
175
176 case tcc_reference: /* a reference */
177 case tcc_expression: /* an expression */
178 case tcc_statement: /* an expression with side effects */
179 case tcc_comparison: /* a comparison expression */
180 case tcc_unary: /* a unary arithmetic expression */
181 case tcc_binary: /* a binary arithmetic expression */
182 return (sizeof (struct tree_exp)
183 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
184
185 case tcc_constant: /* a constant */
186 switch (code)
187 {
188 case INTEGER_CST: return sizeof (struct tree_int_cst);
189 case REAL_CST: return sizeof (struct tree_real_cst);
190 case COMPLEX_CST: return sizeof (struct tree_complex);
191 case VECTOR_CST: return sizeof (struct tree_vector);
192 case STRING_CST: gcc_unreachable ();
193 default:
194 return lang_hooks.tree_size (code);
195 }
196
197 case tcc_exceptional: /* something random, like an identifier. */
198 switch (code)
199 {
200 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
201 case TREE_LIST: return sizeof (struct tree_list);
202
203 case ERROR_MARK:
204 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
205
206 case TREE_VEC:
207 case PHI_NODE: gcc_unreachable ();
208
209 case SSA_NAME: return sizeof (struct tree_ssa_name);
210
211 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
212 case BLOCK: return sizeof (struct tree_block);
213 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
214
215 default:
216 return lang_hooks.tree_size (code);
217 }
218
219 default:
220 gcc_unreachable ();
221 }
222 }
223
224 /* Compute the number of bytes occupied by NODE. This routine only
225 looks at TREE_CODE, except for PHI_NODE and TREE_VEC nodes. */
226 size_t
227 tree_size (tree node)
228 {
229 enum tree_code code = TREE_CODE (node);
230 switch (code)
231 {
232 case PHI_NODE:
233 return (sizeof (struct tree_phi_node)
234 + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
235
236 case TREE_VEC:
237 return (sizeof (struct tree_vec)
238 + (TREE_VEC_LENGTH (node) - 1) * sizeof(char *));
239
240 case STRING_CST:
241 return sizeof (struct tree_string) + TREE_STRING_LENGTH (node) - 1;
242
243 default:
244 return tree_code_size (code);
245 }
246 }
247
248 /* Return a newly allocated node of code CODE. For decl and type
249 nodes, some other fields are initialized. The rest of the node is
250 initialized to zero. This function cannot be used for PHI_NODE or
251 TREE_VEC nodes, which is enforced by asserts in tree_code_size.
252
253 Achoo! I got a code in the node. */
254
255 tree
256 make_node_stat (enum tree_code code MEM_STAT_DECL)
257 {
258 tree t;
259 enum tree_code_class type = TREE_CODE_CLASS (code);
260 size_t length = tree_code_size (code);
261 #ifdef GATHER_STATISTICS
262 tree_node_kind kind;
263
264 switch (type)
265 {
266 case tcc_declaration: /* A decl node */
267 kind = d_kind;
268 break;
269
270 case tcc_type: /* a type node */
271 kind = t_kind;
272 break;
273
274 case tcc_statement: /* an expression with side effects */
275 kind = s_kind;
276 break;
277
278 case tcc_reference: /* a reference */
279 kind = r_kind;
280 break;
281
282 case tcc_expression: /* an expression */
283 case tcc_comparison: /* a comparison expression */
284 case tcc_unary: /* a unary arithmetic expression */
285 case tcc_binary: /* a binary arithmetic expression */
286 kind = e_kind;
287 break;
288
289 case tcc_constant: /* a constant */
290 kind = c_kind;
291 break;
292
293 case tcc_exceptional: /* something random, like an identifier. */
294 switch (code)
295 {
296 case IDENTIFIER_NODE:
297 kind = id_kind;
298 break;
299
300 case TREE_VEC:;
301 kind = vec_kind;
302 break;
303
304 case TREE_BINFO:
305 kind = binfo_kind;
306 break;
307
308 case PHI_NODE:
309 kind = phi_kind;
310 break;
311
312 case SSA_NAME:
313 kind = ssa_name_kind;
314 break;
315
316 case BLOCK:
317 kind = b_kind;
318 break;
319
320 default:
321 kind = x_kind;
322 break;
323 }
324 break;
325
326 default:
327 gcc_unreachable ();
328 }
329
330 tree_node_counts[(int) kind]++;
331 tree_node_sizes[(int) kind] += length;
332 #endif
333
334 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
335
336 memset (t, 0, length);
337
338 TREE_SET_CODE (t, code);
339
340 switch (type)
341 {
342 case tcc_statement:
343 TREE_SIDE_EFFECTS (t) = 1;
344 break;
345
346 case tcc_declaration:
347 if (code != FUNCTION_DECL)
348 DECL_ALIGN (t) = 1;
349 DECL_USER_ALIGN (t) = 0;
350 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
351 DECL_SOURCE_LOCATION (t) = input_location;
352 DECL_UID (t) = next_decl_uid++;
353
354 /* We have not yet computed the alias set for this declaration. */
355 DECL_POINTER_ALIAS_SET (t) = -1;
356 break;
357
358 case tcc_type:
359 TYPE_UID (t) = next_type_uid++;
360 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
361 TYPE_USER_ALIGN (t) = 0;
362 TYPE_MAIN_VARIANT (t) = t;
363
364 /* Default to no attributes for type, but let target change that. */
365 TYPE_ATTRIBUTES (t) = NULL_TREE;
366 targetm.set_default_type_attributes (t);
367
368 /* We have not yet computed the alias set for this type. */
369 TYPE_ALIAS_SET (t) = -1;
370 break;
371
372 case tcc_constant:
373 TREE_CONSTANT (t) = 1;
374 TREE_INVARIANT (t) = 1;
375 break;
376
377 case tcc_expression:
378 switch (code)
379 {
380 case INIT_EXPR:
381 case MODIFY_EXPR:
382 case VA_ARG_EXPR:
383 case PREDECREMENT_EXPR:
384 case PREINCREMENT_EXPR:
385 case POSTDECREMENT_EXPR:
386 case POSTINCREMENT_EXPR:
387 /* All of these have side-effects, no matter what their
388 operands are. */
389 TREE_SIDE_EFFECTS (t) = 1;
390 break;
391
392 default:
393 break;
394 }
395 break;
396
397 default:
398 /* Other classes need no special treatment. */
399 break;
400 }
401
402 return t;
403 }
404 \f
405 /* Return a new node with the same contents as NODE except that its
406 TREE_CHAIN is zero and it has a fresh uid. */
407
408 tree
409 copy_node_stat (tree node MEM_STAT_DECL)
410 {
411 tree t;
412 enum tree_code code = TREE_CODE (node);
413 size_t length;
414
415 gcc_assert (code != STATEMENT_LIST);
416
417 length = tree_size (node);
418 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
419 memcpy (t, node, length);
420
421 TREE_CHAIN (t) = 0;
422 TREE_ASM_WRITTEN (t) = 0;
423 TREE_VISITED (t) = 0;
424 t->common.ann = 0;
425
426 if (TREE_CODE_CLASS (code) == tcc_declaration)
427 DECL_UID (t) = next_decl_uid++;
428 else if (TREE_CODE_CLASS (code) == tcc_type)
429 {
430 TYPE_UID (t) = next_type_uid++;
431 /* The following is so that the debug code for
432 the copy is different from the original type.
433 The two statements usually duplicate each other
434 (because they clear fields of the same union),
435 but the optimizer should catch that. */
436 TYPE_SYMTAB_POINTER (t) = 0;
437 TYPE_SYMTAB_ADDRESS (t) = 0;
438
439 /* Do not copy the values cache. */
440 if (TYPE_CACHED_VALUES_P(t))
441 {
442 TYPE_CACHED_VALUES_P (t) = 0;
443 TYPE_CACHED_VALUES (t) = NULL_TREE;
444 }
445 }
446
447 return t;
448 }
449
450 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
451 For example, this can copy a list made of TREE_LIST nodes. */
452
453 tree
454 copy_list (tree list)
455 {
456 tree head;
457 tree prev, next;
458
459 if (list == 0)
460 return 0;
461
462 head = prev = copy_node (list);
463 next = TREE_CHAIN (list);
464 while (next)
465 {
466 TREE_CHAIN (prev) = copy_node (next);
467 prev = TREE_CHAIN (prev);
468 next = TREE_CHAIN (next);
469 }
470 return head;
471 }
472
473 \f
474 /* Create an INT_CST node with a LOW value sign extended. */
475
476 tree
477 build_int_cst (tree type, HOST_WIDE_INT low)
478 {
479 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
480 }
481
482 /* Create an INT_CST node with a LOW value zero extended. */
483
484 tree
485 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
486 {
487 return build_int_cst_wide (type, low, 0);
488 }
489
490 /* Create an INT_CST node with a LOW value zero or sign extended depending
491 on the type. */
492
493 tree
494 build_int_cst_type (tree type, HOST_WIDE_INT low)
495 {
496 unsigned HOST_WIDE_INT val = (unsigned HOST_WIDE_INT) low;
497 unsigned bits;
498 bool signed_p;
499 bool negative;
500 tree ret;
501
502 if (!type)
503 type = integer_type_node;
504
505 bits = TYPE_PRECISION (type);
506 signed_p = !TYPE_UNSIGNED (type);
507 negative = ((val >> (bits - 1)) & 1) != 0;
508
509 if (signed_p && negative)
510 {
511 if (bits < HOST_BITS_PER_WIDE_INT)
512 val = val | ((~(unsigned HOST_WIDE_INT) 0) << bits);
513 ret = build_int_cst_wide (type, val, ~(unsigned HOST_WIDE_INT) 0);
514 }
515 else
516 {
517 if (bits < HOST_BITS_PER_WIDE_INT)
518 val = val & ~((~(unsigned HOST_WIDE_INT) 0) << bits);
519 ret = build_int_cst_wide (type, val, 0);
520 }
521
522 return ret;
523 }
524
525 /* Create an INT_CST node of TYPE and value HI:LOW. If TYPE is NULL,
526 integer_type_node is used. */
527
528 tree
529 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
530 {
531 tree t;
532 int ix = -1;
533 int limit = 0;
534
535 if (!type)
536 type = integer_type_node;
537
538 switch (TREE_CODE (type))
539 {
540 case POINTER_TYPE:
541 case REFERENCE_TYPE:
542 /* Cache NULL pointer. */
543 if (!hi && !low)
544 {
545 limit = 1;
546 ix = 0;
547 }
548 break;
549
550 case BOOLEAN_TYPE:
551 /* Cache false or true. */
552 limit = 2;
553 if (!hi && low < 2)
554 ix = low;
555 break;
556
557 case INTEGER_TYPE:
558 case CHAR_TYPE:
559 case OFFSET_TYPE:
560 if (TYPE_UNSIGNED (type))
561 {
562 /* Cache 0..N */
563 limit = INTEGER_SHARE_LIMIT;
564 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
565 ix = low;
566 }
567 else
568 {
569 /* Cache -1..N */
570 limit = INTEGER_SHARE_LIMIT + 1;
571 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
572 ix = low + 1;
573 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
574 ix = 0;
575 }
576 break;
577 default:
578 break;
579 }
580
581 if (ix >= 0)
582 {
583 if (!TYPE_CACHED_VALUES_P (type))
584 {
585 TYPE_CACHED_VALUES_P (type) = 1;
586 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
587 }
588
589 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
590 if (t)
591 {
592 /* Make sure no one is clobbering the shared constant. */
593 gcc_assert (TREE_TYPE (t) == type);
594 gcc_assert (TREE_INT_CST_LOW (t) == low);
595 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
596 return t;
597 }
598 }
599
600 t = make_node (INTEGER_CST);
601
602 TREE_INT_CST_LOW (t) = low;
603 TREE_INT_CST_HIGH (t) = hi;
604 TREE_TYPE (t) = type;
605
606 if (ix >= 0)
607 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
608
609 return t;
610 }
611
612 /* Checks that X is integer constant that can be expressed in (unsigned)
613 HOST_WIDE_INT without loss of precision. */
614
615 bool
616 cst_and_fits_in_hwi (tree x)
617 {
618 if (TREE_CODE (x) != INTEGER_CST)
619 return false;
620
621 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
622 return false;
623
624 return (TREE_INT_CST_HIGH (x) == 0
625 || TREE_INT_CST_HIGH (x) == -1);
626 }
627
628 /* Return a new VECTOR_CST node whose type is TYPE and whose values
629 are in a list pointed by VALS. */
630
631 tree
632 build_vector (tree type, tree vals)
633 {
634 tree v = make_node (VECTOR_CST);
635 int over1 = 0, over2 = 0;
636 tree link;
637
638 TREE_VECTOR_CST_ELTS (v) = vals;
639 TREE_TYPE (v) = type;
640
641 /* Iterate through elements and check for overflow. */
642 for (link = vals; link; link = TREE_CHAIN (link))
643 {
644 tree value = TREE_VALUE (link);
645
646 over1 |= TREE_OVERFLOW (value);
647 over2 |= TREE_CONSTANT_OVERFLOW (value);
648 }
649
650 TREE_OVERFLOW (v) = over1;
651 TREE_CONSTANT_OVERFLOW (v) = over2;
652
653 return v;
654 }
655
656 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
657 are in a list pointed to by VALS. */
658 tree
659 build_constructor (tree type, tree vals)
660 {
661 tree c = make_node (CONSTRUCTOR);
662 TREE_TYPE (c) = type;
663 CONSTRUCTOR_ELTS (c) = vals;
664
665 /* ??? May not be necessary. Mirrors what build does. */
666 if (vals)
667 {
668 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
669 TREE_READONLY (c) = TREE_READONLY (vals);
670 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
671 TREE_INVARIANT (c) = TREE_INVARIANT (vals);
672 }
673
674 return c;
675 }
676
677 /* Return a new REAL_CST node whose type is TYPE and value is D. */
678
679 tree
680 build_real (tree type, REAL_VALUE_TYPE d)
681 {
682 tree v;
683 REAL_VALUE_TYPE *dp;
684 int overflow = 0;
685
686 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
687 Consider doing it via real_convert now. */
688
689 v = make_node (REAL_CST);
690 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
691 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
692
693 TREE_TYPE (v) = type;
694 TREE_REAL_CST_PTR (v) = dp;
695 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
696 return v;
697 }
698
699 /* Return a new REAL_CST node whose type is TYPE
700 and whose value is the integer value of the INTEGER_CST node I. */
701
702 REAL_VALUE_TYPE
703 real_value_from_int_cst (tree type, tree i)
704 {
705 REAL_VALUE_TYPE d;
706
707 /* Clear all bits of the real value type so that we can later do
708 bitwise comparisons to see if two values are the same. */
709 memset (&d, 0, sizeof d);
710
711 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
712 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
713 TYPE_UNSIGNED (TREE_TYPE (i)));
714 return d;
715 }
716
717 /* Given a tree representing an integer constant I, return a tree
718 representing the same value as a floating-point constant of type TYPE. */
719
720 tree
721 build_real_from_int_cst (tree type, tree i)
722 {
723 tree v;
724 int overflow = TREE_OVERFLOW (i);
725
726 v = build_real (type, real_value_from_int_cst (type, i));
727
728 TREE_OVERFLOW (v) |= overflow;
729 TREE_CONSTANT_OVERFLOW (v) |= overflow;
730 return v;
731 }
732
733 /* Return a newly constructed STRING_CST node whose value is
734 the LEN characters at STR.
735 The TREE_TYPE is not initialized. */
736
737 tree
738 build_string (int len, const char *str)
739 {
740 tree s;
741 size_t length;
742
743 length = len + sizeof (struct tree_string);
744
745 #ifdef GATHER_STATISTICS
746 tree_node_counts[(int) c_kind]++;
747 tree_node_sizes[(int) c_kind] += length;
748 #endif
749
750 s = ggc_alloc_tree (length);
751
752 memset (s, 0, sizeof (struct tree_common));
753 TREE_SET_CODE (s, STRING_CST);
754 TREE_STRING_LENGTH (s) = len;
755 memcpy ((char *) TREE_STRING_POINTER (s), str, len);
756 ((char *) TREE_STRING_POINTER (s))[len] = '\0';
757
758 return s;
759 }
760
761 /* Return a newly constructed COMPLEX_CST node whose value is
762 specified by the real and imaginary parts REAL and IMAG.
763 Both REAL and IMAG should be constant nodes. TYPE, if specified,
764 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
765
766 tree
767 build_complex (tree type, tree real, tree imag)
768 {
769 tree t = make_node (COMPLEX_CST);
770
771 TREE_REALPART (t) = real;
772 TREE_IMAGPART (t) = imag;
773 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
774 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
775 TREE_CONSTANT_OVERFLOW (t)
776 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
777 return t;
778 }
779
780 /* Build a BINFO with LEN language slots. */
781
782 tree
783 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
784 {
785 tree t;
786 size_t length = (offsetof (struct tree_binfo, base_binfos)
787 + VEC_embedded_size (tree, base_binfos));
788
789 #ifdef GATHER_STATISTICS
790 tree_node_counts[(int) binfo_kind]++;
791 tree_node_sizes[(int) binfo_kind] += length;
792 #endif
793
794 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
795
796 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
797
798 TREE_SET_CODE (t, TREE_BINFO);
799
800 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
801
802 return t;
803 }
804
805
806 /* Build a newly constructed TREE_VEC node of length LEN. */
807
808 tree
809 make_tree_vec_stat (int len MEM_STAT_DECL)
810 {
811 tree t;
812 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
813
814 #ifdef GATHER_STATISTICS
815 tree_node_counts[(int) vec_kind]++;
816 tree_node_sizes[(int) vec_kind] += length;
817 #endif
818
819 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
820
821 memset (t, 0, length);
822
823 TREE_SET_CODE (t, TREE_VEC);
824 TREE_VEC_LENGTH (t) = len;
825
826 return t;
827 }
828 \f
829 /* Return 1 if EXPR is the integer constant zero or a complex constant
830 of zero. */
831
832 int
833 integer_zerop (tree expr)
834 {
835 STRIP_NOPS (expr);
836
837 return ((TREE_CODE (expr) == INTEGER_CST
838 && ! TREE_CONSTANT_OVERFLOW (expr)
839 && TREE_INT_CST_LOW (expr) == 0
840 && TREE_INT_CST_HIGH (expr) == 0)
841 || (TREE_CODE (expr) == COMPLEX_CST
842 && integer_zerop (TREE_REALPART (expr))
843 && integer_zerop (TREE_IMAGPART (expr))));
844 }
845
846 /* Return 1 if EXPR is the integer constant one or the corresponding
847 complex constant. */
848
849 int
850 integer_onep (tree expr)
851 {
852 STRIP_NOPS (expr);
853
854 return ((TREE_CODE (expr) == INTEGER_CST
855 && ! TREE_CONSTANT_OVERFLOW (expr)
856 && TREE_INT_CST_LOW (expr) == 1
857 && TREE_INT_CST_HIGH (expr) == 0)
858 || (TREE_CODE (expr) == COMPLEX_CST
859 && integer_onep (TREE_REALPART (expr))
860 && integer_zerop (TREE_IMAGPART (expr))));
861 }
862
863 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
864 it contains. Likewise for the corresponding complex constant. */
865
866 int
867 integer_all_onesp (tree expr)
868 {
869 int prec;
870 int uns;
871
872 STRIP_NOPS (expr);
873
874 if (TREE_CODE (expr) == COMPLEX_CST
875 && integer_all_onesp (TREE_REALPART (expr))
876 && integer_zerop (TREE_IMAGPART (expr)))
877 return 1;
878
879 else if (TREE_CODE (expr) != INTEGER_CST
880 || TREE_CONSTANT_OVERFLOW (expr))
881 return 0;
882
883 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
884 if (!uns)
885 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
886 && TREE_INT_CST_HIGH (expr) == -1);
887
888 /* Note that using TYPE_PRECISION here is wrong. We care about the
889 actual bits, not the (arbitrary) range of the type. */
890 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
891 if (prec >= HOST_BITS_PER_WIDE_INT)
892 {
893 HOST_WIDE_INT high_value;
894 int shift_amount;
895
896 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
897
898 /* Can not handle precisions greater than twice the host int size. */
899 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
900 if (shift_amount == HOST_BITS_PER_WIDE_INT)
901 /* Shifting by the host word size is undefined according to the ANSI
902 standard, so we must handle this as a special case. */
903 high_value = -1;
904 else
905 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
906
907 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
908 && TREE_INT_CST_HIGH (expr) == high_value);
909 }
910 else
911 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
912 }
913
914 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
915 one bit on). */
916
917 int
918 integer_pow2p (tree expr)
919 {
920 int prec;
921 HOST_WIDE_INT high, low;
922
923 STRIP_NOPS (expr);
924
925 if (TREE_CODE (expr) == COMPLEX_CST
926 && integer_pow2p (TREE_REALPART (expr))
927 && integer_zerop (TREE_IMAGPART (expr)))
928 return 1;
929
930 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
931 return 0;
932
933 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
934 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
935 high = TREE_INT_CST_HIGH (expr);
936 low = TREE_INT_CST_LOW (expr);
937
938 /* First clear all bits that are beyond the type's precision in case
939 we've been sign extended. */
940
941 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
942 ;
943 else if (prec > HOST_BITS_PER_WIDE_INT)
944 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
945 else
946 {
947 high = 0;
948 if (prec < HOST_BITS_PER_WIDE_INT)
949 low &= ~((HOST_WIDE_INT) (-1) << prec);
950 }
951
952 if (high == 0 && low == 0)
953 return 0;
954
955 return ((high == 0 && (low & (low - 1)) == 0)
956 || (low == 0 && (high & (high - 1)) == 0));
957 }
958
959 /* Return 1 if EXPR is an integer constant other than zero or a
960 complex constant other than zero. */
961
962 int
963 integer_nonzerop (tree expr)
964 {
965 STRIP_NOPS (expr);
966
967 return ((TREE_CODE (expr) == INTEGER_CST
968 && ! TREE_CONSTANT_OVERFLOW (expr)
969 && (TREE_INT_CST_LOW (expr) != 0
970 || TREE_INT_CST_HIGH (expr) != 0))
971 || (TREE_CODE (expr) == COMPLEX_CST
972 && (integer_nonzerop (TREE_REALPART (expr))
973 || integer_nonzerop (TREE_IMAGPART (expr)))));
974 }
975
976 /* Return the power of two represented by a tree node known to be a
977 power of two. */
978
979 int
980 tree_log2 (tree expr)
981 {
982 int prec;
983 HOST_WIDE_INT high, low;
984
985 STRIP_NOPS (expr);
986
987 if (TREE_CODE (expr) == COMPLEX_CST)
988 return tree_log2 (TREE_REALPART (expr));
989
990 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
991 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
992
993 high = TREE_INT_CST_HIGH (expr);
994 low = TREE_INT_CST_LOW (expr);
995
996 /* First clear all bits that are beyond the type's precision in case
997 we've been sign extended. */
998
999 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1000 ;
1001 else if (prec > HOST_BITS_PER_WIDE_INT)
1002 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1003 else
1004 {
1005 high = 0;
1006 if (prec < HOST_BITS_PER_WIDE_INT)
1007 low &= ~((HOST_WIDE_INT) (-1) << prec);
1008 }
1009
1010 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1011 : exact_log2 (low));
1012 }
1013
1014 /* Similar, but return the largest integer Y such that 2 ** Y is less
1015 than or equal to EXPR. */
1016
1017 int
1018 tree_floor_log2 (tree expr)
1019 {
1020 int prec;
1021 HOST_WIDE_INT high, low;
1022
1023 STRIP_NOPS (expr);
1024
1025 if (TREE_CODE (expr) == COMPLEX_CST)
1026 return tree_log2 (TREE_REALPART (expr));
1027
1028 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1029 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1030
1031 high = TREE_INT_CST_HIGH (expr);
1032 low = TREE_INT_CST_LOW (expr);
1033
1034 /* First clear all bits that are beyond the type's precision in case
1035 we've been sign extended. Ignore if type's precision hasn't been set
1036 since what we are doing is setting it. */
1037
1038 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1039 ;
1040 else if (prec > HOST_BITS_PER_WIDE_INT)
1041 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1042 else
1043 {
1044 high = 0;
1045 if (prec < HOST_BITS_PER_WIDE_INT)
1046 low &= ~((HOST_WIDE_INT) (-1) << prec);
1047 }
1048
1049 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1050 : floor_log2 (low));
1051 }
1052
1053 /* Return 1 if EXPR is the real constant zero. */
1054
1055 int
1056 real_zerop (tree expr)
1057 {
1058 STRIP_NOPS (expr);
1059
1060 return ((TREE_CODE (expr) == REAL_CST
1061 && ! TREE_CONSTANT_OVERFLOW (expr)
1062 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1063 || (TREE_CODE (expr) == COMPLEX_CST
1064 && real_zerop (TREE_REALPART (expr))
1065 && real_zerop (TREE_IMAGPART (expr))));
1066 }
1067
1068 /* Return 1 if EXPR is the real constant one in real or complex form. */
1069
1070 int
1071 real_onep (tree expr)
1072 {
1073 STRIP_NOPS (expr);
1074
1075 return ((TREE_CODE (expr) == REAL_CST
1076 && ! TREE_CONSTANT_OVERFLOW (expr)
1077 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1078 || (TREE_CODE (expr) == COMPLEX_CST
1079 && real_onep (TREE_REALPART (expr))
1080 && real_zerop (TREE_IMAGPART (expr))));
1081 }
1082
1083 /* Return 1 if EXPR is the real constant two. */
1084
1085 int
1086 real_twop (tree expr)
1087 {
1088 STRIP_NOPS (expr);
1089
1090 return ((TREE_CODE (expr) == REAL_CST
1091 && ! TREE_CONSTANT_OVERFLOW (expr)
1092 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1093 || (TREE_CODE (expr) == COMPLEX_CST
1094 && real_twop (TREE_REALPART (expr))
1095 && real_zerop (TREE_IMAGPART (expr))));
1096 }
1097
1098 /* Return 1 if EXPR is the real constant minus one. */
1099
1100 int
1101 real_minus_onep (tree expr)
1102 {
1103 STRIP_NOPS (expr);
1104
1105 return ((TREE_CODE (expr) == REAL_CST
1106 && ! TREE_CONSTANT_OVERFLOW (expr)
1107 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1108 || (TREE_CODE (expr) == COMPLEX_CST
1109 && real_minus_onep (TREE_REALPART (expr))
1110 && real_zerop (TREE_IMAGPART (expr))));
1111 }
1112
1113 /* Nonzero if EXP is a constant or a cast of a constant. */
1114
1115 int
1116 really_constant_p (tree exp)
1117 {
1118 /* This is not quite the same as STRIP_NOPS. It does more. */
1119 while (TREE_CODE (exp) == NOP_EXPR
1120 || TREE_CODE (exp) == CONVERT_EXPR
1121 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1122 exp = TREE_OPERAND (exp, 0);
1123 return TREE_CONSTANT (exp);
1124 }
1125 \f
1126 /* Return first list element whose TREE_VALUE is ELEM.
1127 Return 0 if ELEM is not in LIST. */
1128
1129 tree
1130 value_member (tree elem, tree list)
1131 {
1132 while (list)
1133 {
1134 if (elem == TREE_VALUE (list))
1135 return list;
1136 list = TREE_CHAIN (list);
1137 }
1138 return NULL_TREE;
1139 }
1140
1141 /* Return first list element whose TREE_PURPOSE is ELEM.
1142 Return 0 if ELEM is not in LIST. */
1143
1144 tree
1145 purpose_member (tree elem, tree list)
1146 {
1147 while (list)
1148 {
1149 if (elem == TREE_PURPOSE (list))
1150 return list;
1151 list = TREE_CHAIN (list);
1152 }
1153 return NULL_TREE;
1154 }
1155
1156 /* Return nonzero if ELEM is part of the chain CHAIN. */
1157
1158 int
1159 chain_member (tree elem, tree chain)
1160 {
1161 while (chain)
1162 {
1163 if (elem == chain)
1164 return 1;
1165 chain = TREE_CHAIN (chain);
1166 }
1167
1168 return 0;
1169 }
1170
1171 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1172 We expect a null pointer to mark the end of the chain.
1173 This is the Lisp primitive `length'. */
1174
1175 int
1176 list_length (tree t)
1177 {
1178 tree p = t;
1179 #ifdef ENABLE_TREE_CHECKING
1180 tree q = t;
1181 #endif
1182 int len = 0;
1183
1184 while (p)
1185 {
1186 p = TREE_CHAIN (p);
1187 #ifdef ENABLE_TREE_CHECKING
1188 if (len % 2)
1189 q = TREE_CHAIN (q);
1190 gcc_assert (p != q);
1191 #endif
1192 len++;
1193 }
1194
1195 return len;
1196 }
1197
1198 /* Returns the number of FIELD_DECLs in TYPE. */
1199
1200 int
1201 fields_length (tree type)
1202 {
1203 tree t = TYPE_FIELDS (type);
1204 int count = 0;
1205
1206 for (; t; t = TREE_CHAIN (t))
1207 if (TREE_CODE (t) == FIELD_DECL)
1208 ++count;
1209
1210 return count;
1211 }
1212
1213 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1214 by modifying the last node in chain 1 to point to chain 2.
1215 This is the Lisp primitive `nconc'. */
1216
1217 tree
1218 chainon (tree op1, tree op2)
1219 {
1220 tree t1;
1221
1222 if (!op1)
1223 return op2;
1224 if (!op2)
1225 return op1;
1226
1227 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1228 continue;
1229 TREE_CHAIN (t1) = op2;
1230
1231 #ifdef ENABLE_TREE_CHECKING
1232 {
1233 tree t2;
1234 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1235 gcc_assert (t2 != t1);
1236 }
1237 #endif
1238
1239 return op1;
1240 }
1241
1242 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1243
1244 tree
1245 tree_last (tree chain)
1246 {
1247 tree next;
1248 if (chain)
1249 while ((next = TREE_CHAIN (chain)))
1250 chain = next;
1251 return chain;
1252 }
1253
1254 /* Reverse the order of elements in the chain T,
1255 and return the new head of the chain (old last element). */
1256
1257 tree
1258 nreverse (tree t)
1259 {
1260 tree prev = 0, decl, next;
1261 for (decl = t; decl; decl = next)
1262 {
1263 next = TREE_CHAIN (decl);
1264 TREE_CHAIN (decl) = prev;
1265 prev = decl;
1266 }
1267 return prev;
1268 }
1269 \f
1270 /* Return a newly created TREE_LIST node whose
1271 purpose and value fields are PARM and VALUE. */
1272
1273 tree
1274 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1275 {
1276 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1277 TREE_PURPOSE (t) = parm;
1278 TREE_VALUE (t) = value;
1279 return t;
1280 }
1281
1282 /* Return a newly created TREE_LIST node whose
1283 purpose and value fields are PURPOSE and VALUE
1284 and whose TREE_CHAIN is CHAIN. */
1285
1286 tree
1287 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1288 {
1289 tree node;
1290
1291 node = ggc_alloc_zone_stat (sizeof (struct tree_list),
1292 tree_zone PASS_MEM_STAT);
1293
1294 memset (node, 0, sizeof (struct tree_common));
1295
1296 #ifdef GATHER_STATISTICS
1297 tree_node_counts[(int) x_kind]++;
1298 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1299 #endif
1300
1301 TREE_SET_CODE (node, TREE_LIST);
1302 TREE_CHAIN (node) = chain;
1303 TREE_PURPOSE (node) = purpose;
1304 TREE_VALUE (node) = value;
1305 return node;
1306 }
1307
1308 \f
1309 /* Return the size nominally occupied by an object of type TYPE
1310 when it resides in memory. The value is measured in units of bytes,
1311 and its data type is that normally used for type sizes
1312 (which is the first type created by make_signed_type or
1313 make_unsigned_type). */
1314
1315 tree
1316 size_in_bytes (tree type)
1317 {
1318 tree t;
1319
1320 if (type == error_mark_node)
1321 return integer_zero_node;
1322
1323 type = TYPE_MAIN_VARIANT (type);
1324 t = TYPE_SIZE_UNIT (type);
1325
1326 if (t == 0)
1327 {
1328 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1329 return size_zero_node;
1330 }
1331
1332 if (TREE_CODE (t) == INTEGER_CST)
1333 t = force_fit_type (t, 0, false, false);
1334
1335 return t;
1336 }
1337
1338 /* Return the size of TYPE (in bytes) as a wide integer
1339 or return -1 if the size can vary or is larger than an integer. */
1340
1341 HOST_WIDE_INT
1342 int_size_in_bytes (tree type)
1343 {
1344 tree t;
1345
1346 if (type == error_mark_node)
1347 return 0;
1348
1349 type = TYPE_MAIN_VARIANT (type);
1350 t = TYPE_SIZE_UNIT (type);
1351 if (t == 0
1352 || TREE_CODE (t) != INTEGER_CST
1353 || TREE_OVERFLOW (t)
1354 || TREE_INT_CST_HIGH (t) != 0
1355 /* If the result would appear negative, it's too big to represent. */
1356 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1357 return -1;
1358
1359 return TREE_INT_CST_LOW (t);
1360 }
1361 \f
1362 /* Return the bit position of FIELD, in bits from the start of the record.
1363 This is a tree of type bitsizetype. */
1364
1365 tree
1366 bit_position (tree field)
1367 {
1368 return bit_from_pos (DECL_FIELD_OFFSET (field),
1369 DECL_FIELD_BIT_OFFSET (field));
1370 }
1371
1372 /* Likewise, but return as an integer. Abort if it cannot be represented
1373 in that way (since it could be a signed value, we don't have the option
1374 of returning -1 like int_size_in_byte can. */
1375
1376 HOST_WIDE_INT
1377 int_bit_position (tree field)
1378 {
1379 return tree_low_cst (bit_position (field), 0);
1380 }
1381 \f
1382 /* Return the byte position of FIELD, in bytes from the start of the record.
1383 This is a tree of type sizetype. */
1384
1385 tree
1386 byte_position (tree field)
1387 {
1388 return byte_from_pos (DECL_FIELD_OFFSET (field),
1389 DECL_FIELD_BIT_OFFSET (field));
1390 }
1391
1392 /* Likewise, but return as an integer. Abort if it cannot be represented
1393 in that way (since it could be a signed value, we don't have the option
1394 of returning -1 like int_size_in_byte can. */
1395
1396 HOST_WIDE_INT
1397 int_byte_position (tree field)
1398 {
1399 return tree_low_cst (byte_position (field), 0);
1400 }
1401 \f
1402 /* Return the strictest alignment, in bits, that T is known to have. */
1403
1404 unsigned int
1405 expr_align (tree t)
1406 {
1407 unsigned int align0, align1;
1408
1409 switch (TREE_CODE (t))
1410 {
1411 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1412 /* If we have conversions, we know that the alignment of the
1413 object must meet each of the alignments of the types. */
1414 align0 = expr_align (TREE_OPERAND (t, 0));
1415 align1 = TYPE_ALIGN (TREE_TYPE (t));
1416 return MAX (align0, align1);
1417
1418 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1419 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1420 case CLEANUP_POINT_EXPR:
1421 /* These don't change the alignment of an object. */
1422 return expr_align (TREE_OPERAND (t, 0));
1423
1424 case COND_EXPR:
1425 /* The best we can do is say that the alignment is the least aligned
1426 of the two arms. */
1427 align0 = expr_align (TREE_OPERAND (t, 1));
1428 align1 = expr_align (TREE_OPERAND (t, 2));
1429 return MIN (align0, align1);
1430
1431 case LABEL_DECL: case CONST_DECL:
1432 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1433 if (DECL_ALIGN (t) != 0)
1434 return DECL_ALIGN (t);
1435 break;
1436
1437 case FUNCTION_DECL:
1438 return FUNCTION_BOUNDARY;
1439
1440 default:
1441 break;
1442 }
1443
1444 /* Otherwise take the alignment from that of the type. */
1445 return TYPE_ALIGN (TREE_TYPE (t));
1446 }
1447 \f
1448 /* Return, as a tree node, the number of elements for TYPE (which is an
1449 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1450
1451 tree
1452 array_type_nelts (tree type)
1453 {
1454 tree index_type, min, max;
1455
1456 /* If they did it with unspecified bounds, then we should have already
1457 given an error about it before we got here. */
1458 if (! TYPE_DOMAIN (type))
1459 return error_mark_node;
1460
1461 index_type = TYPE_DOMAIN (type);
1462 min = TYPE_MIN_VALUE (index_type);
1463 max = TYPE_MAX_VALUE (index_type);
1464
1465 return (integer_zerop (min)
1466 ? max
1467 : fold (build2 (MINUS_EXPR, TREE_TYPE (max), max, min)));
1468 }
1469 \f
1470 /* If arg is static -- a reference to an object in static storage -- then
1471 return the object. This is not the same as the C meaning of `static'.
1472 If arg isn't static, return NULL. */
1473
1474 tree
1475 staticp (tree arg)
1476 {
1477 switch (TREE_CODE (arg))
1478 {
1479 case FUNCTION_DECL:
1480 /* Nested functions aren't static, since taking their address
1481 involves a trampoline. */
1482 return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1483 && ! DECL_NON_ADDR_CONST_P (arg)
1484 ? arg : NULL);
1485
1486 case VAR_DECL:
1487 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1488 && ! DECL_THREAD_LOCAL (arg)
1489 && ! DECL_NON_ADDR_CONST_P (arg)
1490 ? arg : NULL);
1491
1492 case CONSTRUCTOR:
1493 return TREE_STATIC (arg) ? arg : NULL;
1494
1495 case LABEL_DECL:
1496 case STRING_CST:
1497 return arg;
1498
1499 case COMPONENT_REF:
1500 /* If the thing being referenced is not a field, then it is
1501 something language specific. */
1502 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1503 return (*lang_hooks.staticp) (arg);
1504
1505 /* If we are referencing a bitfield, we can't evaluate an
1506 ADDR_EXPR at compile time and so it isn't a constant. */
1507 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
1508 return NULL;
1509
1510 return staticp (TREE_OPERAND (arg, 0));
1511
1512 case BIT_FIELD_REF:
1513 return NULL;
1514
1515 case MISALIGNED_INDIRECT_REF:
1516 case ALIGN_INDIRECT_REF:
1517 case INDIRECT_REF:
1518 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
1519
1520 case ARRAY_REF:
1521 case ARRAY_RANGE_REF:
1522 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1523 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1524 return staticp (TREE_OPERAND (arg, 0));
1525 else
1526 return false;
1527
1528 default:
1529 if ((unsigned int) TREE_CODE (arg)
1530 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1531 return lang_hooks.staticp (arg);
1532 else
1533 return NULL;
1534 }
1535 }
1536 \f
1537 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1538 Do this to any expression which may be used in more than one place,
1539 but must be evaluated only once.
1540
1541 Normally, expand_expr would reevaluate the expression each time.
1542 Calling save_expr produces something that is evaluated and recorded
1543 the first time expand_expr is called on it. Subsequent calls to
1544 expand_expr just reuse the recorded value.
1545
1546 The call to expand_expr that generates code that actually computes
1547 the value is the first call *at compile time*. Subsequent calls
1548 *at compile time* generate code to use the saved value.
1549 This produces correct result provided that *at run time* control
1550 always flows through the insns made by the first expand_expr
1551 before reaching the other places where the save_expr was evaluated.
1552 You, the caller of save_expr, must make sure this is so.
1553
1554 Constants, and certain read-only nodes, are returned with no
1555 SAVE_EXPR because that is safe. Expressions containing placeholders
1556 are not touched; see tree.def for an explanation of what these
1557 are used for. */
1558
1559 tree
1560 save_expr (tree expr)
1561 {
1562 tree t = fold (expr);
1563 tree inner;
1564
1565 /* If the tree evaluates to a constant, then we don't want to hide that
1566 fact (i.e. this allows further folding, and direct checks for constants).
1567 However, a read-only object that has side effects cannot be bypassed.
1568 Since it is no problem to reevaluate literals, we just return the
1569 literal node. */
1570 inner = skip_simple_arithmetic (t);
1571
1572 if (TREE_INVARIANT (inner)
1573 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1574 || TREE_CODE (inner) == SAVE_EXPR
1575 || TREE_CODE (inner) == ERROR_MARK)
1576 return t;
1577
1578 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1579 it means that the size or offset of some field of an object depends on
1580 the value within another field.
1581
1582 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1583 and some variable since it would then need to be both evaluated once and
1584 evaluated more than once. Front-ends must assure this case cannot
1585 happen by surrounding any such subexpressions in their own SAVE_EXPR
1586 and forcing evaluation at the proper time. */
1587 if (contains_placeholder_p (inner))
1588 return t;
1589
1590 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
1591
1592 /* This expression might be placed ahead of a jump to ensure that the
1593 value was computed on both sides of the jump. So make sure it isn't
1594 eliminated as dead. */
1595 TREE_SIDE_EFFECTS (t) = 1;
1596 TREE_INVARIANT (t) = 1;
1597 return t;
1598 }
1599
1600 /* Look inside EXPR and into any simple arithmetic operations. Return
1601 the innermost non-arithmetic node. */
1602
1603 tree
1604 skip_simple_arithmetic (tree expr)
1605 {
1606 tree inner;
1607
1608 /* We don't care about whether this can be used as an lvalue in this
1609 context. */
1610 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1611 expr = TREE_OPERAND (expr, 0);
1612
1613 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1614 a constant, it will be more efficient to not make another SAVE_EXPR since
1615 it will allow better simplification and GCSE will be able to merge the
1616 computations if they actually occur. */
1617 inner = expr;
1618 while (1)
1619 {
1620 if (UNARY_CLASS_P (inner))
1621 inner = TREE_OPERAND (inner, 0);
1622 else if (BINARY_CLASS_P (inner))
1623 {
1624 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
1625 inner = TREE_OPERAND (inner, 0);
1626 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
1627 inner = TREE_OPERAND (inner, 1);
1628 else
1629 break;
1630 }
1631 else
1632 break;
1633 }
1634
1635 return inner;
1636 }
1637
1638 /* Returns the index of the first non-tree operand for CODE, or the number
1639 of operands if all are trees. */
1640
1641 int
1642 first_rtl_op (enum tree_code code)
1643 {
1644 switch (code)
1645 {
1646 default:
1647 return TREE_CODE_LENGTH (code);
1648 }
1649 }
1650
1651 /* Return which tree structure is used by T. */
1652
1653 enum tree_node_structure_enum
1654 tree_node_structure (tree t)
1655 {
1656 enum tree_code code = TREE_CODE (t);
1657
1658 switch (TREE_CODE_CLASS (code))
1659 {
1660 case tcc_declaration:
1661 return TS_DECL;
1662 case tcc_type:
1663 return TS_TYPE;
1664 case tcc_reference:
1665 case tcc_comparison:
1666 case tcc_unary:
1667 case tcc_binary:
1668 case tcc_expression:
1669 case tcc_statement:
1670 return TS_EXP;
1671 default: /* tcc_constant and tcc_exceptional */
1672 break;
1673 }
1674 switch (code)
1675 {
1676 /* tcc_constant cases. */
1677 case INTEGER_CST: return TS_INT_CST;
1678 case REAL_CST: return TS_REAL_CST;
1679 case COMPLEX_CST: return TS_COMPLEX;
1680 case VECTOR_CST: return TS_VECTOR;
1681 case STRING_CST: return TS_STRING;
1682 /* tcc_exceptional cases. */
1683 case ERROR_MARK: return TS_COMMON;
1684 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1685 case TREE_LIST: return TS_LIST;
1686 case TREE_VEC: return TS_VEC;
1687 case PHI_NODE: return TS_PHI_NODE;
1688 case SSA_NAME: return TS_SSA_NAME;
1689 case PLACEHOLDER_EXPR: return TS_COMMON;
1690 case STATEMENT_LIST: return TS_STATEMENT_LIST;
1691 case BLOCK: return TS_BLOCK;
1692 case TREE_BINFO: return TS_BINFO;
1693 case VALUE_HANDLE: return TS_VALUE_HANDLE;
1694
1695 default:
1696 gcc_unreachable ();
1697 }
1698 }
1699 \f
1700 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1701 or offset that depends on a field within a record. */
1702
1703 bool
1704 contains_placeholder_p (tree exp)
1705 {
1706 enum tree_code code;
1707
1708 if (!exp)
1709 return 0;
1710
1711 code = TREE_CODE (exp);
1712 if (code == PLACEHOLDER_EXPR)
1713 return 1;
1714
1715 switch (TREE_CODE_CLASS (code))
1716 {
1717 case tcc_reference:
1718 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1719 position computations since they will be converted into a
1720 WITH_RECORD_EXPR involving the reference, which will assume
1721 here will be valid. */
1722 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1723
1724 case tcc_exceptional:
1725 if (code == TREE_LIST)
1726 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
1727 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
1728 break;
1729
1730 case tcc_unary:
1731 case tcc_binary:
1732 case tcc_comparison:
1733 case tcc_expression:
1734 switch (code)
1735 {
1736 case COMPOUND_EXPR:
1737 /* Ignoring the first operand isn't quite right, but works best. */
1738 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1739
1740 case COND_EXPR:
1741 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1742 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
1743 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
1744
1745 default:
1746 break;
1747 }
1748
1749 switch (first_rtl_op (code))
1750 {
1751 case 1:
1752 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1753 case 2:
1754 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1755 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
1756 default:
1757 return 0;
1758 }
1759
1760 default:
1761 return 0;
1762 }
1763 return 0;
1764 }
1765
1766 /* Return true if any part of the computation of TYPE involves a
1767 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
1768 (for QUAL_UNION_TYPE) and field positions. */
1769
1770 static bool
1771 type_contains_placeholder_1 (tree type)
1772 {
1773 /* If the size contains a placeholder or the parent type (component type in
1774 the case of arrays) type involves a placeholder, this type does. */
1775 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
1776 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
1777 || (TREE_TYPE (type) != 0
1778 && type_contains_placeholder_p (TREE_TYPE (type))))
1779 return true;
1780
1781 /* Now do type-specific checks. Note that the last part of the check above
1782 greatly limits what we have to do below. */
1783 switch (TREE_CODE (type))
1784 {
1785 case VOID_TYPE:
1786 case COMPLEX_TYPE:
1787 case ENUMERAL_TYPE:
1788 case BOOLEAN_TYPE:
1789 case CHAR_TYPE:
1790 case POINTER_TYPE:
1791 case OFFSET_TYPE:
1792 case REFERENCE_TYPE:
1793 case METHOD_TYPE:
1794 case FILE_TYPE:
1795 case FUNCTION_TYPE:
1796 return false;
1797
1798 case INTEGER_TYPE:
1799 case REAL_TYPE:
1800 /* Here we just check the bounds. */
1801 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
1802 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
1803
1804 case ARRAY_TYPE:
1805 case SET_TYPE:
1806 case VECTOR_TYPE:
1807 /* We're already checked the component type (TREE_TYPE), so just check
1808 the index type. */
1809 return type_contains_placeholder_p (TYPE_DOMAIN (type));
1810
1811 case RECORD_TYPE:
1812 case UNION_TYPE:
1813 case QUAL_UNION_TYPE:
1814 {
1815 tree field;
1816
1817 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1818 if (TREE_CODE (field) == FIELD_DECL
1819 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
1820 || (TREE_CODE (type) == QUAL_UNION_TYPE
1821 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
1822 || type_contains_placeholder_p (TREE_TYPE (field))))
1823 return true;
1824
1825 return false;
1826 }
1827
1828 default:
1829 gcc_unreachable ();
1830 }
1831 }
1832
1833 bool
1834 type_contains_placeholder_p (tree type)
1835 {
1836 bool result;
1837
1838 /* If the contains_placeholder_bits field has been initialized,
1839 then we know the answer. */
1840 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
1841 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
1842
1843 /* Indicate that we've seen this type node, and the answer is false.
1844 This is what we want to return if we run into recursion via fields. */
1845 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
1846
1847 /* Compute the real value. */
1848 result = type_contains_placeholder_1 (type);
1849
1850 /* Store the real value. */
1851 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
1852
1853 return result;
1854 }
1855 \f
1856 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1857 return a tree with all occurrences of references to F in a
1858 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1859 contains only arithmetic expressions or a CALL_EXPR with a
1860 PLACEHOLDER_EXPR occurring only in its arglist. */
1861
1862 tree
1863 substitute_in_expr (tree exp, tree f, tree r)
1864 {
1865 enum tree_code code = TREE_CODE (exp);
1866 tree op0, op1, op2;
1867 tree new;
1868 tree inner;
1869
1870 /* We handle TREE_LIST and COMPONENT_REF separately. */
1871 if (code == TREE_LIST)
1872 {
1873 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
1874 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
1875 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1876 return exp;
1877
1878 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1879 }
1880 else if (code == COMPONENT_REF)
1881 {
1882 /* If this expression is getting a value from a PLACEHOLDER_EXPR
1883 and it is the right field, replace it with R. */
1884 for (inner = TREE_OPERAND (exp, 0);
1885 REFERENCE_CLASS_P (inner);
1886 inner = TREE_OPERAND (inner, 0))
1887 ;
1888 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1889 && TREE_OPERAND (exp, 1) == f)
1890 return r;
1891
1892 /* If this expression hasn't been completed let, leave it alone. */
1893 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
1894 return exp;
1895
1896 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
1897 if (op0 == TREE_OPERAND (exp, 0))
1898 return exp;
1899
1900 new = fold (build3 (COMPONENT_REF, TREE_TYPE (exp),
1901 op0, TREE_OPERAND (exp, 1), NULL_TREE));
1902 }
1903 else
1904 switch (TREE_CODE_CLASS (code))
1905 {
1906 case tcc_constant:
1907 case tcc_declaration:
1908 return exp;
1909
1910 case tcc_exceptional:
1911 case tcc_unary:
1912 case tcc_binary:
1913 case tcc_comparison:
1914 case tcc_expression:
1915 case tcc_reference:
1916 switch (first_rtl_op (code))
1917 {
1918 case 0:
1919 return exp;
1920
1921 case 1:
1922 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
1923 if (op0 == TREE_OPERAND (exp, 0))
1924 return exp;
1925
1926 new = fold (build1 (code, TREE_TYPE (exp), op0));
1927 break;
1928
1929 case 2:
1930 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
1931 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
1932
1933 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
1934 return exp;
1935
1936 new = fold (build2 (code, TREE_TYPE (exp), op0, op1));
1937 break;
1938
1939 case 3:
1940 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
1941 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
1942 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
1943
1944 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
1945 && op2 == TREE_OPERAND (exp, 2))
1946 return exp;
1947
1948 new = fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
1949 break;
1950
1951 default:
1952 gcc_unreachable ();
1953 }
1954 break;
1955
1956 default:
1957 gcc_unreachable ();
1958 }
1959
1960 TREE_READONLY (new) = TREE_READONLY (exp);
1961 return new;
1962 }
1963
1964 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
1965 for it within OBJ, a tree that is an object or a chain of references. */
1966
1967 tree
1968 substitute_placeholder_in_expr (tree exp, tree obj)
1969 {
1970 enum tree_code code = TREE_CODE (exp);
1971 tree op0, op1, op2, op3;
1972
1973 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
1974 in the chain of OBJ. */
1975 if (code == PLACEHOLDER_EXPR)
1976 {
1977 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
1978 tree elt;
1979
1980 for (elt = obj; elt != 0;
1981 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
1982 || TREE_CODE (elt) == COND_EXPR)
1983 ? TREE_OPERAND (elt, 1)
1984 : (REFERENCE_CLASS_P (elt)
1985 || UNARY_CLASS_P (elt)
1986 || BINARY_CLASS_P (elt)
1987 || EXPRESSION_CLASS_P (elt))
1988 ? TREE_OPERAND (elt, 0) : 0))
1989 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
1990 return elt;
1991
1992 for (elt = obj; elt != 0;
1993 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
1994 || TREE_CODE (elt) == COND_EXPR)
1995 ? TREE_OPERAND (elt, 1)
1996 : (REFERENCE_CLASS_P (elt)
1997 || UNARY_CLASS_P (elt)
1998 || BINARY_CLASS_P (elt)
1999 || EXPRESSION_CLASS_P (elt))
2000 ? TREE_OPERAND (elt, 0) : 0))
2001 if (POINTER_TYPE_P (TREE_TYPE (elt))
2002 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2003 == need_type))
2004 return fold (build1 (INDIRECT_REF, need_type, elt));
2005
2006 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2007 survives until RTL generation, there will be an error. */
2008 return exp;
2009 }
2010
2011 /* TREE_LIST is special because we need to look at TREE_VALUE
2012 and TREE_CHAIN, not TREE_OPERANDS. */
2013 else if (code == TREE_LIST)
2014 {
2015 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2016 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2017 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2018 return exp;
2019
2020 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2021 }
2022 else
2023 switch (TREE_CODE_CLASS (code))
2024 {
2025 case tcc_constant:
2026 case tcc_declaration:
2027 return exp;
2028
2029 case tcc_exceptional:
2030 case tcc_unary:
2031 case tcc_binary:
2032 case tcc_comparison:
2033 case tcc_expression:
2034 case tcc_reference:
2035 case tcc_statement:
2036 switch (first_rtl_op (code))
2037 {
2038 case 0:
2039 return exp;
2040
2041 case 1:
2042 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2043 if (op0 == TREE_OPERAND (exp, 0))
2044 return exp;
2045 else
2046 return fold (build1 (code, TREE_TYPE (exp), op0));
2047
2048 case 2:
2049 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2050 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2051
2052 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2053 return exp;
2054 else
2055 return fold (build2 (code, TREE_TYPE (exp), op0, op1));
2056
2057 case 3:
2058 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2059 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2060 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2061
2062 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2063 && op2 == TREE_OPERAND (exp, 2))
2064 return exp;
2065 else
2066 return fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
2067
2068 case 4:
2069 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2070 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2071 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2072 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2073
2074 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2075 && op2 == TREE_OPERAND (exp, 2)
2076 && op3 == TREE_OPERAND (exp, 3))
2077 return exp;
2078 else
2079 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2080
2081 default:
2082 gcc_unreachable ();
2083 }
2084 break;
2085
2086 default:
2087 gcc_unreachable ();
2088 }
2089 }
2090 \f
2091 /* Stabilize a reference so that we can use it any number of times
2092 without causing its operands to be evaluated more than once.
2093 Returns the stabilized reference. This works by means of save_expr,
2094 so see the caveats in the comments about save_expr.
2095
2096 Also allows conversion expressions whose operands are references.
2097 Any other kind of expression is returned unchanged. */
2098
2099 tree
2100 stabilize_reference (tree ref)
2101 {
2102 tree result;
2103 enum tree_code code = TREE_CODE (ref);
2104
2105 switch (code)
2106 {
2107 case VAR_DECL:
2108 case PARM_DECL:
2109 case RESULT_DECL:
2110 /* No action is needed in this case. */
2111 return ref;
2112
2113 case NOP_EXPR:
2114 case CONVERT_EXPR:
2115 case FLOAT_EXPR:
2116 case FIX_TRUNC_EXPR:
2117 case FIX_FLOOR_EXPR:
2118 case FIX_ROUND_EXPR:
2119 case FIX_CEIL_EXPR:
2120 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2121 break;
2122
2123 case INDIRECT_REF:
2124 result = build_nt (INDIRECT_REF,
2125 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2126 break;
2127
2128 case COMPONENT_REF:
2129 result = build_nt (COMPONENT_REF,
2130 stabilize_reference (TREE_OPERAND (ref, 0)),
2131 TREE_OPERAND (ref, 1), NULL_TREE);
2132 break;
2133
2134 case BIT_FIELD_REF:
2135 result = build_nt (BIT_FIELD_REF,
2136 stabilize_reference (TREE_OPERAND (ref, 0)),
2137 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2138 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2139 break;
2140
2141 case ARRAY_REF:
2142 result = build_nt (ARRAY_REF,
2143 stabilize_reference (TREE_OPERAND (ref, 0)),
2144 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2145 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2146 break;
2147
2148 case ARRAY_RANGE_REF:
2149 result = build_nt (ARRAY_RANGE_REF,
2150 stabilize_reference (TREE_OPERAND (ref, 0)),
2151 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2152 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2153 break;
2154
2155 case COMPOUND_EXPR:
2156 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2157 it wouldn't be ignored. This matters when dealing with
2158 volatiles. */
2159 return stabilize_reference_1 (ref);
2160
2161 /* If arg isn't a kind of lvalue we recognize, make no change.
2162 Caller should recognize the error for an invalid lvalue. */
2163 default:
2164 return ref;
2165
2166 case ERROR_MARK:
2167 return error_mark_node;
2168 }
2169
2170 TREE_TYPE (result) = TREE_TYPE (ref);
2171 TREE_READONLY (result) = TREE_READONLY (ref);
2172 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2173 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2174
2175 return result;
2176 }
2177
2178 /* Subroutine of stabilize_reference; this is called for subtrees of
2179 references. Any expression with side-effects must be put in a SAVE_EXPR
2180 to ensure that it is only evaluated once.
2181
2182 We don't put SAVE_EXPR nodes around everything, because assigning very
2183 simple expressions to temporaries causes us to miss good opportunities
2184 for optimizations. Among other things, the opportunity to fold in the
2185 addition of a constant into an addressing mode often gets lost, e.g.
2186 "y[i+1] += x;". In general, we take the approach that we should not make
2187 an assignment unless we are forced into it - i.e., that any non-side effect
2188 operator should be allowed, and that cse should take care of coalescing
2189 multiple utterances of the same expression should that prove fruitful. */
2190
2191 tree
2192 stabilize_reference_1 (tree e)
2193 {
2194 tree result;
2195 enum tree_code code = TREE_CODE (e);
2196
2197 /* We cannot ignore const expressions because it might be a reference
2198 to a const array but whose index contains side-effects. But we can
2199 ignore things that are actual constant or that already have been
2200 handled by this function. */
2201
2202 if (TREE_INVARIANT (e))
2203 return e;
2204
2205 switch (TREE_CODE_CLASS (code))
2206 {
2207 case tcc_exceptional:
2208 case tcc_type:
2209 case tcc_declaration:
2210 case tcc_comparison:
2211 case tcc_statement:
2212 case tcc_expression:
2213 case tcc_reference:
2214 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2215 so that it will only be evaluated once. */
2216 /* The reference (r) and comparison (<) classes could be handled as
2217 below, but it is generally faster to only evaluate them once. */
2218 if (TREE_SIDE_EFFECTS (e))
2219 return save_expr (e);
2220 return e;
2221
2222 case tcc_constant:
2223 /* Constants need no processing. In fact, we should never reach
2224 here. */
2225 return e;
2226
2227 case tcc_binary:
2228 /* Division is slow and tends to be compiled with jumps,
2229 especially the division by powers of 2 that is often
2230 found inside of an array reference. So do it just once. */
2231 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2232 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2233 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2234 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2235 return save_expr (e);
2236 /* Recursively stabilize each operand. */
2237 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2238 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2239 break;
2240
2241 case tcc_unary:
2242 /* Recursively stabilize each operand. */
2243 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2244 break;
2245
2246 default:
2247 gcc_unreachable ();
2248 }
2249
2250 TREE_TYPE (result) = TREE_TYPE (e);
2251 TREE_READONLY (result) = TREE_READONLY (e);
2252 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2253 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2254 TREE_INVARIANT (result) = 1;
2255
2256 return result;
2257 }
2258 \f
2259 /* Low-level constructors for expressions. */
2260
2261 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2262 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2263
2264 void
2265 recompute_tree_invarant_for_addr_expr (tree t)
2266 {
2267 tree node;
2268 bool tc = true, ti = true, se = false;
2269
2270 /* We started out assuming this address is both invariant and constant, but
2271 does not have side effects. Now go down any handled components and see if
2272 any of them involve offsets that are either non-constant or non-invariant.
2273 Also check for side-effects.
2274
2275 ??? Note that this code makes no attempt to deal with the case where
2276 taking the address of something causes a copy due to misalignment. */
2277
2278 #define UPDATE_TITCSE(NODE) \
2279 do { tree _node = (NODE); \
2280 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2281 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2282 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2283
2284 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2285 node = TREE_OPERAND (node, 0))
2286 {
2287 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2288 array reference (probably made temporarily by the G++ front end),
2289 so ignore all the operands. */
2290 if ((TREE_CODE (node) == ARRAY_REF
2291 || TREE_CODE (node) == ARRAY_RANGE_REF)
2292 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2293 {
2294 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2295 if (TREE_OPERAND (node, 2))
2296 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2297 if (TREE_OPERAND (node, 3))
2298 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2299 }
2300 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2301 FIELD_DECL, apparently. The G++ front end can put something else
2302 there, at least temporarily. */
2303 else if (TREE_CODE (node) == COMPONENT_REF
2304 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2305 {
2306 if (TREE_OPERAND (node, 2))
2307 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2308 }
2309 else if (TREE_CODE (node) == BIT_FIELD_REF)
2310 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2311 }
2312
2313 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2314 the address, since &(*a)->b is a form of addition. If it's a decl, it's
2315 invariant and constant if the decl is static. It's also invariant if it's
2316 a decl in the current function. Taking the address of a volatile variable
2317 is not volatile. If it's a constant, the address is both invariant and
2318 constant. Otherwise it's neither. */
2319 if (TREE_CODE (node) == INDIRECT_REF)
2320 UPDATE_TITCSE (TREE_OPERAND (node, 0));
2321 else if (DECL_P (node))
2322 {
2323 if (staticp (node))
2324 ;
2325 else if (decl_function_context (node) == current_function_decl)
2326 tc = false;
2327 else
2328 ti = tc = false;
2329 }
2330 else if (CONSTANT_CLASS_P (node))
2331 ;
2332 else
2333 {
2334 ti = tc = false;
2335 se |= TREE_SIDE_EFFECTS (node);
2336 }
2337
2338 TREE_CONSTANT (t) = tc;
2339 TREE_INVARIANT (t) = ti;
2340 TREE_SIDE_EFFECTS (t) = se;
2341 #undef UPDATE_TITCSE
2342 }
2343
2344 /* Build an expression of code CODE, data type TYPE, and operands as
2345 specified. Expressions and reference nodes can be created this way.
2346 Constants, decls, types and misc nodes cannot be.
2347
2348 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2349 enough for all extant tree codes. These functions can be called
2350 directly (preferably!), but can also be obtained via GCC preprocessor
2351 magic within the build macro. */
2352
2353 tree
2354 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2355 {
2356 tree t;
2357
2358 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2359
2360 t = make_node_stat (code PASS_MEM_STAT);
2361 TREE_TYPE (t) = tt;
2362
2363 return t;
2364 }
2365
2366 tree
2367 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2368 {
2369 int length = sizeof (struct tree_exp);
2370 #ifdef GATHER_STATISTICS
2371 tree_node_kind kind;
2372 #endif
2373 tree t;
2374
2375 #ifdef GATHER_STATISTICS
2376 switch (TREE_CODE_CLASS (code))
2377 {
2378 case tcc_statement: /* an expression with side effects */
2379 kind = s_kind;
2380 break;
2381 case tcc_reference: /* a reference */
2382 kind = r_kind;
2383 break;
2384 default:
2385 kind = e_kind;
2386 break;
2387 }
2388
2389 tree_node_counts[(int) kind]++;
2390 tree_node_sizes[(int) kind] += length;
2391 #endif
2392
2393 gcc_assert (TREE_CODE_LENGTH (code) == 1);
2394
2395 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
2396
2397 memset (t, 0, sizeof (struct tree_common));
2398
2399 TREE_SET_CODE (t, code);
2400
2401 TREE_TYPE (t) = type;
2402 #ifdef USE_MAPPED_LOCATION
2403 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2404 #else
2405 SET_EXPR_LOCUS (t, NULL);
2406 #endif
2407 TREE_COMPLEXITY (t) = 0;
2408 TREE_OPERAND (t, 0) = node;
2409 TREE_BLOCK (t) = NULL_TREE;
2410 if (node && !TYPE_P (node) && first_rtl_op (code) != 0)
2411 {
2412 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2413 TREE_READONLY (t) = TREE_READONLY (node);
2414 }
2415
2416 if (TREE_CODE_CLASS (code) == tcc_statement)
2417 TREE_SIDE_EFFECTS (t) = 1;
2418 else switch (code)
2419 {
2420 case INIT_EXPR:
2421 case MODIFY_EXPR:
2422 case VA_ARG_EXPR:
2423 case PREDECREMENT_EXPR:
2424 case PREINCREMENT_EXPR:
2425 case POSTDECREMENT_EXPR:
2426 case POSTINCREMENT_EXPR:
2427 /* All of these have side-effects, no matter what their
2428 operands are. */
2429 TREE_SIDE_EFFECTS (t) = 1;
2430 TREE_READONLY (t) = 0;
2431 break;
2432
2433 case MISALIGNED_INDIRECT_REF:
2434 case ALIGN_INDIRECT_REF:
2435 case INDIRECT_REF:
2436 /* Whether a dereference is readonly has nothing to do with whether
2437 its operand is readonly. */
2438 TREE_READONLY (t) = 0;
2439 break;
2440
2441 case ADDR_EXPR:
2442 if (node)
2443 recompute_tree_invarant_for_addr_expr (t);
2444 break;
2445
2446 default:
2447 if (TREE_CODE_CLASS (code) == tcc_unary
2448 && node && !TYPE_P (node)
2449 && TREE_CONSTANT (node))
2450 TREE_CONSTANT (t) = 1;
2451 if (TREE_CODE_CLASS (code) == tcc_unary
2452 && node && TREE_INVARIANT (node))
2453 TREE_INVARIANT (t) = 1;
2454 if (TREE_CODE_CLASS (code) == tcc_reference
2455 && node && TREE_THIS_VOLATILE (node))
2456 TREE_THIS_VOLATILE (t) = 1;
2457 break;
2458 }
2459
2460 return t;
2461 }
2462
2463 #define PROCESS_ARG(N) \
2464 do { \
2465 TREE_OPERAND (t, N) = arg##N; \
2466 if (arg##N &&!TYPE_P (arg##N) && fro > N) \
2467 { \
2468 if (TREE_SIDE_EFFECTS (arg##N)) \
2469 side_effects = 1; \
2470 if (!TREE_READONLY (arg##N)) \
2471 read_only = 0; \
2472 if (!TREE_CONSTANT (arg##N)) \
2473 constant = 0; \
2474 if (!TREE_INVARIANT (arg##N)) \
2475 invariant = 0; \
2476 } \
2477 } while (0)
2478
2479 tree
2480 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2481 {
2482 bool constant, read_only, side_effects, invariant;
2483 tree t;
2484 int fro;
2485
2486 gcc_assert (TREE_CODE_LENGTH (code) == 2);
2487
2488 t = make_node_stat (code PASS_MEM_STAT);
2489 TREE_TYPE (t) = tt;
2490
2491 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2492 result based on those same flags for the arguments. But if the
2493 arguments aren't really even `tree' expressions, we shouldn't be trying
2494 to do this. */
2495 fro = first_rtl_op (code);
2496
2497 /* Expressions without side effects may be constant if their
2498 arguments are as well. */
2499 constant = (TREE_CODE_CLASS (code) == tcc_comparison
2500 || TREE_CODE_CLASS (code) == tcc_binary);
2501 read_only = 1;
2502 side_effects = TREE_SIDE_EFFECTS (t);
2503 invariant = constant;
2504
2505 PROCESS_ARG(0);
2506 PROCESS_ARG(1);
2507
2508 TREE_READONLY (t) = read_only;
2509 TREE_CONSTANT (t) = constant;
2510 TREE_INVARIANT (t) = invariant;
2511 TREE_SIDE_EFFECTS (t) = side_effects;
2512 TREE_THIS_VOLATILE (t)
2513 = (TREE_CODE_CLASS (code) == tcc_reference
2514 && arg0 && TREE_THIS_VOLATILE (arg0));
2515
2516 return t;
2517 }
2518
2519 tree
2520 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2521 tree arg2 MEM_STAT_DECL)
2522 {
2523 bool constant, read_only, side_effects, invariant;
2524 tree t;
2525 int fro;
2526
2527 gcc_assert (TREE_CODE_LENGTH (code) == 3);
2528
2529 t = make_node_stat (code PASS_MEM_STAT);
2530 TREE_TYPE (t) = tt;
2531
2532 fro = first_rtl_op (code);
2533
2534 side_effects = TREE_SIDE_EFFECTS (t);
2535
2536 PROCESS_ARG(0);
2537 PROCESS_ARG(1);
2538 PROCESS_ARG(2);
2539
2540 if (code == CALL_EXPR && !side_effects)
2541 {
2542 tree node;
2543 int i;
2544
2545 /* Calls have side-effects, except those to const or
2546 pure functions. */
2547 i = call_expr_flags (t);
2548 if (!(i & (ECF_CONST | ECF_PURE)))
2549 side_effects = 1;
2550
2551 /* And even those have side-effects if their arguments do. */
2552 else for (node = arg1; node; node = TREE_CHAIN (node))
2553 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
2554 {
2555 side_effects = 1;
2556 break;
2557 }
2558 }
2559
2560 TREE_SIDE_EFFECTS (t) = side_effects;
2561 TREE_THIS_VOLATILE (t)
2562 = (TREE_CODE_CLASS (code) == tcc_reference
2563 && arg0 && TREE_THIS_VOLATILE (arg0));
2564
2565 return t;
2566 }
2567
2568 tree
2569 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2570 tree arg2, tree arg3 MEM_STAT_DECL)
2571 {
2572 bool constant, read_only, side_effects, invariant;
2573 tree t;
2574 int fro;
2575
2576 gcc_assert (TREE_CODE_LENGTH (code) == 4);
2577
2578 t = make_node_stat (code PASS_MEM_STAT);
2579 TREE_TYPE (t) = tt;
2580
2581 fro = first_rtl_op (code);
2582
2583 side_effects = TREE_SIDE_EFFECTS (t);
2584
2585 PROCESS_ARG(0);
2586 PROCESS_ARG(1);
2587 PROCESS_ARG(2);
2588 PROCESS_ARG(3);
2589
2590 TREE_SIDE_EFFECTS (t) = side_effects;
2591 TREE_THIS_VOLATILE (t)
2592 = (TREE_CODE_CLASS (code) == tcc_reference
2593 && arg0 && TREE_THIS_VOLATILE (arg0));
2594
2595 return t;
2596 }
2597
2598 /* Backup definition for non-gcc build compilers. */
2599
2600 tree
2601 (build) (enum tree_code code, tree tt, ...)
2602 {
2603 tree t, arg0, arg1, arg2, arg3;
2604 int length = TREE_CODE_LENGTH (code);
2605 va_list p;
2606
2607 va_start (p, tt);
2608 switch (length)
2609 {
2610 case 0:
2611 t = build0 (code, tt);
2612 break;
2613 case 1:
2614 arg0 = va_arg (p, tree);
2615 t = build1 (code, tt, arg0);
2616 break;
2617 case 2:
2618 arg0 = va_arg (p, tree);
2619 arg1 = va_arg (p, tree);
2620 t = build2 (code, tt, arg0, arg1);
2621 break;
2622 case 3:
2623 arg0 = va_arg (p, tree);
2624 arg1 = va_arg (p, tree);
2625 arg2 = va_arg (p, tree);
2626 t = build3 (code, tt, arg0, arg1, arg2);
2627 break;
2628 case 4:
2629 arg0 = va_arg (p, tree);
2630 arg1 = va_arg (p, tree);
2631 arg2 = va_arg (p, tree);
2632 arg3 = va_arg (p, tree);
2633 t = build4 (code, tt, arg0, arg1, arg2, arg3);
2634 break;
2635 default:
2636 gcc_unreachable ();
2637 }
2638 va_end (p);
2639
2640 return t;
2641 }
2642
2643 /* Similar except don't specify the TREE_TYPE
2644 and leave the TREE_SIDE_EFFECTS as 0.
2645 It is permissible for arguments to be null,
2646 or even garbage if their values do not matter. */
2647
2648 tree
2649 build_nt (enum tree_code code, ...)
2650 {
2651 tree t;
2652 int length;
2653 int i;
2654 va_list p;
2655
2656 va_start (p, code);
2657
2658 t = make_node (code);
2659 length = TREE_CODE_LENGTH (code);
2660
2661 for (i = 0; i < length; i++)
2662 TREE_OPERAND (t, i) = va_arg (p, tree);
2663
2664 va_end (p);
2665 return t;
2666 }
2667 \f
2668 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2669 We do NOT enter this node in any sort of symbol table.
2670
2671 layout_decl is used to set up the decl's storage layout.
2672 Other slots are initialized to 0 or null pointers. */
2673
2674 tree
2675 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
2676 {
2677 tree t;
2678
2679 t = make_node_stat (code PASS_MEM_STAT);
2680
2681 /* if (type == error_mark_node)
2682 type = integer_type_node; */
2683 /* That is not done, deliberately, so that having error_mark_node
2684 as the type can suppress useless errors in the use of this variable. */
2685
2686 DECL_NAME (t) = name;
2687 TREE_TYPE (t) = type;
2688
2689 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2690 layout_decl (t, 0);
2691 else if (code == FUNCTION_DECL)
2692 DECL_MODE (t) = FUNCTION_MODE;
2693
2694 /* Set default visibility to whatever the user supplied with
2695 visibility_specified depending on #pragma GCC visibility. */
2696 DECL_VISIBILITY (t) = default_visibility;
2697 DECL_VISIBILITY_SPECIFIED (t) = visibility_options.inpragma;
2698
2699 return t;
2700 }
2701 \f
2702 /* BLOCK nodes are used to represent the structure of binding contours
2703 and declarations, once those contours have been exited and their contents
2704 compiled. This information is used for outputting debugging info. */
2705
2706 tree
2707 build_block (tree vars, tree tags ATTRIBUTE_UNUSED, tree subblocks,
2708 tree supercontext, tree chain)
2709 {
2710 tree block = make_node (BLOCK);
2711
2712 BLOCK_VARS (block) = vars;
2713 BLOCK_SUBBLOCKS (block) = subblocks;
2714 BLOCK_SUPERCONTEXT (block) = supercontext;
2715 BLOCK_CHAIN (block) = chain;
2716 return block;
2717 }
2718
2719 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
2720 /* ??? gengtype doesn't handle conditionals */
2721 static GTY(()) tree last_annotated_node;
2722 #endif
2723
2724 #ifdef USE_MAPPED_LOCATION
2725
2726 expanded_location
2727 expand_location (source_location loc)
2728 {
2729 expanded_location xloc;
2730 if (loc == 0) { xloc.file = NULL; xloc.line = 0; xloc.column = 0; }
2731 else
2732 {
2733 const struct line_map *map = linemap_lookup (&line_table, loc);
2734 xloc.file = map->to_file;
2735 xloc.line = SOURCE_LINE (map, loc);
2736 xloc.column = SOURCE_COLUMN (map, loc);
2737 };
2738 return xloc;
2739 }
2740
2741 #else
2742
2743 /* Record the exact location where an expression or an identifier were
2744 encountered. */
2745
2746 void
2747 annotate_with_file_line (tree node, const char *file, int line)
2748 {
2749 /* Roughly one percent of the calls to this function are to annotate
2750 a node with the same information already attached to that node!
2751 Just return instead of wasting memory. */
2752 if (EXPR_LOCUS (node)
2753 && (EXPR_FILENAME (node) == file
2754 || ! strcmp (EXPR_FILENAME (node), file))
2755 && EXPR_LINENO (node) == line)
2756 {
2757 last_annotated_node = node;
2758 return;
2759 }
2760
2761 /* In heavily macroized code (such as GCC itself) this single
2762 entry cache can reduce the number of allocations by more
2763 than half. */
2764 if (last_annotated_node
2765 && EXPR_LOCUS (last_annotated_node)
2766 && (EXPR_FILENAME (last_annotated_node) == file
2767 || ! strcmp (EXPR_FILENAME (last_annotated_node), file))
2768 && EXPR_LINENO (last_annotated_node) == line)
2769 {
2770 SET_EXPR_LOCUS (node, EXPR_LOCUS (last_annotated_node));
2771 return;
2772 }
2773
2774 SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
2775 EXPR_LINENO (node) = line;
2776 EXPR_FILENAME (node) = file;
2777 last_annotated_node = node;
2778 }
2779
2780 void
2781 annotate_with_locus (tree node, location_t locus)
2782 {
2783 annotate_with_file_line (node, locus.file, locus.line);
2784 }
2785 #endif
2786 \f
2787 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2788 is ATTRIBUTE. */
2789
2790 tree
2791 build_decl_attribute_variant (tree ddecl, tree attribute)
2792 {
2793 DECL_ATTRIBUTES (ddecl) = attribute;
2794 return ddecl;
2795 }
2796
2797 /* Borrowed from hashtab.c iterative_hash implementation. */
2798 #define mix(a,b,c) \
2799 { \
2800 a -= b; a -= c; a ^= (c>>13); \
2801 b -= c; b -= a; b ^= (a<< 8); \
2802 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
2803 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
2804 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
2805 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
2806 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
2807 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
2808 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
2809 }
2810
2811
2812 /* Produce good hash value combining VAL and VAL2. */
2813 static inline hashval_t
2814 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
2815 {
2816 /* the golden ratio; an arbitrary value. */
2817 hashval_t a = 0x9e3779b9;
2818
2819 mix (a, val, val2);
2820 return val2;
2821 }
2822
2823 /* Produce good hash value combining PTR and VAL2. */
2824 static inline hashval_t
2825 iterative_hash_pointer (void *ptr, hashval_t val2)
2826 {
2827 if (sizeof (ptr) == sizeof (hashval_t))
2828 return iterative_hash_hashval_t ((size_t) ptr, val2);
2829 else
2830 {
2831 hashval_t a = (hashval_t) (size_t) ptr;
2832 /* Avoid warnings about shifting of more than the width of the type on
2833 hosts that won't execute this path. */
2834 int zero = 0;
2835 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
2836 mix (a, b, val2);
2837 return val2;
2838 }
2839 }
2840
2841 /* Produce good hash value combining VAL and VAL2. */
2842 static inline hashval_t
2843 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
2844 {
2845 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
2846 return iterative_hash_hashval_t (val, val2);
2847 else
2848 {
2849 hashval_t a = (hashval_t) val;
2850 /* Avoid warnings about shifting of more than the width of the type on
2851 hosts that won't execute this path. */
2852 int zero = 0;
2853 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
2854 mix (a, b, val2);
2855 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
2856 {
2857 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
2858 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
2859 mix (a, b, val2);
2860 }
2861 return val2;
2862 }
2863 }
2864
2865 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2866 is ATTRIBUTE.
2867
2868 Record such modified types already made so we don't make duplicates. */
2869
2870 tree
2871 build_type_attribute_variant (tree ttype, tree attribute)
2872 {
2873 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2874 {
2875 hashval_t hashcode = 0;
2876 tree ntype;
2877 enum tree_code code = TREE_CODE (ttype);
2878
2879 ntype = copy_node (ttype);
2880
2881 TYPE_POINTER_TO (ntype) = 0;
2882 TYPE_REFERENCE_TO (ntype) = 0;
2883 TYPE_ATTRIBUTES (ntype) = attribute;
2884
2885 /* Create a new main variant of TYPE. */
2886 TYPE_MAIN_VARIANT (ntype) = ntype;
2887 TYPE_NEXT_VARIANT (ntype) = 0;
2888 set_type_quals (ntype, TYPE_UNQUALIFIED);
2889
2890 hashcode = iterative_hash_object (code, hashcode);
2891 if (TREE_TYPE (ntype))
2892 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
2893 hashcode);
2894 hashcode = attribute_hash_list (attribute, hashcode);
2895
2896 switch (TREE_CODE (ntype))
2897 {
2898 case FUNCTION_TYPE:
2899 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
2900 break;
2901 case ARRAY_TYPE:
2902 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
2903 hashcode);
2904 break;
2905 case INTEGER_TYPE:
2906 hashcode = iterative_hash_object
2907 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
2908 hashcode = iterative_hash_object
2909 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
2910 break;
2911 case REAL_TYPE:
2912 {
2913 unsigned int precision = TYPE_PRECISION (ntype);
2914 hashcode = iterative_hash_object (precision, hashcode);
2915 }
2916 break;
2917 default:
2918 break;
2919 }
2920
2921 ntype = type_hash_canon (hashcode, ntype);
2922 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2923 }
2924
2925 return ttype;
2926 }
2927
2928 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2929 or zero if not.
2930
2931 We try both `text' and `__text__', ATTR may be either one. */
2932 /* ??? It might be a reasonable simplification to require ATTR to be only
2933 `text'. One might then also require attribute lists to be stored in
2934 their canonicalized form. */
2935
2936 int
2937 is_attribute_p (const char *attr, tree ident)
2938 {
2939 int ident_len, attr_len;
2940 const char *p;
2941
2942 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2943 return 0;
2944
2945 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2946 return 1;
2947
2948 p = IDENTIFIER_POINTER (ident);
2949 ident_len = strlen (p);
2950 attr_len = strlen (attr);
2951
2952 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2953 if (attr[0] == '_')
2954 {
2955 gcc_assert (attr[1] == '_');
2956 gcc_assert (attr[attr_len - 2] == '_');
2957 gcc_assert (attr[attr_len - 1] == '_');
2958 gcc_assert (attr[1] == '_');
2959 if (ident_len == attr_len - 4
2960 && strncmp (attr + 2, p, attr_len - 4) == 0)
2961 return 1;
2962 }
2963 else
2964 {
2965 if (ident_len == attr_len + 4
2966 && p[0] == '_' && p[1] == '_'
2967 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2968 && strncmp (attr, p + 2, attr_len) == 0)
2969 return 1;
2970 }
2971
2972 return 0;
2973 }
2974
2975 /* Given an attribute name and a list of attributes, return a pointer to the
2976 attribute's list element if the attribute is part of the list, or NULL_TREE
2977 if not found. If the attribute appears more than once, this only
2978 returns the first occurrence; the TREE_CHAIN of the return value should
2979 be passed back in if further occurrences are wanted. */
2980
2981 tree
2982 lookup_attribute (const char *attr_name, tree list)
2983 {
2984 tree l;
2985
2986 for (l = list; l; l = TREE_CHAIN (l))
2987 {
2988 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
2989 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2990 return l;
2991 }
2992
2993 return NULL_TREE;
2994 }
2995
2996 /* Return an attribute list that is the union of a1 and a2. */
2997
2998 tree
2999 merge_attributes (tree a1, tree a2)
3000 {
3001 tree attributes;
3002
3003 /* Either one unset? Take the set one. */
3004
3005 if ((attributes = a1) == 0)
3006 attributes = a2;
3007
3008 /* One that completely contains the other? Take it. */
3009
3010 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3011 {
3012 if (attribute_list_contained (a2, a1))
3013 attributes = a2;
3014 else
3015 {
3016 /* Pick the longest list, and hang on the other list. */
3017
3018 if (list_length (a1) < list_length (a2))
3019 attributes = a2, a2 = a1;
3020
3021 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3022 {
3023 tree a;
3024 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3025 attributes);
3026 a != NULL_TREE;
3027 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3028 TREE_CHAIN (a)))
3029 {
3030 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
3031 break;
3032 }
3033 if (a == NULL_TREE)
3034 {
3035 a1 = copy_node (a2);
3036 TREE_CHAIN (a1) = attributes;
3037 attributes = a1;
3038 }
3039 }
3040 }
3041 }
3042 return attributes;
3043 }
3044
3045 /* Given types T1 and T2, merge their attributes and return
3046 the result. */
3047
3048 tree
3049 merge_type_attributes (tree t1, tree t2)
3050 {
3051 return merge_attributes (TYPE_ATTRIBUTES (t1),
3052 TYPE_ATTRIBUTES (t2));
3053 }
3054
3055 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3056 the result. */
3057
3058 tree
3059 merge_decl_attributes (tree olddecl, tree newdecl)
3060 {
3061 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3062 DECL_ATTRIBUTES (newdecl));
3063 }
3064
3065 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3066
3067 /* Specialization of merge_decl_attributes for various Windows targets.
3068
3069 This handles the following situation:
3070
3071 __declspec (dllimport) int foo;
3072 int foo;
3073
3074 The second instance of `foo' nullifies the dllimport. */
3075
3076 tree
3077 merge_dllimport_decl_attributes (tree old, tree new)
3078 {
3079 tree a;
3080 int delete_dllimport_p;
3081
3082 old = DECL_ATTRIBUTES (old);
3083 new = DECL_ATTRIBUTES (new);
3084
3085 /* What we need to do here is remove from `old' dllimport if it doesn't
3086 appear in `new'. dllimport behaves like extern: if a declaration is
3087 marked dllimport and a definition appears later, then the object
3088 is not dllimport'd. */
3089 if (lookup_attribute ("dllimport", old) != NULL_TREE
3090 && lookup_attribute ("dllimport", new) == NULL_TREE)
3091 delete_dllimport_p = 1;
3092 else
3093 delete_dllimport_p = 0;
3094
3095 a = merge_attributes (old, new);
3096
3097 if (delete_dllimport_p)
3098 {
3099 tree prev, t;
3100
3101 /* Scan the list for dllimport and delete it. */
3102 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3103 {
3104 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
3105 {
3106 if (prev == NULL_TREE)
3107 a = TREE_CHAIN (a);
3108 else
3109 TREE_CHAIN (prev) = TREE_CHAIN (t);
3110 break;
3111 }
3112 }
3113 }
3114
3115 return a;
3116 }
3117
3118 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
3119 struct attribute_spec.handler. */
3120
3121 tree
3122 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3123 bool *no_add_attrs)
3124 {
3125 tree node = *pnode;
3126
3127 /* These attributes may apply to structure and union types being created,
3128 but otherwise should pass to the declaration involved. */
3129 if (!DECL_P (node))
3130 {
3131 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3132 | (int) ATTR_FLAG_ARRAY_NEXT))
3133 {
3134 *no_add_attrs = true;
3135 return tree_cons (name, args, NULL_TREE);
3136 }
3137 if (TREE_CODE (node) != RECORD_TYPE && TREE_CODE (node) != UNION_TYPE)
3138 {
3139 warning ("%qs attribute ignored", IDENTIFIER_POINTER (name));
3140 *no_add_attrs = true;
3141 }
3142
3143 return NULL_TREE;
3144 }
3145
3146 /* Report error on dllimport ambiguities seen now before they cause
3147 any damage. */
3148 if (is_attribute_p ("dllimport", name))
3149 {
3150 /* Like MS, treat definition of dllimported variables and
3151 non-inlined functions on declaration as syntax errors. We
3152 allow the attribute for function definitions if declared
3153 inline. */
3154 if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node)
3155 && !DECL_DECLARED_INLINE_P (node))
3156 {
3157 error ("%Jfunction %qD definition is marked dllimport.", node, node);
3158 *no_add_attrs = true;
3159 }
3160
3161 else if (TREE_CODE (node) == VAR_DECL)
3162 {
3163 if (DECL_INITIAL (node))
3164 {
3165 error ("%Jvariable %qD definition is marked dllimport.",
3166 node, node);
3167 *no_add_attrs = true;
3168 }
3169
3170 /* `extern' needn't be specified with dllimport.
3171 Specify `extern' now and hope for the best. Sigh. */
3172 DECL_EXTERNAL (node) = 1;
3173 /* Also, implicitly give dllimport'd variables declared within
3174 a function global scope, unless declared static. */
3175 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
3176 TREE_PUBLIC (node) = 1;
3177 }
3178 }
3179
3180 /* Report error if symbol is not accessible at global scope. */
3181 if (!TREE_PUBLIC (node)
3182 && (TREE_CODE (node) == VAR_DECL
3183 || TREE_CODE (node) == FUNCTION_DECL))
3184 {
3185 error ("%Jexternal linkage required for symbol %qD because of "
3186 "%qs attribute.", node, node, IDENTIFIER_POINTER (name));
3187 *no_add_attrs = true;
3188 }
3189
3190 return NULL_TREE;
3191 }
3192
3193 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
3194 \f
3195 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3196 of the various TYPE_QUAL values. */
3197
3198 static void
3199 set_type_quals (tree type, int type_quals)
3200 {
3201 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3202 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3203 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3204 }
3205
3206 /* Returns true iff cand is equivalent to base with type_quals. */
3207
3208 bool
3209 check_qualified_type (tree cand, tree base, int type_quals)
3210 {
3211 return (TYPE_QUALS (cand) == type_quals
3212 && TYPE_NAME (cand) == TYPE_NAME (base)
3213 /* Apparently this is needed for Objective-C. */
3214 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
3215 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
3216 TYPE_ATTRIBUTES (base)));
3217 }
3218
3219 /* Return a version of the TYPE, qualified as indicated by the
3220 TYPE_QUALS, if one exists. If no qualified version exists yet,
3221 return NULL_TREE. */
3222
3223 tree
3224 get_qualified_type (tree type, int type_quals)
3225 {
3226 tree t;
3227
3228 if (TYPE_QUALS (type) == type_quals)
3229 return type;
3230
3231 /* Search the chain of variants to see if there is already one there just
3232 like the one we need to have. If so, use that existing one. We must
3233 preserve the TYPE_NAME, since there is code that depends on this. */
3234 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3235 if (check_qualified_type (t, type, type_quals))
3236 return t;
3237
3238 return NULL_TREE;
3239 }
3240
3241 /* Like get_qualified_type, but creates the type if it does not
3242 exist. This function never returns NULL_TREE. */
3243
3244 tree
3245 build_qualified_type (tree type, int type_quals)
3246 {
3247 tree t;
3248
3249 /* See if we already have the appropriate qualified variant. */
3250 t = get_qualified_type (type, type_quals);
3251
3252 /* If not, build it. */
3253 if (!t)
3254 {
3255 t = build_variant_type_copy (type);
3256 set_type_quals (t, type_quals);
3257 }
3258
3259 return t;
3260 }
3261
3262 /* Create a new distinct copy of TYPE. The new type is made its own
3263 MAIN_VARIANT. */
3264
3265 tree
3266 build_distinct_type_copy (tree type)
3267 {
3268 tree t = copy_node (type);
3269
3270 TYPE_POINTER_TO (t) = 0;
3271 TYPE_REFERENCE_TO (t) = 0;
3272
3273 /* Make it its own variant. */
3274 TYPE_MAIN_VARIANT (t) = t;
3275 TYPE_NEXT_VARIANT (t) = 0;
3276
3277 return t;
3278 }
3279
3280 /* Create a new variant of TYPE, equivalent but distinct.
3281 This is so the caller can modify it. */
3282
3283 tree
3284 build_variant_type_copy (tree type)
3285 {
3286 tree t, m = TYPE_MAIN_VARIANT (type);
3287
3288 t = build_distinct_type_copy (type);
3289
3290 /* Add the new type to the chain of variants of TYPE. */
3291 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3292 TYPE_NEXT_VARIANT (m) = t;
3293 TYPE_MAIN_VARIANT (t) = m;
3294
3295 return t;
3296 }
3297 \f
3298 /* Hashing of types so that we don't make duplicates.
3299 The entry point is `type_hash_canon'. */
3300
3301 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3302 with types in the TREE_VALUE slots), by adding the hash codes
3303 of the individual types. */
3304
3305 unsigned int
3306 type_hash_list (tree list, hashval_t hashcode)
3307 {
3308 tree tail;
3309
3310 for (tail = list; tail; tail = TREE_CHAIN (tail))
3311 if (TREE_VALUE (tail) != error_mark_node)
3312 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
3313 hashcode);
3314
3315 return hashcode;
3316 }
3317
3318 /* These are the Hashtable callback functions. */
3319
3320 /* Returns true iff the types are equivalent. */
3321
3322 static int
3323 type_hash_eq (const void *va, const void *vb)
3324 {
3325 const struct type_hash *a = va, *b = vb;
3326
3327 /* First test the things that are the same for all types. */
3328 if (a->hash != b->hash
3329 || TREE_CODE (a->type) != TREE_CODE (b->type)
3330 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
3331 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3332 TYPE_ATTRIBUTES (b->type))
3333 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
3334 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
3335 return 0;
3336
3337 switch (TREE_CODE (a->type))
3338 {
3339 case VOID_TYPE:
3340 case COMPLEX_TYPE:
3341 case VECTOR_TYPE:
3342 case POINTER_TYPE:
3343 case REFERENCE_TYPE:
3344 return 1;
3345
3346 case ENUMERAL_TYPE:
3347 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
3348 && !(TYPE_VALUES (a->type)
3349 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
3350 && TYPE_VALUES (b->type)
3351 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
3352 && type_list_equal (TYPE_VALUES (a->type),
3353 TYPE_VALUES (b->type))))
3354 return 0;
3355
3356 /* ... fall through ... */
3357
3358 case INTEGER_TYPE:
3359 case REAL_TYPE:
3360 case BOOLEAN_TYPE:
3361 case CHAR_TYPE:
3362 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3363 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3364 TYPE_MAX_VALUE (b->type)))
3365 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3366 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3367 TYPE_MIN_VALUE (b->type))));
3368
3369 case OFFSET_TYPE:
3370 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
3371
3372 case METHOD_TYPE:
3373 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
3374 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3375 || (TYPE_ARG_TYPES (a->type)
3376 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3377 && TYPE_ARG_TYPES (b->type)
3378 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3379 && type_list_equal (TYPE_ARG_TYPES (a->type),
3380 TYPE_ARG_TYPES (b->type)))));
3381
3382 case ARRAY_TYPE:
3383 case SET_TYPE:
3384 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
3385
3386 case RECORD_TYPE:
3387 case UNION_TYPE:
3388 case QUAL_UNION_TYPE:
3389 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
3390 || (TYPE_FIELDS (a->type)
3391 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
3392 && TYPE_FIELDS (b->type)
3393 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
3394 && type_list_equal (TYPE_FIELDS (a->type),
3395 TYPE_FIELDS (b->type))));
3396
3397 case FUNCTION_TYPE:
3398 return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3399 || (TYPE_ARG_TYPES (a->type)
3400 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3401 && TYPE_ARG_TYPES (b->type)
3402 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3403 && type_list_equal (TYPE_ARG_TYPES (a->type),
3404 TYPE_ARG_TYPES (b->type))));
3405
3406 default:
3407 return 0;
3408 }
3409 }
3410
3411 /* Return the cached hash value. */
3412
3413 static hashval_t
3414 type_hash_hash (const void *item)
3415 {
3416 return ((const struct type_hash *) item)->hash;
3417 }
3418
3419 /* Look in the type hash table for a type isomorphic to TYPE.
3420 If one is found, return it. Otherwise return 0. */
3421
3422 tree
3423 type_hash_lookup (hashval_t hashcode, tree type)
3424 {
3425 struct type_hash *h, in;
3426
3427 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3428 must call that routine before comparing TYPE_ALIGNs. */
3429 layout_type (type);
3430
3431 in.hash = hashcode;
3432 in.type = type;
3433
3434 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3435 if (h)
3436 return h->type;
3437 return NULL_TREE;
3438 }
3439
3440 /* Add an entry to the type-hash-table
3441 for a type TYPE whose hash code is HASHCODE. */
3442
3443 void
3444 type_hash_add (hashval_t hashcode, tree type)
3445 {
3446 struct type_hash *h;
3447 void **loc;
3448
3449 h = ggc_alloc (sizeof (struct type_hash));
3450 h->hash = hashcode;
3451 h->type = type;
3452 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3453 *(struct type_hash **) loc = h;
3454 }
3455
3456 /* Given TYPE, and HASHCODE its hash code, return the canonical
3457 object for an identical type if one already exists.
3458 Otherwise, return TYPE, and record it as the canonical object.
3459
3460 To use this function, first create a type of the sort you want.
3461 Then compute its hash code from the fields of the type that
3462 make it different from other similar types.
3463 Then call this function and use the value. */
3464
3465 tree
3466 type_hash_canon (unsigned int hashcode, tree type)
3467 {
3468 tree t1;
3469
3470 /* The hash table only contains main variants, so ensure that's what we're
3471 being passed. */
3472 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
3473
3474 if (!lang_hooks.types.hash_types)
3475 return type;
3476
3477 /* See if the type is in the hash table already. If so, return it.
3478 Otherwise, add the type. */
3479 t1 = type_hash_lookup (hashcode, type);
3480 if (t1 != 0)
3481 {
3482 #ifdef GATHER_STATISTICS
3483 tree_node_counts[(int) t_kind]--;
3484 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3485 #endif
3486 return t1;
3487 }
3488 else
3489 {
3490 type_hash_add (hashcode, type);
3491 return type;
3492 }
3493 }
3494
3495 /* See if the data pointed to by the type hash table is marked. We consider
3496 it marked if the type is marked or if a debug type number or symbol
3497 table entry has been made for the type. This reduces the amount of
3498 debugging output and eliminates that dependency of the debug output on
3499 the number of garbage collections. */
3500
3501 static int
3502 type_hash_marked_p (const void *p)
3503 {
3504 tree type = ((struct type_hash *) p)->type;
3505
3506 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3507 }
3508
3509 static void
3510 print_type_hash_statistics (void)
3511 {
3512 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3513 (long) htab_size (type_hash_table),
3514 (long) htab_elements (type_hash_table),
3515 htab_collisions (type_hash_table));
3516 }
3517
3518 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3519 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3520 by adding the hash codes of the individual attributes. */
3521
3522 unsigned int
3523 attribute_hash_list (tree list, hashval_t hashcode)
3524 {
3525 tree tail;
3526
3527 for (tail = list; tail; tail = TREE_CHAIN (tail))
3528 /* ??? Do we want to add in TREE_VALUE too? */
3529 hashcode = iterative_hash_object
3530 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
3531 return hashcode;
3532 }
3533
3534 /* Given two lists of attributes, return true if list l2 is
3535 equivalent to l1. */
3536
3537 int
3538 attribute_list_equal (tree l1, tree l2)
3539 {
3540 return attribute_list_contained (l1, l2)
3541 && attribute_list_contained (l2, l1);
3542 }
3543
3544 /* Given two lists of attributes, return true if list L2 is
3545 completely contained within L1. */
3546 /* ??? This would be faster if attribute names were stored in a canonicalized
3547 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3548 must be used to show these elements are equivalent (which they are). */
3549 /* ??? It's not clear that attributes with arguments will always be handled
3550 correctly. */
3551
3552 int
3553 attribute_list_contained (tree l1, tree l2)
3554 {
3555 tree t1, t2;
3556
3557 /* First check the obvious, maybe the lists are identical. */
3558 if (l1 == l2)
3559 return 1;
3560
3561 /* Maybe the lists are similar. */
3562 for (t1 = l1, t2 = l2;
3563 t1 != 0 && t2 != 0
3564 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3565 && TREE_VALUE (t1) == TREE_VALUE (t2);
3566 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3567
3568 /* Maybe the lists are equal. */
3569 if (t1 == 0 && t2 == 0)
3570 return 1;
3571
3572 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3573 {
3574 tree attr;
3575 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3576 attr != NULL_TREE;
3577 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3578 TREE_CHAIN (attr)))
3579 {
3580 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3581 break;
3582 }
3583
3584 if (attr == 0)
3585 return 0;
3586
3587 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3588 return 0;
3589 }
3590
3591 return 1;
3592 }
3593
3594 /* Given two lists of types
3595 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3596 return 1 if the lists contain the same types in the same order.
3597 Also, the TREE_PURPOSEs must match. */
3598
3599 int
3600 type_list_equal (tree l1, tree l2)
3601 {
3602 tree t1, t2;
3603
3604 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3605 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3606 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3607 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3608 && (TREE_TYPE (TREE_PURPOSE (t1))
3609 == TREE_TYPE (TREE_PURPOSE (t2))))))
3610 return 0;
3611
3612 return t1 == t2;
3613 }
3614
3615 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3616 given by TYPE. If the argument list accepts variable arguments,
3617 then this function counts only the ordinary arguments. */
3618
3619 int
3620 type_num_arguments (tree type)
3621 {
3622 int i = 0;
3623 tree t;
3624
3625 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3626 /* If the function does not take a variable number of arguments,
3627 the last element in the list will have type `void'. */
3628 if (VOID_TYPE_P (TREE_VALUE (t)))
3629 break;
3630 else
3631 ++i;
3632
3633 return i;
3634 }
3635
3636 /* Nonzero if integer constants T1 and T2
3637 represent the same constant value. */
3638
3639 int
3640 tree_int_cst_equal (tree t1, tree t2)
3641 {
3642 if (t1 == t2)
3643 return 1;
3644
3645 if (t1 == 0 || t2 == 0)
3646 return 0;
3647
3648 if (TREE_CODE (t1) == INTEGER_CST
3649 && TREE_CODE (t2) == INTEGER_CST
3650 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3651 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3652 return 1;
3653
3654 return 0;
3655 }
3656
3657 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3658 The precise way of comparison depends on their data type. */
3659
3660 int
3661 tree_int_cst_lt (tree t1, tree t2)
3662 {
3663 if (t1 == t2)
3664 return 0;
3665
3666 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
3667 {
3668 int t1_sgn = tree_int_cst_sgn (t1);
3669 int t2_sgn = tree_int_cst_sgn (t2);
3670
3671 if (t1_sgn < t2_sgn)
3672 return 1;
3673 else if (t1_sgn > t2_sgn)
3674 return 0;
3675 /* Otherwise, both are non-negative, so we compare them as
3676 unsigned just in case one of them would overflow a signed
3677 type. */
3678 }
3679 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
3680 return INT_CST_LT (t1, t2);
3681
3682 return INT_CST_LT_UNSIGNED (t1, t2);
3683 }
3684
3685 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3686
3687 int
3688 tree_int_cst_compare (tree t1, tree t2)
3689 {
3690 if (tree_int_cst_lt (t1, t2))
3691 return -1;
3692 else if (tree_int_cst_lt (t2, t1))
3693 return 1;
3694 else
3695 return 0;
3696 }
3697
3698 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3699 the host. If POS is zero, the value can be represented in a single
3700 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3701 be represented in a single unsigned HOST_WIDE_INT. */
3702
3703 int
3704 host_integerp (tree t, int pos)
3705 {
3706 return (TREE_CODE (t) == INTEGER_CST
3707 && ! TREE_OVERFLOW (t)
3708 && ((TREE_INT_CST_HIGH (t) == 0
3709 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3710 || (! pos && TREE_INT_CST_HIGH (t) == -1
3711 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3712 && !TYPE_UNSIGNED (TREE_TYPE (t)))
3713 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3714 }
3715
3716 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3717 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3718 be positive. Abort if we cannot satisfy the above conditions. */
3719
3720 HOST_WIDE_INT
3721 tree_low_cst (tree t, int pos)
3722 {
3723 gcc_assert (host_integerp (t, pos));
3724 return TREE_INT_CST_LOW (t);
3725 }
3726
3727 /* Return the most significant bit of the integer constant T. */
3728
3729 int
3730 tree_int_cst_msb (tree t)
3731 {
3732 int prec;
3733 HOST_WIDE_INT h;
3734 unsigned HOST_WIDE_INT l;
3735
3736 /* Note that using TYPE_PRECISION here is wrong. We care about the
3737 actual bits, not the (arbitrary) range of the type. */
3738 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3739 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3740 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3741 return (l & 1) == 1;
3742 }
3743
3744 /* Return an indication of the sign of the integer constant T.
3745 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3746 Note that -1 will never be returned it T's type is unsigned. */
3747
3748 int
3749 tree_int_cst_sgn (tree t)
3750 {
3751 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3752 return 0;
3753 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
3754 return 1;
3755 else if (TREE_INT_CST_HIGH (t) < 0)
3756 return -1;
3757 else
3758 return 1;
3759 }
3760
3761 /* Compare two constructor-element-type constants. Return 1 if the lists
3762 are known to be equal; otherwise return 0. */
3763
3764 int
3765 simple_cst_list_equal (tree l1, tree l2)
3766 {
3767 while (l1 != NULL_TREE && l2 != NULL_TREE)
3768 {
3769 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3770 return 0;
3771
3772 l1 = TREE_CHAIN (l1);
3773 l2 = TREE_CHAIN (l2);
3774 }
3775
3776 return l1 == l2;
3777 }
3778
3779 /* Return truthvalue of whether T1 is the same tree structure as T2.
3780 Return 1 if they are the same.
3781 Return 0 if they are understandably different.
3782 Return -1 if either contains tree structure not understood by
3783 this function. */
3784
3785 int
3786 simple_cst_equal (tree t1, tree t2)
3787 {
3788 enum tree_code code1, code2;
3789 int cmp;
3790 int i;
3791
3792 if (t1 == t2)
3793 return 1;
3794 if (t1 == 0 || t2 == 0)
3795 return 0;
3796
3797 code1 = TREE_CODE (t1);
3798 code2 = TREE_CODE (t2);
3799
3800 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3801 {
3802 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3803 || code2 == NON_LVALUE_EXPR)
3804 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3805 else
3806 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3807 }
3808
3809 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3810 || code2 == NON_LVALUE_EXPR)
3811 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3812
3813 if (code1 != code2)
3814 return 0;
3815
3816 switch (code1)
3817 {
3818 case INTEGER_CST:
3819 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3820 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3821
3822 case REAL_CST:
3823 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3824
3825 case STRING_CST:
3826 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3827 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3828 TREE_STRING_LENGTH (t1)));
3829
3830 case CONSTRUCTOR:
3831 return simple_cst_list_equal (CONSTRUCTOR_ELTS (t1),
3832 CONSTRUCTOR_ELTS (t2));
3833
3834 case SAVE_EXPR:
3835 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3836
3837 case CALL_EXPR:
3838 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3839 if (cmp <= 0)
3840 return cmp;
3841 return
3842 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3843
3844 case TARGET_EXPR:
3845 /* Special case: if either target is an unallocated VAR_DECL,
3846 it means that it's going to be unified with whatever the
3847 TARGET_EXPR is really supposed to initialize, so treat it
3848 as being equivalent to anything. */
3849 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3850 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3851 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3852 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3853 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3854 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3855 cmp = 1;
3856 else
3857 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3858
3859 if (cmp <= 0)
3860 return cmp;
3861
3862 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3863
3864 case WITH_CLEANUP_EXPR:
3865 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3866 if (cmp <= 0)
3867 return cmp;
3868
3869 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3870
3871 case COMPONENT_REF:
3872 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3873 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3874
3875 return 0;
3876
3877 case VAR_DECL:
3878 case PARM_DECL:
3879 case CONST_DECL:
3880 case FUNCTION_DECL:
3881 return 0;
3882
3883 default:
3884 break;
3885 }
3886
3887 /* This general rule works for most tree codes. All exceptions should be
3888 handled above. If this is a language-specific tree code, we can't
3889 trust what might be in the operand, so say we don't know
3890 the situation. */
3891 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3892 return -1;
3893
3894 switch (TREE_CODE_CLASS (code1))
3895 {
3896 case tcc_unary:
3897 case tcc_binary:
3898 case tcc_comparison:
3899 case tcc_expression:
3900 case tcc_reference:
3901 case tcc_statement:
3902 cmp = 1;
3903 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3904 {
3905 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3906 if (cmp <= 0)
3907 return cmp;
3908 }
3909
3910 return cmp;
3911
3912 default:
3913 return -1;
3914 }
3915 }
3916
3917 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3918 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3919 than U, respectively. */
3920
3921 int
3922 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
3923 {
3924 if (tree_int_cst_sgn (t) < 0)
3925 return -1;
3926 else if (TREE_INT_CST_HIGH (t) != 0)
3927 return 1;
3928 else if (TREE_INT_CST_LOW (t) == u)
3929 return 0;
3930 else if (TREE_INT_CST_LOW (t) < u)
3931 return -1;
3932 else
3933 return 1;
3934 }
3935
3936 /* Return true if CODE represents an associative tree code. Otherwise
3937 return false. */
3938 bool
3939 associative_tree_code (enum tree_code code)
3940 {
3941 switch (code)
3942 {
3943 case BIT_IOR_EXPR:
3944 case BIT_AND_EXPR:
3945 case BIT_XOR_EXPR:
3946 case PLUS_EXPR:
3947 case MULT_EXPR:
3948 case MIN_EXPR:
3949 case MAX_EXPR:
3950 return true;
3951
3952 default:
3953 break;
3954 }
3955 return false;
3956 }
3957
3958 /* Return true if CODE represents an commutative tree code. Otherwise
3959 return false. */
3960 bool
3961 commutative_tree_code (enum tree_code code)
3962 {
3963 switch (code)
3964 {
3965 case PLUS_EXPR:
3966 case MULT_EXPR:
3967 case MIN_EXPR:
3968 case MAX_EXPR:
3969 case BIT_IOR_EXPR:
3970 case BIT_XOR_EXPR:
3971 case BIT_AND_EXPR:
3972 case NE_EXPR:
3973 case EQ_EXPR:
3974 case UNORDERED_EXPR:
3975 case ORDERED_EXPR:
3976 case UNEQ_EXPR:
3977 case LTGT_EXPR:
3978 case TRUTH_AND_EXPR:
3979 case TRUTH_XOR_EXPR:
3980 case TRUTH_OR_EXPR:
3981 return true;
3982
3983 default:
3984 break;
3985 }
3986 return false;
3987 }
3988
3989 /* Generate a hash value for an expression. This can be used iteratively
3990 by passing a previous result as the "val" argument.
3991
3992 This function is intended to produce the same hash for expressions which
3993 would compare equal using operand_equal_p. */
3994
3995 hashval_t
3996 iterative_hash_expr (tree t, hashval_t val)
3997 {
3998 int i;
3999 enum tree_code code;
4000 char class;
4001
4002 if (t == NULL_TREE)
4003 return iterative_hash_pointer (t, val);
4004
4005 code = TREE_CODE (t);
4006
4007 switch (code)
4008 {
4009 /* Alas, constants aren't shared, so we can't rely on pointer
4010 identity. */
4011 case INTEGER_CST:
4012 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
4013 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
4014 case REAL_CST:
4015 {
4016 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
4017
4018 return iterative_hash_hashval_t (val2, val);
4019 }
4020 case STRING_CST:
4021 return iterative_hash (TREE_STRING_POINTER (t),
4022 TREE_STRING_LENGTH (t), val);
4023 case COMPLEX_CST:
4024 val = iterative_hash_expr (TREE_REALPART (t), val);
4025 return iterative_hash_expr (TREE_IMAGPART (t), val);
4026 case VECTOR_CST:
4027 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
4028
4029 case SSA_NAME:
4030 case VALUE_HANDLE:
4031 /* we can just compare by pointer. */
4032 return iterative_hash_pointer (t, val);
4033
4034 case TREE_LIST:
4035 /* A list of expressions, for a CALL_EXPR or as the elements of a
4036 VECTOR_CST. */
4037 for (; t; t = TREE_CHAIN (t))
4038 val = iterative_hash_expr (TREE_VALUE (t), val);
4039 return val;
4040 default:
4041 class = TREE_CODE_CLASS (code);
4042
4043 if (class == tcc_declaration)
4044 {
4045 /* Decls we can just compare by pointer. */
4046 val = iterative_hash_pointer (t, val);
4047 }
4048 else
4049 {
4050 gcc_assert (IS_EXPR_CODE_CLASS (class));
4051
4052 val = iterative_hash_object (code, val);
4053
4054 /* Don't hash the type, that can lead to having nodes which
4055 compare equal according to operand_equal_p, but which
4056 have different hash codes. */
4057 if (code == NOP_EXPR
4058 || code == CONVERT_EXPR
4059 || code == NON_LVALUE_EXPR)
4060 {
4061 /* Make sure to include signness in the hash computation. */
4062 val += TYPE_UNSIGNED (TREE_TYPE (t));
4063 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
4064 }
4065
4066 else if (commutative_tree_code (code))
4067 {
4068 /* It's a commutative expression. We want to hash it the same
4069 however it appears. We do this by first hashing both operands
4070 and then rehashing based on the order of their independent
4071 hashes. */
4072 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
4073 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
4074 hashval_t t;
4075
4076 if (one > two)
4077 t = one, one = two, two = t;
4078
4079 val = iterative_hash_hashval_t (one, val);
4080 val = iterative_hash_hashval_t (two, val);
4081 }
4082 else
4083 for (i = first_rtl_op (code) - 1; i >= 0; --i)
4084 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
4085 }
4086 return val;
4087 break;
4088 }
4089 }
4090 \f
4091 /* Constructors for pointer, array and function types.
4092 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4093 constructed by language-dependent code, not here.) */
4094
4095 /* Construct, lay out and return the type of pointers to TO_TYPE with
4096 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
4097 reference all of memory. If such a type has already been
4098 constructed, reuse it. */
4099
4100 tree
4101 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
4102 bool can_alias_all)
4103 {
4104 tree t;
4105
4106 /* In some cases, languages will have things that aren't a POINTER_TYPE
4107 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
4108 In that case, return that type without regard to the rest of our
4109 operands.
4110
4111 ??? This is a kludge, but consistent with the way this function has
4112 always operated and there doesn't seem to be a good way to avoid this
4113 at the moment. */
4114 if (TYPE_POINTER_TO (to_type) != 0
4115 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
4116 return TYPE_POINTER_TO (to_type);
4117
4118 /* First, if we already have a type for pointers to TO_TYPE and it's
4119 the proper mode, use it. */
4120 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
4121 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4122 return t;
4123
4124 t = make_node (POINTER_TYPE);
4125
4126 TREE_TYPE (t) = to_type;
4127 TYPE_MODE (t) = mode;
4128 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4129 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
4130 TYPE_POINTER_TO (to_type) = t;
4131
4132 /* Lay out the type. This function has many callers that are concerned
4133 with expression-construction, and this simplifies them all. */
4134 layout_type (t);
4135
4136 return t;
4137 }
4138
4139 /* By default build pointers in ptr_mode. */
4140
4141 tree
4142 build_pointer_type (tree to_type)
4143 {
4144 return build_pointer_type_for_mode (to_type, ptr_mode, false);
4145 }
4146
4147 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
4148
4149 tree
4150 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
4151 bool can_alias_all)
4152 {
4153 tree t;
4154
4155 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
4156 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
4157 In that case, return that type without regard to the rest of our
4158 operands.
4159
4160 ??? This is a kludge, but consistent with the way this function has
4161 always operated and there doesn't seem to be a good way to avoid this
4162 at the moment. */
4163 if (TYPE_REFERENCE_TO (to_type) != 0
4164 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
4165 return TYPE_REFERENCE_TO (to_type);
4166
4167 /* First, if we already have a type for pointers to TO_TYPE and it's
4168 the proper mode, use it. */
4169 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
4170 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4171 return t;
4172
4173 t = make_node (REFERENCE_TYPE);
4174
4175 TREE_TYPE (t) = to_type;
4176 TYPE_MODE (t) = mode;
4177 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4178 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
4179 TYPE_REFERENCE_TO (to_type) = t;
4180
4181 layout_type (t);
4182
4183 return t;
4184 }
4185
4186
4187 /* Build the node for the type of references-to-TO_TYPE by default
4188 in ptr_mode. */
4189
4190 tree
4191 build_reference_type (tree to_type)
4192 {
4193 return build_reference_type_for_mode (to_type, ptr_mode, false);
4194 }
4195
4196 /* Build a type that is compatible with t but has no cv quals anywhere
4197 in its type, thus
4198
4199 const char *const *const * -> char ***. */
4200
4201 tree
4202 build_type_no_quals (tree t)
4203 {
4204 switch (TREE_CODE (t))
4205 {
4206 case POINTER_TYPE:
4207 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4208 TYPE_MODE (t),
4209 TYPE_REF_CAN_ALIAS_ALL (t));
4210 case REFERENCE_TYPE:
4211 return
4212 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4213 TYPE_MODE (t),
4214 TYPE_REF_CAN_ALIAS_ALL (t));
4215 default:
4216 return TYPE_MAIN_VARIANT (t);
4217 }
4218 }
4219
4220 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
4221 MAXVAL should be the maximum value in the domain
4222 (one less than the length of the array).
4223
4224 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
4225 We don't enforce this limit, that is up to caller (e.g. language front end).
4226 The limit exists because the result is a signed type and we don't handle
4227 sizes that use more than one HOST_WIDE_INT. */
4228
4229 tree
4230 build_index_type (tree maxval)
4231 {
4232 tree itype = make_node (INTEGER_TYPE);
4233
4234 TREE_TYPE (itype) = sizetype;
4235 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
4236 TYPE_MIN_VALUE (itype) = size_zero_node;
4237 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
4238 TYPE_MODE (itype) = TYPE_MODE (sizetype);
4239 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
4240 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
4241 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
4242 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
4243
4244 if (host_integerp (maxval, 1))
4245 return type_hash_canon (tree_low_cst (maxval, 1), itype);
4246 else
4247 return itype;
4248 }
4249
4250 /* Builds a signed or unsigned integer type of precision PRECISION.
4251 Used for C bitfields whose precision does not match that of
4252 built-in target types. */
4253 tree
4254 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
4255 int unsignedp)
4256 {
4257 tree itype = make_node (INTEGER_TYPE);
4258
4259 TYPE_PRECISION (itype) = precision;
4260
4261 if (unsignedp)
4262 fixup_unsigned_type (itype);
4263 else
4264 fixup_signed_type (itype);
4265
4266 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
4267 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
4268
4269 return itype;
4270 }
4271
4272 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4273 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4274 low bound LOWVAL and high bound HIGHVAL.
4275 if TYPE==NULL_TREE, sizetype is used. */
4276
4277 tree
4278 build_range_type (tree type, tree lowval, tree highval)
4279 {
4280 tree itype = make_node (INTEGER_TYPE);
4281
4282 TREE_TYPE (itype) = type;
4283 if (type == NULL_TREE)
4284 type = sizetype;
4285
4286 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4287 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
4288
4289 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4290 TYPE_MODE (itype) = TYPE_MODE (type);
4291 TYPE_SIZE (itype) = TYPE_SIZE (type);
4292 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
4293 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4294 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
4295
4296 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
4297 return type_hash_canon (tree_low_cst (highval, 0)
4298 - tree_low_cst (lowval, 0),
4299 itype);
4300 else
4301 return itype;
4302 }
4303
4304 /* Just like build_index_type, but takes lowval and highval instead
4305 of just highval (maxval). */
4306
4307 tree
4308 build_index_2_type (tree lowval, tree highval)
4309 {
4310 return build_range_type (sizetype, lowval, highval);
4311 }
4312
4313 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4314 and number of elements specified by the range of values of INDEX_TYPE.
4315 If such a type has already been constructed, reuse it. */
4316
4317 tree
4318 build_array_type (tree elt_type, tree index_type)
4319 {
4320 tree t;
4321 hashval_t hashcode = 0;
4322
4323 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4324 {
4325 error ("arrays of functions are not meaningful");
4326 elt_type = integer_type_node;
4327 }
4328
4329 t = make_node (ARRAY_TYPE);
4330 TREE_TYPE (t) = elt_type;
4331 TYPE_DOMAIN (t) = index_type;
4332
4333 if (index_type == 0)
4334 return t;
4335
4336 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
4337 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
4338 t = type_hash_canon (hashcode, t);
4339
4340 if (!COMPLETE_TYPE_P (t))
4341 layout_type (t);
4342 return t;
4343 }
4344
4345 /* Return the TYPE of the elements comprising
4346 the innermost dimension of ARRAY. */
4347
4348 tree
4349 get_inner_array_type (tree array)
4350 {
4351 tree type = TREE_TYPE (array);
4352
4353 while (TREE_CODE (type) == ARRAY_TYPE)
4354 type = TREE_TYPE (type);
4355
4356 return type;
4357 }
4358
4359 /* Construct, lay out and return
4360 the type of functions returning type VALUE_TYPE
4361 given arguments of types ARG_TYPES.
4362 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4363 are data type nodes for the arguments of the function.
4364 If such a type has already been constructed, reuse it. */
4365
4366 tree
4367 build_function_type (tree value_type, tree arg_types)
4368 {
4369 tree t;
4370 hashval_t hashcode = 0;
4371
4372 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4373 {
4374 error ("function return type cannot be function");
4375 value_type = integer_type_node;
4376 }
4377
4378 /* Make a node of the sort we want. */
4379 t = make_node (FUNCTION_TYPE);
4380 TREE_TYPE (t) = value_type;
4381 TYPE_ARG_TYPES (t) = arg_types;
4382
4383 /* If we already have such a type, use the old one. */
4384 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
4385 hashcode = type_hash_list (arg_types, hashcode);
4386 t = type_hash_canon (hashcode, t);
4387
4388 if (!COMPLETE_TYPE_P (t))
4389 layout_type (t);
4390 return t;
4391 }
4392
4393 /* Build a function type. The RETURN_TYPE is the type returned by the
4394 function. If additional arguments are provided, they are
4395 additional argument types. The list of argument types must always
4396 be terminated by NULL_TREE. */
4397
4398 tree
4399 build_function_type_list (tree return_type, ...)
4400 {
4401 tree t, args, last;
4402 va_list p;
4403
4404 va_start (p, return_type);
4405
4406 t = va_arg (p, tree);
4407 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
4408 args = tree_cons (NULL_TREE, t, args);
4409
4410 last = args;
4411 args = nreverse (args);
4412 TREE_CHAIN (last) = void_list_node;
4413 args = build_function_type (return_type, args);
4414
4415 va_end (p);
4416 return args;
4417 }
4418
4419 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
4420 and ARGTYPES (a TREE_LIST) are the return type and arguments types
4421 for the method. An implicit additional parameter (of type
4422 pointer-to-BASETYPE) is added to the ARGTYPES. */
4423
4424 tree
4425 build_method_type_directly (tree basetype,
4426 tree rettype,
4427 tree argtypes)
4428 {
4429 tree t;
4430 tree ptype;
4431 int hashcode = 0;
4432
4433 /* Make a node of the sort we want. */
4434 t = make_node (METHOD_TYPE);
4435
4436 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4437 TREE_TYPE (t) = rettype;
4438 ptype = build_pointer_type (basetype);
4439
4440 /* The actual arglist for this function includes a "hidden" argument
4441 which is "this". Put it into the list of argument types. */
4442 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
4443 TYPE_ARG_TYPES (t) = argtypes;
4444
4445 /* If we already have such a type, use the old one. */
4446 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4447 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
4448 hashcode = type_hash_list (argtypes, hashcode);
4449 t = type_hash_canon (hashcode, t);
4450
4451 if (!COMPLETE_TYPE_P (t))
4452 layout_type (t);
4453
4454 return t;
4455 }
4456
4457 /* Construct, lay out and return the type of methods belonging to class
4458 BASETYPE and whose arguments and values are described by TYPE.
4459 If that type exists already, reuse it.
4460 TYPE must be a FUNCTION_TYPE node. */
4461
4462 tree
4463 build_method_type (tree basetype, tree type)
4464 {
4465 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
4466
4467 return build_method_type_directly (basetype,
4468 TREE_TYPE (type),
4469 TYPE_ARG_TYPES (type));
4470 }
4471
4472 /* Construct, lay out and return the type of offsets to a value
4473 of type TYPE, within an object of type BASETYPE.
4474 If a suitable offset type exists already, reuse it. */
4475
4476 tree
4477 build_offset_type (tree basetype, tree type)
4478 {
4479 tree t;
4480 hashval_t hashcode = 0;
4481
4482 /* Make a node of the sort we want. */
4483 t = make_node (OFFSET_TYPE);
4484
4485 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4486 TREE_TYPE (t) = type;
4487
4488 /* If we already have such a type, use the old one. */
4489 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4490 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
4491 t = type_hash_canon (hashcode, t);
4492
4493 if (!COMPLETE_TYPE_P (t))
4494 layout_type (t);
4495
4496 return t;
4497 }
4498
4499 /* Create a complex type whose components are COMPONENT_TYPE. */
4500
4501 tree
4502 build_complex_type (tree component_type)
4503 {
4504 tree t;
4505 hashval_t hashcode;
4506
4507 /* Make a node of the sort we want. */
4508 t = make_node (COMPLEX_TYPE);
4509
4510 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4511
4512 /* If we already have such a type, use the old one. */
4513 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
4514 t = type_hash_canon (hashcode, t);
4515
4516 if (!COMPLETE_TYPE_P (t))
4517 layout_type (t);
4518
4519 /* If we are writing Dwarf2 output we need to create a name,
4520 since complex is a fundamental type. */
4521 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
4522 && ! TYPE_NAME (t))
4523 {
4524 const char *name;
4525 if (component_type == char_type_node)
4526 name = "complex char";
4527 else if (component_type == signed_char_type_node)
4528 name = "complex signed char";
4529 else if (component_type == unsigned_char_type_node)
4530 name = "complex unsigned char";
4531 else if (component_type == short_integer_type_node)
4532 name = "complex short int";
4533 else if (component_type == short_unsigned_type_node)
4534 name = "complex short unsigned int";
4535 else if (component_type == integer_type_node)
4536 name = "complex int";
4537 else if (component_type == unsigned_type_node)
4538 name = "complex unsigned int";
4539 else if (component_type == long_integer_type_node)
4540 name = "complex long int";
4541 else if (component_type == long_unsigned_type_node)
4542 name = "complex long unsigned int";
4543 else if (component_type == long_long_integer_type_node)
4544 name = "complex long long int";
4545 else if (component_type == long_long_unsigned_type_node)
4546 name = "complex long long unsigned int";
4547 else
4548 name = 0;
4549
4550 if (name != 0)
4551 TYPE_NAME (t) = get_identifier (name);
4552 }
4553
4554 return build_qualified_type (t, TYPE_QUALS (component_type));
4555 }
4556 \f
4557 /* Return OP, stripped of any conversions to wider types as much as is safe.
4558 Converting the value back to OP's type makes a value equivalent to OP.
4559
4560 If FOR_TYPE is nonzero, we return a value which, if converted to
4561 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4562
4563 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4564 narrowest type that can hold the value, even if they don't exactly fit.
4565 Otherwise, bit-field references are changed to a narrower type
4566 only if they can be fetched directly from memory in that type.
4567
4568 OP must have integer, real or enumeral type. Pointers are not allowed!
4569
4570 There are some cases where the obvious value we could return
4571 would regenerate to OP if converted to OP's type,
4572 but would not extend like OP to wider types.
4573 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4574 For example, if OP is (unsigned short)(signed char)-1,
4575 we avoid returning (signed char)-1 if FOR_TYPE is int,
4576 even though extending that to an unsigned short would regenerate OP,
4577 since the result of extending (signed char)-1 to (int)
4578 is different from (int) OP. */
4579
4580 tree
4581 get_unwidened (tree op, tree for_type)
4582 {
4583 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4584 tree type = TREE_TYPE (op);
4585 unsigned final_prec
4586 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4587 int uns
4588 = (for_type != 0 && for_type != type
4589 && final_prec > TYPE_PRECISION (type)
4590 && TYPE_UNSIGNED (type));
4591 tree win = op;
4592
4593 while (TREE_CODE (op) == NOP_EXPR)
4594 {
4595 int bitschange
4596 = TYPE_PRECISION (TREE_TYPE (op))
4597 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4598
4599 /* Truncations are many-one so cannot be removed.
4600 Unless we are later going to truncate down even farther. */
4601 if (bitschange < 0
4602 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4603 break;
4604
4605 /* See what's inside this conversion. If we decide to strip it,
4606 we will set WIN. */
4607 op = TREE_OPERAND (op, 0);
4608
4609 /* If we have not stripped any zero-extensions (uns is 0),
4610 we can strip any kind of extension.
4611 If we have previously stripped a zero-extension,
4612 only zero-extensions can safely be stripped.
4613 Any extension can be stripped if the bits it would produce
4614 are all going to be discarded later by truncating to FOR_TYPE. */
4615
4616 if (bitschange > 0)
4617 {
4618 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4619 win = op;
4620 /* TYPE_UNSIGNED says whether this is a zero-extension.
4621 Let's avoid computing it if it does not affect WIN
4622 and if UNS will not be needed again. */
4623 if ((uns || TREE_CODE (op) == NOP_EXPR)
4624 && TYPE_UNSIGNED (TREE_TYPE (op)))
4625 {
4626 uns = 1;
4627 win = op;
4628 }
4629 }
4630 }
4631
4632 if (TREE_CODE (op) == COMPONENT_REF
4633 /* Since type_for_size always gives an integer type. */
4634 && TREE_CODE (type) != REAL_TYPE
4635 /* Don't crash if field not laid out yet. */
4636 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4637 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4638 {
4639 unsigned int innerprec
4640 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4641 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4642 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4643 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4644
4645 /* We can get this structure field in the narrowest type it fits in.
4646 If FOR_TYPE is 0, do this only for a field that matches the
4647 narrower type exactly and is aligned for it
4648 The resulting extension to its nominal type (a fullword type)
4649 must fit the same conditions as for other extensions. */
4650
4651 if (type != 0
4652 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
4653 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4654 && (! uns || final_prec <= innerprec || unsignedp))
4655 {
4656 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4657 TREE_OPERAND (op, 1), NULL_TREE);
4658 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4659 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4660 }
4661 }
4662
4663 return win;
4664 }
4665 \f
4666 /* Return OP or a simpler expression for a narrower value
4667 which can be sign-extended or zero-extended to give back OP.
4668 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4669 or 0 if the value should be sign-extended. */
4670
4671 tree
4672 get_narrower (tree op, int *unsignedp_ptr)
4673 {
4674 int uns = 0;
4675 int first = 1;
4676 tree win = op;
4677 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
4678
4679 while (TREE_CODE (op) == NOP_EXPR)
4680 {
4681 int bitschange
4682 = (TYPE_PRECISION (TREE_TYPE (op))
4683 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4684
4685 /* Truncations are many-one so cannot be removed. */
4686 if (bitschange < 0)
4687 break;
4688
4689 /* See what's inside this conversion. If we decide to strip it,
4690 we will set WIN. */
4691
4692 if (bitschange > 0)
4693 {
4694 op = TREE_OPERAND (op, 0);
4695 /* An extension: the outermost one can be stripped,
4696 but remember whether it is zero or sign extension. */
4697 if (first)
4698 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4699 /* Otherwise, if a sign extension has been stripped,
4700 only sign extensions can now be stripped;
4701 if a zero extension has been stripped, only zero-extensions. */
4702 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
4703 break;
4704 first = 0;
4705 }
4706 else /* bitschange == 0 */
4707 {
4708 /* A change in nominal type can always be stripped, but we must
4709 preserve the unsignedness. */
4710 if (first)
4711 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4712 first = 0;
4713 op = TREE_OPERAND (op, 0);
4714 /* Keep trying to narrow, but don't assign op to win if it
4715 would turn an integral type into something else. */
4716 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
4717 continue;
4718 }
4719
4720 win = op;
4721 }
4722
4723 if (TREE_CODE (op) == COMPONENT_REF
4724 /* Since type_for_size always gives an integer type. */
4725 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4726 /* Ensure field is laid out already. */
4727 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4728 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4729 {
4730 unsigned HOST_WIDE_INT innerprec
4731 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4732 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4733 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4734 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4735
4736 /* We can get this structure field in a narrower type that fits it,
4737 but the resulting extension to its nominal type (a fullword type)
4738 must satisfy the same conditions as for other extensions.
4739
4740 Do this only for fields that are aligned (not bit-fields),
4741 because when bit-field insns will be used there is no
4742 advantage in doing this. */
4743
4744 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4745 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4746 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
4747 && type != 0)
4748 {
4749 if (first)
4750 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
4751 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4752 TREE_OPERAND (op, 1), NULL_TREE);
4753 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4754 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4755 }
4756 }
4757 *unsignedp_ptr = uns;
4758 return win;
4759 }
4760 \f
4761 /* Nonzero if integer constant C has a value that is permissible
4762 for type TYPE (an INTEGER_TYPE). */
4763
4764 int
4765 int_fits_type_p (tree c, tree type)
4766 {
4767 tree type_low_bound = TYPE_MIN_VALUE (type);
4768 tree type_high_bound = TYPE_MAX_VALUE (type);
4769 int ok_for_low_bound, ok_for_high_bound;
4770
4771 /* Perform some generic filtering first, which may allow making a decision
4772 even if the bounds are not constant. First, negative integers never fit
4773 in unsigned types, */
4774 if ((TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4775 /* Also, unsigned integers with top bit set never fit signed types. */
4776 || (! TYPE_UNSIGNED (type)
4777 && TYPE_UNSIGNED (TREE_TYPE (c)) && tree_int_cst_msb (c)))
4778 return 0;
4779
4780 /* If at least one bound of the type is a constant integer, we can check
4781 ourselves and maybe make a decision. If no such decision is possible, but
4782 this type is a subtype, try checking against that. Otherwise, use
4783 force_fit_type, which checks against the precision.
4784
4785 Compute the status for each possibly constant bound, and return if we see
4786 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4787 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4788 for "constant known to fit". */
4789
4790 ok_for_low_bound = -1;
4791 ok_for_high_bound = -1;
4792
4793 /* Check if C >= type_low_bound. */
4794 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4795 {
4796 ok_for_low_bound = ! tree_int_cst_lt (c, type_low_bound);
4797 if (! ok_for_low_bound)
4798 return 0;
4799 }
4800
4801 /* Check if c <= type_high_bound. */
4802 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4803 {
4804 ok_for_high_bound = ! tree_int_cst_lt (type_high_bound, c);
4805 if (! ok_for_high_bound)
4806 return 0;
4807 }
4808
4809 /* If the constant fits both bounds, the result is known. */
4810 if (ok_for_low_bound == 1 && ok_for_high_bound == 1)
4811 return 1;
4812
4813 /* If we haven't been able to decide at this point, there nothing more we
4814 can check ourselves here. Look at the base type if we have one. */
4815 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4816 return int_fits_type_p (c, TREE_TYPE (type));
4817
4818 /* Or to force_fit_type, if nothing else. */
4819 else
4820 {
4821 c = copy_node (c);
4822 TREE_TYPE (c) = type;
4823 c = force_fit_type (c, -1, false, false);
4824 return !TREE_OVERFLOW (c);
4825 }
4826 }
4827
4828 /* Subprogram of following function. Called by walk_tree.
4829
4830 Return *TP if it is an automatic variable or parameter of the
4831 function passed in as DATA. */
4832
4833 static tree
4834 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
4835 {
4836 tree fn = (tree) data;
4837
4838 if (TYPE_P (*tp))
4839 *walk_subtrees = 0;
4840
4841 else if (DECL_P (*tp)
4842 && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
4843 return *tp;
4844
4845 return NULL_TREE;
4846 }
4847
4848 /* Returns true if T is, contains, or refers to a type with variable
4849 size. If FN is nonzero, only return true if a modifier of the type
4850 or position of FN is a variable or parameter inside FN.
4851
4852 This concept is more general than that of C99 'variably modified types':
4853 in C99, a struct type is never variably modified because a VLA may not
4854 appear as a structure member. However, in GNU C code like:
4855
4856 struct S { int i[f()]; };
4857
4858 is valid, and other languages may define similar constructs. */
4859
4860 bool
4861 variably_modified_type_p (tree type, tree fn)
4862 {
4863 tree t;
4864
4865 /* Test if T is either variable (if FN is zero) or an expression containing
4866 a variable in FN. */
4867 #define RETURN_TRUE_IF_VAR(T) \
4868 do { tree _t = (T); \
4869 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
4870 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
4871 return true; } while (0)
4872
4873 if (type == error_mark_node)
4874 return false;
4875
4876 /* If TYPE itself has variable size, it is variably modified.
4877
4878 We do not yet have a representation of the C99 '[*]' syntax.
4879 When a representation is chosen, this function should be modified
4880 to test for that case as well. */
4881 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
4882 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT(type));
4883
4884 switch (TREE_CODE (type))
4885 {
4886 case POINTER_TYPE:
4887 case REFERENCE_TYPE:
4888 case ARRAY_TYPE:
4889 case SET_TYPE:
4890 case VECTOR_TYPE:
4891 if (variably_modified_type_p (TREE_TYPE (type), fn))
4892 return true;
4893 break;
4894
4895 case FUNCTION_TYPE:
4896 case METHOD_TYPE:
4897 /* If TYPE is a function type, it is variably modified if any of the
4898 parameters or the return type are variably modified. */
4899 if (variably_modified_type_p (TREE_TYPE (type), fn))
4900 return true;
4901
4902 for (t = TYPE_ARG_TYPES (type);
4903 t && t != void_list_node;
4904 t = TREE_CHAIN (t))
4905 if (variably_modified_type_p (TREE_VALUE (t), fn))
4906 return true;
4907 break;
4908
4909 case INTEGER_TYPE:
4910 case REAL_TYPE:
4911 case ENUMERAL_TYPE:
4912 case BOOLEAN_TYPE:
4913 case CHAR_TYPE:
4914 /* Scalar types are variably modified if their end points
4915 aren't constant. */
4916 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
4917 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
4918 break;
4919
4920 case RECORD_TYPE:
4921 case UNION_TYPE:
4922 case QUAL_UNION_TYPE:
4923 /* We can't see if any of the field are variably-modified by the
4924 definition we normally use, since that would produce infinite
4925 recursion via pointers. */
4926 /* This is variably modified if some field's type is. */
4927 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
4928 if (TREE_CODE (t) == FIELD_DECL)
4929 {
4930 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
4931 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
4932 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
4933
4934 if (TREE_CODE (type) == QUAL_UNION_TYPE)
4935 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
4936 }
4937 break;
4938
4939 default:
4940 break;
4941 }
4942
4943 /* The current language may have other cases to check, but in general,
4944 all other types are not variably modified. */
4945 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
4946
4947 #undef RETURN_TRUE_IF_VAR
4948 }
4949
4950 /* Given a DECL or TYPE, return the scope in which it was declared, or
4951 NULL_TREE if there is no containing scope. */
4952
4953 tree
4954 get_containing_scope (tree t)
4955 {
4956 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4957 }
4958
4959 /* Return the innermost context enclosing DECL that is
4960 a FUNCTION_DECL, or zero if none. */
4961
4962 tree
4963 decl_function_context (tree decl)
4964 {
4965 tree context;
4966
4967 if (TREE_CODE (decl) == ERROR_MARK)
4968 return 0;
4969
4970 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4971 where we look up the function at runtime. Such functions always take
4972 a first argument of type 'pointer to real context'.
4973
4974 C++ should really be fixed to use DECL_CONTEXT for the real context,
4975 and use something else for the "virtual context". */
4976 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4977 context
4978 = TYPE_MAIN_VARIANT
4979 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4980 else
4981 context = DECL_CONTEXT (decl);
4982
4983 while (context && TREE_CODE (context) != FUNCTION_DECL)
4984 {
4985 if (TREE_CODE (context) == BLOCK)
4986 context = BLOCK_SUPERCONTEXT (context);
4987 else
4988 context = get_containing_scope (context);
4989 }
4990
4991 return context;
4992 }
4993
4994 /* Return the innermost context enclosing DECL that is
4995 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4996 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4997
4998 tree
4999 decl_type_context (tree decl)
5000 {
5001 tree context = DECL_CONTEXT (decl);
5002
5003 while (context)
5004 switch (TREE_CODE (context))
5005 {
5006 case NAMESPACE_DECL:
5007 case TRANSLATION_UNIT_DECL:
5008 return NULL_TREE;
5009
5010 case RECORD_TYPE:
5011 case UNION_TYPE:
5012 case QUAL_UNION_TYPE:
5013 return context;
5014
5015 case TYPE_DECL:
5016 case FUNCTION_DECL:
5017 context = DECL_CONTEXT (context);
5018 break;
5019
5020 case BLOCK:
5021 context = BLOCK_SUPERCONTEXT (context);
5022 break;
5023
5024 default:
5025 gcc_unreachable ();
5026 }
5027
5028 return NULL_TREE;
5029 }
5030
5031 /* CALL is a CALL_EXPR. Return the declaration for the function
5032 called, or NULL_TREE if the called function cannot be
5033 determined. */
5034
5035 tree
5036 get_callee_fndecl (tree call)
5037 {
5038 tree addr;
5039
5040 /* It's invalid to call this function with anything but a
5041 CALL_EXPR. */
5042 gcc_assert (TREE_CODE (call) == CALL_EXPR);
5043
5044 /* The first operand to the CALL is the address of the function
5045 called. */
5046 addr = TREE_OPERAND (call, 0);
5047
5048 STRIP_NOPS (addr);
5049
5050 /* If this is a readonly function pointer, extract its initial value. */
5051 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
5052 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
5053 && DECL_INITIAL (addr))
5054 addr = DECL_INITIAL (addr);
5055
5056 /* If the address is just `&f' for some function `f', then we know
5057 that `f' is being called. */
5058 if (TREE_CODE (addr) == ADDR_EXPR
5059 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
5060 return TREE_OPERAND (addr, 0);
5061
5062 /* We couldn't figure out what was being called. Maybe the front
5063 end has some idea. */
5064 return lang_hooks.lang_get_callee_fndecl (call);
5065 }
5066
5067 /* Print debugging information about tree nodes generated during the compile,
5068 and any language-specific information. */
5069
5070 void
5071 dump_tree_statistics (void)
5072 {
5073 #ifdef GATHER_STATISTICS
5074 int i;
5075 int total_nodes, total_bytes;
5076 #endif
5077
5078 fprintf (stderr, "\n??? tree nodes created\n\n");
5079 #ifdef GATHER_STATISTICS
5080 fprintf (stderr, "Kind Nodes Bytes\n");
5081 fprintf (stderr, "---------------------------------------\n");
5082 total_nodes = total_bytes = 0;
5083 for (i = 0; i < (int) all_kinds; i++)
5084 {
5085 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
5086 tree_node_counts[i], tree_node_sizes[i]);
5087 total_nodes += tree_node_counts[i];
5088 total_bytes += tree_node_sizes[i];
5089 }
5090 fprintf (stderr, "---------------------------------------\n");
5091 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
5092 fprintf (stderr, "---------------------------------------\n");
5093 ssanames_print_statistics ();
5094 phinodes_print_statistics ();
5095 #else
5096 fprintf (stderr, "(No per-node statistics)\n");
5097 #endif
5098 print_type_hash_statistics ();
5099 lang_hooks.print_statistics ();
5100 }
5101 \f
5102 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
5103
5104 /* Generate a crc32 of a string. */
5105
5106 unsigned
5107 crc32_string (unsigned chksum, const char *string)
5108 {
5109 do
5110 {
5111 unsigned value = *string << 24;
5112 unsigned ix;
5113
5114 for (ix = 8; ix--; value <<= 1)
5115 {
5116 unsigned feedback;
5117
5118 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
5119 chksum <<= 1;
5120 chksum ^= feedback;
5121 }
5122 }
5123 while (*string++);
5124 return chksum;
5125 }
5126
5127 /* P is a string that will be used in a symbol. Mask out any characters
5128 that are not valid in that context. */
5129
5130 void
5131 clean_symbol_name (char *p)
5132 {
5133 for (; *p; p++)
5134 if (! (ISALNUM (*p)
5135 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
5136 || *p == '$'
5137 #endif
5138 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
5139 || *p == '.'
5140 #endif
5141 ))
5142 *p = '_';
5143 }
5144
5145 /* Generate a name for a function unique to this translation unit.
5146 TYPE is some string to identify the purpose of this function to the
5147 linker or collect2. */
5148
5149 tree
5150 get_file_function_name_long (const char *type)
5151 {
5152 char *buf;
5153 const char *p;
5154 char *q;
5155
5156 if (first_global_object_name)
5157 p = first_global_object_name;
5158 else
5159 {
5160 /* We don't have anything that we know to be unique to this translation
5161 unit, so use what we do have and throw in some randomness. */
5162 unsigned len;
5163 const char *name = weak_global_object_name;
5164 const char *file = main_input_filename;
5165
5166 if (! name)
5167 name = "";
5168 if (! file)
5169 file = input_filename;
5170
5171 len = strlen (file);
5172 q = alloca (9 * 2 + len + 1);
5173 memcpy (q, file, len + 1);
5174 clean_symbol_name (q);
5175
5176 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
5177 crc32_string (0, flag_random_seed));
5178
5179 p = q;
5180 }
5181
5182 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
5183
5184 /* Set up the name of the file-level functions we may need.
5185 Use a global object (which is already required to be unique over
5186 the program) rather than the file name (which imposes extra
5187 constraints). */
5188 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
5189
5190 return get_identifier (buf);
5191 }
5192
5193 /* If KIND=='I', return a suitable global initializer (constructor) name.
5194 If KIND=='D', return a suitable global clean-up (destructor) name. */
5195
5196 tree
5197 get_file_function_name (int kind)
5198 {
5199 char p[2];
5200
5201 p[0] = kind;
5202 p[1] = 0;
5203
5204 return get_file_function_name_long (p);
5205 }
5206 \f
5207 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5208 The result is placed in BUFFER (which has length BIT_SIZE),
5209 with one bit in each char ('\000' or '\001').
5210
5211 If the constructor is constant, NULL_TREE is returned.
5212 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5213
5214 tree
5215 get_set_constructor_bits (tree init, char *buffer, int bit_size)
5216 {
5217 int i;
5218 tree vals;
5219 HOST_WIDE_INT domain_min
5220 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
5221 tree non_const_bits = NULL_TREE;
5222
5223 for (i = 0; i < bit_size; i++)
5224 buffer[i] = 0;
5225
5226 for (vals = TREE_OPERAND (init, 1);
5227 vals != NULL_TREE; vals = TREE_CHAIN (vals))
5228 {
5229 if (!host_integerp (TREE_VALUE (vals), 0)
5230 || (TREE_PURPOSE (vals) != NULL_TREE
5231 && !host_integerp (TREE_PURPOSE (vals), 0)))
5232 non_const_bits
5233 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
5234 else if (TREE_PURPOSE (vals) != NULL_TREE)
5235 {
5236 /* Set a range of bits to ones. */
5237 HOST_WIDE_INT lo_index
5238 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
5239 HOST_WIDE_INT hi_index
5240 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5241
5242 gcc_assert (lo_index >= 0);
5243 gcc_assert (lo_index < bit_size);
5244 gcc_assert (hi_index >= 0);
5245 gcc_assert (hi_index < bit_size);
5246 for (; lo_index <= hi_index; lo_index++)
5247 buffer[lo_index] = 1;
5248 }
5249 else
5250 {
5251 /* Set a single bit to one. */
5252 HOST_WIDE_INT index
5253 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5254 if (index < 0 || index >= bit_size)
5255 {
5256 error ("invalid initializer for bit string");
5257 return NULL_TREE;
5258 }
5259 buffer[index] = 1;
5260 }
5261 }
5262 return non_const_bits;
5263 }
5264
5265 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5266 The result is placed in BUFFER (which is an array of bytes).
5267 If the constructor is constant, NULL_TREE is returned.
5268 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5269
5270 tree
5271 get_set_constructor_bytes (tree init, unsigned char *buffer, int wd_size)
5272 {
5273 int i;
5274 int set_word_size = BITS_PER_UNIT;
5275 int bit_size = wd_size * set_word_size;
5276 int bit_pos = 0;
5277 unsigned char *bytep = buffer;
5278 char *bit_buffer = alloca (bit_size);
5279 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
5280
5281 for (i = 0; i < wd_size; i++)
5282 buffer[i] = 0;
5283
5284 for (i = 0; i < bit_size; i++)
5285 {
5286 if (bit_buffer[i])
5287 {
5288 if (BYTES_BIG_ENDIAN)
5289 *bytep |= (1 << (set_word_size - 1 - bit_pos));
5290 else
5291 *bytep |= 1 << bit_pos;
5292 }
5293 bit_pos++;
5294 if (bit_pos >= set_word_size)
5295 bit_pos = 0, bytep++;
5296 }
5297 return non_const_bits;
5298 }
5299 \f
5300 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
5301
5302 /* Complain that the tree code of NODE does not match the expected 0
5303 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
5304 the caller. */
5305
5306 void
5307 tree_check_failed (const tree node, const char *file,
5308 int line, const char *function, ...)
5309 {
5310 va_list args;
5311 char *buffer;
5312 unsigned length = 0;
5313 int code;
5314
5315 va_start (args, function);
5316 while ((code = va_arg (args, int)))
5317 length += 4 + strlen (tree_code_name[code]);
5318 va_end (args);
5319 va_start (args, function);
5320 buffer = alloca (length);
5321 length = 0;
5322 while ((code = va_arg (args, int)))
5323 {
5324 if (length)
5325 {
5326 strcpy (buffer + length, " or ");
5327 length += 4;
5328 }
5329 strcpy (buffer + length, tree_code_name[code]);
5330 length += strlen (tree_code_name[code]);
5331 }
5332 va_end (args);
5333
5334 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
5335 buffer, tree_code_name[TREE_CODE (node)],
5336 function, trim_filename (file), line);
5337 }
5338
5339 /* Complain that the tree code of NODE does match the expected 0
5340 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
5341 the caller. */
5342
5343 void
5344 tree_not_check_failed (const tree node, const char *file,
5345 int line, const char *function, ...)
5346 {
5347 va_list args;
5348 char *buffer;
5349 unsigned length = 0;
5350 int code;
5351
5352 va_start (args, function);
5353 while ((code = va_arg (args, int)))
5354 length += 4 + strlen (tree_code_name[code]);
5355 va_end (args);
5356 va_start (args, function);
5357 buffer = alloca (length);
5358 length = 0;
5359 while ((code = va_arg (args, int)))
5360 {
5361 if (length)
5362 {
5363 strcpy (buffer + length, " or ");
5364 length += 4;
5365 }
5366 strcpy (buffer + length, tree_code_name[code]);
5367 length += strlen (tree_code_name[code]);
5368 }
5369 va_end (args);
5370
5371 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
5372 buffer, tree_code_name[TREE_CODE (node)],
5373 function, trim_filename (file), line);
5374 }
5375
5376 /* Similar to tree_check_failed, except that we check for a class of tree
5377 code, given in CL. */
5378
5379 void
5380 tree_class_check_failed (const tree node, const enum tree_code_class cl,
5381 const char *file, int line, const char *function)
5382 {
5383 internal_error
5384 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
5385 TREE_CODE_CLASS_STRING (cl),
5386 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
5387 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
5388 }
5389
5390 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
5391 (dynamically sized) vector. */
5392
5393 void
5394 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
5395 const char *function)
5396 {
5397 internal_error
5398 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
5399 idx + 1, len, function, trim_filename (file), line);
5400 }
5401
5402 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
5403 (dynamically sized) vector. */
5404
5405 void
5406 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
5407 const char *function)
5408 {
5409 internal_error
5410 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
5411 idx + 1, len, function, trim_filename (file), line);
5412 }
5413
5414 /* Similar to above, except that the check is for the bounds of the operand
5415 vector of an expression node. */
5416
5417 void
5418 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
5419 int line, const char *function)
5420 {
5421 internal_error
5422 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
5423 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
5424 function, trim_filename (file), line);
5425 }
5426 #endif /* ENABLE_TREE_CHECKING */
5427 \f
5428 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
5429 and mapped to the machine mode MODE. Initialize its fields and build
5430 the information necessary for debugging output. */
5431
5432 static tree
5433 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
5434 {
5435 tree t = make_node (VECTOR_TYPE);
5436
5437 TREE_TYPE (t) = innertype;
5438 TYPE_VECTOR_SUBPARTS (t) = nunits;
5439 TYPE_MODE (t) = mode;
5440 layout_type (t);
5441
5442 {
5443 tree index = build_int_cst (NULL_TREE, nunits - 1);
5444 tree array = build_array_type (innertype, build_index_type (index));
5445 tree rt = make_node (RECORD_TYPE);
5446
5447 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
5448 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
5449 layout_type (rt);
5450 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
5451 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
5452 the representation type, and we want to find that die when looking up
5453 the vector type. This is most easily achieved by making the TYPE_UID
5454 numbers equal. */
5455 TYPE_UID (rt) = TYPE_UID (t);
5456 }
5457
5458 return t;
5459 }
5460
5461 static tree
5462 make_or_reuse_type (unsigned size, int unsignedp)
5463 {
5464 if (size == INT_TYPE_SIZE)
5465 return unsignedp ? unsigned_type_node : integer_type_node;
5466 if (size == CHAR_TYPE_SIZE)
5467 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
5468 if (size == SHORT_TYPE_SIZE)
5469 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
5470 if (size == LONG_TYPE_SIZE)
5471 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
5472 if (size == LONG_LONG_TYPE_SIZE)
5473 return (unsignedp ? long_long_unsigned_type_node
5474 : long_long_integer_type_node);
5475
5476 if (unsignedp)
5477 return make_unsigned_type (size);
5478 else
5479 return make_signed_type (size);
5480 }
5481
5482 /* Create nodes for all integer types (and error_mark_node) using the sizes
5483 of C datatypes. The caller should call set_sizetype soon after calling
5484 this function to select one of the types as sizetype. */
5485
5486 void
5487 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
5488 {
5489 error_mark_node = make_node (ERROR_MARK);
5490 TREE_TYPE (error_mark_node) = error_mark_node;
5491
5492 initialize_sizetypes (signed_sizetype);
5493
5494 /* Define both `signed char' and `unsigned char'. */
5495 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
5496 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
5497
5498 /* Define `char', which is like either `signed char' or `unsigned char'
5499 but not the same as either. */
5500 char_type_node
5501 = (signed_char
5502 ? make_signed_type (CHAR_TYPE_SIZE)
5503 : make_unsigned_type (CHAR_TYPE_SIZE));
5504
5505 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
5506 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
5507 integer_type_node = make_signed_type (INT_TYPE_SIZE);
5508 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
5509 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
5510 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
5511 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
5512 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
5513
5514 /* Define a boolean type. This type only represents boolean values but
5515 may be larger than char depending on the value of BOOL_TYPE_SIZE.
5516 Front ends which want to override this size (i.e. Java) can redefine
5517 boolean_type_node before calling build_common_tree_nodes_2. */
5518 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5519 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5520 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
5521 TYPE_PRECISION (boolean_type_node) = 1;
5522
5523 /* Fill in the rest of the sized types. Reuse existing type nodes
5524 when possible. */
5525 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
5526 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
5527 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
5528 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
5529 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
5530
5531 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
5532 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
5533 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
5534 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
5535 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
5536
5537 access_public_node = get_identifier ("public");
5538 access_protected_node = get_identifier ("protected");
5539 access_private_node = get_identifier ("private");
5540 }
5541
5542 /* Call this function after calling build_common_tree_nodes and set_sizetype.
5543 It will create several other common tree nodes. */
5544
5545 void
5546 build_common_tree_nodes_2 (int short_double)
5547 {
5548 /* Define these next since types below may used them. */
5549 integer_zero_node = build_int_cst (NULL_TREE, 0);
5550 integer_one_node = build_int_cst (NULL_TREE, 1);
5551 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
5552
5553 size_zero_node = size_int (0);
5554 size_one_node = size_int (1);
5555 bitsize_zero_node = bitsize_int (0);
5556 bitsize_one_node = bitsize_int (1);
5557 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
5558
5559 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5560 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5561
5562 void_type_node = make_node (VOID_TYPE);
5563 layout_type (void_type_node);
5564
5565 /* We are not going to have real types in C with less than byte alignment,
5566 so we might as well not have any types that claim to have it. */
5567 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
5568 TYPE_USER_ALIGN (void_type_node) = 0;
5569
5570 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
5571 layout_type (TREE_TYPE (null_pointer_node));
5572
5573 ptr_type_node = build_pointer_type (void_type_node);
5574 const_ptr_type_node
5575 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
5576 fileptr_type_node = ptr_type_node;
5577
5578 float_type_node = make_node (REAL_TYPE);
5579 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
5580 layout_type (float_type_node);
5581
5582 double_type_node = make_node (REAL_TYPE);
5583 if (short_double)
5584 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
5585 else
5586 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
5587 layout_type (double_type_node);
5588
5589 long_double_type_node = make_node (REAL_TYPE);
5590 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
5591 layout_type (long_double_type_node);
5592
5593 float_ptr_type_node = build_pointer_type (float_type_node);
5594 double_ptr_type_node = build_pointer_type (double_type_node);
5595 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
5596 integer_ptr_type_node = build_pointer_type (integer_type_node);
5597
5598 complex_integer_type_node = make_node (COMPLEX_TYPE);
5599 TREE_TYPE (complex_integer_type_node) = integer_type_node;
5600 layout_type (complex_integer_type_node);
5601
5602 complex_float_type_node = make_node (COMPLEX_TYPE);
5603 TREE_TYPE (complex_float_type_node) = float_type_node;
5604 layout_type (complex_float_type_node);
5605
5606 complex_double_type_node = make_node (COMPLEX_TYPE);
5607 TREE_TYPE (complex_double_type_node) = double_type_node;
5608 layout_type (complex_double_type_node);
5609
5610 complex_long_double_type_node = make_node (COMPLEX_TYPE);
5611 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
5612 layout_type (complex_long_double_type_node);
5613
5614 {
5615 tree t = targetm.build_builtin_va_list ();
5616
5617 /* Many back-ends define record types without setting TYPE_NAME.
5618 If we copied the record type here, we'd keep the original
5619 record type without a name. This breaks name mangling. So,
5620 don't copy record types and let c_common_nodes_and_builtins()
5621 declare the type to be __builtin_va_list. */
5622 if (TREE_CODE (t) != RECORD_TYPE)
5623 t = build_variant_type_copy (t);
5624
5625 va_list_type_node = t;
5626 }
5627 }
5628
5629 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
5630 better way.
5631
5632 If we requested a pointer to a vector, build up the pointers that
5633 we stripped off while looking for the inner type. Similarly for
5634 return values from functions.
5635
5636 The argument TYPE is the top of the chain, and BOTTOM is the
5637 new type which we will point to. */
5638
5639 tree
5640 reconstruct_complex_type (tree type, tree bottom)
5641 {
5642 tree inner, outer;
5643
5644 if (POINTER_TYPE_P (type))
5645 {
5646 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5647 outer = build_pointer_type (inner);
5648 }
5649 else if (TREE_CODE (type) == ARRAY_TYPE)
5650 {
5651 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5652 outer = build_array_type (inner, TYPE_DOMAIN (type));
5653 }
5654 else if (TREE_CODE (type) == FUNCTION_TYPE)
5655 {
5656 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5657 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
5658 }
5659 else if (TREE_CODE (type) == METHOD_TYPE)
5660 {
5661 tree argtypes;
5662 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5663 /* The build_method_type_directly() routine prepends 'this' to argument list,
5664 so we must compensate by getting rid of it. */
5665 argtypes = TYPE_ARG_TYPES (type);
5666 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
5667 inner,
5668 TYPE_ARG_TYPES (type));
5669 TYPE_ARG_TYPES (outer) = argtypes;
5670 }
5671 else
5672 return bottom;
5673
5674 TYPE_READONLY (outer) = TYPE_READONLY (type);
5675 TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
5676
5677 return outer;
5678 }
5679
5680 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
5681 the inner type. */
5682 tree
5683 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
5684 {
5685 int nunits;
5686
5687 switch (GET_MODE_CLASS (mode))
5688 {
5689 case MODE_VECTOR_INT:
5690 case MODE_VECTOR_FLOAT:
5691 nunits = GET_MODE_NUNITS (mode);
5692 break;
5693
5694 case MODE_INT:
5695 /* Check that there are no leftover bits. */
5696 gcc_assert (GET_MODE_BITSIZE (mode)
5697 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
5698
5699 nunits = GET_MODE_BITSIZE (mode)
5700 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
5701 break;
5702
5703 default:
5704 gcc_unreachable ();
5705 }
5706
5707 return make_vector_type (innertype, nunits, mode);
5708 }
5709
5710 /* Similarly, but takes the inner type and number of units, which must be
5711 a power of two. */
5712
5713 tree
5714 build_vector_type (tree innertype, int nunits)
5715 {
5716 return make_vector_type (innertype, nunits, VOIDmode);
5717 }
5718
5719 /* Given an initializer INIT, return TRUE if INIT is zero or some
5720 aggregate of zeros. Otherwise return FALSE. */
5721 bool
5722 initializer_zerop (tree init)
5723 {
5724 tree elt;
5725
5726 STRIP_NOPS (init);
5727
5728 switch (TREE_CODE (init))
5729 {
5730 case INTEGER_CST:
5731 return integer_zerop (init);
5732
5733 case REAL_CST:
5734 /* ??? Note that this is not correct for C4X float formats. There,
5735 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
5736 negative exponent. */
5737 return real_zerop (init)
5738 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
5739
5740 case COMPLEX_CST:
5741 return integer_zerop (init)
5742 || (real_zerop (init)
5743 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
5744 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
5745
5746 case VECTOR_CST:
5747 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
5748 if (!initializer_zerop (TREE_VALUE (elt)))
5749 return false;
5750 return true;
5751
5752 case CONSTRUCTOR:
5753 elt = CONSTRUCTOR_ELTS (init);
5754 if (elt == NULL_TREE)
5755 return true;
5756
5757 /* A set is empty only if it has no elements. */
5758 if (TREE_CODE (TREE_TYPE (init)) == SET_TYPE)
5759 return false;
5760
5761 for (; elt ; elt = TREE_CHAIN (elt))
5762 if (! initializer_zerop (TREE_VALUE (elt)))
5763 return false;
5764 return true;
5765
5766 default:
5767 return false;
5768 }
5769 }
5770
5771 void
5772 add_var_to_bind_expr (tree bind_expr, tree var)
5773 {
5774 BIND_EXPR_VARS (bind_expr)
5775 = chainon (BIND_EXPR_VARS (bind_expr), var);
5776 if (BIND_EXPR_BLOCK (bind_expr))
5777 BLOCK_VARS (BIND_EXPR_BLOCK (bind_expr))
5778 = BIND_EXPR_VARS (bind_expr);
5779 }
5780
5781 /* Build an empty statement. */
5782
5783 tree
5784 build_empty_stmt (void)
5785 {
5786 return build1 (NOP_EXPR, void_type_node, size_zero_node);
5787 }
5788
5789
5790 /* Returns true if it is possible to prove that the index of
5791 an array access REF (an ARRAY_REF expression) falls into the
5792 array bounds. */
5793
5794 bool
5795 in_array_bounds_p (tree ref)
5796 {
5797 tree idx = TREE_OPERAND (ref, 1);
5798 tree min, max;
5799
5800 if (TREE_CODE (idx) != INTEGER_CST)
5801 return false;
5802
5803 min = array_ref_low_bound (ref);
5804 max = array_ref_up_bound (ref);
5805 if (!min
5806 || !max
5807 || TREE_CODE (min) != INTEGER_CST
5808 || TREE_CODE (max) != INTEGER_CST)
5809 return false;
5810
5811 if (tree_int_cst_lt (idx, min)
5812 || tree_int_cst_lt (max, idx))
5813 return false;
5814
5815 return true;
5816 }
5817
5818 /* Return true if T (assumed to be a DECL) is a global variable. */
5819
5820 bool
5821 is_global_var (tree t)
5822 {
5823 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
5824 }
5825
5826 /* Return true if T (assumed to be a DECL) must be assigned a memory
5827 location. */
5828
5829 bool
5830 needs_to_live_in_memory (tree t)
5831 {
5832 return (TREE_ADDRESSABLE (t)
5833 || is_global_var (t)
5834 || (TREE_CODE (t) == RESULT_DECL
5835 && aggregate_value_p (t, current_function_decl)));
5836 }
5837
5838 /* There are situations in which a language considers record types
5839 compatible which have different field lists. Decide if two fields
5840 are compatible. It is assumed that the parent records are compatible. */
5841
5842 bool
5843 fields_compatible_p (tree f1, tree f2)
5844 {
5845 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
5846 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
5847 return false;
5848
5849 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
5850 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
5851 return false;
5852
5853 if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
5854 return false;
5855
5856 return true;
5857 }
5858
5859 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
5860
5861 tree
5862 find_compatible_field (tree record, tree orig_field)
5863 {
5864 tree f;
5865
5866 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
5867 if (TREE_CODE (f) == FIELD_DECL
5868 && fields_compatible_p (f, orig_field))
5869 return f;
5870
5871 /* ??? Why isn't this on the main fields list? */
5872 f = TYPE_VFIELD (record);
5873 if (f && TREE_CODE (f) == FIELD_DECL
5874 && fields_compatible_p (f, orig_field))
5875 return f;
5876
5877 /* ??? We should abort here, but Java appears to do Bad Things
5878 with inherited fields. */
5879 return orig_field;
5880 }
5881
5882 /* Return value of a constant X. */
5883
5884 HOST_WIDE_INT
5885 int_cst_value (tree x)
5886 {
5887 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
5888 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
5889 bool negative = ((val >> (bits - 1)) & 1) != 0;
5890
5891 gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
5892
5893 if (negative)
5894 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
5895 else
5896 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
5897
5898 return val;
5899 }
5900
5901 /* Returns the greatest common divisor of A and B, which must be
5902 INTEGER_CSTs. */
5903
5904 tree
5905 tree_fold_gcd (tree a, tree b)
5906 {
5907 tree a_mod_b;
5908 tree type = TREE_TYPE (a);
5909
5910 gcc_assert (TREE_CODE (a) == INTEGER_CST);
5911 gcc_assert (TREE_CODE (b) == INTEGER_CST);
5912
5913 if (integer_zerop (a))
5914 return b;
5915
5916 if (integer_zerop (b))
5917 return a;
5918
5919 if (tree_int_cst_sgn (a) == -1)
5920 a = fold (build2 (MULT_EXPR, type, a,
5921 convert (type, integer_minus_one_node)));
5922
5923 if (tree_int_cst_sgn (b) == -1)
5924 b = fold (build2 (MULT_EXPR, type, b,
5925 convert (type, integer_minus_one_node)));
5926
5927 while (1)
5928 {
5929 a_mod_b = fold (build2 (CEIL_MOD_EXPR, type, a, b));
5930
5931 if (!TREE_INT_CST_LOW (a_mod_b)
5932 && !TREE_INT_CST_HIGH (a_mod_b))
5933 return b;
5934
5935 a = b;
5936 b = a_mod_b;
5937 }
5938 }
5939
5940 /* Returns unsigned variant of TYPE. */
5941
5942 tree
5943 unsigned_type_for (tree type)
5944 {
5945 return lang_hooks.types.unsigned_type (type);
5946 }
5947
5948 /* Returns signed variant of TYPE. */
5949
5950 tree
5951 signed_type_for (tree type)
5952 {
5953 return lang_hooks.types.signed_type (type);
5954 }
5955
5956 #include "gt-tree.h"
This page took 0.312716 seconds and 5 git commands to generate.